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Summary

Over the past 15 years, the Cloud Computing paradigm has steadily gained
popularity due to the advantages it offers, such as flexibility, scalability, and relia-
bility. In today’s business landscape, there is a notable trend toward the increased
adoption of Multi-Cloud strategies by companies to provide services to customers,
employees, and other businesses. A 2023 study conducted by Oracle [18] reveals
that 98% of surveyed enterprises use at least two cloud infrastructure providers and
31% are using four or more; This widespread adoption underscores the necessity
for the implementation of innovative security strategies to safeguard these com-
plex environments. In this context, Cloud Native Application Protection platforms
(CNAPPs), represent a novel tool utilized to enforce industry-standard compliance
and security across one or more cloud platforms.

This thesis dissertation analyzes the field of Multi-Cloud Security, discussing
some solutions proposed in the literature and demonstrating the design and show-
casing a realistic enterprise Multi-Cloud infrastructure whose security has been
assessed by integrating a CNAPP solution named Sysdig Secure. The work starts
off with a description of Cloud Security and Cloud Governance key concepts, to con-
tinue with an examination of two different Security-as-a-Service solutions proposed
in the literature. Subsequently, an entire chapter is dedicated to the Policy-as-
Code paradigm and to how it can be effectively exploited to ensure compliance in
DevSecOps pipelines (Section 4.2.3), Public Cloud platforms (Section 5.3.2), and
diverse hosts (Section 5.3.3).

Following this, a proof-of-concept Multi-Cloud infrastructure that emulates the
resources and features of a company cloud environment is proposed, along with a
thorough description of all the integrations implemented from Identity and Access
Management, Secrets Management, and Observability points of view. This work
also demonstrates how a Cloud Native Application Protection platform has been
successfully configured to provide Infrastructure-as-Code security (IaC-Sec), Cloud
Security Posture Management (CSPM), and Cloud Workload Protection (CWP)
within the previously introduced multi-cloud environment. Finally, the last chap-
ter verifies the proper functioning of all the services offered by the multi-cloud
infrastructure and evaluates the quality of the security assessments carried out by
Sysdig Secure CNAPP.

ii



Acknowledgements

I would like to thank my supervisor Professor Riccardo Sisto, for giving me the
possibility to embark on this thesis journey and for all the pieces of advice he gave
me during the development of this work. I would also like to thank my corporate
tutors Francesco Borgogni, Luigi Casciaro, and Ivan Aimale for proposing such an
interesting topic to work on, and for the support I was given during the whole period
at Reply. My recognition also goes to all Liquid Reply colleagues who welcomed
me warmly and were always available whenever I had questions or doubts. I also
want to express my gratitude to my family, in particular my Mom and Dad who
with their sacrifices gave me the possibility to study and after 5 years reach the
goal I’m celebrating now. Last but not least I would like to thank my friends for
their unwavering support, which inspired and motivated me to consistently give my
best despite facing numerous obstacles along the way.

iii



Contents

1 Introduction 1

1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Cloud Security Overview 4

2.1 Introduction to Cloud Computing . . . . . . . . . . . . . . . . . . . 4

2.1.1 Cloud Computing Models . . . . . . . . . . . . . . . . . . . 5

2.2 Cloud Security Key Concepts . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Cloud Security Main Challenges . . . . . . . . . . . . . . . . 6

2.2.2 Cloud Security Solutions . . . . . . . . . . . . . . . . . . . . 7

2.3 Multi-cloud Environments . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Introduction to Multi-Cloud . . . . . . . . . . . . . . . . . . 8

2.3.2 Multi-Cloud Challenges . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Multi-Cloud Security . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Cloud Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 Cloud Governance Framework Components . . . . . . . . . . 12

2.5 Cloud Security Literature Review . . . . . . . . . . . . . . . . . . . 13

2.5.1 Analysis of Cloud Computing Problems . . . . . . . . . . . . 13

2.5.2 Security-as-a-Service in Cloud Environments . . . . . . . . . 17

iv



3 Policy as Code 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 ”Shift Left Security” Concept . . . . . . . . . . . . . . . . . . . . . 22

3.3 Development, Security, and Operations . . . . . . . . . . . . . . . . 24

3.3.1 Infrastructure as Code Security . . . . . . . . . . . . . . . . 25

3.3.2 GitOps Approach . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 GitOps, DevOps, and DevSecOps . . . . . . . . . . . . . . . 28

3.3.4 CI/CD Platforms . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Cloud Security Posture Management . . . . . . . . . . . . . . . . . 32

3.5 Cloud Infrastructure Entitlement Management . . . . . . . . . . . . 33

3.6 Cloud Workload Protection . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.2 Cloud Workload Protection Platforms . . . . . . . . . . . . . 34

4 Cloud Security in a Realistic Multi-Cloud Infrastructure 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Infrastructure as Code Security . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Checkov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Sysdig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 IaC Security Implementation Scenario . . . . . . . . . . . . 38

4.3 Cloud Service Providers . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Microsoft Azure . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Amazon Web Services . . . . . . . . . . . . . . . . . . . . . 46

4.4 Setup of the Infrastructure . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Terraform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.2 Workloads: Azure . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.3 Workloads: AWS . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.4 Multi-Cloud Secret Management . . . . . . . . . . . . . . . 52

4.4.5 Multi-Cloud Identity and Access Management . . . . . . . . 62

4.4.6 Multi-Cloud Infrastructure Observability . . . . . . . . . . . 68

4.4.7 Considerations on the Multi-Cloud Infrastructure . . . . . . 73

v



5 CNAPP Case Study: Sysdig Secure 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Sysdig Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Integration of Sysdig Secure . . . . . . . . . . . . . . . . . . . . . . 77

5.3.1 IaC Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.3 Vulnerability Management . . . . . . . . . . . . . . . . . . . 87

5.3.4 Runtime Threat Detection . . . . . . . . . . . . . . . . . . . 90

6 Testing and Results 95

6.1 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Multi-Cloud Infrastructure Validation . . . . . . . . . . . . . . . . . 96

6.2.1 Multi-Cloud IAM Framework Validation . . . . . . . . . . . 96

6.2.2 Multi-Cloud Secrets Management Framework Validation . . 100

6.2.3 Multi-Cloud Observability Framework Validation . . . . . . 102

6.3 Infrastructure-as-Code Security
Results’ Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.1 Checkov Results’ Evaluation . . . . . . . . . . . . . . . . . . 106

6.3.2 Sysdig IaC-Sec Tool Results’ Evaluation . . . . . . . . . . . 108

6.4 Cloud Security Posture Management Results’ Analysis . . . . . . . 110

6.5 Vulnerability Assessment Capabilities
Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.6 Runtime Threat Detection Stress Test . . . . . . . . . . . . . . . . 114

6.6.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6.2 Experiment Automation . . . . . . . . . . . . . . . . . . . . 116

6.6.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . 118

7 Conclusions and Future Works 121

7.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

vi



Chapter 1

Introduction

Over the past 15 years, the Cloud Computing paradigm has steadily gained pop-
ularity due to the advantages it offers, such as flexibility, scalability, and reliabil-
ity. In today’s business landscape, there is a notable trend toward the increased
adoption of Multi-Cloud strategies by companies to provide services to customers,
employees, and other businesses. As a result of this, enterprises often accumulate
countless resources in the cloud, making it impractical to secure and verify the com-
pliance of each of them individually. Therefore, it is becoming essential to think
about new security strategies and implement novel solutions capable of safeguard-
ing complex cloud environments. Cloud Native Application Protection Platforms
(CNAPPs) constitute a new software category. They are engineered to encom-
pass security and compliance capabilities developed specifically for defending and
securing cloud-native applications. Among the wide range of features offered by
CNAPPs, they excel in several critical areas. These include the capacity to identify
security flaws within Infrastructure-as-Code templates (IaC Security), the detection
of misconfigurations in cloud platforms and resources (CSPM and CIEM), and the
ability to conduct vulnerability assessments and run-time threat detection on work-
loads. Apart from the previously described security capabilities, many CNAPPs
also implement the Policy-as-Code paradigm. The latter allows for the definition
of code-written policies that are enforced to certify cloud environments’ compliance
with regulatory and industry standards such as CIS, NIST, ISO, and many oth-
ers. All in all, CNAPPs are an asset to the current cloud security scenario that
cannot be missed when dealing with the security of multiple heterogeneous cloud
platforms, and applications.
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Introduction

1.1 Objective

The thesis commences with a comprehensive examination of cloud security and
includes a literature review of some Security-as-a-Service solutions proposed by
researchers. Subsequently, an exploration of the Policy-as-Code paradigm high-
lights how it can be exploited to ensure cloud resources configuration compliance
on diverse public Cloud Service Providers (Chapter 3 and Section 5.3.2), and
Infrastructure-as-Code templates compliance in the context of DevSecOps CI/CD
pipelines (Section 4.2.3). The primary objective of this study is to construct a
robust and realistic enterprise Multi-Cloud infrastructure composed of several in-
terconnected services, offering Identity and Access Management and Secrets Man-
agement capabilities to applications, as well as Observability throughout the whole
environment. Furthermore, the study aims to seamlessly integrate this Multi-Cloud
environment with a Cloud Native Application Protection Platform. This integra-
tion will empower the CNAPP to proactively detect resources’ compliance and se-
curity issues during the development, deployment, and runtime stages. The study
is focused on confirming the necessity and effectiveness of adopting a CNAPP so-
lution to detect and remediate vulnerabilities that, if left unaddressed, have the
potential to undermine the integrity and resilience of entire cloud environments in
due course.

1.2 Thesis Structure

The work is structured as follows:

• Chapter 2 introduces the subject of Cloud Security with a focus on Multi-
Cloud environments and Cloud Governance. Furthermore, it proposes a lit-
erature review of Security-as-a-Service solutions in Cloud Environments.

• Chapter 3 presents the Policy-as-Code paradigm and discusses how the lat-
ter can be exploited within DevSecOps pipelines in the context of Infrastructure-
as-Code security. Sections 3.4, 3.5, and 3.6 on the other hand present from
a theoretical point of view three domains of Cloud Security that can be ap-
proached with Policy-as-Code as well.

• Chapter 4 begins by presenting two Infrastructure as Code (IaC) Security
tools, followed by a detailed portrayal of their practical usage within a De-
vSecOps pipeline. Subsequently, it provides a detailed explanation of the
resources that comprise the PoC Multi-Cloud infrastructure and their inte-
gration with each other.
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Introduction

• Chapter 5 discusses how Sysdig Secure CNAPP was integrated with the
Multi-Cloud infrastructure to assess its level of compliance and security. For
each of the security domains Sysdig takes care of, some violations detected
by the CNAPP are also illustrated.

• Chapter 6 tests the Multi-Cloud infrastructure that was realized in Chap-
ter 4 by verifying the correct functioning of all the proposed integrations.
Moreover, an assessment of Sysdig’s proficiency in identifying vulnerabilities,
addressing misconfigurations, and mitigating runtime threats is also under-
taken.

• Chapter 7 presents the conclusions reached by this thesis and a set of im-
provements aimed at enriching the functionality and enhancing the security
level of the existing multi-cloud infrastructure.

3



Chapter 2

Cloud Security Overview

2.1 Introduction to Cloud Computing

Cloud Computing can be summarized as the delivery of computing resources as a
service. In this scenario, resources can be of any type: browser-based web applica-
tions, general-purpose storage, and servers employed by privates and companies to
support and enhance their computing infrastructure.

Before the spread of cloud computing, a generic company or user would have
needed to buy and personally maintain the entirety of the software and hardware
resources they desired to use. Nowadays given the exponential availability of cloud
resources, businesses, and consumers can access a broad variety of on-demand ser-
vices; in this context, shifting from on-premise to networked remote distributed
hardware and software, allows cloud users to no longer commit the time, money,
and knowledge necessary to acquire and manage these computing resources on their
own.

The National Institute of Standards and Technology (NIST) of the United
States, defines Cloud Computing as: ”a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider inter-
action.”

This institute additionally formulated and specified five essential characteristics
of cloud computing:

• On-demand self-service: Cloud resources can be accessed and supplied
without the need for human intervention, thus allowing consumers to imme-
diately gain access to the cloud services they signed up for. Another capability

4



Cloud Security Overview

that businesses can develop and provide to their employees and customers is
a mechanism for on-demand access to internal cloud resources according to
predetermined logic.

• Broad network access: Assuming that they are authorized, users can access
cloud services and resources through any device and from any networked
location.

• Resource pooling: Multiple tenants share the resources of the cloud provider,
yet individual clients’ data is kept private from other clients.

• Rapid elasticity: Differently from on-premise software and hardware, cloud
computing resources can be rapidly scaled to suit users’ changing needs.

• Measured service: Cloud resource usage is metered, allowing companies
and other users to only pay for the resources they are using.

2.1.1 Cloud Computing Models

Cloud Computing services can be delivered to users in three main models, each
offering different levels of flexibility.

Infrastructure as a Service Infrastructure as a Service or IaaS is the on-
demand delivery of computing infrastructure. Storage, networking, operating sys-
tems, and all kinds of infrastructural components are outsourced to a third-party
cloud provider; in this scenario, individuals or companies will buy the needed com-
puting resources on a pay-as-you-go model.

Platform as a Service Platform as a Service or PaaS is a model often chosen
by software developers who want to focus more on development rather than on
DevOps and administration. With this approach, it is possible to build and deploy
an application in a tested and standardized environment without worrying about
the installation, configuration, and maintenance of an entire infrastructure.

Software as a Service Software as a Service is represented by the usage of a
complete application on a third-party system. These types of applications can be
accessed on demand from any network-connected device without the need to install
or maintain any software. SaaS model is very popular among companies because
of its ease of adoption and use by customers; examples of SaaS applications include
any of the different web-based services provided by Google such as Gmail, Docs,
Sheets, and many others.
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2.2 Cloud Security Key Concepts

Cloud Security consists of a set of technologies, controls, policies, and procedures
employed to protect cloud-based infrastructures. These security measures are set
up to safeguard cloud data, assist regulatory compliance, safeguard the privacy of
clients, and define authentication guidelines for particular users and devices.

The growing migration of business-critical applications and data toward third-
party cloud service providers is the main reason why nowadays cloud security is
becoming so important. Even though the majority of CSPs already provide several
cybersecurity tools with alerting and monitoring capabilities as part of their offer,
those may not be enough to protect very large companies’ infrastructures effectively.

To prevent breaches and data losses, avoid noncompliance, and grant business
continuity, it is crucial to adopt specific security solutions and best practices aimed
at reducing the overall risk of security incidents.

2.2.1 Cloud Security Main Challenges

The following are some of the challenges that can be faced in the context of cloud
security:

• Lack of visibility: Since many cloud services are accessible outside of cor-
porate networks and through third parties, it can be simple to lose track of
how and by whom your data is being viewed.

• Multitenancy: Gartner defines multitenancy as ”a reference to the mode
of operation of software where multiple independent instances of one or mul-
tiple applications operate in a shared environment. The instances (tenants)
are logically isolated but physically integrated. The degree of logical isolation
must be complete, but the degree of physical integration will vary.”. Public
cloud service providers strongly rely on multitenancy to host multiple client
infrastructures under the same physical one; therefore, it’s feasible that hosted
services of different clients will be infiltrated by malevolent attackers who are
only targeting a specific company.

• Access management Access management in cloud environments may be
very tough to achieve with the same level of restrictions that would be ob-
tained in an on-premises environment; The risk of unauthorized access to
cloud resources is even higher if we take into consideration organizations that
still don’t deploy bring-your-own-device (BYOD) policies and allow unfiltered
access from any device or geolocation.
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• Compliance: Cloud compliance is the art and science of complying with
regulatory standards of cloud usage, following industry guidelines and local,
national, and international laws. For businesses employing public or hybrid
cloud installations, regulatory compliance management is sometimes a cause
of complexity due to the vast amount of standards that have to be followed.

• Misconfigurations: Between 2018 and 2019, misconfigurations in cloud en-
vironments cost companies 5 trillion U.S. dollars, according to TrendMicro
[21]. Some examples of misconfigurations include leaving default administra-
tive passwords in place, or not creating appropriate privacy settings.

2.2.2 Cloud Security Solutions

Given the challenges of cloud security, some solutions have also been defined to
cope with the dangers of cloud environments. The following list proposed by IBM
[13] provides insight into some of the most fundamental solutions that any business
working in the cloud has to consider to safeguard its infrastructure.

• Identity and Access Management (IAM): The main purpose of Iden-
tity and Access Management is the provisioning of digital identities whose
objective is to authenticate and authorize users to access specific on-premises
and cloud-based services. Exploiting IAM tools, enterprises can deploy ad-
hoc policy-driven enforcement protocols that can be easily tuned to restrict
resource access only to authorized personnel. Another very important feature
of identity and access management services is accountability; The latter refers
to the principle of holding individuals or entities responsible for their actions
and the consequences of those actions within a specific environment.

• Data loss prevention (DLP): To ensure the security of cloud data it is nec-
essary to put in place services capable of preventing data loss or destruction.
Data loss prevention systems employ a combination of measures, such as re-
mediation alerts and data encryption, to ensure that stored data is protected
both at rest and in motion.

• Security information and event management (SIEM): A solution to
automate threat monitoring, detection, and response in cloud-based environ-
ments is a security information and event management system. With this
security orchestration solution and its ability to aggregate logs coming from
different platforms, IT teams can enforce their custom network security pro-
tocols while also being able to react to threats quickly.

• Business continuity and disaster recovery: Apart from adopting pre-
ventive measures to ensure cloud infrastructure security, companies should

7
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also rely on disaster recovery solutions since data breaches and disruptive
outages can still occur. With this kind of solution in place, enterprises get
the ability to:

1. Proactively react to threats

2. Limit the damages of an attack

3. Recover lost data

4. Quickly resume normal business operations

2.3 Multi-cloud Environments

2.3.1 Introduction to Multi-Cloud

Multi-Cloud is an approach to cloud computing in which enterprises adopt more
than one cloud deployment of the same type, from different vendors. The type of
cloud deployment chosen by a company depends on the needs of the latter and can
be classified into one of these two classes:

• Public Cloud: Computing services and infrastructure management is dele-
gated to a third-party provider that sells these services according to one of
the already explored cloud computing models, to many organizations.

• Private Cloud: Cloud computing model in which organizations can have
their dedicated infrastructure. Private clouds can be either hosted in-house
by the same organizations, inside colocation facilities, or by a private cloud
provider.

Multi-Cloud deployments enable companies to allocate resources based on their
needs thus improving overall flexibility, security, and resilience in the event of an
outage with a single cloud vendor. Two additional benefits deriving from the adop-
tion of a Multi-Cloud infrastructure are:

• Proximity: When poor response times become an issue for cloud users lo-
cated far away from the organization’s headquarters, relying on different cloud
providers may be the perfect solution to deploy company services geographi-
cally near the end users in need. To accomplish this task, care has to be taken
in choosing different cloud providers that have points of presence as scattered
around the world as possible.

8
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• Reduced Costs: Even though more resources will have to be managed across
more than one cloud infrastructure, it can also be an opportunity for cost
savings since companies get the opportunity to compare the costs of different
services offered by each service provider, and choose the most suitable one.

2.3.2 Multi-Cloud Challenges

As an always-growing number of organizations are embracing multi-cloud environ-
ments, according to a survey from Gartner [7], 81% of respondents use two or more
cloud providers, This presents new challenges in supporting existing and new appli-
cation architectures and workloads, which are distributed across major clouds, at
the edge, in colocation facilities, sovereign environments, and private data centers.

Additional problems arise considering that each cloud provider has its technol-
ogy stack and delivers a unique set of capabilities that natively do not extend to
other providers; these inconsistencies in the operating models of cloud infrastruc-
tures are a leading cause of increased complexity and overall risk.

IT professionals and developers have identified the following challenges to be
the most demanding for the successful operation of a Multi-Cloud infrastructure:

• Inconsistent infrastructure: Without consistency among the deployed
cloud infrastructures, teams end up working in isolated environments with
limited flexibility in terms of strategies adopted to change business needs.

• Continuously changing application landscape: Support for DevOps,
performance, and availability across multiple cloud environments is essential
to allow faster development of applications and features, as well as to back
the growing complexity of applications and infrastructures.

• Inefficient management: The lack of proper management tools and gov-
ernance policies for multi-cloud infrastructures, significantly increases costs
and risks from a security point of view.

• Networking security: Complexity in networking and in securing applica-
tions and data across clouds results in security flaws, risk exposure, and a
larger attack surface. To tackle these problems, appropriate best practices
should be followed when designing and operating a Multi-Cloud infrastruc-
ture.

• Distributed workforce: With more and more users accessing cloud re-
sources from outside companies’ networks, particular care has to be taken to
guarantee an opportune user experience without jeopardizing security.

9
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2.3.3 Multi-Cloud Security

During the last few years, it became clear that security in the cloud cannot be
implemented in the same way as it was done on-premises. Likewise moving from
securing a single cloud environment to securing many would ideally require well-
defined procedures that should be adopted to implement security in a proactive
way rather than in a reactive one.

This new approach to cloud security particularly stems from the way teams
initially migrate to multi-cloud environments: These migrations are often driven
by the need for speed and enhanced functionality, which typically results in the
adoption of decentralized solutions exclusive to each team.

To support this new security paradigm appropriate elements have to be intro-
duced and exploited; a Multi-Cloud security approach mainly consists of the policies
and tools in charge of protecting workloads, applications, and data across cloud ser-
vice providers. In the following paragraphs, the most important components of a
Multi-Cloud security solution will be explored.

Automation
Since most vulnerabilities are due to misconfigurations, automation can reduce
the likelihood of such events occurring. A security foundation can be achieved by
automating deployments and by setting up policies and guardrails in any cloud
environment. In the event of a deviation from a secure state, monitoring can be
also leveraged to trigger automated tools that will restore original configurations.
Additionally, automation can be particularly useful for threat monitoring, incident
remediation, and ensuring that a common security posture is maintained regardless
of the cloud provider.

Dashboarding
In the context of Multi-Cloud security, centralized monitoring is essential to collect
logs and data from all cloud locations; to properly analyze this kind of informa-
tion, visualization tools designed for Multi-Cloud become a key element to provide,
through dashboards, a comprehensive view of all cloud environments.
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Tooling
Security tools designed for Multi-Cloud deployments operate across cloud service
providers and offer the following features:

• Standard integration patterns that can be followed to incorporate this solution
with one or more providers

• Configurations and policies that can be enforced selectively on the deployed
infrastructures

• Centralized dashboard and analytic solution that can be used to ingest and
visualize data from multiple cloud providers

DevSecOps
DevSecOps methodology allows embedding security tooling into the software de-
velopment lifecycle; by doing so it is possible to: detect potential security vul-
nerabilities as early as possible, remediate them more efficiently, and reduce the
overall costs of software development. Given that the employed security tools were
effective, the result will be a more secure product.

2.4 Cloud Governance

2.4.1 Introduction

Cloud Governance is a process aimed at defining, implementing, and enforcing a
set of rules and policies adopted by companies to operate their services on the
cloud. Cloud governance processes ensure that aspects like data security, asset
deployment, and systems integration are planned and managed in a compliant way
with respect to company policies and third-party regulations.

Organizations’ cloud infrastructures and services deployed on the latter can
benefit in different ways from the adoption of a well-defined governance framework:

• Improve Cloud Resource Management: A best practice suggested by
major cloud providers is the breakdown of cloud systems into separate ac-
counts each representing an organization’s bounded context such as a depart-
ment or a project. This kind of segregation aims at improving cost manage-
ment and visibility as well as limiting the impact of potential attacks.

11
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• Reduce Shadow IT: Shadow IT resources in large organizations encompass
all those systems, services, devices, and software applications that are being
used without explicit consent of the company’s IT department itself. While
these resources may prove to be useful to employees, they could also intro-
duce security risks and violate compliance policies. With Cloud Governance
employees are given a convenient way to access cloud systems and ask for
cloud resources, thus reducing the need to turn to shadow IT.

• Reduce Administrative Overhead: In the scenario of a company not
operating a governance framework, tracking of cloud accounts, costs, com-
pliance issues, and many other business-specific aspects related to the cloud,
would be managed for instance through spreadsheets, which are an inefficient
and an unscalable approach when organizations are huge. Cloud Governance
solutions enable centralizing policy definition, compliance, cost management,
access control, and also facilitate security auditing and response to violations.

• Improve Cloud Security: A Cloud governance model defines the strategy
to protect a company’s data confidentiality, integrity, and availability. By
designating and implementing such a solution, an organization won’t have to
be concerned about where services are actually deployed since visibility and
enforcement of security controls will be granted by the governance solution.

2.4.2 Cloud Governance Framework Components

The definition of a cloud governance framework starts by identifying its primary
components. Each of them will supervise independent management aspects of an
organization’s cloud environment.

1. Cloud Financial Management: Even though cloud services promise the
reduction of IT costs, this only applies if there is a proper management of
the latter. Financial management in the cloud can be obtained: by enforcing
financial policies that clarify how the cloud will be used, defining budgets
allocated to different organizations’ cloud services, and reporting accurately
the charges deriving from each deployed cloud resource.

2. Cloud Operations Management: Collection of processes that describe
how services are deployed. Several processes that serve this purpose can be
identified, such as:

• Definition of resources allocated to services.

• Determine expected Service-level agreements and ensure they are con-
tinuously met.
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• Access controls concerns

Adopting proper operations will greatly contribute to preventing the growth
of shadow IT resources and reduce costs.

3. Cloud Data Management: In an environment where huge amounts of data
are regularly collected and analyzed, it becomes essential to establish well-
defined data management policies. Cloud governance in this context specifies
ad-hoc techniques that can be employed to guarantee a proper administration
of the data lifecycle in the cloud:

• Set policies for data depending on their sensitivity.

• Encrypt data both at rest and in transit.

• Apply data masking while developing or testing, to reduce the possibility
of sensitive leaks

• Automate data lifecycle management.

In recent years as a result of regulations like GDPR (General Data Protec-
tion Regulation) in the European Union or the PIPL (Personal Information
Protection Law) in China, which companies must be compliant with in order
to handle citizens’ data, it became crucial to implement previously defined
protection measures in order to continue providing cloud services without
incurring fines.

4. Cloud Security and Compliance Management: Cloud Governance in
the context of enterprise security determines organizations’ security and com-
pliance requirements whose enforcement must be made sure. Key security
domains and activities that should be performed are:

• Risk assessment

• Identity and access management

• Data management and encryption

• Application Security

• Disaster recovery

2.5 Cloud Security Literature Review

2.5.1 Analysis of Cloud Computing Problems

As cloud computing and all its derived paradigms kept on diffusing among every
type of business, researchers started questioning its security and tried to enumerate
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the problems stemming from its adoption, along with proposing solutions to tackle
these security issues. This paper by Mohamed Almorsy, John Grundy, and Ingo
Müller [1] analyzes existing challenges and issues involved in the cloud computing
security problem, and groups them into the following categories:

• Architecture-related issues

• Cloud characteristic-related issues

• Service delivery model-related issues

• Cloud stakeholder-related issues

Architecture-related issues

The cloud computing model as already discussed in section 2.1.1 has three service
delivery models, namely IaaS, PaaS, and SaaS; moreover, it also has three main
deployment models: private cloud and public cloud presented in section 2.3.1, and
an additional one named Hybrid Cloud in which a private cloud gets integrated
seamlessly with one or more public clouds.

Regarding the deployment models, the authors of the article identify the public
cloud as the most vulnerable model since ”they are available for public users to host
their services who may be malicious users.” [1]

From the perspective of the service delivery models, each may have different
possible implementations, further complicating the definition and development of
a standard security model. Furthermore, other service delivery models may coexist
in a single platform thus increasing the complexity of the security management
process.

Cloud stakeholder-related issues

In the cloud computing model, three different stakeholders can be identified:

• Cloud Provider: entity that delivers resources to the cloud consumers

• Service Provider: an entity that uses the cloud infrastructure to deliver a
service to the end users

• Service Consumer: entity that uses cloud-based services

14



Cloud Security Overview

Each stakeholder manages security with different systems and processes and has
distinctive expectations and capabilities concerning what should be offered to, and
obtained from others. This leads to:

• Potentially conflicting security requirements defined by different tenants on a
single service.

• Need for an agreement on the applied security properties by providers and
consumers, however, no security specification notation that can be used by
cloud stakeholders to represent this kind of property exists.

• Stakeholders identify assets, risks, impacts of the latter, and mitigation tech-
niques according to some specifically adopted security management processes.
With this approach, cloud providers tend to lack awareness of the services’
security requirements deployed on their infrastructure, while cloud consumers
may lose control of their asset’s security.

Service delivery model-related issues

Given the proposed three service models 2.1.1, researchers identified key security
vulnerabilities for each of them. Responsibility for these issues may be either of
cloud providers or cloud consumers.

• IaaS Issues

– VM security: securing virtual machines operating systems and work-
loads from common security threats. It is the responsibility of cloud
consumers.

– VM images repository security: protecting image repositories from
the injection of malicious code into virtual machine files is a task that
should be taken care of by cloud providers.

– Virtual network security: securing network infrastructures shared by
multiple tenants at the same time from attacks that target DNS servers,
DHCP, and the IP protocol in general.

– VM boundaries security: protecting virtual boundaries of virtual
machines (i.e. managing access to shared resources such as CPU, I/O,
and memory) running on the same physical server is the responsibility
of the cloud provider.

– Hypervisor security: a hypervisor is the software component in charge
of mapping physical to virtualized resources. Compromising its security
means exposing virtual machines to a large variety of attacks. In this
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case, the responsibility to protect the hypervisor is both of the cloud
provider and of the service provider (i.e. the company that realized that
specific hypervisor)

• PaaS Issues

– SOA related security issues: PaaS takes inspiration from the older
Service-oriented Architecture model, therefore it also inherits its known
security issues concerning DOS, Man-in-the-Middle, XML, and replay
attacks.

– API Security: Business and security functions offered by PaaS model
may be delivered through an API; it is the duty of the cloud service
provider to properly implement security controls and follow standards
aimed at protecting this collection of APIs.

• SaaS Issues Security issues in the Software-as-a-Service model inherently de-
rive from the previous two, as SaaS is built on top of those; this includes data
locality, integrity, backups, and confidentiality issues. Maintaining the secu-
rity of SaaS-based services is a shared responsibility among cloud providers
and service providers (i.e. vendor of the software).

Cloud characteristic-related issues

From the point of view of cloud providers, the profitability of the cloud computing
model derives from an increase in resource utilization while at the same time re-
ducing costs. Such needs are met in the cloud computing world by relying on two
key concepts: multi-tenancy and elasticity. Multi-tenancy allows resource sharing
among tenants and can be realized in different ways:

1. Each tenant uses a dedicated instance with custom configurations.

2. Tenants use each a dedicated instance with standard configurations.

3. Tenants share the same instance.

4. Tenants are redirected by a load balancer to a specific instance which may be
used also by other tenants.

The most dangerous approaches are the third and the fourth ones since ten-
ants are sharing the same process. Secure multi-tenancy may be delivered if data
isolation and location transparency of tenants’ resources are enforced.
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2.5.2 Security-as-a-Service in Cloud Environments

Security-as-a-Service (SECaaS) is a cloud model in which security services can be
outsourced. Similarly to SaaS, Security-as-a-Service provides security services on a
subscription basis. SECaaS solutions have gained in the last years a lot of popularity
thanks to their capabilities and ease of integration in corporate infrastructures.

Nowadays a wide variety of Security-as-a-Service solutions have been proposed
to protect cloud environments from the majority of threats such as data losses,
vulnerability scanning, network security, intrusion protection, and many others. A
concrete example is the Data Encryption-as-a-Service solutions proposed by major
cloud providers like Google and Amazon [8] [2] that allow to automatically encrypt
all data stored in Amazon Web Services buckets or in Google Cloud storage.

In the following paragraphs two different frameworks for providing data protec-
tion as a service in multi-cloud and federated environments will be discussed.

Security-as-a-Service in Multi-cloud and Federated Environments [19]

This paper, which was written by researchers Pramod S. Pawar, Ali Sajjad, Theo
Dimitrakos, and David W. Chadwick proposes an application protection solution
(i.e. Intelligent Protection) and a data protection solution (i.e. Secure Cloud
Storage) delivered as a SaaS application that can be integrated into multi-cloud
and federated environments. Both the host and the application protection solutions
described in this paper aim at providing cloud operators the ability to dynamically
provision protective functionalities while still maintaining full control over their
services’ security.
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Secure Cloud Storage - Data Protection Service
Secure Cloud Storage (SCS) is a data protection service for public and private
clouds that allows users to keep their sensitive data confidential by relying on a
volume encryption service. This service can be deployed both following the SaaS
model and on-premise, in either case, the user is the only one that can access
decryption keys; The latter aspect offers users the capability to:

• Decrypt data on demand

• Apply policy-based key management to validate workload identity

Additional key technical features of SCS described by the authors of this paper
are:

• Advanced Encryption Techniques

• Robust Auditing, Reporting, and Alerting

Intelligent Protection - Host and Application Protection Service
Cloud security service is designed to protect cloud infrastructure workloads from
various threats. This system, offered to users via a web interface, encompasses
many security functions such as intelligent intrusion detection and prevention, a bi-
directional stateful firewall, anti-malware, integrity monitoring, incident reporting
and analysis, and recommendation scans.
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Data Protection as a Service in the Multi-Cloud Environment [5]

The existing Data-Encryption-as-a-Service solutions briefly described in section
2.5.2 offered by providers like Google [8] and Amazon [2], have some limitations.
For instance, these encryption services are bound to a specific cloud provider and
they don’t include in their scope functionalities like access control policies and other
basic security primitives.

These considerations led the papers’ authors to develop their framework for pro-
viding Data Protection as a Service to data storage in Multi-Cloud environments.
Concerning previous Data Encryption as a Service solution: ”this work aims to
provide a full life-cycle of data security management and to maximize the flexibility
of users in using the data encryption service, additionally this solution is extensible
to work with different cloud platforms and security solutions” [5].

Because of the previous motivations and also the intention to separate key man-
agement from encryption operations, researchers proposed an integrated framework
made available as an additional component to Storage as a Service (STaaS).

As also stated by the authors, this work can be considered as an extension
with more mature ideas and a comprehensive low-level design architecture to [19]
since both aim at providing data encryption as a service. An analysis of the major
objectives and features provided by this solution follows:

• Service available in cloud providers’ marketplaces to be purchased and adopted
by customers to protect data stored on one or more cloud platforms.

• Agent-based solution that prevents performance bottlenecks by encrypting
data on the client side, ensuring no cloud provider with proper decryption
keys will be able to access it.

• Policies for users’ access control and the definition of application and envi-
ronment constraints.

• Support for several cloud storage services such as object stores, virtual vol-
umes, and big-data warehouses.

• Mobility of encrypted data from one storage service provider to another.

• Policy-based approval procedures are put in place to handle the decryption
of protected data. This means that no decryption can happen without data
having undergone such procedures.

• Compliance with data security regulations and custom pre-defined policies.
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Security-as-a-Service: Summary

Even though the preceding discussed papers proposed two valuable Security-as-a-
Service solutions for data protection across cloud platforms, they only cover a few
aspects of the whole cloud and multi-cloud security landscape; apart from data
protection, many other security matters like cloud resources misconfigurations and
run-time threat detection need to be addressed. In a subsequent chapter of this
work, a complete solution for multi-cloud security based on a third-party platform
will be explored.
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Chapter 3

Policy as Code

3.1 Introduction

Policy-as-Code (PaC) is a policy management approach that leverages the use of
policies defined and enforced using code. By describing policies in the form of a
text file written using a high-level language, it becomes more straightforward to
adopt software development best practices like code versioning, test automation,
and continuous deployment.

A policy in this context can be described as a rule that has to be followed, a
condition that has to be fulfilled, or even a set of procedures automatically exe-
cuted upon the occurrence of a specific event. Policies, usually depending on the
framework and tools used to enforce them, can be written in either special-purpose
policy languages like Rego, or other languages like YAML or Python.

Policy-as-Code can be compared in a way to the more spread Infrastructure-as-
Code (IaC) paradigm, the latter is commonly used by IT operations teams to au-
tomatically provision infrastructure components leveraging a declarative language
(e.g. YAML, JSON). PaC’s primary objective on the other hand is to ease security
operations, data management, and compliance management.

As of now, policy-as-code is the only alternative to the manual management of
rules, conditions, and procedures; the reason why it is becoming more and more used
across enterprise environments mainly derives from the benefits it offers, according
to the American multinational cybersecurity company Palo Alto Networks [14]:

• Efficiency: By writing policies in the form of code they can be automati-
cally enforced without requiring any manual action by a designated operator.
Moreover defining clear code policies also allows for avoiding the majority of
misinterpretations that stem from writing policies in natural human language.
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• Speed: Automation of policy enforcement undoubtedly leads to an improved
velocity in operations as opposed to a manual approach.

• Visibility: Rules defined utilizing code files greatly enhance visibility on
what is happening in a system, also giving the possibility to easily review
which remediation and alerting rules have been deployed.

• Collaboration: Both intra-team and inter-team collaboration benefit from
having a uniform and centralized approach to policy management. This as-
pect is particularly important when coordination among professionals with
different skill sets is required (e.g. developers, security engineers, operations
engineers, ...).

• Accuracy: Management of policies using code is less error-prone with respect
to manual system management.

• Version Control: If policies are tracked in a versioning control system as
they evolve in time, IT operations teams acquire the ability to revert to a pre-
vious policy configuration. This is an extremely important feature whenever
a new policy causes problems.

• Testing and Validation: Validation of code-written policies performed by
specific auditing tools can significantly reduce the number of errors and mis-
configurations that reach production environments.

3.2 ”Shift Left Security” Concept

The term ”Shift Left” in the context of development operations is the practice of
moving application correctness and security controls at earlier stages of the devel-
opment lifecycle, thus moving these controls to the left in contrast with where they
used to be performed in the past.

”Shift Left Security” in particular, is the practice of implementing security
checks not only at the end of the development but during any phase of the de-
velopment lifecycle. Up until the last few years, security testing like static analysis
(SAST) and dynamic analysis (DAST) were only performed before application de-
ployment; this practice led inevitably to long delays in the occurrence of errors that
required developers’ intervention.

This novel approach to security controls’ implementation aims at designing soft-
ware with built-in security best practices, but also at detecting and remediating
potential vulnerabilities as early as possible. The following list provides a collection
of recommendations and practices that can be adopted to shift security left:
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• Establish Shift Left Security Policies: Defining security policies before
the application’s development has even started is a recommendable practice
to set boundaries that will securely guide the development process.

• Automate Security Controls: Security operations teams should adopt
automatic tools to detect, audit, and remediate potential threats to systems.
Embracing this strategy will also lead to a sped-up software development life
cycle.

• Implement Security Fixes as Code is Written: Developers should re-
ceive continuous feedback in terms of security about the code they’re writing.
By leveraging this feature developers get the possibility to quickly fix poten-
tial security issues that would have been neglected otherwise.

• Enhance Visibility Into Application Security: One of the main goals of
shift-left security is to secure code during the whole software development life-
cycle; to achieve this and the ability to remediate issues with ad-hoc software
updates, visibility into application security is required.
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3.3 Development, Security, and Operations

DevSecOps, short for development, security, and operations, it’s an approach to
automate the integration of security controls and best practices throughout the
whole software development lifecycle: starting from the design, all the way to the
delivery of the final product.

DevSecOps represents the natural evolution of DevOps that only takes care
of development and operations, without considering security aspects. Nowadays
this trend is changing dramatically, Among the predominant factors we identify
the adoption of agile methodologies that have significantly reduced over the last
decade the duration of individual software development cycles. In the context of
Agile processes, DevSecOps seamlessly integrates infrastructure and application
security by taking advantage of tools able to address security issues when they’re
easier and less expensive to remediate.

Another concept introduced by the DevSecOps approach is the shared respon-
sibility of security. The latter is no longer an exclusive duty of security teams but
it is also taken care of by development, and operation teams.

All in all the most important features introduced by DevSecOps practices can
be summarized as follows:

1. Improved and Proactive Security: Cybersecurity processes are intro-
duced from the beginning of the development; code is scanned and tested for
vulnerabilities continuously and as soon as a security issue is detected, it can
be immediately fixed, thus leading to fewer bugs in production environments
and to lower development and maintenance costs.

2. Fast Security Vulnerability Patching: By employing proper vulnerability
scanning and patching tools, the identification of common vulnerabilities, as
documented in the most famous public databases (e.g. CVE, NVD, Exploit-
DB,...), and their resolution becomes a rapid automatic process.

3. Rapid and Cost Optimized Software Delivery: Fixing security issues
of projects managed in non-DevSecOps environments leads to a considerable
waste of resources in terms of time and money. On the other hand, integrat-
ing security checks within every development phase allows for cutting costs,
avoiding duplicate reviews and futile software rebuilds.

4. Processes Repeatability: Organizations adopting DevSecOps practices
should aim to automate most of the processes carried out during the soft-
ware development lifecycle. In such a scenario, security would be able to
adapt to new requirements and to the changing environment in which it is
applied. Additionally automating these processes grants the ability to repeat
security controls whenever it is deemed necessary.
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3.3.1 Infrastructure as Code Security

The growth of DevSecOps led to the diffusion of Infrastructure as Code Security
which can be seen as one of the essential considerations in DevSecOps. While
Infrastructure as Code (IaC) can be defined as the management and provisioning
of infrastructure through code, IaC Security ensures that resources provisioned
leveraging IaC template files are secure. To achieve this goal, IaC security relies on
best practices and compliance requirements related to different areas of IT security,
such as:

• Data Encryption

• Access Control Requirements

• Log Collection and Retention

• Network Segmentation

An example of IaC security is the identification of misconfigurations within IaC
templates and modules; these resources are scanned against known policies to detect
any violation that could pose risks to the security of a system. Since infrastructure
as code was designed to be agnostic of the specific cloud infrastructure on which it
is deployed, automation of IaC scanning is indispensably required to enforce and
manage all existing policies that may differ across public or private cloud providers.
For this purpose, some open-source frameworks and tools like Open Policy Agent
(OPA) and Checkov, were made available.

To derive added value from IaC security, automation by itself is not enough;
IaC-Sec scannings should be performed periodically not only to discover and re-
mediate misconfigurations but also to avoid cloud drifting, which happens when
the real-time state of a cloud infrastructure does not match the infrastructure-as-
code configuration. In this situation, Continuous Integration (CI) and Continuous
Delivery (CD) pipelines can be effectively employed to enforce compliance policies
and to deploy resources defined within IaC templates.
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Infrastructure as Code Security Best Practices

Considering that infrastructure as code security is a recent topic, there are only a
few processes to implement it that can be recognized as well-established. Never-
theless, during the last decade, several best practices were outlined to ease the task
of implementing IaC security in enterprise environments:

• IaC Templates Hardening: Security risks may be deriving from different
aspects of IaC templates, like resources with known vulnerabilities, misconfig-
urations, or even from the usage of container images coming from unknown
sources. An initial step to implement security is to harden IaC templates
against these common issues.

• Secrets Management: Among the most common security risks, secrets
management covers a predominant role. In the majority of cases, the risk of
secrets disclosure is not bound to the secrets themselves, but rather to how
these sensitive data are stored and managed: in not-so-isolated occurrences,
inside public git repositories it has been noticed the presence of plaintext
hard-coded secrets that could have been used by anybody to gain improper
access to accounts, systems or even to entire company’s infrastructures.

• Communication Channels: In a master-node architecture, that is the
preferred one for the implementation of Infrastructure-as-Code management
tools, security risks may arise if the master is not secured properly. Commu-
nications between the master and nodes should be encrypted, and multiple
security mechanisms should be implemented in each node to adhere to the
security-in-depth principle.

• Configuration’ Drift: In the event of configuration changes directly in
production environments, security issues may be introduced due to a deviation
from the initially defined security posture. To avoid discrepancies between the
original security posture definition and the actual one, ad-hoc IaC security
practices can be taken advantage of.

• Ghost Resources: Resources deployed in cloud environments with no tags
associated take the name of Ghost Resources. Preventing the number of these
resources from growing exponentially is important to grant assets observabil-
ity and detect potential threats that would have gone unnoticed.

• Data Transmission Risks: Securing data during transmission is as impor-
tant as securing it while at rest. To meet the former requirement, care must
be taken to avoid misconfigurations in TLS certificates and VPN connections.
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• Logs Auditing: Every company’s cloud infrastructure should be equipped
with adequate tools to collect systems logs that can be analyzed in the event
of a security incident.

3.3.2 GitOps Approach

While Nowadays software development lifecycle has almost been completely auto-
mated to support developers during their activities, infrastructure is partly still a
manual process. In modern organizations’ cloud infrastructures, GitOps uses Git
repositories for automating the provisioning of cloud resources; these repositories
shared by all team members contain the configurations and IaC templates used for
deploying all the resources.

There are three core components required by GitOps to be successfully inte-
grated into an enterprise environment:

• Infrastructure-as-Code: When infrastructure-as-code templates are tracked
in a versioning control system like git, operations teams get the ability to
rapidly deploy whichever version of the infrastructure is needed. This be-
comes particularly important in the event of a component failure caused by
an update to its configuration.

• Pull/Merge Requests: Pull Requests (PRs) and Merge Requests (MRs)
are extremely helpful in git repositories to support infrastructure updates.
PRs and MRs promote collaboration among team members giving a way to
review, comment, and eventually approve code changes submitted by others.

• CI/CD Pipelines: Continuous Integration (CI) and Continuous Delivery
(CD) pipelines can be integrated into GitOps workflows to react to updates.
When new code is merged, a pipeline that will perform operations like code
compilation, automated tests, and deployment is triggered. GitOps pipelines
have also the effect of avoiding any configuration drift by converging the
current state of an infrastructure to the desired state as defined in the central
git repository.
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3.3.3 GitOps, DevOps, and DevSecOps

GitOps is the practice that guides software development and infrastructure pro-
visioning relying on Git repositories. DevOps on the other hand is a culture that
promotes team collaboration and shared responsibility, ultimately leading to reduc-
ing the whole software development lifecycle.

GitOps and DevOps may seem conceptually similar as both employ Git as a
version control system and implement IaC processes and CI/CD pipelines, however,
their difference lies in their scope of application:

GitOps workflows may be set up by DevOps teams to acquire their intrinsic
advantages (3.3.3), nevertheless, it is not mandatory for operation teams to incor-
porate GitOps practices. This relationship between the two leads to identifying
GitOps as a specialized method of DevOps that aims at relaxing the bounds be-
tween development and operations phases.

DevSecOps as already described in section 3.3 is an extension of DevOps, as
such it presents the exact differences and is bound in the same way to GitOps as just
explained for DevOps. When used in the context of DevSecOps environments, cer-
tain GitOps practices could be applied to implement security controls that wouldn’t
have been as effectively employed in a traditional DevOps environment.

3.3.4 CI/CD Platforms

A CI/CD platform is a set of tools and services that allows developers, engineers,
and operations teams to successfully automate the process of building, testing, and
deploying new code, along with the features it introduces to production environ-
ments. Every CI/CD platform aims to provide the elements prescribed by DevOps
and DevSecOps frameworks (i.e. Development Speed, Code Quality, and Overall
Efficiency) and offers a rich set of functionalities such as:

• Continuous Integration (CI)

• Continuous Delivery (CD)

• Version Control Integration

• Automated Builds

• Automated Testing

• Deployment Automation
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Many CI/CD platform solutions are available on the market; in the following
paragraphs, the features provided by two of them will be analyzed to highlight their
similarities and differences.

CircleCI

CircleCI is a CI/CD platform available as a SaaS solution through a Web Applica-
tion; among its most important features there are:

• Integration with Version Control Systems of different vendors (e.g. GitHub,
GitLab, BitBucket).

• YAML-based syntax that allows to define workflows, jobs, and their steps.

• Visualization of executed pipelines.

• Advanced caching mechanisms to speed up pipeline executions.

• Workflows executions inside Docker containers.

• Possibility to use reusable units of code to perform a large variety of tasks
(i.e. Orbs).

• Matrix builds that allow running workflows with different inputs and in dif-
ferent environments.
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Figure 3.1 shows a CircleCI example workflow that executes two simple jobs
one after the other

Figure 3.1: CircleCI Workflow Definition

Github Actions

GitHub Actions is also a CI/CD platform that provides the capability of defining
workflows and executing pipelines, but unlike CircleCI, GitHub Actions is seam-
lessly integrated with GitHub, hence with applications’ and infrastructure’s source
code. Even though this feature introduces a lot of advantages, it also presents
a major issue: Actions’ workflows can only be defined for source code stored in
GitHub repositories; this means that if a company is relying on platforms like Git-
Lab or BitBucket, it will have to employ a different CI/CD platform than Actions.
Additional features offered by this platform are:

• Deep integration with GitHub environment and the source code.
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• YAML-based syntax to define jobs and their steps.

• Visualization of executed pipelines.

• Workflows executions inside Docker containers.

• Matrix builds (as explained for CircleCI 3.3.4)

• Huge ecosystem of Actions used to perform building, testing, and deploying
tasks (similar concept to CircleCI Orbs)

The following figure 3.2 shows an equivalent GitHub Actions workflow as the
one shown for CircleCI in figure 3.1.

Figure 3.2: GitHub Actions Workflow Definition

31



Policy as Code

3.4 Cloud Security Posture Management

Cloud Security Posture Management (CSPM) is a Governance practice employed
in cloud environments to detect misconfigurations and compliance risks. The term
Posture Management in fact, refers to the configuration of resources and services
of one or more cloud accounts, that are required to be compliant with well-defined
industry standards. CSPM encompasses a wide range of tools, policies, and best
practices that are leveraged to automatically discover and remediate compliance
issues.

The following list presents some of the key capabilities of CSPM enterprise tools:

• Detect and automatically remediate cloud misconfigurations
Example: Azure Virtual Machine disk has not been encrypted, AWS EC2
instances exposing a public IP, ...

• Maintain an inventory of best practices scoped to each different
cloud account
Since public clouds like Microsoft Azure, Amazon Web Services (AWS), and
Google Cloud Platform (GCP) offer each a different set of services with
equally different configurations, several sets of policies and best practices
need to be adopted depending on the specific cloud resources’ vendor.

• Ensure configurations compliance against security control frame-
works or regulatory standards
To ease the task of ensuring compliance across heterogeneous environments,
several cloud security frameworks and regulatory standards have been defined:

– CIS Benchmarks: Provides prescriptive configuration recommenda-
tions for products of different vendors.

– NIST SP 800-53: Comprehensive catalog of privacy and security con-
trols for federal information systems, including cloud-based ones.

– ISO/IEC 27001: World-acknowledged standard for information secu-
rity management systems that provides a systematic approach to man-
aging sensitive information and cloud assets.

• Identify misconfigurations in storage buckets: Ensuring the protection
of data stored in the cloud from unauthorized access is critical. To accomplish
this task, CSPM tools can monitor storage accounts (i.e. Azure equivalent of
AWS S3 buckets) to detect unencrypted or un-protected data.
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3.5 Cloud Infrastructure Entitlement Management

Cloud Infrastructure Entitlement Management (CIEM) is a security process lever-
aged in cloud and Multi-Cloud infrastructures, aimed at managing access rights,
permissions, and privileges granted to identities. CIEM solutions can be put in
place to apply the Least Privilege principle and to limit the risks deriving from
granting higher privileges than what is needed to perform a specific task.

When working in the context of highly dynamic and ephemeral cloud infrastruc-
tures, proprietary IAM solutions provided by public cloud providers are usually not
well suited to manage identities and privileges by themselves. CIEM tools can help
address these issues by improving visibility and allowing for the detection and re-
mediation of misconfigurations more rapidly.

CIEM mainly consists of three components:

1. Entitlements Visibility: Understand which identities are present in a given
cloud or multi-cloud infrastructure and the permissions they are assigned.

2. Permissions Rightsizing: Apply the least privilege principle by granting
only the necessary subset of permissions required to perform a task.

3. Analytics and Compliance: Rather than using rules, CIEM tools may rely
on advanced analytics to detect entitlements misconfigurations and to align
them according to compliance requirements.

Implementing a CIEM solution within organizations that rely on Multi-Cloud
infrastructures is particularly important thanks to the benefit it introduces:

• Complete view of identities, permissions, and policies spread across multiple
cloud environments.

• Automatic detection of malicious activities such as accounts being compro-
mised, stolen access keys, and other suspicious user behaviors.

• Full compliance to regulatory standards related to user permissions.
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3.6 Cloud Workload Protection

3.6.1 Introduction

In today’s scenario where the number of attacks targeting enterprises and their
cloud infrastructures is rising exponentially, it is becoming necessary to not only
implement endpoint protection by limiting access to endpoint devices but also to
secure resources at the workload level. Check Point’s 2022 Cloud Security Report
[4] affirms that 27% of businesses have suffered a security breach in their public
cloud infrastructure; This highlights the importance of Cloud Workload Protection
(CWP) practices, which are indispensable to secure workloads across different cloud
environments.

The reason why workload protection is so important resides in the concept
of cloud workload : the latter includes the application, the data managed by this
application, and the network resources that connect users to it. If any of these
components get compromised by an attack, the whole cloud-based application will
not function as expected.

3.6.2 Cloud Workload Protection Platforms

Cloud Workload Protection Platforms (CWPP) are a technology that can be lever-
aged to implement the process of CWP. A CWPP solution works by initially dis-
covering all the workloads that exist within an organization’s cloud environments,
and then by performing a vulnerability assessment aimed at discovering workloads’
security flaws. Due to the heterogeneity of workloads and all the parts composing
them, CWP platforms usually rely on the paradigm of Policy-as-Code to enforce
regulatory and industry standards. Given the results of the vulnerability assess-
ment, a CWPP solution should also provide a way to remediate each of the issues
that were identified.
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Dealing with security concerns that have been detected in vulnerability as-
sessments it’s not the only task that should be addressed by workload protection
solutions. The most effective CWP platforms also provide additional features to
both cloud and on-premise workloads such as:

• Container and Kubernetes Security

• Runtime Protection

• CI/CD Pipeline Security

• Whitelisting

• Cloud Network Security

• Visibility and Discovery

• Intrusion Prevention

• Application Security

All in all the proper implementation of CWP solutions within organizations’
infrastructures addresses the challenge of managing and securing workloads dis-
tributed across several environments (e.g. Multi-Clouds and Hybrid Clouds) and
introduces a wide variety of benefits that can be summarized as follows:

• Workloads Monitoring: Through workloads’ behavior monitoring, CW-
PPs provide two very important features related to workload security: de-
tection of intrusions and response. Upon detection of unauthorized access, a
workload protection solution should be capable of alerting IT security teams
as soon as possible to prevent further damage.

• Workloads Visibility and Configurability: Visibility inside individual
workloads is also granted by these solutions, thus giving an insight into what
is happening inside each resource, and a means of configuring them.

• Centralized Log Management: As each workload may be associated with
different security technologies, it is of extreme importance for CWP platforms
to offer security teams a comprehensive and centralized view that explains
what is happening across various environments.

• Vulnerability Management: Performing periodical vulnerability assess-
ments allows the detection of potential attack vectors such as libraries and
accounts. Once identified these resources can be promptly eliminated before
they put any workload in danger.
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• Threat Intelligence: Threat Intelligence is defined by Crowdstrike as ”
data that is collected, processed, and analyzed to understand a threat actor’s
motives, targets, and attack behaviors. Using this data and being aware of
common attack patterns, cloud workload protection solutions can quickly
recognize and neutralize new potential threats.
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Chapter 4

Cloud Security in a Realistic
Multi-Cloud Infrastructure

4.1 Introduction

In Chapters 2 and 3 many concepts related to Cloud Security and Policy as Code
were discussed from a theoretical point of view, revealing some of the most common
best practices and tools that are nowadays globally employed in organizations. In
Chapter 4, I will initially discuss and demonstrate the implementation of a practical
IaC Security pipeline, Afterwards, I will also explain how the setup of a realistic
corporate Multi-Cloud infrastructure was carried on.

4.2 Infrastructure as Code Security

4.2.1 Checkov

Checkov is a static code analysis tool developed by Prisma Cloud that can detect
misconfigurations in Infrastructure as Code files. By itself, Checkov already in-
cludes a pre-defined set of almost 750 policies, but it also allows writing custom
policies in either Python or YAML languages. Since this open-source tool is capable
of scanning many IaC file types such as Terraform for AWS, Google, Azure, and
Oracle public cloud providers, Helm charts, Kubernetes, Docker templates, and
others, it is widely utilized inside DevSecOps pipelines to detect and prevent the
deployment of misconfigured resources on public and private clouds. Additionally,
Checkov compliance scans against common industry standards, (e.g. CIS Bench-
marks, AWS, Azure, GCP Best Practices Benchmarks) are another feature that
makes this tool a great choice for companies with strong compliance requirements.
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4.2.2 Sysdig

Sysdig is a Cloud Native Application Protection Platform (CNAPP) that offers
a variety of functionalities to protect Cloud and Multi-Cloud environments. As
this platform will be extensively discussed in Chapter 5, here I will only describe
its IaC scanning tool. Sysdig currently supports GitHub, Bitbucket, GitLab, and
Azure DevOps; once integrated into one of the previous version control platforms,
this technology can be used to scan incoming Pull Requests against pre-defined
policies. As it was for Checkov, the main purpose of this tool is to leverage the
Policy-as-Code paradigm to detect security issues that could expose resources to a
wide range of attacks.

4.2.3 IaC Security Implementation Scenario

Introduction

In the following paragraphs, a realistic scenario where DevSecOps and IaC Security
practices were successfully implemented, is shown. In particular, the developed
DevSecOps pipeline will cover the aspects of scanning Terraform files and K8s
templates for compliance, and then only in case there are no security issues, the
automatic deployment of Terraform resources on Azure public cloud will also be
performed.

Environment and Tools

The environment chosen for this demonstration is a GitHub repository that ideally
represents the code base where organization developers push new or updated IaC
templates that are then deployed on their public cloud infrastructure. The IaC
security tools that have been integrated are the ones discussed in the two previous
sections, namely:

• Checkov: A specific GitHub Action starts the code scanning process and
once finished produces a SARIF file reporting all detected misconfigurations.

• Sysdig IaC Sec Scanning: This tool is offered by Sysdig developers in
the form of a GitHub Application that will run whenever a new pull request
is opened on the GitHub platform. Specific configurations to modify the
behavior of this tool may be applied directly from Sysdig’s SaaS dashboards
that will be shown in Chapter 5
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GitHub Workflows

GitHub Actions CI/CD platform has been chosen over CircleCI due to several
factors, such as:

• Seamless integration of GitHub Actions with GitHub platform

• Ease in defining multiple different workflows

• Availability of Actions for any kind of task

To automate the code scanning and deployment processes I’ve realized two dif-
ferent workflows written using GitHub Actions syntax. Each workflow is executed
in reaction to particular events and performs specific operations to successfully
deploy new or modified resources.

Pull Request Code Scanning Workflow

The first workflow is automatically triggered whenever a user opens or modifies a
pull request whose objective is to merge new IaC code in a production environment.
Since it is wanted to ensure that this code doesn’t introduce any vulnerability or
misconfiguration, the triggered pipeline will use Checkov GitHub Action to scan all
the files within the pull request and produce a report in SARIF format that will be
made available by GitHub itself in a specific dashboard. Even though not mentioned
in the GitHub Workflow, SysDig IaC security scanning will also be launched as a
consequence of the opening of a new pull request.

The snippet below shows this first GitHub Action Workflow code; the latter is
followed by a high-level description of the performed jobs:

Code Scanning Workflow:

name: Infrastructure as Code Security checks performed by Checkov
permissions: read−all

on:
pull request:

types: [opened, reopened]

push:
branches:
- ’*’
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jobs:
IaC Sec Checkov Scan:

permissions: read−all
name: ’Checkov IaC Sec Scan’

runs−on: ubuntu−latest
defaults:

run:
shell: bash

steps:
- uses: actions/checkout@v3
- name: Check if pull request is opened/reopened

id: pr status
uses: octokit/request−action@v3.x
with:

route: GET /repos/RunCor399/Terraform−IaCSec/pulls/${{
github.event.pull request.number }}

env:
GITHUB TOKEN: ${{ secrets.GITHUB TOKEN }}

- name: Checkov GitHub Action
uses: bridgecrewio/checkov−action@v12
if: ${{ steps.pr status.outputs.data.state == ’open’ ||

steps.pr status.outputs.data.state == ’reopened’ }}
with:

output format: cli,sarif
output file path: console,results.sarif

- name: Upload SARIF file
uses: github/codeql−action/upload−sarif@v2

if: success() ||failure()
with:

sarif file: results.sarif
ref: ${{ github.head ref }}
sha: ${{ github.sha }}

40



Cloud Security in a Realistic Multi-Cloud Infrastructure

High-Level Job Description:

1. The first lines under the on tag specify that this workflow will only be trig-
gered when a pull request is opened, re-opened, or updated.

2. Check if pull request is opened/reopened: As it is written this workflow
triggers at every push in any branch, however, this is not the ideal behavior
since the entire pipeline would be executed every time some code is modified.
To make sure that security checks are only performed when a Pull Request
is created or updated, the first step of IaC Sec Checkov Scan job ensures
that there is an open pull request associated with a push.

3. Checkov Execution: If the previously described conditions are met, this
second step will launch Checkov code scanning by using the official bridgecrewio/checkov-
action Action, and specifies that an output report in SARIF format has to
be produced.

4. Upload SARIF file Job: The previously generated security report is now
made available to GitHub so that it can be visualized within GitHub Repos-
itory’s Security tab.

Azure Deployment Workflow

Once it is made sure that the newly introduced code is compliant with the required
standards, a pull request may be merged in a production environment by an ad-
ministrator. When this happens, the second workflow that I’ve realized will once
again scan the code for security issues, and assuming everything is compliant, will
then proceed to deploy the new or updated infrastructure on Azure.

For brevity purposes, I have omitted from the following workflow the Checkov
code scanning job as its definition mirrors that of the previous workflow.

Deployment Workflow:

name: Terraform Azure Deploy
permissions: read−all

on:
pull request:

types:
- closed
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env:
TF VAR azure sp key: ${{ secrets.AZURE SP SECRET }}
TF VAR storage account key: ${{

secrets.TERRAFORM STATE STORAGE ACCOUNT KEY }}
main ref: "/refs/heads/main"

jobs:
is executed:

name: ’Workflow execution controller’

runs−on: ubuntu−latest
outputs:

output1: ${{ steps.step1.outputs.SHALL EXECUTE }}
defaults:

run:
shell: bash

steps:
- name: Shall execute set

id: step1
run: echo "SHALL_EXECUTE=true" >>$GITHUB OUTPUT

if merged:
if: github.event.pull request.merged == true
runs−on: ubuntu−latest
needs: is executed
steps:
- run: |

echo The PR was merged

IaC Sec Scan:
// Omitted Job

terraform−azure−deploy:
name: ’Terraform Azure Deploy’

runs−on: ubuntu−latest
needs: IaC Sec Scan
defaults:

run:
shell: bash

steps:
- name: Checkout

uses: actions/checkout@v3
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- name: Terraform
uses: hashicorp/setup−terraform@v2

- name: ’Terraform Init’

id: init
run: terraform −chdir=./src init

−backend−config="access_key=${{
secrets.TERRAFORM_STATE_STORAGE_ACCOUNT_KEY }}"

- name: ’Terraform Validate’

id: validate
run: terraform −chdir=./src validate −no−color

- name: ’Terraform Plan’

id: plan
run: terraform −chdir=./src plan −no−color
continue−on−error: true

- name: Terraform Apply
id: apply
run: terraform −chdir=./src apply −auto−approve

High-Level Job Description:

1. The first lines define once again the execution conditions: this workflow will
only be triggered when a pull request is closed. Furthermore, one of the
subsequent jobs (if merged) ensures that infrastructure deployment is only
carried out when a PR is merged.

2. Terraform-Azure-Deploy Job: Leveraging Terraform GitHub Action I
was able to define a job capable of automatically deploying IaC-defined re-
sources directly on my Azure Cloud account. The steps to achieve this include:

(a) Initializing Terraform Backend (Terraform Init)

(b) Validating Terraform Syntax (Terraform Validate)

(c) Planning Resources Deployment (Terraform Plan)

(d) Applying the Plan (Terraform Apply)
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Assessment Results

The execution results of the first DevSecOps pipeline can be conveniently viewed
from within the Pull Request that triggered the workflow. The following image
shows a run of the pipeline where both Checkov and Sysdig detected security issues
that prevent an administrator from successfully merging the code on the main
branch (i.e. the production environment).

Figure 4.1: Pull Request Merging Blocked

At this point, both Checkov and Sysdig have already produced an assessment
report that documents the detected security issues, the latter can be visualized
in GitHub ”Security Code Scanning” page, the former by clicking ”Details” link
beside Sysdig code scanning check.

The next two images provide just a summary of Checkov and Sysdig detec-
tions; nevertheless, a thorough analysis regarding the most severe issues that were
detected has also been performed in Chapter 6
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Figure 4.2: Checkov Detections

Figure 4.3: Sysdig Detections
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4.3 Cloud Service Providers

4.3.1 Microsoft Azure

Launched in 2010, Azure is Microsoft’s public cloud computing platform and as one
of the most used public cloud providers (As of 2021, 56% of enterprises worldwide
use Azure Cloud), it offers more than 200 services and products that organizations
can leverage to build their applications. In the context of this work, the Azure
Platform was relied upon to host and operate the majority of resources composing
the Multi-Cloud infrastructure I designed.

Among these resources noteworthy are Identity and Access Management (IAM),
Secret Management, and Observability services. These latter play a key role in cen-
tralizing Multi-Cloud authentication, authorization, and monitoring capabilities.

4.3.2 Amazon Web Services

Amazon Web Services or AWS is another public cloud computing platform that,
similarly to Microsoft Azure, empowers organizations with a wide variety of cloud
services. AWS can be considered the first hyper-scale public cloud provider in the
world, Since launching in 2006 its revenue has never stopped growing, surpassing
80 billion U.S. dollars in 2022 [20].

To be able to set up a Multi-Cloud infrastructure, Reply granted me access to
an AWS account which I utilized to deploy some cloud resources that would ideally
represent the cloud-offered services of an enterprise. However, differently from the
infrastructure I’ve designed in Azure Platform, the resources that will be deployed
on AWS were architectured by a company colleague during his thesis work [3].

4.4 Setup of the Infrastructure

After explaining the IaC Security implementation scenario and introducing the two
major public cloud providers worldwide, I will now present all the cloud resources
that have been employed along with an explanation of their roles and how they
have been integrated.

4.4.1 Terraform

Automation of infrastructure deployment is essential not only to obtain operations
repeatability but also to implement an effective CI/CD pipeline capable of reducing
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the overall software development lifecycle duration. HashiCorp Terraform in this
scenario is an Infrastructure-as-Code tool that allows for the definition of cloud
resources using human-readable configuration files. Terraform workflow can be
partitioned into three main phases:

1. Write: Definition of resources for one or more public/private clouds inside
Terraform files.

2. Plan: Terraform software ingests .tf configuration files and produces an exe-
cution plan describing which resources it will create, update, or destroy based
on the current infrastructure state.

3. Apply: As soon as the previously generated plan is approved, Terraform
starts performing the proposed operations updating both its local state and
the remote state of the infrastructure.

Terraform was chosen over other tools like AWS CloudFormation or Azure ARM
templates because it offers a cloud service provider-agnostic solution for deploying
resources across major cloud platforms.

To determine which resources need to be created, updated, or removed, Ter-
raform by default uses a local state file that represents the current state of the
remote infrastructure. When a plan is applied, Terraform updates the local state
file and synchronizes the remote infrastructure state to match the file’s content.

Terraform and its features were extensively used in the context of this work to
define every single resource that will be deployed on both public cloud platforms.
However to track state changes, instead of using a local state file, I have decided to
exploit another Terraform feature named Remote Backend: the latter allows to
store the current state of an infrastructure remotely in a file storage (Azure Storage
Accounts, AWS S3 buckets, etc.). By adopting such an approach, operations teams
get a consistent view of the remote cloud infrastructure that can now be modified
asynchronously.
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The following code represents an example of a Terraform file used to set up a
remote backend and to create an Azure resource group.

terraform {
required providers {

azurerm = {
source = "hashicorp/azurerm"

version = "3.52.0"

}
}

backend "azurerm" {
resource group name = "terraform"

storage account name = "terraformstate1603709092"

container name = "tfstate"

key = "terraform.tfstate_aks"

}
}

provider "azurerm" {
subscription id = var.credentials["subscription_id"]
client id = var.credentials["client_id"]
client secret = var.azure sp key
tenant id = var.credentials["tenant_id"]
features {}

}

resource "azurerm_resource_group" "aks_resource_group" {
name = var.aks resource group.name
location = var.aks resource group.location

}
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4.4.2 Workloads: Azure

Azure Kubernetes Service

Azure Kubernetes Service (AKS) is a Managed Kubernetes service provided by Mi-
crosoft Azure that allows one to effortlessly deploy and manage Kubernetes Clus-
ters. Thanks to its capabilities which range from workload deployment and service
discovery to load balancing and storage orchestration, Kubernetes is nowadays the
most used orchestration system in the world.

After having deployed an AKS instance on my Azure Subscription relying on
Terraform provisioning capabilities, I decided to host in this Kubernetes Cluster
a full-fledged microservices-based application provided by Google[9]. This applica-
tion, composed of several microservices each serving a specific purpose, showcases
an example of a service provided by an organization through a public cloud.

Apart from the suite of microservices of which Online Boutique[9] is composed,
I’ve also developed an additional Spring service able to interact with the following
cluster-external resources:

• Hashicorp Vault: As explained in 4.4.4, Vaults enable to secure, store,
and control access to passwords, encryption keys, tokens, and certificates.
By being able to interact with a Vault, the Spring microservice can query
or persist secrets of any kind without the need for embedding sensitive data
within the application code.

• Azure MySQL Database: By making use of temporary keys supplied by
a Vault, this Spring application will also be able to interact with an Azure
MySQL instance. A more in-depth explanation of the integration among
the Spring microservice, HashiCorp Vault, and Azure MySQL Database, has
been provided in Section 4.4.4, Paragraph ”Integration among Vaults and
Workloads”.

These next two extracts of code respectively show a part of the Terraform
script that was used to deploy the Kubernetes Cluster on Azure and the commands
allowing the provisioning of the services within the cluster itself.
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Terraform AKS Code:

resource "azurerm_kubernetes_cluster" "aks_cluster" {
name = "aks-cluster"

location = azurerm resource group.aks resource group.location
resource group name =

azurerm resource group.aks resource group.name
dns prefix = "aks-cluster"

default node pool {
name = "default"

node count = 2
vm size = "standard_d2_v3"

vnet subnet id = azurerm subnet.aks node subnet.id
}

identity {
type = "SystemAssigned"

}

azure policy enabled = false
http application routing enabled = false

}

Microservices Provisioning Script:

#!/bin/bash

az login

# Automatic configuration of local kubectl

az aks get−credentials −g aks−resource−group −n aks−cluster

# Deploy Service Account and Test Pod

kubectl apply −f ./kubernetes service account.yml
kubectl apply −f ./pod service account.yml

# Deploy Online Boutique

kubectl apply −f ./kubernetes manifest edited.yml
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# Deploy Spring DB Connector microservice

kubectl apply −f ./db connector manifest.yml

# Deploy Kubernetes Dashboard

kubectl apply −f
https://raw.githubusercontent.com/kubernetes/dashboard/
v2.7.0/aio/deploy/recommended.yaml

echo "Dashboard URL:

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/

services/https:kubernetes-dashboard:/proxy/"

# Proxy access to kubernetes dashboard

kubectl proxy

Azure MySQL Database

Among the many database solutions offered by Azure, I’ve opted to deploy on my
infrastructure a simple MySQL Database that will be queried to retrieve generic-
purpose data by the Spring application discussed above, as well as by Hashicorp
Vault to obtain temporary access credentials that may be used to authenticate
other microservices.

4.4.3 Workloads: AWS

Amazon Elastic Kubernetes Service

Amazon Elastic Kubernetes Service or EKS is the equivalent of Azure Kubernetes
Service but on the Amazon Web Services Platform. As such it still offers a Managed
Kubernetes instance that can be leveraged by businesses to build, secure, operate,
and maintain Kubernetes Clusters hosted on the cloud.

To successfully deploy a Managed Kubernetes Cluster, I had first to set up a
new Virtual Private Cloud (VPC). AWS VPCs can be seen as virtual networks
that allow to: define networking rules, security groups, route tables, and create
public and private subnets. Although in the context of this work, no workloads are
running inside the EKS Cluster, I deemed it essential to establish an environment
that reflected as much as possible an enterprise cloud infrastructure.
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4.4.4 Multi-Cloud Secret Management

Secret Management is an essential practice adopted in large environments that
allows centralizing the administration of sensitive data required by workloads for
authentication, authorization, and many other tasks. Implementing a practical
secret management framework, besides giving the possibility to protect data at
rest, also reduces the risks of data leaks and unauthorized access to services.

In my Multi-Cloud infrastructure use case I’ve chosen to deploy a Vault acces-
sible not only by the workloads operating within the same cloud environment (i.e.
Azure) but also by resources that reside on other public or private clouds (AWS
in this case), thus completely centralizing the management of secrets belonging to
multiple cloud environments. HashiCorp, in its blog [11], discusses the significance
of centralizing secrets management and explains how it can be achieved using HCP
Vault and its extensive range of integrations.

In the subsequent sections, an overview of the resources utilized to implement
this use case is presented, along with a thorough description of how Vault’s capa-
bilities are leveraged by workloads.

HashiCorp Vault

HashiCorp Vault is an identity-based secrets management system that not only
securely stores passwords, encryption keys, tokens, and certificates, but also controls
access to these secrets by authenticating entities seeking to use them. A formal
description of Vault Core workflow, as defined by HashiCorp developers, follows:

1. Authenticate: During this phase clients supply information that allows
Vault if they are who they claim to be. If authentication is successful Vault
generates a token associated with a specific security policy.

2. Validate: Vault relies on third-party trusted sources such as Kubernetes,
LDAP, or GitHub to validate clients’ legitimacy.

3. Authorize: Policies defined in a Vault instance determine the API endpoints
a client has access to given its identity. Such a policy mechanism implemented
by Vault provides a declarative way to permit or deny access to certain op-
erations or data selectively.

4. Access: The token issued after client authentication is the piece of data that
grants access to secrets, keys, and encryption capabilities. A best practice
to reduce the risk of data leaks is to limit the lifetime of this token; when it
expires a client may once again perform authentication to receive a fresh one.
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In the Multi-Cloud infrastructure proposed in this paper, a Vault has been
provisioned to serve requests coming from workloads either running in Azure or
AWS provider. The reason for choosing this Vault solution from HashiCorp lies in
its capability to integrate with various platforms such as Kubernetes, Azure, and
generic databases. At the end of 2021, HCP Vault had surpassed 100 integrations
with 75 partners, confirming its leadership in identity-based security solutions and
centralized secrets management [12].

To host the just mentioned Vault I’ve chosen to employ an Azure Virtual Ma-
chine that could be reachable from outside Azure provider using a public IP address.
The entire deployment and Vault configuration process was automated with ad-hoc
Terraform and template files: using these two resources together allows one to set
up a working Vault in a matter of minutes. Apart from the virtual machine, several
other resources were deployed on my Azure Subscription to take advantage of an
additional useful Vault functionality named Auto-Unseal, discussed in detail in
section 4.4.4.

Note that while the use of a public IP address to access Vault is not the most
secure option, it was chosen for the sake of simplicity and expediency. A more
secure approach, such as access through a VPN, is recommended for production
environments.

Terraform Script used to deploy Vault Azure VM

resource "azurerm_linux_virtual_machine" "tf_vm" {
name = var.vm name
location = var.location
resource group name = azurerm resource group.vault.name
network interface ids = [azurerm network interface.tf nic.id]
size = "standard_a2_v2"

custom data = base64encode(data.template file.setup.rendered)
computer name = var.vm name
admin username = "azureuser"

admin ssh key {
username = "azureuser"

public key = var.public key
}

os disk {
name = "${var.vm_name}-os"
caching = "ReadWrite"

storage account type = "Standard_LRS"

}
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source image reference {
publisher = "Canonical"

offer = "UbuntuServer"

sku = "18.04-LTS"

version = "latest"

}

boot diagnostics {
storage account uri =

azurerm storage account.tf storageaccount.primary blob endpoint
}

}

Azure Key Vault

Azure Key Vault is one of Microsoft’s proprietary Vault solutions, that helps solve
problems related to secrets management, key management, and certificate manage-
ment. The reason why I have opted to include an Azure Key Vault instance in
my infrastructure is that it plays a primary role in supporting HashiCorp’s Vault
Auto-Unseal functionality explained in the next section.

Vault Auto-Unseal

Every time a Vault server is booted, it starts in a sealed state and can’t decrypt the
data it contains. To acquire the ability to perform any operation, the Vault needs
first to be unsealed. Unseal operation requires the input of a certain number of
keys to be successful; these special keys are generated by Shamir’s Secret Sharing
algorithm only the first time the Vault boots. When the Vault is supplied with all
the required keys, it is then able to use the same Shamir’s cryptographic algorithm
to build the master key from which other keys originate, and decrypt secured data.

The previously introduced Azure Key Vault makes the auto-unseal process pos-
sible by internally storing each of the pieces of the master key that are to be used for
the unsealing. By doing so, every time the HashiCorp Vault boots it will demand
Azure Key Vault the necessary keys to unseal itself, thus effectively eliminating
the need for human intervention. Further information about this technique can be
retrieved directly from HashiCorp documentation [10]
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A schema showing the components and the workflow of the auto-unseal feature
is depicted in figure 4.4. Additionally, an explanation of the role of each component
and the auto-unseal procedure is available under the mentioned schema.
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Figure 4.4: HashiCorp Vault Auto-Unseal

Components:

• Azure Linux Virtual Machine: Computing resource hosted on Azure Plat-
form that hosts HashiCorp Vault.

• HashiCorp Vault: Vault containing passwords, access keys, tokens, and
certificates

• Azure Key Vault: Vault that supports HCP Vault auto-unseal functionality
by storing unsealing keys.
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• Azure User-assigned identity: Azure Identity that allows HashiCorp
Vault to authenticate with Azure Key Vault and to request unsealing keys.

• Azure Storage Account: Storage account containing a file share that has
been attached to HCP Vault Virtual Machine.

• Storage Account Access Key: Secret key that allows a storage account
and its file shares to be attached to an Azure Virtual Machine.

• Vault Certificates: PKI certificate and associated private key used to es-
tablish a TLS channel supporting server authentication between workloads
(clients) and HCP Vault (server).

Auto-Unseal Workflow: (First Vault Start-up)

1. HCP Vault generates 5 unsealing keys starting from a single master key

2. HCP Vault saves each of the unsealing keys within Azure Key Vault

3. Azure Key Vault is now ready to offer unsealing keys when needed by HCP
Vault

Auto-Unseal Workflow: (Subsequent Vault Start-ups)

1. HCP Vault starts up in a sealed state and requests Azure Key Vault the
necessary unsealing keys.

2. Azure Key Vault authenticates the VM hosting the Vault relying on the
Azure User-Assigned Identity ; if authentication succeeds, it proceeds by re-
turning the necessary unsealing keys.

3. HCP Vault uses the unsealing keys to reconstruct the master key and with
the latter decrypts all data stored within the Vault.

Integration among Vaults and Workloads

The two integration scenarios I’ve implemented have as protagonists a HashiCorp
Vault, a microservice hosted in a Kubernetes cluster, and an instance of an Azure
MySQL Database. The first scenario explains how a generic Kubernetes workload
acquires the ability to authenticate and obtain secrets secured inside an HCP Vault.
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The second scenario on the other hand shows how that same workload is also able
to obtain from the HCP Vault a pair of temporary database credentials that can
be used to operate on an Azure MySQL Database instance. Even though the
presented use cases only consider Azure Kubernetes workloads, there wouldn’t have
been problems nor differences in implementing the same two scenarios but using
Kubernetes workloads running in an AWS Cluster.

The objective of these two integrations is to establish a trusted relationship
between Kubernetes workloads, a Vault, and a MySQL database, based on a secret-
less interaction between the parties. The list below includes a brief explanation
of the role of each resource that allowed me to successfully implement these two
scenarios.

• Azure Kubernetes Cluster: Cluster Kubernetes running the workload
that interfaces with HCP Vault. An additional duty delegated to this cluster
is to validate JWT tokens received by HCP Vault.

• Spring Microservice: Application that uses Spring Cloud Vault library
to authenticate to HCP Vault and to request secrets or MySQL database
credentials.

• Pod Service Account: Service Accounts are a resource in Kubernetes en-
vironments that allow the assignment of an identity to Pods, together with a
collection of permissions. The Spring microservice discussed above has been
conveniently equipped with a Service Account that allows it to authenticate
to HashiCorp Vault.

• HashiCorp Vault: Vault instance deployed on Azure configured to allow
Kubernetes authentication by pods equipped with a specific service account,
and to interact with the Azure MySQL Database instance for the generation
of temporary access keys.

• Azure MySQL Database: This MySQL instance deployed on Azure Plat-
form, apart from providing the classic functionalities of a relational database,
it has also been configured to allow HashiCorp Vault to generate temporary
database access credentials that can be provisioned to workloads.

Vault Secrets Retrieval Scenario
This first scenario introduced above and schematized in figure 4.5 whose implemen-
tation gives Kubernetes workloads the ability to authenticate and request secrets
stored in a Vault, is now thoroughly analyzed to provide additional information
about the logic behind it.
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Figure 4.5: HashiCorp Vault Secrets Retrieval

Secret Retrieval Workflow

1. Pod Authentication Flow with Service Account: During this initial
phase a Pod willing to interact with the Vault is first required to prove its
identity. The latter authentication flow can be summarized by the following
steps:

(a) Pod => Vault: The Pod contacts HCP Vault and sends it the JWT
token associated with its Service Account.

(b) Vault => Kubernetes API Server: The Vault forwards the JWT
token to Kubernetes API Server to verify its validity
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(c) Kubernetes API Server => Vault: Kubernetes API Server validates
the JWT token’s claims and signature, and returns a response to the
Vault.

(d) Vault => Pod: If validation is successful the Vault generates and
returns the Pod a token associated with a well-defined set of permissions.
The granted permissions depend on the role defined within the service
account and on Vault security policies.

2. Access Vault Secrets: The previously received session token can now be
used by the Pod to retrieve secrets from the Vault. HashiCorp Vault uses a
role-based authorization schema to permit or deny access to specific secrets.

Vault Database Access Scenario
The second scenario schematized in figure 4.6 preserves the same ”Pod to Vault” au-
thentication flow explained before, but it additionally implements a useful function-
ality for workloads that are willing to interact with an external database. Normally
applications would just internally store database login details inside environment
variables or configuration files; however, such an approach greatly endangers the
confidentiality of database access credentials. An alternative technique that allows
mitigating the risk of database credentials disclosure relies on HashiCorp Vault.
By configuring the HashiCorp Vault instance appropriately, which includes granting
it permission to create temporary MySQL database users, Kubernetes microservices
now have the possibility to request temporary database credentials directly from
the Vault after authenticating.
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Figure 4.6: HashiCorp Vault Database Access

Similarly to the previous ”Secret Retrieval” use case, the following workflow
highlights the actors and their interactions that enable the concrete implementation
of this newly introduced scenario.

1. Pod Authentication Flow with Service Account: The same authentica-
tion flow discussed in the first scenario is yet again implemented and exploited
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by microservices willing to prove their identity.

2. Pod => HCP Vault: Once authentication to the Vault has been performed,
the Spring microservice uses Spring Cloud Vault to request the creation of
temporary database credentials.

3. HCP Vault => MySQL Server: HCP Vault has the necessary authoriza-
tion level to ask the MySQL server for the issuance of temporary database
credentials.

4. MySQL Server => HCP Vault: The fresh database credentials are re-
turned to the Vault.

5. HCP Vault => Pod: The pod receives the temporary database credentials
it asked for.

6. Pod => MySQL Server: The received credentials can now be used by the
Pod to perform queries on the Database. The database permissions a Pod
receives depend once again on the role defined within the Service Account and
on specific policy configurations that have been applied on the Vault. In my
specific use case, the Pod was granted the db access role role, which allowed
it to execute CREATE, SELECT, INSERT, DELETE, DROP statements
on whichever database and table of the MySQL server. In a production
implementation, a best practice would be to limit query execution capabilities
according to workloads’ roles.

4.4.5 Multi-Cloud Identity and Access Management

Organizations relying on multiple cloud platforms nowadays are facing enormous
challenges when it comes to managing users’ identities. The main problem is that
every single public cloud provider offers its own Identity and Access Management so-
lution: Azure Active Directory by Microsoft, IAM Identity Center by Amazon, and
Google Cloud Identity by Google. Not adopting a Multi-Cloud Identity and Access
Management strategy would lead to an uncontrolled replication of the same identi-
ties across different providers, thereby introducing increased management complex-
ity and serious risks to accounts’ security. Furthermore, implementing a Centralized
Multi-Cloud approach to Identity and Access Management entails numerous bene-
fits, including:

1. Users are associated with a single identity shared among cloud
providers

2. Organizations’ security enhanced thanks to the enforcement of Access
Management policies across all systems.
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3. Identities can be managed from a single dashboard

4. Ability to compel users adherence to secure password policies

The Identity and Access Management solution I’ve implemented in my Multi-
Cloud infrastructure uses the Keycloak IAM tool as the only Identity Provider.
After a brief explanation of how Keycloak was deployed in cloud and an overview
of the established IAM federation among AWS, Azure, and Keycloak; a realistic
Business-to-Employees scenario in which cloud users can authenticate with Key-
cloak and automatically gain access to the AWS Management Console is shown.

Keycloak

Keycloak is an open-source Identity and Access Management solution that pro-
vides Single Sign-On and Single Sign-Out capabilities and supports protocols such
as SAML 2.0, OpenID Connect, and OAuth 2.0. Given the number of supported
protocols, Keycloak is the perfect tool for heterogeneous types of applications with
different security demands. In addition to the supported protocols, my Reply super-
visors suggested the adoption of Keycloak in this thesis to determine its suitability
as an Identity Provider in a Multi-Cloud infrastructure.

Using a collection of ad-hoc Terraform and Docker Compose scripts, I have
successfully deployed a Keycloak instance on an Azure Web App and exposed it to
be reachable both from Azure and other cloud platforms resources. The following
Terraform file shows the main Azure resources required for the correct provisioning
of this IAM tool:

Keycloak deployment in Azure Web App

resource "azurerm_linux_web_app" "keycloak-webapp" {
name = "keycloak-webapp"

resource group name = var.keycloak−resource−group.name
location = var.keycloak−resource−group.location
service plan id = azurerm service plan.keycloak−sp.id

https only = true

app settings = {
"KEYCLOAK_USER" = "admin"

"KEYCLOAK_PASSWORD" = sensitive(var.secrets.admin password)
"DOCKER_REGISTRY_SERVER_URL" =

"https://registry.hub.docker.com/v2/"
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"WEBSITE_ENABLE_APP_SERVICE_STORAGE" = true
}

site config {
always on = false

}

depends on = [ azurerm service plan.keycloak−sp ]

}

resource "azapi_update_resource" "update_linux_web_app" {
resource id = azurerm linux web app.keycloak−webapp.id
type = "Microsoft.Web/sites@2022-03-01"

body = jsonencode({
properties = {
"siteConfig" = {
"linuxFxVersion" =

"COMPOSE|${base64encode(file("keycloak service.yaml"))}"
}
"appSettings" = {
"keycloakFrontendUrl" = join("/",

[azurerm linux web app.keycloak−webapp.default hostname,
"auth"])

}
}

})

depends on = [ azurerm linux web app.keycloak−webapp ]
}
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The Docker Compose file below on the other hand contains the Keycloak service
definition that Azure takes care of setting up within the Web App:

Keycloak Service

version: ’3’

services:
keycloak:

image: jboss/keycloak:latest
container name: keycloak
volumes:
- ${WEBAPP STORAGE HOME}/data:/opt/jboss/keycloak

/standalone/data
restart: always

Azure, AWS and Keycloak Federation

Centralization of Identity and Access Management in a Multi-Cloud infrastructure
initially requires establishing specific trust relationships between the diverse Cloud
Providers and the designated IAM tool. In the context of this thesis work, I’ve
designed a Federation consisting of Azure and AWS platforms that act as Service
Providers, and Keycloak being the Identity Provider that first verifies users’ identity
and then redirects them to the proper Service Provider.

Both trust relationships between Keycloak and Azure/AWS may be set up lever-
aging SAML 2.0 protocol: an open standard created to provide users the capability
of authenticating against a system (Identity Provider) and gaining access to other
systems deemed trustworthy (Service Providers). SAML which stands for Secu-
rity Assertions Markup Language, uses XML digitally signed documents exchanged
over HTTP connections to represent users’ identities. These XML documents that
take the name of Assertions are produced by the Identity Provider and consumed
by Service Providers to verify that a user has been authenticated.

Even though implementing a complete Multi-Cloud Identity and Access Man-
agement strategy would have required establishing both federations cited above,
Ultimately I’ve opted for only implementing the one between Keycloak and AWS
provider. The reason for this choice is that despite the robust feature set provided
by Azure’s IAM tool, Azure Active Directory, as opposed to AWS’s IAM Identity
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Center, doesn’t support a fully external identity provider setup where user infor-
mation is solely stored in a third-party platform like Keycloak. As a result, an
enterprise implementing such a federation would need to provision users both in
Azure AD and in Keycloak, thus losing all the benefits of having a unique identity
per employee.

In the upcoming list, I have outlined the main configuration operations that
were carried out to establish the trust relationship between Keycloak and the AWS
provider that would allow users to access the AWS Management Console only using
their Keycloak identity.

• Keycloak IdP Configuration: Creation of a new Keycloak client that will
register AWS as a SAML Service Provider. To achieve this, it is required to
set up AWS SAML endpoints that will be used for redirecting users.

• AWS Configuration

1. Set up of a new SAML Identity Provider in AWS Identity and Access
Management dashboard.

2. Creation of custom AWS roles associated with specific permissions sets.
Users authenticating against Keycloak will assume one of these roles
depending on specific mappings.

• Users, Groups, and Roles Mappings: During this last step, custom roles
previously created on AWS are now mapped and associated with Keycloak
groups. By doing so users belonging to a group are only granted a limited
amount of permissions over the entire AWS Cloud Account, thus implement-
ing an effective Role-based Access Control strategy.
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Authentication Flow in a B2E Scenario

Having introduced the federation between AWS and Keycloak, it is now possible to
discuss a real-life usage scenario within which users of a company use their unique
identity to access one or more cloud accounts. The Business-to-Employees sce-
nario I have explained and schematized below showcases the situation in which a
user is willing to log into an AWS account using its Keycloak identity.

AWS Authentication Flow with Keycloak identity

Figure 4.7: AWS and Keycloak Federation

67



Cloud Security in a Realistic Multi-Cloud Infrastructure

B2E Authentication Workflow

1. An employee who intends to access the AWS Management Console of the
organization he is working for is first redirected to Keycloak where he can
perform authentication using his unique identity.

2. Keycloak validates the employee’s identity and associates a set of permissions
according to his role.

3. If Keycloak credentials are correct, the employee is redirected to the AWS
Management Console where he results as an authenticated user and can per-
form only the operations granted by his role.

4.4.6 Multi-Cloud Infrastructure Observability

Observability, which is usually defined as ”the ability to measure a system’s current
state based on the data it generates”, is a crucial concept in the context of dis-
tributed systems and applications. In the Cloud Computing world, observability
also refers to the tools and practices that allow for the collection, correlation, and
analysis of streams of data coming from heterogeneous workloads. When shifting
to a Multi-Cloud environment where there may be thousands of resources spread
across different cloud platforms, implementing an observability strategy becomes
essential for providing developers and DevOps teams visibility and insights into
applications.

The forthcoming discussion covers the design and implementation steps I per-
formed to successfully address observability in my Multi-Cloud infrastructure com-
posed by Azure and AWS public cloud providers.

Azure Monitor

Azure Monitor is a comprehensive monitoring solution provided by Microsoft that
eases the task of collecting and analyzing data coming from both cloud and on-
premise environments. Apart from being able to collect data coming from resources
like applications, virtual machines, operating systems, databases, and networks,
Azure Monitor also offers the functionality of storing data in a common platform
so that it can be made available to other aggregation, correlation, analysis, and
visualization tools.

Among the many solutions provided by Azure Monitor, I have specifically em-
ployed Log Analytics Workspace which provides dedicated environments for
logging data coming from Azure services. This collects monitoring data from all
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Azure resources and forwards it to another Azure-managed service for visualiza-
tion. In section 4.4.6 a description of the platform adopted for data visualization is
provided while section 4.4.6 shows an overall view of the multi-cloud observability
infrastructure design.

AWS CloudWatch

CloudWatch is the solution provided by Amazon for monitoring resources and ap-
plications running on AWS cloud accounts. In a similar way to Azure Monitor,
CloudWatch enables real-time monitoring of AWS workloads like EC2 instances,
EBS volumes, RDS instances, and many others.

Within my AWS infrastructure, I’ve decided to leverage CloudWatch capabil-
ities to collect and forward monitoring data to the same Azure-managed visual-
ization service mentioned above. By adopting such an approach, workload met-
rics coming from different cloud providers can be easily analyzed from a single
data visualization platform, thus achieving the goal of implementing a centralized
Multi-Cloud observability strategy.

Azure Grafana Managed Service

Grafana is the solution for data visualization suggested by Reply’s tutors due to its
features and availability in Azure. Grafana is an open-source platform developed by
Grafana Labs that allows users to analyze and monitor data coming from a broad
variety of different data sources. Dashboards are the key element of Grafana’s
platform for giving meaning to collected data: users can use pre-made dashboards
or build custom dashboards that adapt to specific needs.

My Multi-Cloud infrastructure scenario includes a Managed Grafana instance
deployed on Microsoft’s Azure Platform. The latter Grafana instance, which is
only accessible by authorized users, aggregates monitoring data coming both from
Azure Log Analytics Workspace and AWS CloudWatch, and makes it available with
ad-hoc dashboards.

Observability Infrastructure Design

Following the introduction of the main resources allowing the realization of a Multi-
Cloud observability strategy, this section first presents an overview of the Terraform
scripts specifically developed to set up the previously described observability stack,
followed by a diagram representing the infrastructure design of the latter.
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Azure Observability Stack Terraform Script

# Azure Log Analytics Workspace

resource "azurerm_log_analytics_workspace"

"log_analytics_workspace" {
name = var.log−analytics−workspace.name
location = var.log−analytics−workspace.location
resource group name = var.observability rg.name
sku = "PerGB2018"

depends on = [azurerm resource group.observability rg]
}

data "azurerm_subscription" "primary" {}

# Grafana Instance

resource "azurerm_dashboard_grafana" "grafana-dashboard" {
name = var.grafana−dashboard.name
resource group name = var.observability rg.name
location = var.grafana−dashboard.location

auto generated domain name label scope = "TenantReuse"

public network access enabled = true
api key enabled = false
deterministic outbound ip enabled = false
zone redundancy enabled = false

sku = "Standard"

identity {
type = "SystemAssigned"

}

depends on = [azurerm resource group.observability rg]
}

# Grafana instance is assigned the necessary permissions to

scrape monitoring data

# from Azure Monitor Log Analytics Worksapace

resource "azurerm_role_assignment"

"grafana-reader-role-assignment" {
scope = data.azurerm subscription.primary.id
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principal id =
azurerm dashboard grafana.grafana−dashboard.identity[0].principal id

role definition name = "Monitoring Reader"

}

# User that will be authorized to access Grafana Dashboards

data "azuread_user" "ad_user" {
user principal name = "s297014@studenti.polito.it"

}

# User is assigned with the role of Grafana Admin

resource "azurerm_role_assignment"

"grafana-admin-role-assignment" {
scope = azurerm dashboard grafana.grafana−dashboard.id
principal id = data.azuread user.ad user.id
role definition name = "Grafana Admin"

}

The upcoming list summarises the Azure resources provisioned by the Terraform
script shown above:

• azurerm log analytics workspace: Azure Log Analytics Workspace col-
lecting monitoring data produced by Azure workloads.

• azurerm dashboard grafana: Azure Managed Grafana is a solution em-
ployed for the aggregation, correlation, and analysis of data collected from
heterogeneous data sources.

• azurerm role assignment: Auxiliary resources used to assign the proper
data access permissions to Grafana instance and to users supposed to be
managing Grafana.

As a result of the provisioning of all the previously described resources, the
implemented observability stack reflects the infrastructure design diagram depicted
in figure 4.8.
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Multi-Cloud Observability Infrastructure Design

Figure 4.8: Multi-Cloud Observability Infrastructure Design

Components Interactions:

1. Azure and AWS workloads produce monitoring data collected respectively by
Azure Log Analytics Workspace and AWS CloudWatch.

2. Grafana instance, which has visibility outside of the Azure cluster, scrapes
monitoring data both from Azure Log Analytics Workspace (internal network)
and AWS CloudWatch (Internet).

3. Data collected by Grafana is visualized through pre-made or custom Dash-
boards.
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4.4.7 Considerations on the Multi-Cloud Infrastructure

The Multi-Cloud infrastructure realized and thoroughly analyzed in this chapter has
the intention of representing an organization’s cloud environment as realistically as
possible. Due to this, strategies to address Multi-Cloud Identity and Access Man-
agement, Secret Management, and Observability, which represent some of the most
common challenges, were explored. Implementing these frameworks across multi-
ple cloud environments is challenging due to the interoperability required among
heterogeneous technologies. However, not addressing these challenges would have
resulted in the deployment of redundant technologies, complicating overall infras-
tructure management and expanding the attack surface of the entire Multi-Cloud
environment. Chapter 5 focuses entirely on another extremely important topic al-
ready introduced from a theoretical point of view in Chapter 2: Cloud Security.

By adopting a specific Cloud Native Application Protection Platform (CNAPP),
I’ve integrated into my Multi-Cloud environment a collection of vital controls that
ensure workloads’ security as well as their compliance against industry and regula-
tory standards, thus covering the best practices discussed in CSPM 3.4, CIEM 3.5,
and CWP 3.6.
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CNAPP Case Study: Sysdig
Secure

5.1 Introduction

A Cloud Native Application Protection Platform is a security tool that intends
to replace multiple independent security solutions each focused only on a single
security aspect. This all-in-one cloud-native platform aims at simplifying the mon-
itoring, detection, and response of potential cloud security threats and vulnerabil-
ities; moreover, having the possibility of using a single complete tool to manage
the security of one or more cloud environments leads also to the minimization of
management complexity and facilitation of DevSecOps operations.

CNAPPs were designed to solve many of the problems arising from the expo-
nential growth in the use of cloud-native technologies, such as:

• Advanced Observability and Risk Quantification: Combining all pre-
vious security solutions in a single one improves the detection of risks within
complex cloud infrastructures and the ability of security teams to respond to
those risks.

• Centralize Cloud Security: The consolidation of reporting, scanning, and
threat detection enabled by this single security platform accounts also for
the minimization of human errors that were due to the presence of multiple
different tools, and for the reduction of time taken by security teams before
being notified of a potential security threat.

• Secure Software Development: As CNAPPs enable to detect and rapidly
solve misconfigurations, it is a common practice nowadays to integrate these
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security solutions within CI/CD pipelines to scan IaC configurations before
they get deployed in a production environment (As also demonstrated in
section 4.2).

The Cloud Native Application Protection Platform solution examined in this
dissertation is referred to as Sysdig Secure. Sysdig Secure ranked as the second
top-rated CNAPP solution according to Gartner [6], encompasses a multitude of
features that can be leveraged to protect several cloud environments at the same
time. Apart from Sysdig’s reputation, the other factor that led me to choose this
platform is the ongoing partnership between Liquid Reply and Sysdig itself, which
allowed me to use the tool for free.

Some of the security features provided by Sysdig Secure are:

• Infrastructure-as-Code Security: Sysdig’s GitHub application discussed
in section 4.2, enables scanning of IaC templates within CI/CD pipelines,
facilitating the detection of potential security issues due to misconfigurations,
early in the software development lifecycle.

• Cloud & Kubernetes Security Posture Management: Sysdig provides
two different Posture modules: one for handling Cloud Accounts compliance
and one for Kubernetes compliance. Cloud and Kubernetes resources are
persisted in an inventory that enhances resources and violations visibility.

• Cloud Infrastructure Entitlements Management: Identity and Access
module available only for AWS accounts, that enumerates users, roles, groups,
and IAM policies and performs risk assessments based on user configurations
and privileges.

• Container Registry Scanning: Sysdig module that allows scanning for
obsolete or vulnerable container images stored within private container reg-
istries.

• Network Security: Sysdig Network Security can be used in the context of
Kubernetes clusters to:

1. Visualize internal cluster’s network topology

2. Track each Pod’s ingress and egress communications

3. Generate Kubernetes network policies based on the configurations ap-
plied in Sysdig’s dashboard.

• Vulnerability Management & Runtime Threat Detection: Adopting a
Vulnerability Management strategy and Runtime threat detection techniques
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are essential to provide an additional layer of defense and to safeguard work-
loads during their execution. to fulfill this need, Sysdig’s runtime scanner
offers:

– Automatic observation and reporting about all running workloads, thus
providing a real-time view of workloads’ current state.

– Periodic vulnerability assessments that guarantee an up-to-date view of
running-workloads vulnerabilities.

The subsequent exposition presents the approach followed to profitably integrate
Sysdig Secure CNAPP’s most relevant security features with the Multi-Cloud in-
frastructure whose design and setup were extensively discussed in Chapter 4 In
section 5.2, dedicated emphasis has also been directed toward the explanation of
the different types of policies deployed by Sysdig’s platform.

5.2 Sysdig Policies

Policies defined within this CNAPP are the element that allows threats to be de-
tected across entire cloud infrastructures. Sysdig categorizes policies into three
groups based on the specific cloud security issue they address: Posture, Vulnera-
bility, and Threat Detection Policies.

Posture Policies
Regarding Posture Policies, Sysdig defines three additional concepts: Controls,
Zones, and Policies. A Control is a precise rule that assesses the compliance of a
resource’s posture setting; Policies on the other hand can be seen as a container that
aggregates related Controls, and A Zone likewise, encompasses a group of Policies
that can be selectively applied to Cloud Accounts, Kubernetes Clusters or specific
Hosts. The platform already includes numerous pre-made policies that belong to
the most famous Compliance Benchmarks such as CIS, DISA, NIST, and PCI-DSS;
nonetheless, custom ones may also be added to suit specific needs.

Vulnerability Policies
Sysdig’s Vulnerability Policies allow for scanning Pipeline, Runtime, and Host vul-
nerabilities leveraging ”vulnerability” and ”image configuration” rules: the formers
are in charge of detecting common software package vulnerabilities, while the latter
instead analyze container images and their metadata to detect potential threats.
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Threat Detection Policies Sysdig Threat Detection Runtime Policies encom-
pass a collection of rules and configurations designed to monitor clusters and hosts,
detect and respond to security violations in real time, and promptly alert security
teams through dedicated communication channels like Slack, Microsoft Teams, and
Emails. Out-of-the-box Sysdig offers and maintains a diverse set of policies that
safeguard cloud infrastructures from intrusions, malware, and DDoS attacks. How-
ever, as with Vulnerability and Posture Policies, custom Threat Detection policies
and rules can be imported as well.

5.3 Integration of Sysdig Secure

5.3.1 IaC Security

The DevSecOps pipelines showcased in section 4.2 include Sysdig Git integration as
one of the two scanning tools set up to detect misconfigurations and security issues
in infrastructure-as-code files. Such integration, which is available for the major
version control systems like GitHub, GitLab, BitBucket, and Azure DevOps, can
be configured at ease to assess the compliance level of infrastructure templates
contained in repositories and enforce custom policies whose adherence is required
in safety-critical environments.

Given that all infrastructure-as-code templates I developed have been tracked
on GitHub adopting a monolithic repository strategy, the integration of Sysdig’s
IaC-Sec tool was finalized by installing on the previously mentioned repository, a
Github Application manufactured by Sysdig itself.

Figures below respectively depict how Sysdig’s GitHub App can be easily in-
stalled (5.1) and managed from Sysdig’s SaaS dashboard (5.2).
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Figure 5.1: Github Sysdig App Installation

Figure 5.2: Git Integration Dashboard
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5.3.2 Compliance

As previously introduced in section 5.1, Sysdig offers two different posture modules
that can be leveraged to enforce compliance policies: Cloud and Kubernetes Se-
curity Posture Management. The upcoming paragraphs explore the available
integration approaches, focusing on those selected to implement Posture manage-
ment within my Multi-Cloud infrastructure. Subsequently, an integration scenario
for what concerns users’ identities and privileges (CIEM) is also presented, accom-
panied by explanatory images.

Cloud Security Posture Management

Sysdig offers two different strategies to integrate Cloud Security Posture Manage-
ment as part of a specific Cloud Infrastructure. The first strategy is an agentless
installation which has the advantage that it only requires a few IAM roles and
permissions to be deployed on a cloud to operate successfully. The second one,
on the other hand, relies on an agent to be present and running within the cloud
environment it is wanted to safeguard. Even though this second strategy requires
more resources to be deployed, it offers Runtime Threat Detection, which was not
included in the agentless installation.

Amid the array of available methods, Sysdig supplies some Terraform scripts
designed to seamlessly integrate one of the two CSPM strategies. The following
examples showcase two Terraform scripts, demonstrating both agentless and agent
deployment, which were employed to integrate Cloud Security Posture Management
within an Azure cloud account.

Agentless CSPM Deployment

terraform {
required providers {

sysdig = {
source = "sysdiglabs/sysdig"

}
}

}

provider "sysdig" {
sysdig secure url = "https://eu1.app.sysdig.com"

sysdig secure api token = ""

}
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provider "azurerm" {
features { }
subscription id = "8eb30f69-69f6-4ff0-99ea-f9edd2274036"

}

module "sysdig-sfc-agentless" {
source =

"sysdiglabs/secure-for-cloud/azurerm//modules/services/cloud-bench"

subscription id = "8eb30f69-69f6-4ff0-99ea-f9edd2274036"

}

Agent CSPM Deployment

terraform {
required providers {

sysdig = {
source = "sysdiglabs/sysdig"

}
}

}

provider "sysdig" {
sysdig secure url = "https://eu1.app.sysdig.com"

sysdig secure api token = ""

}

provider "azurerm" {
features { }
subscription id = "8eb30f69-69f6-4ff0-99ea-f9edd2274036"

}

module "single-subscription" {
source =

"sysdiglabs/secure-for-cloud/azurerm//examples/single-subscription"

deploy active directory = false
location = "uksouth"

}
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After having performed one of the two installations and customized Policies
and Zones to conduct Posture assessments within a predefined scope, Sysdig will
take care of periodically analyzing the configuration of cloud resources. It will
then generate a compliance report that enumerates all misconfigured assets along
with the necessary steps to remediate each issue and restore the environment’s
compliance.

Upcoming images depict some of the Posture Management dashboards provided
by Sysdig as soon as a Compliance scan is completed.

• Figure 5.3 shows the three policies used by Sysdig to assess the compliance
level of AWS’s Cloud Account.

• Figure 5.4 gives an overview of which and how many requirements passed
the posture checks enforced by CIS AWS Foundations Benchmarks.

Figure 5.3: AWS Posture Assessments Overview
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Figure 5.4: AWS Compliance Results against CIS AWS Foundations Benchmark
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Kubernetes Security Posture Management

Kubernetes Security Posture Management, or KSPM, is an additional module Sys-
dig offers that complements CSPM. Unlike CSPM, KSPM focuses on identifying
component misconfigurations within Kubernetes Clusters. Examples of misconfig-
urations that can be spotted by a KSPM tool are:

• Network configuration errors

• Over permissive user privileges

• Over permissive access to secrets

Integrating KSPM into a Kubernetes cluster can only be accomplished by de-
ploying a Sysdig agent within the Kubernetes environment. Besides scanning com-
ponent configurations to identify potential compliance issues, this agent can also
detect package vulnerabilities and runtime threats, similarly to the previous CSPM
agent installation strategy.

Below, the provided code showcases the simple commands that can be executed
to install Sysdig’s agent using an Helm chart:

helm repo add sysdig https://charts.sysdig.com

helm repo update

helm install sysdig-agent

--namespace sysdig-agent --create-namespace \

--set global.sysdig.accessKey=<ACCESS_KEY> \

--set global.sysdig.region=<SAAS_REGION> \

--set

nodeAnalyzer.secure.vulnerabilityManagement.newEngineOnly=true

\

--set global.kspm.deploy=true \

--set nodeAnalyzer.nodeAnalyzer.benchmarkRunner.deploy=false \

--set nodeAnalyzer.nodeAnalyzer.hostScanner.deploy=true

--set global.clusterConfig.name=<CLUSTER_NAME> \

sysdig/sysdig-deploy
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If the installation is successful, the agent initiates the collection of Kubernetes
Cluster component configurations, verifies the posture, and generates one or more
reports. These reports are accessible through Sysdig’s Compliance dashboards and
can be used to address all identified misconfigurations.

The image below provides an overview of the misconfigurations detected by
enforcing the CIS Amazon Elastic Kubernetes Benchmarks.

Figure 5.5: Kubernetes Compliance Results against CIS Amazon Elastic Kuber-
netes Benchmarks
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Cloud Infrastructure Entitlements Management

The last compliance component offered by Sysdig is an Identity and Access module
whose first objective is to give an overview of users, groups, roles, and permissions
within a cloud account, and to detect overly permissive policies that may pose risks
to the environment’s security. As of the current implementation, Sysdig’s CIEM
module can only be used in the context of AWS cloud accounts and can be set up
either by using a CloudFormation template or by using Terraform.

Among the two available configuration methods for establishing Cloud Infras-
tructure Entitlements Management, the preferred choice was to deploy this com-
pliance module on Reply’s AWS account, using the Terraform templates made
available by Sysdig’s developers. Mirroring the deployment approach of the CSPM
agent outlined earlier, setting up the CIEM module described in the Terraform file
below also enables comprehensive Threat Detection coverage across the entirety of
the AWS account.

CIEM Terraform Module for AWS Accounts

terraform {
required providers {

sysdig = {
source = "sysdiglabs/sysdig"

}
}

}

provider "sysdig" {
sysdig secure url = "<SYSDIG_SECURE_URL>"
sysdig secure api token = "<SYSDIG_SECURE_API_TOKEN>"

}

provider "aws" {
region = "<AWS-REGION>; ex. us-east-1"

}

module "secure_for_cloud_aws_single_account_ecs" {
source =

"sysdiglabs/secure-for-cloud/aws//examples/single-account-ecs"

}
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After the setup is completed, Sysdig’s agent starts collecting Identity and Access
data pertinent to the AWS account in which it is deployed. In approximately one
day from the beginning of the information gathering, data concerning users, roles,
groups, and policies will be showcased on Sysdig’s compliance dashboards. An
example of CIEM’s Overview dashboard offered by Sysdig is depicted in figure 5.6.

Figure 5.6: AWS Account CIEM Overview Dashboard
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5.3.3 Vulnerability Management

Developing an effective vulnerability management plan requires, as a primary step,
the identification of the key lifecycle stages that need to be addressed. Sysdig
distinguishes three distinct stages, each enabling the management of vulnerabilities
during a specific phase of the development lifecycle.

1. Pipeline Stage: The definition and update of custom container images may
easily introduce software vulnerabilities that can be exploited by malicious
users. To tackle this problem Sysdig offers a container image scanning tool
that can be either integrated in CI/CD pipelines or directly used from a
command line interface. The adoption of such a tool allows the detection
of software package vulnerabilities even before an image is used within a
container.

2. Registry Stage: Sysdig’s Container Registry Scanner is a tool that seam-
lessly integrates with widely employed image registry solutions for both pri-
vate and public clouds, serving as an additional layer of defense between
pipeline and runtime stages. The periodic scanning of container images stored
within image registries leads to two primary advantages:

(a) Identification of recently discovered vulnerabilities that impact the soft-
ware residing within a registry.

(b) Detection of vulnerabilities affecting third-party software installed after
the pipeline scanning’s completion.

3. Runtime Stage: Sysdig Secure employs specialized agents to detect threats
to workloads during runtime. These agents conduct scans on the images
in use, enabling the identification of newly discovered vulnerabilities, and
highlighting the most critical ones. They can be deployed across various
environments, including:

• Kubernetes Clusters: Helm chart installation

• Hosts: container or package installation

• AWS Elastic Container Service (ECS) on EC2

• AWS Elastic Container Service on Fargate
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Among these three stages, I’ve decided to exclusively focus on the runtime one.
The motive behind this derives from the fact that in my use-case scenario, no con-
tainer images are being developed and no private images registry was provisioned.
Consequently, the implementation of vulnerability management for the pipeline and
registry stages would have been futile. Conversely integrating runtime vulnerabil-
ity management into my Multi-cloud infrastructure enables periodic vulnerability
assessments on workloads as they operate.

Since the key workloads of my infrastructure are the two Kubernetes clusters
deployed in Azure and AWS cloud platforms, as they symbolize a collection of
services offered by a business to its customers, two separate Sysdig agents were
set up to operate within these clusters. The installation procedure reflects the one
described in section 5.3.2 that uses a single helm chart to deliver runtime threat
detection, host scanning, runtime image scanning, and compliance.

The subsequent images provide an overview of the vulnerabilities discovered in
the Kubernetes Cluster hosted on Amazon Web Services after letting Sysdig’s agent
operate for some hours.
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Figure 5.7: AWS Kubernetes Cluster Vulnerability Management Dashboard
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Figure 5.8: AWS Kubernetes Cluster Vulnerabilities Overview

5.3.4 Runtime Threat Detection

Runtime Threat Detection represents the final feature that has been integrated into
the Multi-cloud infrastructure showcased in chapter 4. It is designed to identify and
respond to security violations and anomalous activities. Sysdig Secure offers the
option of using pre-made and customized policies to specify which runtime events
should be detected, notified, and consequently responded to.

The runtime events that can be detected with the available policies may belong
to several different environments; for instance, it is possible to spot and be alerted of
security violations on three different levels: Cloud Accounts, Hosts, and Kubernetes
clusters. For each of these scopes, Sysdig already provides bundles of rules that
allow the identification of the most common threats, some examples are:
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• Cloud Account Scope

– Multi-Factor Authentication Deactivated for a User (Azure)

– Azure RDP/SSH Access Is Allowed from the Internet (Azure)

– CloudTrail Trail Deleted (AWS)

– Console Root Login without MFA (AWS)

• Hosts Scope

– Base64’d ELF file on Command Line (Linux)

– Netcat Remote Code Execution in Container (Linux)

– Detect reconnaissance scripts (Linux)

• Kubernetes Cluster Scope

– Create Privileged Pod

– Detect Attach/Exec Attempts to a Pod

– Detect the Join of an Untrusted Node

The images depicted below show some runtime events captured by Sysdig after
certain potentially malicious actions were taken on Azure’s Cloud Account and a
Kubernetes Cluster (Figures 5.9 and 5.10).
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Azure Cloud Account Runtime Threat Detection

Figure 5.9: Azure Cloud Account Runtime Violations Overview
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Kubernetes Cluster Runtime Threat Detection

Figure 5.10: Kubernetes Cluster Runtime Violations Overview
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Runtime Auditing

By deploying an enhanced version of Sysdig’s Kubernetes Agent - an additional
Admission Controller, and some other resources can be automatically configured on
the cluster. These latter allow Sysdig to audit every activity performed within the
cluster such as modified files, execution of CLI commands, and opening of remote
network connections. Figure 5.11 shows the activities audited by the cluster agent
after I intentionally opened a shell inside a pod (blue tag), invoked curl to perform
an HTTP request to a remote server (grey and pink tags), and inevitably modified
the .bash history file belonging to the root user (green tag).

Figure 5.11: Kubernetes Cluster Runtime Audit
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Testing and Results

The objective of this chapter is to test the Multi-Cloud infrastructure that was
designed in Chapter 4 by verifying the correct functioning of all the proposed in-
tegrations. In addition to this preliminary validation, a thorough analysis of the
results obtained by Sysdig in the context of Infrastructure-as-Code Security, Cloud
Security Posture Management, Vulnerability Management, and Runtime Threat
Detection, is also carried out.

6.1 Test Environment

All tests are conducted on an ASUS VivoBook Pro using a Windows Operating
System. Tests on the IaCSec tools are performed using a GitHub Actions CI/CD
pipeline executed on a GitHub Runner with 2 CPU cores and 7 GB of RAM. The
IaCSec tools posed under evaluation are Checkov v12.1347.0 and Sysdig’s GitHub
Application. Posture assessments of Azure and AWS Cloud Service Providers are
performed by Sysdig enforcing respectively CIS Azure Foundations and CIS AWS
Foundations Benchmarks. The Runtime Threat Detection correctness tests are
performed by leveraging a Python script to automatically modify specific configu-
rations of my Multi-Cloud environment, and Sysdig to verify the results obtained;
such as the total amount of violations detected and the minimum, maximum, and
average alerting times.
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6.2 Multi-Cloud Infrastructure Validation

The following sections validate the proper functioning of the integrations proposed
in the context of Identity and Access Management, Secrets Management, and Ob-
servability within the PoC Multi-Cloud infrastructure realized in Chapter 4. For
each of the three integrations, a practical use case is presented accompanied by
explanatory images to corroborate the work carried out in the previous chapters.

6.2.1 Multi-Cloud IAM Framework Validation

This validation aims to test the federation established between Keycloak acting
as an Identity Provider for Reply’s AWS Management Console. The proposed
Business-to-Employee scenario shows how a company employee can use his Key-
cloak identity to obtain access to an AWS cluster with a well-defined set of permis-
sions. To verify the correct functioning of such a use case I created two different
Keycloak users:

1. aws ro user: User belonging to a group that only allows him to display
information about AWS EC2 instances.

2. aws ec2 full access user: User belonging to the group mentioned above
and to an additional one that allows him also to create, modify, or delete
AWS EC2 instances.

The two images below show respectively Keycloak login page filled with the
credentials of aws ro user and the AWS account information we are displayed upon
successful login and redirect to the AWS Platform.
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Figure 6.1: Keycloak Login Page

Figure 6.2: AWS Management Console Account
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When a user accesses the aws ec2 full access user account, which is associated
with multiple Keycloak groups, the AWS Management Console presents the user
with the opportunity to select a role to assume while working on AWS. This note-
worthy feature, as illustrated in figure 6.3, facilitates the association of a single
identity with various permissions sets, enabling the possibility to perform tasks
with the least privilege required to carry them out.

Figure 6.3: AWS Management Console Role Selection

After verifying the functionality of delegated authentication enabled by Key-
cloak and AWS federation, I proceeded to confirm that the two showcased users were
restricted to performing only specific actions on the AWS platform, thus adhering
to Role-based Access Control principles. Initially, I accessed aws ro user account
which is exclusively granted Read-Only permissions over EC2 instances, and at-
tempted to launch a new container instance. Then I logged in aws ec2 full access user
account, chose EC2 FULL ACCESS ROLE, and tried to perform the same con-
tainer launch action.
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As anticipated, the first EC2 launch action is prevented by AWS, accompanied
by an explicit lack of authorization warning (see Figure 6.4). In contrast, when that
same instance launch was initiated by a user associated with EC2 FULL ACCESS ROLE
role, it executed successfully without any issues (see Figure 6.5). These results
underscore the effectiveness of adopting such an IAM framework for centralizing
company employees’ identity and permission management when dealing with one
or more Cloud Service Providers.

Figure 6.4: EC2 Instance Launch Failed

Figure 6.5: EC2 Instance Successfully Launched
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6.2.2 Multi-Cloud Secrets Management Framework Valida-
tion

The objective of this Secrets Management Framework validation is to ensure the
functionality of the integration discussed in section 4.4.4. This integration involves
the configuration and connection of one or more Kubernetes clusters with an HCP
Vault, and a MySQL database, enabling the following capabilities:

• Role-based Access Control for Kubernetes workloads seeking secrets from an
HCP Vault

• Secret-less authentication for Kubernetes workloads with a MySQL Database,
utilizing temporary credentials negotiated by HCP Vault.

In the scenario proposed there is a generic microservice, referred to as DB
Connector as previously identified in figure 4.6. This microservice operates within
an Azure Kubernetes Cluster and aims to authenticate itself and assume a specific
role that allows it to query secrets from a remotely located HCP Vault solely using
its Kubernetes Service Account. Once the Service Account’s authenticity is verified
by HashiCorp Vault, the Vault then interacts with a MySQL Database instance to
generate a pair of temporary credentials. The microservice subsequently utilizes
these credentials to perform CRUD operations on the database.

DB Connector is a Spring microservice that uses Spring Cloud Vault to in-
teract with HashiCorp Vault, and Spring Data JPA to execute queries on a target
MySQL Database. When the microservice starts, it attempts to authenticate to
the Vault using the JWT token related to its Service Account. If the workload’s
identity is confirmed, the latter can subsequently request HCP Vault for a pair of
credentials that can be used by Spring Data to access the MySQL Database.

Figures 6.6, 6.7a, and 6.7b show respectively:

• The DB Connector microservice running on my AKS cluster and reachable
from the internet using a public IP address.

• The new test db database, automatically created by Spring Data JPA upon
successful authentication to HCP Vault.

• The two tables that have been created by DB Connector within test db
database.
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Figure 6.6: DB Connector Microservice on Azure Kubernetes Cluster

(a) MySQL Databases List (b) test db Tables List

Figure 6.7: Azure MySQL Database accessed by DB Connector microservice

In addition to automatically creating a new database and two tables, DB Con-
nector microservice exposes two simple REST APIs for reading and writing data
in these tables. This serves as additional evidence of the successful integration of
the three entities discussed earlier. Executing the simple cURL command written
below, which targets the microservice public IP address (see Figure 6.6), allows for
the persistence and retrieval of new data from the MySQL Database, as confirmed
by the results presented in Figure 6.8.
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curl 20.19.142.121:8888/api/tests/data to be inserted

Figure 6.8: test db’s Tables Data

Thanks to the interoperability of HashiCorp Vault, MySQL Databases, and Ku-
bernetes Clusters, the secret management framework developed and tested in this
dissertation demonstrates effective scalability and operation across two heteroge-
neous cloud environments. Furthermore, this framework significantly contributes
to the implementation of Role-based Access Control for workloads and mitigates
the need to hard-code secrets into application source code.

6.2.3 Multi-Cloud Observability Framework Validation

The Multi-Cloud Observability implementation discussed in section 4.4.6 represents
the final integration within my infrastructure that remains to be verified. The
objective of this validation is to ensure that data originating from various sources
distributed across multiple cloud environments, is accurately collected, aggregated,
and available for visualization through a unified analytics platform.

The tests conducted in this section were performed on the same infrastructure
illustrated in Figure 4.8. This infrastructure consists of an Azure Grafana instance
collecting data from Azure via a Log Analytics Workspace and from AWS through
CloudWatch (as shown in Figure 6.9).
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Figure 6.9: Grafana Data Sources

Azure Kubernetes Cluster Monitoring Test

After successfully deploying Grafana and configuring an Azure Kubernetes Cluster
(AKS), I established a Grafana dashboard to collect a wide range of data from the
aforementioned cluster. Figure 6.10 offers an overview of the cluster’s CPU and
Memory utilization during idle periods.

Figure 6.10: Grafana AKS Monitoring (Idle)
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To validate the proper functioning of the observability framework for Azure
data collection, I intentionally modified the state of my AKS cluster by deploying a
substantial number of pods. As illustrated in Figure 6.11, this operation resulted in
a noticeable spike in CPU utilization, accompanied by a moderate increase in Mem-
ory utilization. In Figure 6.12, we observe a histogram that unequivocally confirms
the successful deployment of the pods within a dedicated Kubernetes namespace
named observability-test. Together these two figures prove Grafana’s ability to
collect and visualize monitoring data from the Azure environment effectively.

Figure 6.11: Grafana AKS Monitoring (In Use)

Figure 6.12: Grafana AKS Monitoring Pod Count
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AWS Elastic Kubernetes Cluster Monitoring Test

To verify that AWS CloudWatch monitoring data were effectively being collected
and visualized by Grafana, I’ve deployed an additional Kubernetes Cluster (EKS),
this time on AWS, running on a single EC2 node. The two histograms depicted
below respectively show the CPU utilization trend of the EC2 instance, before and
after a consistent amount of pods were deployed on the EKS cluster.

(a) EC2 Instance CPU Utilization IDLE (b) EC2 CPU Instance Utilization in Use

Figure 6.13: EC2 Monitoring Data

Further validation of the accuracy of AWS monitoring data collection and visu-
alization is provided by the histogram in Figure 6.14. This histogram illustrates a
brief rise in network utilization on the node, attributed to the updates automatically
downloaded by each Pod.

Figure 6.14: EC2 Network Utilization
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6.3 Infrastructure-as-Code Security

Results’ Analysis

This evaluation rigorously assesses the efficacy of the two tools employed to en-
sure IaC Security. The examination centers around a set of Terraform and Kuber-
netes template files utilized for provisioning various components within the ultimate
Multi-Cloud infrastructure. The data presented in the analysis stems from reports
generated by the CI/CD pipeline and has been thoroughly examined to extract
meaningful metrics. Each control result has been manually reviewed to categorize
it as a: true positive, true negative, false positive, or false negative. A control result
can be identified as:

• True Positive: a misconfiguration that effectively exists is identified.

• True Negative:: the absence of a misconfiguration is correctly identified as
such.

• False Positive:: a misconfiguration that doesn’t exist is identified.

• False Negative:: a misconfiguration that remains undetected by a tool.

6.3.1 Checkov Results’ Evaluation

Table 6.1 shows the result of the classification.

Class Number of results

True positives (TP) 240

False negatives (FN) 15

False positives (FP) 0

True negatives (TN) 1319

Table 6.1: Checkov Classification Results.

From the cardinality of the previous classes, I have derived two additional measures:
the ”True Positive Rate” (TPR) and the ”False Positive Rate” (FPR), which re-
spectively represent the probability that a control result is a true positive or a false
positive. They can be calculated as follows:

TPR =
TP

TP + FN
(6.1) FPR =

FP

FP + TN
(6.2)
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Table 6.2 shows the value obtained for these metrics:

Metric Value

TP rate 0.941

FP rate 0

Table 6.2: Checkov TPR and FPR values.

A visual representation of these two measures is depicted in Figure 6.15, where
TPR and FPR respectively correspond to the X and Y coordinates of a point
plotted in a two-dimensional space. As these values jointly represent probabilities,
the X and Y axes are limited to continuous values within the range of 0 to 1.

Figure 6.15: Checkov Results Graph

Tools are designed to maximize TPR while minimizing FPR; Therefore, the
proximity of the point (FPR, TPR) to the ideal point (0, 1) on the graph indicates
the accuracy of the results. When a tool detects misconfiguration randomly, the
point (FPR, TPR) will fall along the dashed diagonal depicted in the graph. A
point located above this diagonal signifies that the tool performs better than ran-
dom chance in detecting misconfigurations. Conversely, a point located below this
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line suggests that the tool’s performance in detecting misconfigurations is worse
than random chance. The graph in Figure 6.15 showcases a very good result con-
sidering that point (0, 0.941) is above the diagonal and extremely close to the point
(0,1)

6.3.2 Sysdig IaC-Sec Tool Results’ Evaluation

The same metrics used to evaluate the results of Checkov’s analysis have also been
used in this section to review the results obtained by Sysdig’s IaC-Sec tool.

Table 6.3 shows the result of the classification.

Class Number of results

True positives (TP) 71

False negatives (FN) 33

False positives (FP) 5

True negatives (TN) 316

Table 6.3: Sysdig Classification Results.

Table 6.4 shows the value obtained for True Positive and False Positive rates:

Metric Value

TP rate 0.682

FP rate 0.0155

Table 6.4: Sysdig TPR and FPR values.
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Figure 6.16 shows the graphical representation of point (FPR, TPR) in a two-
dimensional space.

Figure 6.16: Sysdig Results Graph

Comparing with graph 6.15, it is evident that Sysdig’s results exhibit a lower level
of accuracy in contrast to Checkov’s. Nonetheless, the plotted (FPR, TPR) point
on graph 6.16 reaffirms an indication of the tool’s overall quality, as it remains
positioned above the diagonal line, as observed previously.
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6.4 Cloud Security Posture Management Results’

Analysis

To evaluate Sysdig’s Cloud Security Posture Management (CSPM) capabilities, I
decided to analyze the configurations of the two cloud platforms that were em-
ployed to deploy my Multi-Cloud infrastructure. This assessment was conducted
following two widely recognized policies used in enterprises to establish a secure
baseline configuration for Azure and AWS environments, respectively: CIS Azure
Foundations Benchmark and CIS AWS Foundations Benchmark.

The data that is presented stems from the CSPM reports produced by Sysdig
and analogously to the result’s analysis carried out in section 6.3, the same measures
have been computed and interpreted to assess Sysdig’s CSPM efficacy.

Table 6.5 shows the overall result of the True positives, False negatives, False
positives, and True negatives classification.

Class Number of results

True positives (TP) 412

False negatives (FN) 4

False positives (FP) 7

True negatives (TN) 719

Table 6.5: CIS Azure and AWS Benchmarks Violations Results.

Table 6.6 presents the values for the True Positive and False Positive rates
obtained from the previous classification.

Metric Value

TP rate 0.99

FP rate 0.01

Table 6.6: Sysdig TPR and FPR values.
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Figure 6.17 graphically shows the point with coordinates (FPR, TPR) in a two-
dimensional space.

Figure 6.17: Sysdig’s CSPM Results Graph

The graph depicted above exhibits nearly perfect True Positive and False Posi-
tive rates (0.99, 0.01 respectively). This last result highlights the quality of the tool
in enforcing various policies through the Policy-as-Code paradigm, and in identify-
ing misconfigurations present in multiple cloud environments.
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6.5 Vulnerability Assessment Capabilities

Testing

This test aims to assess Sysdig’s capability to identify vulnerabilities in generic
cloud-deployed hosts. The scenario involves an Azure Kubernetes Cluster initially
subjected to a vulnerability scan. Figure 6.18 displays the vulnerabilities detected
within the sole Pod operating in the Kubernetes default namespace. Given that this
workload consists of an Ubuntu 20.04 machine, the initial scan revealed a limited
number of package vulnerabilities, ranging from informational to medium threat
levels.

Figure 6.18: Initial Pods Vulnerabilities Scan

After collecting the results of the initial vulnerability assessment conducted by
Sysdig’s agents, I subsequently deployed a set of new workloads within the Azure
Kubernetes Cluster. These workloads included a large number of vulnerable pack-
ages, with Docker images obtained from Vulhub [22] Github repository, which pro-
vides a wide range of pre-built vulnerable environments based on Docker Compose.
Specifically, the newly deployed Pods were known to contain critical vulnerabilities
such as Log4J [17], Coldfusion [15] and Heartbleed [16]
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Figure 6.19, presents the results of an additional vulnerability assessment on
the same Kubernetes Cluster. Compared to the previous results, it’s evident that
the three vulnerable pods are now listed among the compromised workloads, with
an extensive number of high and critical issues detected by Sysdig’s agents. These
findings further validate Sysdig CNAPP’s capabilities in detecting vulnerabilities
of heterogeneous workloads, complementing its demonstrated proficiency in Cloud
Security Posture Management.

Figure 6.19: Final Pods Vulnerabilities Scan

113



Testing and Results

6.6 Runtime Threat Detection Stress Test

This final test assesses Sysdig’s Runtime Threat Detection capabilities within the
context of detecting multiple rule violations occurring within a limited timeframe.
The analysis involves executing potentially malicious actions on resources deployed
in Azure and AWS environments, including Virtual Machines, Clusters, and Virtual
Storage. Additionally, some of these actions were also performed on workloads
running inside the Azure Kubernetes Cluster, as previously discussed in Section
4.4.2.

6.6.1 Experiment Setup

To set up this experiment, I initially defined a set of violations that will be inten-
tionally executed across various workloads. These violations were required to align
with the policies enforced by the Sysdig Runtime Threat Detection Engine. Listed
below are the selected rules, along with the number of times they were violated
during the execution of this experiment, and categorized by the environments in
which they will be enforced.

Rule (Azure) Number of violations

Allow RDP Access to VM 1

Allow SSH Access to VM 1

Create Azure Storage Account
Accessible from the Internet

5

Create Azure Storage Account HTTP
Accessible

5

Creation of a Blob within a storage
account

5

Azure Storage Account Deleted 5

Azure Storage Container Deleted 5

Table 6.7: Falco Rules for Azure and Number of violations that were performed
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Rule (AWS) Number of violations

Create Access Key For User 5

Create IAM Policy that allows all 5

Create RDS with Public Access 5

Grant All Users Access to S3 Bucket 5

CloudTrail Trail Deleted 5

Table 6.8: Falco Rules for AWS and Number of violations that were performed

Rule (Kubernetes) Number of violations

Attach/Exec to Pod 20

Create Privileged Pod 10

Create ClusterRoleBinding with
cluster-admin

10

Delete Pod 10

Create Deployment 10

Delete Namespace 1

Table 6.9: Falco Rules for Kubernetes and Number of violations that were per-
formed
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6.6.2 Experiment Automation

Executing all the previously defined violations manually would have been both
time-consuming and disruptive to the experiment’s repeatability. To address this, I
chose to develop a Bash script that utilizes the Azure CLI, AWS CLI, and Kubectl
to automate CRUD (Create, Read, Update, Delete) operations across the three
platforms.

The following code extracts provide examples of the operations that were auto-
mated to conduct the final runtime threat detection stress test.

Bash function to create an Azure Storage Account

function createStorageAccountContainer {
containerName="containertest"

az storage container create \
−−name $containerName \
−−account−name $storageAccountName \
−−account−key $storageAccountKey \
−−public−access blob

echo "$(date +%r) Storage Account Container Created (Blob)" \
>>operations timestamps.md

echo "Azure Storage Account Container ’$containerName’
created."

}
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Bash function to create an Access Key for an AWS User

function createAndDeleteAWSAccessKey {
IAM USER NAME=$1

create key output=$(aws iam create−access−key
−−user−name "$IAM_USER_NAME")

# Check the exit code to see if the command was successful

if [ $? −eq 0 ]; then
echo "$(date +%r) User Access Key Created" >>

operations timestamps.md
echo "Access key created successfully for user

$IAM_USER_NAME."
else

echo "Error creating access key for user $IAM_USER_NAME."
echo "Program exits createAndDeleteAWSAccessKey: DELETE"

exit 1
fi

ACCESS KEY ID=$(echo "$create_key_output" |grep −o
’"AccessKeyId": "[̂"]*’ |awk −F’"’ ’{print $4}’)

sleep 15

aws iam delete−access−key −−user−name "$IAM_USER_NAME"
−−access−key−id "$ACCESS_KEY_ID"

# Check the exit code to see if the command was successful

if [ $? −eq 0 ]; then
echo "Access key $ACCESS_KEY_ID deleted successfully for

user $IAM_USER_NAME."
else

echo "Error deleting access key $ACCESS_KEY_ID for user

$IAM_USER_NAME."
echo "Program exits createAndDeleteAWSAccessKey: DELETE"

exit 1
fi

}
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Bash function to deploy a Kubernetes Privileged Pod

function deployPrivilegedPod {
kubectl apply −f manifests/privileged−pod.yml −n

"$K8S_NAMESPACE"
echo "$(date +%r) Privileged Pod Launched" >>

operations timestamps.md
echo "Privileged Pod deployed successfully"

kubectl wait pod/privileged−pod −n "$K8S_NAMESPACE"
−−for=condition=Running −−timeout=40s

echo "Privileged Pod is Running"

kubectl delete pod privileged−pod −n "$K8S_NAMESPACE"
echo "$(date +%r) Privileged Pod Deleted" >>

operations timestamps.md
echo "Privileged Pod deleted successfully"

}

6.6.3 Experiment Results

The metrics that have been collected and evaluated to establish the outcome of the
experiment and the efficacy of Sysdig’s Runtime Threat Detection are:

• The number of violations detected by Sysdig, as opposed to the total number
of violations executed.

• The minimum, maximum, and average times between the execution of a vio-
lation and its detection.

The following three tables present the results of the experiment, with each ta-
ble dedicated to documenting violations in either Azure, AWS, or Kubernetes en-
vironment. These results were obtained after executing the previously mentioned
automatic script and collecting all the relevant violations detected by Sysdig. Sub-
sequently, there will be an interpretation and a comparison of the results.
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Azure Runtime Threat Detection

Total Violations Detected 20 out of 27

Min Detection Time 02:38 minutes

Max Detection Time 06:31 minutes

Average Detection Time 04:55 minutes

Table 6.10: Azure Runtime Threat Detection Results

AWS Runtime Threat Detection

Total Violations Detected 25 out of 25

Min Detection Time 00:55 minutes

Max Detection Time 07:05 minutes

Average Detection Time 04:30 minutes

Table 6.11: AWS Runtime Threat Detection Results

Kubernetes Runtime Threat Detection

Total Violations Detected 57 out of 61

Min Detection Time 00:02 minutes

Max Detection Time 01:55 minutes

Average Detection Time 01:30 minutes

Table 6.12: Kubernetes Runtime Threat Detection Results
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In Table 6.10, 6.11, and 6.12, the results illustrate a significant contrast in the
Average Detection Time for violations in Kubernetes environments and Azure and
AWS Cloud Service Providers (CSPs). This discrepancy may be attributed to the
difference in the scale and complexity of resources monitored in each environment.
A Kubernetes Cluster inherently exhibits lower complexity compared to an entire
Cloud Service Provider (CSP). As a result, Sysdig’s Kubernetes agent is tailored to
efficiently monitor this reduced set of resources, unlike other Sysdig agents, which
are responsible for monitoring an entire CSP account. In terms of the number of
detected violations, only AWS Sysdig’s agent successfully identified and accurately
transmitted all triggered events to Sysdig Secure’s dashboard for display. In con-
trast, Kubernetes and Azure agents detected 93% and 74% of events, respectively.
The relatively lower performance of Azure Runtime Threat Detection may be at-
tributed to the integration capabilities of Azure Sysdig’s agent with Microsoft’s
CSP, which Sysdig periodically enhances with the release of new agent versions.
In conclusion, the high detection rate, with 102 out of 113 triggered events being
successfully identified, along with the low average time between the occurrence of
a violation and its detection, reaffirms the efficacy of adopting a tool like Sysdig
Secure to ensure fast detection of runtime attacks across multiple cloud environ-
ments.
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Chapter 7

Conclusions and Future Works

This thesis demonstrates the implementation of security measures across multi-
ple dimensions within a Proof-of-Concept Multi-Cloud Infrastructure, adopting a
Cloud Native Application Protection Platform (CNAPP) and embracing the Policy-
as-Code paradigm. These security measures include aspects such as Cloud Secu-
rity Posture Management, Cloud Infrastructure Entitlements Management, Cloud
Workload Protection, Infrastructure-as-Code Security, and Runtime Threat Detec-
tion.

Initially, this work provided an introduction to fundamental theoretical con-
cepts, including Cloud Computing, Cloud Governance, and key principles of
Cloud/Multi-Cloud Security. This was followed by a literature review of Security-
as-a-Service solutions proposed by researchers to safeguard cloud-based assets.
Chapter 3 delved into the Policy-as-Code paradigm, offering a theoretical per-
spective on the various Cloud Security measures mentioned above, alongside an
exploration of the DevSecOps approach in the context of Infrastructure-as-Code
Security.

Chapter 4 thoroughly covers the realization of the Proof-of-Concept Multi-Cloud
infrastructure, providing a comprehensive description of the integrations in the do-
mains of Identity and Access Management, Secrets Management, and Observability.
This Use-Case infrastructure was seamlessly integrated with a Cloud Native Appli-
cation Protection Platform to enhance security across various dimensions.

Utilizing Sysdig Secure CNAPP was essential in uncovering misconfigurations
and vulnerabilities in cloud workloads, including issues in IaC templates, package
vulnerabilities on hosts, and runtime threats within cloud providers’ platforms and
Kubernetes clusters. Without this tool, these issues might have otherwise remained
unnoticed.

Finally, a validation of the Multi-Cloud infrastructure’s features and an evalu-
ation of Checkov and Sysdig Secure capabilities was carried out.
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For Multi-Cloud Infrastructure validation, I leveraged three specific use case
scenarios to confirm the functionality of the integrations mentioned earlier.

The evaluation of IaC Security with Checkov and Sysdig involved analyzing
the misconfigurations detected by the two tools, which initially assessed a set of
Terraform and Kubernetes template files. Subsequently, I verified the accuracy of
these misconfiguration reports generated by the two tools, by determining which
identified misconfigurations were valid and which were not.

Similar to the evaluation of IaC Security, Sysdig’s Cloud Security Posture Man-
agement was also assessed by analyzing the compliance issues identified by the tool
and verifying their validity, distinguishing between those that were genuine and
those that were not, while enforcing separate CIS benchmarks for both Azure and
AWS platforms.

To conclude the evaluation of Sysdig, two additional experiments were con-
ducted: The first experiment aimed to validate Sysdig’s capability to detect the
installation of vulnerable packages within generic hosts. The second experiment
assessed Sysdig’s Runtime Threat Detection in a scenario where an attack targeted
multiple resources.

These tests confirmed the successful operation of the deployed Multi-Cloud in-
frastructure and demonstrated the effectiveness of the Checkov IaC Security tool
and Sysdig CNAPP in detecting a wide range of threats with the potential to
disrupt enterprise cloud environments.

7.1 Future Works

First, it is worth considering the finalization of a Multi-Cloud Identity and Ac-
cess Management strategy, which was previously hindered by certain Azure Ac-
tive Directory limitations. This objective can be achieved by selecting an Identity
Provider that facilitates the centralization of user identities across cloud platforms.
One potential candidate for this role is Azure Active Directory, which would re-
place Keycloak and serve as the unified Identity Provider for the entire Multi-Cloud
infrastructure.

Furthermore, considering Sysdig’s compatibility with on-premise hosts, expand-
ing this Multi-Cloud infrastructure to a Hybrid Cloud setup could provide oppor-
tunities for implementing additional integrations and evaluating CNAPP’s capabil-
ities in a more complex environment.

Finally, exploring agentless workload protection techniques shows potential for
simplifying workloads’ deployment, reducing the need for maintaining numerous
agents, and lowering overall cloud-related costs for companies.
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