POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

SystemC Simulation of Extra-functional
properties for RISC-V-based systems

Supervisors Candidate

Prof. Massimo PONCINO

Prof. Daniele Jahier PAGLIARI Francesco CALICE
Prof. Sara VINCO

Dr. Matteo RISSO

Dr. Alessio BURRELLO

October 2023

Summary

Nowadays, the RISC-V instruction set architecture (ISA) is gaining traction among
engineers and companies thanks to its royalty-free and open-source nature. Fol-
lowing in the footsteps of highly successful open-source software projects (e.g.,
Linux, GNU, etc.), RISC-V represents an attractive choice to build an open-source
hardware community that actively supports updates and ensures continuous im-
provement. RISC-V can be used without any fees, making it a cost-effective solution
for enabling smart heterogeneous embedded systems, which include sensors and
actuators, such as nano-drones, smart assistants, and wearables.

In this landscape, the availability of simulation platforms is a key ingredient
for making RISC-V based hardware solutions pervasive. Simulators represent a
cost-effective and scalable solution that enable rapid prototyping without the need
for physical hardware. For these reasons, there is a growing availability of programs
designed to simulate entire RISC-V chips. Some options include QEMU, Simulink,
Renode, and GVSoC. However, these tools present some limitations. Most of them
only simulate the computing core with scarce possibilities to perform system-level
simulations. Moreover, they simulate only functional features, with poor support
for extra-functional properties such as power consumption.

This work tries to address these challenges by presenting a flexible simulator,
developed in collaboration with the University of Bologna, in the context of the
TRISTAN European project. The simulator combines the SystemC/SistemC-AMS
physical and continuous time modelling capabilities with GVSoC, a lightweight
and flexible RISC-V functional instruction set simulator. The simulator takes
two inputs. The first is a high-level description of the system in JSON which
is then internally translated into SystemC/SystemC-AMS components through
a template-based code generator written in Python. The second is the C code
to be simulated on the RISC-V core through GVSoC. In this thesis, we focus
on the co-simulation of the functionality and power consumption of the system.
Nonetheless, the code has been developed to be general, allowing the support of
additional extra-functional properties (e.g., temperature, reliability) with minimal
intervention.

11

Overall, the thesis successfully demonstrates how to integrate SystemC/SystemC-
AMS simulations of extra-functional properties with a RISC-V functional simulator.

II1

Acknowledgements

This thesis is the peak of my academic journey. Of course, there are many people
I must thank, but there are not enough pages to express all my feelings. This
project has been a very different experience from the usual student life. To start
with, I would like to thank my academic supervisor, Daniele, Matteo, Sara, and
Alessio, for leading me through this journey and providing me with this wonderful
opportunity. I want to express my gratitude to my family, who has supported me
since the beginning of my university journey. I also want to thank all my friends
for always being there during both good and challenging times. Finally, I want to
express my gratitude to all the people who have spent time with me; a part of this
achievement belongs to you.

v

https://google.com

Table of Contents

List of Tables

List of Figures

Acronyms

1 Introduction

2 Background

2.1
2.2

2.3

24

SystemC L
SystemC-AMS
2.2.1 Timed data flow (TDF)
2.2.2 Electrical Linear Networks (ELN)
2.2.3 Linear Signal Flow (LSF)
2.2.4 Scheduler & Differential-Algebraic Equation (DAE) solver

RISC-V o
2.3.1 RISC-V Terminology
2.3.2 RISC-V Software Execution
2.3.3 Instruction set architecture (ISA)
PULP & GvSoC o o o
24.1 PULPissimo
242 GAP9 . . .
243 GvSoC

3 Related Works

3.1
3.2

3.3

Modeling Cyber-Physical Electrical Energy Systems
SystemC and Simulink Comparisons
321 SystemC Cons.
Methodologies for Extra-Functional Properties

VI

VIII

IX

XI

10
12
12
13
14
14
15
16
18
19
20
21

4 Methods

4.1.1 SensorsS.o
4.1.2 Functional Bus
4.1.3 Power Bus

4.2.1 GvSoC Requests

4.3.1 Template syntax Lo
4.3.2 JSONfile

4.1 Extra-Functional Simulator
4.1.4 DBattery, harvester and converters
4.1.6 Acknowledgement protocol
4.2 GvSoC integrationo
4.3 Python code generation
5 Experimental Results
5.1 Setup.
5.2 Simulator Results
5.3 Simulator Benchmarkso o000

6 Conclusions and Future Works
A Code

Bibliography

VII

4.1.5 Coreo

29
29
31
35
37
38
39
40
41
42
44
45
46

48
48
50
54

56

58

64

List of Tables

4.1

5.1

5.2

Examples of converter, the data integrity must be ensured

Comparison between two C programs. The values represent the av-
erage command execution time over ten runs for the 'time command’
in Linux.
Comparison between two C programs. The first one does not use
external sensors, while the second one does. The values represent
the average execution time of the 'time command’ over ten runs in
Linux. e

VIII

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1

4.1
4.2
4.3
4.4
4.5

5.1

SystemC-AMS logical structure [7]
Example of Timed Data Flow module
Example of Electrical Linear Networks module
Example of Linear Signal Flow module
RV32I Instruction format [8]
RISCY core overview [10]
Zero-RISCY core overview [10],
PULPissimo overview [10]
Example of GvSoC simulation [12]
Example of GvSoC VCD traces [12]

Example of Layered structure for extra-functional property [15]

Power simulator conceptual
Sensor structure L.
Functional diagram oL
Power diagram
Acknowledgement protocol conceptual

Plot of functional report

IX

Acronyms

CPEES
Cyber-Physical Electrical Energy Systems

DAE
Differential-Algebraic Equation

DMA

Direct Memory Access

EDA

Electronic Design Automation

EEI

Execution Environment Interface

ELN

Electrical Linear Network

HPC

High-Performance Computing

IoT
Internet-of-Things

ISA

Instruction Set Architecture

LSF

Linear Signal Flow

XI

MOC
Model of Computation

PCB
Printed Circuit Board

PE

Processing Elements

PULP

Parallel Ultra-Low-Power
RISC
Reduced Instruction Set Computer

RTL

Register Transfer Level
SOC

State of Charge
SoC

System-on-Chip
TDF

Timed Data Flow
TLM

Transaction-Level Modeling

VCD
Value Change Dump

XII

Chapter 1
Introduction

System-on-Chip (SoC) devices have become ubiquitous in today’s technology
landscape, finding applications in smartphones, vehicles, industrial machines, smart
homes, and even medical environments with health sensors. SoCs encompass a
range of electronic devices that include essential components to ensure their proper
functioning. Typically, these components consist of a microcontroller, memory,
sensors, communication interfaces, and power supply. The complexity of a SoC
varies depending on its intended use, and even minor modifications can result in
significant differences in the final SoC design.

In a dynamically evolving technological environment like today’s, the ability to
make agile modifications to the design or even the entire system composition is
invaluable for both companies and clients. A relatively recent development in SoC
design is the concept of hardware emulation. Hardware emulation is an approach
used to create a SoC within a secure, controlled, and digital environment, primarily
aimed at testing specific functionalities before the physical board is constructed.
This approach offers numerous advantages, such as a fully modular system that
allows changes to all components on the fly. These changes can include altering
the type of microprocessor, adjusting available memory, or modifying the number
and type of sensors, empowering developers to explore design space thoroughly and
identify the most suitable solutions for specific devices and applications.

Hardware emulation also offers the benefit of more precise simulation compared
to software-based simulators. It can execute and simulate a real board, including
internal timing and stages. Sensors can be configured to capture meaningful
measurements, providing a more accurate representation of a real-world environment.
Additionally, hardware emulation enables the creation of traces to monitor specific
components and measurements, making it possible to assess stressful situations,
for example.

One of the most significant advantages of hardware emulation is its impact on
development speed. Emulating a board can expedite various development phases,

1

Introduction

including reducing the development cycle. Engineers can rapidly test numerous
changes without waiting for each new circuit, thus accelerating development. The
parallelism between software and hardware allows two teams to focus on different
aspects of the device, such as application software and the final design of the printed
circuit board (PCB). Furthermore, this approach facilitates an agile development
process, especially in the early stages, enabling iterative development phases that
align with customer feedback within shorter timeframes compared to traditional
methods.

Today, there are several key players in the field of hardware emulation, with
Matlab and its extension, Simulink, being one of the prominent contenders. Simulink
is an environment that excels in supporting model-based systems engineering,
allowing for the management of complex systems throughout their lifecycle. It
places a strong emphasis on various aspects, including representing components
as models, providing a graphical view of the system, and illustrating relationships
between components. Simulink is a robust software solution widely adopted in both
academic and industrial settings. However, it is often criticized for its complexity
and occasional sluggishness during extensive simulations. Additionally, Simulink is
a closed and proprietary tool, which means it lacks the flexibility of being easily
extendable.

In recent years, other software options have emerged as alternatives to Simulink.
Notable among them is QEMU, an open-source software based on the C program-
ming language [1]. QEMU excels at emulating complete systems and is primarily
oriented toward running guest operating systems. Consequently, it is better suited
for simulating general-purpose systems. On the other hand, RENODE is another
software tool based on the Robot Framework and C# [2]. It finds particular
relevance in the Internet of Things (IoT) domain and is well-suited for simulating
and developing multi-node systems featuring numerous simple devices that need to
communicate with each other.

While these software solutions each have their strengths, they also exhibit certain
limitations. QEMU and RENODE excel in terms of functional aspects, effectively
representing software behaviors. However, they struggle in simulating physical
characteristics such as power consumption and energy management. In contrast,
Simulink, due to its complexity, faces challenges when it comes to adequately
representing and emulating functional features such as programming language
instructions.

The primary goal of this thesis is to address the challenge of simulating both
the functional aspects and extra-functional properties of a System on Chip (SoC).
Specifically, the aim is to develop a versatile simulator capable of emulating the
functional features of a SoC through the execution of real C language instructions
while comprehensively simulating extra-functional properties like power consump-
tion and energy management. This capability will enable a more thorough and

2

Introduction

precise examination of SoC designs, allowing for in-depth analysis of the system at
minute levels of detail.

To achieve this objective, the open-source Instruction Set Architecture (ISA)
RISC-V has been selected as the foundation for the project. RISC-V adheres
to the well-established principles of Reduced Instruction Set Computer (RISC)
architecture and is characterized by its provision of royalty-free open-source licenses.
This open-source nature not only fosters innovation but also nurtures a collaborative
community of developers and researchers, [3].

In addition to simulating the functional aspects of the SoC, the simulator
developed as part of this research will excel in modeling extra-functional properties.
This will make it a valuable tool for engineers and researchers engaged in SoC
design across various application domains.

The selection of RISC-V as the foundation is well-founded because one of
its primary objectives is to ensure compatibility and portability across various
system implementations. Its open-source nature has fostered a large and supportive
community, making it increasingly attractive due to its royalty-free licenses in the
years to come.

The simulated system will be based on PULPissimo, a microcontroller archi-
tecture that incorporates a RISC-V-based core. PULPissimo is the result of an
academic collaboration between ETH Zurich and the University of Bologna, ini-
tiated in 2013, as documented on GitHub. To simulate the functional aspects of
this architecture, GvSoC will be employed due to its high compatibility with the
PULPissimo architecture.

For modeling the physical behavior of the system, SystemC and SystemC-AMS
will be utilized. These extensions for C/C++ languages are capable of modeling
and simulating systems of various types. In particular, SystemC can synchronize
computation processes, simulate mathematical models in the time domain, and
ensure fundamental hardware design properties such as signals and component
reactivity. Moreover, SystemC-AMS offers versatility by providing three types of
models: Timed Data Flow (TDF), Electrical Linear Network (ELN), and Linear
Signal Flow (LSF), allowing for the most suitable representation for each system
under study.

This work also aims to provide valuable insights into the field of high-performance
computing (HPC) by leveraging the RISC-V architecture and the developed sim-
ulator’s role in advancing HPC technologies [4]. It’s essential to note that this
research is aligned with the TRISTAN project, a major European initiative with the
goal of expanding, maturing, and industrializing the European RISC-V ecosystem,
allowing it to compete effectively with established commercial alternatives. Within
the framework of TRISTAN, a comprehensive European strategy for RISC-V-based
designs is being formulated, encompassing a repository of industrial-quality build-
ing blocks applicable to diverse application domains, including automotive and

3

Introduction

industrial sectors. This initiative is holistic, covering electronic design automation
tools (EDA) and the entire software stack. The broad consortium involved in
TRISTAN aims to expose a significant number of engineers to RISC-V technology,
thereby fostering wider adoption. This ecosystem development aligns with the
European Commission’s strategy to support the digital transformation of various
economic and societal sectors and advance towards a green, climate-neutral, and
digital Europe [5].

The rest of this manuscript is structured as follows. Chapter 2 provides a com-
prehensive foundation by presenting the essential theoretical information required
to grasp the thesis’s subject matter. It begins by elucidating key topics, namely
SystemC and its framework SystemC-AMS, shedding light on their functionalities
and advantages. Furthermore, it offers insights into RISC-V, detailing its nature
and its relevance in System on Chips (SoCs). This chapter concludes with an
exploration of various architectures, including PULP and GAP. Chapter 3 delves
into studies closely related to this thesis, with a particular focus on the develop-
ment of simulators for extra-functional properties and their current state-of-the-art.
Chapter 4 constitutes the core of the project, offering a detailed exploration of the
developed simulator and its seamless integration with GvSoC. It elucidates the
details of this integration in meticulous detail. In Chapter 5, readers will discover a
comprehensive guide on using the simulator, with meticulous attention to the ma-
chine setup process. This chapter also provides concrete examples showcasing the
simulator in action, offering a practical understanding of its functionality. Finally,
Chapter 6 brings this journey to a close by presenting conclusions drawn from the
research and offering insights into potential avenues for future enhancements and
expansions of the project.

Chapter 2
Background

In this chapter, all the information and knowledge necessary to comprehend the
thesis project are presented. Additionally, detailed information about RISC-V and
its objectives is provided. The chapter begins with a general overview of SystemC,
the framework used to develop the simulator, delving into its internal structure 2.1.
Subsequently, there is a dedicated section about SystemC-AMS 2.2, providing a
deeper description of its special models and exploring the AD solver. The chapter
then moves on to a comprehensive exploration of RISC-V 2.3, covering its history
and structure. This section is very important for understanding the academic
significance of RISC-V. Finally, there is section 2.4 dedicated to PULPissimo and
GAP9, two architectures based on RISC-V. This section describes their structures
and introduces GvSoC, the simulator utilized in the thesis to emulate the entire
board from a functional perspective.

2.1 SystemC

SystemC is a C++ class library built on top of ANSI C++, enabling designers to
create precise cycle models of system designs with a focus on hardware architectures
and their interfaces. SystemC serves as a crucial tool for validation, optimization,
and facilitating easy exploration and design space considerations. It introduces
three fundamental properties: time, concurrency, and behavior’s activity, all of
which are essential for precise hardware modeling and analysis. By doing so,
SystemC eliminates the need for the manual translation of C/C++ models into
Verilog/VHDL, thereby reducing the potential for errors. In SystemC, systems
are described using processing elements (PE) or modules, which exchange data
through unidirectional or bidirectional channel classes sc_signal. An important
concept closely related to SystemC’s core functionality is transaction-level modeling

5

Background

(TLM). TLM offers a high-level approach that strictly separates communication de-
tails among processing elements from the implementation details of functional units.

To understand SystemC, first is necessary to be familiar with some of its the-
oretical concepts and terminologies [6]:

e Module Container class, hierarchical, can contain other modules sc_module.

e Process The core functionality of any modules is contained in its processes,
which are C++ methods. A module can have any number of three possible
process types.

o Port A module sends/receives data to/from other modules via ports SystemC
sc_port or sc_export.

o Signal Can be either resolved or unresolved. A resolved signal may have
multiple drivers (such as a bus), while an unresolved signal has a single driver.
Two- and four-valued signals are allowed, with permissible values being "True,’
'False,” 'Don’t care,” and 'High impedance.

o Cycle-Based Simulation Approach that focuses on simulating the behavior
of a system in terms of cycles, where each cycle represents a fixed time interval
during which certain operations or events occur.

o Multiple Abstraction Levels There are untimed models at different levels
of abstraction, ranging from high-level functional models to cycle-accurate
register transfer level (RTL). High-level models may be iteratively refined into
more detailed lower-level models.

» Sensitivity List The sensitivity of a process is the set of events or timeouts
which trigger that process. A process is sensitive to an event if that has
been added to its static sensitivity list or dynamic sensitivity of the process
instance.

SystemC offers a reactive, event-driven simulation infrastructure that accom-
modates two types of processes: spawned and unspawned. Unspawned process
instances are generated by calling one of three process macros: SC_CTHREAD,
SC_METHOD, and SC_THREAD, which are the most commonly used. Each of
these macros is elaborated, unlike spawned processes, enabling efficient resource
allocation during compile time. These three macros can be invoked from a module’s
constructor, along with an appropriate sensitivity list. A sensitivity list is closely
tied to the fundamental concept of an event-driven simulator, where a process
responds to an event, such as a change in the value of a signal. Consequently,
the SC_CTHREAD macro requires either the rising or falling edge of any clock.

6

Background

In contrast, the SC_THREAD macro provides greater flexibility and robustness
by permitting a general sensitivity list that can include a clock. This allows the
associated process to respond to value changes at all ports of its containing module,
as specified in its sensitivity list. For example, if process P within module M is
declared using the SC_THREAD macro in the constructor of M with sensitivities
to ports portA and portB of M, then P will respond to changes in values received
through portA, portB, or both. On the other hand, an SC_METHOD macro is
executed each time its containing module is activated and cannot be suspended with
a wait statement, unlike SC_ CTHREAD and SC_THREAD. In contrast, both
SC_CTHREAD and SC_THREAD macros are executed only once. Consequently,
the code for any process declared as an SC_CTHREAD/SC_THREAD contains
an infinite loop, causing the process to wait for events in its sensitivity list, with
execution only terminating when the container module is destroyed at the end of
the simulation.

Additionally, a spawned process can be generated by calling the built-in function
SC_SPAWN during elaboration or simulation, and it can be utilized in fork—join
parallel execution constructs. It is essential to note that fork—join constructs exist
strictly in the software realm and do not represent any physical hardware.

Ports represent an indispensable element within any SystemC module. A port has
the capability to establish connections with a channel, another port, or an export.
Binding of a port or export can occur either by name or by position, but never
simultaneously by both methods. For the actual binding process, one can utilize
pertinent methods from built-in SystemC classes like SC_ MODULE, SC_PORT, or
SC_EXPORT. The binding of ports is characterized by its flexibility; for instance,
port A can be bound to port B, which, in turn, may be connected to channel C,
effectively linking port A to channel C. It’s important to note that all port bindings
are exclusively executed during the elaboration phase but can be deferred until the
end of elaboration.

The execution of a SystemC application consists in two phases that are elab-
oration and simulation:

« Elaboration The initial and first phase involves establishing the application’s
module hierarchy, which encompasses the creation of module primitive channels
and processes, setting up related data structures, binding ports and exports,
executing the outer framework of the public implementation, and building the
confidential core of the implementation.

e Simulation It involves the activation of the scheduler component within the
kernel, which subsequently triggers the execution of the application’s processes.

An application may be executed in two ways: application control and direct kernel

7

Background

control. If executed under direct kernel control, it is managed by the scheduler.
The scheduler can execute process only if one of the following conditions is satisfied.

e Process instance has been made runnable during initialization.
e A process has been sensitized to an event and that event has occurred.
e A timeout has occurred.

Scheduler execution is composed by a initialization phase, followed by the evaluation
phase, the initialization phase itself consists of sub-phases as update update phase
and delta notification phase.

The SystemC term delta cycle is used to indicate one step of the scheduler, the
three sequential step, in detail, are:

1. Evaluation Phase: During this phase, the simulation evaluates and computes
the values of various signals and variables in the system. It calculates the
changes that need to be made based on the current state of the system and the
events that have occurred since the last delta cycle. Essentially, it determines
what has changed in the system.

2. Update Phase: After the evaluation phase, the update phase is where the
calculated changes are applied to the system. This means updating the values
of signals and variables with the new values computed in the previous step.
The system transitions to its new state based on the changes determined in
the evaluation phase.

3. Delta Notification Phase: In this final phase of the delta cycle, the
simulation notifies any processes or components in the system about the
changes that have occurred. This notification informs them that something in
the system has changed, and they may need to react or perform certain actions
in response to these changes. It essentially triggers processes to execute if
they are sensitive to the events that occurred in the previous phases.

As an ANSI C++ library, SystemC supports each of the standard C++ data
types and in addition hardware-specific data types to support concurrency, the
concept of time, and events. In the end an example of SystemC module.

Background

LI

#inlcude <systemc.h>

3| SC_MODULE (xModule Name *)
{
5 sc_core::sc_in <int> xInput Portx
sc_core::sc_out <int> x0utput portx
sc_core::sc_signal <bool> xInternal signalsx
SC_CTOR (*Module Namex): //Contstructor

{
SC_THREAD (#Function Namex);
//Sensitivity List
sensitve << #*signal namex*
<< #*signal name %,
}

//Function Prototype
void xFunction Namex();

//Destructor
void xModule Namex(){};

2.2 SystemC-AMS

While digital circuits belong to a distinct category from analog circuits, approaches
and methods for examining and comprehending analog and mixed-signal systems
(AMS) have been relatively infrequent or have proven excessively intricate and time-
consuming for analog system designers. Extending SystemC-AMS to ANSI C++
serves as a vital initial step in confronting this challenge. It leverages the foundations
of the existing SystemC framework as outlined in IEEE 1666-2005 specifications,
with the aim of addressing the unique demands presented by analog systems
and the integration of digital hardware/software systems within their physical
analog surroundings. To illustrate, when digital hardware/software interfaces
with RF systems, sensors, actuators, and power electronics, the analysis must
not only grapple with the specific issues inherent to purely analog or purely
digital systems but also the real-time interactions between them. SystemC-AMS
is specifically designed to cater to these distinctive requirements. It utilizes a
combination of discrete-time static non-linear (non-conservative behavior) and
continuous-time dynamic linear (both conservative and non-conservative behavior)
model abstractions to offer three modeling frameworks: timed data flow (TDF),
linear signal flow (LSF), and electrical linear networks (ELN). This enables a
mixed-signal design scenario where, for instance, a purely digital control signal can
govern a purely analog circuit by utilizing suitably conditioned feedback signals

9

Background

from the analog circuit. Significantly, SystemC-AMS makes use of the identical
TLM framework as pure SystemC, permitting users to concentrate on the data
processing within a processing element, rather than concerning themselves with
data input methods or the transmission of data to subsequent processing elements

6].

Models Characteristics

Continuous Time
Dynamic Linear

Discrete Time
Static Non Linear

‘ Non Conservative ’ ‘ Conservative
Timed Linear Electrical
Data Flow Signal Flow Linear Network
(TDF) (LSF) (ELN)

SystemC-AMS Models of Computation

‘ Scheduler ’ ‘ Linear DAE Solver

‘ Synchronization layer
SystemC-AMS Simulation Kernel

Figure 2.1: SystemC-AMS logical structure [7]

For effective utilization of SystemC-AMS, a thorough examination and compre-
hension of the fundamental principles, formalisms, and framework upon which it is
built are essential. We will begin by providing a concise overview of the fundamental
concepts that underlie the three integral components of SystemC-AMS: TDF, LSF,
and ELN.

2.2.1 Timed data flow (TDF)

TDF serves as a model of computation (MOC) based on synchronous data flow
MOGs. In this framework, data is conceptualized as signals sampled over time,
carrying discrete or continuous information, such as signal amplitude, despite being
tagged as discrete in terms of time. A TDF model is essentially an assemblage

10

Background

of interconnected TDF modules, forming a directed graph referred to as a "TDF
cluster." Within this graph, the nodes represent the TDF modules, while the edges
denote the TDF channels or signals. Mathematical functions within a TDF module
are executed using both direct inputs and internal states. A specific function is
processed only when a requisite number of input data values become available, at
which point the results are written to the output ports. It’s worth noting that the
number of input data elements required for a single invocation of a function may not
necessarily match the number of data elements produced by that same invocation.
Nonetheless, the quantity of input data elements needed for and generated by a
single invocation remains constant. Fach data element is accompanied by a time
tag, referred to as a "time step," which accounts for the designation "TDF."

R: Rate
D: Delay

Figure 2.2: Example of Timed Data Flow module

TDF modeling formalism requires to specify the properties of a TDF module
and for each of its ports the following properties:

e Time step of the module and each of its ports.

» Port rate of module’s port i.e., the number of data elements read or written
per each read/write operation.

o Delays and time offsets for each port.

Moreover, there are three strict constraints to follow during the data flow
operations:

1. Attributes assigned to ports and modules must be compatible (No mismatch
of data type).

2. Rate of data flow (samples/time) must match at sending and receiving ports.

3. All feedback loops must have port delays.
11

Background

2.2.2 Electrical Linear Networks (ELN)

The ELN MOC introduces fundamental electrical components and their intercon-
nections to model and analyze continuous-time, conservative electrical circuits. An
ELN model comprises electrical components, such as capacitors, linked to nodes
to create an electrical network. The mathematical relationships governing these
components, which adhere to Kirchoff’s current and voltage laws (KCL/KVL), are
expressed as a set of differential algebraic equations and are resolved during the
simulation process. An ELN model is essentially composed of a collection of electric
components interconnected through terminals, forming an ELN cluster or a system
of equations. The ELN primitive modules encompass a variety of components and
their respective descriptions, including both dependent and independent sources
(current and voltage sources), lumped elements (such as capacitors, inductors, and
resistors), linear distributed elements (like transmission lines), ideal amplifiers (ideal
operational amplifiers), linear gyrators, and ideal switches. As in the TDF model,
the time step for an ELN module can be either explicitly assigned or propagated.
In instances where an ELN module is interconnected with a TDF module in a
hybrid configuration, the time step from the TDF ports is extended to the ELN
model. It is mandatory to maintain consistency between the locally defined time
step of the ELN module and the propagated time step to ensure accurate data
exchange among the modules. Throughout the simulation process, the equation
system is numerically solved using appropriate time steps.

Rg(SOC) Ry (SOC)

SOC R,.,(S0C)
¥ WA 14\/\/\/7 h'\/\/\rﬁ_?
- L I
C ;= lhntt@ e Voc(SOC) Cs(500) .500) ‘Vb‘m
- Iy i
"T“ | (l)(tt)

Figure 2.3: Example of Electrical Linear Networks module

2.2.3 Linear Signal Flow (LSF)

The LSF computational model provides a framework for modeling and analyzing an
AMS system by defining relationships between variables through a system of linear
algebraic equations. In other words, it handles non-conservative systems featuring
continuous-time, directed real-valued signals. Each real-valued quantity represents

12

Background

a signal within this context. Visually, a model is represented by a collection of
blocks (referred to as LSF modules) interconnected by arrows (designated as LSF
signals). These LSF modules feature input and output ports, allowing the model
to interact with other components, such as a TDF module. Unlike TDF, it is not
permitted to write custom code for the model but instead must employ pre-defined
members of a set of LSF models (including operations like addition, subtraction,
multiplication, differentiation, etc.) as needed. Much like the TDF model, the
time step of an LSF module can be either explicitly set or transmitted. In cases of
hybrid configurations, where an LSF module is linked to a TDF module, the time
step from the TDF ports is carried over to the LSF model. Ensuring coherence
between the locally defined time step of the LSF module and the propagated time
step is essential for accurate data exchange between these modules. Throughout
the simulation, the LSF equation system is numerically solved using suitable time
intervals.

x(t) z(t) = x(t) + Ky(0)

K
y(t)

Figure 2.4: Example of Linear Signal Flow module

2.2.4 Scheduler & Differential-Algebraic Equation (DAE)
solver

The SystemC language operates on an event-based architecture, employing a
centralized scheduler to govern process execution triggered by events, including
synchronizations, time notifications, or changes in signal values. The SystemC-AMS
simulation kernel enhances the standard SystemC kernel through the incorporation
of three supplementary components. Firstly, a TDF scheduler organizes TDF mod-
ules into clusters of interconnected units, constructing a static schedule for each
cluster based on factors such as time step, activation rate, and module dependencies.
Secondly, a linear Differential-Algebraic Equation (DAE) solver is harnessed for
managing ELN and LSF descriptions. It examines the instantiated primitives in
ELN and LSF to deduce the underlying equations, which are subsequently solved
to ascertain the system’s state at any given simulation time. This solver employs
lightweight numerical methods, such as backward Euler and trapezoidal techniques,

13

Background

in combination with optimization strategies like Lower-Upper (LU) decomposition
and Woodbury formulas. These techniques expedite matrix factorization, ensuring
a satisfactory level of accuracy while concurrently upholding robust simulation
performance. In the end, a synchronization layer utilizes the activation time step
of each module, primitive, and cluster to integrate the execution of SystemC-AMS
elements into the conventional SystemC simulation flow. Moreover, the synchro-
nization layer maintains the static schedule of a cluster comprising components
such as modules or primitives, which has been established by the TDF scheduler.
This schedule is retained in the form of a list of pointers pointing to the individual
components within the cluster (Figure 2.1).

2.3 RISC-V

RISC-V (pronounced "risk-five") was originally designed for education and research
of computer architecture, it is an instruction-set architecture (ISA) that avoids
excessive architectural specificity customized for a particular microarchitecture
style (such as microcoded, in-order, decoupled, or out-of-order) or implementation
technology (like full-custom, ASIC, FPGA). Instead, it enables efficient implemen-
tation on any of these platforms. RISC-V allows 32-bit, 64-bit and 128-bit address
space variants for applications, hardware implementations and operating system
kernels. Moreover it was developed to fully support highly-parallel multicore or
manycore implementations, including heterogeneous multiprocessors, also supports
optional variable-length instructions to expand available instruction encoding space
and support dense instruction encoding, in order to improve performance, static
code size, and energy efficiency.

The RISC-V ISA is deliberately defined to minimize its focus on implementation
details (while still providing commentary on decisions driven by implementation
considerations). It should be interpreted as the software-visible interface applicable
to a broad range of implementations, rather than a specific hardware design [8].

2.3.1 RISC-V Terminology

A RISC-V hardware platform may include multiple RISC-V-compatible processing
"cores" alongside other cores that are not compatible, fixed-function accelerators,
various physical memory structures, I/O devices, and an interconnect structure
for component communication. A core is defined as a component that features
an independent instruction fetch unit. A RISC-V-compatible core can potentially
support multiple RISC-V-compatible hardware threads, known as "harts", through
multi threading. A core might also incorporate specialized instruction-set exten-
sions or an additional coprocessor. The term "coprocessor' is used to describe
a unit attached to a core, primarily sequenced by a RISC-V instruction stream,

14

Background

but possessing its own architectural state, instruction-set extensions, and limited
autonomy in relation to the primary instruction stream. The term "accelerator”
refers to either a non-programmable fixed-function unit or a core capable of au-
tonomous operation, specialized for particular tasks. In RISC-V systems, it is
expected that many programmable accelerators will be RISC-V-based cores with
specialized instruction-set extensions and/or customized coprocessors. Notably, a
significant category of accelerators comprises /O accelerators, which handle 1/O
processing tasks separate from the primary application cores. The organization of
a RISC-V hardware platform at the system level can vary widely, ranging from a
single-core microcontroller to a cluster of many-core server nodes with thousands
of nodes. Even smaller systems-on-a-chip may adopt a hierarchical structure of
multicomputers and /or multiprocessors to simplify development or provide secure
isolation between subsystems.

2.3.2 RISC-V Software Execution

The execution behavior of a RISC-V program is contingent upon the specific
execution environment it operates within. An execution environment interface
(EEI) for RISC-V delineates several critical aspects: it establishes the program’s
initial state, specifies the number and types of harts (hardware threads) available
in the environment, including the privilege modes supported by these harts, defines
the accessibility and attributes of memory and 1/O regions, outlines the expected
behavior of all valid instructions executed on each hart, and dictates the handling
of any interrupts or exceptions that may occur during execution, including calls to
the environment itself.

Mlustrative examples of EEIs encompass the Linux application binary interface
(ABI) and the RISC-V supervisor binary interface (SBI). The implementation of
a RISC-V execution environment can take various forms, such as being purely
hardware-based, solely software-driven, or a combination of both hardware and
software components. For instance, to support functionality not inherently provided
by hardware, techniques like opcode traps and software emulation can be employed.
Examples of EEI [§]:

o bare-metal hardware platforms,where harts are directly instantiated as physical
processor threads, and instructions enjoy unrestricted access to the entire
physical address space. The hardware platform establishes the execution
environment right from the moment of power-on reset.

o RISC-V operating systems create numerous user-level execution environments
by allocating user-level harts across the accessible physical processor threads
and managing memory access through virtual memory mechanisms.

15

Background

o RISC-V emulators like Spike, QEMU, or rv8, emulate RISC-V harts on an
underlying x86 system. They offer the capability to furnish either a user-level
or a supervisor-level execution environment.

The execution environment has the duty of guaranteeing the continuous ad-
vancement of each of its harts. However, this responsibility is momentarily paused
for a specific hart when it engages in a mechanism explicitly designed to await an
event, like the "wait-for-interrupt" instruction.

During the execution every hart has single byte-addressable address space of
QXLENGTH hytes for all memory accesses. There are word defined as 32 bits (4
bytes), halfword of 16 bits (2 bytes), doubleword of 64 bits (8 bytes) and quadword
of 128 bits (16 bytes) and them are units used to manage memory space. The
memory address space is circular, that means the byte at address 2XFENGTH-1 jg
adjacent to the byte at address 0. The execution environment plays a central role
in configuring how hardware resources are allocated within the address space of a
hart. Within a hart’s address space, various address ranges can exhibit different
characteristics they might be unassigned, host primary memory, or host one or
more 1/O devices. It is important that, interactions with I/O devices through
read and write operations can yield observable consequences, whereas interactions
with main memory cannot. While it’s possible for the execution environment to
designate all elements within a hart’s address space as 1/O devices, it’s typically
expected that a portion of it will be explicitly designated as main memory.

In cases where a RISC-V platform features multiple harts, the address spaces
of any two harts can assume different configurations. They may either entirely
coincide, diverge completely, or take on a mixed form where some resources are
unique, and others are shared, potentially mapped into distinct address ranges.

2.3.3 Instruction set architecture (ISA)

The RISC-V ISA comprises a fundamental integer ISA, which is mandatory in every
implementation, along with potential extensions to enhance the base functionality.
These base integer ISA closely resembles those of the early RISC processors, albeit
without branch delay slots and with the inclusion of optional variable-length
instruction encodings. The base ISA is intentionally restricted to a minimal set
of instructions, strategically chosen to offer a practical foundation for compilers,
assemblers, linkers, and operating systems. This design creates a convenient ISA
framework and software toolchain "skeleton" that can be customized to construct
more specialized processor ISAs.

The RV32I is the base integer ISA for 32-bit systems, it has fixed-lenght 32-bit
instructions that are naturally aligned on 32-bit boundaries. Anyway, RISC-V
standard encoding scheme is designed to allow variable-length instructions, in
this case each instruction can be any number of 16-bit instruction "parcels" and

16

Background

parcels are naturally aligned on 16-bit boundaries. RV32I has also 32 "x", general
purpose registers each 32 bits wide. Register x0 contains all bits equal to 0 and
it is hardwired, registers from x1 to x31 hold values that some instructions can
interpret as a collection of boolean values, or as two’s complement signed /unsigned
binary integers. There is one additional unprivileged register: the program counter
(PC), it holds the current instruction’s address. Within the base RV32I, there
exist four primary instruction formats (R/I/S/U). All of them maintain a fixed
length of 32 bits and are required to be positioned on a four-byte boundary in
memory. An exception related to instruction address misalignment is triggered
when a branch or unconditional jump is taken, and the intended destination address
is not aligned to a four-byte boundary. This exception is associated with the branch
or jump instruction itself, not with the instruction at the target address. Notably,
no instruction-address-misaligned exception is raised when a conditional branch is
not taken [8].

31 25 24 20 19 15 14 12 11 76 0
| funct? | 2 | rs1 | funct3 | rd | opcode | R-type
| imm([11:0] | rs1 [funct3| rd | opcode |I-type
| imm[11:5] | 12 | rsl [funct3 | imm[4:0] [opcode | S-type
| imm[31:12] | rd | opcode | U-type

Figure 2.5: RV32I Instruction format [8]

Below, there is a quick explanation of the instruction format:

o« R-Type: Instructions that are used for operations involving two registers.
These instructions typically perform operations like addition, subtraction,
logical operations, and comparisons.

o I-Type: These are used for operations that involve an immediate value (an
immediate operand) and a register. These instructions can include operations
like immediate value loads, immediate value arithmetic, and immediate value
logical operations.

o S-Type: S-type instructions are used for store operations, where data from
a register is stored into memory. These instructions encode the destination
address in an immediate value.

o U-Type: The last type are used for operations that require a wide immediate
value. These instructions include operations like adding an immediate value
to a register or setting a register to an immediate value.

17

Background

2.4 PULP & GvSoC

PULP (Parallel Ultra-Low-Power) is an open-source multi-core computing platform
resulting from a collaborative effort between ETH Zurich and the University of
Bologna. This partnership, initiated in 2013, led to the development of the PULP
architecture. The primary objective of the PULP architecture is to cater to IoT end-
node applications that require versatile data stream processing from various sensors.
These sensors may include accelerometers, low-resolution cameras, microphone
arrays, and vital signs monitors. PULP features an advanced microcontroller
architecture that enhances its capabilities in several aspects. These enhancements
encompass autonomous 1/O handling, advanced data preprocessing, support for
external interrupts, and the inclusion of a tightly-coupled cluster of processors.
This cluster enables the offloading of compute-intensive kernels from the main
processor, representing a significant advancement in terms of completeness and
complexity.
The PULP architecture [9] is composed of:

Either the RISCY core or the Zero-RISCY one as main core (Both based on
RISC-V).

Autonomous Input/Output subsystem (uUDMA).

Memory subsystem.

Support for Hardware Processing Engines.

Simple Interrupt controller.

And many more components.

RISCY is a single-issue, in-order core with 4 pipeline stages, exhibiting an
IPC (Instructions Per Cycle) close to 1. It offers full support for the base integer
instruction set (RV32I), including compressed instructions (RV32C) and the mul-
tiplication instruction set extension (RV32M). Additionally, it can be configured
to include the single-precision floating-point instruction set extension (RV32F).
This core incorporates numerous ISA extensions, encompassing hardware loops,
post-incrementing load and store instructions, bit-manipulation operations, MAC
(Multiply-Accumulate) operations, support for fixed-point operations, packed-SIMD
(Single Instruction, Multiple Data) instructions, and the dot product. Its design is
meticulously tailored to enhance energy efficiency, making it particularly well-suited
for ultra-low-power signal processing applications.

18

Background

wdata o)
addr o

rdata i

Y
/\

[RISC-V core

7

nnectl

I$WJ

EX
\WB

[TCDM - Log. Interco

< Debug Unit |
R e A

lDebug Interface][

Figure 2.6: RISCY core overview [10]

Zero-RISCY is a single-issue, in-order core characterized by a well defined 2-stage
pipeline. It boasts complete compatibility with the base integer instruction set
(RV32I) and the inclusion of compressed instructions (RV32C). Flexibility is a
hallmark, as it can be tailored to include the multiplication instruction set extension
(RV32M) and the reduced number of registers extension (RV32E). This core has
been meticulously crafted to meet the demanding requirements of ultra-low-power
and ultra-low-area applications.

J

(H branch_decision wdata_o
zero-riscy core Tl : oo

rdata_i

Y

Data Mem

Instruction Mem

branch_target

<C Debug Unit || le_I TOP CSR ro—
— L opB
& A A

LA

|Debug Interface][

Figure 2.7: Zero-RISCY core overview [10]

2.4.1 PULPissimo

PULPissimo is a 32 bit RI5CY single-core System-on-a-Chip equipped with all
main components: ROM, RAM, cache, timer, ABP bus, GPIO, 12C, SPI, UART,
AXT and DMA. PULPissimo is the upgrade of the first version PULPino system,
respect to its predecessor it can be extended to support the multi-core cluster of
PULP project. It uses a a more complex management memory subsystem, an

19

Background

I/O subsystem that is autonoumous thanks to the uDMA, moreover it has new
peripherals (i.e. camera interface) and a new SDK.

PULPissimo provides the flexibility to configure its core architecture during
the design phase, offering a choice between RISC-V or zero-riscy cores. Peripheral
devices are seamlessly connected to the uDMA (Microcontroller Direct Memory
Access), ensuring efficient data transfer to the memory subsystem. The SoC
(System on a Chip) also grants access to both JTAG for debugging and the AXI
plug for potential extensions such as a multi-core cluster or an accelerator. [10]

Bank §| Bank Bank § Bank Bank §j Bank

Tightly Coupled Data Memory Interconnect
b
s
% RISCY
m Event Unit
[cPI

APB | Peripheral Interconnect

Clock / Reset
Generator Unit

Figure 2.8: PULPissimo overview [10]

2.4.2 GAP9

GAP9 represents the latest offering from Greenwaves Technology [11], distinguished
by its adept amalgamation of digital signal processing and cutting-edge neural net-
work algorithms, seamlessly delivered with an unwavering commitment to ultra-low
energy consumption and latency. Functionally, GAP9 introduces a comprehensive
suite of advanced features, notably harnessing neural networks for audio processing.
Furthermore, its versatility extends to encompass multi-sensor analysis, rendering
it an ideal choice for battery-powered smart systems. The processor’s foundational
architecture is rooted in the RISC-V Instruction Set Architecture, with all ten cores
tailored to this framework and augmented with bespoke instructions seamlessly

20

Background

integrated into the GAP toolchain. This configuration empowers the compute
cluster with the flexibility to execute a wide spectrum of tasks, spanning from
neural network processing to digital signal processing, all while maintaining an
exceptional standard of energy efficiency. GAP9’s hierarchical, demand-driven
architecture stands as an exemplar of adaptability and innovation, ideally poised
to shape the trajectory of battery-powered smart sensors. In its capacity as a
development platform, it serves as a potent catalyst, streamlining the development
process and furnishing a robust foundation for the conception and realization of
pioneering solutions within the continually evolving landscape of intelligent devices.

2.4.3 GvSoC

For this thesis,GvSoC has been selected as a high-level simulator. GvSoC is the
official simulator available at the GvSoC Official Website, allowing programmers
to test GAP applications without the necessity of having the physical chip. It is
based on the PULP platform, specifically simulating the environment of GAP9.
GvSoC is functionally equivalent to the real chip, which means that compiled code
runs in the same way on both the chip and in the simulator. GvSoC ensures timing
models that accurately report performance within an error rate of less than 20%.
It can simulate up to 20 million instructions per second, which is approximately 10
times less than the actual chip’s performance. The simulator is strongly based on
C/C++, and the official GitHub repository is available at GvSoC Repository. It is
also possible to simulate common devices that can be connected to the real board,
such as cameras, microphones, and flash memory. This capability allows for the
simulation of a full application rather than just basic code. To use GvSoC with
the GAP SDK|, it is essential to build the SDK, configure the board (in this case,
'"GAP9_EVK_AUDIO"), compile the application’s code, and run it through the
simulator.

File Edit View Search Terminal Help
< dk$ source configs/gapuino.sh
/ dk$ cd examples/pmsis/test_features/cluster_fork/
~[s dk/examples/pmsis/test_features/cluster_fork$ make all run platform=gvsoc
mkdir -p /home/haugoug/src/gap_sdk/examples/pmsis/test_features/cluster_fork/BUILD/GAP8/GCC_RISCV
gvsoc --config=gapuino --dir=/home/haugoug/src/gap_sdk/examples/pmsis/test_features/cluster_fork/BUILD/GAP8/GC
C_RISCV --binary /home/haugoug/src/gap_sdk/examples/pmsis/test_features/cluster_fork/BUILD/GAP8/GCC_RISCV/test
prepare run
(32, 0) Entering main controller
) Entering cluster controller
Entering processing element
Entering processing element
Entering processing element
Entering processing element
Entering processing element
Entering processing element
Entering processing element
Entering processing element

Figure 2.9: Example of GvSoC simulation [12]

21

https://greenwaves-technologies.com/gvsoc-the-full-system-simulator-for-profiling-gap-applications/
https://github.com/pulp-platform/gvsoc

Background

For the simulations, GvSoC also implements an automatic value change dump
(VCD) trace creator, enabling a highly precise visualization of the board’s behavior
throughout the entire simulation.

File Edit Search Time Markers View Help 7
o ui-“\ -I} ,~ Kl €) Fromlosec To:| 2691650379 = Marker: - | Cursor: 0sec
V SST m Signals Waves

}.fasys Time

fc
udma
period

Dir Type Signals pe
pe
pe
pe
pe
pe
pe
pe 7
dma

period

oOwv A WwWN MO

Filter:

Append | | Insert | | Replace

Figure 2.10: Example of GvSoC VCD traces [12]

22

Chapter 3

Related Works

In this chapter, the current state-of-the-art in hardware simulation is explored. The
chapter is organized into multiple sections: first, methods and design approaches
for modeling and representing Cyber-Physical Electrical Energy systems (CPEES)
in SystemC-AMS are analyzed. Second, a benchmarking comparison between
Simulink and SystemC-AMS is presented, highlighting the advantages of the latter.
Finally, is presented a paper that describes how to model extra-functional properties
in hardware simulation.

These sections provide insights into the importance of having a single program
that offers high-level simulations combined with extra-functional simulations. More-
over, they elucidate the real advantages of the SystemC frameworks compared to
existing solutions, providing a solid rationale for their choice in this thesis.

Briefly, the studies by [13], [7], and [14] from Politecnico of Torino are examined,
all of which focus on the simulation of an electrical energy system (EES). The
simulation time of the SystemC simulator is compared to Simulink, with an
emphasis on the speedup achieved by the former and the average error between
the two simulations. Additionally, the advantages of having a unified simulation
environment that enhances model accuracy are discussed.

All of these works aim to address the same issue, which is to propose a new
methodology and approach for integrating various domains. The objective is
to attain accuracy, flexibility, modularity, and simulation speed within a single
application.

The final section delves into [15], elucidating its approach to extra-functional
properties. This provides insight into contemporary methodologies, with a particular
emphasis on the layered approach for property modeling.

23

Related Works

3.1 Modeling Cyber-Physical Electrical Energy
Systems

One of the main contributions of the aforementioned works is their modeling
processes, which involve transforming real systems into simpler module compliant
with SystemC and SystemC-AMS syntax. Each work handles a different system,
differentiating one solution from the others. However, every solution faithfully
adheres to the general model-based paradigm, utilizing the built-in models provided.
Thanks to the high flexibility of SystemC, the representation models are close
enough to allow for a very low approximation error. A representative example of
SystemC modeling is present in [13]. Starting from a CPEES composed by: a wind
turbine, a photovoltaic array, a battery pack, a grid-interface, a DC bus and various
AC loads. The paper presents a versatile CPPES design approach, where SystemC
is mixed with is framework SystemC-AMS, avoiding the integration of external
tools and allowing the application of the same methodology to a huge range of
components. Still in [13] the possibility of simulate heterogeneous environment
in the same program, is concretized in the simulation of AC element and DC
element, moreover them are also capable of communicating each other with a
special component called "bridge" that manages both AC and DC measurements.
Each component is modelled with the appropriate AMS class, taking in example
the battery and the wind turbine, the first one is modeled with an ELN module
allowing to simulate very well the electrical circuit behind the battery chosen,
instead to reproduce the behavior of the turbine, including the gear box and the
generator, is used an LSF module with purpose of compute the algebraic formula
used for the wind conversion.

Other approaches mentioned are: Hardware-in-the-loop that mix real devices
with simulated models through integration of power devices like inverters, with the
purpose of test the technology inside a controlled environment. Respect to SystemC
these approaches reach an higher accuracy, but their application are restricted
to small scale CPEES due to the involving of real hardware. Equation-based
approaches, are based on decomposition, briefly, them model all components inside
a system into elementary models that integrate basic physics equations. This kind
of approaches are limiting an effective high-accuracy modeling and the resulting
fidelity to the real CPEES.

In the end [7] and [14] the target is almost the same of above exception for the
CPEES under study, also in that works is possible to see the attention put in the
design phase, meticulously choosing the right AMS model to better represent the
components. In [14] the emphasis is more on the comparison respect to Simulink
with the same CPEES. In [7], instead, are better show some issues and limitations
about the internal scheduler of SystemC-AMS framework.

24

Related Works

3.2 SystemC and Simulink Comparisons

Cutting-edge programs offer an innovative approach to realize and simulate a
Cyber-Physical Energy-Efficient System (CPEES). This approach involves dividing
the simulation into multiple layers, each dedicated to a specific property of the
system. This innovative technique is referred to as the Co-simulation approach.
With this approach, each heterogeneous aspect of the system is assigned to a specific
program. For instance, in the work cited in [15], specifically in section VII where
the results are validated, recreating a similar simulation to that achieved with
SystemC required the use of three distinct tools, including Simulink and HotSpot.
This highlights the need to reconsider traditional approaches, as they often demand
a significantly larger amount of effort to achieve comparable results.

Returning to the Co-simulation approach, it’s crucial to consider the challenges
posed by employing multiple tools. The design of the system can become more
complex, leading to a substantial overhead in managing multiple simulators. One
significant issue involves the synchronization of multiple timestamps, with each
tool having its own timestamp and event queue. This complexity is addressed
by SystemC, which aims to simplify the process through a unified application
programming language and unified libraries.

Furthermore, using multiple tools requires in-depth knowledge of each of them,
as well as the frameworks that facilitate communication among them. This increases
the workload for designers. However, there are alternative solutions within the
environment. One notable example is Modelica, with its equation-based approaches,
which are well-suited for modeling the physical aspects of the system but may face
limitations when modeling the "cyber"' components. SystemC remains the preferred
choice for this type of modeling due to its C-like nature, making it more accessible to
programmers. Additionally, SystemC’s AMS (Analog and Mixed-Signal) framework
contains essential classes that support the modeling of the most critical system
components.

As demonstrated in [15], [13], and [14], there are tables that illustrate the
substantial advantages of this approach in terms of time efficiency compared to
Simulink. These advantages are underscored by the remarkably low average error,
often orders of magnitude lower than a percentage unit, making it a highly promising
avenue for simulation and modeling in the field of Cyber-Physical Energy-Efficient
Systems.

3.2.1 SystemC Cons

After mentioning the advantages of SystemC is important to understand also the
issues which it is affected. Main issues come from modeling non-standard systems,
according with [7], that proposes a detailed exposition of every issue, them can be

25

Related Works

collected in five classes:

o Issues related to the scheduler, in particular they rise when tight constraints
are applied to the schedulability of system.

o Issues related to the linear DAE solver, its light-weighted nature determines a
compromise between accuracy and simulation speed, resulting in certain cases
not enough.

o MoC-related issues, tightly connected to every model present in SystemC-AMS
and specific for every use case. (Degree of approximation between the real
component and the one simulated)

o Kernel issues, this kind of issues are present because of the inefficient memory
usage of SystemC-AMS.

o Issues of extensions, them are the minor ones and are related to some features
would ease the work of the designer.

As an illustration, is taken from [7] a kernel issue example. In this scenario
multiple modules run at different time scales, i.e. from 100ns to 1s, the activation
list of the scheduler can be very long because of the multiple scheduling of the
smallest time scale. Taking three different modules with: 1s, 1ms and 100ns the
last one will be scheduled ten thousand times and the second one will be scheduled
one thousand times. This can leads to a crash of the synchronization layer causing
a crash in the whole simulation.

3.3 Methodologies for Extra-Functional Proper-
ties

This last section is dedicated to [15] that is a work which this thesis strongly
depends. In the article are described the main issues this thesis try to cover,
starting from the implementation of extra-functional properties in a simulator
through the division in layers of sensor’s characteristics. For the purpose of the
thesis is taken the idea of this paper and following is extended with the interaction
with a complete high-level simulator.

In [15] two features are important to distinguish the proposed methodology.
First, the methodology adopts a layered approach, where the simulated system
is structured into different views or layers, each dedicated to a specific property.
This stratified design permits the independent handling of information related to
each property, while also enabling the simultaneous simulation of multiple layers
within a single simulator instance, thereby capturing the interplay among these

26

Related Works

layers efficiently. This layered paradigm is further complemented by the use of a
unified functional language across all layers, simplifying its adoption by functional
designers who are already familiar with the language and alleviating the need for
in-depth knowledge of the underlying physics or property-specific tools.

Second, the methodology employs a bus-centric modular architecture for each
layer, wherein each layer operates on its dedicated bus structure. This architectural
choice aligns with the legacy of the functional simulation layer, where buses mimic
the logical organization of blocks and facilitate the exchange of information between
components within a layer. Importantly, this architecture remains highly scalable,
accommodating the addition of components at any layer without necessitating
complex interface adjustments.

Each layer is characterized by four key attributes, including layer-specific signals,
inter-layer signals, the role of the bus and layer-specific data or information. Signals
are central to understanding property behavior, while inter-layer signals enable
real-time interaction between properties. The role of the bus defines the simulation
semantics of each layer, and layer-specific data complements the simulation process
with essential information not directly related to semantics. By integrating these
characteristics, the methodology offers a comprehensive analysis of electronic
systems, encompassing power, temperature, reliability, and the potential inclusion
of other essential attributes.

27

Related Works

Reliability
i layer

Temperature
: layer

Temperature BUS

+ Manager
et T !
c1 c .. Cn !
j—‘ | | | | Power
Power BUS + *___‘@i |ayer
Manager i

1
[
5] E
T 1 | i Functional
: i
!'| Functional BUS + < @E : layer
i —F 1H
E- Manager & Layer-

1 1 specific

pi=Esissamniaiatas data

= Layer-specific signals ----» Layer-specific data flow
|:> Inter-layer signals E Inter-layer time converters

Figure 3.1: Example of Layered structure for extra-functional property [15]

28

Chapter 4

Methods

This chapter provides a detailed description of the work undertaken in this thesis,
with a particular focus on the actual implementation of the simulator. It begins in
Section 4.1 by introducing the core concept, explaining the underlying idea and
how it is constructed. Subsequently, the chapter delves into the realization of the
core structures, placing emphasis on two critical aspects: the internal structure of
each component and the synchronization between components of different types.
Once the standalone system is developed, the attention shifts from the simulator’s
internal workings to its scalability. In the section, 4.2, the chapter explains how
two simulators communicate. In this case, the SystemC simulator manages all the
physical aspects of the system under test, from the sensor to bus communication
and through to the core. Conversely, GvSoC is responsible for controlling the entire
program flow written in the system’s RAM, including peripheral activations and
memory access. SystemC represents the extra-functional simulator in parallel with
GvSoC, which represents the functional simulator. Section 4.3 presents the entire
process behind the automation of the simulator, ensuring the flexibility to modify
the system’s configuration on-the-fly. Specifically, it allows for the modification
of the type and quantity of specific components like batteries, harvesters, sensors
and actuators. This adaptability is facilitated through a set of scripts created
using the powerful Python programming language, particularly leveraging the Jinja
framework [16], and a JSON configuration file that can be adjusted as needed.
Throughout the chapter, code examples, design models, and program screenshots
are provided to enhance understanding and clarity of the entire project.

4.1 Extra-Functional Simulator

First, the simulator is constructed following a scheme adaptable to all extra-
functional properties. The key aspect is to represent a property, define its purpose

29

Methods

inside the system, and determine how it influences the simulation and propagates
through the components. The approach followed is similar to the one presented
in Section 3.3. The following sections can serve as general guidelines for any kind
of extra property. For the goal of this thesis, power consumption is chosen as the
property to be represented. Starting with a board equipped with at least a power
source, power storage, and some sensors, all of these components are connected to
the GAP9 processor through memory addresses accessible by the core, enabling
simple read and write C-like operations. The board’s purpose is to collect data
from these sensors within a defined timeframe and periodically transmit this data
over the network using the transmitter. The simulation must accurately track
all information sent and compute the maximum system lifetime, accounting for
different battery representation models and a solar panel that receives irradiance
traces. These operations are intercepted by SystemC, which has instances of these
sensors, simulates their behavior to obtain meaningful data, and computes power
consumption.

The information exchanged between every component can be heterogeneous and
can represent various kinds of data. As mentioned earlier, power is selected as
the property to represent in this case, with quantities such as voltage and current
being relevant. Thus, the developed simulator is designed as a power simulator.
The power simulator is designed with two buses: one for functional communication
functional bus and one for managing power-related aspects power_bus. There
is a SystemC core unit that acts as the master of the simulation and serves as the
bridge between SystemC and GvSoC. Additionally, there are peripheral components
such as the battery, harvester, and sensors, all equipped with appropriate converters
and correctly connected to their respective buses. Figure 4.1 provides a conceptual
design of the simulator.

GvSoC CORE Eunctional Sensor#1 Power Eattery
Bus Sensor Data us
= - T =) Current :
frame 4— functional frame / —® functional frame
/ [t e
4 fame | | . - 2| sensor_functional.cpp i frame Battery.cop
Datz T — Voltage
Program.c power frame / ¢
SENS0r_pPOoWer.cpp tage
T -
A RtI:—qJes'. AX]| Responze sYs_ - SYs_
' functional.cpp power.cpp
\A.,. L]
A—— A
SystemC CORE P Sensor #N Harvester
Senser Data : T :
frame J l\¢———{ functional frame / «——— functional frame /
------- sensor_funciional.cpp f— [— Harvestercop
- T ANIET Viohage
Core.cpp | Data from Core Hid power frame / —IZ: "
SEnsor_power.cpp Veltage

Figure 4.1: Power simulator conceptual

In the following sections, each component related to the power simulator will be

30

Methods

analyzed in detail. These components serve as abstract representations of real-world
components. However, it is also possible to define custom components with their
own specific behaviors.

4.1.1 Sensors

The first component modeled is the sensor, which is developed with two separate
instances. The first one is the functional instance, responsible for managing requests
coming from the core through the functional bus. It also defines all the parameters
of the sensor, such as the dimensions of the sensor’s internal registers. On the other
hand, the power instance controls the state of the sensor and exposes its current
and voltage to the power bus through a shared signal between the two instances.

Functional Instance E Power Instance {l
Enable
Input/Output Input/Output
Address +sc_core::sc_in data_in Functional + sca_tdfiisc_in func_signal
Flag W/R + sc_core::sc_in address to . + sca_tdf::sca_out voltage_state
+ sc_core::sc_in flag_wr Power signal + sca_tdf:sca_out current_state Voltage
Data IN +sc_core:sc_out data_out E— _—>
+ sc_core::sc_out power_signal Function Current
Ready + void set_attributes()
—— > | Variable + void initialize() —_—>
Go + int Register[reg_dimension] + void processing()
Data OUT Function
+ void sensor_logic()

Figure 4.2: Sensor structure

The functional part retrieves details of the request, such as the address, read-
/write flag, and data from the core. Its logic consists of a structure of if statements
where it queries an array of elements (simulated internal registers of the sensor), sets
the correct power state, and waits. After this step, the power instance is activated,
which updates the power information for a certain amount of time defined by the
sensor’s configuration. This is done to simulate the computational time that the
sensor takes in real life to analyze the data and update the corresponding register.
After that, the power instance sets an IDLE state and gives control back to the
functional instance, which can then prepare Data OUT and GO signals to reply to
the core. The functional part uses a standard SystemC class, SC_ MODULE, which
is well-suited for all kinds of management operations. The power part is embedded
in an SCA_TDF MODULE, which belongs to the SystemC-AMS environment.
The choice of a TDF module is important because one goal of the simulator is to
keep track of power over time, and the TDF structure is perfect for this kind of
operation.

31

19

Methods

Functional Instance

In detail, the functional part consists of two files: .h and .cpp. The .h file encom-
passes all the interfaces employed by the sensor for communication. Additionally,
this file contains declarations for the sensitivity list and the internal register vector,
essential components that facilitate the sensor’s operation and interaction within
the system.

/* Sensor_Functional.h file=x/
//Input Port

sc_core::sc_in <bool> enable;
sc_core::sc_in <int> address;
sc_core::sc_in <int> data_in;
sc_core::sc_in <bool> flag_wr;
sc_core::sc_in <bool> ready;
//Output Port

sc_core::sc_out <int> data_out;
sc_core::sc_out <bool> go;
//Power Port

sc_core::sc_out <int> power_signal;

//Declaration of function and its sensitivity list
SC_THREAD (sensor_logic);
sensitive << ready;

//Register Map
private:
int Register [AIR_REG_DIMENSION];

All the signals are utilized by the .cpp file to execute the correct procedures.
Two special signals are introduced here: the first one is the power _signal, which is
responsible for enabling communication between the power and functional compo-
nents to ensure coherence between actions performed and their power consumption.
Thanks to this signal, it is possible to observe, in the reports, the correspondence
between functional and power statuses at a given time. For example, if the sensor
is reading in the functional report, the functional read will be reported, and in the
power report, the power status of the read will be indicated. The second signal
is ready, which is used to coordinate requests. Without this signal, when the
functional bus sets the address, data, and flag, the sensor can be activated at any
moment. However, with the ready signal, the bus can wake up the sensor only when
it has finished preparing the request, ensuring data coherence and coordination.

32

Methods

/* Sensor_ Functional.cpp filex/
while (true) {

if (enable.read() = true){
if (ready.read() = true){
if(flag_wr.read() = true){

data_out.write(Register [address.read()]);
power_signal.write(1l);

wait (AIR_QUALITY_SENSOR_T_ON,SIM_RESOLUTION);
power_signal.write(3);

go.write(true);

1 else {
//Write Operations
Register[address.read ()] = data_in.read();

data_out.write(data_in.read());
power_signal.write(2);

wait (AIR_QUALITY_SENSOR_T_ON,SIM_RESOLUTION);
power_signal .write(3);

go.write(true);

wait () ;

}

The .cpp file houses the core functionality of the sensor, it is only shown the
main while cycle that illustrates the sequence of actions undertaken each time a
request is directed towards the sensor.

First and foremost, a series of sequential checks is initiated: the enable signal
must be active, and the ready signal from the functional bus must be asserted.
Subsequently, the type of operation being requested is determined. In the case of a
Read operation, the sensor retrieves the value stored at the designated address, sets
the power_signal to the corresponding power status, and introduces a simulated
computation delay using the wait() instruction. Following this, the power_signal is
reverted to the idle state, and ultimately, the response is transmitted back to the
functional bus. Conversely, for Write operations, the process is analogous, except
that data is written to the specified address instead of being read.

Power Instance

The power part is, also, represented by a .h and a .cpp file. This component is
notably less complex compared to its functional counterpart, primarily because
a significant portion of the management is handled by the SystemC-AMS kernel.
For the purpose of this project, the power instance is modeled as a power state
machine, which switches its status every time an operation is performed. There
are as many statuses as functional operations.

33

Methods

Furthermore, SystemC allows for more complex models, granting designers a
higher degree of freedom in representing power, for example. To delve into the
specifics, this segment focuses on configuring the voltage and current parameters
for the sensor, corresponding to various operational states. Once these parameters
are established, they are subsequently directed towards the load converter and,
ultimately, transmitted to the power bus. This streamlined process ensures that
the power requirements of the sensor align with its designated state of operation.

/* Sensor__Power.h filex/

//Data from Functional Instance

sca_tdf ::sc_in <int> func_signal;
//Data to Power Bus

sca_tdf ::sca_out <double> voltage_state;
sca_tdf :: sca_out <double> current_state;

In this case, the interfaces are restricted to a single input port and two output
ports. Once more, the func_signal plays a pivotal role, determining the power
state to be represented. The two output ports are responsible for transmitting the
corresponding values associated with that state.

/* Sensor_ Power.cpp filex/

void air_quality_sensor_power ::processing ()
{
if (func_signal.read() = 1){
//std ::cout << "Air quality in ON state READ MODE' << std::<>
endl ;
voltage_state.write(AiR_QUALITY_SENSOR_V_ON_READ);
current_state.write(AIR_QUALITY_SENSOR_I_ON_READ);
return ;
¥
}

The .cpp file comprises a series of conditional if statements, each of which
corresponds to a potential power state. In the power section, it continuously
examines the 'func_signal” until it discovers a matching condition. Once a match is
found, it proceeds to configure both the voltage and current parameters, effectively
completing the power management for that specific state.

Additionally, a comment line has been included within each if branch to serve
two functions. First, it provides clarity regarding the represented power state within
a particular branch, aiding in code comprehension. Second, it serves as a helpful

34

Methods

reference in case there’s a need to print messages during the simulation whenever a
power state transition occurs. In the event that the func_signal’ fails to match
any of the if conditions, an error is raised to signify an unexpected condition.

4.1.2 Functional Bus

The functional bus is the component that forwards the requests coming from the
core to the right sensor. In fact, the core sends all the requests through only one
channel connected to the functional bus, which forwards the request to the correct
sensor. The functional bus exposes a vector of channels where every sensor can get
connected. Each channel is composed of the following elements:

o address_out_S: Address that is forwarded to a specific sensor.
e data_out_S: Data forwarded to a specific sensor.

« flag out_S: Flag that indicates if the request is a Read/Write for a certain
Sensor.

e Ready_S: Signal used to communicate that the other parameters are correctly
configured.

e data_in_S: This signal contains the information coming from the sensor after
its computation.

e Go_S: The sensor raises this signal when it has completed all its internal
procedures and replied correctly.

This channel structure is designed to facilitate the exchange of information in
a clear manner, ensuring code readability during the analysis of the simulation
flow. Moreover, the Ready and Go signals are introduced to enhance reliability
among requests, preventing the failure of the grant/reply mechanism on both the
sensor-to-bus and bus-to-master sides. There is no standard for the bus request,
which means that channels can be easily modified to adopt any kind of standards
such as 12C or CAN.

With reference to Figure 4.3, each pair of arrows represents a mentioned channel.
The bus reads the incoming request, particularly the address, which is compared
with all the addresses available in memory space using a C language if-statement
that utilizes information contained in the global parameters file. When the address
corresponds to a certain memory space, the functional bus extracts the sub-address,
removing the sensor’s base address, which is a specific register address of the
selected sensor. At this point, the bus prepares all the fields of the request by
reading the flag_in M and data_in_M. These signals specify the nature of the

35

Methods

Functional Sensor #1
Bus Senzor Data
I n T
4+— functional frame /
flame | | — £ sensor_functional .cpp
Bus Data T
power frame v
SystemC CORE Diats to Cors SEN500_DoWer.cpp
[.
frame J 5YS_ .
functional.cpp %
Core.cpp Data frem Core
Sensor #M
Senszor Data

lg—— Tunctional frame_.-"

P = sensor_functional.cpp

= - 0 T
Bus Data power frame

Sensor_power.cpp

Figure 4.3: Functional diagram

request and its data, if any. The bus forwards the request and raises a READY
signal for the sensor, ensuring that all other signals are correctly set. After that,
the bus enters in a waiting state until the sensor completes its internal procedures.
When the sensor raises its GO signal, the functional bus wakes up and prepares
the answer for the core, sending commands to the slave to return to the IDLE
state, and waits for another signal from the sensor. In the end, when everything is
done, the bus forwards the data to the core and raises a GO signal. Section 4.1.6
provides a detailed explanation of this flow.

In SystemC, the bus is modeled with an SC__MODULE because its purpose is
only to manage data without the necessity of operating in the time domain. It is
composed of different functions, each with a part of the above procedures:

 processing__data(): This function opens the request, reads it, and forwards
it to the sensor.

« response(): The response is the first function called when the sensor raises
the GO signal and is responsible for preparing the data for the core.

« set__ GO(): This is the last function called, which sets the GO signal for the
core, indicating that all operations have been executed correctly.

 set__slave(): It prepares the channel of the sensor with the correct values.

36

Methods

4.1.3 Power Bus

In the same way of functional bus, there is the power bus. However its function
is completely different from the previous one, in fact, it manages all the aspects
concerned power management neglecting all the data behind every request. Power
bus exposes like functional an array of channels where, this time, sensor’s power
instances can connect themselves. In this case, the information shared are the
voltage state and the current state. Since the simulator supports battery and
harvester, the bus also takes and gets information from those components. In the
figure 4.4 an overview of connections is provided.

Requested Current

Sensor #1 Power i Battery
. Bus Current : T
functional frame/ —» functional frame
sensor_functional.cpp ¢ Battery.cpp
__ Current frame Voltage
power frame / » :
SEeNsor_power.cpp ™ Voltage
@
[] Sys_ Current Scavenged
power.cpp
]
Sensor #N l Harvester
: Current :
functional frame/ functional frame/
sensor_functional.cpp s] Harvester.cpp
I Voltage
power frame /
SENsor_power.cpp " Voltage

Figure 4.4: Power diagram

As it is possible to see in the figure 4.4 the bus gets from all component, except
for the battery, current information. Since the are converters in between every
component and the bus, all the currents must be at the same voltage, so the bus is
in charge to sum all currents coming from sensors and subtract, eventually, the
current scavenged by the solar panel. In the end the result is the current demanded

37

Methods

to the battery in a certain time step, the formula for the requested current is:

N

Current,equest = Z Currentsensor—i — Currentscavenged
i=1

Current,equest > 0 Discharging
Current,equest <0 Charging

The power bus is represented in the model as an SCA_TDF_ MODULE, which
is consistent with the modeling approach used for the power components of sensors.
Since the power bus deals with dynamic measures that change over time, it is
essential to define its behavior within the time environment. One notable feature
of the power bus is its capability to measure the current demanded by the battery
in a step-by-step manner, allowing for precise monitoring. Additionally, it can
separately track the current requested by individual sensors, ensuring accuracy
down to the level of each sensor’s requirements. Furthermore, the power bus can
also monitor and track the current produced by the solar panel as part of its
functionality.

4.1.4 Battery, harvester and converters

In this section there are the general descriptions of all the side components, because
of the possibility of customization certain components can be different from one
configuration to another. A good example is the battery that can have circuit
model or more high-level ones such as Peukert representation. What is important
in this case are the interfaces exposed, ensuring, a general compatibility with other
components. Battery must have:

» Voltage OUT port Used to keep track of the voltage state.
e Current IN port Used by the power bus to request the current.

» State of Charge (SOC) OUT port Used to keep track of the SOC of the
battery.

About what concerns the harvesters the reasoning is the same of the battery, no
matter what is the physical phenomena used to scavenge the energy or the internal
process used, what is important for the simulator is the presence of the following
interfaces:

« Voltage OUT port Used to keep track of the voltage state and make
conversions where it is needed.

38

Methods

e Current OUT port Used by the power bus to compute the requested current.

The last component is the converter, it manages incoming voltage and current
and make them compliant with the power bus. This kind of component can easily
splitted in multiple sub categories. In the power simulator are present three different
type of converters, starting from the simplest one, the load converter is a converter
placed in between sensors and bus, specifically between each power instance of
every sensor and the power bus. It is designed with a static behavior and scales the
power of sensor by a constant value that can be set at start of the simulation. the
result is the current sent to the power bus adjusted by a efficiency factor K < 1:

K * (Currentsensor * VOltagesenSOT)

Currentgys = (4.1)

Voltagep,s
However, it is possible to define more complex converters. In the simulator the
harvester used is a solar panel, for example. This just one of the possible harvesters
that can be modeled with SystemC. It has a converter where the efficiency strongly
depends on the voltage of the panel. In particular the converter aims to scavenge
the current near to the maximum power point, ensuring the best efficiency every
time. Therefore, the formula is much more complex compared to the previous one.
In the end, what is important from the simulator’s point of view is the forwarding
of data without manipulation of data types.

Before converter After converter
SC IN <double> | SC IN <double> Ok!
SC IN <double> | SC OUT <int> | Not Ok!

Table 4.1: Examples of converter, the data integrity must be ensured

4.1.5 Core

The SystemC core is the entity that interacts with the functional simulator, here in
after GvSoC, enabling the forwarding of AXI requests from one simulator to another.
This module is unique in that it inherits from two different classes: the standard
SC_MODULE and gv::Io_user. The former is mandatory for coordinating all the
components within the SystemC simulator, ensuring the correct request is sent to
the functional bus and retrieving the correct responses. The latter is necessary for
intercepting requests coming from the GvSoC simulation. Additionally, the core is
responsible for controlling both simulators, ensuring temporal alignment between
the counters.

Regarding GvSoC management, the core is equipped with three methods: ac-
cess(), grant(), and reply(). The most crucial of these is access(), as it is invoked

39

Methods

when a GvSoC'’s side access attempt aims to reach an external service, in this
case, SystemC. The other two methods, instead, are used when an external service
attempts to query the GvSoC.

In terms of query management, the core utilizes four types of information to
categorize the requests:

« Type (Read/Write)
o Address

« Size

e Data

Each time it’s necessary to send a request, GvSoC creates a pointer to a custom
C struct of type gv::Io_request, and this pointer contains the aforementioned data.

The coordination between SystemC and GvSoC is accomplished with a while-
statement. First, the next event in GvSoC is detected, and after its execution,
the SystemC timestamp is updated accordingly. A more detailed view of GvSoC
integration is provided in 4.2.

4.1.6 Acknowledgement protocol

This subsection has been added to clarify the flow of a request within the SystemC
simulator, ensuring coherence and data updating. To begin, the core is triggered
by its access() method. Inside this method, the necessary signals for the functional
bus: Type, Address, and Data are set up. Additionally, a signal named 'Ready’ is
established, which the functional bus uses to verify the availability and correctness
of the other fields. When the ready signal is set to "True,” the functional bus is
invoked. It reads the address and compares it with all the known sensors. If there
is a match between the requested address and a known address, the functional bus
forwards the information, splitting the base address from the register address, to
the sensor. It also raises a 'Ready__S’ signal used by the selected sensor to awaken.
If no match is found, an error is raised, indicating that the requested sensor is not
recognized. The functional bus keeps track of the selected sensor throughout the
process.

The sensor wakes up when it recognizes the 'Ready_ S’ signal from the bus. It
begins by reading the information and performing the computation. The first step
is to prepare the data by reading/writing the corresponding internal register. After
that, the corresponding power state of the sensor is activated through the power
signal. A SystemC wait() is performed to simulate the power consumption for
that particular operation. Subsequently, the information is sent to the functional

40

Methods

bus, and a 'GO__S’ signal is raised to acknowledge the functional bus. Finally, the
sensor performs a second wait().

At this point, the functional bus receives the response from the sensor and
executes the response() method. This method forwards the data to the core and
sets the 'Ready S’ signal to "False’ and the 'GO__M’ signal to "True. These actions
are used to reset the sensor signals. In fact, the sensor resets its ‘GO’ signal
to 'False’ and "GO__M’ wakes up the core. At this point, the core can send the
information received from the functional bus to GvSoC.

Core.cpp sys_functional.cpp Sensor_functional.cpp

access()

AXI Request | e i P : processing_data() H
> Go_M = False ' = '
- Read_S = True .
Go S =False
P
sensor_logic()
Ready_S = True
Go_S =True
<
response() response()
Ready M = True Ready S = False
Go M =True Go S =True
e e e e T P
access()
Reeedy_M = False sensor_logic()
Go_M = True —°d
> Ready S = False
Set_Go() Cre— il
Ready M = False
Go_M = False
le b mmen SRR S s e

Figure 4.5: Acknowledgement protocol conceptual

4.2 GvSoC integration

In this section, we analyze two primary issues: the interaction between GvSoC and
SystemC and the time synchronization between them. It is essential to provide a
comprehensive description of the simulation flow. The simulation commences by
executing the main function, which declares and instantiates all the components.
Following this, the SystemC simulation is initiated, transferring control to the core
module. As mentioned earlier, the core interacts with GvSoC in the following
manner:

First and foremost, it loads the configuration of GAP9 into a variable of type
gv::Gvsoc. Subsequently, it establishes a connection to the main SoC AXI to capture

41

Methods

external read /write operations. From this point onward, the core cyclically executes
instructions. It begins by verifying the alignment of the SystemC timestamp and
the GvSoC timestamp. If they are not aligned, it takes corrective measures to align
them.

Next, through the gvsoc->step_until() instruction, the core performs a specific
time interval of GvSoC simulation, executing instruction from the code inside
the .bin file, and retrieves the timestamp of the next important event. After the
step_ until() instruction, two scenarios may arise:

1. When GvSoC does not require data from SystemC, the GvSoC timestamp
exceeds the SystemC timestamp. In this case, no further actions are necessary,
as the core will realign the timestamps on the next iteration.

2. In the scenario where GvSoC requires data from SystemC, adjustments to
the GvSoC timestamp are needed, as it does not account for the sensor’s
computation time. Therefore, if the SystemC timestamp surpasses the GvSoC
timestamp, the core executes the gvsoc->step until(int64 time) instruction,
used to increase GvSoC timestamp, where time represents the time difference
between the two timestamps.

The simulation can end in two distinct conditions, when the battery life time
expires or when it is interrupted from the code inside the .bin file. When it ends
is first stopped the GvSoC simulation and sequentially stopped also the SystemC
simulation.

4.2.1 GvSoC Requests

Now, let’s examine the simulation flow when GvSoC requires data from SystemC.
In this scenario, the core handles the exception to ensure that GvSoC obtains the
updated information for reading or updates the information in case of writing. The
code inside the memory of the SoC may include these types of instructions:

//Creation of memory pointer to the external sensor

int+* sensor_name = (volatile int %)0x80000000;

5| //Write Operation
;| xsensor_name = /xValuex/

//Read Operation
printf ('Sensor Measure %x \n", *sensor_name);

42

W N e

Methods

During the execution of gvsoc->step_until(), if the line of code to be executed
belongs to that types, SystemC is invoked through the access() method present in
the core class. In this method, a pointer is passed as a parameter, and this pointer
contains all the necessary information.

First, the method reads the 'type’ field inside the pointer to distinguish between
incoming Read and Write requests. Second, it retrieves the ’address’ field and
compares it with the addresses known by SystemC using a switch statement. Finally,
the request is forwarded to the functional bus. The code that emulates this process
is as follows:

if (req—>type — gv::Io_request_read)
{
printf ("Received request (is_read: %d, addr: 0x%lx, size: 0¢
x%lx , data: %d)\n", req—>type = gv::Io_request_read, req—>addr,<+
req—>size , x(req—>data));

switch (req—>addr)

{
case 0x00:
A_Out.write(101);
break;

}

D_Out.write(1);
F_Out.write(true);
Ready.write(true);

}

wait () ;
Ready.write(false);
wait () ;

After completing the request, SystemC writes the new data inside the request
pointer and sends it back to GvSoC. At this point, GvSoC resumes its job and
continues with the simulation until it reaches the end of the gvsoc->step_ until()
instruction. If another request is present, the entire flow is re-executed.

//Update the data field in the request pointer
((uint32_t)req—>data) = Data_in.read();
//Reply to GvSoC

this —axi—>reply(req);

43

Methods

It is easy to notice that during the reply process, SystemC performs computations
where it is required to wait for some time. Meanwhile, GvSoC is frozen. After the
end of the reply, inevitably, GvSoC’s timestamp mismatches SystemC’s timestamp.
For this reason, as mentioned above, after the gvsoc->step_until(), it is necessary
to realign the timestamps before continuing the simulation. The following pseudo-
algorithm illustrates the synchronization process.

Algorithm 1 Synchronization, Pseudo-Algorithm.

1: procedure CORE::RUN()

2 > old_ Time is the time of SystemC before GvSoC step

3 > next_timestamp is the next important event in GvSoC
4: > time is the time of SystemC after GvSoC step

5: > Execution

6 while Simulation ends do

7 old_time = sc_time__stamp().to__double()

8 next_timestamp = gusoc— > step_until(old_time)
9 > Execute until next important event

10: time = sc__time__stamp().to__double()

11: if old time != time then

12: > If different means SystemC was used during step_ until instruction
13: next_timestamp = gusoc— > step_until(time)

14: this— > axi — reply() > Reply GvSoC request
15: else

16: > If equals means no use of SystemC during step until instruction
17: wait(next_ timestamp - time) > Synchronize SystemC with GvSoC
18: end if

19: end while
20: end procedure

4.3 Python code generation

The second part of the work is interested in customization, it means that every
one can introduce new component or make the existent ones more complex. Cus-
tomization is necessary because in real application the environment can quickly
change, so it is important to guarantee that the simulator can be adapted in an
agile way. First important thing is the possibility of adding a variable number of
sensor, this maybe useful in case of the application requires more data form the
environment or maybe is necessary to compare two different sensors acquiring the
same measure from an energy efficiency point of view. Moreover, is important to

44

Methods

ensure the possibility of changing on the fly some parameter of existing sensor like:
technical parameters or maybe internal processes that manage data. To develop
these features, a Python script was created using the Jinja framework, which
is a Python library that facilitates template creation. Starting from "skeletons"
that are .tzt files the script is able to recreate the complete simulator. What is
needed precisely is: templates of all components used and a JSON that defines all
parameters. Jinja provides a proper syntax to enrich the templates with dynamic
sections, these sections are modeled with the parameters inside the JSON file. Next
a python script exposes a class that utilizes jinja methods to create from templates
the actual file in .ccp and .h extensions. the script, containing the class definition,
is finally used in a general script that read the source and destination folder and
creates the whole simulator.

4.3.1 Template syntax

The first structure introduced is the template, it is in most part similar to the
final file, except for the some syntax-structures used by jinja to add non-static
information. The main three jinja syntax-structures are:

o {%....%}: This syntax is used to add statements like: for-loops or if-else.
(Ex. {% if loop.previtem is defined and value > loop.previtem %}).

e {{....}}: Double curly bracket is used when is necessary to insert a regular
expression inside the template. (Ex. {{ sensor['voltage’] - 3 }}, it prints the
value inside the sensor dictionary diminished by 3).

o {#....#}: Hashtags are used to indicate a Jinja comment, is important to
notice that this kind of lines are ignored also in the final rendering of the
file, they are more useful to explain what others instructions do inside the
template. (Ex. {# This line is a comment! #}).

The template will result in a mix of jinja structures and plain text. Following an
example of power sensor instance template from the simulator.

45

17

18

NN NN =
w = o ©

o O A W N

NN N NN
N o] ~ v

30

Methods

#include "{{sensor['name']}} power.h"

void {{sensor['name']}} _power::set_attributes()

{

func_signal.set_rate(1);
func_signal.set_timestep(l, sc_core::SC_SEC);

}

void {{sensor|'mame']}} _power::initialize() {}

void {{sensor|'mame']}} _power::processing()

{% for state in semnsor['states'] =%} //Starting of jinja for—
loop
if (func_signal.read() = {{state['number']}}){

//std::cout << "{{sensor['name'|]}} in {{state['name']}} <«
state!" << std::endl;

voltage_state.write(VREF_BUS);

current_state.write({{sensor| 'name'].upper()}}_I_{{state['«

name'|}});

return;
¥
{% endfor —%} //Ending of jinja for—loop
if (func_signal.read() = 0){
//std ::cout << "{{sensor|['name']}} in OFF state' << std::«>
endl;
voltage_state.write(0.0);
current_state.write(0.0);
return;
}
std::cout << "{{sensor|['name']}} in an Unknown state!' << std::¢+
endl;

4.3.2 JSON file

The second element introduced is the JSON file, it as was written above, contains all
the parameter of each component. This file is useful for two main reason: the first is
the wide support from most popular programming languages, thus it manipulation
is really easy to do, if in the futures other software wants to generate the JSON file
for the simulator, the main issue will be implement JSON’s methods that is not a
big deal. Second is that jinja allows dictionaries as parameters of generation, that
means every template can be customized just calling the generating method fed

46

Methods

with different JSONs. Recalling the code above, it is possible to create as many
power instance as required from the same code, what’s matter is just changing
the input. The JSON file used for the simulator contains a detailed description of
every sensor in particular each sensor object is composed following this structure:

1 {

2 "power" : true,

3 "name" : "air_quality_sensor",
4 "reg" : 50,

5 "voltage": 3.3,

6 "states" : [

7 {

8 "name" : "ON_READ",
9 "current" : "49.2",

10 "time_on" : "30",

11 },

12 {

13 "name" : "ON_WRITE",
14 "current" : "48.2",

15 "time on" : "30",

16 },

17 {

18 "name" : "IDLE",

19 "current" : "0.002",
20 +

21]

2 }

The power field indicates the presence of the power instance, name simply indicates
the name of the sensor, reg defines the number of sensor’s internal registers, voltage
define the operation voltage of the sensor and in the end states is a vector of
objects where every object is a power state, it is useful to describe in detail every
possible action performed by the sensor. Taking the previous JSON, the sensor
has three different states: read, write and idle each one has, besides the name, two
fundamental parameters: the current and the operation time them are used by the
simulator to set appropriate wait() statement in systemC and set proper current to
send to the power bus. Also here is clear that there is an high degree of freedom in
customization, because every sensor can have multiple sub states that refine its
energy profile making the simulation more and more closer to the reality.

47

Chapter 5
Experimental Results

In the following section, we will present reports generated by the simulator in both
graphical and textual formats. Specifically, the simulator can produce two different
.ved files: one is the Power report, which contains power flow data throughout
the entire simulation and provides specific parameters for every component in the
system. The other is the Functional report, which contains data flow information
through all the components in the system, enabling the verification of the correctness
and alignment of GvSoC requests and responses. Following this, we will present a
code running on two different computer configurations to observe how available
resources affect the simulation speed. The code utilized has been optimized with
minimal system calls to ensure that the running time accurately reflects only the
time effectively used by the simulator. Furthermore, we will include a simulation of
a resource-intensive program that stresses both GvSoC and SystemC. The chapter
begins with a setup section that outlines all the necessary steps before using the
simulator.

5.1 Setup

Throughout this thesis, several software tools and programs played a pivotal role in
facilitating analysis and simulation. These tools not only served as the foundation
for experimentation but also provided the means to analyze and visualize data,
thus contributing significantly to the overall research process. The simulator is
executed on a virtual machine running Ubuntu LTS 20.04.6, hosted by VirtualBox
Version 6.1.40 r154048 (Qt5.6.2). The following programs are installed on Ubuntu:

e SystemC 2.3.3
o SystemC-AMS 2.3.0
« SDK of RISC-V Toolchain
48

Experimental Results

« GAP SDK of GAP9
o g++ 11.4.0
e Python 3.8.10

To prepare for the simulation, it is necessary to follow specific steps. Assuming
it is the first time the simulator is being used, the steps are as follows:

1. Create the SystemC simulator, using the JSON file to specify the configuration.
2. Build the GAP project with the GAP SDK to obtain simulation files.
3. Copy simulation files in the same folder of SystemC simulator.

4. Launch the simulation and create the reports.

Starting from the first step, it is necessary to compile and build the SystemC
simulator. To do this, one needs to create the JSON file mentioned in 4.3.2. Once
the JSON file is ready, the 'make’ command should be executed inside the root
folder of the SystemC simulator. This procedure will generate an executable file,
which constitutes the complete simulator. However, for running the simulator, it is
also necessary to build the GAP project. This step is required to create certain files
necessary for mimicking the behavior of the board throughout the entire simulation.
The instructions for building the project are as follows:

cd *GAP_SDK_DIRECTORYx

source sourceme.sh

xSelect the Board (Ex. 1 — GAP9_EVK_AUDIO)=
cd *GAP_PROJECT_DIRECTORY %

make all run platform=gvsoc

After executing these commands, GvSoC will build the project and create several
files, with the most important ones being:

» gvsoc_ config.json, the configuration of the board
 chip.soc.mram.bin, the content of the board’s memory
o efuse preload.data, the stimuli applied on the board

These are the three files that need to be copied into the same folder as the
previous executable file. In the end, it is possible to run the program to initiate
the simulation and generate reports. If any changes are made, it is necessary to
repeat the steps corresponding to the modified part (e.g., GvSoC Project).

49

Experimental Results

5.2 Simulator Results

The example simulation consists of a board equipped with five sensors, each with
different characteristics. The JSON configuration of this setup can be found in
the appendix. Meanwhile, the C program running on the board is a simple while
loop that reads the values from a fixed internal register of each sensor during each
iteration. The code for the board is also included in the appendix A.

At this point, after the simulation, three types of results are available: the
functional output of the board, the corresponding functional report, and the power
report.

Functional Output The functional output is the data that the board trans-
mits to a potential output peripheral capable of receiving data, such as a monitor
or a communication channel like UART. In practical applications, this is how data
is retrieved, stored, and analyzed when the board is operating in a real-world
environment. In reference to the code in the appendix, the output corresponds to
the 'printf’ instructions, and the result is:

Air_quality Read 61
2| Temperature Read 13

3| Methane Read 7

MicroPhone Read 70
5|Radio Frequency Transmission OK!

This output is printed multiple times throughout the entire simulation to
continuously engage with the sensors attached to the board. This serves two
purposes: first, it facilitates interactions between SystemC and GvSoC; second, it
enables the sensors to consistently switch between active and idle power states,
resulting in a more comprehensive power report.

50

Experimental Results

Functional Report The functional report is generated following the VCD trace
format, which includes time and other pertinent details for each step. It records
the functional flow within the SystemC simulator, encompassing the sequence of
requests. More specifically, it displays the core’s provided address and data, along
with the bus data retrieved. An example of the functional report is structured as
follows.

%time Core_Address Core_Data Bus_Data
0000

0.001737550452 101 1 0
031737550452 101 1 61
.031791620254 201 1 61
061791620254 201 1 13
.09789394302 301 1 13
.12789394302 301 1 7
.127943934367 401 1 7
.139943934367 401 1 70
.139993376078 501 1 70

OO DD OO O OO

When reviewing the report, it becomes possible to comprehend the logic of each
line. Starting from the second line, there are two lines with identical addresses.
The first line represents the moment when the core sends the request to the bus,
while the second line shows the moment when the bus responds to the core. By
comparing the timestamps between these two lines, it is feasible to calculate the
delay of the sensor connected to a specific address. In most instances, this delay
corresponds to one of the potential power states outlined in the JSON sensor
specification. If the sensor performs a reading between the two lines, the delay will
be associated with the reading status.

51

-~

Experimental Results

Power Report The power report contains all energy information of the system,
with one of the most important aspects being the current profile of each off-chip
component. These profiles are used to monitor the current trends during the
simulation. An essential field is the SoC (State of Charge), which indicates the
system’s battery charge level. In applications where power consumption is a
critical constraint, this report is highly valuable for identifying moments when
the system consumes more power. When used in conjunction with the functional
report, it becomes possible to correlate high power consumption with the specific
instructions executed. This correlation allows for a focus on optimizing those
particular situations when feasible. The report maintains the same structure as the
functional report, which follows the general .ved format. Each line is timestamped,
followed by the corresponding measurements for that time. Below is a summarized
version of the report.

%time SoC_Batt I_Tot_Bus I_to_Batt Air Temp Meth Mic CPU RF
0000O0O0O0OO0OO0OO

310.267 0.999607694469 48.207 0.065157094939 48.2 0.002 0.002 0.002 0«

0.001

500.298 0.99951522548 0.307 0.210653052834 0.002 0.3 0.002 0.002 0 <«

0.001

0.303 0.999513576036 18.007 0.210553004647 0.002 0.002 18 0.002 0 <«
0.001

0.764 0.998959584653 0.108 0.0651778062117 0.002 0.002 0.002 0.002 <«
0 0.001

Above is the report detailing the current demand from the system to the battery,
the battery’s SoC (State of Charge), and the current demanded by each sensor.
Additionally, it includes the current generated by the harvester, which is taken into
account during the computation. The time scale is in the order of milliseconds,
while the current is expressed in amperes.

52

Experimental Results

Plotted Results It is possible to plot the previous reports with MATLAB to
observe that the simulations indeed progress together. Using Program 1 provided
in the appendix as a reference, the following graphs are obtained.

AXI Request : Tem, icrophonelf Radio Frequency : Methane
Addiass < Air Address s\ Methane Address XAAddressX Address Air Address i Address
08

= Air Sensor
Temperature Sensor
Methane Sensor
MicroPhone Sensor
£ v (91]

Radio Frequency
o1

Time (S)

Figure 5.1: Plot of functional report

The upper part shows the activity from a functional perspective, specifically
displaying the requests sent from the core to the bus. Concurrently, in the bottom
part, the activity of each sensor is depicted. By examining a specific timeframe, it
becomes evident that if a request pertains to one sensor, the others remain in the
idle state, with only the activated one actively processing. Occasionally, the CPU
current rises, indicating ongoing computational operations.

53

Experimental Results

5.3 Simulator Benchmarks

This section describes the performance of the simulator in different scenarios. Two
different programs will be analyzed: one involving simple sampling of each sensor
and another involving complex computations between samples. The maximum
simulation time will be the same for both programs. Furthermore, the same
experiment will be conducted on two different computers with varying architectures
to yield diverse results. These results will be described and interpreted.

Regarding the programs, the first one is a straightforward program that samples
every sensor within a 'while’ loop, acquiring their values without applying any
computation (Program 1 in the table). The second program acquires measurements
for each sensor and calculates the simple moving average. At the end of each cycle,
it prints the data results and restarts (Program 2 in the table).

The computer configurations under consideration consist of virtual machines
based on Intel architecture with Intel Core i5-8250U processors, featuring 2 cores
and 4GB of RAM, as well as AMD architecture configured with a Ryzen 7 3700X
processor, equipped with 4 cores and 8GB of RAM. In the appendix A, is possible
to find the programs run on the GAP simulator, with a simulation maximum time
set to 10 seconds.

Intel Architecture | AMD Architecture
Program Real | 1m 30.242s Om 19.583s
| User | 1m 28.928s Om 19.390s
Sys 0.336s 0.186s
Program Real | 1m 25.719s Om 18.524s
5 User | 1m 24.944s Om 18.135s
Sys 0.170s 0.379s

Table 5.1: Comparison between two C programs. The values represent the average
command execution time over ten runs for the 'time command’ in Linux.

It is easy to notice that the more powerful the machine used to run the simulator,
the less time the simulation requires. The time savings are more than half. The
crucial point to understand is that in both configurations, the time is acceptable
in terms of the absolute scale, so it is possible to run extensive simulations and
obtain useful results in a matter of hours at the very least.

A significant constraint lies in the resolution scale of the simulation; the smaller
the measurement unit, the more time it takes to perform all the computations.

An important corner case to mention is when GvSoC doesn’t require SystemC.

o4

Experimental Results

In such cases, the simulation is exceptionally slow because most of the time is
spent realigning the timestamps for every micro-event occurring in GvSoC, which
typically operates with a timescale in the picoseconds.

The following table illustrates the difference between a program that doesn’t
use SystemC and a program that samples only one sensor. The simulation is run
on an AMD architecture with a simulation maximum time set to 10 seconds.

No use of Use of
SystemC SystemC

Real | 2m 1.228s | Om 18.901s
User | Im 57.613s | Om 18.751s
Sys | Om 3.534s | Om 0.146s

Table 5.2: Comparison between two C programs. The first one does not use
external sensors, while the second one does. The values represent the average
execution time of the 'time command’ over ten runs in Linux.

In cases where there is no need to simulate extra-functional properties, it is
not advisable to use the simulator due to the overhead of realigning operations.
Instead, it is better to run a simple functional simulation with GvSoC, avoiding
unnecessary delays.

59

Chapter 6

Conclusions and Future
Works

Functional simulators are very common and widely used, but when it becomes
necessary to simulate extra-functional properties, the available solutions often
exhibit defects and limitations. Most of the time, one has to rely on closed
companies that cannot guarantee the complete availability of what is necessary for
specific cases. Moreover, most of the tools proposed are paid and receive limited
updates. In response to this issue, the world is undergoing changes and proposing
alternative methods to better represent and analyze different aspects such as power
consumption, thermal trends, and reliability. This thesis aims to introduce one of
these new solutions, positioning itself as a pioneer in this context.

SystemC is seen as a rising star, making it the best choice as the core of this
work. Additionally, this thesis can serve as a starting point for various applications
since the approach proposed is not limited to the explored scenario; it can be
adapted to any possible extra-functional property.

The choice of the RISC-V architecture is also driven by its increasing popularity
among computer engineers and its open-source nature, which aligns with SystemC’s
open-source philosophy. Lastly, this thesis is part of the European TRISTAN
project, enhancing the set of tools available for RISC-V.

A brief overview of what this work encompasses includes guidelines on construct-
ing a robust simulator capable of representing various properties within a given
system. It emphasizes the communication flow between components and their
scheduling to ensure the correct flow of information. There is also a section on
making the simulator dynamic, allowing for variable and adaptive configurations,
which is useful when parameters or components within the system need to be
changed. Finally, a fundamental aspect is the integration with GvSoc [12], which is
perhaps the most critical part as it enables the integration of multiple environments,

56

Conclusions and Future Works

leveraging their strengths.
The key aspects to take away from this thesis are summarized in a bullet list:

e Developing a SystemC simulator capable of self-coordinating its processes and
representing a wide range of extra-functional properties.

o Providing guidelines for creating Python scripts to easily modify the developed
simulator, enabling agile configuration between systems for testing purposes.

« Establishing an interfacing approach between two distinct programs, in this
case, SystemC-AMS and GvSoC, which is crucial if it becomes necessary to
connect and leverage the strengths of two different technologies.

Improvements and Future Work As an initial attempt to create this type
of simulator, this work presents several aspects that can be enhanced in the future.
Starting with the less significant, the interface could be made more user-friendly,
perhaps by developing a dedicated GUI for instantiating simulator components
and running scripts. Another significant aspect that can be improved, especially
in the case of the GAP architecture, is the parallelization of operations. In this
initial version of the simulator, only one of the nine cores is utilized to run the
code. It is possible to make modifications to enable all nine cores to interface with
SystemC, potentially generating more realistic board utilization profiles, which
could be valuable for future complex implementations such as Al. Lastly, additional
extra-functional simulators can be incorporated; the framework is already in place,
and the only necessary steps involve creating additional extra-functional buses to
manage these new sub-instances. This would be beneficial if there is a need to
analyze multiple properties simultaneously under the same conditions.

57

Appendix A
Code

Listing A.1: C Program 1 inside GAP Memory

/* PMSIS includes x/
#include "pmsis.h"
/* Program Entry. x/
int main(void)

{

printf ("\n\n\t =xx PMSIS HelloWorld ssx\n\n");
printf ("Entering main controller\n");

uint32_t errors
uint32_t core_id
printf ("[%d %d]

10;

uint32_t last_value

int+ air_quality = (volatile
int+ temperature = (volatile
int* mick_click = (volatile
int* methane = (volatile
int* radio_freq = (volatile
while (1){

printf (" Air__quality Read

pi_core_id (),
Hello World!\n",

x(volatile

int
int
int
int
int

cluster_id pi_cluster_id();
cluster_id, core_id);

int %x)0x1c000000;

%) 0x80000000;
x)0x80000004 ;
x)0x8000000C;
%) 0x80000008;
*)0X80000010;

%d\n" , *air_quality);
printf (' Temperature Read %d\n', stemperature);

"Methane Read %d\n", smethane);

printf ("MichroPhone Read %d\n', s*mick_click);
printf('Radio Frequency Transmission %d\n', *radio_freq);

(
(
printf (
(
(

}

return errors;

58

N

Code

Listing A.2: C Program 2 inside GAP Memory

/% PMSIS includes x/

#include "pmsis.h'

/* Program Entry. x/

int main(void)

{
printf ("\n\n\t xxx PMSIS HelloWorld sxxx\n\n");
printf('Entering main controller\n");

uint32_t errors = 10;
uint32_t core_id = pi_core_id(), cluster_id = pi_cluster_id();
printf ("[%d %] Hello World!\n", cluster_id, core_id);

int air_vector[10];

int temp_vector [10];
int methane_vector [10];
int mic_vector[10];

int flag = 0;

int+ air_quality = (volatile int %)0x80000000;
int+ temperature = (volatile int %)0x80000004;

int* mic_click = (volatile int %)0x8000000C;
int* methane = (volatile int %)0x80000008;
int* radio_freq = (volatile int %)0x80000010;
while (1){

for(int i = 0; i < 10; i++){
//Force certain values for moving average
if (flag = 0){
xair_quality = 70;
xtemperature = 25;
*mic_click = 85;
*methane = 20;
} else {
xair_quality = 75;
xtemperature = 22;
*mic_click = 95;
*methane = 15;
}
//printf ("OK! Force");
//Read values for moving average
uint32_t air_value = x(volatile int %)0x80000000;
uint32_t temp_value = x(volatile int %)0x80000004;
uint32_t methane_value = x(volatile int %)0x80000008;
uint32_t mic_value = x(volatile int %)0x8000000C;
//Save value for moving average
air_vector[i] = air_value;
temp_vector[i] = temp_value;

59

Code

}

methane_vector [i] = methane_value;
mic_vector[i] = mic_value;
if(flag = 1)
flag = 0;
else
flag = 1;

}
float air_avg = 0.0;
float temp_avg = 0.0;
float methane_avg = 0.0;
float mic_avg = 0.0;
//printf ("OK! Read") ;
for (int i=0; i<10; i++){
air_avg = air_avg + air_vector[i];
temp_avg = temp_avg + temp_vector[i];
methane_avg = methane_avg + methane_vector[i];
mic_avg = mic_avg + mic_vector[i];
}
air_avg = air_avg/10;
temp_avg = temp_avg/10;
methane_avg = methane_avg/10;
mic_avg = mic_avg/10;
printf ("Air moving average = %.2f \n', air_avg);
printf (' Temperature moving average = %.2f \n", temp_avg);
printf ("Methane moving average = %.2f \n', methane_avg);
printf ("Mic Click moving average = %.2f \n', mic_avg);

return errors;

Listing A.3: JSON Configuration for SystemC

© o0 N O Ot ok W NN =
-~

— = =
N o= O

"sim_step" : 1,

"sim len": 7736400,

"vref bus" : 3.3,

"soc_init" : 1.0,
"selfdisch_factor" : 0.0,
"battery" : "circuit_model",
"sensors" : [

{
"power" : true,
"name" : "air_quality_sensor",
"voltage": 3.3,

60

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Code

llregll
"states"

{

”pOWGr n
"name"

llregll
"states"

{

50,
[

"name"
"current"
"time_on"

"name"
"current"
"time_on"

n name n
"current"

true,

"ON_READ",
ll48.2ll s
|I30|l
"ON_WRITE",
|I49.2ll s
|I30|l

HIDLEII s
"0.002"

"temperature_sensor',
"voltage": 3.3,

75,
[

"name"
"current"
"time_on"

"name"
"current"
"time_on"

"name"
"current"

61

"ON_WRITE",
"0.35",
|l6l|

"ON_READ",
HO.BH’
|l6l|

"IDLE",
"0.002"

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Code

sensor",

"ON_WRITE",
|l19|l R
|1301l

"ON_READ",
|l18|l R
HSOII

"IDLE"
"0.002"

"mic_click_sensor",

"power" true,
"name" "methane _
"voltage": 3.3,
"reg" : 25,
"states" [
{
"name"
"current"
"time on"
},
{
"name"
"current"
"time_on"
},
{
"name"
"current"
}
]
"power" true,
"name"
"voltage": 3.3,
"reg" 15,
"states" [
{
"name"
"current"
"time on"
},
{
"name"
"current"
"time_on"
1,
{
"name"
"current"
}

62

"ON_WRITE",
"O.25",
nqomn
"ON_READ",
"O.15",
nqomn
"IDLE",
"0.002"

Code

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120 F

llpower n
"name"

"voltage":

llregll
"states"

{

true,

"rf sensor',

3.3,
10,
[

"name"
"current"
"time_on"

"name"
"current"
"time_on"

"name"
"current"

"ON_WRITE",

|IO. 15”,
ll24|l

"ON_READ",
|l0.1|l,
|l24|l

"IDLE" ,
"0.001"

63

Bibliography

About QEMU; QEMU documentation - gemu.org. https://www.qemu.org/
docs/master/about/index.html. [Accessed 29-09-2023] (cit. on p. 2).

Renode — renode.io. https://renode.io/about/. [Accessed 29-09-2023]
(cit. on p. 2).

RISC-V - Wikipedia — en.wikipedia.org. https://en.wikipedia.org/wiki/
RISC-V. [Accessed 28-09-2023] (cit. on p. 3).

New call for developing an HPC ecosystem based on RISC-V - eurohpc-
Jju.europa.eu. https://eurohpc-ju.europa.eu/new-call-developing-
hpc-ecosystem-based-risc-v-2023-02-01_en. [Accessed 28-09-2023]
(cit. on p. 3).

Together for RISc-V Technology and ApplicatioNs | TRISTAN Project | Fact
Sheet | HORIZON | CORDIS | European Commission — cordis.europa. eu.
https://cordis.europa.eu/project/id/101095947/it. [Accessed 28-09-
2023] (cit. on p. 4).

Amal Banerjee and Balmiki Sur. SystemC and SystemC-AMS in practice:
SystemC 2.3, 2.2 and SystemC-AMS 1.0. July 2014, pp. 1-460. 1SBN: 978-3-
319-01146-2. por: 10.1007/978-3-319-01147-9 (cit. on pp. 6, 10).

Enrico Fraccaroli and Sara Vinco. «Modeling Cyber-Physical Production
Systems With SystemC-AMS». In: IEEE Transactions on Computers 72.7
(2023), pp. 2039-2051. DOI: 10.1109/TC. 2022 . 3226567 (cit. on pp. 10,
23-26).

Andrew Waterman, Krste Asanovic, et al. «The RISC-V Instruction Set

Manual Volume I: Unprivileged ISA». In: Document Version 20191213 (2019),
pp. 1-4 (cit. on pp. 14, 15, 17).

Antonio Pullini, Davide Rossi, Igor Loi, Giuseppe Tagliavini, and Luca Benini.
«Mr.Wolf: An Energy-Precision Scalable Parallel Ultra Low Power SoC for
[oT Edge Processing». In: IEEE Journal of Solid-State Circuits 54.7 (2019),
pp. 1970-1981. por: 10.1109/J8SC.2019.2912307 (cit. on p. 18).

64

https://www.qemu.org/docs/master/about/index.html
https://www.qemu.org/docs/master/about/index.html
https://renode.io/about/
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/RISC-V
https://eurohpc-ju.europa.eu/new-call-developing-hpc-ecosystem-based-risc-v-2023-02-01_en
https://eurohpc-ju.europa.eu/new-call-developing-hpc-ecosystem-based-risc-v-2023-02-01_en
https://cordis.europa.eu/project/id/101095947/it
https://doi.org/10.1007/978-3-319-01147-9
https://doi.org/10.1109/TC.2022.3226567
https://doi.org/10.1109/JSSC.2019.2912307

BIBLIOGRAPHY

[10]

[13]

[14]

[15]

[16]

Pasquale Davide Schiavone, Davide Rossi, Antonio Pullini, Alfio Di Mauro,
Francesco Conti, and Luca Benini. «Quentin: an Ultra-Low-Power PULPissimo
SoC in 22nm FDX». In: 2018 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S35). 2018, pp. 1-3. DOI: 10.1109/835.2018.
8640145 (cit. on pp. 19, 20).

GAPY9 Product-Brief V1.14. GreenWaves Technologies SAS (cit. on p. 20).
Irina Sizova. GVSOC - The Full System Simulator for profiling GAP Ap-

plications — greenwaves-technologies.com. https://greenwaves-technol
ogies.com/gvsoc-the-full-system-simulator-for-profiling-gap-
applications/. [Accessed 09-10-2023] (cit. on pp. 21, 22, 56).

Yukai Chen, Sara Vinco, Daniele Jahier Pagliari, Paolo Montuschi, Enrico
Macii, and Massimo Poncino. «Modeling and Simulation of Cyber-Physical
Electrical Energy Systems With SystemC-AMS». In: IEEFE Transactions on
Sustainable Computing 5.4 (2020), pp. 552-567. DOT: 10.1109/TSUSC. 2020.
2973900 (cit. on pp. 23-25).

Sara Vinco, Alessandro Sassone, Franco Fummi, Enrico Macii, and Massimo
Poncino. «An open-source framework for formal specification and simulation
of electrical energy systemsy. In: 2014 IEEE/ACM International Symposium
on Low Power Electronics and Design (ISLPED). 2014, pp. 287-290. DOI:
10.1145/2627369.2627657 (cit. on pp. 23-25).

Sara Vinco, Yukai Chen, Franco Fummi, Enrico Macii, and Massimo Poncino.
«A Layered Methodology for the Simulation of Extra-Functional Properties
in Smart Systems». In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 36 (Jan. 2017), pp. 1702-1715. por: 10.1109/
TCAD.2017.2650980 (cit. on pp. 23, 25, 26, 28).

Jinja — palletsprojects.com. https://palletsprojects.com/p/jinja/.
[Accessed 09-10-2023] (cit. on p. 29).

65

https://doi.org/10.1109/S3S.2018.8640145
https://doi.org/10.1109/S3S.2018.8640145
https://greenwaves-technologies.com/gvsoc-the-full-system-simulator-for-profiling-gap-applications/
https://greenwaves-technologies.com/gvsoc-the-full-system-simulator-for-profiling-gap-applications/
https://greenwaves-technologies.com/gvsoc-the-full-system-simulator-for-profiling-gap-applications/
https://doi.org/10.1109/TSUSC.2020.2973900
https://doi.org/10.1109/TSUSC.2020.2973900
https://doi.org/10.1145/2627369.2627657
https://doi.org/10.1109/TCAD.2017.2650980
https://doi.org/10.1109/TCAD.2017.2650980
https://palletsprojects.com/p/jinja/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	SystemC
	SystemC-AMS
	Timed data flow (TDF)
	Electrical Linear Networks (ELN)
	Linear Signal Flow (LSF)
	Scheduler & Differential-Algebraic Equation (DAE) solver

	RISC-V
	RISC-V Terminology
	RISC-V Software Execution
	Instruction set architecture (ISA)

	PULP & GvSoC
	PULPissimo
	GAP9
	GvSoC

	Related Works
	Modeling Cyber-Physical Electrical Energy Systems
	SystemC and Simulink Comparisons
	SystemC Cons

	Methodologies for Extra-Functional Properties

	Methods
	Extra-Functional Simulator
	Sensors
	Functional Bus
	Power Bus
	Battery, harvester and converters
	Core
	Acknowledgement protocol

	GvSoC integration
	GvSoC Requests

	Python code generation
	Template syntax
	JSON file

	Experimental Results
	Setup
	Simulator Results
	Simulator Benchmarks

	Conclusions and Future Works
	Code
	Bibliography

