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Abstract

EN:

As the complexity of particle detectors in High Energy Physics rises, new approaches
to system prototyping become necessary to deal with higher data rates than ever
before.

The first chapters of this thesis propose an Electronic-System Level approach to
be applied to pixel detectors systems, and provide a SystemC framework to carry
out architectural exploration at a level of abstraction above RTL. It can be used
to study the efficiency of a chosen architecture, while sweeping the parameters of
interest and obtaining figures of merit. With this tool, we were able to prototype
a read-out chip able to support the hit rates for the next upgrades of the LHCb
upgrade.

The last part of this thesis details the design flow of an on-chip processing
module for the same upgrade, showing how the SystemC framework could be
integrated as a starting step in system design for ASICs and how a physical layout
could be derived from the abstract model.



Abstract

IT:

Con l’aumento della complessità dei rivelatori di particelle nella fisica delle alte
energie, diventano necessari nuovi approcci alla prototipazione dei sistemi per
gestire velocità di dati più elevate che mai.

I primi capitoli di questa tesi propongono un approccio a livello di sistema
elettronico da applicare ai sistemi di rivelatori di pixel, e forniscono un framework
SystemC per effettuare l’esplorazione architetturale a un livello di astrazione
superiore all’RTL. Questo strumento può essere utilizzato per studiare l’efficienza
di un’architettura, ottimizzando i parametri di interesse e ottenendo figure di merito.
Con questo strumento, siamo stati in grado di prototipare un chip di lettura in
grado di supportare il flusso di particelle per i prossimi aggiornamenti dell’upgrade
di LHCb.

L’ultima parte di questa tesi illustra il flusso di progettazione di un modulo di
elaborazione su silicio per lo stesso upgrade, mostrando come il framework SystemC
possa essere integrato come passo iniziale nella progettazione ASIC, e come un
layout fisico possa essere derivato dal modello astratto.



Abstract

FR:

Avec l’augmentation de la complexité des détecteurs de particules en physique des
hautes énergies, de nouvelles approches de prototypage de systèmes deviennent
nécessaires pour gérer une bande passante plus importante que jamais.

Les premiers chapitres de cette thèse proposent une approche au niveau du
système électronique à appliquer aux systèmes de détecteurs de pixels, et four-
nissent un cadre SystemC pour effectuer l’exploration architecturale à un niveau
d’abstraction supérieur au RTL. Il peut être utilisé pour étudier l’efficacité d’une
architecture choisie, tout en optimisant les paramètres d’intérêt et en obtenant des
figures de mérite. Grâce à cet outil, nous avons pu prototyper une microchip de
lecture capable de supporter les taux de réussite des prochaines mises à niveau du
LHCb.

La dernière partie de cette thèse détaille le flux de conception d’un module
de traitement sur silicium pour la même mise à niveau, en montrant comment le
cadre SystemC pourrait être intégré comme étape de départ dans la conception de
systèmes pour ASIC et comment une réalisation physique pourrait être dérivée du
modèle abstrait.



i



Acknowledgements

This thesis work has been carried out in a team and I would not have been able
to achieve the same level of results without the collaboration and help of my
supervisor, Dr. Davide Ceresa, and my colleague Jashandeep Dhaliwal. I would
like to thank them for the opportunity of working here at CERN, what they have
taught me about detectors and digital systems, and the help in developing this
thesis.

I would like to thank my academic supervisors, prof. Guido Masera and prof.
Adil Koukab for their corrections and tips in writing this thesis, and prof. Carlo
Ricciardi for coordinating and overseeing the Nanotech for ICT master degree.

I am grateful to the other people in EP-ESE-ME for the technical help and
advice in software and hardware design, and the less technical coffee chats that we
had: Marco Andorno, Alessandro Caratelli, Stefano Esposito, Risto Pejasinovic,
Anvesh Nookala.

I am glad to have met and spent time with my fellow Nano18 students, who
have been a fantastic and much needed support during these 2 years of studies,
and everyone in EP-ESE for their welcome and interesting discussions.

Lastly, I send my thanks to my family and friends in Italy and abroad, for their
support and time spent together.

Francesco E. Brambilla
Geneva, Sept. 2023

ii



Table of Contents

List of Tables v

List of Figures vi

Acronyms ix

1 Introduction to read-out chips in High Energy Physics 1
1.1 CERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Working at CERN in EP-ESE-ME . . . . . . . . . . . . . . 1
1.2 Pixel detectors at CERN . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Hybrid pixel sensors architecture . . . . . . . . . . . . . . . . . . . 3
1.4 Designing read-out chips . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Modeling read-out in SystemC: Pix-ESL framework 10
2.1 High-level models for detectors’ architectural exploration . . . . . . 10

2.1.1 Previous works on high-level models . . . . . . . . . . . . . . 11
2.2 Electronic System Design approach . . . . . . . . . . . . . . . . . . 11
2.3 Modeling language choice . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Limitations of high level modeling . . . . . . . . . . . . . . . 12
2.3.2 The SystemC library . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 TLM 2.0 in SystemC . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Pix-ESL: pixel read-out prototyping at high level . . . . . . . . . . 16
2.4.1 Core Pix-ESL functionalities . . . . . . . . . . . . . . . . . . 17
2.4.2 Architectural exploration tools in Pix-ESL . . . . . . . . . . 19

3 Data-driven read-out: Velopix-2 case study 24
3.1 Velopix2 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 LHCb and VELO . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Velopix and Velopix2 chips specifications . . . . . . . . . . . 26

3.2 Velopix architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



3.2.1 Velopix2 layers . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Velopix network . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Study results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Input data analysis . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Configurations and results . . . . . . . . . . . . . . . . . . . 32

4 On chip Sort&Bin: from prototyping to implementation 41
4.1 On-chip processing advantages . . . . . . . . . . . . . . . . . . . . . 41
4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Design flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Pix-ESL modeling . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 RTL design . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 Implementation in a 28 nm technology . . . . . . . . . . . . 47

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 55

iv



List of Tables

3.1 Velopix design space parameters . . . . . . . . . . . . . . . . . . . . 31
3.2 Parameters in the 3 configurations of interest. . . . . . . . . . . . . 33
3.3 Results from the 3 configurations . . . . . . . . . . . . . . . . . . . 34

v



List of Figures

1.1 Atlas Inner Detector Cutout . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Read-out and sensor chips bonded with solder bumps[1] . . . . . . 4
1.3 Analog&Digital front-end and super pixel node on a read-out chip[2] 4
1.4 Simple Pixel Matrix partitioning into layers . . . . . . . . . . . . . 6
1.5 Pixel hits map, each dot in the image represents the number of hits

on a certain pixel over the time of the study (∼900 BX), coloured
bar indicates the amount of hits in the study period per pixel. . . . 8

2.1 SystemC language overview [11]. . . . . . . . . . . . . . . . . . . . . 13
2.2 TLM protocol with phases and timing delays [10]. . . . . . . . . . . 15
2.3 Pix-ESL overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Base and functional layers schematic representations. . . . . . . . . 17
2.5 Abstract Pix-ESL read-out nodes in the SystemC core, note that

layers here represent a generic tree structure. . . . . . . . . . . . . . 18
2.6 Pixel hits injected in the model, after front-end processing. . . . . . 20
2.7 Average pixel hits per column. . . . . . . . . . . . . . . . . . . . . . 21
2.8 Latency distribution example. . . . . . . . . . . . . . . . . . . . . . 22
2.9 FIFO occupancy in the region layer for different configurations, full

and deadlocked elements in yellow. . . . . . . . . . . . . . . . . . . 23

3.1 LHCb schematic view[13]. . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 VELO upgrade cut-out. . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Velopix chips positioned in an L-shape around the beam. . . . . . . 27
3.4 Velopix read-out chip architecture . . . . . . . . . . . . . . . . . . . 28
3.5 Velopix off-chip connections . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Pixels grouped in a Superpixel (a), superpixels grouped in a region (b) 29
3.7 Regions connected in columns and with EoC data nodes . . . . . . 30
3.8 Distribution of the number of pixel hit per BX . . . . . . . . . . . . 33
3.9 C1: comparison between hit probability (a) and congestion in the

region FIFO map (b)[colorbar indicates number of packets written
to a region]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vi



3.10 C1: Packet latency distribution (a), output channel utilization (b). . 36
3.11 C2: comparison between hit probability (a) and congestion in the

region FIFO map (b)[colorbar indicates number of packets written
to a region]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.12 C2: Packet latency distribution (a), output channel utilization (b). . 38
3.13 C3: comparison between hit probability (a) and congestion in the

region FIFO map (b)[colorbar indicates number of packets written
to a region]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.14 C3: Packet latency distribution (a), output channel utilization (b). . 40

4.1 Sort&Bin module schematic view. . . . . . . . . . . . . . . . . . . . 42
4.2 Bin sub-module schematic view. . . . . . . . . . . . . . . . . . . . . 43
4.3 Frame size distribution. . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Packet latency distribution at the Sort&Bin input. . . . . . . . . . . 46
4.5 Effects of the number of bins on grouping efficiency (left axis) and

total latency (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6 Sort&Bin floorplan with bin sub-module detail . . . . . . . . . . . . 49
4.7 Clock tree delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.8 Layout after routing . . . . . . . . . . . . . . . . . . . . . . . . . . 50

vii



viii



Acronyms

ηreadout Read-out Efficiency

ASIC Application-Specific Integrated Circuit

ATCA Advanced Telecommunications Computing Architecture

ATLAS A Toroidal LHC ApparatuS

BX Bunch Crossing

CERN Conseil Européen pour la Recherche Nucléaire (en. European Council for
Nuclear Research)

CMOS Complementary Metal Oxide Semiconductor

CMS Compact Muon Solenoid (general-purpose detector experiment at LHC)

CTS Clock Tree Synthesis

DAQ Data Acquisition

DN DataNode

EDA Electronic Design Automation (tools)

EoC End-of-Column

EP-ESE-ME Experimental Physics - Electronic Systems for Experiments - Mi-
croElectronics (CERN department)

ESL Electronic System Level

FE Front-End

FIFO First-In First-Out memory

ix



FoM Figure of Merit

FPGA Field Programmable Gate Array

FSM Finite-State Machine

GaAs Gallium Arsenide

HL-LHC High Luminosity - LHC, planned upgrades

HLD High-Level Design

INFN Istituto Nazionale di Fisica Nucleare

IP Intellectual Property

LHC Large Hadron Collider

LHCb Large Hadron Collider Beauty, experiment on beauty quarks

PCIe Peripheral Component Interconnect express

PLL Phase-Locked Loop

PR Pull Request

R&D Research and Development

RTL Register-Transfer Level

SC SystemC

SoC System-On-Chip

SP SuperPixel

SRAM Static Random-Access Memory

SysC see SC

TCL Tool Command Language

TLM Transaction-Level Modeling

ToA Time-of-Arrival

x



ToT Time-Over-Thresold

VELO VErtex LOcator, a LHCb particle tracker

VHDL VHSIC (Very High-Speed Integrated Circuit) Hardware Description Lan-
guage

WP WorkPackage

xi



Chapter 1

Introduction to read-out
chips in High Energy Physics

1.1 CERN
The European Organization for Nuclear Research, known as CERN from the French
acronym, is one of the world’s largest and most renowned research institutions in
particle physics. It is situated on the border between Switzerland and France, and
it is funded by a council of member states, including many European countries and
further away ones (such as India and Israel).

Pushing the boundaries of knowledge in particle physics requires expertise
in many engineering fields, in fact most of CERN personnel works as engineers
designing and maintaining the LHC complex: from the particle beams or the cooling
systems, to the IT services or detector sensors, everything is achieved through
a collaboration of hundreds of organisations and thanks to tens of thousands of
people.

1.1.1 Working at CERN in EP-ESE-ME
This thesis work has been carried out at CERN in the EP-ESE-ME department
as part of my Master’s degree, under the local supervision of Dr. Davide Ceresa
(CERN, Staff) and in close collaboration with Jashandeep Dhaliwal (CERN, Fellow).
The EP-ESE-ME department devotes parts of its workforce towards R&D goals,
subdivided in workpackages (WP): these activities include testing new technologies
for radiation hardness, developing IP blocks and SoCs for the detectors. My
tasks in EP-ESE-ME fit into the WP5.4, which aims to design detectors for the
next generation of particle accelerators, such as High-Luminosity LHC (HL-LHC)
upgrades. These upgrades plan on increasing the energy of the collisions and
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Introduction to read-out chips in High Energy Physics

particles generated to improve the chances of finding exotic particles, but require a
technological leap in detector performance and data rates.

1.2 Pixel detectors at CERN
In the particle physics research carried out at CERN, many different types of
particle detectors are employed: calorimeters, spectrometers, trackers use different
technologies and are placed in different spots around the particle beam (e.g.:
calorimeters and muon spectrometers are bulky and placed in the external ring,
trackers need to be as close as possible to the collision spot and are placed in the
inner detector, see Fig.1.1).

Particle detectors are synchronous systems, where the main timing reference
is the rate at which particles are colliding in the beam: these events are called
bunch crossings (BX) and the time between them is fixed in LHC to 25 ns, thus
corresponding to a 40 MHz clock in the system. This signal is used as a timing
reference throughout the detectors, and will be continuously referenced in this
work.

Figure 1.1: Atlas Inner Detector Cutout

From a system level point of view, particle detectors can be split into a front-end
and back-end: the former comprises the particle sensors and the first layer of read-
out electronics, the latter refers to the infrastructure that stores and elaborates

2



Introduction to read-out chips in High Energy Physics

the data provided by the front-end. Physically, the front-end corresponds to a set
of sensors with their read-out chips, connected through an optical fibre to a large
server or CPU farm, the back-end.

Pixel detectors are a kind of particle detectors that employ active pixels, rectan-
gular regions of a few hundred square microns on semiconducting substrates, inside
a large matrix to observe particles.

This thesis will focus mostly on the pixel detectors used in the inner section,
where greater precision is required to pin-point the time and location of particle
interaction with the sensors, but its findings could be applied to other kind of
detector systems. Pixel detectors work like a digital camera sensor, whose goal
is to reconstruct the image created by the interaction of high energy particles or
photons on a pixel matrix. This is then read out and data is transferred off-chip to
be processed and stored for analysis.

The pixel detector chips can be monolithic, meaning that the read-out and the
sensing are performed on the same piece of silicon: this allows for economic savings
as there are significant costs in manufacturing and assembling the other kind of
detector chips.

Instead, hybrid detectors rely on a separate pixel sensor chip, which can be
customized for the given imaging application and has less constraints, and a
dedicated read-out chip, which has to convert the raw analog signal coming from
each pixel into a data packet and transfer it off-chip. There are many advantages
to this approach, the main ones being the customizability of the sensor chip (f.e.
diamond substrates) and the ability to use standard CMOS processes for the
read-out one. Since CERN uses mostly this kind of pixel chips, a more detailed
explanation on their architecture will be given in the next section.

1.3 Hybrid pixel sensors architecture
In Fig 1.2 the sensor and read-out chips are bonded together with solder bumps
directly on top of the read-out one, and more modern chips are using through-
silicon-vias (TSVs) to connect the backside of the read-out chip to their power
supplies and FPGAs for connectivity.

The sensor chip usually has no active electronics on board and may use bias
voltages to improve the collection of charges in the substrate. The major advantage
of using a separate sensor is that its material can be tailored to the energy of the
particles and photons to be collected, for example in [1] GaAs is used as sensing
substrate, whereas it’s non-standard material for CMOS processes and would be
very hard to integrate analog and digital circuitry on it.

The read-out chip follows an ordered structure: sensors’ signals are elaborated
in the front-end, then digitized data is passed to the superpixels (SP), which group

3
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Figure 1.2: Read-out and sensor chips bonded with solder bumps[1]

Figure 1.3: Analog&Digital front-end and super pixel node on a read-out chip[2]

together different pixels and may perform some clustering or processing, data is
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then routed through a certain data-flow to reach the periphery. The study and
optimization of this data-flow or data-path is the main focus of this thesis work.

It is important to note that front-end has a different meaning based on the
context: at system level it represents the first part of the data-path, the one were
the sensing and raw data transmission are carried out; on the other hand, from
the point of view of a pixel read-out chip, its front-end comprises the analog and
analog-to-digital circuits connected directly to the pixel sensors.

The read-out chip has to connect its analog front-end to the pixels on the sensor,
then transfer the data digitally to the periphery and out-of-chip. A schematic
representation of the front-end and the first section of the digital data-flow can
be seen in Fig.1.3. In this example each pixel has a corresponding input pad
and a front-end (FE) that amplifies the signal generated by the charge on the
sensor, this signal is then converted into a digital step-like function with a threshold
discriminator and the impulse duration is recorded. This simpler design only checks
for events with a duration longer than a certain Time-Over-Threshold (ToT) value,
and injects a valid event in the data-flow. More advanced FEs can include functions
like event clustering and rejection: for example Velopix can cluster together nearby
pixel hits in a single data packet, or spot unwanted hit patterns and remove their
packets. Other FEs can measure the Time-of-Arrival with resolution in the tens of
picoseconds.

The digital data-path is design such that an equilibrium is struck between
efficiency and cost in power and area. Elements are grouped inside a higher-order
element class to share hardware when possible and reduce the amount of long
connections: for example pixel FEs in Fig.1.3 can share some signals for power
and area savings, like a high-frequency local clock for timestamping, and with low
enough pixel hit rates a single Superpixel’s bandwidth can efficiently transmit data
from its underlying pixels. Specifically for Superpixels in newer detectors (Velopix
and Timepix4), data clustering allows also to perform some basic processing and
filtering as close as possible to the data source.

The data-path architecture is based upon the pixel matrix in the sensor(see
Fig.1.4): firstly pixels are grouped together in superpixels (f.e. 4 pixels in a 2x2
area can be considered a single SP, where some circuitry is shared), then multiple
SPs are connected to a Region via series or parallel connections (f.e. 4 SPs in a 2x2
area can be run to their Region in 2 series connections in 2 parallel columns, where
the last element of each column connects to the upper Region). Then Regions can
be connected in series and form a Column element, which eventually connects to
and End-of-Column node which is part of an output channel.

For comparison, a full scale chip would be typically have a 256x256 or larger pixel
array, and 8-16 output channels totalling ∼ 100 − 200 Gbit s−1 per chip depending
on the pixel hit rate, and up to a hundred chips can be mounted in a detector
system.
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Figure 1.4: Simple Pixel Matrix partitioning into layers

Thus, the data-path is formed by nodes with different purposes and characteris-
tics: pixels generate packets from the sensors, superpixels filter and cluster data,
regions are stacked vertically to move data vertically and End-of-Column nodes
create output channels with horizontal connections. These different kinds of nodes
will be called layers, to represent how data moves through each layer to reach the
output of the system.

Pixels, superpixels, regions, End-of-Column nodes are some of the layers used
in the data-path of a read-out chip, but this approach could be extended to
model communication layers above the pixel detector chips, for example optical
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transceivers and data acquisition boards.
In fact, from a system-level point of view the read-out chip is part of the detector

front-end, which has to interface with the data acquisition boards downstream. Due
to radiation damage, the DAQ boards are far away from the detector (50 − 60 m)
and connected with long fiber cables to the front-end via dedicated optical boards
(GigaBit Transceiver, GBT), which interface through copper wires to the read-out
chips. The data acquisition boards also transmit control and trigger signals to the
front-end, and elaborate the data before sending it to storage or CPU farms for
further analysis. A more specific system overview will be given in Sect.3.2.

1.4 Designing read-out chips
The design of read-out chips consists in finding the appropriate dimensions for each
of these classes of elements, since the grouping of elements is necessary to extract
data from the FEs, but at the same time causes issues due to the congestion and
latency of the data packets in the various nodes through the data-path.

For example, a design with few elements in each layer (so with large grouping
between elements) may reduce the latency because fewer hops are required for
each packet to reach the end of the data-path, but may lose efficiency due to
congestion caused by bottlenecks in the data-flow: since most read-out systems are
column-based, if more packets are injected per cycle than the amount of columns
the chip will eventually reach a dead-lock with fully saturated memories.

Their design must also take into account the area and power constraints, which
may be violated by designs with smaller grouping sizes (i.e. a large amount of
elements in each layer).

Another design variable is the size of the memory elements that can be added
to each layer, usually in the form of First-In First-Out (FIFO). They are necessary
to buffer the incoming data, and are very useful to smooth out the peaks in input
rate. Since their implementation is expensive in terms of power and area, their size
should be minimized.

The future objective for read-out chips is the integration of more advanced
processing functions directly on chip, either at the end of the data-flow or between
data-path nodes. This will be discussed more in detail in Chap.4, and has also been
studied by J. Dhaliwal in his thesis works[3], where the use of tailored RISC-V
cores for superpixel-level processing has been investigated.

The starting point for read-out chip design is the input data on the pixel sensors:
every design choice is highly dependant on the amount of pixel hits generated per
bunch crossing, known as the occupancy of the pixel matrix, and can be influenced
also by the spatial distribution of hits, as that defines the local hit-rates. The hit
matrix in Fig.1.5 is typical for head-on hadron collisions occurring as close as 5 mm
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Figure 1.5: Pixel hits map, each dot in the image represents the number of hits
on a certain pixel over the time of the study (∼900 BX), coloured bar indicates
the amount of hits in the study period per pixel.

above the upper portion of the sensor (see also Fig.3.3): the extreme proximity
of the chip to the collision point causes most hits on the sensor to be still close
together. Due to the angled trajectories, other detectors downstream will not track
the same amount of hits and their distribution will be more spread out.

shows that most hits occur in the top central region, thus meaning that the
central columns must have enough bandwidth to support the critical hit-rates.

1.5 State of the art
Research in the field of pixel detectors at CERN has been ongoing for more
than 25 years by now, and it has evolved beyond the boundaries of High-Energy
Physics research, forming collaborations with multiple fields: radiation monitoring,
astrophysics, spectroscopic X-ray imaging for Life Sciences, dosimetry for space

8



Introduction to read-out chips in High Energy Physics

exploration and even education are some of the application where pixel detectors
from the Medipix and Timepix family designed at CERN have been deployed.

This wide range of application is due to the versatility of their read-out ASICs,
which can be mounted on different sensor substrates and the number of readings
they can provide: photon counting, Time-of-Arrival and Time-over-Threshold. The
photon counting mode is commonly used in X-ray imaging, where the hit count can
be used to reconstruct structures or variations on density. The Time-over-Threshold
measurement can be used to filter pixel hits below a programmable energy threshold,
to reduce noise, perform spectroscopic sweeps or identify a particle by the charge
generated on the sensor. Precise Time-of-Arrival measures allow to faithfully track
particles passing through multiple chips in large detector systems, like the ones
built at CERN.

Compared to the front-end of a commercial CMOS camera, these ASICs integrate
many more functions and resources per pixel, typically in the form of a Time-to-
Digital converter, counters, a programmable threshold comparator and a digital
PLL used as a clock multiplier for precise time measurements.

The newest member in the family is Timepix4, an ASIC for read-out which
can provide time-stamping precision < 200 ps and can be tiled on all sides to
create large area detectors[4]. For tracking applications this is one of the most
critical figures of merit, which is the reason why Velopix2 and its prototypes derive
directly from Timepix4, pushing even more the time resolution to < 30 ps in the
radiation-heavy conditions of LHC.

Over the various generations, Timepix and Velopix have evolved to cope with the
increasing hit rates that were requested by CERN experiments. The first significant
innovation was the introduction in Timepix3 and Velopix1 of event-based read-
out architectures instead of frame-based ones: by instead of generating data in
every pixel, only active pixels inject packets into the system. This zero-suppressed
architecture increases the complexity of the read-out data-path, but allows the chip
to be continuously read out instead of being able to provide only 1 frame every 40
cycles, which was the aim of the first Velopix chip.

The amount of features in the front-end is limited by the available space per
pixel, which is determined by the 55 µm pixel pitch in both directions used by
the Timepix/Medipix family. But as more advanced nodes become available and
radiation hardness tests are carried out, pixels can become smarter: the Velopix2
prototype includes a front-end capable of clustering nearby hits in a single packet
or reject hits if particular patterns are detected. Additional processing or filtering
can be also added inside or at the end of the data-path thanks to the 28nm node
now available at CERN.
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Chapter 2

Modeling read-out in
SystemC: Pix-ESL
framework

This chapter will describe the main focus of this thesis work, the modeling of the
data-flow in particle detectors. The model and framework introduce a new way to
prototype particle detectors at CERN, studying a high-level system description to
assess performance and subsystem’s specifications at an early design stage.

2.1 High-level models for detectors’ architectural
exploration

Due to the size and complexity of the next generation of particle detectors, archi-
tectural exploration at the detector-system level has emerged as a necessary step in
their design flow, to increase the chance of first-time-right designs. Detector systems
are composed by many different sub-systems and modules, whose specifications and
requirements are impossible to determine beforehand, but must be found through
system-level design space exploration.

The main goal of this project was to provide a tool that could improve this
design flow to:

• describe the detector at system-level to identify bandwidth requirements,
buffer sizing and data latency.

• identify specifications for individual sub-systems at the system architecture
exploration step, before RTL description.
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• assess performance early in the design process and meet the experiment’s
requirements. This is increasingly relevant as new technologies’ costs reach
the tens of M€.

• provide a reference model to simplify the functional verification step,
where the high-level model can be co-simulated against the RTL.

• create a virtual prototyping platform, to study the usefulness and feasibility
of new algorithms and processing capabilities from a purely functional point
of view, detached from the complexity of implementation.

2.1.1 Previous works on high-level models
The kind of approach to architectural design presented in Pix-ESL is novel to CERN,
where most of these studies are carried out directly in RTL, mostly SystemVerilog.
For example, in the architectural studies for the pixel detectors in the next CMS
upgrade, Dr. A. Caratelli used an RTL model with TLM for both prototyping and
verification [5], which is the most widely adopted methodology at CERN.

The main inspiration for this project comes from earlier work by Dr. Tuomas
Poikela [6], who modeled similar architectures in a purpose-built C++ simulator
with a cycle-based and sequential model and using a TLM-like approach to data
transfer.
Even though our framework followed an approximately timed approach and im-
plemented actual SystemC TLM-2.0, we took many of the considerations in his
doctoral thesis to abstract a more generic and reusable framework.

2.2 Electronic System Design approach
A working definition of ESL can be found in [7]: "the utilization of appropriate
abstraction in order to increase comprehension about a system, and to enhance
the probability of a successful implementation of functionality in a cost-effective
manner, while meeting necessary constraints". This generic description fits perfectly
with the scope and methodology of Pix-ESL: providing an accurate enough model
to evaluate system prototypes and understand better the challenges in system
design.

Given the goal set for this project in Sect.2.1, ESL seemed the best way to
describe this modeling approach: the key ESL notions of abstraction, exploration,
reuse and automation presented in [8] reflect those objectives. In fact, there
is a need to abstract the system representation to a high enough level to be able
to quickly explore architectures; in addition to that, abstract modules can be
reused or integrated with IPs and should provide a golden reference for automated
verification.
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2.3 Modeling language choice
The choice fell on SystemC because it could provide a good enough description of
the read-out chips architecture without requiring much knowledge about the RTL
implementation, being one of the most promising ESL open-source languages [8].
It allows us to vary the number of modules, their properties and the arbitration
between them with a greater degree of flexibility and ease, compared to using
parametric modules in SystemVerilog or generic entities in VHDL.

The main reason for using a high level model lies in the need to quickly prototype
and evaluate read-out designs in the early architectural exploration, where such
massive layouts would be very expensive to simulate and would require unnecessary
details in the RTL description at that stage. Nonetheless, simulation in SystemC
is much faster and less resource intensive than RTL: the simulation runtime and
memory utilization differ by almost a couple of orders of magnitude. Compared
to a Verilog simulation of the new Velopix-2 chip, that was able to simulate an
average of 0.1 BX per second of runtime, our model could be compiled in less than
30 seconds and run at 15 BX per second of runtime. Here BX refers to the injection
event that occurs every 25 ns and is the timing reference for the whole detector
system.

2.3.1 Limitations of high level modeling
It is important to recognize the limits of a high-level design (HLD) in order to
relate simulation results to real attainable performance.

The obtained results can be compared relatively to each other, so a design with
an higher in-model efficiency translates into a better real-world implementation, but
their accuracy to real-world performance is highly dependant on the implementation
itself. For example, in our model we could assume that all transactions take a fixed
amount of clock cycles (one cycle for simplicity) since we expect all transactions to
be resolved in the same time, however in an actual read-out chip the transaction
could be split into multiple cycles because of design constraints. Thus, it is hard
to precisely estimate latencies in an HLD.

In SystemC there are no limits on usable functions and data structures, so
theoretically anything available in C++ can be simulated. Whereas this removes
the burden of defining algorithms or physical memory structures, it may lead to
oversights and designs which are impossible to reproduce on silicon or even describe
in RTL.

Conversely, there are often constraints coming from the physical design of the
analog and digital front-ends which may be overlooked in a HLD: for example
accurate time-stamping requires higher clock signals generated locally, and the
precision of this clock distribution net puts an upper limit on the sizing of certain
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blocks.
Power consumption estimation is not present in base SystemC, but there are

publications such as [9] that integrate this functionality in SystemC with minimal
overhead. At the moment, we are investigating whether the number of read
and write operations could provide useful power metrics when combined with
technology-specific power estimates.

2.3.2 The SystemC library
The SystemC library is a C++ collection of functions and classes, defined by the
IEEE 1666-2011 standard [10], that was developed out of the need to describe large
system-on-chip (SoC) architectures with a level of detail suitable for simulation,
design space exploration and verification.

Methodology- and Technolog-specific Libraries

SystemC Core Language

Structural 
Elements

Modules
Ports

Exports
Interfaces
Channels

Data Types

4-valued logic type
4-valued logic vectors

Bit vectors
Finite-precision integers

Limited-precision integers
Fixed-point types

Predefined
Channels

Signal, clock, FIFO,
mutex, semaphore

Utilities

Report
handling,
tracing

Event-driven Simulation
Events, processes

IE
E
E
 S

td
. 

1
6

6
6

-2
0

1
1

TLM AMS
IEEE Std. 1666.1-2016

Application
Written by the End User

CCI SCV
UVM-

SystemC

Programming Language C++
ISO/IEC Std. 14882-2003

Figure 2.1: SystemC language overview [11].

The SystemC Core contains:

• Structural Elements: primitive classes to represent elements/modules and
their data exchanges ports and protocols.
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• Predefined Channels: implementation of data transfer and storage struc-
tures derived from primitive channels, i.e. memories and signals.

• Data Types: used to represent data values in the systems, similar types to
those found in Verilog or VHDL.

• Event-driven Simulation: contains the SystemC simulation kernel, which
uses events to schedule and trigger process execution and progress the simula-
tion.

• Utilities: reporting and tracking classes for debugging.

Modules are a SC class that represent a design entity, and model parallel
execution by registering certain class methods as SC_METHOD or SC_THREAD and
making their execution sensitive to certain events, such as clock signals or incoming
data requests. The SystemC kernel is intrinsically event-driven, which allows for
substantial simulation performance gains if appropriate considerations are taken to
avoid using a timing reference to trigger all sequential elements at every cycle.

The modeling of logic functions can be written in plain C++ methods called
within the module upon their execution, thus algorithms can be studied without the
complexity of their RTL implementation. Whereas this allows for fast prototyping
and relative performance estimates, the designer must be aware that rarely the
SystemC simulation will be cycle accurate to the implemented result, and that
some operations or data structures might be impossible or prohibitively expensive
in the latter phases of design.

2.3.3 TLM 2.0 in SystemC
Transaction-Level Modeling (TLM) is an approach to data transmission that en-
capsulates computing modules in a communication wrapper, to separate processing
and transmission and use high-level function calls instead of slow RTL signals [8].

TLM 2.0 refers to a group of SysC classes which create an interoperability layer,
comprised of ports, known as sockets, and payloads, data structures used to model
data packets. This allows EDA and IP vendors to work with common methods to
interface their modules: for example a vendor could provide its customers with a
SystemC description for complex modules, such as RISC-V cores that would be
instantiated in SoC prototyping and that would implement SC TLM 2.0 methods
to communicate with other IPs or user-made modules.

Data transport in SC TLM-2.0 is achieved with payloads moving between
initiator and target sockets, that act as start- and end-points for the communication
protocol during its different phases.

This is clear in Fig.2.2, where an example of communication with the 4-phase
standard TLM protocol is shown:
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Figure 2.2: TLM protocol with phases and timing delays [10].

1. To start the transaction, the initiator’s call to the forward transport method
with the BEGIN_REQ phase triggers the execution of a function in the target
module, registered in the target socket as the callback of the forward transport.

2. The target module answers the request with a backward transport call with
the END_REQ phase, to signal its ability or otherwise to answer the request.

3. The target initiates the actual data transfer in the BEGIN_RESP phase on the
backward path (i.e passing a payload in the backward transport call).

4. The initiator closes the transaction with the END_RESP phase.

It is up to the user to define the behaviour upon the transport calls, for example
a forward transport method with the BEGIN_REQ phase could signal an incoming
pull request for the target, which could answer with an acknowledge or denied
response to the PR based on its internal state. A successful PR would then end
with the data being received by the initiator, which would then store or process
the incoming payload based on its purpose.
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2.4 Pix-ESL: pixel read-out prototyping at high
level

Pix-ESL is an architectural design space exploration tool, and it stands for Pixel-
Electronic System Level and is an attempt at applying an ESL-like approach
to prototype the next generation of detectors.

Figure 2.3: Pix-ESL overview.

Pix-ESL consists of a C++/SystemC core that models and simulates the flow of
data through a generic path, which is hierarchically divided in different layers (see
Fig.1.4 and Fig.2.5) that transfer data-packets from source to sink, for example in
a read-out chip from the pixels’ front-end to the chip periphery. Input data (i.e.
pixel hits) can come from physics simulations or a built-in event generator, and can
be passed to a transfer function, whose purpose is to model the analog front-end
that feeds packets to the digital data-path.

The framework also includes a toolset (see Fig.2.3, metrics analysis) of Python
scripts to analyse I/O and data occupation at any moment of the simulation, and
evaluate the performance of each architecture. It allows the user to close the
loop from input to output and perform suitable changes to its design to improve
performance.

The SystemC model core is the most interesting module of the framework and
will be treated in detail in Section 2.4.1.

16



Modeling read-out in SystemC: Pix-ESL framework

2.4.1 Core Pix-ESL functionalities
The Pix-ESL core is a library of SC_MODULE derived classes that model functionally
the layers in a read-out chip, since most of the work on Pix-ESL was focused on
this first section of the detector data-path.

SC_MODULE is a SystemC core class that represent a design entity, similarly to
a VHDL entity or Verilog module by using processes, communication instances
(ports), variables and signals .

(a) (b)

Figure 2.4: Base and functional layers schematic representations.

In order to lay the foundations for a reusable code base, were used C++
inheritance mechanisms were used to define different attributes of these modules
in different stages of description.Two main classes/modules were developed: the
base_layer and funct_layer as seen in Fig.2.4.

The base layer is the most generic representation of a read-out node: a structure
with some memory in the form of FIFO elements and predisposition for commu-
nication using TLM-2.0 sockets. It declares virtual methods to be defined in the
layers that implement those functionalities, like for example the transport functions
that define how packets are moved between modules. It also includes members and
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methods for debugging and metric logging, to be used in each function that needs
to be monitored for performance extraction or debug.

The functional layer is derived from the base layer and its purpose is to implement
the various processes and functions that define the operations of the node:

• Arbitration: the arbiter shall decide which of the possible sources can write
into the module’s FIFO. Since the model works on a pull-request (PR) basis,
this function essentially issues pull requests to the chosen packet source.

• Routing: the router shall answer positively only one of the incoming PRs. In
case a module contains multiple memories, it should also decide which memory
to read from.

• Transport: in TLM-2.0 each initiator and target socket must register a
method to interface, respectively, with incoming backward and forward trans-
port calls from outside the module.

The functional layer is then used as a template to model the specific functions
in each hierarchical layer that defines the architecture, like the chain of pixels,
superpixels, regions and end-of-columns found in Fig.1.4. It can be used to model
processing nodes as well, by defining which functions to apply to the data whenever
it is read or written.

Figure 2.5: Abstract Pix-ESL read-out nodes in the SystemC core, note that
layers here represent a generic tree structure.
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After these modules are defined, we need to specify how they are connected to
each other and what are the hierarchical relationships. Each module in every layer
has to be able to communicate in four directions: with its children modules (in the
layer underneath, hierarchically down, RX only), with its sibling modules (same
layer, bidirectionally), and with its parent modules (layer above, TX only). In
an abstract representation (see Fig.2.5) the architecture can be seen as a tree-like
structure, where data propagates from the leaves to the root, moving through layers
to be collected in a central spot at the end of the read-out chain.

2.4.2 Architectural exploration tools in Pix-ESL
The data analysis and performance extraction tools are fundamental to judge the
quality of a certain architecture and to find its parameters to obtain the best
performance.

Together with Pix-ESL, a collection of Python scripts was developed to pinpoint
the inefficiencies in the system. I developed quickly a first version of this toolset in
MATLAB in contemporary to the core model, but the images in this thesis will
come from the more advanced Python version, developed by J. Dhaliwal.

Figures of Merit in read-out chips

Since the read-out chip is a sort of data-path, the main objectives of Pix-ESL is to
make sure that it can support the given occupancy, to guarantee that most of the
pixel hits can reach the chip periphery. Due to being modeled as an always-pull
system, i.e. a node will request data until it has available space, if the FIFOs in
the system are filled up more quickly than they are read, the resulting obstruction
will propagate to the previous elements upstream. When this deadlock reaches the
superpixel elements and they fill up, the result is that future pixel hits cannot be
registered anymore, which is the reason why these system are optimized to extract
the most out of their limited bandwidth.

This is also a consequence of the nature of data-driven pixel detectors: in fact
pixel hits follow statistical distributions both spatially (see Fig.1.5) and temporally,
which means that some regions will have higher occupancy in their FIFO memory
due to the zero-suppression performed at pixel level.

To evaluate the designs, here are listed the figures of merit by importance for
read-out chips:

1. Read-out Efficiency(ηreadout): defined as the number of packets that reach
the end of the data-path over the number of packets generated by the front-end.
The system must obtain the highest ηreadout since image reconstruction is the
main focus of pixel detectors, typical targets are in the > 99.5% range.
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2. Average Latency: indicates the average number of cycles for a packet to
travel from its source to the chip periphery.

3. Maximum Latency: the longest time a packet stays in the system before
reaching the end of the data-path.

4. Output channel occupancy: how much of the output bandwidth is actually
in use.

The ηreadout is critical to the main objective of read-out chip, which is collecting
and transmitting packet data. The latency figures are used to define the bit width
of the timestamping fields (i.e. the number of bits to represent the BX ID), so
lower latencies allow for smaller buses and overall power and area savings. The
output occupancy shows whether the off-chip links are saturated or oversized, to
better estimate the required bandwidth.

Input analysis tools

Figure 2.6: Pixel hits injected in the model, after front-end processing.

The analysis starts from the pixel hit files that are provided by the physicists
running simulation of the experiments. Tools like Allpix Squared [12] are able
to simulate the conditions inside a particle accelerator, and predict the result of
high energy particle interactions with the pixel arrays, to generate pixel hit maps.
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The pixel detectors are then designed to be able to reconstruct these images with
satisfactory faithfulness.

Analysing these hit maps is the first step to understand what are the possible
data reduction and rejection techniques that can be employed directly by the
front-end, and which data rates should be targeted by the read-out infrastructure.
As of now, the starting input for Pix-ESL are provided to us by the front-end
designers (see Fig.2.6), but there are plans to simulate the filtering and clustering
functions in SystemC or Python.

From these maps we can also estimate the necessary bandwidth: for example
in Fig.2.7 the plot represents the average amount of pixel hits per column of the
pixel matrix; since the column clock is the same as the BX rate (40 MHz) and the
read-out is vertical, this means that each column can output at most 1 pk/BX,
which is exceeded by few central columns in Fig.2.7a. It can be solved by doubling
the amount of columns, as seen in Fig.2.7b.

These plots allow the designer to properly choose the number of columns or
increase the clock before defining any of their functionality.

(a) (b)

Figure 2.7: Average pixel hits per column.

Figures of Merit extraction

The first three FoM listed in 2.4.2 are computed directly in the SystemC model,
since they are simple scalars. The same FoM are also evaluated within a certain
latency threshold, because packets that linger too long in the read-out data-path
are effectively lost and harmful to the image reconstruction: a first packet with
BXID,pk1 = t cannot be distinguished from a second packet with BXID,pk2 =
t + 2Nbits , where t is any BX timestamp for an event, and Nbits is the bitwidth of
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the BX timestamp. This causes aliasing since data belonging to a certain frame
BX shows up in the next frame BX + 2Nbits .

In the Python toolset the latency distribution can be plotted to find a suitable
value for the maximum latency by looking at its tails, and anomalies can be found
if the shape is too different from a Poisson or Gaussian curve.

Figure 2.8: Latency distribution example.

FIFO occupancy logging

The figures of merit listed previously are valid in judging the quality of a certain
system, but to improve its performance we need find the causes of bottlenecks in
the data-path. As mentioned earlier, these bottlenecks are caused by full FIFOs,
which create a cascade of stoppages and ultimately data loss.

For this reason, we log the occupancy in each layer instance and create a map
to spot the position and cause of these deadlocks. In Fig.2.9 we can see that the
top and bottom configurations have a different amount of full FIFOs: the bottom
one has double the amount of columns and optimized column arbitration, which
result more even distribution in FIFO occupation and overall lower amount of full
memories.
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(a)

(b)

Figure 2.9: FIFO occupancy in the region layer for different configurations, full
and deadlocked elements in yellow.
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Chapter 3

Data-driven read-out:
Velopix-2 case study

This chapter will present a real use case for the Pix-ESL framework to show
its capabilities in design space exploration for a new data-driven (trigger-less)
architecture.

3.1 Velopix2 overview
Velopix2 is a planned upgrade to the recently installed Velopix in the VErtex
LOcator detector [2] assembly in the LHCb experiment. Velopix is the most
important component of the VELO detector, the pixel detector that tracks particles
entering the experiment. At the moment of writing, multiple teams are developing
competing solutions to the Velopix2 specifications: INFN with their TIMESPOT
ASIC and CERN’s EP-ESE-ME with their demonstrator PicoPix.

This case study will try to be agnostic from either solution, as it focuses
on the system level design, i.e. the number of elements in the read-out chain
and their functionality; the INFN and CERN teams are focusing mostly on the
challenges posed by high resolution of time measurements and other issues at the
pixel/superpixel level, which have little relevance to system design.

3.1.1 LHCb and VELO
LHCb studies the matter-antimatter asymmetry by investigating b-quarks and
their decay. The schematic view for the experiment can be found in Fig.3.1: it is
clearly different from the other experiments at CERN like ATLAS (see Fig.1.1) or
CMS, which are cylindrical volume detectors, where the particles of interest are
the ones travelling almost perpendicular to the beam after the collision. Instead in
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Figure 3.1: LHCb schematic view[13].

LHCb b-quarks particles and their decay byproducts are found mostly in a narrow
cone along the beam axis, which is the reason for its peculiar design.

Looking at Fig.3.1, the beam cuts across the experiment horizontally and the
collision takes place on the left side, where the VErtex LOcator detects and tracks
the particles for the first time. The large magnets to the right of VELO bend the
charged particles’s trajectory, which are then detected by the SciFi (Scintillating
Fibers) tracker with an altered path. This difference between the VELO and SciFi
detectors measurements allows the determination of the particle charge. Mass
values can be obtained by the calorimeters positioned after the trackers.

The VELO is the main tracking device before the magnet, and its data is also
used in the trigger for the whole LHCb experiment, which decides whether to keep
or discard data from collisions. It is composed by a number of modules placed
on planes perpendicular to the beam, which can be retracted far away from the
beam during its calibration and injection, and then moved as close as 7 mm during
data-taking.

The goal of this upgrade to VELO is to allow for increased luminosity, thus
increased data rates and radiation levels in the pixel detector.
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Figure 3.2: VELO upgrade cut-out.

3.1.2 Velopix and Velopix2 chips specifications
Velopix2 refers to the pixel detectors chips, formed by the pixel sensors and their
read-out chips.

In Fig.3.2 we can spot in red, very close to the beam, the pixel detectors: they
are mounted in an L-shape on modules that host power delivery, cooling, and
connectivity (in yellow). The same boards can be moved aside to the left and right
when not in use for data-taking.

Multiple Velopix chips are mounted on the same module, as shown in Fig.3.3,
to cover a large area with relatively small chips. The Velopix chips shown in the
figure are 4-side tileable, meaning that they can be joined on any side with another
Velopix chip to form larger assemblies.

Velopix itself was a significant upgrade over the original VELO detector, moving
from a 1 MHz triggered non-zero-suppressed read-out, to a continuous 40 MHz
zero-suppressed one[14]. This means that pixel hit data can be read out at the
same frequency of the collision, without the need of an external trigger to select
few interesting events. It is achieved thanks to a

Velopix2[15] requires much higher precision in the time measurements, from 25 ns
in Velopix to < 30 ps resolution, and a leap in data rates from 10 Gbit s−1 cm−2

to ∼ 200 Gbit s−1 cm−2, due to the larger number of pixel hits and quantities
measured per hit. These improvements require innovative techniques to measure
time with such precision, and on-pixel hit clustering to reduce the amount of
packets generated.

26



Data-driven read-out: Velopix-2 case study

Figure 3.3: Velopix chips positioned in an L-shape around the beam.

The specifications include physics simulation data that contains examples of
pixel hits over 1000 BXs. Analyzing the pixel hits allows the designer to determine
rough requirements for the system’s bandwidth across all layers.

Unfortunately, the amount of data packets injected in the read-out data-path
depends on the clustering and filtering techniques applied in the pixels’ front-ends,
so we used the FE modeled by the CERN team and the filtered data provided by
X. Llopart. This causes the data rates to be much lower than the pixel hit rates: in
the worst case ∼ 200 hits/BX are filtered down to ∼ 70 pk/BX, which is the target
occupancy for the read-out architecture presented in the next sections.

3.2 Velopix architecture
Velopix architecture can be defined as a trigger-less, data-driven, column
read-out. Trigger-less refers to the absence of a trigger and continuous read-out:
every packet generated by the FE is injected in the read-out chain. In other
detectors with triggered architectures, the system is always in data-taking mode
using a circular buffer but only some BXs are marked as relevant and read-out.

Data-driven means that zero-suppression is applied to the pixel data, such that
only pixels hit by particles generate packets, which are tagged with the position of
the pixel. On the other hand, non-zero-suppressed architectures require each pixel
in a frame to be read-out, even though most of them do not contain particles hit
data.

It is important to note that the terms top and bottom of a pixel detector do
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not refer to the spatial orientation, but rather to the regions with the highest
and lowest amount of radiation; i.e. the top is always the part mounted closest
to the particle beam, and the bottom (or periphery) is where the more sensitive
communication and elaboration ASICs are placed.

Figure 3.4: Velopix read-out chip architecture

Column read-out means that the pixel matrix is grouped vertically in a number of
columns, formed by superpixels stacked on top of each other; packets are extracted
at the bottom of each column, in the end-of-column regions. EoC are then grouped
in 4 couples which share the output buses and are routed off-chip through a crossbar
switch.

Each chip is connected to 4 GigaBit Transceivers (the optical links in Fig.3.5),
and data from all 24 chips is transferred to a data acquisition system with FPGAs
on PCIe or ATCA boards, called TELL40 due to their continuous read-out at
40 MHz. These boards take care of some elaboration, like sorting packets by BX
and creating frames on FPGAs, and control the read-out chips timing and trigger.

3.2.1 Velopix2 layers
As mentioned previously, the read-out architectures has a hierarchy based on layers,
which move data from the lowest layers to the periphery output channels. The
compartmentalization is useful to have a system’s view of the architecture and to
decouple each layer’s functions (arbitration, routing and transport). These are the
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Figure 3.5: Velopix off-chip connections

(a) (b)

Figure 3.6: Pixels grouped in a Superpixel (a), superpixels grouped in a region
(b)

layers used to model Velopix2, derived from the base_layer and funct_layer :

• Pixels: connected to the pixel sensors via bump-spots on top of the chip.
Contain the analog front-end and discriminator.

• Superpixels(SP): contain 2x2 pixels and digital circuits to timestamp pixel
hits, cluster or reject hits based on nearby pixels. Since data is clustered

29



Data-driven read-out: Velopix-2 case study

Figure 3.7: Regions connected in columns and with EoC data nodes

at the SP level, only SP are able to inject packets in the read-out chain.
Typical packets include information about the pixel address (16 bit), bunch
cross timestamp (BX ID), Time-of-Arrival (ToA) and Time-over-Threshold
(ToT).

• Regions(reg): contain a set number of SPs connected with a mix of series
(SP-to-SP) and parallel (SP-to-reg) links, as seen in the SPs forming the region
in Fig.3.6b. The number of SPs columns and their length before connecting
to the parent region are some of the design parameters that were explored to
optimize the structure.

• Datanodes(DN ): connected to the last region in a column, can receive
packets from one DN and pass it to the next DN in one of the output channels,
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which are formed by series connections of DNs. These modules have simpler
arbitration and smaller FIFO because they are supposed to work at higher
frequency than the rest of the read-out chain, and serialize the large amount
of data incoming from the regions into fewer, high-speed channels.

Each layer’s instances can be seen as an array with a certain number of columns
and rows, whose values can be found in Table 3.1. The size of a given layer’s array
relative to the layer below determines the number and connection from the children
to the parent modules: for example, a 128x128 superpixel array and a 32x64 region
array result in regions that contain 2 SPs columns, each 4 elements long (as the
region in Fig.3.6b).

Layer Name Rows Columns FIFO size
Min. Max Min. Max Min. Max

Pixel 256 256 N.A. N.A.
Superpixel 128 128 2 8

Region 16 64 64 128 2 8
Datanodes 8 16 8 16 1 2

Table 3.1: Velopix design space parameters

3.2.2 Velopix network
The network in Velopix defines how each module instance is connected to other
instances in the sibling, children and parent layers. The network is created by a set
of functions that define the rules for connections, and are written to accommodate
for varying dimensions in each layer. For example, the network function for SP-
to-Region connections may connect only the bottom 2 SPs in a 2x2 sector to the
region above, where the SP-to-SP network function will connect the top 2 modules
in the 2x2 sector to the SPs below.

The connections are created so that each packet can only take one route to reach
the output, and it comes from a conscious system level decision to try to limit the
routing complexity in the physical implementation. This is a limitation that could
be foregone to move towards a Network-on-Chip architecture, where modules can
route data in multiple directions to overcome blockages: in fact if the pixel hits are
unevenly distributed there may be local blockages in some columns, even if the
total system bandwidth should support those data-rates at the global level, and
allowing multiple routes would allow a fuller exploitation of the output bandwidth.

Arbitration functions in the Velopix2 model decide the order in which each
module will send pull requests. In fact, a certain module may be connected to
multiple other modules which it can request data from, and the arbiter in that
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module chooses which source to select. In the current version, arbitration is static
and programmed during the instantiation of each module. This means that the
module will split its requests between the sources using predefined and static values.
The sources can be other modules in the sibling layer or children modules.

3.3 Study results
The result of this study consists in an optimized configuration, with specific values
for the number of rows, columns and FIFOs per layer. The various architectures
have been ranked based on read-out efficiency, average latency and maximum
latency, in this order. Here will be presented some meaningful configurations with
some considerations about their performance.

3.3.1 Input data analysis
The input data is part of the specifications of the system, and being able to analyze
it correctly will reduce significantly the design space. For example, in Velopix2
the worst case scenario has a very high occupancy, meaning that many of the
superpixels in the system generate valid packets in each BX and the read-out chain
is under high stress. The specific occupancy value is 72.3 pk/BX (see average value
in Fig.3.8) and it sets a hard minimum value for the system bandwidth at any layer.
For example, the communication from the matrix to the periphery is achieved
by connecting the last region in each column to a datanode: it is clear how the
number of columns will limit the data transfer between the 2 layers, which leads us
to define a minimum amount of columns in the region array to at least 70 units.
An example where this condition is unmet will be presented.

If the spatial hit distribution is not uniform some columns may have a hit
rate higher than their bandwidth, that is set at 1 pk/BX/col if the matrix clock
corresponds to the BX rate of 40 MHz. This can be estimated by extracting the
hit probability per region column, as was done in Fig.2.7: the left plot shows how
64 region columns would result in many columns hit more than once per BX and
subsequent congestion; on the other hand, 128 columns are just enough to maintain
a hit rate below 1 pk/BX/col even in the busiest central columns.

3.3.2 Configurations and results
Out of the whole parameters space shown in Tab.3.1, here some significant configu-
rations will be detailed. In Tab.3.2 are shown the configurations’ parameters that
were chosen as examples of design space exploration with Pix-ESL:
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Figure 3.8: Distribution of the number of pixel hit per BX

Parameter Name Configurations
C1 C2 C3

Pixels 256x256 256x256 256x256
Superpixels 128x128 128x128 128x128

SP FIFO (Int.|Ext.) 4|2 4|2 4|2
Regions 16x64 8x128 8x128

Reg. FIFO 4 4 4
Reg. Arbiter Linear weights Optimal weights Optimal weights

Datanodes/EoC 64 128 128
DN FIFO 2 2 2

DN Clk Mult 8 8 8
Output Channels 8 8 16

Table 3.2: Parameters in the 3 configurations of interest.

• C1: originally developed for an occupation < 60 pk/BX, has only 64 region
columns. Shows how

• C2: increased the matrix throughput by using 128 columns, but kept the
periphery throughput at 64 pk/BX.
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• C3: best solution yet, with 128 pk/BX bandwidth in both periphery and
matrix. Very promising efficiency and latency, adequate for on-chip processing.

Result C1 C2 C3
Read-out Efficiency 82.6% 84.0% 99.5%

Average Latency 119 cy. 100 cy. 21 cy.
Max Latency >3000 cy. >2800 cy. 440 cy.

Table 3.3: Results from the 3 configurations

C1: insufficient matrix bandwidth

The first configuration was chosen because it shows how an insufficient matrix
bandwidth causes excessive pile-up along the columns that are hit more than once
per BX. In Fig.3.9 the left plot shows how most of the region columns exceed the
matrix bandwidth, and causes most of the FIFO columns to saturate and stop the
data-flow. Interestingly, the few columns below the 1 pk/BX are rarely blocked.

These considerations back up the outputs’ metrics, which show a long-tailed
latency distribution resulting from the packets stuck in the matrix for many cycles,
and a high utilization of the output bandwidth. Even though the periphery has an
insufficient bandwidth, in this configuration the bottleneck is still the matrix with
its 64 region columns.

C2: insufficient periphery bandwidth

This configuration aims to solve the previous setup’s issues by splitting each column
in 2 and increasing the matrix bandwidth. This configuration is of interest because
the periphery bandwidth has not been scaled up accordingly: the datanodes are
arranged in 8 output channels running at 8x the matrix clock (for a total of
64 pk/BX as before), but each of those channels has been extended to be 16 DNs
long, instead of 8 as in C1. This means if that the matrix is running at full
bandwidth of 128 pk/BX, the periphery will be able to extract only half of that.
The results is a pile-up at the bottom of each external column, since the DNs
prioritize the read-out of the central columns.

In Fig.3.11b only half of the regions can be read-out efficiently due to the
limited periphery bandwidth: the 2 possible solutions are either rearranging the
128 datanodes in 16 channels and increasing the output parallelism, or doubling
the periphery clock to 16x the BX rate.

Fig.3.12a shows that compared to C1 the amount of packets with a low latency
is increased, but at the same time the right tail is more extended, due to the fact
that the external columns are read much less often than before.
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(a)

(b)

Figure 3.9: C1: comparison between hit probability (a) and congestion in the
region FIFO map (b)[colorbar indicates number of packets written to a region].

C3: specifications satisfied

The next natural step was to increase the periphery throughput, which was brought
in line with the matrix to 128 pk/BX by doubling the amount of output channels.
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(a)

(b)

Figure 3.10: C1: Packet latency distribution (a), output channel utilization (b).

As shown in Tab.3.3 and by Fig.3.14b, the output rate averages a value very close
to the input rate of 72.3 pk/BX. This is largely thanks to the oversized bandwidth
of the system, which can not be scaled up so easily in the off-chip datalinks due to
power concerns. In fact, this bandwidth would result in > 200 Gbit s−1 and would
require 8 of the datalinks developed at CERN, each carrying > 25.6 Gbit s−1 and
consuming in total from 800 mW to 1,600 mW.
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(a)

(b)

Figure 3.11: C2: comparison between hit probability (a) and congestion in the
region FIFO map (b)[colorbar indicates number of packets written to a region].

In this setup, we also optimized the arbitration weights given to the region
elements along each column based on the hit probability of the pixels inside each
region. This should make sure that the fraction of time allocated to read-out each
region corresponds to its chance of having a pixel hit, thus decreasing dead times
when pull requests are issued to empty regions and superpixels. Its effect in C3
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(a)

(b)

Figure 3.12: C2: Packet latency distribution (a), output channel utilization (b).

can be seen in its region FIFO occupancy (see Fig.3.13b), which is more evenly
distributed than C1 (see Fig.3.9b, higher occupancy in the top regions).
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(a)

(b)

Figure 3.13: C3: comparison between hit probability (a) and congestion in the
region FIFO map (b)[colorbar indicates number of packets written to a region].
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(a)

(b)

Figure 3.14: C3: Packet latency distribution (a), output channel utilization (b).
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Chapter 4

On chip Sort&Bin: from
prototyping to
implementation

This chapter proposes a module, named Sort&Bin, for ordering and grouping data
packets from the same physics event on pixel read-out chips. It is useful in data-
driven and zero-suppressed architecture such as Velopix2, where output packets are
read out-of-order and require sorting and grouping off-chip. The Sort&Bin module
instantiates memories at the periphery of the chip to accumulate data packets over
a period of time and build one large multiple-packet frame per physics event.

This development is an enabler for further data processing by concentrating the
entire physics event in a single location. In addition, it simplifies the back-end
architecture by providing already ordered and grouped data. Finally, it allows us
to study the design flow from prototyping in Pix-ESL to the RTL description and
its physical implementation to investigate the flow from a SystemC model to a
physical-level design.

4.1 On-chip processing advantages
Currently, the biggest challenges with read-out chips are their large bandwidths
(∼ 200 Gbit s−1), high power consumption from data transmission and off-chip
processing, and the complexity of working in a variable-latency system where
packets injected at the same time reach the end of the read-out at different times.

The Sort&Bin module solves these by :

• reducing the required bandwidth since grouped packets (data-frames) only
need an event identifier ( BX_ID ) to be transmitted once per frame.
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• saving the computing cost of sorting the packets on FPGAs.

• transforming the read-out chain in a fixed latency system, allowing further
on-chip processing with frames instead of loose packets.

4.2 Architecture
The Sort&Bin module gathers data from all the output channels of a read-out chip.
In the Velopix2 architecture, it connects at the data nodes and run at the same
clock frequency of 320 MHz. It takes as input 8 channels, each carrying 1 pk/cycle
with its BX_ID , and outputs at 8 pk/cycle a variable amount of packets, forming a
data frame containing all the packets from the same BX_ID .

Periphery connections

Sort & Bin

BIN #0

...

...

...

BIN #1

...

...

...

BIN #N

...

...

...

. . . . . . . . .

Off-chip datalinks

1-to-N

. . .

. . .

. . .

. . .

. . .

. . .

Figure 4.1: Sort&Bin module schematic view.

Ideally, the module fixes the packet latency by accumulating packet data over
a certain time window in its memory: incoming packets are written inside bins,
each storing packet groups with the same BX_ID field until a certain time has
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elapsed, thus fixing the whole frame latency to this time period. Afterwards, the
bin reaches a time-out condition and content is sent to the Sort&Bin output.

This time-out latency is defined by the amount of bins in the design minus the
time needed to read out the bin itself, which can be longer than one BX (i.e 8
cycles) if more than 64 packets are stored inside it. After a bin is timed out and
emptied, it is ready to receive data from the newest BX. Packets that reach the
Sort&Bin module after their BX was timed out are considered out-of-order and
are not saved into any bin but instead immediately sent to an alternative output
channel.

Since all the input data need to be treated in parallel, in the worst case where
all the incoming packets originate from the same BX all of them are routed and
written in the same bin. This means that each bin must have the same read and
write throughput as the whole system, corresponding to 8 pk/cycle.

Router...

Bin module

SRAM_3

SRAM_0

SRAM_1

SRAM_2

From BUF_0

From BUF_2

From BUF_1

30b240b

Figure 4.2: Bin sub-module schematic view.

Multiple Dual-Port SRAM banks were used in each bin, to achieve a total of 8
ports, each able to read or write a single reduced packet. Another feature that was
implemented was a simple load balancing algorithm to evenly fill the SRAM banks
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so that the bin could be read in the shortest time possible. This requires an 8x8
router that connects any input channel to any SRAM port in the bin and controls
the 4 SRAM banks as FIFO allowing up to 8 parallel write operations.

4.3 Design flow
The design approach was to create a high-level prototype in SystemC to obtain
values for the design parameters, such as the number of bins and their size, and then
try to design it in RTL. This allows the prototype’s parameters to be optimized to
reach a sufficient level of performance from a functional point of view. Then, the
design with those parameters can be implemented in SystemVerilog and verified.
The final step is synthesis and physical implementation, which were carried out
with Cadence EDA tools with the design flow provided by CERN’s ASIC Support
group.

4.3.1 Pix-ESL modeling
The SystemC Sort&Bin module was derived from the funct_layer like the read-
out modules. The main difference was that instead of just one FIFO element, in
this case, there were as many FIFO memories as the number of bins, with each one
of them corresponding to one bin: in this level of abstraction FIFOs are accessible
multiple times per cycle if non-blocking methods are used, thus there is no need to
instantiate 4 SRAMs like in the RTL schematic in Fig.4.2.

Similarly, instead of using a cycle-accurate description for the insertion and
read-out of the bins, delays were calculated based on the number of operations, and
then module activity was paused for the length of the delay instead of simulating
each cycle. The bin read-out process, for example, was executed instantly when
the bin was timed out, and the delay was calculated as in Eq.4.1, where Npk in FIFO
is the number of packets that need to be read from the bin, Nout channels is the
module’s output parallelism and Tclk is the clock period.

Tread−out = Npk in FIFO

Nout channels
· Tclk (4.1)

Design space exploration

The SystemC design had two main parameters and two main metrics: the number
of bins and the number of packets stored per bin, the grouping efficiency, and
system latency. The two metrics respectively evaluate the percentage of packets
that can be grouped into bins within the accumulation time and the total packet
latency with the added time spent in the bins.
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Figure 4.3: Frame size distribution.

The bin size must be large enough to store as many packets as the largest frames,
whose size distribution is shown in Fig.4.3: 128 packets should be enough for most
frames, given that the few very large frames above that value will most likely have
some packets with extreme latency, that could not be binned anyway.

This value may seem too large given that very few frames exceed 100 packets,
but given that we must use 4 SRAMs, as explained before, and that the foundry
specifications indicate that each bank must contain at least 32 words, 128 packets
is also the minimum implementable bin size.

We set the target grouping efficiency to > 90%, and looking at the latency
distribution in Fig.4.4, it would seem that most of the packets reached the module
within 60 to 70 BXs. This was confirmed by running a parametric sweep on the bin
number (see Fig.4.5), where the grouping efficiency curve resembles the integral
function of the previous plot. The number of bins was set to 64 as it satisfied our
requirement for > 90% grouping.

4.3.2 RTL design
The RTL design needed to convert the simplified and functionally defined SystemC
module into a synthesizable RTL design. Out of the supported language by
our synthesis tool (Cadence Genus), the choice fell on SystemVerilog because it
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Figure 4.4: Packet latency distribution at the Sort&Bin input.
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Figure 4.5: Effects of the number of bins on grouping efficiency (left axis) and
total latency (right).
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supported some more modern features, for example multiple-dimension port arrays.
The design also included a Verilog model of the SRAM modules provided by

the vendor, compiled with the correct word length and number of locations. Since
the shortest word length was 32 bit and the reduced packet size was only 30 bit,
the extra bits could implement some error checking and/or correction, which is
needed to mitigate the radiation effects on the memories. The SRAM macro size
was 250 µm · 30 µm (h · w).

Top module: Sort&Bin

The top module describes the Sort&Bin module itself, which contains a counter for
the BX_ID , a controller sub-module to decide where packets would be routed by
sending DATA_ENABLE signals to the bins, an 8 · 40 bit register array to buffer the
input data, and 64 bins.

The routing from the input buffer to the bins is a simple fan-out, where each
channel’s data (except for the BX_ID ) is connected to every bin, while the controller
uses the BX_ID to determine which bins will catch the packets from the channels.

The top module’s grouped output multiplexes the outputs from all bins to select
the bin that is currently being read out, whereas the out-of-order output receives
all the packets stored in the input buffer that exceed the maximum latency.

Sub-module: Bin

The bin is composed of 4 SRAM banks, and its main task is to distribute evenly
the incoming packets to the 8 SRAM ports. The read and write operations are
controlled by a simple FSM, which resets the write and read pointers, enables
writes during the accumulation phase, and after the time-out, waits for the previous
bin to finish reading its content before occupying the output channels.

This is necessary because every 8 clock cycles ( at 320 MHz), one BX passes, and
a new bin reaches time-out, but it can not be guaranteed that the previous bin has
ended its read-out phase, since some bins may contain more than 64 packets, that
can be read to 8 channels during those 8 cycles. Statistically, most data-frames
should take less than 8 cycles to be read out, but to guarantee that any bin can
be emptied before data from a new BX reaches it, the actual timeout latency (or
accumulation period) lasts only for 62 bunch crossings, with the remaining 2 being
used for read-out and some slack if the previous bins were late.

4.3.3 Implementation in a 28 nm technology
The synthesis and implementation steps transform the RTL design first into a
netlist mapped to the technology’s gates and then place and route all the cells’ and
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macro elements’ instances to obtain a physical layout. At this stage, it is possible
to extract metrics on the timing, area, and power costs of the design to evaluate
whether the goals of the module were achieved and the constraints were satisfied.

The whole flow was carried out using the "CERN Digital Implementation Flow"
for 28 nm, provided by the ASIC Support group. This tool simplifies the flow with
ready-use TCL scripts for each step and a manager script.

Constraints

Here are listed the constraints for the physical implementation:

• Timing: the module clock is set to 320 MHz, corresponding to a period of
3.125 ns. The input and output delays were set to 0.5 ns.

• Area: the module position was set to the bottom of the read-out chip, where
an area 12 mm wide and 2 mm tall can be spared for processing. The die
area was specified to 2.6 · 1.4 mm2, with most of it taken up by the memory
macros.

• Power: the goal was to save power compared to the data-link needed to
transmit the extra bandwidth without the module, which corresponds to
around 150 mW.

• Library: the foundry sets a limit of 4 different transistor flavours out of
all the available threshold voltages. As a first implementation run only the
standard Vth library was used, with plans to add more in case of timing or
power issues.

Synthesis

The synthesis’s objective is to extract a standard cell netlist from the SystemVerilog
description. This is achieved by first transforming the RTL logic into a generic set
of logic functions, then this set is then mapped onto the logic functions provided
by the foundry’s cell library. At the end, further optimizations by the synthesis
tool can recover power and area consumption.

The netlist obtained is a Verilog design that can linked to the Verilog model of
the standard cells, and then verified before moving to the actual implementation
steps. Some functional bugs in the RTL were corrected and un-synthesizable code
was changed during this phase.

Floorplan

In this step, the module area was defined, the position of macro-blocks and pins
was fixed, and power nets were added using TCL scripts.
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As can be seen in Fig.4.6, input packets are entering from the top, ordered
packets are output on the bottom, and out-of-order packets are on the right. This
version of the module is non-configurable and only has clock and reset control
signals on the left of its perimeter.

Figure 4.6: Sort&Bin floorplan with bin sub-module detail

The 256 SRAM macros were placed in a 4x64 array: each 2x2 quadruple of
blocks forms a bin, with some space left in between the left and right side to place
the sub-module logic. Placement blockages were set around each macro to avoid
routing congestion on the SRAM pins.

Power nets were run vertically in stripes on the M8 layer on top of the SRAM
between 2 different bins and above the space reserved for the bin logic.

Place, Clock Tree Synthesis & Route

Since the next steps were already automated and required almost no input from
the user, they will be described shortly in order:

1. Place: the cell instances from the netlist were assigned positions on the layout
based on the nets they are connected to and timing estimates

2. Clock Tree Synthesis(CTS): the clock distribution net was synthesized to
minimize the skew between sequential elements.

3. Route: nets are transformed in physical wires connecting cells and are
optimized to satisfy timing constraints in an iterative process. During this
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Figure 4.7: Clock tree delays

optimization, buffers may be inserted in some paths, or cells may be moved in
order to remove timing violations, especially hold violations.

Figure 4.8: Layout after routing
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4.4 Results
The three main figures of merit to estimate the usefulness and feasibility of this
module were the efficiency of the algorithm in RTL, the area occupied, the power
consumption and whether this design could be routed. The grouping efficiency has
to be high enough to significantly reduce the load on sorting FPGA in the data
acquisition boards, the area should be around a few square millimeters, and the
power should not exceed the power consumption of the off-chip data links and the
overall budget for the chip.

4.4.1 Verification
The Sort&Bin RTL was tested with a SystemVerilog testbench composed of a
generator, to read input files containing packet data from Pix-ESL simulations, a
driver, to inject said packets in the DUT, a monitor, to observe the transactions
on the DUT, and a scoreboard to check the correctness of those transactions.
This testbench takes the same stimuli as the SystemC model, allowing a direct
comparison between the performance of the high-level and RTL descriptions.

The grouping efficiency of the RTL design, with the number of bins fixed at 64,
reached 92.5%, matching the result expected from previous design space exploration
with this parameter value, see Fig.4.5. In a future implementation, the scoreboard
could co-simulate the SystemC description as the golden reference of the module.

The bandwidth requirement could be reduced by ∼ 22.5% thanks this result,
since the BX_ID , accounting for 25% of the packet size, would be specified for less
than 10% of the transactions.

The post-layout simulation was carried out with the same testbench, to verify
the functional integrity of the physical implementation, that showed ∼ 5% of
the output packets to be incorrect, dropping the grouping efficiency to 87.9%.
Investigations are under way to determine and solve the causes of this issue.

Listing 4.1: Pre-implementation RTL verification results
1 [ SCOREBOARD ]
2 [ SCOREBOARD ] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 [ SCOREBOARD ] −− Transact ion r epor t No . % −−
4 [ SCOREBOARD ] −− #Input t rans : 100000 100 −−
5 [ SCOREBOARD ] −− #Ordered t rans : 92516 92 .5 −−
6 [ SCOREBOARD ] −− #Out−of−order t rans : 7484 7 .5 −−
7 [ SCOREBOARD ] −− #MISSING trans : 0 0 .0 −−
8 [ SCOREBOARD ] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 [ SCOREBOARD ]

Listing 4.2: Post-layout verification results
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1 [ SCOREBOARD ] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 [ SCOREBOARD ] −− Transact ion r epor t No . % −−
3 [ SCOREBOARD ] −− #Input t rans : 100000 100 −−
4 [ SCOREBOARD ] −− #Ordered t rans : 87894 87 .9 −−
5 [ SCOREBOARD ] −− #Out−of−order t rans : 6805 6 .8 −−
6 [ SCOREBOARD ] −− #MISSING trans : 5301 5 .3 −−
7 [ SCOREBOARD ] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4.4.2 Implementation
As a proof-of-concept design, the results are indicative of the achievable performance
but should be taken qualitatively. Nonetheless, the design was successful in its
main objectives:

• estimating the area to 3.6 mm2, that fits in the read-out chip periphery.

• estimating the power consumption to be around 50 mW, lower than the
power consumed by the data-links that it would substitute (∼ 100 mW/link).
Since the Sort&Bin module saves a percentage on the bandwidth, chips with
higher hit rates would benefit the most in terms of data-links saved. This
result was obtained by simulating the Verilog netlist with real input data,
and then backtracing its activity to precisely estimate with Voltus the power
consumption of each net.

• confirming the routability of the design.

4.5 Next steps
Given the positive results, in the future this design will be refined and may be the
stepping stone for the integration of on-chip processing. Some additional features
are planned:

• solve the inconsistencies between RTL and post-layout simulations, rear-
ranging the RTL design or adding low Vth cell libraries.

• radiation hardening studies must be carried out. To reduce radiation effects,
logic can be triplicated with minimal area and power losses and error checking
and/or correction can be added to memory.

• the module should be configurable , to reuse it in chips with different
parameters and sizes, and programmable, to change some functionalities on
the fly or shut it down.

• add further on-chip processing with ad-hoc cores or in-memory/near-
memory computing.
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Conclusions and future plans

This chapter presents the conclusions of this thesis on Pix-ESL and SystemC
modeling for read-out architectures,on the design space exploration for Velopix2,
and on the Sort&Bin periphery module.

Pix-ESL
In this thesis a new approach to particle detector systems design was detailed,
proposing a unified framework for system-level architectural exploration and proto-
typing based on a SystemC core and a Python analysis toolset. With this approach,
the first step in particle detectors is designing the whole system, to determine each
module’s requirements and identify bottlenecks. At the time of writing, the frame-
work can be used to build a model for read-out chips, with description granularity
at the pixel level but flexibility and run-time sufficient for quick exploration of
large systems.

Its features include real physics data stimuli, configurability, TLM 2.0 support,
data logging and statistics inside the model, plus an external Python analysis and
plotting toolset, support for processing modules, memory occupation statistics and
resource consumption estimates. The roadmap for Pix-ESL plans to expand the
types of modules provided, refine the TLM interfaces and model other architectures,
such as triggered read-out.

Velopix2 read-out prototype
Pix-ESL is being used in Velopix2 studies to determine the optimal read-out
architecture and parameters that define the amount of data-path elements, their
placement and connections, the memory sizing, the routing and arbitration functions.
An optimal design corresponds to the architecture and its parameter set maximising
the read-out efficiency while minimising the latency and amount of data-path and
memory elements.

The simulations were able to find bottlenecks in the bandwidth, which were
solved in the periphery by increasing the clock frequency and in the pixel matrix
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by doubling the amount of parallel columns. Momentary surges in pixel hit-rate
were smoothed out with appropriately sized FIFO buffers.

Due to the high pixel hit-rate, around 2.5 Gpk s−1 are generated in Velopix2 to
achieve the target read-out efficiency of 99.5%, that result in a bandwidth require-
ment of 100 Gbit s−1. This throughput can be provided by multiple 25 Gbit s−1

optical data links developed at CERN, but it comes with higher power consumption
and increased complexity in the particle detector back-end.

On-chip Sort&Bin module
To solve the issues emerging on bandwidth and power consumption in the Velopix2
design, this work suggests the addition of on-chip processing modules to aggregate
packets from the same event in a single frame.

Using Pix-ESL as a prototyping platform, a sorting and binning algorithm
was tested and appropriate parameters were identified. The whole design flow is
presented in detail, from abstract high-level description to physical implementation.

Its results seem promising, with the proof-of-concept design being able to
demonstrate its functionality and satisfy the area and power budgets. This module
also paves the way for further on-chip processing, as it concentrates data in a single
spot where processing functions can be applied to the whole frame.

Furthermore, the performance expected from the SystemC module closely
matched the grouping efficiency of the RTL, thus validating Pix-ESL as a proto-
typing tool.

Future plans
Pix-ESL is being developed to improve its run-time performance, robustness, and
add support for power and area estimation. The module library will be expanded
as more processing modules and detector sub-systems are modeled.

Sort&Bin might be integrated in the upcoming Picopix and Velopix2 chips, and
will need to be transformed into a reusable design, to adapt to other read-out chips
such as Timepix or Medipix. It could be used as a basis for further processing
modules in the periphery, which, for example, could be configured to perform
filtering or clustering.
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