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Summary

Due to the complex nature of the constraints and objectives involved, devel-
oping Analog and Mixed Signal (AMS) Integrated Circuits is still mainly a
manual process, and existing Electronic Design Automation (EDA) tools are
still limited in their capabilities or restricted to a few specific steps. How-
ever, recent developments in AI (Artificial Intelligence) have opened up novel
prospects for automating AMS design procedures. Specifically, identifying
circuit topologies within a netlist is a crucial aspect of AMS EDA, as cer-
tain circuit structures necessitate specific constraints, for example, in terms
of their placement on the layout (e.g., symmetry, matching, etc.). Tradition-
ally, topology recognition has relied on subgraph isomorphism algorithms like
VF2. Unfortunately, these methods suffer from long execution times when ap-
plied to large netlists. The objective of this thesis is to create an AI-driven
pipeline for topology recognition capable of achieving both high accuracy
and a reduction in computational time compared to the previous methods,
like VF2.

The proposed pipeline is composed of three phases. An initial pre-processing
refines and prepares the dataset, enhancing the quality and relevance of the
input data. In order to do so, this process removes all information not rel-
evant to topology recognition. The central part of the pipeline consists of a
Graph Neural Network (GNN). The GNN receives as input a bipartite graph
that comprises two distinct sets of nodes. One set encompasses the various
devices within the circuit, such as transistors, while the other encapsulates
the network connections, or nets, that link these devices together. The bi-
partite graph’s ability to maintain the relationships between devices provides
the GNN with a comprehensive view of the circuit. The GNN then learns the
patterns within the circuit that correspond to different topologies. Lastly, in
the third stage, post-processing is executed, in which the outcomes generated
by the GNN undergo further refinement using the VF2 algorithm. This com-
bined approach leverages the strengths of both the GNN and VF2, resulting
in a topology recognition process that is both robust and accurate.
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To assess the effectiveness of this pipeline, the thesis undertakes a compar-
ative analysis among three scenarios: utilizing the GNN in isolation, combin-
ing the GNN with VF2, and employing VF2 as a standalone tool. This com-
prehensive evaluation offers valuable insights into the capabilities of the entire
pipeline. The obtained results, conducted on a graph with roughly 700,000
nodes, demonstrate the excellent performance of the solution compared to
the VF2 algorithm. The accuracy is the same for both solutions, 0.9999. How-
ever, precision has improved from 0.9641 (VF2 algorithm) to 0.9662 (GNN
+ VF2), while recall has slightly decreased from 0.9860 (VF2 algorithm) to
0.9808 (GNN + VF2). The most significant results were achieved in terms
of computational time, which decreased from an average of 10 hours and 54
minutes to an average of 1 minute and 57 seconds.
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Chapter 1

Introduction

Driven by the rising demands of mobile communication, consumer electronics,
and automotive and medical applications, analog and mixed-signal (AMS)
integrated circuits (ICs) are projected to grow at an 11% annual rate [1].
Analog circuit design and verification processes are time-consuming tasks
and highly dependent on human experience [2, 3]. From the generation of the
topology of the circuit to device-sizing, placement, and routing, the whole
design process is subject to many constraints. The latter has to be obeyed
to guarantee the functionality and robustness of the circuit, which is, e.g.,
influenced by process variations, changing operating conditions, and para-
sitics. On the other hand digital design flows are highly automated, making
the analog part a huge bottleneck during the design of modern systems on
chip (SoCs) containing AMS modules [3]. Hence, several efforts in the re-
lated research community are focusing on automating, as much as possible,
the most critical/essential tasks related to analog circuit design, verification,
and layout generation. In the meantime, the recent developments in the area
of machine learning (ML) do provide poweful instruments and models that
can be used to achive this challenging goal. Given the particular structure of
circuits, a particularly suited category of ML models are the so-called Graph
Neural Networks (GNN).

GNNs learn to propagate information across the nodes of a graph, leverag-
ing both local and global dependencies. This ability to capture relational in-
formation allows GNNs to make informed predictions or classifications based
not only on the features of individual nodes but also on the context provided
by their neighbors. For instance, in a recommendation system using a GNN,
the GNN can capture the relationships between users and items in a recom-
mendation graph. This enables it to make personalized recommendations by
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1 – Introduction

considering how users are connected to various items, unlike a simple feedfor-
ward neural network, which treats each user or item independently without
considering their connections in the graph, which are essential for capturing
the underlying structure and patterns in graph data. In recent years, GNNs
have been used to build models able to classify either analog circuits [4] and
digital circuits [5]. In both cases, as in this work, these circuits were converted
from their equivalent text representations, or what is called “netlists”, to a
universal graph representation suitable for GNNs.

The primary objective of this thesis is to employ a GNN to tackle the task
of recognizing topologies within a netlist. Traditional methods for topology
recognition often rely on manual inspection or rule-based algorithms, which
can be time-consuming. On the other hand, since GNNs have the ability to
capture complex relationships and patterns within graph-structured data,
they are particularly promising for automating this process. Recognizing cir-
cuits topologies is a fundamental step to automate AMS IC placement, since
different topologies require different types of constraints during placement,
such as symmetry and matching between devices [6]. In this context, a "topol-
ogy" refers to arrangement or configuration of electronic components (such as
resistors, capacitors, inductors, transistors, etc.). These group of components
are interconnected to perform a specific function. For instance, examples are
"current mirrors" and "differential pairs." The topology of a current mirror
defines how transistors are connected to replicate a reference current, while
the topology of a differential pair outlines how two transistors are arranged
to amplify the difference between two input voltages. In the context of AMS
IC placement, recognizing these diverse topologies becomes crucial because
each topology may have specific requirements for optimal performance, and
automating their placement is an important step during the physical design
and manufacturing of these circuits. By identifying the topology of a given
circuit, appropriate placement strategies can be applied, ensuring that the
resulting layout meets the required performance criteria and design specifi-
cations.

In this thesis, a bipartite graph is used to represent the connectivity struc-
ture of circuits. A bipartite graph consists of two sets of nodes: one set rep-
resents the nets between devices, while the other set represents the devices
(e.g., transistors, resistors). By using this representation, the relationships be-
tween networks and devices can be fully captured. After converting netlists
to graphs, different types of GNN are designed to learn and analyze the
structure and patterns of the graph. In order to allow for the extraction of
as much information as possible from both the nodes and the edges of the
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1 – Introduction

graph, we associate features to both nodes and edges of the bipartite graph.
The outcomes of the GNN are then compared with those of a more tra-

ditional algorithm that relies on graph matching as a primary feature for
topology detection. However, as explained before, this approach has notable
drawbacks. The traditional algorithm depends on a library, which involves
matching a circuit to pre-established templates, necessitating an exhaustive
enumeration of potential topologies within a database. Furthermore, the re-
liance on searching through all potential vertex pairings between the two
graphs results in a substantial computational cost issue, particularly when
dealing with large graphs, which in turn translates into several hours of exe-
cution time on modern server-class processor. The use of GNNs in this work
aims to address both of these issues, achieving a topology recognition process
that is more flexible and efficient.

The thesis is organized as follows: Chapter 2 explains the background and
necessary theory to understand the project. What is a current mirror, how
a circuit is translated in a graph, what is a GNN, and how the problem
is addressed. Chapter 3 gives a brief overview of the GNN approaches for
topology recognition that have been considered in this work, including a
comprehensive analysis of the existing works that propose different or similar
solutions. Chapter 4, on the other hand, introduces all the problems and the
approaches taken to address these issues in order to achieve the final results.
Chapter 5 presents all the results obtained during the work. Finally, Chapter
6 addresses some final thoughts and considerations on the results and, most
importantly, on the overall project, as well as some comments on possible
future works.

This thesis has been carried out as part of the Horizon 2020 Marie Skłodowska-
Curie Research and Innovation Staff Exchange (RISE) project AMBEAT-
ion (Analog/Mixed Signal Back End Design Automation based on Machine
Learning and Artificial Intelligence Techniques). The aim of the projects is to
reduce the handmade flows by actively working on developing better physi-
cal design and verification methods in particular for AMS integrated circuit
placement.
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Chapter 2

Background

This chapter covers all the theoretical aspects and background that are nec-
essary to fully understand the project in all its components. The chapter is
divided into three different sections. The first section (2.1) defines AMS inte-
grated circuits and topologies. The second section (2.2) gives an overview of
the background that is required to fully understand GNNs. The third section
(2.5) gives an overview of how this work is integrated in the "AMBEATion
Project".

2.1 Analog Mixed-Signal Circuits

A mixed-signal integrated circuit (Fig. 2.1) is an integrated circuit that has
both analog devices and digital devices on a single semiconductor die [7].
Designing and manufacturing AMS ICs presents a greater challenge when
compared to or digital-only integrated circuits. This complexity arises be-
cause they involve both traditional active elements, such as transistors, and
high-performance passive elements like coils, capacitors, and resistors, all
integrated into the same chip. This intricate fusion of active and passive
components enables mixed-signal ICs to bridge the gap between continuous
analog signals and discrete digital information processing. As a result, these
circuits find a diverse range of applications in modern electronics, facilitating
the seamless interaction between analog and digital domains. From precision
measurement instruments to communication systems and sensor networks,
the application of analog mixed-signal technologies brings forth versatile so-
lutions that exploit the strengths of both analog and digital.
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2 – Background

Figure 2.1: Mixed-signal integrated circuit: The metal areas on the right-
hand side are capacitors, on top of which are large output transistors; the
left-hand side is occupied by the digital logic. [8]

2.1.1 Definition of Topologies
Different topologies can be found within analog parts in AMS integrated cir-
cuits, and being able to recognize them without human intervention is very
important to automate the whole IC design process. This becomes partic-
ularly important during the placement phase, especially for analog circuits.
Analog circuits require symmetric positioning to avoid issues such as im-
balanced signal paths, cross-talk, and undesirable interference. Achieving a
balanced and symmetrical layout is essential for preserving signal integrity
and minimizing undesirable coupling effects between components. Automatic
topology detection and placement optimization mechanisms play a crucial
role in ensuring that analog circuits function optimally and meet perfor-
mance requirements.

In this work, the AMS netlists considered included a variety of distinct
topologies:

• Current Mirrors (CMs): Current mirrors (Fig. 2.2) are a fundamental
building block in analog circuit designs. They facilitate the replication of
a reference current by mirroring it onto another branch. This topology
finds widespread use in biasing, amplification, and regulation circuits.

• Differential Pairs (DPs): Differential pairs (Fig. 2.3) are arrange-
ments of two transistors with their sources connected and their gates
receiving complementary signals. This topology is fundamental for dif-
ferential signal processing, used in amplifiers, comparators, and balanced
circuits.
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2 – Background

• DPx (Differential Pairs with Additional Transistors): DPx rep-
resents an extension of the basic differential pair by introducing ad-
ditional transistors for improved performance. These added transistors
can enhance common-mode rejection, increase linearity, or provide other
desirable characteristics.

• Cascode and Long-Tailed Pair (CascLV): The cascode topology
involves connecting the collector of a transistor to the base of another,
enhancing performance by improving bandwidth and output impedance.
Long-tailed pairs are differential pairs where one transistor has a tail cur-
rent source, improving common-mode rejection. This topology is com-
monly used in differential amplifiers.

Figure 2.2: An example of current mirrors

Figure 2.3: An example of differential pair

Each of these topologies plays a distinct role in analog IC (integrated
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circuits) design, offering specific advantages and addressing particular chal-
lenges. Understanding and accurately identifying these topologies within the
dataset are pivotal steps in effectively analyzing and designing analog cir-
cuits.

2.2 Graph Neural Networks
Graphs are all around us; real-world objects are often defined in terms of
their connections to other things. For instance, social networks like Face-
book and Twitter can be described as large graphs using the relationships
between individuals. Similarly, transportation systems, such as subway net-
works, can be represented using graphs to illustrate the connections between
stations and routes. Researchers have developed neural networks that oper-
ate on graph data, called Graph Neural Networks (GNNs), for over a decade
[9]. Algorithms that process graphs to identify paths, assign values to nodes,
and more, have been a fundamental part of AI and computer science since
its birth. For example, Dijkstra’s algorithm is used to find the shortest path
in networks, and the PageRank algorithm is employed by search engines like
Google to rank web pages based on their link structures. Moreover, the recent
developments in deep learning, driven by the increased computational power,
the availability of large-scale labeled graph datasets, and advances in opti-
mization techniques for training and inference, have also led to an increase
in the capabilities and expressive power of GNNs. Consequently, they are
increasingly being utilized across a spectrum of applications and domains.
Practical applications are: antibacterial discovery [10], fake news detection
[11] and recommendation systems [12].

This sub-section provides an introduction to Graph Neural Networks.
First, a look is given at graphs with some common examples. The second
part explains how graphs can be used in the context of machine learning. In
the third part, the differences between inductive and transductive learning
are explained. Lastly, the architectures used in this work are introduced.

2.2.1 What is a Graph?
A graph is a set of objects, called nodes (or vertices), and a set of connec-
tions between pairs of vertices, called edges. Graphs are employed in various
real-world scenarios because they can represent and model different relation-
ships within a given context. These relationships are typically defined by
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connections or interactions between individual elements or entities within a
system. Graphs, with their nodes (representing elements) and edges (rep-
resenting connections), offer a framework for visually and computationally
expressing how these elements relate to one another. For example, in a so-
cial network, individuals (nodes) are connected by friendships or interactions
(edges). In a transportation network, locations or stations (nodes) are linked
by routes or roads (edges). The nature of these relationships can vary, in-
cluding friendships, distances, dependencies, similarities, and more. Graphs
provide a flexible and intuitive means to capture and analyze these relation-
ships, making them useful for addressing problems where understanding and
leveraging these relationships is crucial. Here are defined some key terms
associated with graphs:

• Node: is a representation of an entity within the graph. Nodes can repre-
sent people, products, or any other kind of entity related to a particular
problem.

• Edge: is a connection between two nodes, indicating a relationship be-
tween them. Edges can be directed or undirected (as shown in Figure 2.4)
and may have associated attributes or weights as additional information

Figure 2.4: Comparison between undirect edge (on the left) and direct edge
(on the right). [13]

2.2.2 Machine Learning and Deep Learning
Machine learning is a subfield of artificial intelligence, which is broadly de-
fined as the capability of a machine to imitate intelligent human behaviour.
Machine learning involves systems that learn from training data to perform
specific tasks [14]. Deep learning, on the other hand, refers to the use of
layered artificial neural networks to extract increasingly higher-level features
from data. A neural network is a computational model inspired by the struc-
ture and function of the human brain. It consists of interconnected nodes,
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2 – Background

called neurons, that work together to process and transmit information. Each
neuron receives input signals, applies weights to them, and produces an out-
put signal based on a specific activation function. These computations are
performed in parallel across the network, allowing for complex information
processing.

In the 1950s Frank Rosenblatt expanded on this model and developed an
algorithm, known as the Perceptron [15], that could learn the weights to gen-
erate an output. This marked an important advancement in neural network
development. In this context, it is important to introduce the Multilayer Per-
ceptron (refer to Figure 2.5), or MLP, a type of neural network composed
of multiple layers of processing units, including an input layer, one or more
hidden layers, and an output layer. Each processing unit, or neuron, in the
MLP is connected to all neurons in the adjacent layers. The information flows
through the network from the input layer (blue dots), through the hidden
layers (black dots), and finally to the output layer (green dots). MLPs are
particularly effective in solving complex problems that require non-linear re-
lationships between input and output. Through training, an MLP can learn
to adjust the weights of its connections to produce the desired output for
a given set of inputs. This ability to learn from training data is achieved
through a process known as backpropagation, where the network adjusts its
weights based on the error between the predicted output and the true output.

Figure 2.5: Illustration of a MLP: The input layer is depicted by blue dots,
the hidden layer is denoted by black dots, and the output layer is by green
dots.

It’s important to note that there are different types of learning paradigms
in machine learning and deep learning, such for instance Supervised Learning.
Supervised learning algorithms require a training set of example inputs and
their corresponding desired outputs, which the algorithm uses to learn a
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model of the mapping from inputs to outputs. Once the model is learned,
the algorithm can generate outputs for new inputs. Unsupervised learning
algorithms do not require a labeled training set, but instead, learn a model of
the input data by detecting patterns in it. Unsupervised learning algorithms
can be used to discover structure in data or to cluster data into groups.
Lastly, self-supervised learning algorithms also work with unlabeled input
data; the desired outputs are not provided. Instead, the algorithm learns a
model of the input data by learning, for example, to reconstruct the input
after passing through multiple transformations, or to restore a missing part
of an input (a word removed from a sentence, or a patch from an image, etc).
Other forms of learning, such as Reinforcement Learning also exist, but they
are out of the scope of this work.

2.2.3 Graphs in Machine Learning
There are three general types of prediction tasks on graphs: graph-level, node-
level, and edge-level. In a graph-level task, a single property for an entire
graph or a sub-graph is predicted. For instance, in social network analysis,
the prediction might concern whether a social community (a sub-graph of the
entire network) is more likely to adopt a new trend or not. In a node-level
task, a prediction is made regarding some property for each node in a graph.
As an example, in a recommendation system, the likelihood of a user engaging
with specific content, such as movies or products, is predicted for each user
in a social network. In the case of an edge-level task, the goal is to predict the
property or presence of edges in a graph. In a biological network, predictions
might revolve around whether a protein-protein interaction exists between
pairs of proteins, thereby determining the edges in the network. The first
challenge in addressing these prediction tasks is how to represent a graph in
a format that is compatible with neural networks. Neural networks typically
require input data in the form of tensors, which are multidimensional arrays
or vectors with a fixed number of dimensions (N-dimensions). Therefore, an
important initial step in solving graph-based prediction problems is to find
a way to convert the complex structure of a graph into a format that can be
used as a tensor and subsequently fed into a neural network.

One solution can be to use the graph adjacency matrix (Fig. 2.6). However,
this representation has drawbacks: the number of nodes in a graph can be on
the order of millions and the number of edges for a node can be highly vari-
able, which could lead to a very sparse adjacency matrix. Another problem
is that there are many adjacency matrices that encode the same problem

10



2 – Background

and there is no guarantee that these different matrices would produce the
same results in a deep neural network. In other words, this solution is not
permutation invariant.

Figure 2.6: Adjacency matrices that represent the same graph. [13]

To address those issues one way of representing sparse matrices is as ad-
jacency lists. This solution provides a more efficient way to represent sparse
graphs by only storing information about existing connections, leading to
a more memory-efficient way to represent to same structure. Additionally,
the permutation invariance problem is mitigated, making this solution more
suitable and digestible when using neural networks.

Given these elements, it is now possible to describe a simple GNN archi-
tecture. A GNN is an optimizable transformation on all attributes of the
graph (nodes, edges, global context) that preserves graph symmetries (per-
mutation invariance). Modern GNNs architectures are based on the "message
passing neural network" framework [16] and the Graph Nets architecture
schematics introduced in [17], in which GNNs adopt a “graph-in, graph-out”
architecture meaning that these model types accept a graph as input and
progressively transform embeddings ∗, without changing the connectivity of
the input graph. The simplest Graph Neural Network (GNN) architecture

∗In the context of Graph Neural Networks (GNNs), an embedding refers to a vector rep-
resentation of nodes, edges, or entire graphs in a graph data structure. These embeddings
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can be understood as a series of iterative message-passing steps, where each
node in the graph aggregates information from its neighbors to update its
own representation using an aggregation function. This process is repeated
for multiple iterations to capture increasingly refined features and relation-
ships within the graph.

Here’s a breakdown of the key stages within a Graph Neural Network
(GNN):

• Initialization: Each node in the graph is assigned an initial embedding,
often corresponding to its own features or attributes.

• Message Passing: each node aggregates information from its neigh-
bors. This information typically includes the embeddings of neighboring
nodes and the embedding of the edges connecting the node with its
neighbors. The aggregated information can be obtained using different
functions (e.g. sum, max, etc.).

• Updating Node Embeddings: Once nodes have gathered information
from their neighbors (Fig. 2.7), they update their own embeddings by
incorporating the aggregated information. This update involves combin-
ing the node’s current embedding with the aggregated information using
an MLP. This step allows nodes to refine their representations based on
local neighborhood information.

GNN layers can be stacked to create deeper architectures. Stacking mul-
tiple GNN layers allows the network to capture more complex and abstract
features by aggregating information from increasing distances in the graph.
The output embeddings of one GNN layer serve as the input embeddings for
the next layer. The embeddings generated by GNNs encapsulate both local
and global information from the graph:

• Local Information: In the early layers, each node’s embedding is influ-
enced primarily by its immediate neighbors. This allows nodes to capture
local structural patterns and relationships within their neighborhoods.

• Global Information: As the layers progress, the updated embeddings
start to capture more global information. Information from distant nodes
gradually propagates through the network, enabling nodes to learn about
broader graph-wide properties and structures.

capture the essential features and characteristics of graph elements in a vector space
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Figure 2.7: Node embedding update. [13]

After iteratively repeating the initial three steps mentioned earlier (initial-
ization, message passing, and updating), the resulting final node embeddings
become ready for utilization in a variety of downstream tasks, as shown in
Figure 2.8. These applications include node classification, where the refined
embeddings serve as inputs for a MLP model to make informed predictions.

Figure 2.8: An end-to-end prediction task with a GNN model. [13]

2.2.4 Inductive and Transductive Learning
There exist two different paradigms for learning on graphs, transductive and
inductive.

Inductive learning [18, 19] involves training a model on a specific graph’s
nodes and edges (Fig. 2.10). The model then predicts outcomes for new nodes
and edges, even those not included in the initial graph. This approach allows
the model to generalize its knowledge to unseen data, making it useful for
handling novel instances.

Transductive learning [18, 19] maintains the same node and edge sets dur-
ing both training and prediction (Fig. 2.9). During training, the algorithm
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accesses all nodes and edges, including those not requiring predictions. How-
ever, to prevent the model from using information from the labels of test
nodes during training, a label mask is applied, ensuring that the test node
labels are not utilized for training purposes. Transductive learning doesn’t
extend to new graphs and is mainly employed for predicting within the ex-
isting dataset without a focus on generalization.

Figure 2.9: Node classification in transductive settings. At the training time,
the learning algorithm has access to all the nodes and edges, including those
nodes for which labels are to be predicted (denoted by question marks). [19]

Figure 2.10: Node classification in inductive settings. Once learned, the model
can be applied to new unseen nodes (denoted by question marks). There
may or may not exist edges between such new nodes and the nodes used for
training. [19]
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2.2.5 Main GNN Architectures

This chapter provides a comprehensive overview of the diverse architectures
of Graph Neural Networks (GNNs) utilized throughout the course of this
work. These different architectures present various strategies for aggregating
and exploiting data from neighboring nodes or the node itself. However, they
all share the same fundamental stages: initialization, message passing, and
updating node embeddings.

GCN: Graph Convolutional Networks

The Graph Convolutional Network [20] extends the concept of convolution
from grid data to graph data. It achieves this by constructing graph convo-
lutions through the stacking of multiple convolutional layers, with each layer
followed by a point-wise non-linearity function, as shown in Figure 2.11. In
GCN, the filter parameters are shared across all locations within the graph.
This approach also incorporates symmetric-normalized aggregation, where
information from neighboring nodes is combined in a symmetrically weighted
manner, preserving graph structure, and self-loop updates, which involve con-
sidering a node’s own features in the aggregation process. In equation 2.1,
is presented the update rule that encapsulates the essence of the GCN ar-
chitecture. This equation captures the key transformation applied within the
network, providing a mathematical representation of its fundamental opera-
tion.

Figure 2.11: Multi-layer Graph Convolutional Network (GCN) [21]
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h(k)
v = σ

W (k) ·
q

u∈N(v) h(k−1)
u

|N(v)| + B(k) · h(k−1)
v

 (2.1)

• h(k)
v : This represents the embedding or feature vector associated with

node v at layer k and embodies the node’s acquired representation at
the present layer.

• σ: This is the activation function, often a non-linear function like the sig-
moid or ReLU, applied element-wise to the expression inside the paren-
theses. It introduces non-linearity into the model.

• W (k): This is the weight matrix for layer k. It is a learned parameter
in the GCN and is used to transform the aggregated information from
neighboring nodes.

• q
u∈N(v) h(k−1)

u : This is the sum of the feature vectors of all neighboring
nodes u of node v at the previous layer k − 1. It aggregates information
from neighboring nodes.

• |N(v)|: This represents the number of neighbors that node v has in the
graph. It normalizes the aggregated information by the degree of node
v.

• B(k): This is a bias term specific to layer k. It’s another learned parameter
in the GCN and is added to the weighted sum.

• h(k−1)
v : This is the feature vector of node v at the previous layer k − 1.

It represents the node’s learned representation from the previous layer.

GraphSAGE: Graph Sample and Aggregated

GraphSAGE [22] operates on the principles of Sampling and Aggregating,
where it determines the sampling strategy for selecting a subset of neighbors
and subsequently aggregates the embedding information from these neigh-
bors to update its own embedding. In GraphSAGE, a subset of neighboring
nodes is sampled at different depth layers, and then an aggregator function
combines the embeddings of these neighbors, as illustrated in Figure 2.12.
During each iteration, nodes collect information from their local neighbors.
Different aggregator functions capture information from neighbors at varying
depths or hop distances from the focal node. Consequently, nodes accumulate
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progressively more information from increasingly distant parts of the graph.
In equation 2.2 is shown the update rule of GraphSAGE.

h(k)
v = σ

1
W (k) · CONCAT(h(k−1)

v , AGGRu∈N(v)({h(k−1)
u }))

2
(2.2)

• CONCAT(h(k−1)
v , AGGRu∈N(v)({h(k−1)

u })): This part of the equation in-
volves concatenation.

• AGGRu∈N(v)({h(k−1)
u }): This is an aggregation operation that involves

collecting feature vectors h(k−1)
u from neighboring nodes u in the set

N(v) (the neighbors of node v). The aggregation operation can vary
but typically involves some form of combining these neighboring feature
vectors, for example, by taking their average or sum. So, AGGR is a
more general form of the summation present in the GCN architecture.

• The other symbols have the same meaning as in Section 2.2.5

Figure 2.12: Visual illustration of the GraphSAGE Sample and Aggregate
approach. [22]

GAT: Graph Attention Network

The Attention Mechanism is a technique used to emphasize or give varying
degrees of importance to different parts of input data when making deci-
sions. It is particularly useful for handling variable-sized inputs and focusing
on the most relevant information. In the context of natural language process-
ing and computer vision, attention mechanisms have been widely applied to
tasks such as machine translation, text summarization, image captioning,
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and more. In the context of Graph Attention Network (GAT) [23], this con-
cept is extended to graph-structured data. The GAT employs masked self-
attention layers to achieve its objectives. A self-attention mechanism, at its
core, enables each node in the graph to compute its hidden representation
by selectively attending to its neighboring nodes. This means that when a
node updates its representation, it considers the relevance of information from
neighboring nodes, assigning different weights to each neighbor based on their
significance. The GAT takes this a step further by incorporating multi-head
attention (as shown in figure 2.13), a technique that enhances the stability of
the attention mechanism during the learning process. In the GAT, attention
operations within a particular layer are performed multiple times, with each
operation having its own set of parameters. The outputs from these atten-
tion operations are then combined, either by concatenation or averaging, to
produce a refined representation for each node. This approach allows GAT
to implicitly assign varying levels of importance to different nodes within a
neighborhood, ensuring that the model captures the nuanced relationships
and dependencies in the graph data. In 2.3 is shown the equation of the
update rule of GAT.

h(k)
v = σ

W (k) ·
 Ø

u∈N(v)
α(k−1)

vu h(k−1)
u + α(k−1)

vv h(k−1)
v

 (2.3)

• α(k−1)
vu : This represents the attention weight associated with node u when

node v is at layer k − 1. It signifies how much attention or importance
node v gives to node u when aggregating information. α(k−1)

vv represents
the self-attention weight for node v at layer k − 1. It signifies how much
attention node v gives to its own previous representation when aggre-
gating information.

• The other symbols have the same meaning as in Section 2.2.5

Where the attention weights α(k) are generated by an attention mechanism
A(k), normalized such that the sum over all neighbors of each node v is 1, as
shown in equation 2.4:

α(k)
vu = A(k)(h(k)

u , h(k)
v )q

w∈N(v) A(k)(h(k)
w , h

(k)
v )

(2.4)

• A(k)(h(k)
u , h(k)

v ): This is the output of an attention mechanism A(k), a
mathematical function, that computes the attention weight between the
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feature vectors h(k)
u and h(k)

v of nodes u and v at layer k. This mecha-
nism learns to assign different attention scores based on the similarity
or relevance of these feature vectors.

• The other symbols have the same meaning as in Section 2.2.5

The denominator of the equation q
w∈N(v) A(k)(h(k)

w , h(k)
v ) is the sum of

attention scores computed by the attention mechanism A(k) between the
feature vector h(k)

v of node v at layer k and the feature vectors h(k)
w of all

neighboring nodes w in the neighborhood (N(v)) of node v at the same layer
k. It represents the total attention given by node v to its neighbors.

Figure 2.13: Left: The attention mechanism (W−→
hi , W

−→
hj) employed by our

model, parameterized by a weight vector −→a ∈ R2F ′, applying a Leaky ReLU
activation. Right: An illustration of multi-head attention (with K = 3
heads) by node 1 on its neighborhood. Different arrow styles and colors
denote independent attention computations. The aggregated features from
each head are concatenated or averaged to obtain

−→
h′

1.

RGCN: Relational Graph Convolutional Network

RGCN [24] is an extension of GCN, that distinguishes itself by generalizing
from the focus on only neighborhood operations in the original work [20]
to accommodating relational data between neighbors. For instance, consider
a social network where nodes represent users, and edges represent different
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types of relationships, such as "friends," "family," or "colleagues." In the con-
text of GCN, the network might primarily focus on learning from the immedi-
ate connections or neighbors of a user to make predictions. However, RGCN
takes it a step further by considering the specific types of relationships (e.g.,
"friendship" vs. "colleague") between the users. This extension allows RGCN
to capture more nuanced and context-aware information. For example, when
making recommendations, RGCN can better understand that a user might
have different preferences for recommendations from friends compared to
recommendations from colleagues, leading to more personalized and accu-
rate suggestions. Expanding upon the general message-passing framework of
GCN, RGCN modifies the equation to take in account multi-relational edges,
as illustrated in Equation 2.5. Figure 2.14 provides an illustrative example
of R-GCN in action.

h(k)
v = σ

 Ø
r∈R

Ø
j∈N

(r)
v

1
cv,r

W (k−1)
r h

(k−1)
j + W

(k−1)
0 h(k−1)

v

 (2.5)

• q
r∈R: This is a summation over all relation types (r) in the set R. It

means we’re considering each type of relation in the summation.

• q
j∈N

(r)
v

: This is a summation over all nodes j that are in the neigh-
borhood (N (r)

v ) of node v with respect to relation r. It means we’re
considering each neighboring node with a specific relation r.

• 1
cv,r

: This represents a weight factor for the relation r specific to node
v. It normalizes the contribution of each neighboring node based on the
relation type and node v.

• W (k−1)
r : This is the weight matrix specific to relation r at layer k − 1. It

is a learned parameter in the model. It is used to linearly transform the
feature vectors of neighboring nodes with relation r.

• W
(k−1)
0 : This is an additional weight matrix at layer k − 1 that is not

relation-specific. It is also a learned parameter in the model and is used
to linearly transform the feature vector of node v from the previous layer.

• The other symbols have the same meaning as in Section 2.2.5
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Figure 2.14: Illustration depicting the operational mechanism of RGCN. [24]

2.3 A Graph representation for Circuits

A fundamental aspect of the work involved transforming the data, initially
in a digital circuit format, into a usable form. As demonstrated in [4, 25], an
ideal representation of a circuit in the field of Graph Neural Networks (GNNs)
is that of a bipartite undirected graph. In this type of graph, nodes are divided
into two distinct types: one containing the devices (transistors, resistors,
capacitors, diodes), and the other containing the nets, which represent the
connections between these devices.

In [4], which serves as a key reference for this thesis, the graph representa-
tion is structured as follows: each edge connected to a transistor is assigned
a three-bit label, lg, ld and ls. Here, lg takes a value of 1 if the edge from the
transistor vertex connects to the net vertex through its gate, and 0 other-
wise. Similarly, ls and ld take a value of 1 if the transistor connects to the net
through its source, drain, or bulk, respectively, and 0 otherwise. This labeling
scheme, shown in Figures 2.15 and 2.16, provides a characterization of the
relationships between transistors and nets, enhancing the depth of informa-
tion available for the GNN. In Chapter 4.1, this representation is expanded
to incorporate additional information.
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Figure 2.15: (a) An NMOS current mirror primitive, CM-N(2), with two
transistors. (b) Its representation as a bipartite graph. [4]

Figure 2.16: (a) A differential OTA (for simplicity, body connections are not
shown). (b) Its bipartite graph, showing the subgraph that can be recognized
as a current mirror (for clarity, edge labels are not shown). [4]

2.4 VF2 Algorithm

The VF2 algorithm is a deterministic algorithm used for graph matching.
It is utilized in the context of the AMBEATion project (Chapter 2.5) for
topology recognition, where it aims to find an isomorphism mapping between
two graphs (as shown in Figure 2.17): Gt (the target graph) and Gp (the
pattern graph or primitive template). The "primitive template" or "pattern
graph" refers to the graph representation of the netlist of a specific functional
topology or pattern that we want to recognize within the target circuit. On
the other hand, the "target graph" refers to the graph representation of the
netlist of the circuit for which we want to perform topology recognition. In
both cases, the graph represents the structure and connections of the elements

22



2 – Background

(devices) and nets (connections between elements) within the circuit.
To create the graph representations of the target netlist and the primitive

templates, we start with the conversion of the netlists from CDL, a standard
netlist format used in the AMS design industry, to JSON format. This conver-
sion process preserves the necessary information required for topology recog-
nition. The target netlist, as well as the template netlists, are represented as
graphs. Specifically, an undirected bipartite graph is used (see Chapter 2.3).
In these graphs, the vertices are divided into two sets: one set represents
the elements or devices (such as resistors, transistors, etc.), and the other
set represents the nets or connections (such as VSS, VDD, etc.). The edges
in the graph represent the connections between individual terminals of the
elements and the nets.

The algorithm works by creating states that represent potential mappings
between vertices in the two graphs. Each state identifies candidate pairs of
vertices that could be included in the mapping. The algorithm then deter-
mines whether to add these candidate pairs to the mapping and move to the
next state. The mapping process continues recursively until a complete and
valid mapping is obtained. In the case of topology recognition, this means
achieving a matching result that accurately recognizes the desired functional
topologies.

Figure 2.17: An instance of subgraph matching. The graph on the left (pat-
tern graph), is present four times within the graph on the right (target graph)

At the end, a post-processing step is applied with the goal of filtering and
refining the matched results obtained from the VF2 algorithm. The main
tasks performed are the following:
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• Support CM/CascLV with multiple branches: In the context of recog-
nizing CM or CascLV with multiple branches, the algorithm is designed
to identify individual instances of CM/CascLV within the target netlist.
If multiple candidates for CM/CascLV are recognized within a single
CM/CascLV with multiple branches, the algorithm merges them into a
single recognized instance. This ensures that the recognition accurately
captures the presence of CM/CascLV structures with multiple branches
in the circuit.

• Support length/width constraints of instances: In the recognition of cer-
tain circuit elements (such as DP), it is important to consider the length
and width constraints of the instances. The algorithm takes into account
specified length and width ranges for the DP candidates. If any DP can-
didates fall outside of these specified ranges, they are removed from
consideration. Additionally, to ensure consistency, the algorithm also
verifies that the length of the devices within the recognized instances of
DP remains the same.

• Support recognition of parallel DP pairs: In some cases, differential pairs
may appear in parallel structures within the circuit. The recognition
algorithm is designed to recognize these parallel DP and merge them
into a single recognized entity. By identifying parallel DP candidates and
grouping them together, the algorithm accurately captures the presence
of parallel DP in the circuit topology.

The issue of scalability in the current graph matching-algorithm used is the
main concern. As the size and complexity of the target netlist graph grow,
the computational resources and the search space for matching templates
increase exponentially, which is characteristic of NP problem complexity,
thereby impacting the algorithm’s scalability and performance.

2.5 The AMBEATion Project
The EU-funded AMBEATion project [26] adopts a holistic approach, lever-
aging artificial intelligence techniques to enhance the design automation of
AMS IC. These efforts aim to boost designer efficiency in mixed-signal phys-
ical designs, reducing the time to market actually needed. During this thesis,
the primary objective was to enhance topology recognition for analog cir-
cuits, considering that analog design processes are notably less automated
compared to their digital counterparts.

24



2 – Background

In this section is provide an overview of the essential components of the
AMS design flow developed within the AMBEATion Project and their respec-
tive functionalities. This serves to explain the core elements that constitute
the project’s framework, offering a comprehensive understanding of its in-
ner workings. Namely, the AMBEATion flow is composed of the following
modules, each realized as a set of Python scripts:

• cdl2json: Its primary role is to process the input netlist. CDL2JSON
transforms the original netlist into a JSON file format, which is suitable
for the subsequent data manipulation and analysis tasks.

• Topology Recognition: The objective of this step is to identify func-
tional topologies within the schematics, including current mirrors and
differential pairs. This identification process is essential for accurately
specifying constraints in the layout placement phase. It also represents
the central focus of this thesis.

• Digital Area Estimation: The AMBEATion Project incorporates the
Digital Area Estimation component into its workflow to assess whether
a digital block within an analog-mixed-signal (AMS) design can be ac-
commodated effectively within the designated layout area. This compo-
nent is activated subsequent to the identification of digital topologies in
the workflow through Topology Recognition. The resulting output from
the Digital Area Estimation component is intended for utilization by
the top-level group placer (in forthcoming scriptware releases) to inform
placement decisions for the digital logic elements.

• PCell Analysis: This script has the capability to reconstruct the poly-
gons comprising the device’s layers, extracting the correspondence be-
tween length and width in the schematic and layout representations.
Additionally, it can incorporate technology-specific constraints, such as
spacing requirements, into the design.

• Device Placers: An AMS group auto-placer, which leverages constraints
derived from topology recognition, individual device layouts generated
through PCell analysis, and additional relative positioning of the de-
vices within each group facilitated by a Level 1 placer. These inputs,
along with digital placeability information, collectively contribute to the
generation of the ultimate Level 2 layout for the circuit.
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• Flatten: Flattening refers to the transformation of hierarchical modules
or subcircuits into a single-level representation, simplifying tasks that
necessitate a flat circuit structure.

• Plotter: Utilized for generating visual outputs, such as graphical rep-
resentations of circuit layouts.

A more comprehensive examination of the current topology recognition
tool utilized in the project’s present state has been provided in Section 2.4.
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Chapter 3

Related Work

In the field of chip design, there has been a gradual integration of multiple
software tools aimed at efficiently and reliably performing tasks such as syn-
thesis, simulation, testing, and verification of electronic designs. This set of
tools is collectively known as Electronic Design Automation (EDA), stream-
lining the step-by-step and time-consuming chip design process depicted in
Figure 3.1. At the end of the EDA flow the quality of the design, with regard
to power, performance, and area (PPA), can be assessed. Often, adjustments
are required in intermediate steps, leading to multiple iterations of the design
process.

Figure 3.1: Chip Design Flow. [13]

In recent years, the ever-increasing complexity driven by Moore’s Law has
necessitated greater efforts in designing and validating a broader range of
chips, given that chip capacity has been doubling approximately every two
years. EDA tools have adapted to address these new challenges by offer-
ing automated solutions tailored for different design constraints. EDA tools
frequently encounter NP-complete problems, which can be more efficiently
tackled using machine learning (ML) techniques. Consequently, ML has been
seamlessly integrated into EDA, particularly in tasks such as logic synthesis,
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layout constraint extraction, placement, routing, testing, and verification.
In the reference [27], four primary areas of ML application within EDA

have been identified. First, ML is employed to predict optimal parameter
configurations for traditional methods. Second, ML models can learn the
characteristics of models and their performance to forecast the behavior of
unseen designs without the resource-intensive synthesis step. Additionally,
ML can aid in exploring the design space while optimizing PPA. Related
to this work, in [4] researchers have applied GNNs to the preliminary step
of analog topology recognition, which is followed by placement and routing.
Similarly, Graph based Reinforcement Learning (RL) is employed in [28]
to explore the design space, learn policies, and execute transformations to
achieve optimal floor-planing.

One crucial factor facilitating the use of ML in EDA is the copious amount
of data generated by EDA tools during the design process. To leverage ML
effectively with this data, it necessitates preprocessing and labeling. Exist-
ing solutions often represent this data in a 2D Euclidean space, enabling
the utilization of ML methods like convolutional neural networks (CNNs).
However, the recent development of GNN has gained considerable attention
due to their efficacy in handling data inherently structured as graphs. In the
context of EDA, circuits, intermediate RTL, netlists, and layouts are most
naturally represented as graphs. Over the past years, several studies have
recognized this opportunity and have incorporated GNNs to address various
EDA challenges [29]. This section provides a comprehensive review of recent
studies employing for topology recognition.

3.1 Comparative Analysis of Topology Recog-
nition Techniques

In MAGICAL [30], topology recognition diverges from ML-based approaches
seen in this work. Instead, MAGICAL maintains a reliance on a graph ab-
straction of the circuit, while GANA [4], ALIGN [6], and the presented
work incorporate ML techniques. The topology recognition in MAGICAL
is grounded in graph analysis of the circuit netlist. The process begins with
parsing the netlist file and abstracting the circuit into a graph representation.
Transistor pairs that form certain structural patterns are detected as seed
symmetric device pairs that serve as starting points for topology recognition.
They are selected from a pattern library based on interconnected transistor
pins’ sources. Instead of using computationally expensive graph isomorphism
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algorithms, the method checks connection relationships and device attributes
between pairs of devices for matching. For example, when recognizing differ-
ential pairs, it iterates through pairs of transistors connected to the same
net via source pins and verifies gate pins connect to different nets while
matching device attributes. Graph traversal from these seed pairs expands
recognized constraints and reduces ambiguity. Symmetric transistor patterns
visited during traversal form symmetric groups, sharing a common symmetry
axis during placement. Nets connecting symmetric devices are recognized as
symmetric nets. Additional symmetry constraints, including self-symmetric
devices and transistor pairs in bias circuits, are detected. To ensure feasibility
during placement, each device is allowed at most one symmetry constraint.

Like MAGICAL, ALIGN also represents the netlist as a graph and subse-
quently identifies features within the graph across various hierarchical levels.
ALIGN does not solely depend on netlist hierarchy; instead, it automatically
identifies and annotates hierarchies, even when hierarchical blocks are absent.
While graph-based methods excel at recognizing fixed structures through
subgraph isomorphism operations, analog design presents a challenge due
to the multitude of variations in implementing circuit functionalities. For
instance, differential pairs can be implemented in various ways, including
purely transistor-level structures and configurations that combine transistors
with amplifier building blocks. At higher design hierarchy levels, operational
amplifiers can be constructed in different ways, with sub-blocks containing
transistor groups recognized as differential pairs, current mirrors, differential
loads, or OTA blocks. Recognizing these structures by enumerating graph
patterns is manageable at lower design hierarchy levels, but it becomes im-
practical at higher levels due to the sheer number of permutations. Expert
human designers rely on their experience to intuitively identify these patterns
when examining schematics. In contrast, ALIGN addresses this challenge by
leveraging ML methods that recognize standard structures based on their
distinctive characteristics.

Both GANA and the approach presented in this work aim to replicate hu-
man flexibility in recognizing these structures using Graph Neural Networks
through different approaches. GANA’s approach consists of four key phases:

• Netlist Flattening: In the preprocessing stage, the input netlist is flat-
tened to bypass designer-specific hierarchies. This approach ensures in-
dependence from individual designer preferences, allowing for consistent
integration of design constraints into recognized blocks. For example,
bias networks and operational transconductance amplifiers (OTAs) may
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logically belong to different hierarchies in the netlist, but they are of-
ten combined in layout optimization. Preprocessing also identifies netlist
features that impact performance but not functionality.

• GCN-based Recognition: A graph representation of the flattened
netlist is created, and sub-blocks are identified using a Graph Convo-
lutional Network (GCN)-based approach. This stage annotates netlist
nodes as part of specific sub-blocks, even when vertices may belong to
multiple sub-blocks due to design variations.

• Primitive Annotation: Within each sub-block, lower-level primitives
are recursively identified. At the lowest level, primitives are detected us-
ing an exact graph isomorphism approach, as their element-level struc-
tures remain invariant across circuits.

• Post-processing: After primitive annotation, post-processing is em-
ployed to determine which primitives are integral to a specific unit and
which are auxiliary. This step ensures recognition accuracy, even when
dealing with variations in sub-blocks.

While GANA primarily focuses on utilizing GNNs to recognize specific
structures like Operational Amplifiers (Op-Amps), the approach outlined
in this work distinguishes itself by addressing the recognition of a single
topologies within the netlist graph, like CMs.
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Materials and Methods

This chapter aims to provide an overview of the main contribution of this
work. The first subchapter (4.1) will introduce an extension in the represen-
tation of circuits as graphs presented in Chapter 2.3. The second subchapter
(4.2) will present the pre-processing technique used to improve the accuracy
of the results. The third subchapter (4.3) will delve into the training phase:
how imbalanced classes are handled and how the data are prepared for dif-
ferent architectures. In the last subchapter (4.4) is explained how the VF2
algorithm is used in conjunction with the developed GNN model, in order to
produce more robust and accurate result.

4.1 Extend the Graph Representation for Cir-
cuits with Bulk Connectivity Information

As mentioned in the previous chapter 2.3, the procedure of preparing circuits
to be used as input for a GNN needs the conversion of those to a graph format
that is appropriate for a GNN. In previous researches, such as [4], a bipartite
structure was used. The graph was partitioned into two sets of nodes: one
set representing the devices, such as resistors and transistors, and another
set representing the connections between those devices (called nets).

Within this bipartite structure, each device has its features. Also the edges
in the graph are associated with their specific features. Previously, three edge
features, lg, ld, and ls, were used to identify whether the connection originated
from the gate, drain, or source of a transistor. However, in this work, the
number of edge features was extended by introducing two new features called
lb and ldd. These additional features served the purpose of indicating whether
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a connection was linked to the bulk (or body) of a transistor or if it simply
represented a connection between two devices that are not transistors, for
example a net representing the connection between a resistor and diode will
be labeled with ldd.

Adding the bulk to the edge features is important because the gate poten-
tial is measured relative to the substrate (or bulk) potential, and the chan-
nel conductive is formed in the substrate material. Therefore the transistor
behavior strongly depends on the substrate body potential, which in turn
depends on the bulk connection, making this feature important to optimally
describe the transistor behaviour. Figure 4.1 shows a MOSFET transistor
with its four terminals (source, gate, drain and bulk).

Figure 4.1: Cross-sectional view of a field-effect transistor, showing source,
gate, drain and body (or bulk) terminals [31]

In addition to the discussed aspects, it is important to note that the pre-
processing technique, discussed in chapter 4.2, involves removing all non-
transistor devices. Consequently, in this context, only the edge features re-
lated to transistor terminals become relevant, as devices such as resistors and
capacitors have been filtered from the graph.

4.2 Pre-Processing Techniques
In the field of Machine Learning (ML), pre-processing refers to the set of ac-
tions taken to prepare and clean raw data before feeding them into a model
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for training [32]. This often involves tasks such as removing irrelevant or du-
plicate information and scaling or normalizing features to make them more
comparable. The goal is to enhance the quality of data, improving the per-
formance and/or accuracy of the model.

In the context of this work, a dataset containing various devices was pro-
vided by STMicroelectronics. The aim of this work was to recognize the
different topologies present within the circuit. These topologies (discussed
in 2.1.1) are essentially different arrangements of transistors, making other
devices (e.g. resistors) not useful for the purpose of identifying these layouts.
Hence, a pre-processing step was introduced to preserve the circuit layout
while at the same time removing all unnecessary devices for the recognition
of topologies.

This process can be described as follows: In the first phase, all devices that
are not transistors are identified. In the second phase, these non-transistor
devices are removed. In the third phase, to ensure that the topology remains
unchanged after the removal of these devices, the nets connected to these
devices are merged. This results in the original circuit as a simple short-
circuit of all the terminations of the removed devices, as shown in Figure
4.2. By employing this technique, the model’s accuracy was increased, as will
be discussed in chapter 5. Additionally, this technique led to performance
improvements, as removing devices from the circuit reduced the size of the
graph provided as input to the GNN. This reduction in size decreased the
computational cost required both during the training phase and during in-
ference.

4.3 Training

One of the most important phases of the work is the training of the GNN
model. In this section, four main points are addressed. The first subsection
introduces the frameworks, computational resources, and all the tools utilized
during the training process. The second section delves into a more detailed
analysis of the employed end-to-end architectures. The third subsection ex-
plains which features were used and which features were available for the
nodes. The fourth subsection explain how data were managed in order to
mitigate the impacts of significant class imbalances.
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Figure 4.2: Left: The original circuit containing resistors and capacitors,
detected as a non-transistor device. Right: After applying the pre-processing
technique, the resistor’s terminations are short-circuited.

4.3.1 Resources
Throughout this work, several frameworks for the development of neural
networks have been employed. First, a significant contribution has come
from PyTorch [33]. PyTorch is a widely used open-source deep learning
library that support the creation and training of neural networks. Building
upon the foundation of PyTorch, another framework has been employed:
PyTorchGeometric [34]. This framework is an extension library specifically
developed for handling graph-structured data, enabling deep learning on
graphs.

For graph analysis and manipulation, the framework NetworkX [35] has
primarily been utilized. NetworkX provides tools for the creation, manipu-
lation, and study of complex graphs.

On the computational front, the primary resource for model training has
been a NVIDIA T4 GPU with 16GB of VRAM, which was made available
through Google Colab. This GPU helped to accelerate the training process
by significantly reducing the time required for model training.

4.3.2 Architectures Exploration
In this work, as discussed in chapter 2.2.5, various GNNs architectures have
been employed. These architectures can be categorized into two groups: one
group includes architectures capable of utilizing edge feature, learning by
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incorporating them. The representative architecture in this category is the
RGCN. On the other hand, the remaining three architectures, namely GCN,
GraphSAGE, and GAT, do not leverage these features, they update neural
networks weights only using relationships between nodes and nodes features.
They are unable to learn incorporating the edge features of the connection
between various devices.

GNN layers are typically not employed in isolation (refer to Figure 2.8).
Instead, they are incorporated within a larger architecture. As shown in Fig-
ure 4.3, where a more detailed end-to-end architecture is illustrated, GNNs
are commonly stacked to enable nodes to gather information from more dis-
tant nodes. For instance, when two GNNs are stacked, they can update node
features within a range of 2 hops from a given node. For classification tasks,
it is essential to employ a MLP layer at the output of the network, as GNNs
only update node features. The architecture of Figure 4.3 can be divided into
three components: the pre-processing layer, the message passing layer, and
the post-processing layer.

The pre-processing layer is designed to handle certain data transformations
or feature engineering tasks before the information is passed to the message
passing layer. However, for this work, the pre-processing layer was not used.

Moving on, there is a set of GNN layers, referred to as message passing
layers. As described in chapter 2.2.3, GNNs are stacked one after another. In-
creasing the number of GNN layers enhances the network’s ability to extract
information from nodes that are progressively farther away. This is because,
at each layer, nodes incorporate information from their neighbors, enabling
the extraction of increasingly global information. However, it may appear
that adding more layers can improve results, but a common issue in GNNs
known as "over-smoothing" sets a limit on the number of layers that can be
used [36]. Over-smoothing in GNNs happen when increasing the number of
GNN layers, the learned node representations become too similar from one
another. The information from neighboring nodes is repeatedly aggregated
and smoothed out to the point where nodes in the graph lose their distinct
characteristics. The optimal number of layers typically derives from careful
considerations and testing. In this case, it was observed that the topolo-
gies are primarily local and not global. Therefore, it is not interesting to
use many layers, as this would introduce additional unnecessary information
into the model, leading to poorer performance. After careful consideration,
it was determined that the optimal number of message passing layers is two.
This aligns with the nature of the problem, as the nodes in within the same
topology are typically 2 hops apart: one hop to reach the net of the bipartite
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Figure 4.3: Comprehensive Graph Neural Network Architectures which in-
clude a pre-processing layer, a message passing layer and a post-processing
layer

structure and another hop to reach the other device within the topology.
Finally, the last layer is the post-processing layer, which is essential be-

cause after the GNN block, the features of various nodes are simply updated.
These features must be classified, and a MLP layer is used for that purpose.
The MLP takes the individual node features as input and provides the clas-
sifications for all nodes. It is important to note that, as presented in Chapter
4.4, another post-processing layer, that is not based on neural networks, has
been added after this final layer.

4.3.3 Features Selection
The main goal of this work, as already presented, is to recognize the var-
ious topologies within AMS ICs. The ability to recognize these structures
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is largely linked to how the various devices are interconnected. Recognizing
these structures through information related to individual devices (node fea-
tures) and to the connection between devices (edge features). In Figure 4.4,
are shown the available features for a PFET transistor which include: in-
stance, device type, w (width), l (length), nfing (number of fingers), parallel,
number, and nets.

Figure 4.4: Features from the dataset provided by STMicroelectronics

The instance refers to a specific realization of an object, and it is not useful
for making correct predictions as it comes from how devices are generated
inside the design tool. On the other hand, the device type, such as PFET,
NFET, Transistor, etc., is extremely important in recognizing a topology.
Width (w) and length (l) represent the physical dimensions of the device.
Although these features were introduced in the model, they did not im-
prove its capabilities in recognizing different topologies. In addition, "nfing"
pertains to the parameter defining the number of fingers of a MOS (Metal
Oxide Semiconductor) device, influencing its behavior and characteristics.
"Parallel" describes the configuration where devices share common electrical
nodes (such as drain, gate, source and bulk) in a circuit to collectively in-
crease current capacity. "Number" is a term used to specify the quantity of
parallel devices in a schematic, simplifying their definition without requiring
explicit graphical representations of connections. In the beginning, also these
features were introduced in the model, but they were subsequently removed
as they did not contribute to the model’s capabilities. The nets feature sim-
ply represents all the nets to which the device is connected. Among these
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various features, the only one explicitly utilized, as node feature, was the
device type, but also the nets were used for the construction of the graph. It
is important to note that despite the limited number of features used, much
of the information derives from the graph itself. GNN models, in addition
to the classical features, also use information related to neighboring devices,
allowing for the extraction of additional information.

Another important set of features that has been used is related to edges.
Looking at Figure 4.4, it is possible to see that the nets are represented as a
list. In this list, the order is extremely important because the nets are con-
nected in this order to the following terminations: gate, drain, source, and
bulk. This way, it is possible to uniquely determine which net is connected
to which termination. These information are then translated into features
as explained in chapter 4.1. It is important to note that these features can-
not be used with all different architectures. In fact, among the architectures
presented in chapter 2.2.5, only the RGCN implements learning using edge
features.

4.3.4 Addressing Class Imbalance
Class imbalance refers to a situation in a classification problem where the
distribution of data among different classes is significantly different [37]. One
or more classes have large or small number of instances compared to other
classes. This problem poses challenges for deep learning algorithms because
they tend to be biased towards the majority class. The model may achieve
high accuracy by simply predicting the majority class most of the time, while
performing poorly on the minority class(es) of interest. This is especially
problematic when the minority class contains important or rare instances
that need to be identified correctly.

Table 4.1: Class Distribution of the Dataset

Class Count Percentage (%)
net 366,736 48.96

others 394,525 50.6
CM 1,759 0.23
DP 384 0.05
DPx 20 0.00

CascLV 1,242 0.16
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The issue described exists in the dataset used for this work. As can be
seen in Table 4.1, which lists the different percentages of all the topologies
presented in chapter 2.1.1, it is evident that all four of them are present in
less than one percent of the total number of nodes. The total number of nodes
is composed mostly of "others" and "nets," where they respectively represent
devices that are not part of a topology and the physical connection between
devices. To address this problem in this study, the undersampling technique
was employed. Undersampling involves reducing the number of instances in
the majority class to achieve a more balanced representation of classes in
order to avoid producing a biased model.

One notable factor is the significant presence of nets within the graph.
Nets are necessary as they allow representing the circuit in the form of a
graph while preserving its topological properties. This means that a partic-
ular structure identifiable in the original circuit can also be identified in its
bipartite graph form. However, the large number of nets has a negative effect
as it further reduces the actual number of topologies present in the circuit
compared to the total number of nodes. To overcome this issue during the
training phase, a typical technique used in anomaly detection called one-class
classification was employed.

One-class classification [38] is a machine learning technique that focuses on
modeling and identifying instances of a single class, known as the target class
or positive class, in this work, the target class or positive class is represented
by a specific topology. This work mainly focused mainly on CMs. Unlike
traditional classification problems where multiple classes are considered, one-
class classification aims to distinguish instances of interest from the outliers.
The main objective of one-class classification is to build a model that captures
the characteristics and patterns of the target class, allowing it to differentiate
between instances belonging to that class and those that do not.

4.4 VF2 as Post-Processing Technique
An important solution for the purposes of this study is the introduction of a
post-processing technique following the evaluation by the GNN. This phase is
crucial since it necessitates obtaining the most accurate final result possible
to potentially replace the current solutions, which, although time-consuming,
remain very accurate, being based on rule-based algorithms. In this work,
the choice was made to utilize the algorithm presented in chapter 2.4. This
algorithm employs a graph matching technique, and its primary drawback
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is its computational and time demands. In this study, this graph matching
algorithm is incorporated after the GNN’s results. This is done to attempt
to eliminate potential false positives. Indeed, the algorithm is executed solely
on nodes classified as positive. As a result, the number of nodes on which the
algorithm performs graph matching is significantly reduced, greatly reducing
the required processing time.
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Chapter 5

Results

The following chapter presents the results obtained during this work. In the
first section (5.1), the metrics that were used to evaluate the obtained results
are presented. In the second section (5.2), the results of the VF2 algorithm
presented in chapter 2.4 are reported, allowing for a comparison of the current
time and computational resources required for topology recognition within
a circuit. Subsequently, in the third section (5.3), the results of the vari-
ous architectures (GCN, GraphSAGE, GAT and RGCN) are presented. This
section is divided into two further subsections: one addressing the results
without the pre-processing technique (presented in chapter 4.2), and the sec-
ond discussing the results with the addition of this method. In the fourth
section (5.4), the results of the architecture that yielded the best outcomes,
in combination with the VF2 algorithm, are presented. These results are then
ultimately compared with the results obtained using only the VF2 algorithm.

5.1 Metrics
To evaluate and compare the different results, various metrics were taken
into consideration. Specifically, the following metrics were utilized: a confu-
sion matrix that includes the concepts of false positives, false negatives, true
positives, and true negatives; accuracy, precision, and recall.

5.1.1 Confusion Matrix
The confusion matrix is a representation used to summarize the performance
of a classification task. Relying on accuracy, which is generally used, is not
sufficient to provide a comprehensive description of the obtained results,
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especially in the case of a significant class imbalance, as is the case in this
work. This is because accuracy tends to be high when the algorithm classifies
all nodes as the majority class. The confusion matrix gives insight into how
the model is learning and what the primary types of errors might be. To
define the confusion matrix, the following terms need to be presented:

• True Positives (TP): These are the cases where the model correctly
predicts the positive class.

• False Positives (FP): These are the cases where the model incorrectly
predicts the positive class when it’s the negative class.

• True Negatives (TN): These are the cases where the model correctly
predicts the negative class.

• False Negatives (FN): These are the cases where the model incorrectly
predicts the negative class when it’s a positive class.

In Figure 5.1, an example of a confusion matrix is shown.

Figure 5.1: Confusion matrix for binary classification [39]

5.1.2 Accuracy, Precision and Recall
Accuracy measures how many of the total predictions made by a classifica-
tion model are correct. It calculates the ratio of correct predictions (both
true positives and true negatives) to the total number of predictions. It’s a
measure of overall correctness. In 5.1 is shown the mathematical formulation.

42



5 – Results

Accuracy = TP + TN
TP + TN + FP + FN (5.1)

Precision focuses on the accuracy of positive predictions. It tells us the
ratio of correctly predicted positive instances to the total number of positive
predictions. Precision is especially important when the cost of false positives
is high. The mathematical formulation is shown in 5.2.

Precision = TP
TP + FP (5.2)

Recall measures the ability of a model to correctly identify all relevant
instances, specifically the ratio of correctly predicted positive instances to all
actual positive instances. In 5.3 is shown the mathematical formulation of
recall.

Recall = TP
TP + FN (5.3)

5.2 VF2 Results
The current implementation of the VF2 algorithm, presented in chapter 2.4,
handles the recognition of various analog and digital topologies. Among these
topologies are current mirrors, differential pairs, NOR and NAND gates, and
others. It is possible to define a list of different topologies that need to be
recognized. During this work, a we focused on recognizing CMs, which are
one of the most common topologies within the dataset used for this work. In
Table 5.1, it is possible to observe some tests that were conducted using VF2
for the recognition of CMs. The problem highlighted in chapter 2.4 becomes
evident: the inefficiency when dealing with very large netlists. In this case, it is
important to note that the algorithm only searches for CMs, which simplifies
the graph matching compared to the case where all topologies are searched.
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Therefore, the execution time would be even higher when considering more
types of topologies.

Table 5.1: Multiple test of VF2 Algorithm Performance on a Dual-core, 8 GB
RAM Setup

Test Case Execution Time
Test 1 10h 25min
Test 2 11h 10min
Test 3 10h 48min
Test 4 10h 58min

As for the results, the confusion matrix summarizing the outcomes is
shown in Figure 5.2 and the values of the main metrics used for evaluat-
ing the model’s performance in Table 5.2.

Figure 5.2: Results of the topology recognition of CMs using the VF2 algo-
rithm
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Table 5.2: Accuracy, Precision, and Recall results for topology recognition of
CMs using VF2 algorithm

Metric Value

Accuracy 1694+747507
1694+747507+24+63 ≈ 0.9999

Precision 1694
1694+63 ≈ 0.9641

Recall 1694
1694+24 ≈ 0.9860

5.3 GNNs Results
This section is divided into two further sections: the first one deals with the
results without any pre-processing technique, while the second one addresses
the results using the pre-processing technique presented in chapter 4.2. It is
important to note that, as explained in chapter 4.3.2, all the models in this
section utilize two stacked GNN layers followed by an MLP layer, which is
essential for the classification process.

5.3.1 Results without Pre-Processing
GCN

GCN is one of the simplest models employed. The main results are shown in
Figure 5.3, where the confusion matrix is presented. In Table 5.3, the results
of the key metrics used to evaluate performance are shown, revealing that
the precision is notably low. This lower precision can be attributed to the
model’s inherent challenge of accurately detecting these specific structures
within the graph, which inherently demands a higher level of precision in
classification. Additionally, it’s worth considering that the limited number of
available circuits for training may also contribute to this precision challenge.
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Figure 5.3: Results of the topology recognition of CMs for GCN model with-
out pre-processing

Table 5.3: Accuracy, Precision, and Recall results for topology recognition of
CMs for GCN model without pre-processing

Metric Value

Accuracy 316+618119
316+618119+28+146584 ≈ 0.8084

Precision 316
316+146584 ≈ 0.0022

Recall 316
316+28 ≈ 0.9186

GraphSAGE

GraphSAGE manages to improve the accuracy obtained from GCN; how-
ever, there still exists an excessive number of false positives. The results are
summarized in figure 5.4 and table 5.4.
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Figure 5.4: Results of the topology recognition of CMs for GraphSAGE model
without pre-processing

Table 5.4: Accuracy, Precision, and Recall results for topology recognition of
CMs for GraphSAGE model without pre-processing

Metric Value

Accuracy 245+677051
245+677051+99+87652 ≈ 0.8853

Precision 245
245+87652 ≈ 0.0028

Recall 245
245+99 ≈ 0.7122

GAT

GAT is the best model when pre-processing is not applied. The results are
displayed in figure 5.5 and table 5.5.
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Figure 5.5: Results of the topology recognition of CMs for GAT model with-
out pre-processing

Table 5.5: Accuracy, Precision, and Recall results for topology recognition of
CMs for GAT model without pre-processing

Metric Value

Accuracy 338+741889
338+741889+6+22814 ≈ 0.9702

Precision 338
338+22814 ≈ 0.0146

Recall 338
338+6 ≈ 0.9826

RGCN

RGCN is the only model that incorporates edge features during the learn-
ing phase, thus introducing additional information compared to the three
previous models. The results are presented in figure 5.6 and table 5.6.
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Figure 5.6: Results of the topology recognition of CMs for RGCN model
without pre-processing

Table 5.6: Accuracy, Precision, and Recall results for topology recognition of
CMs for RGCN model without pre-processing

Metric Value

Accuracy 342+611660
342+611660+2+153043 ≈ 0.7999

Precision 342
342+153043 ≈ 0.0022

Recall 342
342+2 ≈ 0.9942

5.3.2 Results with Pre-Processing

GCN

The use of pre-processing enhances the classification performance of GCN,
as shown in figure 5.7 and table 5.7. However, it’s important to note that
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the performance improvement, while noticeable, is not substantial. This sug-
gests that the model may face intrinsic challenges in learning the complex
topological structures within the graph.

Figure 5.7: Results of the topology recognition of CMs for GCN model with
pre-processing

Table 5.7: Accuracy, Precision, and Recall results for topology recognition of
CMs for GCN model with pre-processing

Metric Value

Accuracy 333+715572
333+715572+11+30624 ≈ 0.9590

Precision 333
333+30624 ≈ 0.0108

Recall 333
333+11 ≈ 0.9680
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GraphSAGE

GraphSAGE also improves its performance compared to the implementation
without pre-processing. The results are presented in figure 5.8 and table 5.8.

Figure 5.8: Results of the topology recognition of CMs for GraphSAGE model
with pre-processing

Table 5.8: Accuracy, Precision, and Recall results for topology recognition of
CMs for GraphSAGE model with pre-processing

Metric Value

Accuracy 277+691136
277+691136+67+49348 ≈ 0.9333

Precision 277
277+49348 ≈ 0.0056

Recall 277
277+67 ≈ 0.8052
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GAT

Compared to the other models, when utilizing the proposed pre-processing
technique, the GAT model experiences a decrease in its performance. The re-
sults are displayed in figure 5.9 and table 5.9. One potential explanation for
this performance decrease could be that the inherent attention mechanism
in the GAT model, which weighs the importance of neighboring nodes differ-
ently, may interact in a complex way with the pre-processing step, leading
to suboptimal results.

Figure 5.9: Results of the topology recognition of CMs for GAT model with
pre-processing

RGCN

When combining the pre-processing technique with the RGCN model, a sig-
nificant improvement in performance is achieved, making this model the best
among all those tested. Results of this model are shown in figure 5.10 and
table 5.10. For all the considered models, the recall is quite high, indicating
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Table 5.9: Accuracy, Precision, and Recall results for topology recognition of
CMs for GAT model with pre-processing

Metric Value

Accuracy 334+659341
334+659341+10+86855 ≈ 0.8836

Precision 334
334+86855 ≈ 0.0038

Recall 334
334+10 ≈ 0.9709

that all the circuit modules are effectively recognized. However, even with
pre-processing, the precision remains very low, meaning that many of the
recognitions are false positives.

It’s worth noting, though, that the number of false positives (approxi-
mately 4,500 for RGCN) is orders of magnitude lower than the total number
of nodes in the graph (over 740,000). From this initial phase of experiments,
it can be concluded that by ’filtering’ out the false positives generated by the
network, it would be possible to achieve high recognition accuracy, even in
terms of recall, with significantly reduced computational time compared to
the VF2 algorithm. This was the motivation for using VF2 as post-processing
on the network outputs, which led to substantial improvements in the results,
as demonstrated in the next section.

Table 5.10: Accuracy, Precision, and Recall results for topology recognition
of CMs for RGCN model with pre-processing

Metric Value

Accuracy 343+741674
343+741674+1+4522 ≈ 0.9939

Precision 343
343+4522 ≈ 0.0705

Recall 343
343+1 ≈ 0.9971

5.4 GNN and VF2 Results
As explained in chapter 4.4, an essential part of this work was the intro-
duction of a post-processing technique capable of primarily reducing issues
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Figure 5.10: Results of the topology recognition of CMs for RGCN model
with pre-processing

related to a high number of false positives. The entire workflow of this process
can be observed in figure 5.11. Initially, the data is pre-processed by remov-
ing unnecessary devices for topology recognition purposes. Subsequently, this
pre-processed data is fed into the two RGCN layers, which generate embed-
dings for each node and then classify them using an MLP layer. Following
this classification, the nodes identified as positive undergo post-processing.
This final phase significantly reduces the number of false positives.

In figure 5.12, both confusion matrices are visible, comparing the pipeline
that solely includes the use of GNNs with the pipeline that combines GNNs
with VF2. Table 5.11, on the other hand, presents a comparison of results
related to key metrics used to assess model performance, which consistently
favor the use of the post-processing technique.

Another critical aspect is summarized in Table 5.12, where the time re-
quired to execute both pipelines is compared. As discussed in Chapter 2.4,
the VF2 algorithm faces substantial challenges when dealing with netlists
containing numerous devices, leading to significantly longer execution times
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Figure 5.11: Comprehensive Workflow Pipeline, the complete sequence of
data preprocessing, RGCN-based classification, and post-processing steps in
the project’s workflow

Figure 5.12: On the left, the confusion matrix without post-processing, and
on the right, the confusion matrix with post-processing
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Table 5.11: Accuracy, Precision, and Recall results for topology recognition
of CMs for RGCN model with pre-processing and post-processing

Metric RCGN RCGN + VF2

Accuracy 0.9948 0.9999

Precision 0.3062 0.9662

Recall 0.9948 0.9808

when used in isolation compared to the combination with a GNN. This dis-
crepancy arises from the fact that GNNs do not rely on a resource-intensive
algorithm like graph matching, which forms the foundation of VF2. More-
over, since the majority of nodes are classified by the GNN, the set of nodes
that undergo VF2 processing is substantially smaller compared to the entire
graph, reducing the computational resources required by the graph matching
algorithm. In the scenario presented in this work, the estimated execution
times are around 2 minutes, resulting in a speed up of approximately 330x
with respect to the purely rule-based approach.

Table 5.12: Comparison of multiple test of only RGCN and RGCN + VF2
time performance on a Dual-core, 8 GB RAM Setup

Test Case VF2 RCGN + VF2
Test 1 10h 25min 1min 54s
Test 2 11h 10min 2min 12s
Test 3 10h 48min 1min 59s
Test 4 10h 58min 2min 03s
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Chapter 6

Conclusion and Future
Works

This work was motivated by the growing demand for integrated circuits and
the need to reduce physical design times for AMS ICs. The available dataset
for this thesis consisted of a single large AMS netlist, highlighting the po-
tential for better results with a larger dataset. In general, datasets in this
field are often limited in availability due to the substantial time and exper-
tise required for their design and development, making them less likely to be
shared by companies.

The primary objective of this thesis was to explore the application of GNNs
in the realm of AMS ICs physical design. It aimed to assess whether these
techniques could enhance existing methods in terms of time efficiency and
computational resource utilization while ensuring a high level of accuracy
and robustness in the results, which are essential requisites in this field.

The initial phase of the study focused on understanding the capabilities
of GNNs, excluding any pre- or post-processing techniques. Results from this
phase revealed a significant issue: a high number of false positives. To ad-
dress this challenge, the introduction of a post-processing technique became
necessary. The VF2 algorithm, which leverages a graph-matching algorithm,
was chosen to substantially reduce the number of false positives, improving
the overall pipeline’s performance. Subsequently, extensive research was con-
ducted on pre-processing to enhance the model’s performance. This research
led to the decision to eliminate all devices not involved in various topologies,
removing any irrelevant information for the model’s recognition purposes.

Initially, the primary focus was on recognizing current mirrors, with other
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circuit topologies not being considered. The idea is that this work can be ex-
panded by introducing a single model capable of recognizing various topolo-
gies, as recognizing current mirrors alone is insufficient to replace the cur-
rent algorithms used for such tasks. An initial multiclassification model test
yielded the result that all nodes were predicted as "others", highlighting the
challenge of addressing class imbalance among the different classes.

Nevertheless, this work demonstrates the potential of Graph Neural Net-
works in the field of AMS ICs phyical design, since the results of this work
in current mirror recognition closely align with those of the VF2 algorithm
while significantly reducing the time required for topology recognition.
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Appendix A

Acronyms

AMS
CM
CascLV
DP
DPx
EDA
GAT
GCN
GNN
GraphSAGE
ICs
ML
MLP
RGCN
SoC

Analog Mixed Signal
Current Mirror
Cascode and Long-Tailed Pair
Differential Pair
Differential Pairs with Additional Transistors
Electronic Design Automation
Graph Attention Network
Graph Convolutional Network
Graph Neural Network
Graph Sample and Aggregated
Integrated Circuits
Machine Learning
Multilayer Perceptron
Relational Graph Convolutional Network
System on Chip
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