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1 SUMMARY

The growth in data availability has led to an increase in the number of studies

tackling different urban problems, including accessibility, walkability, and the

impacts of climate change on communities. Despite this growth, however, certain

studies are still limited by a lack of data that accurately describes the built

environment. Such a data scarcity scenario creates opportunities for developing

new computational frameworks that leverage and combine already collected data

to extract new urban features. This thesis then presents an innovative framework

called BuildingSurfaces that employs multi-scale training and semantic segmenta-

tion techniques to accurately identify building elements and classify their primary

exterior material. We use labeled data from three major cities, combined with

street-level imagery, to iteratively train a segmentation model that can achieve a

classification accuracy of 92%. Our contributions can be summarized as follows:

1. We present a detailed survey on the availability of building data information

across the US

2. We propose a computational framework for the integration of building data

and street-level imagery

3. We present a detailed experimental evaluation of our segmentation model

4. We make our data available so that researchers can build on top of our

efforts
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2 INTRODUCTION

The rate at which urban areas are expanding is unprecedented, which is causing

a great deal of strain on both resources and the environment. [1] [2]. Efficient

use and reuse of resources are essential, which is why there is an urgent call

for adopting circular economy principles. [3] In the realm of sustainable archi-

tecture, the integration of technology and design has become a transformative

force. Building facades significantly impact a structure’s energy efficiency, envi-

ronmental footprint, and aesthetic appeal. A significant challenge is the lack of

precise and dependable information on material resources in the constructed en-

vironment. [4].Assessment databases for buildings are data sources that hold vast

information on properties in every country. They include building details such

as identification numbers, positions, sizes, actual use types, apartment numbers,

and owner information. However, they do not specify the exterior material of the

building. This thesis explores the intersection of artificial intelligence (AI) and

sustainable design principles, presenting a novel approach to recognize building

facades’ primary material through semantic segmentation’s precision. Selecting

appropriate facade materials is crucial in the face of escalating climate concerns

and the imperative to curtail carbon emissions. Architects, engineers, and ur-

ban planners must embrace data-driven solutions that mitigate the environmental

impacts of built environments. [5]. Automatically recognizing building facade ma-

terials can significantly benefit various fields, such as energy efficiency [6], city

planning [7], historic preservation [8], and construction industry [9]. Experts can

gain insights into material distribution, different buildings’ energy efficiency, and

historic structures’ preservation needs by identifying the materials used in build-

ing exteriors. The material classification of building facades and the successive

map of the results around cities has the potential to be applied in various fields
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such as urban planning, architectural design, and disaster management. In urban

planning, mapping the distribution of building materials can provide insights into

the age, quality, and presence of hazardous materials in buildings. This informa-

tion can then be used to make informed decisions about zoning, building codes,

and infrastructure development. Moreover, mapping the distribution of different

building materials in a city can be a valuable tool for disaster management pur-

poses. Emergency responders can quickly identify areas with a high concentration

of buildings susceptible to damage during natural disasters like earthquakes or

hurricanes. This information can assist in developing evacuation plans, resource

allocation, and post-disaster recovery efforts. [10] However, experts often per-

form this task manually, which is time-consuming, error-prone, and subject to

subjective judgments. These possible applications and the highlighted lack of in-

formation about exterior building materials have brought about the need for an

advanced AI architecture capable of effectively mapping out the intricate distri-

bution of materials within a city without spending money and time. In the field

of computer vision, there is a subfield called semantic segmentation, which can

potentially revolutionize how facade materials are evaluated, selected, and used

in construction projects. A training data set containing labeled building images is

needed to apply this technique. Various digital techniques are available to gather

building material data at the individual building level, such as imaging systems,

building information modeling (BIM), Internet of Things (IoT), and laser scan-

ning. BIM and IoT are newer technologies that require digital data and are not

suitable for creating inventories of buildings built before the 2000s [11]. On the

other hand, laser scanning can provide detailed information about construction

materials, but it is a complex, labor-intensive, and expensive process that is

difficult to scale across countries [12]. However, with the recent advancements in
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(a) Building information modeling (b) Laser scanning technique

(c) Street View logo

Figure 1: Methodologies to extract building images

sensing techniques, a vast amount of imagery is now available for building exte-

riors, such as Google Street View [13], which has opened up new possibilities for

cost-effective and scalable approaches to material data acquisition. This data is

increasingly becoming openly accessible free of charge, making it a cost-effective

source of information on existing buildings. Exploiting these data, we can train

a neural network to accurately map the materials used in urban landscapes by

identifying the primary material used in a building’s facade. This would allow

for precise data on material distribution patterns in a city and recognition of

key features such as windows, doors, and roofs. This thesis introduces a novel

framework, BuildingSurfaces, that employs the NVIDIA Hierarchical Multi-scale

Attention architecture as the core for extracting features from input images and

generating accurate predictions. The network obtained can then classify facade
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materials according to eight different materials: brick, stucco, asphalt, asbestos,

wood shake, glass, concrete, and vinyl. Figure 2 provides an overview of the

framework, which consists of five blocks:

• Block A - Data extraction:This block uses the Google API to retrieve images

of various buildings from the starting building assessment databases.

• Block B - WindRoof Network Training: This block trains a network to

recognize important building elements such as windows, doors, and roofs.

The training process includes 150 manual annotations and a subsequent

pseudo-labeling step to enhance the performance and make the most of

the large number of available images.

• Block C - Ground truth creation: After extracting the building images, two

types of labels are created from them. The first label, which is specific to

building recognition in an image, is obtained using the NVIDIA Hierarchical

Multi-scale Attention architecture pre-trained on Mapillary. The second

label, used for windows, doors, and roofs recognition, is obtained from

the WindRoof network. The two labels are then merged together to create

unique complete labels, on which it is possible to train the final architecture.

• Block D - BuildingSurfaces training: This block trains the final network

achieving an average classification accuracy of 96% over all eight different

materials and a mIoU of 86%.

• Block E - BuildingSurfaces implementations: Given the addresses of various

buildings and an image dataset for a specific city, it is possible to map the

distribution of materials across a specific place using the BuildingSurfaces

trained network.
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The resulting trained model has the potential to revolutionize the identification

of building facade materials and provide valuable insights into energy efficiency

and construction practices. The proposed architecture aims to develop a robust

and accurate model for identifying critical elements in building facades and clas-

sifying their materials. The final section of the thesis presents interesting results

and applies the network to different cities to map the building material distri-

bution and provide a detailed evaluation of our segmentation model.

Figure 2: Framework diagram
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2.1 Thesis structure

This dissertation is comprised of multiple chapters. The initial chapter provides

the reader with general information to provide them an overview of the important

topics covered in our research. Chapter 4 details all of the significant works that

were analyzed to gain a thorough understanding of the current state of the

art in the areas of material recognition, semantic segmentation, and energy

efficiency. In Chapter 5, an evaluation of the available databases specific to

buildings in US cities is presented, highlighting the lack of information regarding

exterior facade materials. Chapter 6 provides a detailed overview of our project

framework, BuildingSurfaces, explaining each block from image extraction to

training processes and results. Chapters 7 and 8 present the experiments and

the results of the AI architecture. The final chapters, Chapter 9 and Chapter

10, focus on potential future work and finish with some important conclusions

about our work.
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3 BACKGROUND

In this section, the reader has some general knowledge of computer vision,

semantic segmentation, and the importance of materials in fields such as energy

efficiency and climate impact to understand the proposed work.

3.1 Computer Vision

The field of computer vision is a subset of artificial intelligence (AI) that allows

computers and systems to extract meaningful information from digital images,

videos, and other visual inputs. With this information, computers can take ac-

tion or make recommendations. If AI gives computers the ability to think, then

computer vision allows them to see, observe, and comprehend. Computer vision

works similarly to human vision, but humans have an advantage. Human sight

has a lifetime of experience in learning how to differentiate objects, determine

their distance, detect movement, and identify flaws in an image. Computer vi-

sion trains machines to perform these tasks with cameras, data, and algorithms

rather than retinas, optic nerves, and visual cortex. A system trained to inspect

products or monitor production can analyze thousands of items or processes per

minute, detecting even the slightest imperfections or issues, surpassing human

capabilities. Computer vision is utilized in industries such as energy and utili-

ties, manufacturing, and automotive. The market for computer vision continues

to grow.

3.2 Semantic segmentation

Semantic segmentation is a pixel-level classification task that assigns a semantic

label to each pixel in an image. It provides a detailed understanding of the scene
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by segmenting objects and regions based on their semantic meaning. Traditional

approaches to semantic segmentation relied on handcrafted features and graphical

models. However, with the advent of deep learning, significant progress has been

made in this field, improving the performances in various tasks. Possible tasks

are the following:

• Object Detection and Tracking: for object detection and tracking. You can

locate and track objects more accurately by segmenting objects in an image.

• Autonomous Driving: semantic segmentation plays a crucial role in au-

tonomous vehicles to identify and understand the surrounding environment.

It helps in identifying road boundaries, pedestrians, vehicles, traffic signs,

and other objects on the road.

• Scene Understanding: to understand and classify different objects and re-

gions within a scene, aiding in scene analysis and comprehension.

Figure 3: Example of semantic segmentation
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3.3 Building materials

The choice of specific materials leads to differences in durability, maintenance,

resistance, energy efficiency, climate impact, and sustainability of buildings. In

this thesis the main attention is reserved for eight main categories of materials:

• Brick : highly valued building material due to its durability, timeless aes-

thetic appeal, and low maintenance requirements. It boasts excellent ther-

mal mass properties, which effectively regulate indoor temperatures. It finds

widespread use in both residential and commercial buildings, where it adds

a classic and enduring look to facades and can be incorporated into various

architectural styles.

• Glass : plays a crucial role in modern architecture due to its transparency

and ability to allow natural light into buildings. This not only enhances

indoor comfort but also provides a visual connection with the external

environment. Glass is widely used in building construction, especially for

windows, curtain walls, and glass facades. Its use creates visually appealing

and energy-efficient building envelopes.

• Concrete: highly esteemed building material due to its immense strength,

adaptability, and durability. It can be easily molded into a variety of shapes

and textures, and is also resistant to fire and pests. Concrete is utilized in

various types of structures, including residential, commercial, and industrial

buildings. Typically, it is employed for structural components and exterior

cladding, providing an enduring and robust facade.

• Asbestos : was once a popular material due to its fire resistance and in-

sulation capabilities, but its use has declined due to health and safety
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concerns. Inhaling asbestos fibers can pose significant health risks, leading

to its phasing out in many countries.

• Wood shakes : are highly valued for their natural and rustic appearance.

They are considered environmentally friendly when obtained sustainably

and can provide excellent insulation. Typically, wood shake is utilized in

residential buildings, especially in areas where a traditional or cabin-like

aesthetic is preferred.

• Vinyl siding is highly regarded for its affordability, low maintenance, and

diverse selection of colors and styles. It is resistant to decay and pests,

making it a reliable choice for homeowners. Vinyl siding is commonly used

in residential construction as a cost-effective option for cladding the exterior

facade of a building.

• Asphalt is primarily used due to its excellent waterproofing and weather-

proofing properties. However, it is more commonly associated with roofing

applications instead of buildings facades.

• Stucco is a versatile material that is known for its ability to resist harsh

weather conditions. It can be applied in various textures and finishes, which

makes it a perfect choice for enhancing a building’s appearance. Stucco is

commonly used in residential and commercial buildings, particularly in dry

regions, as it provides a durable and decorative exterior finish.
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(a) Brick (b) Asbestos (c) Glass

(d) Stucco (e) Concrete (f) Asphalt

(g) Vinyl (h) Wood Shake

Figure 4: Building materials for buildings facades
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3.4 Energy efficiency and Climate Impact

Distinct energy categories can be distinguished according to the proportion of

materials used in building facades versus the area occupied by doors, windows,

and roofs. A building’s energy efficiency is primarily determined by the type of

materials used, the amount of insulation incorporated, and the ratio of trans-

parent to opaque surfaces on its envelope. Numerous international standards,

notably LEED, BREEAM, and Passivhaus, have been developed to categorize

buildings based on their energy efficiency. These standards factor in various crite-

ria to determine the energy performance of a building, including its construction

materials and the proportion of glazed and opaque surfaces. For example, the

Passivhaus standard requires buildings to meet strict energy efficiency criteria,

windows should not account for more than 25% of the total surface area of the

building envelope. To promote energy efficiency and reduce the carbon footprint

of buildings, it is possible to classify them into various energy classes based

on the percentage of surface covered by materials compared to windows, doors,

and roofs in the building facades. High-quality insulation and a more significant

percentage of opaque surfaces typically result in better energy performance than

poor insulation and more glazed surfaces.

(a) Breeam logo (b) Passivhaus Institute logo (c) Leed logo

Figure 5: International Standards for Energy Efficiency
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The selection of materials used for constructing building facades is a critical

determinant of a building’s climate impact. Various factors impact this relation-

ship, including insulation and thermal conductivity. Different materials possess

varying levels of thermal conductivity, which affect the insulation properties

of a building. Solar reflectance and absorption properties of facade materials

significantly impact a building’s energy consumption. Likewise, the production,

transportation, and installation of facade materials contribute to their embodied

carbon footprint. Material such as concrete has higher carbon emissions dur-

ing manufacturing while using locally sourced, renewable, or recycled materials

can reduce embodied carbon. Life cycle assessments provide a comprehensive

view of the environmental impact of materials, including extraction, production,

transportation, installation, and disposal/recycling.

Figure 6:Key Environmental Impacts during the Life Cycle of-Building Materials

The connection between material, energy efficiency, and climate impact in

building facades is increasingly important in sustainable design. Building facades

are crucial in improving buildings’ energy performance and indoor comfort condi-
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tions(Yaman, 2021) [14]. As buildings become more complex devices that ensure

the well-being of their occupants, there is a growing demand for new facade

designs that comply with energy requirements (Yaman, 2021) [14]. Regarding

facade design, the connections between facade panels also significantly impact

energy performance. Abediniangerabi et al.(2020) [15] investigate the transient

heat and moisture transfer in facade panel connections. The study highlights the

importance of considering panel connections in energy performance analysis and

suggests the need for novel connection designs and materials to improve building

energy efficiency (Abediniangerabi et al., 2020) [15]. Guo & Liu (2020) [16] pro-

pose a new method for energy efficiency design and thermodynamic evaluation

of building facades to support the design of energy-efficient facades. The paper

analyzes factors that affect energy efficiency and provides calculation methods

for parameters related to energy-saving performance.

Having the capability of recognizing the primarily used material of a building

facade and cross-referencing this information with a database of thermal conduc-

tivity values or carbon emission values, it is possible to estimate the potential

energy efficiency of the building based on the insulating properties of the mate-

rials and the embodied carbon of the building facade. Identifying the primarily

used material of a building facade can allow architects, engineers, and builders

to make informed decisions about facade materials, considering climate impact,

energy efficiency, and environmental sustainability.
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Figure 7: Envromental Impact of Building Material Pyramid
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4 RELATED WORKS

This chapter showcases the related works analyzed to create an AI architecture

for classifying materials on buildings’ facades. It first analyzes the development

of networks in the field of semantic segmentation until the arrival of multi-scale

attention-based networks. Then, the overview focuses on the pseudo-labeling

technique used to boost the accuracy of the network due to the absence of a

large number of training labels. Finally, the last part covers papers related to

building facade segmentation, climate impact, energy efficiency, and material

recognition tasks.

4.1 Semantic Segmentation

Semantic segmentation is a fundamental computer vision task that involves as-

signing a label to each pixel in an image, facilitating the creation of detailed

and informative image maps. There has been significant progress in semantic

segmentation techniques in recent years, with many methods being developed

and applied to a wide range of applications, ranging from traditional machine

learning techniques to deep learning-based models.

One prevalent approach for semantic segmentation entails using fully convolu-

Figure 8: Fully Connencted Network
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tional networks (FCNs) [17], which have exhibited impressive results in various

image segmentation tasks. FCNs can learn representations of different scales and

resolutions, effectively capturing the image’s local and global features. Addition-

ally, they can be trained end-to-end, facilitating a more efficient and unified train-

ing process. Another approach involves using encoder-decoder networks, which

comprise an encoder to extract essential features and representations from input

data, often using convolutional or recurrent layers and a decoder that generates

desired output from the learned representations, such as segmented images or

translated sequences. Variants like U-Net and SegNet have achieved impressive

results in various benchmarks.[18] [19] Other approaches include using conditional

random fields (CRFs) and generative adversarial networks (GANs) [20] to refine

the segmentation maps and enhance their accuracy. Additionally, recent research

has focused on utilizing multi-modal data, such as RGB images, LiDAR, and

hyperspectral imaging, to improve semantic segmentation performance further.

Dilated Convolutional Networks (DCNs) [21] addressed the contextual chal-

lenge by integrating multi-scale context through dilated convolutions, allowing for

more efficient information capture. Densely Connected Convolutional Networks

(DenseNet) [22] utilized densely connected architectures to promote feature reuse.

Figure 9: Encoder-Decoder architecture
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Deep supervision methods introduced auxiliary supervision signals at multiple

decoder stages, mitigating vanishing gradient issues and aiding gradient flow.Data

augmentation strategies improved model generalization and robustness, including

spatial and spectral transformations. [23] Transfer learning techniques, such as

adapting models pre-trained on large datasets like ImageNet, significantly boosted

segmentation performance, even with limited annotated data.Domain adaptation

techniques have addressed domain shift challenges, enabling models trained on

source domains to perform well on target domains with distinct characteristics.

At the same time, recent approaches have involved advanced architectures like

DeepLab [24], which integrated atrous spatial pyramid pooling for better context

integration. Multi-scale context methods have gained importance due to their

effectiveness in capturing information at different levels of granularity.

These methods have been applied to various data science tasks, including image

Figure 10: PSPNet Architecture

analysis, natural language processing, and graph-based analytics. State-of-the-art

semantic segmentation networks utilize network trunks with low output stride,

allowing for better resolution of fine details and resulting in a smaller receptive

field, which can hinder predicting large objects in a scene. Pyramid pooling

and relational context methods can address this issue by assembling multi-scale

context and attending to the relationship between pixels. The PSPNet [25] model

has a spatial pyramid pooling module that employs features from the last layer
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of the network trunk. This module uses pooling and convolution operations to

gather features at different scales.

4.1.1 Relational context methods

Pyramid pooling techniques often use fixed, square context regions due to the

symmetrical application of pooling and dilation. However, these techniques are

static and do not adapt to an image’s specific features. Relational context meth-

ods offer a different approach by examining the relationships between pixels,

allowing for context to be built without constraints to square regions. Addition-

ally, the learned nature of relational context methods enables context to be built

based on an image’s composition. This results in a more appropriate context for

non-square semantic regions like long trains or tall, thin lamp posts. OCRNet is

an example of model that integrates relational context methods. The proposed

architecture includes an Object-Contextual Representations (OCR) module that

can be added to current convolutional neural network (CNN) backbones. This

module gathers contextual information and long-range dependencies among ob-

jects and regions in an image, enabling the model to make more informed and

context-sensitive segmentation choices.

Figure 11: OCR Pipeline
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4.1.2 Multi-scale inference

In semantic segmentation, both relation and multi-scale context methods have

effectively achieved optimal results. Multi-scale inference is often used to com-

bine network predictions at different scales, but traditional average pooling has

limitations as it weights the output from each scale equally. To address this

issue, attention mechanisms have been employed to combine predictions across

multiple scales better. For example, Chen et al. (2018) [26] used attention heads

trained across all scales simultaneously, while Yang et al. (2019) [27] combined

features from different network layers to build better contextual information.

However, these methods are limited as they are trained with a fixed set of scales

and cannot adjust during runtime without re-training the network. To overcome

this limitation, a novel hierarchical-based attention mechanism, the Hierarchi-

cal multi-scale attention architecture [28] was proposed, which is agnostic to

the number of scales during inference time. This method improves performance

over average pooling and allows visualizing the importance of different scales

for various classes and scenes. Importantly, this approach is orthogonal to other

attention or pyramid pooling methods that use a single-scale image and perform

attention to combine multi-level features for generating high-resolution predic-

tions. This network will be the trunk of our framework and will be used to

generate predictions starting from input images.
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Figure 12: Multi-scale inference
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4.2 Pseudo-labeling

Using pseudo-labeling as a semi-supervised learning technique has become very

popular lately due to its effectiveness in situations with limited access to labeled

data or challenges in obtaining such data. Self-training is one of the widely used

and influential pseudo-labeling techniques. It involves an iterative process where

a machine learning model is trained on a small set of labeled data and then

used to predict labels for a larger pool of unlabeled data. These predictions are

combined with the original set of labeled data, resulting in an enriched training

dataset.

Figure 13: Pseudo-Labeling pipeline

The brilliance of self-training lies in its iterative nature. The model is re-

trained continuously, refining its understanding of the underlying patterns within

the dataset. The model gains new knowledge with each cycle from the expand-

ing pool of labeled and pseudo-labeled data. This perpetual refinement process

makes self-training a powerful and versatile semi-supervised learning technique.

Self-training enables machine learning models to learn from themselves, drawing
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upon the wealth of knowledge they have amassed with each iterative step. This

iterative self-improvement process increases the training dataset’s size and helps

the model navigate real-world data, even when access to labeled data is limited.

As a result, self-training is a crucial technique in the realm of semi-supervised

learning, offering a compelling solution to the challenge of harnessing the poten-

tial of unlabeled data.

4.3 Facade Segmentation

Several works have been conducted in the field of material recognition and build-

ing facades segmentation.These works aim to accurately segment building facades

for various applications such as 3D model reconstruction, architectural modeling,

and geospatial mapping.

One of the early studies in this area was conducted by (Delmerico et al., 2011)

Figure 14: Delmerico paper - Building segmentation

[29]. They utilized texture and a priori knowledge to segment building facades

and perform other facade-related tasks.Wendel et al. Delmerico et al. (2011) [29]

used intensity profiles to identify repetitive structures in coherent image regions,

enabling the segmentation and separation of different facades.Deep learning tech-

niques have gained popularity in building facade segmentation in recent years.

Sezen(2022) [30] proposed a deep learning-based approach for door and window
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detection from building facades. Their method employed an object detection

branch and a bounding box localization branch to detect windows. They also

used a partition mask to isolate window samples, enabling segmentation and

classification for recognizing windows in an image.

Figure 15: Sezen paper - Windows and Doors recognition

Building Information Modeling (BIM) has also been utilized in facade seg-

mentation studies. BIM allows for the digital representation of various aspects

of building information, including geometric and non-geometric aspects. Façade

segmentation was initially studied in the 1970s using hand-crafted expertise,

and later, detection and segmentation studies emerged based on object shapes

and parametric rules. Furthermore, studies have been on efficient building facade

structure extraction using image-based laser point cloud (Wang et al., 2023)

[31]. Machine and deep learning methods, such as hierarchical clustering, ran-

dom forests, and adversarial networks, have been introduced for building facade

extraction from 3D point cloud data (Wang et al., 2023) [31]. These methods

rely on training data to build structure descriptors and classify facade struc-

tures from the point cloud (Wang et al., 2023) [31]. Another approach to facade

segmentation is through the use of oblique UAV imagery. Zhuo et al. (2019)

[32]investigated building segmentation on full-tile UAV imagery and found that
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deep neural network-based segmentation methods have demonstrated dominant

performance compared to traditional approaches (Zhuo et al., 2019) [32]. In addi-

tion, developing a city-scale approach for facade color measurement and building

functional classification has been explored using deep learning and street view

images (Zhang et al., 2021) [33].
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4.4 Material Recognition

Material classification networks are a type of deep learning model that can au-

tomatically extract discriminative features from haptic and visual information

to classify different types of materials (Zheng et al., 2016) [34]. These networks

have been shown to achieve state-of-the-art classification accuracy in various do-

mains. One approach to material classification uses convolutional neural networks

(CNNs).CNNs have been successfully applied in image classification tasks, includ-

ing waste classification, musculoskeletal image classification, fabric fiber material

classification, and metallic material classification. These CNN models are trained

on large datasets of images and can accurately classify different materials based

on their visual features. An essential study in the field involves Citysurfaces

(Hosseini et al., 2022) [35], which utilized an active learning-based framework

to classify sidewalk materials using commonly available street-level images. This

network identified eight distinct types of materials and demonstrated its ability to

generalize to different cities, indicating that it was not limited by its training set.

Figure 16: Citysurfaces sidewalk materials recognition
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5 DATA SOURCE ASSESSMENT

Myriem’s work [35] on semantic segmentation of sidewalks in urban areas inspired

the application of this architecture to more complex structures, such as building

facades.The first step was to conduct extensive research to find suitable databases

that provide information about the addresses and exterior materials of buildings,

which could be used as ground truth for our work. After conducting an extensive

search for potential data sources, we discovered that each country in the United

States possesses assessor parcel data, also known as property parcel data or

cadastral data. This type of data is generated by the county assessor’s office and

serves various purposes, including property taxation, planning, and emergency

response. These databases typically provide information about property and land

attributes such as its land area, address, use, and zoning (most prevalent features

in Table1). However, information regarding the exterior material of buildings is

only available in some cases. This is due to four main reasons [36]:

1. It can be challenging to collect this information: The exterior materi-

als of buildings can vary widely, and it can be difficult and time-consuming

to accurately identify them. This is especially true for buildings with com-

plex or non-standard exteriors.

2. It can be expensive to collect this information: The cost of collecting

information about the exterior materials of buildings can be prohibitive for

some assessor’s offices. This is especially true for large counties or cities

with many buildings.

3. It is not always necessary to collect this information: For some pur-

poses, such as property taxation, buildings’ exterior materials are not es-

sential. Collecting this information may not be worth the time and expense



29

in these cases.

4. Privacy concerns: Some people may be concerned about the privacy im-

plications of collecting information about the exterior materials of their

buildings. Exterior material data may inadvertently reveal additional sensi-

tive information about a property, such as the economic status of its owner

or the presence of specific amenities. [37]

To address the limited amount of information about the exterior material of

buildings, we developed a network that employs an AI architecture capable of

classifying exterior materials based solely on a set of provided addresses. This

network enabled us better to understand the distribution of materials within

a city using the vast amount of data available in the assessor’s data. To reach

this goal, we needed a training set of labeled images, but first of all, reference

datasets from which we could extract information about exterior materials.
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Parcel number A unique identifier for each par-
cel.

Property address The street address of the prop-
erty.

Legal description A legal description of the prop-
erty’s boundaries.

Owner name The name of the property owner.
Assessed value The value of the property for tax

purposes.
Land area The size of the land parcel.
Building area The size of the buildings on the

property.
Use The current use of the property.
Zoning The zoning classification of the

property.
Tax year The year for which the assessed

value is calculated.
Tax rate The tax rate that is applied to

the assessed value to calculate
the property tax bill.

Exemptions Any exemptions that apply to
the property, such as homestead
exemptions or senior citizen ex-
emptions.

Lien information Any liens that are attached to
the property, such as mortgages
or unpaid taxes.

Transaction history A history of all the sales and
transfers of the property.

Table 1: Common characteristics found in assessors’ parcel databases
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5.1 Building material datasets

The first step was to find databases containing useful information about the

exterior material of building facades. A deep search revealed that many cities

have building assessment databases about the location and the surface covered

by each building within a city but no information about the used material. Only

four datasets had information that could be used as a starting point to create

the training and test set for our AI architecture:

• Boston Buildings Inventory

• San Francisco Tall Building Inventory

• New York City Building Assessment

• Wake County Property Assessment

5.1.1 Boston Buildings Inventory

The availability of an adequate and reliable dataset is crucial for the success of

any machine learning algorithm. In this thesis, the Boston Inventory Data set

was identified as a valuable starting point to gather information about building

facade materials. This data set was compiled from various sources, including the

city’s assessing database, the Boston Redevelopment Authority’s urban renewal

plans, and the city’s zoning map. It contains valuable data and assumptions

from building experts, making it an ideal resource to identify individual building

characteristics of all buildings in Boston.The City of Boston released this data set

on 2020-05-05, and it is updated annually. The Boston Inventory Data set is rich

in information, with 107 columns. However, this study focused on the location

of various buildings and the exterior finishing material specified in the ’ext fin’
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Figure 17: Boston Inventory Database Website

column. After dropping the Nan rows, the cardinality for each material was

calculated, and materials with few data, such as other, glass, and concrete, were

excluded.Brick material, that as shown in Table 1 is divided in two subcategories,

is merged into a single classification.This decision was made because the difference

between the three was solely due to the material used in the basement, which

was not relevant to this study. The material labels from this data set will serve as

the ground truth for training and validating the proposed semantic segmentation

model, which can distinguish building facade materials, windows, doors, and

roofs.

It was fundamental to identify which areas and districts of Boston were

included in the study and how representative the dataset was of the city’s

entirety. To achieve this, we generated a map of Boston, featuring a dot for each

data point in the database. This enabled us to visualize the spatial distribution

of the data and identify any geographical biases in the dataset. By analyzing
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Material Dataset label Cardinality

Vynil M 32374
Wood shake W 12121

Brick B 5506
Asbestos A 3506
Asphalt P 1003

Brick/Concrete C 974
Stucco S 656

Aluminium U 560
Brick/Stone Veneer V 116

Other O 10
Glass G 5

Concrete K 2

Table 2: Cardinality Boston Inventory Dataset

the data distribution on the map, we gained insights into which neighborhoods

and districts were underrepresented or overrepresented in the dataset.

Acquiring this information was crucial in ensuring that any conclusions drawn

from the analysis were reliable and representative of Boston. It also allowed us to

pinpoint any potential limitations in the dataset. As is possible to see in Figure

18 there are data from each district, except for the urban area, where we have few

data available or none, as in West End and South Boston Waterfront districts.

After thoroughly analyzing material distribution in Boston, we discovered a

significant shortage of materials commonly found in tall urban structures, such

as glass and concrete. We incorporated additional data sources, specifically the

San Francisco Tall Buildings Database and the City of New York Assessment

Database, to address this issue. These resources successfully incorporated the

previously missing elements into the database and rectified the imbalance. This

procedure aimed to create a complete dataset for an adaptable architecture

suitable for cities where materials like concrete and glass are commonly used.
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Figure 18: Distribution of buildings materials according to Boston Inventory
Database
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5.1.2 San Francisco Database

The San Francisco Tall Building Inventory is a database that catalogs and

provides technical information about tall buildings in San Francisco, California.

This database is typically compiled and maintained by local authorities, urban

planning departments, architectural firms, or research institutions interested in

urban development and building construction. The inventory aims to capture a

wide range of technical details about these tall buildings, which often significantly

shape a city’s skyline and urban landscape. Some of the key technical details

that might be included in the San Francisco Tall Building Inventory are:

• Building Information: The building’s name, address, coordinates, and iden-

tification number.

• Architectural Details: The architectural design, style, and features that

distinguish the building.

• Physical Characteristics: Information about the building’s height, number

of floors, and other relevant dimensions.

• Materials Used: Details about the construction materials used, including

glass, concrete, steel, and others.

• Year of Construction: The year the building was completed or opened to

the public.

• Purpose and Usage: Whether the building is for residential, commercial,

mixed-use, or other purposes.

• Ownership and Management:The owner or managing entity of the building.
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• Historical Significance:Any historical or cultural significance associated with

the building.

• Photographs and Visuals: Images and visual representations of the building,

both exterior and interior shots.

• Data Source: Information about the data source, including the organization

responsible for compiling and updating the inventory.

Similar to the approach taken with Boston Database, we used the same reason-

ing here and focused solely on the pertinent information about the location and

materials used, disregarding extraneous features.

Material Dataset label Cardinality

Concrete C 93
Glass G 51
Stone - 7
Precast - 5
Terra - 5

Aluminium - 2
Granite - 2

Table 3: Cardinality of San Francisco Tall Building Inventory

Upon examining the cardinality table of materials in the database, it appears

that the most commonly used materials are glass and concrete.The main problem

is the lack of a significant number of buildings for these two categories. To assess

this issue, the New York City Building Assessment was used to increase the

number of samples for these two materials.
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5.1.3 New York City Building Assessment

The New York City Building Assessment is a comprehensive process that in-

volves the assessment and documentation of various attributes of buildings lo-

cated within the city. This assessment is typically carried out by city agencies,

real estate professionals, research institutions, or organizations involved in urban

development and property management. The primary purpose of building assess-

ment in New York City is to gather accurate and up-to-date information about

the city’s diverse building stock. This information is critical for several purposes,

including urban planning, property taxation, infrastructure management, and

regulatory compliance. The New York City Building Assessment covers various

aspects of buildings, such as structural integrity, electrical and mechanical sys-

tems, plumbing, fire safety, and environmental sustainability. The cardinality of

this database is about 600k rows. The issue, in this case, is the lack of a feature

specific to the facade material. Then, to increase the number of samples for

glass and concrete buildings, it was decided to utilize the main streets in the

Manhattan area abundant with these materials. The Google API was employed

to gather images of such buildings, and with the guidance of experts, the target

structures were identified and added to the image training set. The main streets

considered are located in the area of Manhattan, as shown in Figure 19.
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Figure 19: Area of selected buildings in Manhattan
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5.1.4 Wake County Property Assessment

Material Dataset label Cardinality

Vinyl M 45217
Brick B 34475
Stucco S 1311
Concrete C 270
Glass G 90

Table 4: Cardinality of Wake County Property Inventory

Wake County, North Carolina, maintains a property assessment database to

manage and track property values and related information within the county.

It assesses property values for tax purposes, calculates property tax rates for

individual parcels of land and real estate within the county, and determines the

amount of property tax owed by each property owner. The database contains

detailed information about each property in the county, including property owner

information, parcel numbers, physical addresses, and other identifying details.

It also includes details about the property’s characteristics, such as size, type,

construction details, any improvements made to the property, and the exterior

material. The property assessment values are determined through periodic as-

sessments and consider factors such as property condition, location, and recent

property sales in the area. Property tax records are linked to the assessment

database, indicating the amount of property tax owed by each property owner

and including payment history. For our study, we retrieved information about the

address of each property and the exterior material. In this case, brick, stucco,

vinyl, concrete, and glass are mainly used materials. Table 4 shows the cardinal-

ity of the database for each single material after removing null and duplicated

rows. This dataset will be used as an evaluation data source to test the results

of the trained architecture in images from a different geographic area.
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6 BuildingSurfaces

Figure 20: Framework diagram

In this section, we will discuss the process involved in creating BuildingSur-

faces, a scalable approach for building material classification.This framework aims

to recognize the primary material used in buildings’ facades, as well as essential

elements like doors, windows, and roofs. Picture 17 provides an overview of the

different steps we took, while the following sections give a detailed explanation.

Here are the main points:

• Data Extraction:We started by extracting building images from assessment

databases and using the Google Street View API. (Block A in Picture 17)

• Windroof Network Training: We trained a network to recognize windows/-

doors and roofs using manual annotation, then implemented a pseudo-
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labeling technique due to a large amount of unlabeled data. (Block B in

Picture 17)

• Training Set Creation:We created unique building labels by combining two

labeled images: one for building recognition obtained from the pre-trained

multi-scale attention network on Mapillary and one for windows/doors and

roofs from the trained windroof network. (Block C in Picture 17)

• BuildingSurfaces Training: We trained a multi-scale attention architecture

using the obtained labels, achieving a 95% classification accuracy and an

mIoU of 86% (Block D in Picture 17).

Successively to these sections, the evaluation section will display interesting

applications of the network to different cities in order to show the network

capabilities (Block E in Picture 17).
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6.1 Data Extraction

To train our system, we needed to gather accurate data. Our first step was

to extract information about buildings (such as address and exterior materials)

from databases and then obtain corresponding images using the Google Street

View API. We were able to adjust camera parameters to capture images from

different angles and heights, focusing on building structures rather than other

elements. To achieve this goal, the main tool used is the Google Street View

API that, given an address, allows obtaining the corresponding image.

6.1.1 Google API and Dataset creation

The Google Street View Static API enables embedding a static Street View

panorama or thumbnail into a web page, with viewport parameters specified

through a URL. Upon receiving an HTTP request with these parameters, the

API returns a static image. For each HTTP request, the following parameters

were included, in order to change the point of view, zoom, and other settings:

• location: Specifies the address of each building in the format: st num

st name city zip code.

• size:Determines the dimensions of the image returned (in this case, 640x640).

• fov: Represents the horizontal field of view of the image, expressed in

degrees with a maximum allowed value of 120. Essentially, the field of view

corresponds to zoom, with smaller values indicating higher levels of zoom.

• pitch: Dictates the up or down angle of the camera about the Street View

vehicle. Although often flat horizontal, positive values angle the camera

upwards. In this case, low positive values were employed to obtain images
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encompassing the entire building while minimizing the focus on irrelevant

sections, such as sidewalks and roads. This parameter is mainly adjusted

when high buildings are considered, to capture all the structure.

• heading: indicates the orientation of the camera. Accepted values are be-

tween 0 and 360 (both values indicate north, 90 indicates east, and 180

indicates south). If no heading is specified, a value will be calculated that

directs the camera to the specified location value from the point where the

nearest photograph was taken. In our case, this parameter was not set to

direct the camera on the address and on the building as a consequence.

(a) fov parameter set to 50 (b) fov parameter set to 70

Figure 21: Images of the same building, but with different fov parameter values
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This tool allowed us to obtain many buildings pictures for each material

present in the starting databases. We started with 500 images for each material,

but after a data cleaning procedure, we ended up with 250 images for each label.

The considered materials are eight: brick, vinyl, wood shake, stucco, concrete,

glass, asbestos, and asphalt. The data cleaning procedure was done according to

two main decisions:

• deleting wrong images, in which the building material was different from

the correspondent label

• deleting images in which were present more than one building and with

different materials (example in Figure 21). In this case, the zoom was ad-

justed to include only one structure and with the right material.

(a) wrong iamge (b) adjusted image

Figure 22: On the left the wrong image in which two buildings of different
materials, on the right the adjusted one where only the label material building
is present (brick)
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(a) Brick (b) Asbestos (c) Glass

(d) Vinyl (e) Concrete (f) Asphalt

(g) Stucco (h) Wood Shake

Figure 23: Images of the different materials in buildings facade
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6.2 Ground truth creation

After creating the image set, we needed to obtain the segmentation of these

pictures to use them as ground truth.We first needed an architecture capable of

recognizing and delineating buildings in an image, then a network for recognizing

elements such as windows/doors and roofs. The final step is to merge the two

labels to create a unique one containing all this information.

6.2.1 Building segmentation

Taking inspiration from the work of Maryem [35], to obtain the segmentation

of buildings in an image, we started from the pre-trained Hierarchical multi-

scale attention network [28]. This network was trained on two primary datasets:

Cityscapes and Mapillary, two prominent databases used in machine learning,

specifically for object recognition and semantic segmentation tasks in urban

environments. Cityscapes is a comprehensive dataset with high-quality pixel-

level annotations of urban street scenes from 50 cities. The dataset consists of

images taken from a car-mounted camera, providing a perpendicular view of

streets with buildings along the sides. Researchers often use Cityscapes to train

and evaluate computer vision algorithms for urban scene understanding and

autonomous driving applications.

Figure 24: Cityscapes Database samples

In contrast, Mapillary is a diverse dataset from a global community of contrib-
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utors capturing street-level imagery from various perspectives, including images

with buildings as the focal point. The dataset’s extensive geographical coverage

and varying conditions, such as lighting and weather, make it ideal for training

robust machine learning models that can generalize across different scenarios.

An analysis of the results from the network trained on Cityscapes and Mapillary

Figure 25: Mapillary Database samples

databases was needed to understand which pre-trained model could be used to

find buildings in the images set. Each one of the datasets has labels containing

different elements, but our focus was on the recognition of buildings; for this

reason, everything that was not labeled with this name was set as background

and colored in black.

Then, a comparative analysis was done on the results of the two datasets

to determine the best training method. Results reported in Figure 8 show that

the Cityscapes dataset is unsuitable for our intended goal, possibly because

the training images capture different perspectives with respect to the images

present in our dataset. Cityscapes mainly show perpendicular street images with

buildings on the edges, while our pictures focus on the building itself. As a

result, the network is not recognizing the imagery correctly. Mapillary, on the

other hand, showed a big accuracy in delineating building surfaces, as shown
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(a) Example1

(b) Example2

Figure 26: Comparison building segmentation of NVIDIA net trained on
Cityscapes (center images) and Mapillary (right ones)

in Figure 26. After choosing the proper pre-trained network, the one trained on

Mapillary, a different color for every single material, was used. However, this

approach did not allow us to extract and include doors, windows, and roofs in

our consideration, so we needed to incorporate these elements into our analysis.

This aim was born from the need to understand the percentage of facade surface

covered by the primary building material, with respect to the one covered by

glass surfaces prevalent in doors and windows; in addition, we wanted to exclude

elements that could interfere with the prediction and not belonging to the exterior

surface material. Figure 28 shows the building segmentation results for each single

different material.
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6.2.2 Scales selection

The best possible ground truth was essential to have the best building seg-

mentation. To reach these results, different scale combinations were used. After

analyzing the results, it was possible to notice that the best results were reached

by the set of scales [0.5, 1, 2]. The possibility to choose between different scales is

due to the implementation of the hierarchical multi-scale attention architecture,

in which the network has no need to be retrained for each new set of scales.

In this case, it was useless to consider small scales since the elements that we

want to label are usually characterized by big dimensions.

(a) Example1 (b) Example2

Figure 27: Segmentation of buildings using a different set of scales
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(a) Asbestos building image (b) Brick building image (c) Concrete building image

(d) Asbestos building label (e) Brick building label (f) Concrete building label

(g) Vinyl building image (h) Stucco building image (i) Wood building image

(j) Vinyl building label (k) Stucco building label (l) Wood building label
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(a) Asphalt building image (b) Glass building image

(c) Asphalt building label (d) Glass building label

Figure 29: Building segmentation results
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6.3 Windows Roofs Segmentation

Accurate segmenting roofs, windows, and doors for building facade analysis can

provide critical information for various applications. In this study, we propose a

novel approach to improving the segmentation of windows and roofs by training

a new neural network. Only images of buildings not present in urban areas were

considered for this step. This choice was driven by the difficulty in creating labels

for high buildings, where we can find hundreds of windows. Additionally, infor-

mation regarding energy efficiency is already present for this kind of structure,

as opposed to rural areas. To accomplish this, we manually labeled as many

images as possible to create a suitable data set for the training. We annotated

150 images and divided them into a training set of 120, a validation set of 10,

and a test set of 10. Initially, we used different colors to label windows and doors

in order to distinguish between the two categories. However, we found that we

didn’t require this distinction for our purposes. As a result, we treated both

labels in the same way and colored them both yellow (Figure 26).

We used the NVIDIA backbone to train our architecture, the hierarchical

multi-scale attention network [28]. Our training resulted in a mean intersection-

over-union (mIoU) of 86%, indicating that the network can accurately recognize

two distinct labels: windows/doors and roofs. The remaining pixels are classified

as background.Our approach effectively utilizes a newly trained neural network to

precisely segment windows and roofs. Successful implementation of this network

has the potential to advance building analysis and can be applied to various

real-world applications. To further enhance our neural network’s accuracy, we

turned to semi-supervised learning techniques, explicitly pseudo-labeling, which

capitalizes on the abundance of unlabeled data. We extracted the best model

performance epoch and used it to obtain pseudo-labels for the unlabeled data.
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(a) Example1-image (b) Example2-image (c) Example3-image

(d) Example1-label (e) Example2-label (f) Example3-label

Figure 30: Images and labels from manual annotations of three different buildings

After meticulously selecting the top pseudo-labels, we obtained approximately

450 labeled images. We then initiated a new training process using this en-

larged dataset, which significantly improved segmentation accuracy. Our mean

intersection-over-union (mIoU) skyrocketed to 94%, indicating a remarkable ac-

curacy increase compared to the initial training phase. These results underscore

the potential benefits of incorporating semi-supervised learning techniques, such

as pseudo-labeling, to boost neural network accuracy, especially when limited

labeled data.
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(a) 15 HINCKLEY ST (b) Network prediction (c) Image and prediction

(d) 2 PURITAN AV (e) Network prediction (f) Image and prediction

(g) 40 VICTORY RD (h) Network prediction (i) Image and prediction

(j) 47 49 FRANCONIA ST (k) Network prediction (l) Image and prediction

Figure 31: WindRoof network segmentation results on Boston images
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6.4 Merging operations and final ground truth

After successfully obtaining two kinds of labels for the same image, one for

the building recognition and the second for windows/doors and roofs, we aimed

to merge the two predictions to generate an all-inclusive label for each image,

through a masking procedure. We wanted a combined label to provide more

details about the building facades’ materials. The resulting label employed a

unique color for each building facade material, while yellow represented windows

and doors, and green indicated the roof. Despite the neural network predictions’

imprecision, these labels still significantly improved over using the building or

windows and roof segmentation models alone. Consequently, we created a dataset

containing 250 images for each material and corresponding labels. The labels we

created would be utilized to train the ultimate unified network capable of pre-

cisely recognizing building materials, roofs, and windows/doors.

Figure 32: Steps to reach the final training labels
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(a) Asphalt-image (b) Brick-image (c) Vinyl-image

(d) Asphalt-label (e) Brick-label (f) Vinyl-label

(g) Stucco-image (h) Wood-image (i) Asbestos-image

(j) Stucco-label (k) Wood-label (l) Asbestos-label
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(a) Concrete-image (b) Glass-image

(c) Concrete-label (d) Glass-label

Figure 34: Images and labels, one for each different material
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6.5 Backbone network

This chapter provides a detailed description of the AI architecture utilized as the

backbone for both creating the training dataset and achieving the final goal. The

network employed in this experiment is NVIDIA’s, which utilizes a hierarchical

multi-scale attention architecture (Hierarchical MSA). Multi-scale inference is

used to achieve optimal results, improving the ones of semantic segmentation,

with attention being a common technique for combining network predictions at

multiple scales. However, existing attention methods are trained with a fixed set

of scales and use average or max pooling to combine the different scales. The

proposed hierarchical attention mechanism is agnostic to the number of scales

during inference and improves performance over average pooling.

6.5.1 Hierarchical multi-scale attention

Figure 35: Multi-scale training and inference steps

This approach is very similar to that of [26], where a dense mask is learned for

each scale, and the multi-scale predictions are combined by pixel-wise multipli-
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cation between masks and predictions, followed by pixel-wise summation across

scales to produce the final results (see Figure 6). The only difference is that

this hierarchical approach involves learning a relative attention mask between

adjacent scales rather than one for each fixed scale. During network training,

are only considered adjacent scale pairs. As illustrated in Figure 6, the network

predicts the dense pixel-wise relative attention between two image scales given

a set of features from a single lower scale. To obtain the pair of scaled images, a

scale-down on a single input image by a factor of 2 is performed, resulting in a 1x

scale input and a 0.5x scaled input, although any scale-down ratio could be used.

It’s essential to note that the network input is a re-scaled version of the original

training images because image scale augmentation is used during training. This

enables the network to predict relative attention for various image scales. During

inference, the learned attention hierarchically is applied to combine N scales of

predictions in a chain of computations, as shown in Figure and described by the

equation below. We prioritize lower scales and work our way up to higher ones,

assuming they have more global context and can determine where higher-scale

predictions should refine predictions. During the training process, an input image

undergoes scaling by a factor r, where r = 0.5 indicates down-sampling by a

factor of 2, r = 2.0 denotes up-sampling by a factor of 2, and r = 1 indicates

no operation. Our training process utilizes r values of 0.5 and 1.0. The shared

network trunk processes the two images with r values of 1 and 0.5, resulting in

semantic logits L and an attention mask(α) for each scale. These masks are used

to combine the logits L between scales. For two-scale training and inference, the

bilinear upsampling operation U is utilized, and pixel-wise multiplication and

addition (+) are performed. The equation can be formalized as follows:

L(r=1) = U
(

L(r=0.5) ∗ α(r=0.5)

)

+
((

1− U
(

α(r=0.5)

))

∗ L(r=1)

)

There are two ad-
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vantages to using the proposed strategy that lead to improved performances with

respect to other architectures:

• During inference, the proposed attention mechanism allows for a flexible

selection of scales, including adding new scales such as 0.25x or 2.0x to

a model trained with 0.5x and 1.0x. This differs from previous methods

that were limited to using only the same scales as those used during model

training.

• The hierarchical structure offers improved training efficiency over the ex-

plicit method, as demonstrated by the reduced training cost. For example,

using scales 0.5, 1.0, and 2.0 with the explicit method results in a training

cost of 0.52 + 1.02 + 2.02 = 5.25 relative to single-scale training.With our

hierarchical method, however, the training cost is only 0.52 + 1.02 = 1.25.
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Figure 36: Hierarchical multi-scale attention architecture during training and
inference steps
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6.5.2 Architecture

• Backbone For the ablation studies in this section, HRNet-OCR is used

as the backbone of the network, configured with an output stride of 8.

• Semantic Head To perform semantic predictions is used a dedicated fully

convolutional head that consists of a 3x3 convolution, batch normaliza-

tion (BN), rectified linear unit (ReLU), another 3x3 convolution, another

BN, another ReLU, and a 1x1 convolution. The final convolution generates

num classes channels and is responsible for combining the predictions from

multiple network scales.

• Attention Head For attention predictions, a separate head is implemented

structurally identical to the semantic head, except for the final convolutional

output, which generates a single channel. Semantic and attention heads are

fed with features from the OCR block, and an auxiliary semantic head takes

its features directly from the HRNet trunk before OCR. This auxiliary head

consists of a 1x1 convolution, BN, ReLU, and another 1x1 convolution.

After applying attention to the semantic logits, the predictions are upsampled

to the target image size with bilinear upsampling. (Figure 17)
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6.5.3 HRNet-OCR

6.5.4 HRNet

State-of-the-art frameworks utilize a subnetwork that connects high-to-low-resolution

convolutions in series (e.g., ResNet, VGGNet) to encode an input image into a

low-resolution representation. This low-resolution representation is then used to

recover the high-resolution representation of the image.However, High-Resolution

Network (HRNet) [38] maintains high-resolution representations throughout the

entire process. These representations are not only semantically strong but also

spatially precise. This comes from two aspects:

• The connection between high and low-resolution convolution streams is in

parallel rather than in series. Thus, this approach can maintain the high

resolution instead of recovering high resolution from low resolution, and

accordingly, the learned representation is potentially spatially more precise.

• Most existing fusion schemes aggregate high-resolution low-level and high-

level representations obtained by upsampling low-resolution representations.

Instead, repeated multi-resolution fusions are applied here to boost the high-

resolution representations with the help of the low-resolution representations

and vice versa. As a result, all the high-to-low-resolution representations

are semantically strong.

Figure 37: High Resolution Network
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6.5.5 OCR

OCR is a method created to generate object-contextual representations for pixels

by utilizing the representation of the corresponding object class. This approach

involves three steps:

• The contextual pixels are separated into various soft object regions cor-

responding to different classes. This can be achieved through coarse soft

segmentation that is computed using a deep network like ResNet or HRNet.

The division is learned with the guidance of ground-truth segmentation.

• Estimate the representation for each object region by aggregating the rep-

resentations of the pixels in the corresponding object region.

• Each pixel’s representation is enhanced with object-contextual representa-

tion (OCR), which is a weighted aggregation of all object region represen-

tations based on pixel-object region relations.

OCR differs from other contextual methods because, exploiting object regions as

structures for the contextual pixels, it can differentiate between the same-object-

class contextual pixels and the different-object-class contextual ones. (Figure 19)
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Figure 38: Illustrating the multi-scale context with the ASPP as an example and
the OCR context for the pixel marked with . (a) ASPP: The context is a set
of sparsely sampled pixels marked with , . The pixels with different colors
correspond to different dilation rates. Those pixels are distributed in both the
object region and the background region. (b) Our OCR: The context is expected
to be a set of pixels lying in the object (marked with color blue). The image is
chosen from ADE20K.
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6.5.6 HRNet-OCR

The introduction of the OCR in the final stage of the HRNet enhances the

network’s ability to focus on essential image regions while maintaining a holistic

understanding of the entire image. This is achieved by integrating the previously

described attention mechanisms into the network architecture, which allocates

more resources to relevant regions and suppresses irrelevant or redundant infor-

mation. The attention module is beneficial in accurately recognizing fine details

and small objects in high-resolution images. This makes the overall architecture

more powerful. Here are shown some key aspects of the network:

• Multi-Scale Feature Fusion:HRNet is well-known for its capability to uphold

various scales of information across the network. The attention module is

vital in merging features from different resolutions or scales. It guarantees

that details from low-resolution features are correctly merged with high-

resolution features, enabling the network to capture both global context

and fine-grained details.

• Spatial and Channel Attention: the attention module can incorporate both

spatial and channel-wise attention to enhance performance. Spatial atten-

tion emphasizes the spatial relationships between pixels or locations in an

image, while channel attention focuses on the relationships between feature

channels. These attention mechanisms assist the network in highlighting im-

portant spatial regions and channels while suppressing noise.

• Adaptability : can be customized to suit different tasks and requirements. It

has the flexibility to use different attention mechanisms, like self-attention

or non-local attention, to capture long-range dependencies in the image; it

can be designed in various ways.
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• Improved Performance: the OCR is used to improve performance in tasks

that demand accurate localization and segmentation, such as object detec-

tion and semantic segmentation. It effectively manages objects of varying

sizes and scales, making it ideal for numerous computer vision applications.

figure

Figure 39: Two different predictions, semantic and attention ones, made at two
different scale levels. One scene displays a problem with fine details, while the
other scene illustrates a problem with large region segmentation. High attention
values are represented by a white color, with the attention values for each pixel
summing up to 1.0 across all scales. On the left side, the thin posts on the
roadside are best resolved at a 2x scale, and the attention effectively prioritizes
that scale compared to others. This is evident in the white color for the posts
in the 2x attention image. On the right side, the large road/divider region is
most accurately predicted at a 0.5x scale, with the attention focusing primarily
on that scale for that region.
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7 EXPERIMENTS

We started the training process once we had obtained the training, test, and

validation sets. The training set was based on 250 images for each material, while

test and validation sets comprised 40 images for each category. This section will

provide a comprehensive outline of our implementation process. We trained our

models using PyTorch on UIC servers with distributed data-parallel training

and synchronous batch normalization. Stochastic Gradient Descent (SGD) was

used for training with a batch size of 1 per GPU, a momentum of 0.9, and a

weight decay of 0.0005. We applied the ”polynomial” learning rate policy. The

primary loss function was Cross Entropy Loss for the first experiment and RMI

(Table 4) loss for the second one, both with default settings. As an optimizer,

ADAM and RADAM were implemented for the first and the second training.

For the Facade dataset, we trained for 175 epochs on 2 DGX nodes with a poly

exponent of 2.0, an initial learning rate of 0.01. To augment the dataset during

training, we used various techniques such as Gaussian blur, color augmentation,

random horizontal flip, and random scaling (0.5x - 2.0x) on the input images.

We used a crop size of 2048x1024. The best results are obtained with RMI Loss

and RADAM Optimizer and are shown in the following section.

7.1 RMI Loss

In Semantic segmentation, a crucial computer vision problem that is commonly

approached is that most segmentation models use a pixel-wise loss as their

optimization criterion; this approach fails to account for the dependencies between

pixels in an image. To address this issue, researchers have explored methods such

as conditional random fields (CRF) and pixel affinity-based techniques, which
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require additional model branches, memory, or inference time. The region mutual

information (RMI) loss models pixel dependencies more simply and efficiently.

Unlike the pixel-wise loss, which treats pixels as independent samples, RMI uses

one pixel and its neighboring pixels to represent that pixel. For each pixel in

an image, is obtained a multi-dimensional point that encodes the relationship

between pixels.This results in the image being represented as a multi-dimensional

distribution of these high-dimensional points.Maximizing the mutual information

(MI) between the prediction and ground truth’s multi-dimensional distributions

makes achieving high-order consistency possible. RMI only requires a few extra

computational resources during the training stage and does not impose any

overhead during testing. Therefore, RMI offers a more efficient and effective

means of modeling pixel dependencies in semantic segmentation.
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7.2 RADAM Optimizer

The learning rate warmup heuristic successfully stabilizes training, accelerates

convergence, and improves generalization for adaptive stochastic optimization

algorithms like RMSprop and Adam.Adaptive learning rate has a problematically

large variance in the early stage; RAdam was proposed to solve this problem

by introducing a term to rectify the variance of the adaptive learning rate.

Extensive experimental results on image classification, language modeling, and

neural machine translation verify this aspect and demonstrate the effectiveness

and robustness of the selected optimizer. (Figure 39)

Figure 40: RADAM optimizer comparison
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7.3 Results

This section shows the results of our best training made with the implementa-

tion of RMI Loss and RAdam optimizer on the Hierarchical multi-scale attention

backbone and the training set produced in the previous stages of our framework.

Table 5 highlights the good performances of our network, with a mIoU of 86.76

and an average classification accuracy of 96.05 over the entire validation set.

Labels IoU

Background 95.37
Glass 80.05

Concrete 88.40
Vynil 90.48

Wood shake 70.23
Brick 86.75

Asbestos 83.43
Asphalt 82.84
Stucco 92.06

Windows/Doors 86.75
Roofs 92.96
mIoU 86.76

(a) Semantic Segmentation IoU

Labels Classification

Glass 96.00
Concrete 94.00
Vynil 100.00

Wood shake 93.70
Brick 100

Asbestos 95
Asphalt 91.00
Stucco 100

Averall accuracy 96.05

(b) Facades classification results

Table 5: Best training results

During the training, we obtained the confusion matrix which excluded the back-

ground pixels. The purpose was to concentrate on the incorrect predictions made

by the network regarding various materials. Figure 40 indicates that there is no

significant discrepancy in the recognition of materials. This is a positive out-

come that helps us achieve our end goal of reaching the material distribution of

materials within a city. Figure 42 displays the results for each material to help

readers understand network performance.
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Figure 41: Segmentation confusion matrix
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(a) Asbestos-image (b) Prediction (c) Image and prediction

(d) Brick-image (e) Predictione (f) Image and prediction

(g) Wood shake-image (h) Prediction (i) Image and prediction

(j) Vinyl-image (k) Prediction (l) Image and prediction
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(a) Asphalt-image (b) Prediction (c) Image and prediction

(d) Stucco-image (e) Prediction (f) Image and prediction

(g) Glass-image (h) Prediction (i) Image and prediction

(j) Concrete-image (k) Prediction (l) Image and prediction

Figure 43: Validation segmentation results examples
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7.4 Distribution of materials in a city

With the help of the trained neural network, it is now possible to identify and

track the different buildings in a city based on the materials used in their facades

by analyzing the corresponding image dataset. This analysis can then generate

a map of the city, highlighting the distribution of these different materials.

Two types of maps can be generated using this information:

• Interactive map: using the Folium library users can zoom in and out of

specific areas of interest, providing a detailed exploration of the distribution

of buildings in that area. This feature is particularly useful for researchers

and urban planners looking to study specific city regions in detail. (Figure

43)

• Static map: can be created using geopandas, which provides an overview

of the entire city and its building material distribution. This map can help

identify patterns or trends that may exist in the distribution of materials

across different areas, offering a broader perspective of the city. (Figure 18)

In summary, by utilizing a trained neural network and geographical informa-

tion, it is possible to create detailed maps of a city’s building material distribu-

tion, which can be used for various purposes, from urban planning to research

and analysis.
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(a) Zoom1 (b) Zoom2

(c) Zoom3 (d) Zoom4

Figure 44: Different levels of zoom of a specific area in Folium map
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8 EVALUATION RESULTS

8.1 Testing on Wake County

We conducted a study to assess the accuracy of the architecture in various cities.

To achieve this, we used a property assessment database from Wake County in

North Carolina. Although this county has several cities, we only evaluated the

most significant ones, including Raleigh, Cary, Apex, and Fuquay Varina. The

dataset we used contained similar information to the Boston dataset utilized

during the training phase, which included data on the location and exterior

materials of buildings in the area. The process of obtaining images through the

Google Street View API was the same as what was done during the training

phase. We cleaned the images of outliers before feeding them into the network.

Table 6 below shows the results obtained from the images. The main issue here

is that the dataset considered did not contain all materials recognizable by the

architecture, but only five of them: Glass, Concrete, Brick, Vinyl, and Stucco.

Anyway the results show also in this case a good average classification accuracy,

reflecting the outcome obtained during the validation phase.

Material Accuracy

Concrete 84
Glass 86
Brick 91
Stucco 87
Vinyl 83

Average Accuracy 86.2

Table 6: Classification accuracy in Wake County dataset
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(a) Brick building segmentation (b) Vinyl building segmentation

(c) Stucco building segmentation (d) Concrete building segmentation

(e) Glass building segmentation

Figure 45: Examples of segmentation on Wake County images for five different
materials
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8.2 Chicago material distribution

Figure 46: Chicago building distribution

In this section, we will be showcasing the outcomes of our architecture in the

city of Chicago. Initially, we utilized the Building Footprints database available

on the Chicago Data Portal, which contains geospatial data about the outlines or

footprints of buildings in Chicago.When working with building footprint datasets,

it is important to keep in mind several common attributes.Geometry refers to the

shape of the building footprint, usually represented as polygons or multipolygons.

The building ID or Identifier is a unique identifier for each building within the

dataset, while the address provides the street address and any additional location

details of the building.We used this information to create a dataset of 100 images

for each single neighborhood in the Building Footprints database. These images

were then fed into BuildingSurfaces to classify each building, resulting in a CSV

file where each address is associated with a facade material, as shown in the
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picture. The final step was to plot the results on the map of Chicago, resulting in

the picture shown in Figure 44.Upon analyzing the picture, it is possible to notice

a greater number of concrete and glass constructions in areas near the urban

part of the city that are rich in high buildings. Conversely, brick constructions

are more prevalent in areas further away from downtown, indicating that high

buildings are no longer present, and independent houses are the norm. For the

remaining materials, the distribution is quite uniform in all the city. The pie

chart in Figure 45 illustrates the distribution of materials. Brick accounts for

the majority of the materials at 46%, while stucco, concrete, and asphalt each

account for around 10%.

It is also possible to evaluate at a different aggregation level. For instance, if

the objective is to analyze the distribution in a particular neighborhood. Figure

46 presents the outcomes for four significant Chicago neighborhoods:West Loop,

Lake View, Wicker Park, and River North.
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Figure 47: Chicago buildings material distribution
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Figure 48: Pie chart on Chicago buildings materials
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(a) Lake View distribution (b) Lake View pie-chart

(c) West Loop distribution (d) West Loop pie-chart
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(a) Streeterville distribution (b) Streeterville pie-chart

(c) Wicker Park distribution (d) Wicker Park pie-chart

Figure 50: Material distribution in some of the most important Chicago neigh-
bours
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It is possible to create an interactive map using the Folium library, which

allows for detailed analysis. You can zoom in and out of the map to focus on

specific areas of interest. Filter operations can be applied in the top right corner

to select one or more materials and hide the rest. On the left side, a legend

displays the colors of the materials used to color the buildings. You can also see

its address by hovering over a building with the mouse. Figure 48 shows some

examples.
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(a) Folium map zoom 0

(b) Folium map zoom 1
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(a) Folium map with all materials

(b) Folium map with brick and concrete buildings

(c) Folium map with glass buildings

Figure 52: Examples of Folium map application
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9 FUTURE WORK

The results yielded by the architecture are fascinating and have the potential to

map material distribution in numerous cities. Further research could concentrate

on integrating a wider range of materials to cover a greater number of countries

that vary in their usage of building materials and architectural styles. Addition-

ally, creating more intricate labels that showcase not just the primary material,

but also the other materials present in the buildings could lead to more precise

and effective evaluations. The current system oversimplifies materials by catego-

rizing them as “brick”, “wood”, or “concrete”. A more sophisticated approach

would involve creating a taxonomy that distinguishes between different types and

qualities of these materials. For example, identifying different varieties of stone,

such as granite, limestone, and sandstone, or different brick patterns, such as

bond patterns, would yield more precise and valuable information. It would be

beneficial to enhance the model’s capabilities to identify materials and deduce

the purpose and utilization of buildings. This would enable identifying whether

a building is intended for residential, commercial, or industrial use, which is

crucial for urban planning and policy-making. It is recommended to incorporate

sustainability metrics into the analysis to further sustainable urban planning

and construction practices. An ecological footprint classification system can be

developed to assess the environmental impact of various building materials, al-

lowing for the classification of buildings based on their ecological footprint. We

plan to integrate BuildingSurfaces with other data sources, such as shadows [39],

and investigate their use for pedestrian comfort. Moreover, we plan to integrate

BuildingSurfaces with urban frameworks [40], such as the Urban Toolkit [41],

A high-level grammar designed for common urban visualizations, enabling easy

web-based authoring with flexibility and extensibility.
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10 CONCLUSIONS

This thesis argues that the excellent performance of AI architecture can provide

valuable insights into material distribution within cities. The insights gained can

be used by politicians to make environmentally friendly decisions, resulting in a

more sustainable and green approach to urban planning and resource allocation.

The following key points support this thesis:

• Data-Driven Decision Making: The AI architecture can analyze vast

amounts of data related to material distribution in cities. This data-driven

approach enables a more comprehensive understanding of how resources

are allocated and utilized.

• Efficiency and Resource Optimization:AI can optimize the distribution

of materials and resources, leading to reduced waste, improved efficiency,

and cost savings. Politicians can use these insights to support policies and

initiatives that promote resource efficiency.

• Environmental Impact Reduction:Making environmentally friendly de-

cisions based on AI-driven insights can reduce a city’s environmental im-

pact. This may include reducing emissions from transportation, minimizing

resource depletion, and promoting sustainable practices.

• Long-Term Sustainability: Politicians and city planners can use the AI

architecture’s outcomes to develop strategies that promote long-term sus-

tainability. This may involve investments in renewable energy, sustainable

transportation infrastructure, and waste reduction initiatives.

In conclusion, the thesis argues that the AI architecture can provide valuable

insights into material distribution, empowering politicians to make environmen-

tally friendly decisions. This can lead to a more sustainable and green approach
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to urban planning and resource management, bringing tangible benefits in terms

of efficiency, environmental impact reduction, and long-term sustainability.
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