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Abstract

Response to infectious disease epidemics requires an optimal distribution strat-
egy for tools of primary prevention( vaccines or prophylaxis for instance) with
the aim of protecting those susceptible from acquiring the infection. We propose
various distribution scenarios based on different epidemic phases and the goal
one wants to reach : outbreak prevention (before the disease actually becomes
an epidemic), containment (when the outbreak already occurred but stochastic
fluctuations may still lead to the extinction of the disease), mitigation (once
the endemic state is well established, one needs to adapt the strategy in order
to eliminate the disease). Through the introduction of both a mean field and
a stochastic view of an epidemiological model of a disease spread coupled with
a prevention strategy, this research provided some insights into an adaptive
approach. By analyzing various epidemiological indicators, it was possible to
devise a strategy that takes into account the specific phase of the epidemic. The
results indicate that a risk-based strategy, which prioritizes individuals with a
higher number of contacts, does not always yield optimal results.
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1 Introduction

Response to infectious disease epidemics requires an optimal distribution strat-
egy for tools of primary prevention like vaccines or prophylaxis, with the aim
of protecting those susceptible from acquiring the infection. However, achiev-
ing full coverage of those preventive tools remains a challenge due to various
factors, including limited access to healthcare facilities, financial constraints,
inadequate insurance coverage, and insufficient awareness campaigns. These
limitations make it difficult for preventive interventions to be widely available
and used.

One such prevention tool is Pre-Exposure Prophylaxis (PrEP) for the human
immunodeficiency virus (HIV), a medication developed to significantly decrease
the risk of acquiring HIV, making it an important tool in the fight against
HIV epidemics. However, maximizing the benefits of PrEP poses considerable
challenges: optimal utilization requires consistent daily adherence and regular
follow-up. Moreover, stigmatization associated with HIV, limited healthcare
infrastructure and the high cost of PrEP medication, create significant obstacles
in reaching the target population and ensuring accessibility.

In this study, our objective is to develop an optimal strategy for distributing
prevention tools, with a specific focus on PrEP for HIV. We aim to address
the challenges associated with PrEP and propose various distribution scenar-
ios based on different epidemic phases and the goal one wants to reach: out-
break prevention (before the disease actually becomes an epidemic), contain-
ment (when the outbreak already occurred but stochastic fluctuations may still
lead to the extinction of the disease), mitigation (once the endemic state is well
established, one needs to adapt the strategy to eliminate the disease). We will
consider both the epidemiological context and broader societal factors that can
influence the effectiveness of prevention campaigns. For example, the number
of sexual partners or the level of adherence to the medication may impact the
effectiveness of PrEP.

Through a comprehensive examination of existing literature and the devel-
opment of a suitable model, our study aims to offer valuable insights that can
guide policy decisions and enhance the distribution of PrEP and similar pre-
vention tools. In particular, we demonstrate that risk-based strategies, which
prioritize individuals at the highest risk of exposure, may not always be the
optimal approach for reducing infection risk or the duration of the infection.
Despite significant efforts to supply high-risk communities such as men who
have sex with men or sex workers, previous research has revealed that the effec-
tiveness of this strategy varies depending on the epidemiological context and the
efficacy of the treatment [1]. Moreover, it can be demonstrated that, based on
the epidemic phase and the desired goals, the relevant variables to be optimized
need to be adapted, subsequently necessitating adjustments to the distribution
strategy.

In the following, a network based-model will be used to describe a popula-
tion of susceptible and infected individuals. Since this work aims to develop a
distribution strategy for medicines having a limited coverage as for the PrEP,
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one will use a susceptible-infected-susceptible (SIS) model coupled to an im-
munization strategy. The SIS epidemiological model captures the transmission
dynamics of disease that do not present a long-term immunity and for which
recovery may occur as for influenza or HIV. The population will be described
as a network with individuals (nodes) separated into several classes depending
on the number of contacts (degree) that they present. After defining the model
properly, one needs to establish a distribution strategy based on the goal that
one wants to reach.

The SIS model will be combined with a PrEP rollout strategy and will be
applied to a heterogeneous population (individuals may have a different number
of contacts, the efficacy of the prevention may vary from an individual to the
other) using a formalism that enables us to address a stochastic process that
exhibits nontrivial dependencies on network and prevention characteristics.

This manuscript is organized as follows: Section 2 will introduce the mean-
field (MF) formalism for the SIS model integrated with an immunization strat-
egy. Section 3 will provide the necessary tools for describing a process accounting
for stochastic dynamics. In Section 4, we will present the key findings derived
from the stochastic description, along with a suggested approach for construct-
ing a prevention strategy based on the quantity that requires minimization.

2 Mean Field view

2.1 The classic SIS equation

In the classic SIS compartmental model, the population is divided into infected
and susceptible individuals, and individuals may transition from one compart-
ment to the other with a transmission (λ) or recovery (µ) rate.

I
µ−→ S

S
λ−→ I

For a homogeneous network where all nodes (individuals) have the same
degree (number of contacts), the system can be fully described by a single
variable x = fraction of infected individuals. The MF dynamic is described by

ẋ = −µx+ λ(1− x)x. (1)

The epidemic threshold corresponds to the point in which we may or may
not have an epidemic outbreak and it is characterized by the basic reproduction
number, an epidemiological metric representing the average number of new in-
fections that one infected individual is expected to generate in a population of
entirely susceptible individuals. In the classic SIS model, the basic reproduc-
tion number R0 is λ

µ . By setting the left hand side of equation (1) to 0, one can

identify two fixed points : x∗ = 0 or 1− µ
λ whose stability depends on the value

of R0 = λ
µ . As this number crosses the critical value 1, the system undergoes
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a transcritical bifurcation, which is illustrated in figure 1a. When R0 < 1, the
only physical fixed point is x∗ = 0 and the disease dies out: the system is below
the epidemic threshold. The regime where R0 > 1 is more interesting. In that
case, the system is said to be above the epidemic threshold and the free-from
disease state x∗ = 0 is unstable while the endemic state x∗ = 1− µ

λ is stable.
This model can be easily generalized to the case where a fraction of the

population received immunization against the disease. The effect of prevention
will be, at the MF level, to reduce the basic reproduction number. This aspect
will be explained with more details in the following section.

2.2 The SIS model coupled to an immunization strategy
in a heterogeneous population

The SIS model described by equation (1) can be extended by coupling it to
an immunization strategy. In that context, one should to further divide the
population according to whether each person received prevention or no. The
variables x and y will be respectively the conditional probabilities of being
infected given that an individual did not receive prevention (x) or the conditional
probabilities of being infected given that an individual received prevention (y).
Indeed, to allow for an epidemic breakthrough, we assume that the efficacy of the
prevention is lower than 100%, therefore, an individual that received prevention
may still get infected.

The heterogeneity in the number of contacts will be taken into account by
dividing the population into n degree classes denoted by indices i = 1, ..., n.
Each class i will then be described by nϵ + 1 variables : yia = probability that
an individual is infected given that he belongs to degree class i and received
prevention with efficacy ϵa, (a = 1, ..., nϵ) and xi is the probability of being
infected given that an individual belongs to class i and did not receive any
prevention. In total, the population will be divided into n(nϵ + 1) classes.

Let us keep in mind that the variables x and y correspond to conditional
probabilities. This choice was done to make a generalization of the common SIS
equation but it will be important to introduce joint probabilities when compar-
ing MF equations with other results as presented in sections 3.1. Moreover, we
will apply the annealed network approximation (this is equivalent to a MF ap-
proximation for a heterogeneous network). For simplicity, we assume that there
is no assortativity (i.e. no degree-degree correlation). The resulting dynamics
is described by

ẋi = −µxi +
λ

⟨ki⟩
ki(1− xi)ξ, (2)

ẏia = −µyia +
λ

⟨ki⟩
(1− ϵa)ki(1− yia)ξ, (3)

ξ =
∑
j

pjkj

[
(1− gj)xj + gj

∑
b

hbyjb

]
(4)
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(a) (b)

Figure 1: The bifurcation diagrams were obtained by solving the deterministic
dynamic. The value of the prevalence is computed on the stable fixed point
(solid line) and on the unstable fixed point (dashed ine). Figure1a shows the
two well known fixed point for the simple SIS model (no immunization, homo-
geneous network). The unstable fixed point in the region with R0 < 1 doesn’t
exist physically but the line was kept for better visualisation of the bifurcation.
Figure1b shows the value of the prevalence in the endemic fixed point and in the
free from disease state for an SIS model coupled to an immunization strategy
on a heterogeneous network, with two degree classes.

In this set of equations, pi is the probability of finding an individual belong-
ing to degree class i (number of contacts) while gi is the fraction of available
medication allocated to degree class i. Finally, ha is the probability that the
prevention works with efficacy ϵa. Limited coverage c implies that the quantity
c =

∑
i pigi is less than 1.

2.2.1 Epidemic threshold

The previous set of equations can once again lead to two different regimes de-
pending on whether the system is above or below the epidemic threshold. Our
goal is to describe the dynamic when the system is above the epidemic threshold
and we should therefore look for the corresponding conditions on the epidemi-
ological parameters. The conditions on the parameters can be obtained by
performing a linear stability analysis around the free-from-disease state. In the
case of two populations with no heterogeneity in the efficacy, equations (2) and
(3) can be linearized around small x and y, which leads us to the following
expression


ẋ1

ẏ1
ẋ2

ẏ2

 = J


x1

y1
x2

y2

 , (5)
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with J being the Jacobian matrix (of size 4× 4 in the case of two degree classes
with homogeneous efficacy). If all eigenvalues of J , computed in 0, are nega-
tive, then the free-from-disease state is stable, and we are below the epidemic
threshold. On the contrary, it is enough to find one positive eigenvalue to show
that we are above the epidemic threshold. It is possible to diagonalize J an-
alytically for no prevention (g1 = g2 = 0), and we find that its spectrum is:

[λ ⟨k2⟩
⟨k⟩ − µ,−µ,−µ,−µ]. This leads to the following condition on the parame-

ters to be above the epidemic threshold : λ > µ⟨k⟩/⟨k2⟩. More generally for
g1, g2 ̸= 0, the spectrum of J is given by [−ϵ⟨gk2⟩ λ

⟨k⟩ + ⟨k2⟩ λ
⟨k⟩ −µ,−µ,−µ,−µ].

The epidemic threshold is thus given by

λc =
µ⟨k⟩

⟨k2⟩ − ϵ⟨gk2⟩
. (6)

One can see in Figure 1b the new bifurcation diagram corresponding to the
classic SIS model coupled to an immunization strategy.

In the most general case where both the network and the efficacy of the
prevention are heterogeneous, one can show [2] that the epidemic threshold is
given by

λc =
µ⟨k⟩

⟨k2⟩ − ⟨ϵgk2⟩
, (7)

and the basic reproduction number of this model can be identified as R =
λ
µ

⟨k2⟩−⟨ϵgk2⟩
⟨k⟩ [2].

2.2.2 Endemic state

In the general case of heterogeneous network and efficacy, the endemic state is
obtained by setting the left-hand-side of equations (2) and (3) to 0 leading to
the following expressions:

xi =
λ ki

⟨k⟩ξ

1 + λ ki

⟨k⟩ξ
, (8)

yia =
xi(1− ϵa)

1− ϵaxi
. (9)

Equations (8) and (9) are not analytically solvable in general, due to the term ξ
that couples all classes. However, for homogeneous degree and efficacy, solving
this system of equations reduces to solving a one-dimensional equation for x and
the endemic state can be expressed in terms of the parameters of the problem.
Moreover, the value of the endemic state can be obtained by solving numerically
equations (2) and (3) using finite differences methods. For two degree classes,
the solution converges to the endemic state within a few iterations (less than
10). This numerical approach is robust as long as one chooses reasonable initial
conditions (xi and yi are conditional probabilities, so one should take initial
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(a) n = 1, k = 2, g = 0.2, λ/µ =
0.99, ϵ = 0.2

(b) n = 2, k1 = 2, k2 = 3, λ/µ =
0.99, ϵ = 0.2, g1 = 0.2, g2 = 0.8

Figure 2: The analytical prediction of the endemic state is shown in dashed lines
(solved with mathematica) and the numerical estimation is in solid lines. Figure
2a: The endemic state is calculated for a single degree class, x corresponds to
infected individuals that did not receive any prevention while y corresponds to
infected individuals that received immunization. Figure 2b : The endemic state
is calculated for two degree classes denoted by index i= 1, 2. In both cases, the
analytical prediction (in dashed lines) is in perfect agreement with the numerical
estimation (solid lines).

points ∈ [0, 1]). Finally, one can see in Figure 2 that the numerical solution
agrees perfectly with the theoretical prediction (solution of the endemic state
obtained with mathematica for one and two degree classes).

3 Stochastic dynamics and WKB methods

In the previous section, we considered a set of equations based on a mean field
view : the equations were purely deterministic and did not take the intrin-
sic stochasticity of the model into account. To assess the impact of including
heterogeneous efficacy on the effectiveness of treatment, it is now necessary to
consider stochastic differential equations.

In this context, the endemic state appears to be a metastable state and the
free-from disease state corresponds to an absorbing state : there is a very small
but finite probability that the disease will disappear and no individual will no
longer be in the infected state.In addition to the prevalence of the disease, one
can look at the average time spent in the metastable endemic state. Therefore,
building an optimal distribution strategy relies also on defining properly the
goal of the immunization campaign in order to choose the relevant quantity
that needs to be optimized.

In order to treat this complex stochastic process, one can use the Wentzel-
Kramers-Brillouin (WKB) formalism [3]. Initially introduced in quantum me-
chanics as a semi classical limit, this set of methods can be applied in the context
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of stochastic processes in the limit of a very large system in which stochasticity
can be treated as a perturbation around the MF solution. As we shall see later,
the endemic state is nothing but the stochastic counterpart of the deterministic
fixed point derived from the MF equations (2) and (3). Going beyond the de-
terministic description enables us to compute [4], [5] the optimal path towards
the absorbing state and other quantities that derive from it.

In the following, the WKB formalism will be presented with more details and
we will compare two methods allowing for the evaluation of the average time
spent in the endemic state, denoted as τ in the following and also referred to as
the mean time to extinction. First, we will consider a numerical approach based
on the master equation associated to the SIS model coupled to an immunization
strategy. Then, we will use the results presented in [6] which provides the system
size dependence of the mean time to extinction.

Section 3.1 introduces the master equation describing the stochastic process
underlying our model. In section 3.2, the WKB Ansatz will be presented and
adapted to the SIS model coupled to an immunization strategy with or without
heterogeneity in the network and/or in the efficacy of the immunization. The
latter can be described in a very general manner by following the notations used
in [5], [6], [7]. Section 3.3 will be dedicated to the derivation of Hamilton’s equa-
tions and their fixed points. A vector approach will then be presented in section
3.4, providing a numerical estimation of the mean time to extinction. Finally,
in section 3.5, we will present an analytical approach to the heterogeneous SIS
model based on the results of Assaf et al. [2] as well as Clancy et al. [6] [8].

3.1 Master equation

Let us consider a population of N individuals assigned to n degree classes,
with homogeneous efficacy. Then, ∀j = 1, ..., n, xj = P(infected | class j, no
prevention), yj = P(infected | class j, prevention) and pj = P(class j) while
gj = P(prevention | class j). Therefore, P(infected, class j, no prevention)
= pj(1 − gj)xj while P(infected, class j, prevention) = pjgjyj . The variable
Ixj = Npj(1− gj)xj corresponds to the number of infected individuals in class j
that did not receive prevention and Iyj = Npjgjyj is the number of individuals
in class j that received prevention.

At each time step, an individual of class j gets infected at a rate w+ and
recovers at a rate w−. It is important to understand that there are several ways
of defining the SIS model. In the context of network-based models (which are
the ones used in our case), connections between individuals are random variables
and can be described by an adjacency matrix. The rates w+ and w− can then
be defined in several ways (see [9]), depending on whether connected individuals
are in perpetual contact or no. If we follow what was done in reference [9], we
can assume that connected individuals are in perpetual contact. The explicit
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expression of the rates is given in equations (10)-(13)

w+(Ixj ) =
λ

N
(Npj(1− gj)− Ixj )β

x
j

n∑
i=1

αi (I
x
i + Iyi ) , (10)

w+(Iyj ) =
λ

N
(Npjgj − Iyj )β

y
j

n∑
i=1

αi (I
x
i + Iyi ) , (11)

w−(Ixj ) = µIxj , (12)

w−(Iyj ) = µIyj . (13)

In these equations, λ and µ are the overall infection and recovery rates. In order
to be consistent with the notation in [5], we introduce the infectiousness αi ≡ ki
as well as the susceptibility β(xi) ≡ ki

⟨k⟩ , β(yi) ≡
ki

⟨k⟩ (1− ϵ).

These quantities will be defined in details in the following section : it will
allow us to use the results presented in [6] and extend the methodology to
heterogeneous efficacy (implemented in β). The heterogeneity of the network
(the difference in degree) is already implemented and impacts both α ans β.

It is clear from those equations that the term
∑n

i=1 αi (I
x
i + Iyi ) corresponds

to the variable ξ that was introduced in the MF equations (2)-(4) but it is
now rescaled by a factor N. Note that this choice for the infection and recov-
ery rates was validated in several ways: the basic reproduction number found
in section 2.2.1 is exactly the same as the one presented in ref [6] using this
new parametrization. Additionally, we will see later that the expression of the
endemic state obtained by solving the Hamilton equations that derive from the
master equation defined with those rates coincides with the generic expression
presented in [6] as well as the endemic state derived from the deterministic
dynamic. The master equation for the probability distribution of a state I
=(Ix1 , I

y
1 , ..., I

x
n , I

y
n) can then be derived and one gets :

∂P (I, t)

∂t
=

n∑
j=1

∑
q=x,y

w+(I − 1j)P (I − 1j)− w+(I)P (I),

+ w−(I + 1j)P (I + 1j)− w−(I)P (I).

(14)

Here, 1j is a vector whose components are all 0 except for the jth component
that is equal to 1.

3.2 WKB Ansatz or large deviation principle

Let us consider a population whose state is described by the vector q and that is
divided into n degree classes. An SIS model coupled to an immunization strategy
on a heterogeneous network can be described following a common notation found
in the literature [5], [10]. The state variable qi is the joint probability of being
infected, belonging to class i and being in a given prevention state: if q = x̃,
the individual did not receive prevention and q = ỹ if the individual received
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prevention. Each class being characterized by some infectiousness αq
i , some

susceptibility βq
i and by the fraction of individuals fq

i belonging to class i.
Then, the probability that an individual of class i is infected by an individual

of class j is given by : λαq
j(f

q
i − qi)β

q
i . In order to express those new quantities

in terms of the parameters of the model, one can use the following definitions:

αq
i ≡ ki, β

x
i ≡ ki

⟨k⟩ , β
y
i ≡ ki(1−ϵ)

⟨k⟩ , fx
i = pi(1− gi), f

y
i = pigi.

For simplicity, the definitions were given in the case of a heterogeneous
network with homogeneous efficacy but they can be easily generalized to het-
erogeneous efficacy, simply by adding a layer of classification in the model. The
population that received prevention in class i can be further divided into efficacy
classes,leading to a description with state variables ỹai . Only the susceptibility
βy
i and the fraction of immunized individuals in class i f(yi) will be modified

to β(ỹai ) =
ki(1−ϵa)

⟨k⟩ , f(ỹai ) = pigiha where ha is the probability that the immu-

nization works with an efficacy ϵa.
To solve this stochastic process, one can use the WKB Ansatz (15) and

perform a first order approximation in 1
N of the argument S(q) in the exponent

(16) [3].

P (q) = eNS(q), (15)

S(q + dq) ≃ S0(q) +
1

N
∇S0∆q. (16)

This is equivalent to assuming that the probability distribution follows a
large deviation principle. Indeed, introducing weak noise allows for transi-
tions between the metastable state and the absorbing one. These transitions
correspond to rare events involving large fluctuations [11]. Finally, the infection
and recovery rates in equation (14) are expanded in terms of 1

N but only the
0 order term is kept. This gives us an equation for S0(q) (17), which can be
solved in some cases. S0 will be referred to as the action.

∂tS0(q, t) =

n∑
j=1

∑
q=x,y

∑
∆q=± 1

N

w(q −→ q + 1jδqj)
[
e∆q∂qS0(q,t) − 1

]
. (17)

The analogy with a mechanical system can be made by defining the mo-
mentum θ = ∇S which is the conjugate variable of the state variable q. One
can find the conditions under which one is allowed to use this analogy in the
article by Onasager and Mashlup ([12]). It appears that in our case, the state
variable q describing the stochastic process verifies all the conditions necessary
to define a conjugate variable θ and some further considerations on the action
S0 can be made as we will explain later. One can re-write equation (17) as
a Hamilton-Jacobi equation since the right hand-side can be identified as the
Hamiltonian of the system : ∂tS0(q,θ, t) = −H(q,θ, t).

From this analogy, one can derive Hamilton’s equations for the ”position” q
and the ”momenta” q. The variable θ carries some information on the stochastic
nature of the system. Let us take a diffusion process as described in section
C.2 of [9]. The Langevin equation associated to this process is given by ẋ =
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F (x)+
√
Dξ(t) (where F comes from the deterministic force driving the motion

of the particle while D is the diffusion constant and ξ is the noise term) and the
equation of motion of the particle is ẋ = ∇pH = F (x)+p (here F is comes again
from an external force and p is the momentum of the particle). By comparing
those two equations, the momentum can be identified to the noise term in the
Langevin equation Onsager and Mashlup talk about a thermodynamic force that
quantifies the tendency of the system to reach equilibrium. These considerations
lead to a better understanding of the existing connection between the stochastic
and the deterministic descriptions of the problem. Any fixed point of the MF
description has a counter-part that is a fixed point of Hamilton’s equations with
a momentum θ = 0.

The definition of the Hamiltonian enables us to derive the usual equations of
motion q̇ = ∂H

∂θ and θ̇ = −∂H
∂q , underlying the evolution of the state variable q

and the associated momentum θ. The fixed points of these equations can then
be obtained by setting the l.h.s to 0. Among them, one of the fixed point will
correspond to the endemic state (with q∗ ̸= 0, θ∗ = 0 ) while the free-from-
disease state will correspond to another fixed point (identified by q∗ = 0 , θ∗

̸= 0). It can be shown [2], that the free-from-disease state has a momentum
θ∗i (q) = ln(w+/w−).

Solving the Hamilton equations between two fixed extremes (endemic and
absorbing state) provides the optimal path minimizing ∆S ∼ S0 and there-
fore corresponding to the most likely path to extinction. This can be done
with kinetic Monte-Carlo simulations on heterogeneous networks [5] or using an
Iterative action minimization algorithm [4].

3.3 Hamilton’s equations

In the following, we will apply the general theory to the specific problem of the
SIS model coupled to a prevention strategy on a homogeneous network (single
degree) with homogeneous efficacy of the prevention. We will determine the
value of the endemic state, to be compared with the one obtained in a mean
field fashion.

Let us consider again a population divided into several degree classes denoted
by indices i, j = 1, .., n. In order to be consistent with the notation used earlier,
we define x̃i = P(infected, class i , no prevention) and ỹi = P(infected, class i,
prevention) while xi = P(infected | class i , no prevention) and yi = P(infected
| class i, prevention ). Again, we can use a more general variable qi = x̃ or ỹ.
The infection and recovery rates can then be expressed in terms of the state
variable qi as follows:

w+(qi) = λ (fq
i − qi)β

x
i

n∑
j=1

Nαjqj , (18)

w−(qj) = µNqj . (19)

The Hamiltonian can then be expressed in terms of the infection and recovery
rates as in equation (17), setting ∆qi = 1

N . According to [9], any fixed point
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of the mean-field dynamics has a corresponding fixed point in the Hamiltonian
dynamics with the same q and θ = 0. This correspondence allows us to find
easily the endemic state starting from Hamilton’s equations. Indeed, one can
set θqi = 0 and look for the fixed points of Hamilton’s equations:

x̃i =
λpi(1− gi)β

x
i ξ

µ+ λβx
i ξ

, (20)

ỹi =
λpigiβ

y
i ξ

µ+ λβy
i ξ

, (21)

ξ =

n∑
j=1

αx
j (xj + yj). (22)

Remembering that x̃i = xif
x
i and ỹi = yif

y
i , we can express the equations

of the endemic state in terms of the conditional probabilities xi and yi. These
equations are exactly the same as the ones obtained with the MF formalism (
see equation (8) and (9)). Note that the free-from-disease state corresponds to
the fixed point such that x, y = 0 and θ ̸= 0. Finally, the most likely path to
extinction, also called the ”WKB” path will be the one connecting the endemic
and the absorbing (free-from-disease) states. It can be obtained by noticing
thatH(q,θ = 0) = 0 and since the Hamiltonian is constant along a trajectory,
it will remain 0. This allows us to compute q(t) along the path as presented
in [9] and can be used to determine the evolution of the prevalence along the
trajectory to the extinction. This might be used to build an optimal strategy
in which we choose to target the degree class that minimizes the prevalence as
it evolves in time but it will not be presented here.

3.4 Eigenvalue problem

Equation (14) can be written in a vectorial form such that

Ṗ = PW (23)

where W is the transition rate matrix such that the element Wij = rate(i−→j).
The stationary distribution P ∗ is obtained by setting the left hand side of equa-
tion (23) to 0. P ∗ appears to be an eigenvector of the matrix W, with eigenvalue
0. In fact, this eigenvector corresponds to the absorbing state in which the sys-
tem will end up at some point.

However, since the endemic state is a long-lived meta-stable state, it can be
assumed ([13],[3]) that the solution of the master equation is of the form :

P (I ̸= 0, t) ≃ πIe
−t/τ , (24)

P (0, t) ≃ 1− e−t/τ . (25)

Here, πI is the quasi-stationary distribution (QSD) describing the process when
the system is close to the endemic state while τ is the decay time from the
endemic to the absorbing state (the mean time to extinction we are looking
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for). Note that π is normalized to one if we sum over all states different from
the absorbing state.

The spectrum of W contains information on the dynamic of the system. If
we order the eigenvalues of W in the following way : 0 > Re(λ1) ≥ Re(λ2) ≥
Re(λ3) ≥ ... and the associated eigenvectors (l0, l1, l2, l2, ...). For the SIS model,
the first eigenvalue is always 0 and corresponds to the long term behaviour in
which the system goes to the absorbing state, so l0 is the stationary distribution.
Since l0 corresponds to a probability distribution, it should be renormalized such
that all entries sum up to 1. All other eigenvalues are real and negative.

If we consider the reduced matrix W0 ( that is W from which we remove the
first line and column), the first eigenvector corresponds to the quasi-stationary
distribution and the associated eigenvalue is related to τ by the following :
τ ∝ 1

λ1
. If the quasi-stationary state was a real stable point, λ1 = 0 and τ = ∞.

It is important to note that this approach assumes that the time it takes to
reach the endemic state is much shorter than the mean time to extinction. This
assumption holds if |λ2 − λ1| >> |λ1|, which corresponds to the fact that the
time spent in the transient before reaching the endemic state is negligible with
respect to the mean extinction time [13]. Since most entries of the matrix W
(or W0) are 0, one can use efficient algorithms to compute its first eigenvalues
[14]. However, the size of W increases as O(Nn) which makes the computational
time grow exponentially with the number of classes n.

We will now compare the results of the analytical approaches (see next sec-
tion) with our numerical estimation only in the case of a single degree class
divided into immunized and non immunized individuals, with homogeneous ef-
ficacy. This corresponds to having pj = 1, αj = k .

The existence of an analytical approach is all the more useful as we increase
the number of classes since the solution of the vectorial problem becomes more
challenging. Indeed, this method presents clearly some limitations since the
eigenvalues of the transition matrix becomes smaller and smaller as the sys-
tem size increases ( of order 10−15 for N = 500), which makes the algorithm
highly sensitive to numerical errors, in addition to the computational time that
increases exponentially with he number of classes. This is an important limita-
tion when we are looking for a methodology to treat an increasing number of
layers of the population in the model.

Note that an important assumption is verified also for low values of N: in
order to approximate τ by −1

λ1
, it is indeed necessary [3] to assume that |λ1| <<

|λ2−λ1|. After numerical evaluation of the first eigenvalues, one can check that
this assumption is well verified (in figure 5b).

To conclude this section, one can make a few observations on the QSD.
Figure 3 shows the prevalence distribution in the quasi-stationary state. This
gives us another way of comparing the analytical results with our numerical
approach : one can see that the QSD is indeed maximal and centered around
the endemic state prevalence, which was obtained by the method presented in
the next section. It is also interesting to see how the QSD varies as we change
some parameters. Increasing the system size N will decrease the skeweness of the
distribution ( Figure 4a ). As the efficacy of the immunization increases (while
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Figure 3: The eigenvector corresponding to the first eigenvalue is shown for k
= 3, ϵ = 0.5, g = 0.2 and N = 300. The dashed line in black corresponds to the
value of the endemic state prevalence, computed analytically. The maximum of
the QSD is localised around this value.

keeping the basic reproduction number constant) the QSD becomes slightly
narrower and the probability of finding the system in the endemic state is higher.
Finally, the number of contacts k will mainly impact the value of the endemic
state prevalence: as k increases, the QSD is shifted towards the left and becomes
narrower.

3.5 Analytical expression for the mean time to extinction

In order to have an analytical expression of the mean time to extinction, one
can use the results presented in [2]. In this article, the extinction of long-lived
stochastic population, caused by intrinsic noise is explored. The method is
quite generic but the results diverge depending on the stability of the absorbing
state. In our case, we will follow the method and results presented for a repelling
absorbing state since the system is studied above the epidemic threshold (see
section 2.2.1)

3.5.1 Exact expression

The main idea of the article is to give an analytical expression for the mean time
to extinction by looking at both the quasi-stationary distribution (that describes
well the system when the population reached or is around the endemic state) and
then by linearizing the rates around the absorbing state, a recursive relation will
give us an estimate of the solution close to the absorbing state. The connection
between the two regimes is then made in order to get a solution valid in both
regimes.

The first step consists in determining the quasi-stationary distribution whose
expression is given in equation (24). π will be given by the normalized eigen-
vector associated to the first eigenvalue λ1 (smallest in absolute value). In [2],
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(a) (b)

(c)

Figure 4: Dependence of QSD of the prevention on parameters characterizing
the system. Figure 4a : The system size is modified while all other parameters
are fixed. The main effect of increasing N is to reduce the value of the endemic
state probability as well as the variance of the distribution.Figure 4b : Modifying
the efficacy while keeping the basic reproduction number constant will not have a
big impact on the shape of the distribution, except for the value of the endemic
state probability. Figure 4c : Increasing the number of contacts shifts and
deforms the distribution such that the value of the endemic state prevalence is
higher and the distribution sharper.
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the authors derive an expression for the quasi-stationary distribution, that is to
be compared with the one obtained by the numerical solution of the eigenvalue
problem. It is important to note that the following results hold only in the case
where the rates can be written in the form : w(q) = Nw0(q) + u(q) + O( 1

N )
where w0(q) and u(q) = 0(1) when q = 0(1).

In our case, one can see from equations (18) and (19) that this assumption
is valid and that u(q) is actually 0. Moreover, the infection and recovery rates
scale like O(N), as expected. Note that there are two types of trajectories
with 0-energy: fast and slow modes (activation and relaxation). However, only
the fast mode will matter in the case of a repelling absorbing state and it
will be enough to match the recursive solution with the fast mode. Then, a
recursive solution is given by solving the eigenvalue problem and by linearizing
the infection and recovery rates for qj small enough. Finally, for a single step
process, the two solutions can be merged in order to compute the mean time
to extinction. Note that the two solutions are compatible in the intermediate
regime in which 1 << Iqj << N or 1

N << 1
qj

<< 1√
N
.

We will now generalize the results presented in [2] to higher dimensions.
Let us consider a population divided into n = nk(nϵ + 1). The variable q
has 2n components where n is the number of degree classes. As always, the
probability of belonging to degree class i and not having received prevention
will be given by fx

i = pi(1 − gi) and the probability of being in class i and
having received prevention will be given by f(yi) = pigi. For simplicity, we will
assume homogeneous efficacy but the generalization to heterogeneous efficacy
can be done by introducing another classification inside each degree class.

τ =

√
(2π)ndetΣ−1

N2n
e
N

∑n
i=1

∑
q=x,y f(qi)

∫ q∗i
0 ln

(
w+(qi)

w−(qi)

)
dqi

eS1(q
∗)−ln(q∗) (26)

The evaluation of the quantity
∑n

i=1

∑
q=x,y f(qi)

∫ q∗i
0

ln
(

w+(qi)
w−(qi)

)
dqi is not

straightforward in a multidimensional problem because of the interdependence
of the state variables characterizing each class of the population. Indeed, the
rate w+(qi) not only depends on qi but on all the qj , j = 1,..n, q=x,y (see
equation (18)). Therefore, it is necessary to know the dependence of qj on qi
along all the trajectory from 0 to q∗ in order to calculate this integral. One could
solve those trajectories numerically and introduce the result in the expression
for the mean time to extinction which would lead to a semi-analytical estimation
of the time spent in the endemic state (see section 4 for some insight on the
numerical tools allowing for the evaluation of the trajectories).

3.5.2 Dependence in the system size

One can also proceed further in the analytical approach by using the results
presented in an article by Clancy [6]. Depending on the type of heterogeneity
that is introduced in the system, one can get an exact expression of the action
variation ∆S along the path to extinction. This quantity will indeed be very
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useful to get the dependence of the mean time to extinction τ on the system
size N . The previous calculations have shown that τ grows exponentially with
the system size and equation (26) can be written in the following form : τ =

c
N2n e

N∆S where c is a prefactor independent of the system size. Therefore, for

N −→ ∞, lnτ
N = lnc

N − 2n lnN
N +∆S can be accurately approximated by ∆S.

In [6], the author derives the Hamiltonian of the system as well as the en-
demic state which matches the one we obtained earlier (20)-(22). Then, a first
theorem is demonstrated and gives the asymptotic limit of lnτ

N for N going to
infinity, in the case where either the susceptibility (β) or the infectiousness (α)
is heterogeneous. In the case where both are heterogeneous, an approximation
of the action is given. The interested reader can find the full derivation in the
original article, but here we will simply present the main elements that were
used in order to derive the expression of the action associated to an SIS model
coupled to an immunization strategy.

Since the action variation must be computed along a path of 0-energy, if
one can find a quantity V such that H(q, ∂V

∂θ ) = 0, then the calculation of ∆S
is straightforward. Following a similar reasoning as the one presented in the
article, one can derive an expression of the action in the general case where
both the susceptibility and the infectiousness are heterogeneous:

∆S = −
n∑

i=1

∑
q=x,y

∫ q∗i

0

dqi
dV

dqi
= V (0)− V (q∗), (27)

dV

dqi
= ln

(
qi

λ
µβ(qi)(f(qi)− qi)

∑
j

∑
q αjqj

)
. (28)

One can first consider the case of heterogeneous susceptibility with homo-
geneous infectiousness. According to our definition, the degree (number of con-
tacts) must be the same for everyone but we can divide the population depend-
ing on their immunization state and even introduce heterogeneity in the efficacy.
Here index a = 0, 1, ...nϵ will correspond to an efficacy class. We will denote by
qa the probability of being infected and in efficacy class a. The class a = 0 will
correspond to individuals without immunization (ϵ0 = 0). For homogeneous
efficacy, we would have only two classes : q0 = x and q1 = y with efficacy ϵ ̸= 0.
The probability of not being immunized (a = 0) is, as always, (1 − g) while
the probability of being immunized with a drug that has efficacy ϵa is gha (for
a > 0) which leads to defining f0 = (1− g) and fa>0 = gha.

The settings presented above correspond to having homogeneous infectious-
ness ( αa = ka = k, ∀a) and heterogeneity in the susceptibility (βa = (1− ϵa)).
The analytical expression of the action is then given by:

∆S = V (0)− V (q∗) =
∑
a

faln (1 + βad)−
µd

λα
, (29)

1 =
λ

µ

∑
a

αβafa
1 + βad

. (30)
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(a) (b)

Figure 5: Numerical solution of the eigenvalue problem. The calculations were
performed for k = 2, ϵ = 0.5 and g = 0.2. Figure 5a : The eigenvalue λ1 was
obtained with a function from the scipy library in python (straight line). The
result was tested by comparing it with other algorithms (shift and invert algo-
rithm and power inverse algorithm with LU decomposition [14]). The difference

between the numerical value of ln(τ)
N (in solid line) and ∆S is decreasing with

the system size. Figure 5b : The ratio |λ2 − λ1|/|λ1| is shown here and it is
growing exponentially with the system size N .

Note that d is the unique positive solution of equation (30) when αi > 1.
This expression is advantageous because it allows to get immediately ∆S, simply
using the expression of the endemic state derived earlier in equations (20)-(22),
without even having to determine the corresponding momentum, also in the
case of heterogeneous efficacy.

By extending the approach presented in ref [6], one can get a precise expres-
sion for the action in the case of many degree classes coupled to an immunization
strategy (both infectiousness and susceptibility are heterogeneous).

∆S =
∑
i

∑
a

[
f i
aln
(
1 + βi

ad
)
− qia

]
, (31)

1 =
λ

µ

∑
i

∑
a

αiβ
i
af

i
a

1 + βi
ad

. (32)

Again, one can refer to Figure 5a in order to compare the numerical estima-
tion of the mean time to extinction and the analytical expression for a single
degree class (k=2) with an immunization strategy (efficacy ϵ = 0.5 and coverage
c = 0.2).

4 Designing an optimal strategy

The reproduction ratio is an important predictor of the emergence and evolution
of infectious disease outbreak. Its value determines whether the disease can
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trigger an outbreak, as it indicates whether each infected individual infects
more than one person.

However, when the disease is endemic, public health often focuses on mini-
mizing another significant epidemiological measure: the prevalence of the disease
within the population. This measure represents the fraction of infected individ-
uals and indicates the extent of the disease presence within the population.

In the previous section, a new formalism was introduced to effectively ad-
dress the stochastic process underlying the dynamics of our problem. This
approach enables us to examine a new quantity: the mean time to extinction.
This measure corresponds to the duration spent in the endemic state before
transitioning to a disease-free state due to stochastic fluctuations. The mean
time to extinction represents an alternative pathway for developing an optimal
distribution strategy. On the one side, it prompts the question: What is the
relevant measure to consider when the coverage of the prevention tool is lim-
ited? On the other side, it leads to the realization that the decision to optimize
the basic reproduction number or the prevalence, or to focus on the time to
extinction, depends on the specific circumstances.

Understanding the definitions of these three measures helps us identify when
each measure becomes significant. To minimize the risk of outbreak, the re-
production number should be minimized. Once an outbreak has taken place,
efforts can be focused on containing the infection and reducing the mean time
to extinction. This measure becomes relevant when the number of infected indi-
viduals is relatively small. It is important to note that the duration spent in the
metastable endemic state increases exponentially with population size. Thus,
this measure becomes particularly interesting when an outbreak has occurred
within a specific population which has loose ties with other populations, ie. is
spatially contained. In such a scenario, if a timescale separation between the
mean time to extinction τ and the timescale spreading to other populations
exists, then one can consider the sub-population in which the outbreak subsides
as the effective population and the spread to larger regions can be prevented
by minimizing the mean time to extinction. Finally, when the endemic state is
well established in a large population, the most suitable measure to consider is
the prevalence of the disease. At this stage, the objective becomes the complete
elimination of the disease.

4.1 Prevention

Let us first look at how we can minimize the risk of having an outbreak. As
mentioned in section 2, the basic reproduction number for an SIS model coupled
to a prevention strategy in a population with heterogeneous number of contacts
and efficacy of prevention can be expressed as:

R0 =
λ

µ

⟨k2⟩ − ⟨ϵgk2⟩
⟨k⟩

. (33)

In the previous expression, ⟨⟩ refer to an average over both degree distribu-
tions and efficacy distributions. Now, in order to determine which population

22



should be given priority to receive prevention, one should determine the preven-
tion distribution g that will minimize the basic reproduction number. However,
since g is a distribution, R0 is a functional and this would correspond to a
variational problem.

Even though an analytical solution can be obtained for R0, the same cannot
be applied to the prevalence or the mean time to extinction, due to their explicit
dependence on the endemic state that doesn’t have an explicit analytical solution
in the general case. Therefore, our goal will be a little bit different since we will
focus on finding the value k∗ that maximises the response function of each
quantity (here the basis reproduction number) defined as follows:

r(km) = − ∂R0

∂(Npmgm)
. (34)

The definition above corresponds to looking at the variation in the basic
reproduction number as we make a small variation in the amount of prevention
given to degree class km Inserting equation (33) into equation (34) leads to the
following expression :

r(km) =
⟨ϵ⟩k2m
N⟨k⟩

. (35)

It is clear that r(km) is maximal for km −→ ∞ and one can immediately
conclude that in the prevention phase, when the goal is to prevent an outbreak
of the disease, the best strategy is the well-established risk-based distribution
strategy: in order to minimize the risk of outbreak, one should give prevention
in priority to individuals with the highest degree (i.e. with the largest number
of contacts).

4.2 Containment and elimination

In a scenario where the disease is well established only for a fraction of the
population, one can expect that the disease might die out thanks to stochastic
fluctuations. In that context, we can try to determine what class to prioritize
to minimize the time spent in the metastable state. In the previous section, we
have applied existing results from the literature in order to get an analytical
expression for the exponential rate of the mean time to extinction. Once again,
we define a response function that informs us on the variation in the exponential
rate of the mean time to extinction as we perform a slight change in the fraction
of prevention given to class m:

t(km) = − ∂∆S

∂(pmgm)
. (36)

When the outbreak already occurred, one will focus on eliminating the disease by
minimizing the response function associated to the prevalence (i.e. the fraction
of infected individuals).

f(km) = − ∂I

∂(pmgm)
. (37)
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The final expression of the response function can be obtained by deriving the
action defined in (31). Note that the following expression is for homogeneous
efficacy, but a similar result can be obtained in a heterogeneous case.

t(km) = ln

(
1 + βx

md

1 + βy
md

)
− 1

pm

∑
i

(
fx
i β

x
i

1 + βx
i d

+
fy
i β

y
i

1 + βy
i d

)
dξ

dgm
− f(km). (38)

The prevalence being given by
∑

i pi ((1− gi)x̃i + giỹi), the response func-
tion related to this quantity is given by:

f(km) = xm − ym − 1

pm

∑
i

pi

(
(1− gi)

dxi

dgm
+ gi

dyi
dgm

)
. (39)

It is clear from this that t and f will not have the same behaviour with
respect to the degree k and one can try to find and compare the degree class k
that will maximize those functions.

4.2.1 Early-stage distribution strategy for prevention

Let us consider a naive population that did not receive any prevention yet. This
would be valid in the beginning of a prevention campaign, and would be equiv-
alent to taking a value of coverage c = 0. One can use the previous relationship
between f and k as well as the results presented in [1] in order to understand
better the different strategies that one should adopt in the containment and
elimination phase. At 0 coverage, one has ∀i = 1, ..., n gi = 0 and

f(km)|g=0 = (xm − ym)|g=0

(
1 +

Ψλ̂km
1− Φ

)
, (40)

t(km)|g=0 = ln

(
1 + λ̂kz

1 + (1− ϵ)λ̂kz

)

− (xm − ym)|g=0

(
1 +

λ̂km
1− Φ

(Ψ− χ)

)
.

(41)

Note that we have used the quantity λ̂ = λ
µ⟨k⟩ that is simply a rescaling of

the overall infection rate. One can give a physical interpretation to the quantity
z = ξ|g=0 = ⟨xk⟩ =

∑
j pjxjkj . Indeed, xk being the probability of being

infected given that we belong to class k (again, we’re working in the limit of no
prevention), pkxk will be the joint probability of being infected and in class k
and

∑
j pjxjkj = z will be the average degree of those infected. The quantities

Ψ = ⟨ k
(1+λ̂kz)2

⟩ , Φ = ⟨ λ̂k2

(1+λ̂kz)2
⟩ and χ = ⟨ k

1+λ̂kz
⟩ are averages over the degree

distribution.
The expression of f in equation (40) is a result taken from the article [1].

The authors also showed that for ϵ below a certain threshold ϵc, f(km)|g=0 is
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maximal for some k∗ < ∞. Above this threshold, the maximum of f is at ∞
and the risk-based strategy holds.

Equation (41) can be decomposed as the sum of two terms that will deter-
mine whether we can find a similar behaviour for t or no. The first term is a
positive quantity that increases with k and will therefore tend to increase the
value of k∗, going in the direction of the risk-based strategy. The second term
is a positive contribution since Ψ − χ is negative, so the resulting term is very
similar to f(k). To proceed, one needs to determine the derivative of t with
respect to k :

t′(k) ∼ 2
χ−Ψ

1− Φ
+

(2− ϵ)z + 2λ̂z2k(1− ϵ)

1 + (2− ϵ)λ̂zk + λ̂2k2z2(1− ϵ)

(
1− λ̂k(χ−Ψ)

1− Φ

)
. (42)

When k −→ ∞, t′(k) tends to 2ϵχ−Ψ
1−Φ . Moreover, the value of k∗ such that

f ′(k∗) = 0 is not physical (negative). This indicates that the response function
for the mean time to extinction is maximised by the largest value of k, going in
the direction of risk-based strategies.

Those results have important implications : depending on whether one wants
to prevent, control or mitigate an infectious disease, the distribution strategy
of the prevention tool is not the same and one must adjust its strategy as the
disease spreads among the population. When the prevention tool is distributed
in a population that did not receive any prevention yet (i.e. gi = 0∀i), the
best strategy to control the spread of the disease and contain it is to focus on
individuals with the highest number of contacts. Instead, when the outbreak
already occurred, alternative strategies (targeting lower degree nodes) should
be considered.

4.2.2 Distribution strategy for a finite coverage of the population

Even though further analytical analysis is challenging, especially if one wants
to go beyond the 0 coverage limit, one can try to understand whether the mean
time to extinction and the prevalence behave in a similar way. We know from a
previous work [1] and from the previous observations that for a prevention tool
with efficacy lower than 100%, the risk based strategy is not always the optimal
choice if we want to maximize f or t. Using a numerical solution of the endemic
state for a population with two degree classes, we can show that, at fixed basic
reproduction number, both the prevalence and the exponential rate associated
to the mean time to extinction will not be minimized by a risk based strategy
when the efficacy is finite (see figure 6). Moreover, this result shows that the
two quantities behave differently: if we define ϵc as the minimal value of efficacy
needed for a risk based strategy to work, we can see that this critical value is
lower for the mean time to extinction than for the prevalence. Moreover, the
interval of values for which a mixed strategy is better than targeting a specific
class is larger for the mean time to extinction.

Even though an analytical analysis of the response functions t(k) and f(k)
is necessary to provide a complete strategy, one can at least conclude from
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(a) (b)

Figure 6: The optimal value of gamma (i.e. fraction of prevention given to the
lowest degree class) is shown as a function of the efficacy when R0 is kept at a
constant value > 1. Figure 6a shows γ∗(ϵ) for the mean time to extinction and
for different values of coverage c. Figure 6b shows γ∗(ϵ) for the prevalence.

these numerical results that one should consider different strategies during the
containment and the elimination phases. For the first, in which fluctuations
might lead to a disease extinction, a mixed/ non-selective strategy might be
the optimal choice for a wide range of efficacy values. For the latter, a non
selective strategy might also work, but the range of efficacy values for which it
is the case is smaller. As the coverage increases, the risk-based strategy becomes
more relevant but the range of efficacy value for which a non-selective strategy
is more efficient is also larger.

Again, these results have to be taken carefully : even though this behaviour
was checked by varying the number of contacts in degree class 1 and 2 as well
as the overall transmission rate λ, its validity is not ensured for a larger number
of degree classes.

Finally, addressing the problem of heterogeneous efficacy, one can derive
similar expression for f(k) and t(k), simply by introducing the average over the
efficacy values. One can first look at the case where the efficacy of the prevention
tool is all-or-nothing: an individual may be totally resistance to the medicine,
or the latter could be totally inefficient if not taken in a regular way. In that
situation, the heterogeneity in the efficacy (that can have a value of ϵ with
probability h or 0 with probability 1− h) simply reduces to a re-scaling of the
coverage : c −→ hc < c . The coverage being closer to 0, the results presented
at 0-coverage become more relevant. In the case of a more complicated efficacy
distribution, again, an analytical advancement is more difficult to get.

5 Conclusion

In conclusion, this master thesis aimed to address the challenge of finding the
optimal strategy to distribute a tool of primary prevention of infectious disease
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(vaccine or prophylaxis for instance) with limited coverage in a heterogeneous
population. The study focused on the context of infectious diseases, such as HIV,
where risk-based strategies have been traditionally employed. These strategies
aim to optimize the distribution of limited prevention tools by targeting in-
dividuals or communities that are at higher risk of creating super-spreading
events. However, this is accompanied by significant drawbacks since it requires
gathering a lot of information on the individuals in order to determine whether
they represent a target for the prevention or no. Moreover, those strategies
do not give significant results in improving the effectiveness of the campaign of
distribution for the prevention tool.

Through the introduction of both a mean field and a stochastic view of an
epidemiological model of a disease spread coupled with a prevention strategy,
this research provided some insights into an adaptive approach. By analyzing
various epidemiological indicators, it was possible to devise a strategy that takes
into account the specific phase of the epidemic. The results indicate that a risk-
based strategy, which prioritizes individuals with a higher number of contacts,
does not always yield optimal results.

However, it is important to acknowledge the limitations of this work. We
have seen that depending on the epidemic phase, the goal distribution strategy
of the preventive tool should be adjusted: during the prevention phase where
the outbreak did not occur yet and the fraction of infected individuals is very
small, one should try to minimize the basic reproduction number by prioritizing
individuals at highest risk of creating an outbreak (i.e. individuals with high-
est number of contacts). When the outbreak already occurred but is spatially
contained, one should consider the mean time to extinction while the relevant
quantity to look at when the outbreak occurred in the whole population is the
prevalence of the disease (the probability of getting infected). However, the
optimal distribution of the preventive tool for minimizing those epidemiological
indicators could not be derived for finite coverage. Therefore, further analytical
advancements are crucial in order to develop a systematic distribution strat-
egy. Nonetheless, this research demonstrates that a risk-based strategy is not
the most effective, particularly at the initial stages of distribution when the
coverage is at zero.

Additionally, the inclusion of heterogeneous efficacy, characterized by all-
or-nothing effectiveness, among those who received the prevention tool shows
interesting results. This approach effectively lowers the value of the coverage,
suggesting the importance of considering the varying levels of protection within
the population.

In summary, this study contributes to the ongoing efforts in the field of
epidemiology by highlighting the challenges of distributing a preventive medicine
or vaccine with limited coverage. It emphasizes the need for further analytical
advancements and suggests alternative strategies to improve the effectiveness
of distribution efforts. Ultimately, these findings have implications for public
health decision-making in combating transmittable diseases.
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