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Abstract
The increasing presence of robots in industrial settings has led to a growing interest
in human-robot collaboration (HRC). The focus of this thesis is on the problem of
autonomous and automatic task planning for adapting a cobotic system’s plan of
actions to specific human factors and constraints. To favor ergonomic choices and
reduce muscoloscheletal disorders, the human should have the freedom of choice of
his next action. To increase security and reduce mental load, the robot needs to be
aware of human constraints and plan also according to them. For this the robot
needs to dynamically plan its next actions taking into consideration both factors:
human choices and human limits. We propose a framework based on the use of AI
planning and PDDL for the dynamic update of the cobot’s plan, in the context
of a human robot collaboration assembly task. An experiment is conducted to
validate the proposed implementations and assess their usefulness. The experiment
involves a collaborative task between humans and robots, evaluating performance,
risk handling, and acceptability. The expected results aim to demonstrate the
adaptability of the cobotic system, improved human experience, and effective
planning.
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Chapter 1

Introduction

The presence of robots in industrial settings is nowadays an affirmed and accepted
phenomenon [1]. Their usefulness is undoubted, since they are able to replace
human labor for dangerous or repetitive simple manual tasks. While this is true
for relatively simple automated tasks, human assistance is still required for more
complicated, variable or delicate manipulation.
For this reason, in recent years, there has been a growing interest in the collab-
oration between humans and robots in the industry[2]. HRC offers significant
benefits, such as more flexible task completion, increased productivity, and the
ability to combine the resilience of robots with the critical thinking and experience
of humans[3] [4]. There are still many obstacles that need to be addressed to make
human-robot collaboration a reality.
This thesis tries to analyze the problems by identifying the main challenges that
hinder the implementation of human-robot collaboration in the industry. Specifi-
cally, this research aims to find an appropriate solution to the problem of automatic
task planning for the adaptation of a cobotic system to specific human factors.
Moreover, an important objective of this thesis is that of organizing an experiment
to prove the usefulness of the implementations proposed.

The research behind this thesis was conducted during an internship in the
Laboratoire d’informatique Grenoble -UGA, carried out during an Erasmus Ex-
change project in Grenoble INP-Ensimag. The research is financed by the Cross
Disciplinary Program BOOT. The experiment was carried out in collaboration
with a Work Psychology expert and PHD student as part of his PHD research.
The starting robot setup was created by the MARVIN team and included a well
functioning version of an initial framework. The additions and modifications made
to the framework were all well adjusted and thought through to fit the realization
of a new experimental protocol, that was conceived by the author of this thesis
and approved by the psychology expert and supervisors of the project. The main
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interventions made to the framework are in the Decision Making system and all the
databases of initial block positions. Minor modifications were made to the vision
and execution system and to the ros code of the yumi bot, major bugs were fixed
and the system has been overall optimized during the internship months.
The internship lasted 5 months. The first month was dedicated to the state of the
art research and the idealization of the experimental protocol. The second month
was dedicated to

• getting acquainted with the robot and the framework, learning the PDDL
language and the use of AI solvers

• Modifying the framework to fit the experimental design and fix major bugs in
the system

During the third month

• the simulations of the system and pre-tests with some human subjects were
carried out

• the participants were recruited and the experiments were conducted that
lasted 2 weeks

During the fourth month the writing of the thesis was formally started and the
different data collected in the experiment was analyzed and some conclusions were
drawn.
During the fifth month an initial report was fully written, we carried out a demo
presenting the robot and the framework for the industry and for some university
partners, and a presentation of the system and the experiment was made for the
BOOT project. At the end of the month the defence of the thesis for Grenoble
INP- Ensimag was presented in the context of my Erasmus exchange.

1.1 Context
1.1.1 Human robot collaboration and Cobots
The concept of human robot collaboration and in particular the concept of "cobots"
was introduced by Peshkin et al in [5] a quarter of a century ago.
A cobot is a robot that is able to work in close contact and collaboration with a
human partner to achieve a common goal. They allow the human to concentrate on
the tasks that might require specific human capabilities while taking care of other
actions that might be unfeasible for the human or simply easier for a robot[4]. The
collaboration between the two partners ideally helps the management of human
mental load or physical fatigue, and potentially reduce the risk of accidents in the
work environment.
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Reasons behind the lack of Human-Robot Collaboration

Despite the potential benefits of HRC, its use in the industry is still very sporadic.
The main reason for this is that adapting robots to work with humans is not a
straightforward problem. From a human point of view, robots are historically too
dangerous to work with in proximity [6], less trustworthy to collaborate with than
another human, expensive to maintain and complicated to adapt to different types
of tasks, and unsuitable to manage human unpredictability[4].

When considering regulations at the governmental and international level, it
is difficult to find well defined protocols and ethical policies to follow regarding
Robotics. Europe is leading the way in defining norms and regulation for collabo-
rative industrial robots[7]. Some of the most important norms to follow are about
the security of the individual that can be in contact with the robot.
When thinking about Robot regulation, Asimov’s Three laws of Robotics (Asimov,
1950) come to mind:

• A robot may not injure a human being or, through inaction, allow a human
being to come to harm

• A robot must obey the orders given it by human beings except where such
orders would conflict with the First Law

• A robot must protect its own existence as long as such protection does not
conflict with the first or second law

Although they offer a starting base, their purpose was not that of regulating
real life existing robots, but fictional characters. Real robots are much more com-
plicated to regulate and especially when intelligent robots come to play [8]. Mainly,
industrial robots should not bring physical or psychological arm to humans and
should be compliant with laws that apply to any other industrial tool[7] [8].

From the point of view of effectiveness, the implementation of HRC in the
industry requires a certain level of autonomy from the robot that is not yet reached,
as well as a strategy to communicate its intentions to its human partner.
Considering these last aspects, there are still many obstacles to overcome, such as:

• secure body collision avoidance [9] [10]

• Ergonomics [6][11]

• efficient action planning [6]

• adaptability to human constraints and mental load [6]
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• general perceived usefulness and trust [4]

As a main concern, robots are not yet efficient in realizing dynamic tasks. Ideally
the cobot should be able to adapt to the actions that the human chooses to
take while ensuring that it does not repeat those actions and can modify its
planning accordingly. It is crucial to address these challenges to make human-robot
collaboration feasible.

Human Choice and Robot Autonomy in HRC

For human-robot collaboration to be effective, it is crucial to allow the human to
make decisions and have the freedom to choose the best course of action while
freeing them from the burden of having to communicate every time they take a
decision.
The robot must have a certain level of autonomy, and a strategy to communicate
its intentions to its human partner must be established. The ideal scenario is one
where the human is not burdened by having to manage the robot’s actions and can
focus on their own tasks.
The robot must also be able to plan its actions based on the human’s decisions
automatically detected, but to be able to know the state of the environment, the
system requires a vision unit connected to the planning unit that can be updated
semi-automatically and quickly.
To ensure the human is aware of the robot status and to give more autonomy
to both partners, a communication channel between the human and the robot is
deemed necessary.

Consideration of Human Constraints

When implementing human-robot collaboration, it is essential to consider human
constraints, such as security concerns or the difficulty of performing certain actions.
The robot should be able to recognize when the human is experiencing a constraint
and decide whether it would be better to assign the task to the robot or allow the
human to decide if they are up for it. It is crucial to give the human the freedom
of choice in their actions to be able to fully exploit their benefits.

Adaptive Dynamic AI planning for HRC

Dynamic AI planning is necessary to achieve flexible human-robot collaboration.
PDDL planning in recent years has made good improvements in task planning
domains. A good static planning alone is not enough, since what the robot needs
is a dynamic way to change the planning to respond to the human decisions.
For that, it is essential to have a way of always planning in the best way knowing
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the state of the environment and change the planning accordingly when necessary.

1.1.2 Automated planning
Automated planning is a branch of Artificial Intelligence that focuses on the
development of techniques that allow the creation of a plan. Starting from an initial
state, formulates a series of actions considering prerequisites and/or constraints
to reach a preset result or end goal . The STRIPS planner [12] was introduced in
1971 as one of the first formal modelling languages to represent planning problems
that was used to plan for an autonomous robot movements. Nowadays, Automated
Planning problems are commonly expressed thought PDDL (Planning Domain
Definition Language) [13] as it grew to become the standard language for AI
planning problems and domains.

1.2 Contribution
The focus of this thesis comes from the necessity of solving two main problems in
the context of HRC:

1. The human should have the freedom to act as they need and want while the
robot should be able to adapt in real time to their choice of actions.

2. The robot should be aware of human constraints and adapt its planning
of tasks accordingly to reduce the human mental load or/and ensure their
physical safety.

A secondary necessity is that of making the human feel at ease and helped in
collaborating with the robot.

The freedom of choice of the human in HRC is a necessity that stems from the
ergonomic problems [11] that can arise when a worker is given repetitive tasks over
a long period of time. The developement of work-related musculoskeletal disorders
(MSDs)[14] is strictly correlated to this problem.
Recent studies show how reconfigurable human-robot collaboration (HRC) frame-
works can help limit these consequences[15][16].
A focus of this paper is then to allow the human to be able to make more natural
and ergonomic choices and not limit the range of decisions in an attempt to lower
the risk of MSDs in workers.

In this thesis we will propose a framework that wants to address these problems
and we will explore the impacts of the adaptive cobotic system proposed through
an experimentation.
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1.2.1 The framework
The objective of the HRC system developed is that of handling unexpected human
behaviors and constraints through Automated Planning, modifying dynamically
the task planning and robot decisions. We are gonna then experimentally evaluate
the performance through standard criteria.

As a solution, the proposition is that of implementing:

• Dynamic adaptive Planner based on PDDL: the plan changes according
to the human behavior and the handling of the constraints.

• Perception system: the actions of the human are automatically perceived
through the changes in the environment setup.

• Graphic user interface to communicate: The human is aware of the robot
perception of the environment and is free to decide when to activate the robot
for help. The robot will communicate its decided action before performing it,
to increase acceptability and avoid repetition of the actions.

1.2.2 The Experiment
To evaluate the system’s functionality an experiment will be formulated.
The experiment will be aimed at the exploration of the impacts of the realized
adaptive cobotic system in a constrained work environment and human variabilities,
and its effects on workload, efficiency, and acceptability of the human.

The experiment will be based on the realization of a collaborative task be-
tween human and robot, where the two actors will have to manipulate a stock
of Lego Duplo blocks in order to complete a goal configuration that is known to both.

To measure performance, we will consider the number of errors made, the com-
pletion time of the task, and the number of risks taken by the human, together
witht he delay on taking these risks. Workload will be assessed using the NASA
TLX method, which measures perceived workload of the participant. The number
of gestures made by the participants’ upper limbs within the work zone will also be
recorded. Finally, acceptability will be evaluated through a questionnaire assessing
perceived usability, coherence, pleasure, usefulness, social influence, and trust.

The human variability

Two main human variabilities will be accounted for in the experiment:
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• Cognitive variability: the differences that every human has in their cognitive
reasoning. The freedom of choice and unpredictability of human behavior.

• Expertise level: Half of the participants were thought the complex task
beforehand and they assembled it alone to become acquainted with the task,
the other half realized the complex task for the first time directly with the
help of the robot.

The constraint

A constraint will be introduced for the human, that the robot will manage through
specific planning. We simulate a chemical work environment where the human
and robot need to handle some dangerous or less dangerous chemical substances,
represented by different color duplo blocks.
The substances can have two levels of danger: regular and toxic. For handling
regular substances, the use of surgical latex gloves is enough. For the manipulation
of a toxic substance the use of special gloves is required. The special glove cannot be
used to manipulate a regular substance because it is considered to be contaminated.

1.3 Expected results
The results of the experiments will hopefully show that the cobotic system was
able to smoothly adapt to the chosen human actions while offering the appropriate
support through the robot manipulation.
The humans would hopefully feel helped and at ease in the collaboration with
the robot partner and their mental load and/or perceived safety should show
improvements.
The planning carried out by the robot should adapt smoothly to the different
human choices caused by the cognitive variabilities of each human and also should
adapt to the eventual pre-declared constraints in attempt to help the human.

1.3.1 Structure of the thesis
Chapter 2 will explore the current state of the art concerning the field of interest of
this paper. Chapter 3 will describe the framework proposed and the contributions
given by the author of this thesis. Chapter 4 will focus on the details of the
experiment and chapter 5 on its results.Finally, chapter 6 will deline the conclusions
that can be carried out from the collected data. The thesis will end with an analysis
of future necessary work in the field and finally present eventual open issues with
the research.
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Chapter 2

State of the Art

For this thesis’s focus, the problem at hand is inherently multidisciplinary, requiring
the understanding of various subject areas to achieve comprehensive and effective
results. Consequently, in order to provide a thorough analysis of the current
advancements, the state of the art will be divided into distinct thematic sections.
Specifically, this review will focus on two primary domains:

• The application of PDDL for task planning;

• AI Planning for cobotic systems, specifically which has been employed in
related experiments and their characteristics;

By examining these key fields, a comprehensive understanding of the existing
research landscape can be established.

2.1 Planning methodologies for Cobots

2.1.1 What is PDDL
Planning Domain Definition Language (PDDL), presented in [13], is a formal
language and framework used for modeling and solving planning problems in
the field of automated planning and artificial intelligence. PDDL provides a
standardized and expressive representation to define the components of a planning
problem, including the initial state, actions, goals, actors and possible constraints.
PDDL serves as a powerful tool for both researchers and practitioners in the
planning domain. It offers a structured and formalized approach to representing
planning problems. Furthermore, planners can precisely specify the initial state
of a system, the actions available to manipulate the state, and the desired goal
state. This enables the automated generation of plans or schedules that achieve
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the specified goals while adhering to any constraints or resource limitations.
Using PDDL has several other advantages, some of these are:

• It promotes clarity and precision in problem specification, ensuring a shared
understanding among its users.

• It allows for the standard representation of planning problems, enabling the
reuse of domain-specific notions and promoting the development of reusable
planning models.

• It supports the integration of different planning techniques and algorithms,
allowing planners to select and apply the most suitable approach for their
specific problem.

• It is still being implemented and updated yearly. More precisely, there is
active ongoing research on the creation of more efficient and more personalized
AI solvers.

How does PDDL work

In order to illustrate the functionality of PDDL we will use some snippets of code
from our own implementation.

Domain Definition

Figure 2.1: Domain definition in PDDL

The definition of a Domain is always essential when using PDDL. A domain is
defined in figure 2.1 line 1 attributing the name "lego" to the domain. Then, it is
essential to define the requirements, that allow the representation of the domain.

9
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After that, some types are defined. They represent real objects in the world that
will be used in the domain description when declaring actions or preconditions.
The predicates are instead some facts or states that the objects can have or be in.
They are useful for precondition declarations and effects caused by action definitions.

In figure 2.2 we defined a function and an action. Functions are used to represent
real-valued quantities or numeric attributes associated with the states in a planning
problem, in this case, a function is needed to keep track of the accumulated total
cost of the actions.
Actions represent the fundamental building blocks for defining the behavior and
transformations in a planning domain. They describe the possible actions or
operations that can be performed by actors to manipulate the state of the world.
In this example, the action representing the pick and place of a cube made by the
human is described.
The parameters are defined: a human, a cubeB and a pos will be the types involved
in this action.
As we can see, some preconditions need to be respected for the human to be able
to be assigned the action by the planner. For example some of the preconditions
described are: the cube needs to be in the stock of the human, the arrival position
for the cube needs to be empty and it needs to have another object or the ground
underneath it(the cube cannot be placed mid air).
Also some effects of the action can be described. Effects are modifications to the
state of the world that happen because the action has been performed. Some
effects of the action in our example are: the cube manipulates is not in the human
stock anymore, the cube is placed at the new position, the position is not empty
anymore, the total cost of actions increases by 1 unit.

Figure 2.2: Functions and Actions in PDDL
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Problem definition

The second essential part of a PDDL planning task definition is the Problem
definition. In PDDL, a problem represents a specific scenario within a defined
planning domain. It defines the initial state of the world and the desired goal
state that the planner aims to achieve through a sequence of actions defined in the
domain.

The problem defined in figure 2.3 shows the basic structure of a problem that
refers to the domain "lego" previously encountered.
Firstly, the objects involved in the problem are listed. In this example we find a
robot arm, an operator, various positions and blocks.
The problem continues with the initialization of the current state. The initial state
of the problem describes the starting conditions or state of the world. It specifies
the values of predicates or propositions that hold true at the beginning of the
planning process. The initial state represents the situation from which the planner
will start generating a plan.
In the example we can see that after the keyword :init, a series of state descriptions
are defined. Here we initialize the total cost to zero so that we can start accumulating
the cost metric. We also find the positions that are "empty" and would need to be
filled with blocks and whether these positions are reachable (if they have a block or
the ground underneath them). Concluding, we find the declaration of what blocks
are in stock for the operator or for the robot arm.
The most essential part of the problem definition is the goal. The goal state defines
the desired conditions or state that the planner aims to achieve, the target of the
planning. It specifies the conditions or predicates that need to be satisfied for
the problem to be considered successfully solved. The goal in this example is to
find a solution for filling the position specified with a red cube, and we have two
possibilities of action: the robot completes the task inserting the cube rc8 or the
human completes it inserting rc5.

2.1.2 Planners and Solvers
After defining a Domain and a Problem, in order to obtain a solution plan a planner
needs to be called. A planner is a computational tool or algorithm that is designed
to generate a sequence of actions to solve a planning problem.
It takes as input a Domain and a Problem and returns ,where it is possible, an
ordered plan that transforms the initial state into the desired goal state.
Planners in PDDL operate by exploring the space of possible actions and their
effects to find a valid and/or optimal plan. They typically employ various search
algorithms, heuristic functions, and planning techniques to efficiently navigate the
search space and find a solution.
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Figure 2.3: Problem definition in PDDL

Overall, PDDL united with the state of the art planners ,empowers researchers
and practitioners in the planning domain by providing a standardized language
to describe and solve planning problems. Its adoption enhances problem-solving
capabilities, facilitates knowledge sharing, and drives advancements in the field of
automated planning and intelligent decision-making.

In this chapter, an evaluation will be conducted to assess the current state of
the research in relation to this thesis’s focus. In particular, the objective of this
chapter is to identify the different types of planning techniques that are currently
being experimented in correlation to HRC.
Planning is one of the most fundamental aspects of Human-Robot Collaboration.
It is essential for coordinating actions between robots and humans, enabling a
collaborative workflow. Without planning, the robot and human would not be able
to perform actions in a synchronized manner, impeding effective collaboration.

2.1.3 Most used AI planning techniques: an overview
Task planning plays a crucial and established role in the fields of AI and robotics.
Over the years, various AI planning methodologies have emerged and gained
widespread usage. Additionally, recent advancements in the field of Machine
Learning have led to the exploration and definition of new technologies in task
planning.

This paragraph will introduce broadly some of the most used and relevant
planning techniques and their main characteristics.
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Planners derived from STRIPS

STRIPS (Stanford Research Institute Problem Solver) [12]planning language was
developed in the late 1960s and it introduced a formal representation for the
specification of planning problems that consist of a set of symbols, variables and
actions and the solution consists in finding the set of actions that can transform an
initial state into a set goal state, satisfying preconditions and effects associated to
actions.
Planners derived from STRIPS typically employ search algorithms, such as depth-
first search or A* search, to explore the space of possible actions and states. They
make use of heuristics and search strategies to efficiently navigate the planning
problem’s state space and find an optimal or near-optimal solution. Some examples
of STRIPS derived languages are:

• PDDL (Planning Domain Definition Language)[13]

• ADL (Action Description Language)[17]

• Golog (Goal Language)[18]

• O-Plan[19]

AI planning using machine learning techniques

In the last years machine learning techniques are increasingly being integrated into
AI planning[20]. The idea is that by leveraging the power of machine learning
algorithms and neural networks, planners can learn action models, heuristics and
policies, enabling them to adapt and generalize to new environments.

Machine learning and specifically deep learning can be used do solve Ai planning
problems[21] especially when these problems lie on big search spaces.

Some ways machine learning can help in Ai planning are:

• Action Models: Instead of manually specifying the action models (preconditions
and effects) for planning, machine learning techniques can be used to learn
these models from data.

• Heuristics: Heuristics play a crucial role in guiding the search process of
a planner. Machine learning algorithms can learn effective heuristics from
historical planning data or by training on a large number of planning instances.

• Learning from Experience: Reinforcement learning techniques can be employed
to train planners through interactions with an environment. Planners can learn
action selection policies by receiving feedback or rewards based on the success
or failure of their plans. This iterative learning process enables planners to
adapt and improve their strategies over time.
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In general, very often a machine learning application might be over complicated
for effectively solving smaller problems or problems that do not have the necessity
of a learning curve.

Hierarchical task networks and AI planning

Hierarchical Task Network (HTN) is a planning methodology that focuses on
decomposing complex tasks into more manageable subtasks. It is broadly used in
AI planning[22] as it provides a hierarchical structure representing and organizing
tasks, making it easier to find solutions and plan complex actions.

In HTN planning, then, a task is represented as a network of subtasks, where
each subtask can be further decomposed into even smaller tasks until reaching
primitive actions in the lowest level of granularity. This hierarchical decomposition
allows for modular and structured planning.

Temporal and-or-graphs

Temporal and-Or-Graph (TOG) is a planning methodology in AI that combines
both temporal reasoning and conditional branching to represent and solve planning
problems. It extends the traditional And-Or-Graph (AOG) planning framework by
incorporating temporal constraints and actions. It is rather useful in domains that
involve temporal constraints and complex dependencies.

Markov decision process and its use in AI planning

Markov Decision Process (MDP) is a mathematical framework used in AI planning
to model decision-making problems with uncertainty and sequential actions. It
provides a formal framework for planning and decision-making under uncertainty.
The main elements in a MDP are the States of the environment, that are reachable
with Actions that can be taken with a certain probability defined by Transition
functions. Some actions are more preferred or desired than others, and this
relation is represented by Reward functions, a numerical value assigned to each
state-action pair.

2.1.4 Relevant studies on task planning for Cobots
For the objective of this thesis, the evaluation and the study of the state of the art
in this chapter will be focused on some main characteristics:

• the type of planning utilized in the study

• whether the planning approach is static or dynamic
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• the consideration of constraints and difficulty associated with human actions

• the handling of these constraints in a dynamic manner

To be able to better grasp the classification made below, a brief explanation of
the used criteria follows:

The type of planning simply describes the methodologies and techniques used
to come up with the sequence of actions that define the collaborative task.
For Static/Dynamic planning it is intended that the planning has the ability to
change during the execution of a task, so it means that the initial generated plan
might be updated for every new unitary action realized or for every new information
collected during the execution of the task. Then, a system that produces a different
plan for different tasks but keeps the same plan through the whole task execution
will be defined as static.
The Difficulties/Constraints managing criteria refers to the presence or absence
of action cost consideration. This means that if a framework can change their
planning to adapt to human constraints or if some fatigue parameters are considered
when realizing the planning, then the criteria is respected. Such constraints can be
a particular difficulty in completing a task, security risks or having one partner
better suited for a specific job than another.
The Validation Method is the procedure used to evaluate the effectniveness
of the proposed framework. For example, a framework can be evaluated through
simulation but also through experimentation with an actual robot.

The authors of [23] propose a research on human robot collaboration on the
disassembly of end of life products. Their focus is that of realizing a sequence
planning that is able to take into consideration human fatigue and adapt the
planning process to the human conditions. To do that, they assign some "class"
to the actions. High complexity or uncertain actions are assigned to the human
operator, that can handle them flexibly, while repetitive or heavy loading tasks
will be taken by the robot. Doing so they consider human constraints in their
planning. They decide that human fatigue is a function of time, for this, the
planning approach is considered to be static. It is important to specify that the
planning is not dynamic in the sense that it changes during the manipulation of
the object, like in our experimentation, but that for each object a new plan is
formulated in function of the time passed since the beginning of the work session.
To obtain a plan they make use of the Bees algorithm, an heuristic algorithm
that searches for an optimal solution between the feasible ones. The algorithm was
experimented through simulation.

In the article [24] a new methodology called ProTamp is described and it pro-
poses a probabilistic task and motion planning in the context of human robot
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collaboration. The system is built to try to predict the human actions and thus the
changes in the environment caused by human and robot. Also the deterministic
environment changes are taken into account, wherever the robot can identify them.
The probabilistic model determines the possibility of changes in the environmental
state and tries to assign different tasks to the robot to avoid repetition of actions.
The model used is based on planning in Multi-layered action graph built by
recognizing the environment through sensors, and to predict the environmental
changes a Tree-diagram-based environment state graph is built.
The planning described in the analyzed paper is considered dynamic, because
it is able to change and re-plan during the execution of the task, reacting to the
environment state changes, whenever they are detected. The study does not take
into account human constraints, since it only makes use of the distance from
the object and the elapsed time since starting to make its predictions.
The method was analyzed both through simulation and experimentation, and it
was proved that the system allows for harmonious task execution.

The authors of [25] propose an interesting hierarchical framework for collabora-
tive assembly planning. The model is composed of two layers or abstraction and
allocation. To distiguish between robots and humans they use function costs, effec-
tively managing human constraints in this way. Tasks are described through
hierarchical and concurrent hybrid state machines, and AND/OR graphs
and A* graph-search are used to produce the task descriptions. To the extent of
the research description, the planning does not appear to be dynamic, it is instead
static since it is not modified and reprogrammed automatically for each human
decision and does not handle the human constraints dynamically. The system
analyzed has been evaluated through experimentation.

In [26] another task planner, this time based on Partially observable Markov
decision processes, was proposed. The research is based on the idea that clear
communication between robot and human is crucial to lower the mental load of
the human and it removes the burden of the human in taking care of the robot.
Communication is a crucial point also in our own research and, just as the authors
of this cited paper, we believe it is essential for fluid collaboration. In this analyzed
paper, the human needs to communicate his actions which can still be burdening
for the operator and time consuming.
In their experiment, the roles of human and robot are different and explicitly
decided beforehand. The planning, for that, is not dynamic as there is no need to
avoid choosing colliding actions in this scenario. For the same reason, the planner
does not take into account the cost of actions or human constraints.

The paper [27] describes a new methodology that allows humans and multiple
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heterogeneous robots to interact between them to perform a defect inspection task.
In this study the tasks are unequivocally assigned to the different human or robot
operators which makes the task quite static from the point of view of our own
research. Even though the human and robots actions are predefined, we still find
some dynamicity in the choice of the robot’s next action, since it is decided by
the human output of his previous action. The task planner is then called once
again and the robot actions are updated accordingly. And/or graphs are used
for task allocation in this model.

The authors of [28] propose a system that makes use of dynamic task classifi-
cation and then assignment of the task to different operators, human or multiple
different robots. The study is quite interesting since it first analyses the type of
task to discover which one is the most suited operator to assign the action to. A
plan is then built upon the classification.
The cited research is considered to be highly dynamic since at first the dynamism
is found the assignment of a task to a specific class, after that the tasks are assigned
considering available resources and periodically reassigned to match the change in
resource usage.
Furthermore, the human and robot constraints are considered since the tasks
are classified into four categories: only executable by human, only executable by
robot, executable by both H and R and only executable in collaboration. This
study makes use of machine learning techniques and pre-trained sets for the
task classification.

Similarly, a Task allocation method is proposed by [29] for the disassembly of
automotive traction batteries in HRC. This method is based on the complexity
analysis of the disassembly taking into consideration human and robot constraints
and qualities. After the evaluation of the complexity of the task, the action
allocation happens through the use of a multilayer perceptron neural network.
The task assignment and order is static since it is not changed after the task
allocation process. The strong suit and our interest on this research is their focus
on the complexity and constraints analysis.

Overall, the studies reviewed above generally lack the integration of dynamism
and consideration of human constraints.
Additionally, while PDDL has demonstrated to be effective in numerous task
planning and robotics studies, its application in combination with dynamism and
constraint consideration appears to be limited.
In contrast, our research aims to address this gap by proposing a highly dynamic
and cost-conscious system that is environment-aware, leveraging the capa-
bilities of a camera to observe human and robot actions. Notably, our approach

17



State of the Art

Figure 2.4: Literature review recap

eliminates the need for explicit communication of decisions from the human, offering
a more seamless and intuitive collaboration between humans and robots.
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Chapter 3

Description of the
Framework

As mentioned in the previous chapters, the main issue tackled by this research
is how to make a cobotic system effective by considering human variabilities and
constraints in its planning.
This gives rise to two main key challenges:

• Allowing humans the freedom to act as they choose while enabling the robot
to adapt accordingly,

• Ensuring that the robot is aware of human constraints and plan tasks in a
way that reduces mental effort and ensures safety.

Furthermore, it is important for the human-robot collaboration to be seamless and
user-friendly, so that users find it easy to learn and work with the system.

The proposed solution is based on the extension of the work made on the Cobotic
system framework realized by the Marvin team- LIG lab Grenoble in France, that
I joined in my master research. The modifications and contributions to the system
will try to tackle the problem at hand.

In the implementation of the framework, we choose to use PDDL (Planning
Domain Definition Language) for task planning, which enables us to generate
efficient and optimized plans for the collaboration between human and robot.
To facilitate seamless communication, we incorporate a user-friendly Graphical
User Interface (GUI) that serves as a medium for interaction between the human
and the robot. Additionally, we integrate a vision system that automatically
updates the system’s state, allowing for real-time awareness of the task progress.
In our system, both the human and the robot know what the task goal is.
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The human has the freedom to decide when they need the robot’s help, and to make
things clear, the robot openly shares its planned actions through the GUI, ensuring
clear understanding and coordination between human and robot throughout the
collaborative process.

In the next section we will explore the details of the proposed implementation.

3.1 The Cobotic System

Figure 3.1: Illustration of the framework

The proposed system utilizes different techniques and for this, separate modules
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and environments are necessary, as well as a way for them to communicate between
each other and exchange information with the real world.

3.1.1 Environment description

The environment of the system is what we can see physically in the real world.
The work setup is composed of a green lego work platform placed on a plexiglass
table, a stock of lego duplo blocks of various colors, two different types of
gloves (latex and special security gloves) for the manipulation of different colors
of blocks.

The actors of the system are the human and the robot, which are also
considered to be an important part of the system environment.
The robot in use in our system is the YUMI dual arm industrial robot from ABB.

Figure 3.2: Collaborative environment: Human-robot setup

It will be described throughly in the next sections.
Another essential part in the environment setup is the Camera RealSense L515
RGBD , that is the main communication instrument for the Vision System with
the real world.
The most important link of communication between the cobotic system and the
human is the Graphic User Interface. Through the GUI accessible from a Touch
Screen the human is able to communicate to the robot when he wants the robot
to act, and to receive important information about the state of the task and the
robot status and perception.
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3.1.2 The Graphic User Interface
The Graphic User Interface represents the main channel of communication between
the human and the system. It is accessible through a touch screen placed in the
vicinity of the human location.

Figure 3.3: GUI - task at level 1 and
"robot cannot help " message

Figure 3.4: GUI - task at level 3 and
robot communicating its next action

The GUI presents in the main screen a reproduction of what is the perception
of the task that the camera is seeing and that it is elaborated by the Controller.
The representation of the task on the green table is needed:

• To communicate to the human if they make errors, for example, a red X
appears on top of a misplaced block

• To show the human what the robot is perceiving and being able to check if
there are errors in the robot perception due to vision or environment problems

• For the robot to be able to show the human its next planned action, as we
can see in Figure 3.4. Before an action is physically performed by the robot, a
robot arm appears in the GUI to pick up the selected block to put it in the
chosen position.

The last point is essential so that the human, once he is informed of the robot’s
next action, can choose to continue to work alongside the robot without interfering
with the robot’s work.

As we can see from the Figure 3.3, the GUI is equipped with an interactive bar
at the bottom of the screen where the human can interact with the system.
The human needs to choose the type of pattern to work on, and he can choose to
increase or decrease the speed of movement of the robot.
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Additionally, the human can ask for Hints on their next action when needed or
wanted.

Successively, to ask the robot to perform its next action, the green button "Plan
Next Act" needs to be pressed. In this way the human has full control on when the
robot should help him and he can count on the fact that he will not be surprised by
some robot actions. In this way, the human will interact with the screen and will
be able to see and launch the robot action ( and know how to avoid it). Moreover
the pressing of the "Plan Next Act" button ensures that the replanning is done
when the human hand is outside the workplace in order to have a valid perception
information to guide the planning, since the screen is placed far from the working
table.
We implemented this security also to make the system more acceptable by indi-
viduals who have never been in contact with an industrial robot before and could
experience feelings of mistrust or fear.
Finally, the bar is equipped with a start/stop button to be pressed at the begin-
ning of the collaborative task when the human is ready to start, and in case of
emergencies to stop the task process.

In the top part of the screen we find some output communication messages: in
figure 3.3 the robot is communicating that it cannot help right now.
At the top center we find a display of "stars" that represent the current level the
task is at. The task we experimented with had 5 levels corresponding to different
floors of work.
The human and the robot will work on the task level by level, and only when a new
star appears in the screen is the level considered completed. The stars work both as
a reward for the human and as a way to know what level is being completed at the
moment. When the task is finished, and all 5 stars are collected, a congratulating
message appears at the center of the screen letting the human know the task was
successful as in figure 3.5.

3.1.3 The Vision System
The vision system main link to the real world is the RealSense L515 Camera that
is positioned above of the workstation to be able to see the lego blocks in the
workspace. The camera is connected to a Jetson Xavier NX where the code for
the vision module is stored and ran, and where the first analysis of the perception
happens.
The main modules that run in the vision system: the vision launch, the vision logic
and the model validator.
The vision launch is needed to activate the camera and correctly identify the
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Figure 3.5: GUI- task completed, congratulations message displayed

different types of blocks and their positions. It is the main package used for
Detection.
The vision logic is a Geometric reasoning module to infer from the vision some
information on the status of the legos, for example which Lego block was picked
and then placed, amd the new position of the block.

The model validator is needed to validate that the pattern assembled until now
is correct, to update the level status when a level is terminated, to manage the
pick and place of cubes from the point of view of the camera (the robot arms are
going to cover the camera vision). The motion status received from the Execution
System is used for this scope.

The model validator is able to know the ground truth of the task because it is
contained in preloaded JSON databases. For example, we have a file containing the
initial stock of blocks for both human and robot and another file for the finished
task.
We report here a snippet of the json database for the completed task:

{
"complex": {

"p_01_08": {},
"p_02_08": { "1": "w" },
"p_02_09": { "1": "r", "2": "l", "3": "w" },
"p_02_10": { "1": "b", "2": "b", "3": "y", "4": "b", "5": "r" },
"p_02_11": { "1": "b", "2": "b", "3": "y", "4": "o" },
"p_02_12": {},
"p_02_13": {},
"p_02_14": {},

...
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The correct solutions for some positions are reported here. As we can see, for every
position we have the color of block that should be placed there and at which level.
If the vision system detects a block in a position that is not listed in the database
of the completed task, the model validator will detect it and tell the GUI to show
the error to the human. The block will only be considered corrected if it is placed
in one of the listed positions for the specific block color and type.

To easily translate the perceived workspace to a manipulable entity, each block
has been assigned a code of the type "L t n◦ " where L= Letter corresponding to a
color; t= type of block (c for cubes and b for bricks) ; n◦= a cardinal number. For
example the code "bc4" corresponds to a blue cube indexed 4.
Similarly, each position in the workspace will corresponds to a cartesian x-y-z axis
position p of the form "p_xx_yy_zz"

The pattern registered up to this moment is converted using block codes and
positions in a similar way as it was shown in the json code above.
All the data collected by the vision system is then sent to the State Controller
where some modifications are made to the perception state received and then the
perception is saved and sent to the GUI to be displayed.
When the human asks for the robot’s next action through the GUI, a trigger is
sent to the controller and the last saved perception state is sent to the Planning
system so that the planner can work with the last updated state of the task.

3.1.4 The Execution System
The execution system of the framework is mainly represented by YuMI Dual-arm
IRB 14000 collaborative robot and the necessary software needed to allow its
controlled movements.
Yumi is a collaborative robot developed by ABB. Yumi stands for "You and Me",

Figure 3.6: Yumi dual arm collaborative robot
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meaning humans and robots working together in collaboration. Some of its main
characteristics :

• Design and Features: Yumi is designed as a dual-arm robot with human-
like flexibility and dexterity, with 14 axis of movement freedom. It has
compact dimensions, lightweight construction, and soft padding to ensure safe
interaction with humans. The robot has a built-in controller and a wide range
of motion, allowing it to perform intricate tasks with high precision.

• Collaborative Capabilities: It is specifically designed for collaborative applica-
tions, working alongside humans in various industrial settings. It is equipped
with advanced safety features, including sensitive joint torque sensors and
collision detection technology. These features enable Yumi to safely operate
in close proximity to humans without the need for safety barriers.

• Easy Programming: Yumi is designed to be user-friendly and easy to program.
It uses ABB’s intuitive programming interface, allowing both experienced and
novice users to quickly teach the robot new tasks. Programming can be done
through manual guiding or offline programming, depending on the necessities.

• Wide range of applications: Yumi is suitable for a wide range of collaborative
tasks in industries such as electronics, automotive, and consumer goods. It can
perform assembly, pick-and-place operations, packaging, machine tending, and
other tasks that require precision and flexibility. Yumi’s dual-arm configuration
enables it to perform tasks that would typically require two separate robots
or a human and a robot working together.

Yumi is connected to our framework through the use of a personalized ROS
interface. The actions that need to be performed by the robot are sent from the
controller to the robot interface. Similarly, the Yumi motion status is collected
from the robot interface and sent to the controller to be used as necessary in other
parts of the system.

3.1.5 The Planning System
The planning system plays a prominent role in enabling the dynamic nature of the
framework and requires careful implementation.
The planning system is designed to be dynamic, generating updated plans whenever
the human operator requests the robot to perform an action. This involves updating
the problem based on the current status of the vision system.
There are two essential scripts involved in generating a plan: the PDDL (Planning
Domain Definition Language) domain and the PDDL problem. The PDDL domain
is created once and remains static, while the problem is dynamic and changes
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with each request. This is because the base environment the task is conducted
on and the definition of the actions does not change while the problem analyzed
(type, number and position of the blocks) is the one that changes. The necessity
for dynamism of the pddl problem will be explained in greater detail in the next
section.
Once the new PDDL problem is generated, both scripts are sent to the planner for
solving and generating an appropriate plan.
The planner chosen for the system is the Fast Downward planner.

Fast Downward

Fast Downward [30] is a classical planning system that uses heuristic search to solve
general deterministic planning problems. In the last years, it has achieved success
in planning competitions and performs well on benchmarks, providing insights into
search enhancements. It is considered the state of the art for PDDL based planners
and it is known for its efficiency and its ability to handle large-scale planning
domains.
In its last releases, Fast Downward also supports the specification of action costs
and disjunctive-preconditions to find an optimal solution with respect to a specified
cost metric.

After the generation, the plan is sent to the controller to be reordered and
corrected before calling the robot to action.

3.1.6 The Controller
The state controller is an automaton that serves as the central link connecting all
the modules within the described framework. It acts as a vital intermediary for
transmitting information between different parts of the system.
The most important links that the controller allows are:

• Facilitating communication between the vision system and the planner. This
enables the planner to utilize the most up-to-date work state for generating the
PDDL problem file. Additionally, the GUI also receives the updated perception
from the controller and can constantly display an updated perception of the
work for human observation.

• Enabling ordered information exchange between the planner and the system.
This exchange is crucial for organizing the next action of the robot and for
displaying the selected action in the GUI.

• Ensuring seamless coordination between the requests made by the human
through the GUI. When an action request is made in the GUI, the trigger is
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sent the controller that initiates the process of the next action by calling the
planner to generate the plan and initiate the robot’s subsequent action.

Overall, the controller serves as a central component in controlling the flow of
information between different parts of the system. It guarantees that the exchanged
data is continuously updated and correctly processed, supporting the smooth
operation of all processes within the framework.

3.1.7 The functioning of the framework
With these implementations to the system, we can foresee how the system is going
to work when a human and a robot need to collaborate to realize a common
predefined task.

Figure 3.7: Execution of the system

At the beginning, the state of the working table is identified by the perception
system and it is always updated for every new action realized from Robot or
Human.
At that point the human can either choose to perform a manipulation action of
his/her choice or to ask the robot to perform the next action. When the robot is
asked to perform an action, the planner is activated and by reading the current
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state of the task reached, it is going to realize a plan that gives precedence to the
robot actions and if needed takes into account human constraints.
The generated plan is a list of actions that indicate the Actor, the block to be
manipulated and the new position to place the block in.
Some actions for the human will be generated if there is no possibility for the robot
to help any further (for example if it is missing the necessary blocks in its stock). In
that case the GUI will display a message for the human, letting him know that the
robot cannot help any further for now. At that point the human has the possibility
to either directly do the required action or ask for an Hint from the system if he
does not know how to proceed. After every action the vision system will update
the state of the task and the human can check the correctness of the system. The
cycle of actions by both partners will continue until the task is completed. When
the task is terminated, the GUI will project a message communicating the success
of the job.

3.2 The decision making PDDL system
The decision-making or planning system plays a critical role in generating action
plans for the robot, while also considering potential constraints and the cost of
human actions. It can be likened to the brain of the robot, constantly assessing
and determining the best course of action.

However, the planner’s objective extends beyond dynamic planning. It also
aims to generate efficient plans that account for any limitations or preferences the
human may have in their actions.

To achieve this, we have implemented a static Domain capable of considering
action costs through various actions. This Domain is created once at the beginning
and remains consistent throughout the system.
In our implementation, we have developed two distinct PDDL domains, each
accounting for actions with different costs.
These domains are selected based on the specific requirements of the task.

3.2.1 The PDDL Domain
In this paragraph we will illustrate some important parts of the PDDL domain
that will be used in the experiments when the robot is asked to consider human
constraints such as that their difficulty in managing red cubes and bricks (more
information will be given in the Experiment chapter).
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The declaration of the domain is realized as in figure 2.1 and the definition of the
types is shown here:

domain
1 ( : types
2 red_cube − cubeD
3 blue_cube − cubeB yellow_cube − cubeB white_cube − cubeB
4 red_brick − brickD
5 blue_brick − brickB yel low_brick − brickB
6 cubeB − cube cubeD − cube
7 brickD − br i ck brickB − br i ck
8 cube − l e go br i ck − l e go
9 l e go − ob j e c t

10 robot − agent human − agent
11 agent − ob j e c t pos − ob j e c t
12 )
13

From the code above we can see how the red cube and the red brick definition
is different from the definition of all other blocks (cubeB and brickB, to mean
cube/brick Basic), as they were assigned to be of the type cubeD and brickD
(meaning cube/brick dangerous). This difference in definition will be useful later
on when defining the actions of the domain that respect the different costs.
The types cubeB and cubeD are then recursively assigned to type cube, that is
assigned to type lego and then lego to object. A similar definition is made for
bricks.
Robot and human are defined as agents that correspond recursively to objects.
The predicates are declared as in figure 2.1 and they indicate:

in_stock : if a certain lego is in the agent stock or not
cube_at & brick_at : what is the position of a certain cube or brick
empty : if a specified position is empty or not
under : to indicate that position2 is under position1

The next step of our domain definition is the declaration of a function:

1 ( : f u n c t i o n s
2 ( t o ta l −co s t ) − number )
3 )

that is necessary to declare the total cost variable that will be used as an
accumulator by the problem.
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The last essential part of the Domain is the action definitions. An example of
an action is shown here:

domain
14 ( : a c t i on pick_place_cube_robot
15 : parameters (? r − robot ? c − cubeB ?p ?p0 − pos )
16 : p r e cond i t i on
17 ( and
18 ( in_stock ? c ? r )
19 ( empty ?p)
20 ( under ?p0 ?p)
21 ( not ( empty ?p0 ) )
22 )
23 : e f f e c t
24 ( and
25 ( not ( in_stock ? c ? r ) )
26 ( cube_at ? c ?p)
27 ( not ( empty ?p) )
28 ( i n c r e a s e ( to ta l −co s t ) 1)
29 )
30 )
31

This action corresponds to the robot action of picking and placing a basic cube.
The parameters indicated are: the robot, a specific basic cube and two positions,
the first where the cube currently is and the second where the cube needs to be
placed.
The preconditions indicated right after are essential because if they are not satisfied
the action cannot happen. In this case it is required that the cube is in the robot
stock, the arrival position is empty, the positions both have something underneath
and finally that the starting position is not empty (it needs to still have the cube
to be picked up).
The effects that happen after the action is executed are that the cube is not in
the robot stock anymore, the cube is placed at the new position so that it is not
empty anymore, and finally that the pick and place of this specific cube causes an
increase on the total-cost of the plan that is equal to 1.

The declared actions are:

:action pick_place_cube_human & :action pick_place_brick_human : human
action of picking and placing a normal cube or a normal brick. The increase in
total-cost is 2
:action pick_place_cube_robot & :action pick_place_brick_robot : robot action of
picking and placing a normal cube or a normal brick. The increase in total-cost
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is 1

:action pick_place_cube_human_dangerous & :action pick_place_brick_human_dangerous
: human action of picking and placing a dangerous cube or a dangerous brick. The
increase in total-cost is 20

:action pick_place_cube_robot_dangerous & :action pick_place_brick_robot_dangerous
: robot action of picking and placing a dangerous cube or a dangerous brick. The
increase in total-cost is 0

The differences in increases of the total-cost are necessary to ensure different
priorities for the scheduling of the robot actions. With these values, a human
action for a dangerous block will only be scheduled if strictly necessary, and the
priority of scheduling will be given to the robot action of handling the dangerous
blocks, and then subsequently to the robot actions for normal blocks and when
necessary the human actions for normal blocks.
With these configurations, we are able to guarantee that the planner will choose
to plan the robot actions with more priority and the human actions only when
convenient or strictly necessary.

3.2.2 The generation of the PDDL problem
Since the problem needs to change every time a new plan is generated and every
time an action is requested by the human operator, it needs a dynamic way of
creating a problem starting from:

• the perception of the vision system

• the remaining blocks in the human and robot stack

• the solution of the task for the specific level considered

The proposed solution uses a python script which, by taking as input the data
mentioned above, returns a problem fitting the current necessities.

The problem generator works as follows:

Define the problem name and domain First it writes on the PDDL file the
initial definition of a problem in the form
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problem
1 ( d e f i n e ( problem complex )
2 ( : domain l ego )

Define the objects It appends the list of objects, such as in the following
example

problem
3

4 ( : o b j e c t s
5 operator − human
6 robot_arm − robot
7 p_05_13_3 p_02_11_3 p_02_10_3 p_02_09_2 p_05_13_2
8 p_05_12_2 p_02_10_2 p_02_11_2 plat form − pos
9 wc2 wc3 wc4 − white_cube

10 rc8 rc5 rc6 rc7 − red_cube
11 yc1 − yellow_cube
12 bc2 bc3 bc4 − blue_cube
13 yb2 yb3 − ye l low_brick
14 bb2 − blue_brick
15 rb2 − red_brick
16 )
17

The list of objects always contains the two actors (human operator and robot
arm), the list of positions corresponding to the blocks and the list of the blocks
with their corresponding code taken from the remaining (human or robot) stock list.

Define the initialization The initialization of the problem is necessary to
estabilish the conditions of the space of work. An example of such initialization is:

problem
18 ( : i n i t
19 (= ( to ta l −co s t ) 0)
20 ( in_stock wc2 operator )
21 ( in_stock wc3 operator )
22 ( in_stock wc4 operator )
23 ( empty p_05_13_3 )
24 ( under p_05_13_2 p_05_13_3 )
25 ( under p_02_11_2 p_02_11_3 )
26 ( in_stock rc8 robot_arm )
27 . . .
28 . . .
29 )
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The initialization of the total cost is useful for the accumulation of the costs of
actions so that the planner can choose the best actions to insert in the plan.
The initialization of the legos in stock and the positions empty or under is necessary
for respecting the preconditions.

Define the goal The definition of the goal is created using a generated list of
positions and legos to be inserted to complete the level. From this list, a structure
made of and & or is formed.

problem
30 : goa l
31 ( and ( or
32 ( cube_at rc8 p_05_13_3 )
33 ( cube_at rc5 p_05_13_3 )
34 ( cube_at rc6 p_05_13_3 )
35 ( cube_at rc7 p_05_13_3 )
36 ) ( or
37 ( cube_at bc2 p_02_10_3 )
38 ( cube_at bc3 p_02_10_3 )
39 ( cube_at bc4 p_02_10_3 )
40 ) ) )

In this explicative example, the position p_05_13_3 needs to be filled with a
red cube and the position p_02_10_3 needs a blue cube.
The problem generator uses the list of cubes in stock to generate the different action
possibilities for each action necessity. For example, since we have four different red
cubes that can fulfill the necessity of position p_05_13_3, then they are all listed
as possible actions. Then the planner will choose the best action between them
considering the cost.

Define the metric To obtain an ideal plan, the total-cost needs to be as small
as possible. We indicate this need through the last line of the generated plan:

1 ( : metr ic minimize ( to ta l −co s t ) )

so that the total-cost can be minimized by the planner, when possible.

3.2.3 The Fast Forward Planner to generate the solution
The fast forward planner is called and it starts by analyzing the initial state of the
problem and constructing an abstract representation of the domain. It then uses
this representation to generate a search graph, where each node corresponds to a dif-
ferent state of the problem. The search algorithm systematically explores the graph,
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evaluating the cost of each potential solution path based on the specified cost metric.

To guide the search process, Fast Downward employs heuristics that estimate the
cost of reaching the goal state from each explored node. These heuristics provide
an informed estimate of the remaining cost, which helps the planner prioritize the
exploration of more promising paths.

Fast Downward uses a best-first search strategy, which means it prioritizes
expanding nodes with lower estimated costs. This allows the planner to focus
its efforts on the most promising solution paths and potentially reach an optimal
solution more efficiently.

Throughout the search process, Fast Downward keeps track of the best solution
found so far, gradually refining it as it explores the search space. Once a goal state
is reached, the planner returns the optimal solution path, taking into account the
cost metric specified.

It is important to specify that the optimal solution is not always the less costly,
but also the one that took less time to find while still optimizing following the cost
metric.

After having generated the plan, the solution is sent to the controller where
some adjustments are made, such as reordering the actions in a necessary order or
canceling actions that became unfeasible in the meantime.
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Chapter 4

The Experimental Scenario

The creation of the experiment is an essential part of this thesis’s contribution and it
is needed to evaluate the performances of the framework in a real environment and
in contact with humans. The experiment will help us gather the needed feedback
from real people’s experiences that will help us evaluate the system more critically.

The idea behind it is that of creating an experimental design that is able to
answer some specific questions on the capabilities of our framework.

To guarantee the validity of the methods besides the technical aspects, the
experimental design and the experiments were created in collaboration with a work
psychology and ergonomics expert, in the context of a PHD study with a focus on
the effects of Human robot collaboration.

The hypotheses we set for this experiment and that we want to explore are:

1. The adaptive condition of the cobotic system will have an effect on the
participant’s performance (completion time, errors, gestures), on the risks
taken (number of dangerous blocks handled) and on the delay of usage of the
special glove.

2. The adaptive cobotic system will result in reduced perceived workload and
perceived acceptability(usability perceived, coherence perceived, pleasure per-
ceived, usefulness perceived, social influence and trust), for the human partici-
pants.

3. The operator’s expertise (expert vs non-expert) will have no effect on the
acceptability (usability perceived, coherence perceived, pleasure perceived,
usefulness perceived, social influence and trust). The operator’s expertise will
have an effect on the workload, on the performance (number of errors, time
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and number of gestures), on the risk taken and on the security constraints of
the cobotic system.

The main idea of the experiment is that of adding a constraint for the human
that the robot will supposedly help with, and observing how human variabilities
will be managed by the system.

We simulate a chemical work environment where the human and robot need
to handle some dangerous or less dangerous chemical substances, represented by
different color duplo blocks.

The duplo blocks are used to simulate substances because of their regular shapes
and intuitiveness for manipulation both from humans and robots. The main
objective of the experiment is the evaluation of the decisions made by the robot
and the duplo blocks are designed to be assembled and stacked one on top of the
other and their colors are designed to be very differentiable, which makes them a
perfect item for the basic type of manipulation of objects that we want to obtain
from this experiment.

The substances will have different levels of danger that will be represented
by red blocks for the most dangerous substance and all the other blocks will be
regular substances.

Figure 4.1: Illustration of the constraint

To be able to appreciate the usefulness of the cobotic system in handling
the constraint, half of the participants will participate on the collaborative task
while the cobotic system does not know about any constraints (it will not give
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precedence or more importance to the manipulation of the toxic substance) while
the other half of the participants will be helped by the cobotic system that will
know about the constraint and will prioritize the manipulation of toxic substances
in its planning. In all cases all the participants will have to follow the constraint
and wear the gloves.

The human and the robot will be given a task to complete that is based on the
assembly of a pattern with the use of lego blocks. Both partners will be aware of
the task, but the human will be able to see it only through a picture, which can be
limiting as it will be explained later on.
For the manipulation of the legos the human will be asked to wear different gloves
depending on the toxicity level of the blocks, such as in real scenarios where a
human is required to wear special protective gloves when handling toxic substances.
Moreover, we thought it would be significant to add a secondary variability besides
the cognitive one that every human has: The expertise level. Half of the human

Figure 4.2: Illustration of the variabilities

operators were trained on the completion of the task alone before working on it
in collaboration with the robot. This class of participants will be called The Experts.
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4.1 Details and specifications
Indicators of performance:

• Number of errors: piece placed and replace elsewhere

• Completion time: the completion time of the model

• Number of red blocks handled -> Number of times the special glove was used

• Task level when the special glove was used for the first time

Indicators of workload:

• Results of NASA TXL (Hart, 2006; Hart & Staveland 1998; Rubio al., 2019;
Webb al., 2021)

• Number of gestures

The gestures are all movements of the upper limbs within the work zone observed
between the start of the experimentand the end.

Indicator of acceptability:

Acceptability auto-reported: results of the questionnaire (Venkatesh & Bala, 2008).

Participants

Participants profile The participants are adults, without any color vision
impairment and with no pain in the upper limbs prior to the experiment.

Why ? These participants are required to work on an assembly task with the
cobot. The goal is to observe them during the task to be able to compare between
two conditions. They need to be pain free in the upper limb to realize the task.
Since they will have to construct a model of colored Duplo, they must not have
any color vision impairment.

Number of participants

The conditions "expertise" and "adaptation to constraints" are inter-participants.
The ideal number of participants is 40, so that there are 20 participants in each of
the two conditions so that there are enough cases to confirm statistical results. We
were able to carry out 40 experiments, of which 38 succeeded and 2 were canceled
for unexpected technical problems with the robot.
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Figure 4.3: Number and organization of participants

Recruitment The participants were recruited by posts on the website of the
university or in the Laboratory office.

4.2 Experiment description

4.2.1 Participants tasks
The participants will all carry out a simple assembly task with the cobot as training.
The task will be presented to the participants as "chemistry with Duplo blocks".

All participants will wear surgical gloves to move the blocks, with the exception
of the red blocks that are to be moved with a different special glove.

The participants will either be Experts or Non experts. The first group, the
Experts, will work on the complex assembly task three times alone, without the
assistance of the robot. The second group, the Non Experts, will not train on the
complex task alone, but will directly work in collaboration with the cobot so that
they will see the task for the first time in this occasion.

At first, all participants will complete a small and simple "training" task shown
in in figure 4.6, together with the cobot, to become acquainted with the movements
and with the system and not be frightened. Afterwards, all of the participants will
work on the complex task with the cobot. The participant must reproduce the
complex model in figure 4.7 with the cobot without any time constraint known to
them, while answering simple math additions to increase the cognitive load.
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Figure 4.4: Latex glove Figure 4.5: Special glove

Figure 4.6: Simple task Figure 4.7: Complex task

In both conditions, the participant will have access to more than half of the
Duplo’s stock to complete the task. The cobot will have access to the remaining of
the Duplo’s stock and will have access to the model to complete.

The blocks in the lower part in figure 4.8 are reserved for the human while the
blocks in the upper most part are respectively for the left and right arm of the
cobot.

Presentation of the experience

« The experiment will last about 1 hour. You will perform an assembly task in
collaboration with a cobot, this is not evaluative, do your best without pressure.
Before this task, we will make an easy model to train you. Then, the goal for you is
to complete the model I will show you in a few moments with a stock Duplo. Our
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Figure 4.8: Complex distribution stock

goal is to better understand the effect of collaboration on performance and gestures.
So, we’re going to film your upper body movements. These videos will allow us
to count the number of gestures you make, the number of errors, etc. Once we
have collected this information, we will delete these videos. Do you agree with this?
After the Duplo assembly task, you will fill out a quick 10-minute questionnaire on
a computer provided for this purpose. »

Presentation for the experts

« You will have a supply of Duplo parts (*show participant’s supply*) and the model
to make it. The cobot will have a supply of Duplo parts (*show cobot’s supply*).
You are not allowed to take the cobot’s stock.
The model must be made inside the green square represented by the 4 green pieces.
Every 15 seconds, I will ask you for the solution of a simple addition, you must give
me the right answer otherwise I will continue to ask for the answer with insistence.
Do it as fast as you can and avoid making mistakes. You will start as soon as you
are ready and you will tell me "I’m done" when you are finished so that I can stop
the recording. »
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Chapter 5

Experimental Results

The results of the experiment conducted will be reported in this chapter. The
analysis of the results was made in collaboration with a work psychology and
ergonomy expert, and the results presented in this thesis are preliminary results
that will be presented in more formal contexts in the future.

5.0.1 Description of the conditions

Two different conditions are studied: adaptability degree of the cobot and Expertise
level. Each one of these conditions have 2 degrees to it.

Adaptation to constraints of the cobotic system

The condition "Adapted" and "Not Adapted" that we will explore in this chapter
refer to the degree of adaptation to constraints applied to the cobotic system in
the experiment.
Not Adapted: The cobotic system is unaware of the human constraint of having
to wear a special glove to handle red blocks. The cobot plans and performs its
actions without giving more importance to any block specifically.
Adapted: The cobotic system is aware of the human constraint of having to wear
a special glove to handle red blocks. The cobot plans and performs its actions
assigning priority and more weight to the manipulation of red blocks, so that the
human is freed of the burden of managing more red blocks.

Half of the participants (19 participants) completes the task with the degree of
adaptation "Adapted" and the other half will work in the "Not Adapted" alternative.
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Expertise level of the human operator

The condition "Expert" and "Not Expert" that we will explore in this chapter refer
to the level of espertize of the human regarding the completion of the task by
themselves.
Expert: A participant who trained on the complex assembly task three times
alone, without the assistance of the robot, to learn the task pattern and the use of
the glove.
Not Expert:A participant who works on the complex assembly task for the
first time with the help of the robot. They have no previous knowledge of the
task pattern, only a picture is showed while the completion of the task is happening.

Half of the participants (19 participants) completes the task being "expert" and
the other half will be "not expert".

5.0.2 Description of the criteria of evaluation
The criteria considered in the evaluation are:

Performances:

• Number of gestures : number of limb movements above the workstation

• Number of errors: cube misplacement, rule breaks, misuse of the gloves

• Completion time

Risk taking or delaying:

• Number of red blocks handled

• Level of first usage of the special glove

Questionnaire assessed parameters:

• Acceptability: usability perceived, coherence perceived, pleasure perceived,
usefulness perceived, social influence, trust

• Workload
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5.1 Expected results
Hypothesis 1: The adaptive condition of the cobotic system will have an effect on
the participant’s performance (completion time, errors, gestures), on the risks taken
(number of dangerous blocks handled) and on the delay of usage of the special glove.

This means that we would expect the group of participants in the "Adapted"
condition,in comparison with the "Not adapted" group to:

• Report less gestures

• Be faster, have a lower completion time

• Make less errors

• Take less security risks managing less red blocks

• Delay the use of the security glove to the last levels of the task

Hypothesis 2: The adaptive cobotic system will result in reduced perceived
workload and perceived acceptability(usability perceived, coherence perceived, plea-
sure perceived, usefulness perceived, social influence and trust), for the human
participants.

We would expect the "Adapted" group to perceive the robot as more useful and
acceptable, and to report a lower workload score in their questionnaire.

Hypothesis 3: The operator’s expertise (expert vs non-expert) will have no effect
on the acceptability (usability perceived, coherence perceived, pleasure perceived,
usefulness perceived, social influence and trust). The operator’s expertise will have
an effect on the workload, on the performance (number of errors, time and number
of gestures), on the risk taken and on the security constraints of the cobotic system.

We would aim for the "Expert" group to perceive the system in a similar way
as the "Non- expert" group because that would mean that the system is equally
acceptable in both conditions.
Since the system used by both groups is the same and there are no changes in the
cobotic system between one group and the other, the ideal scenario would be one
where the perception of the system from the participants is not influenced by the
level of expertise.

We would also expect the operator’s expertise to lower the number of errors, time
and number of gestures, and in general experts should have better performances
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than non experts.

5.2 Results for the adaptation to constraints of
the cobotic system

Objective performance

Figure 5.1: Analysis of number of errors by
adapted condition

Adaptation # errors
Yes 21
No 41
Total Errors 62

Table 5.1: Number of errors
- Adaptation condition

The adaptation of the cobotic system to human constraints has an effect on the
number of errors that the participant makes.
The majority of errors happened in the "Not adapted" condition. The group that
was assisted more by the robot made only 1/3 of the total errors, while the group
that was not assisted made 2/3 of the total errors.
As it is shown, the adaptation of the cobot helps the participant commit
less errors.

Adaptation Avg Time
(seconds)

Yes 319.578947
No 346.736842

Table 5.2: Average time in sec-
onds - Adaptation condition

Visually, as we see in table 5.2, the aver-
age time is slightly better in the "Adapted"
case but its significance is insufficient to
draw any meaningful conclusions. This is
confirmed by the T-test: T=-0,972550239,
p=0,169. Since p>0.05 the T-test is non-
significant.
Time completion is not affected by
the adaptation of the cobot to con-
straints
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As we can see from table 5.3, the average
number of gestures does not vary particu-
larly depending on the "Adaptation" condition.
This is confirmed by the T-test: T=-0,6787,
p=0,250. Since p>0.05 the T-test is nonsignif-
icant.
Number of gestures is not affected by
the adaptation of the cobot to con-
straints

Adaptation Avg #
Gestures

Yes 28.21
No 30.00

Table 5.3: Average number
of gestures - Adaptation con-
dition

Risk taking

Figure 5.2: Analysis of number of red
blocks handled by adapted condition

Figure 5.3: Analysis of number of red
blocks handled by non adapted condi-
tion

The adaptation of the cobotic system to human constraints has a strong effect
on the number of risks that the participant takes, which for the chosen constraints
it is equal to the number of toxic red blocks that the human choose to manage.
The participants were obliged to manage at least one red block and at worse 3
blocks.
As it is shown in the graphs above, in figure 5.2 , in the "Adapted" condition most
of the participants (70%) only choose to handle 1 red block, which is the minimum
required. When the participants notice that the robot helps them manage the red
blocks, they did not take more risks than it was necessary. 21% of this category
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managed 2 blocks, one more than it was necessary, and only 11% managed all 3
dangerous blocks.
In the "Not adapted" condition in figure 5.3, instead, we notice that only a very
small percentage of participants (16%) took only the necessary risk of handling 1 red
block, while the remaining 84% took more risks than it was necessary, managing the
toxic blocks either 2 times (52% of the participants of the "not adapted" condition)
or 3 times in the 32% of cases.

It is clear that the participants that experienced the "Not adapted"
condition felt the need to take more risks while most of the participants
of the "Adapted" condition choose to only take the risks that were
strictly necessary.

Figure 5.4: Level of first use of the special glove: number of participants

The adaptation of the cobotic system to human constraints has a strong effect on
the delay of the use of the special glove and managing of the first toxic block, that
corresponds to the delay of risk taking to when it feels necessary to the participant.
In the "Adapted" condition, as we can see from figure 5.4 most of the participants
use the special glove for the first time during the last 2 levels (level 4 and 5),
actively delaying the risk taking when they notice that the robot has (or will have)
no red blocks left to help.

Only 5 participants used the special glove from the first level. In the "Not
adapted" condition, the majority of participants (12 out of 19 participants) felt the
necessity to use the special glove from the first level, starting to take the risks since
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the beginning of the experiment. In particular, only 1 participant delayed the risk
until the last level compared to the 6 participants in the "adapted" case.
This proves that the "Adapted" condition effectively delays the use of the
special glove, which means that it delays taking the risk to when it is
strictly necessary.

Self assessed perception of the system from questionnaires

The table below presents for each evaluated criteria recorded through questionnaire
the average scores and the standard deviation. As we can see, we notice no relevant
differences in the results of the "Adapted" class and the "Not adapted" class. Also
the workload perceived is similar in both classes.

Average scores of self assessed parameters (from questionnaires)

Condition Usability Coherence Pleasure Usefulness Influence Trust Workload

Adapted M=21,21
(SD=4,48)

M=16,63
(SD=4,27)

M=26,37
(SD=8,1)

M=17,74
(SD=5,14)

M=13,05
(SD=4,7)

M=21,26
(SD=5,37)

120,66
(SD=62,1)

Non-adapted M=21,95
(SD=3,96)

M=16,47
(SD=3,5)

M=28,05
(SD=6,1)

M=17,21
(SD=7,11)

M=13,89
(SD=4)

M=20,58
(SD=4,69)

M=129,95
(SD=64,2)

Table 5.4: Self assessed parameters - Adaptation condition

These results in table 5.4 are interesting because it shows that the cobot was
not perceived differently by the participants of the two classes. This means that in
both cases the cobot was able to provide a smooth collaboration. The adaptation
to the constraints was executed in a way that did not interfere with the human
perception of the cobotic system, but providing the expected practical benefits
such as limiting errors and risks and delaying the risks that the human takes.
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5.3 Results for the operator’s expertise level

Objective performance

Figure 5.5: Analysis of number of errors by
expert condition

Expertise # errors
Yes 16
No 46
Total Errors 62

Table 5.5: Number of errors
- Expertise condition

The Expertise level of the participant on the task has an effect on the number
of errors that the participant makes.
The majority of errors happened in the "Not expert" condition. The Expert group
made only 1/4 of the total errors, while the not expert group made 3/4 of the total
errors.
For this, it was proven that the Expert participants commit less errors.

Expertise Average Time
(seconds)

Yes 316.157895
No 350.157895

Table 5.6: Average time in
seconds - Expertise condition

Similarly as in the Adapted conditions, also
for the Expert condition the average time is
slightly better in the "Expert" case but its
significance is not sufficient to draw any mean-
ingful conclusions. Time completion is not
particularly affected by the expertise
level of the participant
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As we can see from table 5.7, the av-
erage number of gestures only slightly
varies depending on the "Expert" con-
dition. It is not enough to draw any
meaningful conclusions.
Number of gestures is not partic-
ularly affected by the expertise
level of the participant

Expertise Avg # Gestures
Yes 27.05
No 31.15

Table 5.7: Number of gestures -
Expertise condition

Self assessed perception of the system from questionnaires

Table 5.8 presents for each evaluated criteria recorded through questionnaire the
average scores and the standard deviation. We notice no relevant differences in
the results of the "Expert" class and the "Not Expert" class. Also the workload
perceived is similar in both classes.

Average scores of self assessed parameters (from questionnaires)

Condition Usability Coherence Pleasure Usefulness Influence Trust Workload

Expert M=21.95
(SD=3.82)

M=16,84
(SD=3,69)

M=27,42
(SD=6,27)

M=17
(SD=5,99)

M=13,74
(SD=4,16)

M=20,16
(SD=4,6)

M=20,16
(SD=4,6)

Non-expert M=21.21
(SD=4.6)

M=16,26
(SD=4,09)

M=27,8
(SD=8,08)

M=17,95
(SD=6,39)

M=13,21
(SD=4,55)

M=21,68
(SD=5,37)

M=21,68
(SD=5,37)

Table 5.8: Self assessed parameters - Expertise condition

Even if from the analysis of the objective performance we can see that the
condition expert/non-expert worked (less errors, less risks taken) it did not impact
the evaluation of the cobot made by the participants in the quesionnaires.
In the literature, such as in [31], expert participants usually perceived the cobot’s
help, its usefulness, trust, and all the other parameters evaluated as less valuable
than their non-expert counterpart. In this analyzed case, instead, the perception
of the expert- not expert did not change, but their performance did.
This means that the framework was able to fill the gap between the Expert
group and the Non expert group regarding the perception of the cobot
and both groups perceived it in the same way.
The cobot has successfully adapted to the"expertise" human variability .
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5.4 Participant’s answers to the acceptability of
the cobot- questionnaire

As we have seen in the previous chapters, the constraints and the human variabilities
have no visible effect in the answers that the participants gave to the questionnaires.
In the following table we report the average answers of the participants for the
"Acceptability of the cobot" questionnaire. The participants answered 23 questions
that were made to evaluate the Perceived Usability, Coherence, Pleasure, Utility,
Social influence and Trust in the cobotic system that they had juts collaborated
with. The participants were asked to select the grade of agreement with some
written affirmations. They were able to choose a score from 1 to 7 where: 1 -
Strongly disagree; 2 - Disagree; 3 - Somewhat disagree; 4 - Neither agree nor
disagree; 5 - Somewhat agree; 6 - Agree; 7 - Completely agree

Average answers for Acceptability questionnaire
Scores from 1- (Completely disagree) to 7- (Completely agreee)

Usability :
Understanding how to collaborate with a cobot was clear to me. 6,10
Working with a cobot did not require much mental effort 4,71
I found working with a cobot easy. 5,65
I was able to easily complete the task in my own way thanks to the cobot. 5,10

Coherence :
The collaboration with a cobot was relevant to the content of the tasks that I carried out. 5,39
For the tasks to be performed, collaboration with a cobot was appropriate. 5,47
The collaboration with a cobot was in line with the tasks that I carried out. 5,68

Pleasure :
Because using a cobot was very fun. 5,5
Because using a cobot was a lot of fun for me. 5,47
Because thanks to the cobot I was able to satisfy my curiosity to discover new things. 5,95
Because I had a lot of fun interacting with a cobot. 5,36
Because the cobot allowed me to learn/do things that I find very interesting. 4,92

Utility :
Collaborating with a cobot improved my performance in the task. 3,87
Collaborating with a cobot during this task increased my performance without
making me more tired 4,39
Collaborating with a cobot has improved my efficiency in the task. 4,34
I find the collaboration with a cobot helpful in the task. 4,87

Social influence :
People whose opinion I value might encourage me to reuse the cobot to complete the task. 4,63
The people around me who I am used to listening to could advise me to reuse the cobot
to carry out the task. 4,34
The people around me who are important to me could encourage me to reuse the cobot. 4,5

Trust :
A cobot seems to provide reliable information. 5,52
I have confidence in the information that a cobot could provide. 5,23
The cobot seems reliable. 5,29
I think you can trust a cobot. 4,87

Table 5.10: Acceptability questionnaire, average answers
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The participants, on average, they agreed the robot was easy to work with and
to understand how to use it. They also agree on the coherence of the cobot, finding
it appropriate for the realized task. The participants enjoyed working with the
robot and found it interesting.
Some lower scores were registered for the utility and the social influence.
The average score tells us that the participants, on average, neither agree nor
disagree with the affirmations about social influence and they do not believe the
robot was particularly useful for them to perform the task.
In other words, they do not particularly believe that the robot gave them essential
and valuable help, which for the task we selected it is reasonable, since the
participants could have easily managed all the blocks themselves.
To conclude, most of the participants found the cobot somewhat trustworthy.
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Chapter 6

Conclusion

In this study we focused on the problem of automatic task planning for adapt-
ing a cobotic system to specific human factors and constraints in the context of
human-robot collaboration (HRC). The increasing presence of robots in industrial
settings has sparked interest in HRC, and this thesis aimed to research on the
need for human freedom and adaptability while considering human constraints and
promoting ergonomic choices.

A framework was proposed to tackle these problems, incorporating a dynamic
adaptive planner based on PDDL, a perception system to detect human actions,
and a graphic user interface for communication.
An experiment was conducted to validate the proposed implementations and assess
their usefulness. The experiment involved a collaborative task between humans and
robots, evaluating objective performance, risk taking, workload, and acceptability.

The results of the experiment demonstrated the effectiveness of the adaptive
cobotic system in addressing human constraints and improving the overall human
experience. In terms of performance, the adaptation of the cobot significantly
reduced the number of errors made by participants, showcasing its ability to handle
unexpected human behaviors and constraints. While there were no significant
differences in completion time and the number of gestures between the adapted and
non-adapted conditions, the adaptive system showed a clear impact on reducing
the risks taken by participants.

The experiment also considered human variability, including cognitive variability
and expertise level. It was observed that expertise played a role in performance,
with expert participants committing fewer errors compared to non-experts. How-
ever, the adaptability of the cobotic system effectively bridged the gap between
experts and non-experts in terms of their perception of the cobot’s assistance.
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The participant’s assessment of the cobot’s acceptability through questionnaires
revealed positive feedback in terms of usability, coherence, pleasure, and interest.
While the participants did not strongly agree on the robot’s utility and social
influence, it can be attributed to the task’s nature, where participants could have
managed the blocks themselves without significant difficulty.

Overall, the results support the effectiveness of the proposed framework for
automatic task planning in HRC. The adaptability of the cobotic system posi-
tively impacted performance, risk management and user experience. This research
contributes to the field of HRC by addressing the challenges of human freedom,
adaptability, and ergonomics, ultimately paving the way for safer and more efficient
collaboration between humans and robots in industrial settings.

Future work:

While this thesis has focused on the problem of automatic task planning for adapt-
ing a cobotic system to specific human factors, there are several avenues for future
research and development in this area. The proposed framework and experiment
have provided valuable insights and demonstrated the adaptability and effective-
ness of the cobotic system. Building upon these findings, the following areas offer
opportunities for further exploration and improvement:

Dynamic Task Adaptation: Currently, the task planning in the cobotic
system is based on a predefined goal configuration of Lego Duplo blocks. In future
work, the task can be made more dynamic, allowing it to change every time. This
could involve introducing variability in the initial stock of blocks that the robot
and human have to manipulate, and on the goal state of the task. By dynamically
adapting the task requirements, the cobotic system can provide more flexibility
and responsiveness to evolving work scenarios.

Dynamic PDDL domain for a more responsive Planner: The proposed
framework utilizes a dynamic adaptive planner based on PDDL (Planning Domain
Definition Language) where the Problem is dynamic, to handle unexpected human
behaviors and constraints. To enhance the system’s adaptability further, future
work can focus on developing a dynamic planner that takes into account initial
user inputs to generate the PDDL domain. By incorporating an initial series of
questions in the graphic user interface (GUI) about the task and human constraints,
the planner can dynamically adjust its planning strategies from the outset, leading
to more efficient and personalized task allocation.
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User-Centric Interface: The graphic user interface (GUI) plays a crucial role
in facilitating effective human-robot collaboration. In future work, improvements
can be made to the interface design to enhance user experience and promote
seamless communication between the human and robot. The interface can provide
real-time feedback on the robot’s perception of the environment and the planned
actions, enabling the human to make informed decisions about when to activate the
robot for assistance. Moreover, incorporating user preferences and customization
options in the interface can further enhance the usability and acceptability of the
cobotic system.

Integration of Machine Learning: The inclusion of machine learning tech-
niques can greatly enhance the adaptability and intelligence of the cobotic system.
By leveraging machine learning algorithms, the system can learn from user interac-
tions and continuously improve its performance over time. For example, the system
can learn to predict user preferences and adapt its planning strategies accordingly.
Additionally, machine learning can aid in recognizing and adapting to new human
behaviors and constraints, making the cobotic system even more adaptable and
efficient.

Pose Detection for Ergonomics: To enhance the ergonomic aspects of
human-robot collaboration, future work can focus on integrating human limb
pose detection techniques into the cobotic system. By accurately tracking and
analyzing the position and orientation of the human limbs, the system can adapt
its movements and assistive actions to ensure optimal ergonomics for the human
operator. This can help prevent strain, fatigue, and potential injuries caused by
repetitive or awkward movements. By combining limb pose detection with the
dynamic planner mentioned earlier, the cobotic system can proactively adjust its
assistance strategies based on the detected limb poses, providing personalized and
ergonomic support to the human operator. This integration of ergonomics and
adaptive movement planning will contribute to the overall well-being and safety
of the human operator, fostering a more harmonious and efficient human-robot
collaboration environment.

Real-World Industrial Implementations: While the experiment conducted
in this thesis provides valuable insights, future work should focus on validating the
proposed framework in real-world industrial settings. By deploying the cobotic
system in actual manufacturing or assembly environments, it will be possible to
assess its performance, adaptability, and usability in practical scenarios. This
can involve collaborating with industry partners and conducting extensive field
trials to evaluate the system’s effectiveness and identify areas for further refinement.
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Conclusion

In conclusion, the proposed framework and experimental results have demon-
strated the adaptability of the cobotic system, improved human experience, and
effective planning. Future work in dynamic task adaptation, and real-world in-
dustrial implementations will contribute to further advancements in this field,
ultimately paving the way for more efficient and productive human-robot collabo-
ration in industrial settings.
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