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Abstract

The widespread use of artificial intelligence (AI)-based systems brings with it several
questions about the deployment of such systems in safety-critical contexts. Several
industry standards exist, such as ISO26262 for automotive, that require detecting
hardware faults during the mission of the device. Similarly, new standards are
being released concerning the functional safety of AI systems (e.g., ISO/IEC CD
TR 5469). Hardware solutions have been proposed for the in-field testing of the
hardware executing AI applications, but when used in conjunction with complex
applications such as Convolutional Neural Networks (CNNs) in image processing
tasks, they may increase the hardware cost and affect the application performances.
In this thesis, a methodology to develop high-quality test images, to be interleaved
with the normal inference process of the CNN application is proposed. An ITL
that targets GPU single-precision floating-point multipliers is developed with the
aim of performing an on-line test of said functional units. The proposed approach
does not require changing the actual CNN (thus incurring in very costly memory
operations) since it is able to exploit the actual CNN structure. In particular, the
ITL is built to exploit the convolution operation between an input image and a
series of filters, which consists of multiply-and-add operations, to pass test patterns
generated beforehand to multipliers. Since the fundamental objective is to keep the
CNN structure, and thus also the weights, unchanged, the only elements that can
be manipulated are the input images. For this reason, test patterns for a multiplier
must be generated with methods exploiting Automatic Test Pattern Generation
(ATPG) techniques, putting the already trained network weights as constraints.
The generated test patterns are placed into the right spots of the input image (or
images), where it is guaranteed that a certain multiplier will multiply them by the
weight used as constraint. The main issue that arises at this point is ensuring the
correct placement of test patterns into the ITL, which depends on the scheduling
algorithm of the GPU and the convolution algorithm. In particular, the thesis work
consisted of analyzing existing implementations of convolution algorithms such as
GEMM (General Matrix Multiplication), analyzing the GPU scheduling policy and
developing an algorithm that exploits this knowledge to correctly predict, given
an input pixel-weight pair, which multiplier will perform that multiplication. The
experiments that have been performed on the first layer of a ResNet-20 CNN and
a DenseNet-121 CNN, show that a 6/8-image ITL is able to achieve about 95% of
stuck-at test coverage on the single-precision floating-point multipliers in a GPU.
The obtained ITL requires a very low test application time and has a very low
memory footprint, needing space only to store the test images and the golden test
responses.
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Chapter 1

Introduction

The ever-increasing adoption of artificial intelligence (AI)-based solutions in modern
systems labeled as safety-critical is requiring the academic and industrial commu-
nities to increase their efforts to guarantee higher reliability for these products.
Among AI solutions based on Deep Learning techniques, those based on Convo-
lutional Neural Networks (CNNs) are among the most used for their outstanding
capabilities in computer vision tasks like image classification, object detection and
object localization. In the last years, many standards have been proposed to guide
the adoption of different mechanisms to face reliability issues. For example, the
ISO 26262 standard is commonly followed in the automotive industry. Similarly,
new standards are being released concerning the functional safety of AI systems
(e.g., ISO/IEC CD TR 5469).

Among the possible solutions adopted in the different fields, on-line testing
strategies based on functional methods have been incorporated as a common
solution by industry sectors such as the automotive one [1]. In these cases, the
on-line test of the processor core and the related peripherals is performed through
the periodic execution of Software Test Libraries (STLs) composed of a set of
assembly programs able to thoroughly excite the processor core and detect possible
permanent faults. STL solutions allow the system to perform on-line tests and do
not require any hardware overhead since they only need memory space to save test
libraries.

STLs have been proposed as an effective safety mechanism to test systems such
as Graphics Processing Units (GPUs), widely used to accelerate AI applications
[2][3]. However, devising an STL requires a large amount of manual and semi-
automatic work, since no EDA tools are available for their generation. In particular,
the execution of specific STLs interleaved to CNN inferences may negatively affect
performance [4].

Recently, an in-field testing solution for testing Deep Learning (DL) accelerators
has been suggested in [5]. As a case study, they exploit NVDLA, an open-source
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Nvidia DL accelerator. Their technique resorts to combinational Automatic Test
Pattern Generation (ATPG) to generate functional test patterns to detect perma-
nent faults in both computational and logic units. These patterns depend on the
specific targeted unit and consist of sets of {input, weight} pairs mapped to one or
more Deep Neural Network (DNN) test programs. In particular, each test pattern
generated for multiply-and-accumulate (MAC) and accumulation (ACC) compute
units is mapped to a separate DNN test program, resulting in thousands of test
programs. The flaw in this approach is that the execution of thousands of DNN
test programs requires a non-negligible time for context switching, and, above all,
can only be performed during dead times, i.e., boot or reset. Additionally, the total
test storage can require, in some cases, up to 600 MB for a single unit.

This thesis describes a method to feed test patterns to an already trained CNN
during its execution time via carefully generated test images. In particular, this
method exploits the convolution operation between an input image and a set of
filters, since convolutional layers in CNNs account for more than 90% of the total
operations [6]: test patterns are generated and placed in input images such that,
when the convolution is performed, permanent faults affecting the target hardware
unit can be detected and a high test coverage can be reached. The idea comes
mainly from the following observation: when a CNN is deployed in the field, the
trained version is loaded, and weights remain always the same. Thus, carefully
developed test images can be periodically fed to the same CNN to test on-line
specific hardware units. Since the network remains untouched and the inference
process is fast, this method allows to perform an on-line self-test without interfering
with the network’s operation. A comparison mechanism is then adopted to possibly
alert for the presence of a fault. The purpose of the proposed method is to generate
a set of images – an Image Test Library (ITL) – for the on-line test of multipliers
in a GPU, which have a relevant role in convolutional operations. Experimental
results reveal that with a fairly small set of test images, this technique achieves
about 95% single stuck-at test coverage for all GPU multipliers. As a case study,
two ITLs have been developed for two CNNs: ResNet-20 and DenseNet-121. In
addition, it is experimentally demonstrated that the developed ITLs can propagate
the effect of the faults up to the software level.

The thesis is organized as follows: chapter 2 provides some background knowledge
about GPUs, convolutional neural networks and digital circuit testing. With regards
to CNNs, the main focus is on the convolution operation and convolution algorithms.
Chapter 3 describes the proposed approach to generate ITLs and validate them.
Then, Chapter 4 reports experimental results obtained on a real GPU. Finally,
Chapter 5 draws conclusions and future directions.
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Chapter 2

Background

This chapter gives an overview of the concepts used in subsequent chapters. Sec-
tion 2.1 gives a quick introduction on data parallelism and describes the inner
mechanisms of modern Graphics Processing Units (GPUs). Section 2.2 introduces
Convolutional Neural Networks (CNNs) and describes in detail the convolution
operation, as well as convolutional algorithms. Finally, Section 2.3 gives an overview
about digital circuit testing techniques used in this work.

2.1 Graphics Processing Units
In recent years, the scope of application of GPUs has extended beyond graphics
processing, even more so after the introduction of platforms, such as Nvidia CUDA,
for General-Purpose computing on GPUs (GPGPU). In fact, before these platforms
were available, GPUs were found to be useful for general-purpose tasks such as
linear algebra operations [7], but problems had to be expressed in terms of graphics
primitives using pixel or vertex shader languages. GPGPU platforms instead offer
an API to access GPU resources using general-purpose programming languages
such as C and C++. The availability of these platforms, in conjunction with the
highly parallelizable nature of Deep Neural Network (DNN) computations, has put
GPUs among the most popular hardware accelerators used for efficient training
and deployment of DNNs.

2.1.1 Data parallelism
Data parallelism is a property that expresses the capability of a task to be de-
composed into subtasks that can execute the same operation on different data in
parallel, independently from each other. For example, vector addition exhibits
a high level of data parallelism, since each element of the output vector can be
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computed independently from the others. On a multi-core machine, one could
write a program that spawns a thread for each output element, with each thread
executing the same operation (addition of two values), but with different inputs.

Task parallelism instead, expresses the capability of a task to be decomposed
into subtasks that can execute a different sequential operation in parallel with the
others, e.g., drawing a GUI in one thread and performing blocking I/O operations
in another.

CPUs are designed to optimize sequential execution of a single thread by em-
ploying strategies such as large multi-level cache memories, out-of-order execution,
higher clock frequencies and so on. In this way, CPUs are able to efficiently execute
sequential tasks, eventually in parallel with a few others, at the expense of the
number of cores. It follows that CPUs are particularly efficient for computations
that present a high level of task parallelism, but struggle with tasks exhibiting a
high level of data parallelism.

GPUs on the other hand, are designed to maximize the execution throughput by
enabling the parallel execution of a massive number of threads, at the expense of
complex control logic, memory access hardware and arithmetic units performance
[8, pp. 3–5]. In particular, GPUs adopt an execution model defined as Single
Instruction, Multiple Threads (SIMT), in which groups of threads execute the same
instruction in lockstep, but with different data. This approach eliminates the need
to keep track of the execution state1, i.e., program counter and call stack, for each
thread, as well as the need to keep separate instruction caches. However, this
approach also entails that each individual GPU core becomes slower than its CPU
counterpart [9]. However, the large number of threads allows the GPU hardware
to mask memory and arithmetic latencies by finding other threads that need to
perform work. It follows that GPUs are particularly suitable to execute tasks with
a high level of data parallelism.

2.1.2 Nvidia GPU organization
Recent Nvidia GPUs feature a number of Graphics Processing Clusters (GPCs),
which are the highest-level block in the GPU hardware hierarchy. Each GPC
contains multiple physically close Streaming Multiprocessors (SMs), in charge of
most of the operations performed by the device. A single SM contains a certain
number of processing blocks, each with a dedicated warp scheduler, in charge of
scheduling groups of 32 threads called warps, the fundamental SIMT units of the
GPU. Each processing block in turn contains a certain number of CUDA cores,
responsible for integer and floating-point operations, Load/Store Units and Special

1Note that this is not entirely true for newer architectures, e.g., the Nvidia Volta architecture
introduced Independent Thread Scheduling
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Figure 2.1: Nvidia GPU structure. Within a processing block, CUDA cores are
represented in blue, Load/Store Units in Yellow and SFUs in purple.

(a) Grid (b) Block

Figure 2.2: CUDA Thread Organization

Function Units (SFUs), responsible for the computation of transcendental functions.
Figure 2.1 reports a graphical representation of this organization.

CUDA Programming Model The Nvidia CUDA platform offers a C/C++
extension that allows programmers to write functions, called kernels, to be executed
on the GPU. The body of a kernel function is executed N times by N threads, where
N is derived from the execution configuration of the specific kernel launch. The
execution configuration can contain various parameters, but the most important
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1 __global__ void vecAdd (float *a, float *b, float *c) {
2 int i = blockIdx .x * blockDim .x + threadIdx .x;
3 c[i] = a[i] + b[i];
4 }
5

6 ...
7 // Array definition . For simplicity , it is assumed
8 // they have already been allocated in GPU device memory
9 float a[512] , b[512] , c [512];

10 ...
11 dim3 blocks (4 ,1 ,1); // Grid size
12 dim3 threads (128 ,1 ,1); // Block size
13

14 vecAdd <<<grid_size , block_size >>>(a, b, c); // Kernel launch

Listing 2.1: Example of kernel definition and kernel launch

are grid size and block size.
CUDA threads are organized in 3-dimensional grids of 3-dimensional blocks of

threads. Grid size specifies the number of blocks in a grid, while block size specifies
the number of threads in a single block. Given grid size G = (gx, gy, gz) and block
size B = (bx, by, bz), the total number of threads launched on the device is given by
N = gxgygz · bxbybz.

Each block is assigned a unique 3-dimensional ID within the grid, accessible
inside kernel functions via the blockIdx symbol, containing the fields x, y and z.
Threads have an analogous unique ID within the block they belong to, accessible
inside kernel functions via the threadIdx symbol. Grid size and block size are
accessible via gridDim and blockDim, respectively.

Kernels specify the actions that will be executed by each thread, as well as
the data they will be executed on. For example, a vector addition between two
512-element vectors can be defined as in Listing 2.1, dividing the computation
between 4 blocks of 128 threads. As it can be observed in the example, the input
data that will be processed by a thread is usually identified using block and thread
indices.

SIMT Execution Model As outlined before, GPUs handle data parallelism
by executing a large number of threads and using the SIMT execution model and
Nvidia GPUs are no exception.

When a kernel is launched, thread blocks are distributed among the available
SMs and partitioned into warps, each comprising up to 32 threads. This policy
results in threads within the same thread block being always executed on the same
SM. Subsequently, as an SM executes a thread block, each warp is dispatched to a
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warp scheduler, which issues instructions to the CUDA cores of the corresponding
processing block.

The warp scheduler issues, in SIMT fashion, the same2 instruction for each of
the 32 threads in the warp, meaning that threads in the same warp execute in
lockstep. In case of thread divergence, e.g., a branch taken only by some threads,
the threads that do not participate in the branch are temporarily masked while
the others execute instructions inside the branch. When the execution flow of all
threads within the warp reconverges, lockstep execution is resumed. This behavior,
in conjunction with the fact that a processing block cannot simultaneously execute
instructions from two different warps, implies that in case of thread divergence,
some cores do not perform useful work.

Memory hierarchy Since data parallelism implies handling large quantities of
data, another aspect of GPU design covers the memory hierarchy. GPU accelerated
applications often require high memory bandwidth to keep up with the large
number of threads that may want to perform a memory access. GPUs come with
several gigabytes of GDDR (Graphic Double Data Rate) DRAM, a type of memory
specifically devised to offer higher memory bandwidth than ordinary DDR DRAM.
In the context of Nvidia GPUs, this off-chip memory is referred to as global memory
and is shared between all SMs within the device. When using CUDA, the host
application can pass input data to a kernel by transferring it to global memory.
Conversely, kernels store eventual output data into global memory, so that the
host application may transfer it back. Even if it features a higher bandwidth than
standard memory, global memory is still not sufficient to obtain a high execution
throughput. The facts that it (i) resides off-chip, (ii) is shared among all SMs
within the device, (iii) has to accommodate requests from a large number of threads
and (iv) has a long access latency, may cause the bandwidth to rapidly saturate.
For this reason, two types of on-chip memory are available.

Shared memory is a medium-sized on-chip memory area that features higher
bandwidth and lower access latency than global memory, enabling very fast par-
allel accesses. Shared memory owes its name to the fact that it is shared among
all threads in the same thread block. Its higher performances with regard to
global memory and its data sharing capability make it the ideal choice to trans-
fer frequently-accessed data from global memory and/or to store intermediate
computation results.

Registers fulfill roughly the same tasks as CPU registers and are the second
type of on-chip memory available in a GPU. They have an even higher bandwidth
and lower access latency than shared memory, but are private to each thread and

2Except obviously for the input data of the instruction
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Figure 2.3: Nvidia GPU Memory Hierarchy

there is a limit on how many registers a thread can use. Registers are contained in
a Register File, one per SM.

Threads also have access to another memory area called local memory. It is not
a separate region, but an area of global memory reserved to each thread to hold
arrays declared inside kernels and hold spilled register3.

2.2 Convolutional Neural Networks
A Convolutional Neural Network, or CNN, is an artificially implemented neural
network that is specialized in processing data with grid-like structures, such as

3Register spilling consists in temporarily moving the content of some registers in memory
when there are not enough registers in the Register File to accommodate all the data a thread
needs
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time-series data, which can be considered as a 1D grid of samples taken at regular
intervals, and grayscale images, which can be considered as 2D grids of pixels [10,
p. 326].

While in classical feed-forward neural networks, or Multi Layer Perceptrons
(MLPs) [11], each neuron has its own set of weights, i.e., its own set of trainable
parameters, each convolutional layer of a CNN has a single set of filters, or kernels,
each containing a set of weights. Each filter scans all input data focusing on a
small section at a time, using the same weights for each section. This approach
has three important properties [10, pp. 329–335]:

1. Sparse connectivity – in a MLP layer, the output of each neuron depends on
the output of all the neurons of the previous layer and is fed to every neuron
of the next, i.e., each neuron is connected to every neuron of the previous layer
and every neuron of the next. In the context of CNNs, such a layer is defined
as a Fully Connected (FC) layer and will be referred as such from now on.

Each element of the output of a convolutional layer depends (at most) on a
number of input elements equal to the size of the filter.

If the input has size m, the output has size n and the filter has size k, the
computational complexity of calculating the output of a FC layer is O(mn),
while for a convolutional layer it is O(kn). While m and n are usually the
same order of magnitude, k can be kept several orders of magnitude smaller
than both, resulting in better performance.

2. Parameter sharing – in a FC layer, each neuron has its own set of weights
different from all the other neurons, i.e., each weight gets multiplied by a
single input element and never reused.

In a convolutional layer, each weight of the filter gets multiplied by almost
every input element. This allows us to reduce the memory footprint of the
layer: while a FC layer requires to store m · n parameters, a convolutional
layer requires to store only k parameters.

3. Equivariance to translation – this property is a consequence of the form
of parameter sharing that takes place in a CNN. A function is said to be
equivariant to translation if a translation applied to the input results in the
same translation applied to the output.

For example, if all the pixels of an image are shifted one place to the right
and then a convolution is performed, the output will be the same as if the
convolution was performed on the original image and all the pixels of the
output were subsequently shifted to the right.
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2.2.1 Convolution
The fundamental operation of a CNN is the convolution, an operation where a
filter, or kernel, is used to extract a set of features from input data. Input data and
extracted features are called input feature map and output feature map, respectively.
Mathematically speaking, what in the context of CNNs is called convolution is
actually defined as cross-correlation, an operation which measures the similarity
between two signals at different time lags.

CNNs designed to operate on RGB images work on multidimensional grid-like
objects called tensors. An RGB image can be represented as a 3-dimensional tensor
I ∈ RC×H×W , where C = 3 is the number of channels and H and W are height and
width of the image, respectively. Usually, especially during training, the input of a
CNN is not a single image, but a batch of N images, resulting in a 4-dimensional
tensor I ∈ RN×C×H×W .

A single filter operating on a single 3D input feature map will itself be a 3-
dimensional tensor, with a number of channels equal to the number of channels
of the input feature map. Since a single filter can only extract a single feature
from the input, multiple filters can be used on the same input. This results in
a 4-dimensional tensor F ∈ RM×C×HF ×WF , where M is the number of different
3-dimensional filters or, in other words, the number of different features that one
may want to extract from the input.

Before examining how a convolutional layer handles these objects, the convolution
operation as it is defined for 1D and 2D input data will be introduced.

1D convolution

Let I ∈ Rn be a 1D input feature map of length n and F ∈ Rf a 1D filter of length
f . The length l of the output feature map O ∈ Rl is defined as:

l = n− f + 1

Mathematically, the i-th element of G resulting from the 1D convolution between
F and I is defined as:

O[i] = (F ∗ I)[i] =
f−1Ø
k=0

F [k]I[i + k] i = 0, 1, . . . , l − 1 (2.1)

Intuitively, F can be pictured as a sliding window over I. Each position of
the sliding window corresponds to an element of O, and for each position the
underlying elements of the input are multiplied elementwise with the filter and
summed (Figure 2.4).
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(a) ’Valid’ padding

(b) ’Same’ padding

Figure 2.4: 1D convolution
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Padding It can be observed that the output feature map O is smaller than I
(Figure 2.4a). Roughly speaking, the information contained at the edges of I is
lost. To preserve that information, or equivalently to have O be the same size as
I, each end of the input feature map can be padded with p zeros, where p = f−1

2
(Figure 2.4b).

Let Ĩ ∈ Rn+2p be the padded input feature map. Then:

Ĩ[k] =


0 0 ≤ k < p

I[k − p] p ≤ k < n + p

0 k ≥ n + p

I can be substituted with Ĩ in Equation 2.1, obtaining:

O[i] = (F ∗ Ĩ)[i] =
f−1Ø
k=0

F [k]Ĩ[i + k] i = 0, 1, . . . , n− 1

When the input is not padded, the convolution is said to have valid padding; in
the other case, the convolution is said to have same padding.

Stride If on the contrary the goal is reducing the size of the output feature
map, whether it is to reduce the memory footprint or because the resolution is
unnecessarily high, the concept of stride can be applied.

Returning to the graphical example, the stride s defines the quantity by which
the sliding window moves over the input. If s > 1, it has the effect of reducing the
length of the output by a factor equal to s. Considering input length n, filter length
f , padding p and stride s, the length of the output feature map is now defined as:

l =
E

n + 2p− f

s
+ 1

F

Equation 2.1 becomes:

O[i] =
f−1Ø
k=0

F [k]Ĩ[s · i + k] i = 0, 1, . . . , l − 1 (2.2)

2D convolution

Extending the concept of convolution to two dimensions is fairly straightforward.
Let I ∈ RHI×WI be a 2D input feature map and F ∈ Rf×f a 2D filter4, where HI

4For the purposes of this thesis, the filter will be always assumed to be a square filter
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Figure 2.5: 1D convolution with ’valid’ padding and stride 2

and WI are respectively height and width of the input feature map and m is the
size of the filter.

The output feature map O ∈ RHO×WO has height and width equal to:

HO = HI − f + 1 WO = WI − f + 1

The element at index (i, j) of the output feature map is defined as:

O[i, j] =
f−1Ø
k=0

f−1Ø
l=0

F [k, l]I[i + k, j + l] i = 0, . . . , HO − 1
j = 0, . . . , WO − 1 (2.3)

For conciseness, from now on indices of multidimensional objects will be repre-
sented with subscript notation, e.g., Oi,j instead of O[i, j].

It is also immediate to introduce the concepts of padding and stride for 2D
convolutions. Since there are two axes, both padding and stride may have two
different values: one for the horizontal axis and one for the vertical one. They will
be represented as (px, py) and (sx, sy), where px, sx are relative to the horizontal
axis and py, sy to the vertical one. HO and WO now become:

HO =
E

HI + 2py − f

sy

+ 1
F

WO =
E

WI + 2px − f

sx

+ 1
F

(2.4)

For convenience, from now on it will be assumed that padding and stride have
the same value for both axes.

The padded input feature map Ĩ ∈ R(HI+2p)×(WI+2p) can be defined as:

Ĩi,j =


0 0 ≤ i < p or 0 ≤ j < p

Ii−p,j−p p ≤ i < HI + p and p ≤ j < WI + p

0 i ≥ HI + p or j ≥ WI + p

(2.5)

Equation 2.3 becomes:
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Figure 2.6: 2D convolution with p = 1 and s = 2

(a) Multiple channels

(b) Multiple filters

Figure 2.7: 2D convolution with multiple channels/filters

Oi,j =
f−1Ø
k=0

f−1Ø
l=0

Fk,lĨs·i+k,s·j+l
i = 0, . . . , HO − 1
j = 0, . . . , WO − 1

Multiple channels The great majority of CNNs deals with RGB images in the
input layer and feature maps with a high number of channels in the hidden layers,
so it becomes necessary to extend the convolution operation to a third dimension to
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account for multiple channels and even a fourth if more than one image is involved.
This extension is fairly straightforward. Let I ∈ RC×HI×WI be the input feature

map and F ∈ RC×f×f be the filter. Then the output feature map is O ∈ R1×HO×WO .
Note that O contains a single channel. In fact, each channel c of I is 2D-convolved
with channel c of the filter, then the results are summed elementwise. The concepts
of padding and stride apply also here for each 2D channel. Thus, the element at
index (i, j) of the output feature map is defined as:

Oi,j =
C−1Ø
c=0

f−1Ø
k=0

f−1Ø
l=0

Fc,k,lĨc,s·i+k,s·j+l

 i = 0, . . . , HO − 1
j = 0, . . . , WO − 1 (2.6)

where HO and WO are calculated as in Equation 2.4.
Let us suppose that we want to convolve a batch of N images with the same filter

F . In that case, another dimension can just be added to the input feature map,
which becomes I ∈ RN×C×HI×WI . Equation 2.6 is applied separately to each image,
producing the output feature map O ∈ RN×1×HO×WO , i.e., one output feature map
for each image. It can be observed that the additional fourth dimension has no
particular meaning for input and output: it is just a convenience to represent a
batch of 3D tensors. This is not the case when a fourth dimension is added to the
filter.

Multiple filters Convolutional layers are not restricted to use a single filter.
Since a single filter corresponds to a single feature, e.g., vertical edges, it is desirable
to use multiple filters to extract as many features as possible from the input. A
fourth dimension can be added to the filter tensor to account for the multiple
number of features that one might want to extract from the input.

Let I ∈ RN×C×HI×WI be a batch of N input feature maps and M be the number
of features we want to extract from each feature map. Then the filter becomes
F ∈ RM×C×f×f and the batch of output feature maps becomes O ∈ RN×M×HO×WO .
The element at position (i, j) of the m-th feature map extracted from input feature
map n is calculated as:

O
(n)
m,i,j =

C−1Ø
c=0

f−1Ø
k=0

f−1Ø
l=0

F
(m)
c,k,lĨ

(n)
c,s·i+k,s·j+l

 (2.7)

It can be observed that adding a fourth dimension to the filter has a different
meaning than adding a fourth dimension to the input. Here the additional dimension
has the effect of producing multiple feature maps per input image, one for each
feature/filter.
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Bias Neural networks employ a bias to represent the value to which the output
of a neuron tends in absence of inputs. In the case of feed-forward neural networks,
the bias is a single scalar value, while in a CNN it is a vector whose size is equal to
the number of output channels of the convolution.

Let I ∈ RN×C×H×W be an input feature map and F ∈ RM×C×f×f be a set of
M filters. The bias vector is defined as a vector B ∈ RM . Given an element in
channel m of the output, the bias vector element at position m is summed to the
result of the convolution, i.e., Equation 2.7 becomes:

O
(n)
m,i,j = Bm +

C−1Ø
c=0

f−1Ø
k=0

f−1Ø
l=0

F
(m)
c,k,lĨ

(n)
c,s·i+k,s·j+l

 (2.8)

Activation Convolution as we have seen it in Equation 2.8 represents an affine
transformation of the input pixels. This kind of transformation is appropriate to
solve linear problems, but it stops being effective when facing nonlinear problems,
such as learning the XOR function [11][10, pp. 167–172]. For example, the output
of a multi-layer feed-forward neural network is still a linear function of its inputs.

This problem can be solved by introducing a nonlinear function g(x), called
activation function, that is applied to the output of the affine transformation
and yields a nonlinear transformation. With an activation function, Equation 2.8
becomes:

O
(n)
m,i,j = g

Bm +
C−1Ø
c=0

f−1Ø
k=0

f−1Ø
l=0

F
(m)
c,k,lĨ

(n)
c,s·i+k,s·j+l

 (2.9)

Some examples of activation functions are:

• Rectified Linear Unit (ReLU) (Figure 2.8a) – ReLU : R→ [0, +∞)

ReLU(x) = max (0, x)

• Sigmoid function, or logistic function (Figure 2.8b) – σ : R→ (0,1)

σ(x) = 1
1 + e−x

• Hyperbolic tangent (Figure 2.8c) – tanh : R→ (−1, 1)

tanh x = ex − e−x

ex + e−x
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Figure 2.8: Activation functions

• Softmax – for an output layer consisting of K neurons with output vector x,
Softmax : RK → (0,1):

Softmaxi(x) = exiqK−1
k=0 exk

i = 0, . . . , K − 1

Compared with the others, this activation function has the distinctive feature
of considering the output of all neurons in the layer. Its output is a probability
distribution: in fact, the sum of the outputs of Softmax for each i amounts to
1.

The choice of an activation function instead of another depends on the nature
of the problem. For example, if the task to be performed by the neural network
consists of calculating a probability, the sigmoid function is more appropriate than
ReLU or the hyperbolic tangent, since its output ranges between 0 and 1.
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2.2.2 Layers
Neural networks are usually represented as a sequence of layers. In the case of
feed-forward neural networks, layers are composed of several neurons which take as
inputs the outputs of the previous layer and produce a single output. The input
layer and the output layer are particular: the first does not have inputs; the second
does not feed its output to another layer. The number of neurons in a layer and
the number of hidden layers are called hyperparameters, i.e., constant parameters
chosen arbitrarily, whereas the weights of each neuron are called parameters and
are not set by the programmer, but learned by the network during the training
step.

CNNs are similar in this regard: they have an input layer, an output layer and
several hidden layers with adjustable hyperparameters and learnable parameters
that receive inputs from the previous layer and feed their outputs to the next. The
main difference lies in the performed transformation: feed-forward neural networks
are based on the application of a nonlinear function to an affine transformation of
all the inputs at once, while in CNNs the transformation involves only one part of
the inputs at a time. Besides, convolutional layers are not the only type of layer
that can be employed in a CNN, but there are at least two other types of layers
that can be used, namely pooling and fully connected layers. The first is in charge
of compressing the input by pooling together parts of it, hence the name, while the
latter is equivalent to a standard hidden layer of a feed-forward neural network.

Convolutional (CONV) Equation 2.9 fully represents what happens inside a
basic convolutional layer in a CNN. It can be observed that a convolutional layer
is described by the following hyperparameters:

• Height and width of the filter. Channels are not specified, since the number
of filter channels must be equal to the number of input channels

• Number of filters (equal to the number of output channels)

• Padding

• Stride

• Activation function

Given a filter F ∈ RM×C×f×f and a bias vector B ∈ RM , the number nT of
trainable parameters (filters and bias) is nT = M ·(C ·f 2 +1). Usually convolutional
layers are specified with the size of their output, filter size, padding and stride.
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Pooling (POOL) Pooling layers perform a similar task to strided convolutions,
since they reduce the size of the input feature map. However, their purpose is to
make the output approximately invariant to small translations of the input [10,
335–336] by splitting the input into small regions and outputting a summary for
each of these regions. There are several choices for pooling functions, the most
common being:

• Max pooling – the summary is the maximum value within the region

• Average pooling – the summary is the average of all values within the region

Similarly to convolution, pooling can be visualized as a sliding window scanning
the input and producing an output for each position.

Pooling layers have no trainable parameters and two hyperparameters, namely
pooling region size and stride.

Fully Connected (FC) Fully Connected layers work precisely as the hidden
layers in a feed-forward neural network: they contain a set of neurons, each with its
own set of weights, that compute an affine transformation of the input and apply a
nonlinear function to the output of said transformation. When the input comes
from a convolutional or pooling layer, it is first flattened into a 1D vector and then
fed to the FC layer.

Usually this kind of layer is used at the end of a CNN. For example, when
performing an image classification task it is convenient to output for each class the
probability that the image belongs to that class: this can be achieved by placing a
FC layer at the end of the CNN with one neuron per class and a Softmax activation
function.

2.2.3 Convolution algorithms
Since their introduction by LeCun et al. [12] for a handwritten digit recognition task,
CNNs have progressively shown to be extremely effective tools for computer vision
tasks, both discriminative, such as image classification [13] and real-time object
detection [14], and generative [15]. The availability of very large datasets, such as
ImageNet [16] and Pascal VOC [17], and challenges such as the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [18] have constituted a significant incentive
to develop complex CNN architectures, e.g., GoogLeNet [19], but Simonyan and
Zisserman [20] have shown that besides network complexity, depth also plays a
significant role in improving classification accuracy. In particular, they have shown
that architectures based on conventional models such as LeNet-5 [21] and AlexNet
[13] can achieve state-of-the-art performance simply by increasing the number of
layers. The downside of this approach is that the increase in network depth results
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Figure 2.9: AlexNet Architecture. Output size is reported under the name of the
layer.

in an increase in number of operations, during both training and inference. Since
convolution accounts for most of the operations in a CNN, it is sensible to develop
and use efficient convolution algorithms.

Fortunately, convolution presents a high level of data parallelism, since each ele-
ment of the output can be computed independently from the others. Modern DNN
frameworks such as TensorFlow [22] and PyTorch [23] leverage GPU acceleration
to make both training and inference more tractable in terms of time. However,
processing power alone offered by modern GPUs is not sufficient to achieve optimal
performance. Computing the convolution directly as described by Equation 2.9 is
not optimal, even with parallelization [24], so various convolution algorithms have
been developed. Nvidia’s cuDNN library for DNN primitives [25][26] offers various
implementations of three popular convolution algorithms: General Matrix Multi-
plication (GEMM) [27][26], FFT (Fast Fourier Transform) [28] and Winograd’s
algorithm [29]. Since FFT and Winograd’s algorithm are outside the scope of this
thesis, only the GEMM algorithm will be described in detail.

GEMM

GEMM-based algorithms turn convolution into a matrix multiplication that can be
very efficiently computed using Basic Linear Algebra Subprograms (BLAS) libraries
[30] [31].
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(a) Direct convolution

(b) GEMM convolution. Each column of Im corresponds to a position of the filter.

Figure 2.10: Convolution expressed both as a direct convolution and as a matrix
multiplication. Elements are uniquely identified by color and index

Let A ∈ RM×K , B ∈ RK×N be matrix inputs, C ∈ RM×N a pre-existing output
matrix and α, β ∈ R scalar inputs. The GEMM operation is defined as:

C = αAB + βC (2.10)

From now on, it will be assumed that α = 1, β = 0, reducing GEMM to a matrix
multiplication.

Given a set of M filters F ∈ RM×C×f×f and a batch of N input feature maps
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Algorithm 1 Im2col with no padding and stride 1
Inputs: Input tensor I ∈ RN×C×H×W ; filter size f × f ; output

height and width HO, WO

Outputs: GEMM Input matrix Im ∈ RCf2×NHOWO

1: Im ← []
2: for n← 0 to N − 1 do
3: for h← 0 to HO − 1 do
4: for w ← 0 to WO − 1 do
5: for c← 0 to C − 1 do
6: for i← 0 to f − 1 do
7: for j ← 0 to f − 1 do
8: row ← c · f 2 + i · f + j
9: col ← n ·HOWO + h ·WO + w

10: Im[row][col]← I[n][c][h + i][w + j]
11: end for
12: end for
13: end for
14: end for
15: end for
16: end for
17: return Im

I ∈ RN×C×HI×WI , F is reshaped into a matrix Fm ∈ RM×Cf2 and I is expanded
into a matrix Im ∈ RCf2×NHOWO . Each row of Fm contains a whole unrolled filter
and each column of Im contains the input elements that concur in the computation
of one output element. The output matrix Om ∈ RM×NHOWO can be computed
using Equation 2.10 with A = Fm, B = Im. Each row of Om, one per filter, contains
the N feature maps produced by convolving the input with the corresponding filter.
Om is then reshaped into the output feature map O ∈ RN×M×HO×WO . Figure 2.10
shows a graphical representation of this transformation.

While FFT and Winograd’s algorithm focus on reducing the number of operations
required to compute a convolution, it is interesting to observe that the computational
complexity of this operation is O(M ·C · f 2 ·N ·H ·W ), which is the same as direct
convolution. The reason why GEMM is preferred over direct convolution is that
matrix multiplication is a highly optimized operation for which extremely efficient
GPU implementations exist. In particular, its efficiency derives from the fact that
it "has a high ratio of floating-point operations per byte of data transferred" [26].
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Figure 2.11: Im2col with input size
1× 2× 3× 3, filter size 2× 2, ’valid’
padding and stride 1

Im2col While reshaping filters is a fairly
straightforward operation, computing Im is
less obvious. Input elements have to be re-
arranged and duplicated so that each dot
product between a row of Fm and a column
of Im performed during the matrix multipli-
cation corresponds to an output element of
the convolution.

The algorithm that performs this trans-
formation is called im2col (algorithm 1).
Given an input batch I ∈ RN×C×H×W and
a filter F ∈ RM×C×f×f , its purpose is to take blocks of size C × f × f from the
input and rearrange them into columns. We can visualize it as a sliding window
the size of the filter: for each position of the window, im2col takes the elements
contained inside and unrolls them into a column. It can be observed that this
operation closely resembles a convolution, the only difference being that no further
operations, other than unrolling, are performed on the input elements.

One of the main advantages of using im2col and GEMM is that both padding
and stride are easily accounted for. When using padding, it is sufficient to substitute
I in algorithm 1 with the padded input Ĩ ∈ RN×C×(H+2p)×(W +2p). To account for
an eventual stride s, line 10 of algorithm 1 becomes

Im[row][col]← I[n][c][s · h + i][s · w + j]

The fact that im2col builds the input matrix explicitly results in additional
memory consumption, both in terms of storage and bandwidth. For this reason,
GPU accelerated implementations of implicit GEMM algorithms [26][32] have been
developed that build tiles of the input matrix on the fly in shared memory, instead
of using im2col to materialize the input matrix in global memory and then calling
a GEMM routine. Other than the fact that the input matrices are not explicitly
constructed, implicit GEMM algorithms perform the exact same computations as
explicit algorithms.

CUTLASS: implicit GEMM convolution for GPUs An example of a state-
of-the-art GPU accelerated GEMM convolution is given by Nvidia’s CUTLASS
library [34]. CUTLASS offers CUDA C++ template abstractions to implement
on GPUs highly optimized computations based on GEMM routines, as well as a
convolution implementation based on the implicit GEMM algorithm. CUTLASS
employs a tiling strategy to decompose the output computation into a hierarchy
that mirrors the CUDA programming model. Let Fm ∈ RM×K , Im ∈ RK×N be the
input matrices and Om = FmIm ∈ RM×N be the output matrix. The decomposition
is as follows:
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(a) Thread block-level tiling (b) Warp-level tiling

(c) Thread-level tiling

Figure 2.12: CUTLASS GEMM workload distribution [33]
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1. Om is partitioned into thread block tiles of size MB × NB, each computed
by a different thread block (Figure 2.12a). It follows that each thread block
has to read a submatrix of Fm of size MB ×K and a submatrix of Im of size
K ×NB to compute its output. These submatrices are not loaded in shared
memory in their entirety: each thread block iterates over the K dimension,
loading subtiles of size MB ×KB and KB ×NB at each iteration, computing
their matrix product and accumulating the result into the output.

2. Thread block tiles are further partitioned into warp tiles (Figure 2.12b). Each
warp further iterates over the KB dimension of the subtiles, loading fragments
of the subtiles from shared memory into the register file, computing their
product and accumulating the result into the output.

3. Warp tiles are further partitioned into thread tiles (Figure 2.12c). Each thread
participates in the computation of a warp tile by computing the product of a
certain number of elements of the fragments of Fm and Im. The subdivision
into thread tiles is engineered to minimize the number of shared memory
loads from the same locations. In fact, multiple threads from the same row
or the same column load the same elements of Fm and Im, and since they
cannot access each other’s registers they have to read from the same locations
multiple times.

2.3 Digital circuit testing
Digital circuit testing typically consists of applying a set of test patterns, or stimuli,
to a Device Under Test (DUT) and then observing the response. If the latter does
not match the expected response, then the DUT is assumed to be faulty. We can
make a first distinction between two types of tests [35]:

• Parametric tests. Usually they involve measuring electrical quantities such as
voltage and current

• Functional tests. They consist of applying a set of binary test patterns to
the inputs of the circuit and then checking if the outputs match the expected
response. Basically, functional tests verify that a digital circuit behaves as
expected and performs its function correctly, i.e., it matches its specification

Functional testing is necessary for design verification, but is extremely difficult
to perform thoroughly. For a circuit with n input lines, a complete functional
test requires to check all the 2n possible input patterns, which becomes unfeasible
for circuits with many input lines. Structural testing represents a more feasible
approach to hardware testing, owing the name to its dependency upon the structure
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of the circuit. In fact, it consists of selecting specific test patterns based upon
the circuit description and a fault model, allowing to detect faults caused by
manufacturing defects.

It is particularly important to specify the difference between defect, error and
fault [35]:

• A defect is a mismatch between the hardware and its design specification

• An error is a wrong output signal caused by some defect

• A fault is a functional-level abstract representation of a defect. Depending on
their time dependency, they can be classified as permanent, i.e., they do not
change over time, or transient

2.3.1 Fault Models
Fault models represent a way to simplify test pattern generation by abstracting from
real hardware defects. In fact, generating test patterns for many specific defects
may be particularly difficult. Fault models allow to efficiently and automatically
generate test patterns targeting a specific type of fault.

Modeling faults is closely linked to circuit modeling. At the Register-transfer
level (RTL) the circuit model consists of a netlist of logic gates. At this level,
commonly employed fault models related to Deep Learning reliability studies are
[36]:

• Stuck-at faults. This model consists in assigning a fixed value (0 or 1) to an
input or output line of the circuit, usually representing permanent physical
damage. Depending on the value, these faults are classified as stuck-at-0 (sa0)
or stuck-at-1 (sa1).

• Bit-flip. This model describes the change of logical state of a single bit from
its original value to the other. It models transient randomly occurring changes
in the state of a memory element due to an external disturbance.

For the purposes of this thesis, the focus will be placed on stuck-at faults.

Stuck-at faults According to [35, p. 71], a single stuck-at fault is defined by
three properties:

1. Only one line is faulty

2. The line is set permanently to 0 or 1

3. The fault can be at the input or output of a gate
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The stuck-at fault model, as outlined before, assumes that the circuit is modeled
as a netlist, i.e., an interconnection of gates. A stuck-at fault affects one of these
interconnections, causing a line to always have a state equal to 0 (or 1) irrespective
of the effective logic output of the gate that drives it.

While a circuit with n lines can present multiple stuck-at faults simultaneously
(up to 3n−1 combinations), usually only single stuck-at faults are modeled, reducing
the enormous number of combinations to a maximum of 2n.

Fault equivalence Two faults are considered equivalent if they affect the circuit
in a way such that the two correspondent faulty circuits have the same output.

Let f(x) denote the output function of a circuit with n inputs and m outputs
and let a and b be faults affecting the circuit. The outputs of the faulty circuits are
denoted with fa(x) and fb(x), respectively. Let T be a n-bit test vector. Obviously,
this test vector should produce different results when fed to the fault-free circuit
and the two faulty circuits. To represent this mismatch, the XOR function can be
used:

f(T )⊕ fa(T ) = V and f(T )⊕ fb(T ) = W

V and W represent m-bit output vectors.
When a and b have the same set of tests, then the two XOR operations are

equal. It follows that:

f(T )⊕ fa(T )⊕ f(T )⊕ fb(T ) = 0

Since the f(T ) terms cancel out, this leads to

fa(T )⊕ fb(T ) = 0 (2.11)

2.3.2 Testing stages
Digital circuit testing consists of several stages, each referring to a specific phase of
the circuit’s lifetime.

Post production Post production tests are performed on every single manu-
factured chip. Their purpose is to check that each manufactured device satisfies
its specifications. Since performing comprehensive and complete tests is costly
and time-consuming, post production tests focus on reaching a high coverage of
modeled faults minimizing costs and time, since every device must be tested.
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Burn-in Burn-in testing is performed on devices passing production tests to
ensure their reliability. Post production tests verify that the devices do not present
faults at the time of testing, but this does not guarantee that the devices will be
fault-free for their whole intended lifetime. The purpose of burn-in tests is to make
defective devices fail quickly by testing them over a long period of time, either
continually or periodically.

Burn-in tests mainly detect infant mortality failures. Since the failure rate is
higher at the beginning of the device’s lifecycle, burn-in tests can weed out devices
bound to fail early.

On-line On-line tests are performed while the device is being used in its intended
application to detect faults occurring during device operation. For example, Built-
In Self-Test (BIST) techniques consist of adding circuitry to allow the device to
test itself, e.g., by integrating on the same circuit a test pattern generator and
a response evaluator [37]. An alternative to BIST for on-line testing is Software-
Based Self-Test (SBST) [37][38], which does not rely on additional hardware while
retaining the possibility for the device to test itself. SBST techniques mainly consist
of executing specific test programs able to detect possible permanent faults [37].

In both cases, test patterns may be pseudorandomly generated on-the-fly or
generated beforehand, e.g., by an Automatic Test Pattern Generation (ATPG)
algorithm.

2.3.3 Test Generation
As outlined at the beginning of this section, digital circuits are usually tested by
feeding them test patterns. An exhaustive functional test of a device with n inputs
would require testing all the 2n possible inputs, a problem which rapidly becomes
intractable as n grows. Hence, structural testing is used to restrict test patterns to
the ones needed to cover a specific type of fault, described by a fault model.

A metric often used to describe the efficacy of a structural test is Fault Coverage
(FC), defined as:

FC = detected faults
total faults (2.12)

Various test pattern generation techniques based on different approaches exist,
such as ATPG, random and evolutionary-based test pattern generation.

Automatic Test Pattern Generation Automatic Test Pattern Generation
(ATPG) is the process tasked with finding suitable patterns to test a circuit for
specific faults. Given a netlist, a fault model and a corresponding fault list, ATPG
algorithms inject a fault into the circuit described by the netlist and try to activate
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it and make sure that its effect is propagated to the circuit’s output. The fault is
detected when the output changes from the value expected for the fault-free circuit.
In this case, the input that activated the fault and let it propagate to the output is
the desired test pattern.

The test pattern search space in ATPG algorithms is described with a Binary
Search Tree (BST), where each intermediate node represents a decision on the
value of a primary input signal and each leaf represents one of the possible outputs.
In a circuit with n primary inputs, the number of leaves is equal to 2n, and all
ATPG programs implicitly search this tree. In the worst case, the whole tree must
be examined to check if a fault is untestable, i.e., it does not affect the output.
It follows that to better reach the required FC, an ATPG algorithm has to be
complete, i.e., it must be able to search the entire binary tree to find untestable
faults and test patterns for hard-to-test faults [35, p. 159].

Since ATPG algorithms rely on a low level description of the circuit and a
rigorous description of the search space, they are able to generate very accurate
test patterns, but may have elevated time requirements.

Random Random Test Pattern Generation consists of generating pseudorandom
test patterns. For example, some BIST and SBST implementations make use of
Linear Feedback Shift Registers (LFSRs) to generate test patterns on-the-fly and
feed them to the DUT. This approach may prove not suitable for random-resistant
components and result in an elevated number of test patterns required to reach an
acceptable FC [38].

Evolutionary-based Evolutionary-based Test Pattern Generation consists of
generating a set of test patterns by iteratively accepting and rejecting test patterns
according to their fault detection capabilities [35, p. 246], i.e., by making the test
patterns evolve through some learning process. In particular, genetic algorithms
may be used.

The purpose of a genetic algorithm is to maximize a fitness function that
describes the required characteristics of the test patterns, e.g., fault detection
capabilities. The set of test patterns is called population and is improved iteratively,
with each iteration called a new generation. The population of a new generation is
produced by executing some operations on the previous generation, namely:

• Crossover. Consists of combining bits from two patterns from the old genera-
tion to construct two patterns for the new generation

• Mutation. Consists of manipulating bits of a pattern from the old generation
to construct a pattern for the new generation
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• Selection. Consists of selecting highly fit patterns from the old generation to
keep them in the new generation

2.3.4 Assessment techniques and fault injection methodolo-
gies

The impact of hardware faults on the operation of a digital circuit may be assessed
by means of Fault Injection (FI) techniques, which allow to evaluate the behavior
of a DUT when a fault occurs. More specifically, FI techniques consist of artificially
injecting a fault into a circuit, feeding input stimuli to the circuit and comparing
the circuit’s response with a golden reference, looking for an eventual mismatch.

In the context of DNNs, FI techniques can be classified as [36]:

• Simulation-based. Simulation-based FI does not rely on the physical device,
but on an abstract description of the system either at the software level or
at the hardware level. In the first case, faults are injected into a high-level
model of the system without considering the underlying hardware, hence its
purpose is to assess the dependability of the application itself in presence of
hardware faults, regardless of the specific underlying hardware. It follows that
the injection accuracy may be low, but this disadvantage is offset by low costs
and high speed.
In the second case, the injection target may be modeled at the Register-transfer
level (RTL) or at the gate level, thus reaching a higher injection accuracy,
but tying the assessment to specific hardware (e.g., [39]). As a matter of fact,
simulation-based hardware FIs require the HDL description of the target to
be available. Furthermore, the low level of abstraction increases complexity
and time requirements of the FI. These drawbacks are complemented by low
costs and high accuracy.

• Platform-based. Platform-based FI consists of measuring and analyzing the
behavior of a physical device that emulates the final target implementation,
e.g., a FPGA or a GPU. For example, in the context of DNNs executed
on GPUs or FPGA, faults are injected into the network’s parameters, e.g.,
weights, activations and hidden states.

• Radiation-based. Radiation-based FI presents the highest level of accuracy,
since it is performed on the final device implementation in the same envi-
ronmental conditions in which the device will be deployed. For example,
radiation-based FI may consist in irradiating the target device with a neutron
beam, which can induce transient faults in the device (e.g., [40]). The main
drawback of this technique is the high cost of the irradiation process and the
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fact that often the target device becomes unusable after irradiation. Further-
more, the experiment controllability is low, since it is not possible to control
which fault to inject. Nonetheless, radiation-based FI can reach a very high
level of accuracy with a low injection time.
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Chapter 3

Proposed ITL generation
method

In this chapter, a method to develop test images for the on-line self test of multipliers
in GPUs is presented. First, an ATPG-based approach, particularly suitable for
regular structures like GPU functional units, is employed to find a set of suitable
input values at the functional unit level, with constraints given by the CNN’s
weights. These values are then transformed into a test image. Feeding these images
to the unchanged CNN (in particular, to the first convolutional layer), results in a
high fault coverage for the targeted unit. This methodology is described in details in
Section 3.1. The proposed method, compared to its software counterpart (Software
Test Libraries (STLs)), allows to perform a self-test routine on a GPU by taking
advantage of the CNN itself, without altering it or interrupting its execution, hence
avoiding costs connected to memory operations and context switches. Interleaving
the inference of a few self-test images to the CNN’s normal operation has low
computational requirements. Therefore, the produced test images can be used
in the field on the same CNN, by alternating "normal" inferences with the ITL
self-test images (without moving or loading new weights in memory). In Section
3.2, a methodology to validate the effectiveness of the test images is presented.

3.1 ITL Generation
The generation of test images consists of three stages:

1. Dataflow Algorithm Extraction. The goal of this stage is to find the relation
between output elements and multipliers, i.e., to find out what multipliers
perform which multiplications. This stage yields a set of weight-input index
pairs for each multiplier
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2. ATPG-based Pattern Generation. Given a multiplier and the associated set of
weights, this stage yields a set of weight-input test patterns

3. Self-test images generation. Given a set of multipliers, their set of weight-input
index pairs and their set of test patterns, the ITL is generated

3.1.1 Dataflow Algorithm Extraction
Let I ∈ RN×C×HI×WI be the input feature map, W ∈ RM×C×f×f the filter tensor
and O ∈ RN×M×HO×WO the output feature map resulting from the convolution of
I and W performed by the input layer of the CNN.

The Dataflow Algorithm Extraction stage consists in mapping elements of O to
the specific multipliers that compute their value. This mapping is referred to as
dataflow algorithm and depends on three elements:

• Convolution algorithm. The convolution algorithm used to compute O deter-
mines how the convolution will be performed and thus what multiplications
will be performed. For example, GEMM-based algorithms only change the
structure of I and W , leaving their values intact and performing the same
set of multiplications as a direct convolution. On the other hand, FFT-based
algorithms perform a completely different set of multiplications, since they
operate on the Discrete Fourier Transform of I and W .
Knowing the convolution algorithm is fundamental in order to associate
each output element with the multiplications performed to compute it. The
multiplications are represented with pairs ⟨iidx, w⟩, where w ∈ W is a weight
and iidx is an index pointing to an element of the input feature map.
Given an input tensor (eventually padded) I ∈ RN×C×HI×WI , a filter tensor
W ∈ RM×C×f×f and an output tensor O ∈ RN×M×HO×WO , each element
Oi,j,k,l ∈ O is associated to the multiplications performed to compute it, for
example:

O0,0,0,0 → [⟨i0,0,0,0, W0,0,0,0⟩ , ⟨i0,0,0,1, W0,0,0,1⟩ , . . . ]
O0,0,0,1 → [⟨i0,0,0,1, W0,0,0,0⟩ , ⟨i0,0,0,2, W0,0,0,1⟩ , . . . ]

...

• Workload-thread mapping. Once the convolution algorithm is known, it is
necessary to understand how the computation is split among participating
threads. Given an output element Oi,j,k,l, this mapping associates it to a
specific thread Tx.
The workload-thread mapping depends exclusively on the specific implementa-
tion of the convolution algorithm. Since the algorithm specification, and thus
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the operations concurring in the computation of Oi,j,k,l, is known, extracting
this mapping allows to associate Tx to a list of multiplications, represented as
⟨iidx, w⟩ pairs:

T0 ←
;

[⟨i0,0,0,0, W0,0,0,0, ⟩ , . . . ] , [⟨i0,0,0,1, W0,0,0,0, ⟩ , . . . ] , . . .
<

T1 ←
;

[⟨i0,0,1,0, W0,0,0,0, ⟩ , . . . ] , [⟨i0,0,1,1, W0,0,0,0, ⟩ , . . . ] , . . .
<

...

• Thread-core mapping. The final step to associate Oi,j,k,l to a multiplier consists
in mapping threads to hardware cores.

The thread-core mapping depends exclusively on the device architecture, in
particular on scheduling policies, so it can be extracted regardless of the specific
application running on the GPU. Ultimately, its purpose is to associate a
thread T to a unique identifier C of a GPU core:

T0 → C0 =⇒ C0 ← [⟨i0,0,0,0, W0,0,0,0, ⟩ , . . . ]
T1 → C1 =⇒ C1 ← [⟨i0,0,1,0, W0,0,0,0, ⟩ , . . . ]

...

Note that it is not necessary to have complete knowledge of the GPU scheduling
policies. As a matter of fact, this mapping requires only to have information
about thread dispatching, i.e., where a thread is being executed, not temporal
information, i.e., when a thread is executed.

Finding the relation between multipliers and the set of multiplications they
perform is fundamental to build test images. Once this stage terminates, each
core/multiplier is associated with a list of pairs ⟨iidx, w⟩, where w is a weight
and iidx is an index pointing to an element of the input feature map. Knowing
what elements of I are multiplied by which weight and which core performs the
multiplication allows to control the multiplications performed by each core. Note
that some multiplications, such as multiplications by padding values, are in any
case outside the control of the programmer.
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Figure 3.1: ATPG-based Pattern Generation. In red an example of generation of
one pattern for a certain weight

3.1.2 ATPG-based Pattern Generation
Once the dataflow algorithm is known, each multiplier is associated to a list of
multiplications. An ATPG process is set up to find out the collection Pc of input-
weight pairs ⟨i, w⟩ that maximize the test coverage of the multipliers of a core c.
The parameter w ∈ W ∈ RM×C×f×f corresponds to a real trained weight of a layer
of the CNN. To this end, weights are put as constraints for the ATPG generation,
together with a constraint forcing the 30th bit of i to be 0, to avoid the process
generating infinities and NaN. So, the resulting test patterns depend on both the
actual CNN’s weights and input values generated by the ATPG.

It is worth underlining that the ATPG process is executed only on the targeted
module, and the obtained test patterns only relate to its inputs.

3.1.3 Self-test Images Generation
For the on-line testing, the carefully-crafted ⟨i, w⟩ values produced in the previous
stage are fed to the multiplier unit by means of suitable images composing the
ITL. The dataflow algorithm extracted in the first stage allows to know exactly
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Algorithm 2 Self-test Image Generation
Inputs: ATPG-patterns - Patterns for each core
Outputs: ITL - List of test images. Each image has the form I ∈ RC×HI×WI

1: ITL← []
2: for core← 0 to ncores do
3: inputs← Map-core-to-inputs(core)
4: Group-by-weight(inputs)
5: patterns← ATPG-patterns[core]
6: for pattern, weight in patterns do
7: widx ← Get-weight-index(weight)
8: positions ← inputs[widx]
9: I, ifree ← Find-empty-pos(ITL, positions)

10: if I = nil then
11: I ← Append-new-image(ITL)
12: ifree ← positions[0]
13: end if
14: I[ifree] ← pattern
15: end for
16: end for
17: return ITL

the position iidx of the element(s) of the input feature map that the multiplier will
multiply by w. Such knowledge allows to place i in the correct spot of the input
feature map, so that the multiplier will multiply it by w.

ITL Generation Algorithm The ITL is built using algorithm 2. The first step
(line 3) is to reverse the mappings described in stage (i), associating each core
with pairs of indices ⟨iidx, widx⟩ of elements processed by that core. Here, iidx is
the index of an element of the input feature map I (i.e., I[iidx] = i), while widx

is the index of an element of the weight tensor W (i.e., W [widx] = w). When
dealing with a convolution, a core reuses the same weight for different inputs. For
this reason, given a weight index widx and a core c, a list of the associated input
feature map indices Iidx(widx|c) is built (line 4). Given the list of suitable input
positions for each core and weight, it is possible to reconstruct the images. The
general algorithm consists of two nested loops: the outermost one cycles over the
available cores, while the innermost one operates on the ATPG-generated pairs
⟨i, w⟩ associated to a specific core c. For each ⟨i, w⟩ pair, a list of input feature
map indices Iidx(widx|c) associated to the weight index widx of the element w of the
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weight tensor W is selected (lines 7-8). The result of this process is a collection of
suitable positions where to put the inputs i, associated with a weight w, returned
by the ATPG processes. In line 9, an index is selected among free positions (i.e.,
not occupied by another pattern) across all the already-generated images. If a free
space is not found, a new image is generated and a new position is chosen (lines
10-13). Finally, the input value i is assigned to the selected position (line 14).

3.2 ITL Validation
To validate their adoption for on-line testing, ITL must be able to excite hardware
faults of the targeted functional module in a way that lets the faults propagate
at the software level, so that their occurrence may be verified. In the context of
CNNs, this translates in the possibility of observing faulty output feature maps
after feeding them the ITL.

To study the propagation of hardware faults of a target unit to the software
level, it is necessary to perform architectural-level fault simulations and, for each
injected fault, check if the fault is propagated to the software level. In literature,
many fault injection tools perform architectural-level injection through various
methods. For example, SASSIFI [41] can inject errors in GPU registers and memory
through source code instrumentation and NVBitFI [42], SASSIFI’s successor, can
perform dynamic and selective GPU code instrumentation during execution and
without access to source code. Hybrid SASSIFI/TensorFlow solutions also exist
(i.e., CLASSES [43]). All these solutions focus primarily on the architectural
level, considering only registers, primary input (PI) and primary output (PO)
of functional units. Presently, only [44] propagates at the software level the
impact of permanent faults in functional units. The paper presents a method to
combine software profiling with gate-level microarchitectural fault simulation to
build syndrome tables, a collection of fault syndromes. Syndrome tables are used
during the execution of the CNN to support code instrumentation and propagate
the error effects. However, one single hardware fault might yield multiple error
syndromes throughout the CNN’s execution, potentially resulting in non-negligible
syndrome table sizes.

3.2.1 Fault injection
The proposed idea stems from a mathematical observation. Let us consider the
inputs I, W and the output O of a multiplier. In the presence of a fault affecting it,
the product I ·W may yield a faulty output âO, that is: I ·W = âO. However, this
fault can also be thought of as a faulty input ( âI or ãW ) entering a golden multiplier
and producing the same faulty output âO. Knowing the value of âO that derives
from a fault affecting the multiplier, it is possible to obtain the respective faulty
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input ( âI or ãW ), that corresponds to the same fault without injecting it. Assuming
a golden multiplier, the same fault can be seen as:

âI =
âO

W
, or ãW =

âO
I

(3.1)

Furthermore, if a faulty multiplier performs J multiplications, there will be J
corrupted outputs âOj for j = 1, . . . , J . This is equivalent to having J multiplications
executed by a golden multiplier with a set of corrupted inputs âIj (or weights ãWj),
for j = 1, . . . , J .

Fault equivalence This approach is further validated considering the concept of
fault equivalence, described in section 2.3.1.

Let f be a fault, ⟨I, W ⟩ be a test pattern for f , M(x, y) be the multiplication of x
and y performed by a fault-free multiplier and ãMf (x, y) be the same multiplication
performed by the same multiplier in the presence of fault f . It follows that
M(I, W ) = O and ãMf (I, W ) = âOf .

Now suppose that a fault g affecting the input lines of the multiplier exists such
that ãMg(x, y) = ãMf(x, y). Since f and g produce the same effect on the output,
i.e., they satisfy Equation 2.11, they are equivalent and have the same set of tests.

For the purposes of fault injection, the equivalence implies that the output
produced by injecting g and testing it with ⟨I, W ⟩ is equal to that produced by
injecting f . The difference lies in the fact that while injecting f may be complicated,
injecting g is extremely simple. It can be observed that g causes the multiplier to
receive a faulty input âIg, but does not affect the multiplier itself. As a matter of fact,
excluding the input lines, the effective computation performed by the multiplier is
correct. This fact makes it possible to assume the multiplier to be fault-free while
moving g to the input, thus effectively computing M( âIg, W ) = âO. Since the input
is assumed to be controllable, it is possible to inject f by injecting the equivalent
fault g on the input and passing it to a golden multiplier.

3.2.2 Fault Injection with ITLs
A methodology is proposed to perform very accurate software fault injections by
feeding the CNN faulty inputs âI equivalent to specific hardware faults internal to the
targeted functional unit. This approach has two main advantages: it combines the
accuracy of the gate-level microarchitectural simulation with the speed of software
fault injections, and allows to experimentally demonstrate that the proposed ITL
can excite permanent faults inside functional units while propagating the effects up
to the output feature map of the first layer of the CNN, before nonlinearities are
applied. The impact of hardware faults is not simulated by performing complex
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Algorithm 3 Faulty Images generation for a fault in a multiplier.
Inputs:

• MULx - Selected multiplier;
• fault - A stuck-at fault of MULx;
• ITL - Image test library for a specific CNN;
• Operations - Pairs of ⟨input,weight⟩ multiplications performed by MULx

during the convolution.
• nop - Number of Operations

Outputs: FImg - List of faulty images for a single HW fault.
1: FImg← []
2: âI ← []
3: W ← [];
4: MULx-Inject(fault)
5: for op← 0 to nop do
6: âO ← MULx-Multiply(Operations[op])
7: W[op]← Get-Weight(Operations[op])
8: âI[op]← âO

W [op]
9: end for

10: FImg[fault]← Patch-ITL( âI, W, ITL)
11: MULx-Clean(fault)
12: return FImg

and costly multi-level simulation environments, but only launching the inference of
faulty images that exactly reflect a precise hardware fault within the first layer.

Algorithm The generation of faulty images that corresponds to injecting a
specific fault within a multiplier is described in Algorithm 3. First, the fault is
injected at low level in the multiplier (line 4). Then, for each operation performed
by the multiplier during the convolution, its input weight W [op] and the low-level
faulty output âO are collected (line 6-7). These values are used to compute the
faulty input âI[op] (line 8). Finally, the list of all the input elements (one for each
operation) is converted to images following the same logic of Algorithm 2 (line 10).

To inject faults at application-level using the images generated with Algorithm
3, it is necessary to combine the information of the list of images in a single
faulty output feature map. Therefore, given a fault fc affecting core c, the first
step to fault simulate a layer l, is to generate the set of faulty images Ifc as
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described in Algorithm 3. Ifc has the same size as the input feature map, i.e.,
Ifc ∈ RN×C×HI×WI . Note that the output feature map of the first layer contains
values that are not only computed by core c. For this reason, the application of a
mask M(c) ∈ {0,1}N×M×HO×WO (that depends only on the core c) to the output
of the layer is required. An element of this mask is set to 1 if the corresponding
element in the output feature map is computed by core c, 0 otherwise. The mask
can be constructed using the dataflow algorithm extracted in stage one of the ITL
generation. As such, the faulty output lfc of the layer l, for a clean input tensor
I ∈ RN×C×HI×WI , can be computed as the sum of element-wise multiplications:

lfc(I) = l(I)⊙ (1−M(c)) + l(Ifc)⊙M(c) (3.2)

Software-level Observability With the developed ITL, the test coverage
achieved by executing the test images is observed at the output of the single
multipliers. However, during the on-line self test, the observability point has to be
fixed at the software level. In particular, it has to be fixed at the output of the
first convolutional layer, before any non-linearities are applied. As a consequence,
for each self-test image, the respective golden output feature map, referred to as
signature output feature map, of the first layer is stored and is compared to the
actual one on-line: if they differ, a warning is raised.
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Chapter 4

Experimental Results

This chapter presents experimental results that verify the proposed approach’s
effectiveness, verified using a Nvidia Jetson Nano board and examining its ar-
chitectural details. The board houses a single-SM, 128-core Nvidia GPU based
on 2nd generation Maxwell architecture [45]. Two ITLs have been generated for
the ResNet-20 and DenseNet-121 CNN architectures, respectively. The proposed
ITLs are designed to identify permanent faults that affect the targeted GPU’s
multipliers. Neither hardware-level[46] nor OS-level mechanisms[47] employed to
ensure the safety of the GPUs have been taken into account. Section 4.1 reports
details about the employed GPU, CNNs and multiplier. Section 4.2 describes the
process of ITL generation, focusing on each of the three steps described in chapter
3.1. Furthermore, details about the ATPG process and ITL parameters such as
test coverage, self-test time and storage requirements are reported, as well as a
graphical representation of the generated ITLs. Section 4.3 reports results obtained
following the ITL validation method described in Section 3.2.

4.1 Experimental setup

Nvidia Maxwell The complete implementation of the Nvidia GM204 GPU
features 4 GPCs, each comprising 4 SMs for a total of 16 SMs. SMs consist of 128
CUDA cores that are partitioned between 4 processing blocks with 32 CUDA cores
each, resulting in 32 FP32 multipliers per SM. Additionally, a warp scheduler is
responsible for managing the scheduling of warps to its 32 cores (see Figure 4.1).

The Nvidia Jetson Nano board features only one SM, simplifying the thread-core
mapping issue to determining how warps are assigned to warp schedulers. In fact,
the task of assigning blocks to SMs is irrelevant when only one SM is present.
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Figure 4.1: Nvidia Maxwell GM204 SM. Source: Nvidia Geforce GTX 980
Whitepaper [45]
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Multiplier For the sake of reproducibility, an open source multiplier unit from
OpenCores has been used [48]. This particular unit is compliant with IEEE-754
standards and is a single-precision, signed 32-bit floating-point (FP32) multiplier.
The RTL design has been synthesized using the 45nm NangateOpenCell library
[49] and a frequency of 50 MHz. The ATPG process was carried out using the
Synopsys TetraMAX tool. The synthetized gate-level unit features a total of 12,510
stuck-at faults.

CNNs Two ITLs have been generated for two different CNNs (ResNet-20 and
DenseNet-121) trained and tested on CIFAR-10 using PyTorch.

The first layer of ResNet-20 performs a convolution with ’same’ padding and
stride 1 between a 3× 32× 32 input image and a filter tensor of 16 filters of size
16× 3× 3× 3, resulting in 432 FP32 weights. The first layer of DenseNet-121, on
the other hand, uses ’same’ padding and stride 2, and convolves a 3× 32× 32 input
image with a filter of size 64× 3× 7× 7, i.e., 64 filters, for a total of 9,408 FP32
weights.

4.2 ITL generation
The initial stage of the suggested approach involves the extraction of a list of weight-
input pairs processed by each multiplier for every GPU core. This extraction is
performed as explained in section 3. In this scenario, the convolutional algorithm
has been fixed to GEMM, and the observation of thread-core mapping has been
performed through profiling operations. Note that only a few seconds are required
to generate the weight-input list, once convolution algorithm and mappings are
known.

It is important to note that the only phase that required a fair amount of manual
work is the Dataflow Algorithm Extraction phase, since the convolution algorithm
and the workload-thread mapping had to be manually fixed and the thread-core
mapping had to be profiled. The other two phases can be completely automated
once the first has been concluded.

4.2.1 Dataflow algorithm extraction
Convolution algorithm The utilized convolution algorithm, outlined previously,
is GEMM. This means that every output element is computed exactly as a direct
convolution, so the arithmetic operations performed are exactly those described by
Equation 2.7. To construct the list of input indices [n, c, h, w] for an output index
[i, j, k, l], it sufficient to enumerate the indices from the summations in Equation
2.7.
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Workload-thread mapping To have a knowledge of the workload-thread map-
ping, a C++ PyTorch extension has been added to force the usage of the GEMM
implementation provided by CUTLASS (described in Section 2.2.3), since it is
publicly available. Furthermore, this implementation has been customized to have
warp tiles with the same height as the weight matrix (i.e., the number of filter-
s/output channels M) and force each thread to compute a whole output column
(i.e., M output elements, 1 for each output channel).

For ResNet-20, with a threadblock size of 128 threads (i.e., 4 warps), an input
matrix of size 27× 1024 and a weight matrix of size 16× 27 result in:

• 8 thread block tiles of size 16× 128

• 4 warp tiles per thread block, of size 16× 32

• 32 thread tiles per warp, of size 16× 1.

This means that a single core is in charge of computing 16 · 8 elements of the
output feature map, performing 3,456 multiplications. The custom workload-thread
mapping ensures that every core processes all the weights at least once. Due to the
constraints being the same across different cores, it is possible to launch one single
ATPG process valid for all the cores.

Since the GEMM tiling parameters can be controlled, it is straightforward to
associate each thread to the position of the outputs it computes. Threads are
identified in CUDA by a 3D block index Bidx and a 3D thread index Tidx. It is
assumed that block-level tiles of the output matrix are assigned to thread blocks
in left-to-right, top-to-bottom order. The same is assumed for warp-level and
thread-level tiles.

Note that changing this mapping could change the fault propagation and affect
the test coverage (TC) of the targeted units.

Thread-core mapping The thread-core mapping of the Nvidia Jetson Nano
GPU has been determined using a profiling program that launches a customizable
number of thread blocks, each consisting of a customizable number of threads. To
uniquely identify a CUDA core, the triple

⟨SM, Warp scheduler, lane1⟩

is employed. Thus, each thread records the SM, warp scheduler and CUDA core
on which it is executing, as well as its block and thread IDs.

1The term "lane" refers to a CUDA core within a processing block, i.e., a warp
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While the SM and CUDA core can be identified by reading the GPU’s special
registers %smid and %laneid, identifying the warp scheduler is less trivial. Reading
the special register %warpid provides a warp identifier within the thread block, but
it does not offer any definitive information about the scheduler. Profiling results
indicate that the least-significant two bits of the warp ID are indicative of the warp
scheduler. Warps are distributed among schedulers in round-robin fashion. For
instance, warp 0 will be sent to warp scheduler 0, warp 1 to warp scheduler 1, and
so on. Therefore, a warp scheduler can be identified by computing

WS = Warp ID mod 4 (4.1)

Concerning lanes, threads within a warp are assigned to lanes sequentially in
ascending order of thread ID.

Considering the Jetson Nano, it is important to note that only one SM is
available, resulting in %smid always being equal to 0.

The warp scheduler and lane to which a thread will be assigned can be predicted.
With a thread block size of 128 threads/4 warps, it follows that:Warp scheduler =

7
tid

32

8
Lane = tid mod 32

where tid is the linearized thread index2.

Padding Depending on convolution parameters, convolution algorithm and GPU
architecture, certain cores may always multiply some weights by padding values. As
there is no control over padding values, only weights multiplied by a non-padding
input element at least once by each core should be selected. In other words, every
pair containing a weight that is solely multiplied by padding in at least one core
must be excluded from the list.

For ResNet-20, only the weights in the center column of each channel of each
filter are multiplied at least once by a ’real’ input element. As a result of this
selection, the ATPG process was launched considering only 144 FP32 weights.

As for DenseNet-121, the last 32 filters have been excluded from the ATPG
process and a 3× 3 region around the central element has been selected for each
filter channel, resulting in the reduction of candidate weights from 9,408 to 864.
Then, as for ResNet-20, only weights in the central column have been selected, for
a total of 288 weights. However, since the convolution is strided, utilizing only
weights in center columns results in wasted space on the images (half the pixels in

2Since thread indices are 3-dimensional, they have to be flattened to a single index
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CNN N. of
weights

Selected
weights

N. of
ATPG patterns

Test
coverage [%]

ResNet-20 432 144 128 93.58%
DenseNet-121 9,408 576 135 94.28%

Table 4.1: Details about the ATPG process

the best case). Hence, also weights in the right columns have been selected, for a
final total of 576 weights.

4.2.2 ATPG-based Pattern Generation
Details on the ATPG process are provided in Table 4.1. The second column displays
the total number of weights of the first convolutional layer. For both CNNs, all the
weights are employed at least once by every core during the first convolution. By
eliminating weights that in certain cores are exclusively multiplied by 0-padding
(2/3 of all weights for ResNet-20, 1/3 of reduced weights for DenseNet-121), the
final list of candidate weights has been obtained (Column 3, Table 4.1). An ATPG
process was set up by imposing the selected weights as constraints and searching a
single ATPG pattern for each. However, some weights did not originate patterns
able to increase the test coverage. The TetraMAX process required about 0.17s
of CPU time to find a single pattern, while the total time required to generate
the final set of input patterns was approximately 2 minutes for ResNet-20 and 10
minutes for DenseNet-121. The final number of ATPG patterns is given in Column
4, and the final test coverage is equal to 93.58% for ResNet-20, and 94.28% for
DenseNet-121. Due to the constrained weights, 3.89% and 4.01% of stuck-at faults
were classified as ATPG Untestable, respectively.

The achieved percentages are lower than those attained in [5] on NVDLA’s
computational units. The ATPG process used in that study did not impose any
constraints and altered not only input values, but also the actual weights of the
neural network. Consequently, it is not suitable for on-line testing, while the
ITL method deliberately uses the actual weights of the CNN to alternate on-line
inferences of "normal" images with self-test ones.

4.2.3 Self-test Images Generation
The ATPG patterns are then utilized to construct the self-test images, as described
in Algorithm 2. The construction process requires knowing which pixel in the
input image is processed by which core: this information is retrieved during the
dataflow algorithm extraction. Ultimately, this procedure yielded 6 self-test images
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Proposed ITLs N. of
images

Avg.
TC [%]

Self-test
time [ms]

ITL storage
requirements [kB]

ResNet-20 6 94.74 0.35 467
DenseNet-121 8 95.46 0.36 623

Table 4.2: Details of the ITLs developed for testing on-line the FP32 multiplier.

for ResNet-20 and 8 for DenseNet-121, with a generation time of approximately 3
minutes for both ITLs.

The real ITLs are illustrated in Figures 4.3 and 4.2, respectively3.

4.2.4 Results
Next, starting from these ITLs, a logic simulation has been performed resorting to
Modelsim® HDL Simulation, by simulating the exact ⟨input, weight⟩ pairs of the
obtained images entering into each of the core’s multipliers.

For each test image, 128 (the total number of multipliers) Value Change Dump
(VCD) files have been collected. These VCDs have been used to run gate-level fault
simulations with TetraMAX, to compute the exact test coverage that each self-test
image achieves on each core’s multipliers. It has been observed that the actual test
coverage is always higher than the one computed at the end of the ATPG process.
Indeed, apart from the operations involving test patterns (3rd Column, Table 4.1),
given a filter tensor W ∈ RM×C×f×f , each core executes a number of additional
multiplications equal to

n. of images× n. patterns/image per core× (M · C · f · f − 1)

including several multiplications by zero (the 0-padding). It means that the
proposed ITL generation guarantees a minimum test coverage among all the GPU
cores. The exclusion of those weights that, in some cores, are multiplied exclusively
by padding, avoids penalising individual cores.

Table 4.2 reports details of the two ITLs, in terms of (i) number of self-test
images, (ii) average test coverage over all the 128 cores, (iii) time required to run
the ITLs and compare the golden signature output feature map with the computed
one, and the (iv) total storage required to support this self-test approach.

As for the self-test time, it is worth underlining that the time required to run
the inference of 6 CIFAR10 images is 0.35 ms for ResNet-20, and 0.36 ms for

3Note that the ITLs are meant to be used in tensor, not image, form and may contain floating
point values that do not correspond to RGB colors. To convert them to images the values have
been normalized
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: DenseNet-121 ITL

(a) (b) (c)

(d) (e) (f)

Figure 4.3: ResNet-20 ITL
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ITL type Num. of
images

Avg. TC on FP32 mul. [%]
warp0 warp1 warp2 warp3

Proposed ITL 6 94.72 94.76 94.76 94.72
Checkerboard ITL 6 81.37 81.12 81.12 81.46
Random ITL 6 85.23 84.73 85.01 85.13
CIFAR10 ITL 6 84.42 84.85 84.56 84.61

(a) ResNet-20

ITL type Num. of
images

Avg. TC on FP32 mul. [%]
warp0 warp1 warp2 warp3

Proposed ITL 8 95.45 95.47 95.47 95.45
Checkerboard ITL 8 81.69 81.58 81.22 81.68
Random ITL 8 86.01 85.38 85.4 85.91
CIFAR10 ITL 8 84.88 85.39 85.53 85.07

(b) DenseNet-121

Table 4.3: Comparison of the proposed ITLs with Checkerboard, Random, and
CIFAR10 images

DenseNet-121. Furthermore, considering the memory space needed to store the
ITLs, the space to store the self-test images (e.g., for ResNet-20, 6 test images
multiplied by 3 · 32 · 32 · 4 bytes) is summed to the space needed to store the
golden test responses, i.e., the signature output feature map for each image (e.g.,
for ResNet-20 6 test images multiplied by 16 · 32 · 32 · 4 bytes).

For the sake of completeness, Tables 4.3a and 4.3b compare the test cover-
age of the proposed ITLs (in each warp) with the ones obtained by running
the inference of checkerboard images, random images, and CIFAR10 images.

Figure 4.4: Checker-
board image

An example of checkerboard image is given in Figure 4.4;
checkerboard images seek to reproduce the well-known
testing technique of applying specific checkerboard test
patterns in assembly programs (e.g., 0xa5a5a5a5).

Then, the same quantity of test images was selected
for each type of ITL (proposed, checkerboard, random,
and CIFAR10), and gate-level fault simulations for each
core in each warp have been performed. Each test image
was fault simulated separately, and at the end, the 6 or
8 fault lists have been merged through TetraMAX. The
final value is reported as the average over the 32 CUDA
cores’ multipliers in each warp. It can be observed that
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test coverage values oscillate depending on the amount of padding processed by
each core, but it is interesting to note that the proposed ITL’s values are always
higher than ones obtained at the end of the ATPG process (Table 4.1).

As shown in Tables 4.3a and 4.3b, the main advantage of the proposed test
images consists in the achieved test coverage: it is ∼ 13%, ∼ 9%, and ∼ 10% higher
than the checkerboard, random, and CIFAR10 ITLs, respectively. It means that
with a very low number of inferences, it is possible to cover about 95% of stuck-at
faults of the GPU’s multipliers, without modifying the current CNN or undertaking
costly memory operations.

4.3 ITL Validation
Instead of performing low-level fault injections and propagating faulty values at
the software level, hardware faults affecting the multipliers are injected by building
a set of carefully modified images which mimic the same faulty output of the
multiplier, without injecting it at gate level.

Permanent faults affecting MUL0 have been considered, and the faulty images
have been created by following Algorithm 3 for ResNet-20. For a single image,
MUL0 executes a total of 3,456 multiplications by using all weights more than once.
Of all the weights in the first layer (16 filters of size 3× 3× 3), MUL0 is responsible
for performing 216 multiplications per filter. This means that there are 16 patches
(3,456/216) in total containing faulty input values for the first layer only. These
patches must be overlaid on each of the ITL images. Therefore, in total, each
individual stuck-at fault corresponds to 6 · 16 = 96 faulty images. The time needed
to generate the faulty images for all faults was approximately 20 minutes.

To compute âO and âI, a Modelsim HDL simulation was performed by injecting
the stuck-at faults that have been marked as detected at the end of the gate-level
fault simulation. The simulation required approximately 8 hours. Then, givenâI and the respective ITL, the faulty images have been created using Algorithm
3. Finally, inferences on the faulty images have been performed with a PyTorch
simulation, without changing the ResNet-20 CNN model. To verify that the faulty
ITLs can propagate the multiplier’s faults up to the first convolution output feature
map, Equation 3.2 was used to check for differences between tensors. They all
produced a difference in the output feature maps: all the detected faults (after the
gate level simulation) are propagated and observed through the output tensor of
the first convolutional layer.
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Chapter 5

Conclusions

This thesis outlines a technique for creating test images that can identify the
presence of stuck-at faults in GPU multipliers in real time. Furthermore, it is
demonstrated that with a minimal set of images, one can detect around 95% of
permanent stuck-at faults with low self-test times and minimal memory occupation
for the ITL storage.

Further research is needed to investigate the extension of this methodology
to other GPU units. The primary concern may be that, in GPUs, information
regarding thread-core and workload-thread mappings is not always accessible
publicly. The dataflow algorithm can be extracted in particular instances, such as
CUTLASS, and by executing profilation routines.

Additionally, the ITLs developed in this study are specific to multiplier units,
with plans to expand to other computational and logic units in the future. As a
matter of fact, convolutional algorithms in GPUs often exploit fused multiply-and-
add units instead of multipliers.

One final consideration concerns the observability point when comparing output
feature maps within the CNN (after the first layer in this case). To do so, the CNN
needs to be considered as a white box since the comparison must be done on an
intermediate result. The optimal solution might involve fixing the observability
point at the output. However, in this case, a comprehensive analysis of fault
propagation must be conducted to account for the inherent masking ability of
CNNs, caused by the presence of non-linear activation functions, normalizations
and pooling layers.
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