
POLITECNICO DI TORINO
Master’s Degree in Mechatronics Engineering

Master’s Degree Thesis

Modelling and simulation of mobile robot
motion and its interaction with humans

Supervisors

Prof. Alessandro RIZZO

Dr. Giada GALATI

Candidate

Andrea USAI

October 2023

“Quel destino di cui parli io lo posso cambiare!”

ii

Acknowledgements

Innanzitutto, desidero esprimere la mia profonda gratitudine al Professor Rizzo per
avermi concesso l’opportunità di svolgere questa tesi e per la costante disponibilità
che ha dimostrato nei miei confronti.
Ringrazio la Dottoressa Galati, la mia correlatrice, per il suo continuo sostegno e
la sua guida preziosa nelle diverse fasi del progetto.
Desidero ringraziare anche Giacomo, collega e collaboratore, per il prezioso con-
tributo che ha fornito alla realizzazione di questa tesi.

Un sentito ringraziamento va ai miei genitori, che sin da bambino mi hanno
insegnato l’importanza di porsi degli obiettivi e di lavorare costantemente per
raggiungere i propri sogni.
Ringrazio sinceramente mio fratello Luca, in quanto negli anni è stato per me un
costante punto di rifermento da raggiungere e superare.
Un ringraziamento speciale va ai miei amici Luca, Ilenia, Daniel e Sara, che sono
stati presenti in un momento per me molto difficile. La loro amicizia ha reso quel
periodo meno doloroso.
Non posso non ringraziare Emanuele, Lorenzo, Lorenzo e Davide, amici fin dagli
anni di scuola superiore, in quanto hanno dimostrato che l’amicizia può trascendere
la distanza, lo scorrere del tempo o le scelte di vita differenti.
E infine, ultima ma assolutamente non per importanza, ringrazio profondamente
Martina, la mia fidanzata. Il suo ingresso improvviso in un momento molto buio
della mia vita si è rivelato come un faro di luce in mezzo alle tenebre.

Tutte queste persone hanno sempre creduto in me. La loro presenza nella mia vita
è stata fondamentale nel rendermi la persona che sono oggi. Sono grato di averli
avuti al mio fianco in questo percorso.

iv

Summary

In recent years, technological advances have allowed robots to become a part of our
everyday lives. The integration of such robots in human-populated environments
presents new challenges, particularly in the context of navigation. To operate
efficiently in these scenarios, robots must consider the physical and psychological
safety of pedestrians. In this way, they can move safely and in a socially acceptable
manner. To achieve these goals, it is essential to develop socially aware navigation
algorithms able to perceive humans as social entities, predict their movements, and
perform mutual avoidance maneuvers. Although existing approaches ensure safe
robot navigation even in crowded environments, many of them exhibit reactive
behavior and treat pedestrians as mere dynamic objects without predicting their
future movements. Recently, various machine learning techniques have been used
to predict human motion with optimal results. However, most of them focus
on predicting human movements individually, neglecting potential interactions
between pedestrians during navigation. Therefore, modeling social behaviors is
crucial for designing socially-aware robots that can predict future pedestrians’
motions and adjust their decisions accordingly. To face these challenges, this thesis
proposes a navigation algorithm that combines game theory with the well-known
Social Force Model (SFM). Unlike previous approaches, game theory allows to
explicitly model the decision-making process typical of human beings by considering
pedestrians and the robot as rational agents capable of influencing each other’s
decisions. Here, navigation is modeled as a non-cooperative game. Each agent has
a set of possible actions represented by trajectories generated from different sets
of Social Force Model parameters. Each agent aims to find optimal trajectories
considering potential interactions with other players. The solution of the game is
established by reaching Nash equilibrium. To ensure a higher level of naturalness
and comfort, it is necessary to solve the game by considering trajectories that are
as real as possible. However, the manual definition of the SFM parameters can be
very complex. This is related to the high sensitivity of the model and the significant
variability of the behaviors they determine. Therefore, a Differential Evolution (DE)
algorithm has been used to estimate the best SFM parameters that approximate
real human trajectories from a public dataset called "Thör". However, the excessive

v

time required for estimation makes DE not suitable for real-time applications.
To overcome this problem, a neural network has been employed to mimic the
behavior of the Differential Evolution. In this context, DE has been used to create
a training dataset, where the estimated best parameters have been exploited to label
specific features of the analyzed real trajectory. The proposed algorithm has been
quantitatively validated through Monte Carlo numerical simulations. Specifically,
the algorithm has been compared with two other state-of-the-art approaches:
the standard SFM and ORCA (Optimal Reciprocal Collision Avoidance). The
performance evaluation has been carried out using 4 state-of-the-art performance
metrics: Path Length Ratio, Closest Pedestrian Distance, Average Speed, and Path
Regularity. Our numerical results,performed in different scenarios with different
number of pedestrians, indicate that the proposed algorithm outperforms the
standard SFM and has significant improvements over ORCA, especially concerning
Path Regularity.

vi

Table of Contents

List of Tables xi

List of Figures xii

Acronyms xvi

1 Introduction 1
1.1 Socially-aware navigation . 1
1.2 Our approach . 4
1.3 Thesis organization . 6

2 Related Works 7
2.1 Autonomous navigation . 7
2.2 State-of-the-art Social navigation 8

2.2.1 Model-based algorithms . 10
2.2.2 Learning strategies . 11
2.2.3 Reactive algorithms . 14
2.2.4 Predictive algorithms . 16

2.3 State-of-the-art Differential Evolution 18

3 Background Social Force Model and Game Theory 21
3.1 Social Force Model . 21

3.1.1 Overview . 21
Notation . 22

3.1.2 Model formalization and types of forces 22
3.1.3 Model dynamics . 24
3.1.4 SFM drawbacks . 25

Parameters homogeneity and calibration 25
Isotropic motion . 26

3.2 Game Theory . 28
3.2.1 Overview . 28

viii

3.2.2 Terminology related to game theory 28
3.2.3 Game types . 29
3.2.4 Nash equilibrium for Non-cooperative games 31

4 Game-Theoretic Social Force Model 32
4.1 Navigation algorithm . 32

4.1.1 Overview . 33
4.1.2 Cost function . 35
4.1.3 Sequential best response for Nash equilibria 36

Example of "sequential best response": 37
4.2 Parameters estimation from real trajectories dataset 37

4.2.1 Differential Evolution algorithm (DE) 39
Control Parameters of the algorithm 42

4.2.2 Thör dataset . 44
Environment . 44
Motion capture system . 45
Experiment description . 46
Data format e Data management 46

4.2.3 Algorithm description and simulation results 48
4.2.4 Real-time parameters estimation through Neural Network . 54

5 Hardware description 55
5.1 Mobile robot hardware . 56

5.1.1 Mobile base . 56
5.1.2 Intel NUC NUC8i3BEH Mini PC 57
5.1.3 WidowX-250 Robot arm . 58
5.1.4 RPLIDAR A2M8 . 59
5.1.5 Intel RealSense Depth Camera D435 59

6 ROS 61
6.1 Overview . 62
6.2 Basic concepts and Communication paradigms 63
6.3 Navigation stack . 66

6.3.1 Overview . 66
6.3.2 Move base package . 67

Global and local costmap . 67
Global planner . 69
Local planner . 69
Recovery behaviours . 70
Global and local planner plugins 71

6.4 TensorFlow . 73

ix

6.4.1 Overview . 73
6.4.2 ROS Integration . 75

7 Experimental setup 77
7.1 Simulation tools . 77

7.1.1 Gazebo . 77
SFM plugin for pedestrians 78

7.1.2 RViz . 79
7.2 Experiments and methods . 80

7.2.1 Simulated environment description 80
7.2.2 Evaluation metrics . 82

8 Test Results and Discussions 86

9 Future Works and Conclusions 90

Bibliography 92

x

List of Tables

3.1 SFM variables and parameters . 26

4.1 Control parameters of the implemented DE algorithm 44
4.2 SFM parameters estimated by the implemented Differential Evolu-

tion algorithm . 48

7.1 Goal zones associated to each spawn zone. 82
7.2 References of the analyzed naturalness metrics 84
7.3 References of the analyzed comfort metrics 84

8.1 Mean value and standard deviation of the PLR (Path Length Ratio)
for each algorithm . 87

8.2 Mean value and standard deviation of the CPD (Closest Pedestrian
Distance) for each algorithm . 88

8.3 Mean value and standard deviation of the AS (Average Speed) for
each algorithm . 88

8.4 Mean value and standard deviation of the PR (Path Regularity) for
each algorithm . 89

xi

List of Figures

1.1 Personal space respected by humans during navigation. 3

2.1 Main phases of autonomous navigation. 8
2.2 Classification of Social navigation algorithms: the dotted line de-

notes the algorithm’s classification based on a particular criteria.
The continuous line inside the classification represents the category
related to the same criteria. 9

2.3 Schematic comparison between Reinforcement Learning and Inverse
Reinforcement Learning [32]. 14

2.4 Comparison of trajectories generated by the two types of planner
(from [12]): (a) Reactive: when a person appears in its way, the robot
modify the local path to change direction; (b) Predictive planner: by
exploting a human-motion model, the robot first predicts the future
states of the person and then it computes its path considering the
mutual avoidance. 17

2.5 Main steps of the Differential Evolution algorithm 18

3.1 Example of pedestrians navigation behaviour with different sets
of parameters: (a) Ai = 0.2, Bi = 0.1, ri = rj = 0.1; (b) Ai =
0.45, Bi = 0.3, ri = rj = 0.4; (c) Ai = 0.8, Bi = 0.7, ri = rj = 0.7.
For simplicity, the variability was modelled by varying only the
pedestrian interaction parameters and assuming that pedestrians
have the same parameters in terms of desired speed vd

i , relaxation
time αi and anisotropic strength λ. However, this assumption is not
necessarily true in reality . 27

4.1 Conceptual structure of the Game-Theoretic Social Force Model
(GTSFM). 34

4.2 Standard DE-mutation in a 2-D parametric space 41

xii

4.3 Effect of different values of Cr on a distribution of candidate trial
vectors obtained by running DE on a single starting population
of ten vectors for 200 generations with selection disabled [45]: (a)
Cr = 0; (b) Cr = 0.5; (c) Cr = 1. 44

4.4 Schematic presentation of the laboratory room where the trajectories
were recorded. 45

4.5 (a) Qualisys Oqus 7+ infrared cameras; (b) helmets with reflective
markers, used to track pedestrians. 45

4.6 Ideal trajectories of the robot and the various types of pedestrians . 47
4.7 Real trajectories of experiment’s partecipants in the three different

scenarios: (top) One obstacle - (centre) Moving robot - (bottom)
Three obstacles. 47

4.8 Comparison between real human trajectories contained in Thör
(green) with the corresponding robot trajectories (black) obtained
by using SFM parameters from DE estimation. 53

5.1 Mobile robot Locobot WX250s-6DOF used in the simulation campaign 55
5.2 Create3 mobile base [85]. 56
5.3 Bottom view of the Create3 mobile base. 57
5.4 Intel NUC NUC8i3BEH Mini PC 58
5.5 WidowX-250 6DOF Robot arm. 58
5.6 RPLIDAR A2M8. 59
5.7 Intel RealSense Depth Camera D435 60

6.1 Different ROS distribution over the years, from 2016 until today. . . 63
6.2 Conceptual representation of the Publish/Subscribe communication

paradigm in ROS. 64
6.3 A schematic representation of the request/response communication

paradigm implemented in ROS. 65
6.4 Navigation stack packages and nodes with their related ROS topics

and messages [93]. 67
6.5 Costmap inflation process [94]. The value associated with the oc-

cupied cell is the maximum cost (254). This value decreases with
increasing distance from the center of the obstacle. Lower cost
represents a lower probability of collision hazard. 68

6.6 Schematic representation of the move base working conditions as a
state machine. 70

6.7 Schematic representation of move base local and global planner
interfaces and plugins. 72

xiii

6.8 Some examples of tensors [101] with different shapes and ranks: (a)
rank=0, shape=[] ; (b) rank=1, shape=[3]; (c) rank=2, shape=[3,2];
(d) rank=3, shape=[3,2,5]; (e) rank=4, shape=[3,2,4,5]. 74

6.9 Example of the TensorFlow computational graph of the function
x2y + y + 2 [102]. Nodes are represented in blue while arcs are
represented in pink (variables) and yellow (constant). 74

6.10 Representation of the final architecture implemented in ROS. 76

7.1 An example of two pedestrians moved by SFM plugins in Gazebo . 78
7.2 Example of locobot visualization in Rviz with the global costmap

related to the obstacles (walls) in the environment. 79
7.3 Simulated environment and related spawn zones 81
7.4 Frequencies of the most commonly used naturalness metrics in liter-

ature. 83
7.5 Frequencies of the most commonly used comfort metrics in literature. 83

8.1 Mean value and standard deviation of the considered metrics of
each tested algorithm: SFM (Social Force Model), ORCA (Optimal
Reciprocal Collision Avoidance), GTSFM (Game-theoretic Social
Force Model). The performance metrics are: a) PLR (Path Length
Ratio), b) CPD (Closest Pedestrian Distance), c) AS (Average
Speed), d) PR (Path Regularity). 86

xiv

Acronyms

SFM
Social Force Model

GT
Game Theory

SLAM
Simultaneous Localization And Mapping

DL
Deep Learning

DNN
Deep Neural Network

RL
Reinforcement Learning

DRL
Deep Reinforcement Learning

IRL
Inverse Reinforcement Learning

xvi

Chapter 1

Introduction

1.1 Socially-aware navigation

Nowadays, robots are employed not only in industry, but also in a wide variety of
everyday applications to assist humans in performing various types of very simple
tasks. Some examples of such applications are the use of mobile robots as "guides
in museums" [1] or "service robots" in offices [2], hospitals [3], or hotels [4].
In the near future, the growing diffusion of this technology will inevitably lead
to the sharing of physical space between humans and robots. This perspective
confronts us with issues and challenges that need to be addressed in order to ensure
proper interaction between them. This is especially important in the context of
navigation.
In general, robots are already capable of performing autonomous tasks efficiently
when they operate in environments with simple static and dynamic objects. How-
ever, humans cannot be considered as mere moving objects but must be regarded
as real social entities capable of interacting with each other.
In fact, human society is inherently characterized by social conventions, i.e., behav-
iors dependent on the environment and culture that help humans understand and
predict the intentions of other people [5].
Therefore, to be naturally incorporated in human populated environments, mobile
robots must be able to detect such behaviors, integrate them into their movement,
and adapt their behavior according to the social expectations of other pedestrians
involved in the navigation [5].
Overall, these considerations determine the need to develop mobile robots that are
not only safe but also socially acceptable. Hence, by guaranteeing a socially aware
navigation, it will be possible to ensure an easier coexistence between robots and
humans.

1

Introduction

In [5], Martinez et al. define socially-aware navigation as:

"the strategy exhibited by a social robot which identifies and follows social con-
ventions in order to preserve a comfortable interaction with humans. The resulting
behaviour is predictable, adaptable and easily understood by humans".

To achieve such behavior and enhance social acceptability, Kruse et al. [6] highlight
three main features that the robot should ensure:

• Human comfort
It corresponds to the psychological safety perceived by humans during navi-
gation. Indeed, the robot must avoid causing annoyance, stress, or general
negative emotions toward the humans whom it interacts with.
Therefore, the robot must be able to move in a physically safe manner, i.e.,
avoiding possible collisions, but also in a way that makes the pedestrians
involved in navigation feel safe.
One of the main aspects affecting comfort is the robot’s ability to respect
each pedestrian’s personal space, which is a region of space around humans
that they actively try to maintain and into which other people cannot enter
without causing some level of discomfort [6]. An example of human personal
space is shown in Fig. 1.1.

• Naturalness
This feature represents the robot’s ability to mimic nature and human-like
motion by determining trajectories similar to those generated by pedestrians.
Ensuring a natural or human-like motion increases the robot’s behavior "read-
ability" and "reliability" during navigation.
Humans, being social entities, unconsciously interpret the movements of other
pedestrians (including the robot) to anticipate their future movements and
perform their actions accordingly [6]. This behavior is related to the concept
of "anthropomorphism", which refers to the tendency of humans to attribute
human qualities, such as consciousness, beliefs, and intentions to objects [7].
If the robot is able to move like a human being, it will be perceived by hu-
mans as an entity similar to them due to the process of anthropomorphizing.
Consequently, this will result in increased social acceptability, thus ensuring
easier integration between robots and humans.
In general, naturalness of motion can be achieved by acting on low-level pa-
rameters of the robot’s behavior, such as the dynamics, shapes and velocities
of the motion. In fact, one of the main aspects that must be considered to
ensure naturalness is the smoothness of the trajectory, from both geometric
and velocity profile perspective [6].

• Sociability

2

Introduction

It is the ability to adhere to explicit high-level cultural conventions. This
means that the robot must be able to use known socio-cultural norms of
human behavior to take high-level human-like decisions [6].
Examples of this behavior include walking on the right side of a hallway or
asking permission to pass when passing through another individual’s personal
area. These behaviors generally represent socially imposed constraints and
can be used to solve conflicts or establish social order in navigation.
However, sociability is an extremely complex characteristic to ensure, as it also
depends on the target culture and the context in which the robot is deployed.

Figure 1.1: Personal space respected by humans during navigation.

Therefore, we can summarize the basic requirements that socially-aware naviga-
tion should have [6]:

• respect personal spaces;

• human-like trajectory;

• physical safe motion;

• interaction awareness and mutual avoidance;

• avoid movements that can be causes of discomfort or negative emotions;

• reduce velocity when approaching a human;

• avoid culturally inappropriate behaviors;

To ensure these characteristics, it is essential to develop a predictive model of
human motion. By integrating such a model into the navigation framework, the
robot will be able to anticipate the future trajectories of surrounding pedestrians
and determine its actions accordingly. In this way, the robot will be able to perform

3

Introduction

its task efficiently without causing discomfort to the human.

The next section describes the human motion model used in this thesis and
the considerations made to ensure the characteristics of socially aware navigation
described above.
This thesis proposes a human motion prediction model which combines Game
Theory and the Social Force Model (SFM). To enhance readability, since the
model is used as the basis for the robot’s navigation system, we will use the term
"agents" or "players" to refer to any entity capable of moving in the environment,
both pedestrians and the robot. The terminology related to game theory and the
operation of the SFM will be explained in detail in Chapter 3.

1.2 Our approach

Game theory is a mathematical tool for modeling situations in which players make
interdependent decisions that may influence those of other players [8]. In fact,
through the game resolution it is possible to determine what are the optimal
decisions for each player while also considering the choices of all the other players.
Since the robot’s decision can influence the humans ones, it is necessary to make
multiple predictions for each alternative decision that the robot can make in order
to ensure a reliable estimation of the future human motion.
However, this approach is more complex to describe and implement [6]. For this
reason, most state-of-the-art predictive approaches first perform human motion
prediction individually. Then, based on that prediction, they establish the robot’s
motion, as if there is no mutual influence between the two [6].
The use of game theory allows overcome this limitation since the robot is seen
as a rational agent whose decisions also influence those of the pedestrians. This
ensures the integration of the concept of interaction-awareness within the robot’s
navigation system, i.e., the mutual influence between humans and robots [7], which
is an essential feature to ensure the social acceptability of the robot, as described
above.

In the proposed predictive model, the decision-making process during naviga-
tion is modeled through the concept of a non-cooperative game, where all players
are considered as rational agents. This means that they will try to minimize their
own cost without cooperating with other players.
In a game, each agent needs a set of possible actions. The Social Force Model is
characterized by a set of parameters that described the behaviours and the intensi-
ties of pedestrians interactions. Different sets of parameters result in different type
of trajectories.

4

Introduction

In this context, a fixed number of SFM parameter sets are used to generate different
types of trajectories. Such trajectories are used as possible actions of the various
agents.
For each trajectory a cost is associated, determined by means of a cost function.
Such a cost function is characterized by three different terms: the first term, tends
to minimize the distance from the final goal; the second term, tends to guarantee
a certain smoothness of the trajectory (avoiding movements that are too weird
or sudden); the third term, tends to encourage the maximization of the distance
between pedestrians.
The solution of the game is established by achieving Nash equilibrium, which
ensures optimal action for each player.

Furthermore, to ensure a higher level of human-likeness for the trajectory of
the robot, it is necessary to apply game theory to trajectories that are as realistic
as possible. This necessarily results in the definition of sets of Social Force Model
parameters that allow for the generation of such types of trajectories.
However, the high sensitivity of the model to the values assumed by the parame-
ters results in high variability in the behaviors and final trajectories. Therefore,
manually establishing such parameters for each player is significantly complex.
To overcome this limitation, an evolutionary algorithm has been used to extract the
best parameters of the SFM approximating the trajectories contained in Thör [9], a
public dataset of real human trajectories. In this context, a Differential Evolution
(DE), a very simple and efficient optimization algorithm, has been employed.

The parameters of the SFM represent the way of modeling the behavior of the
individual person. Such behavior tends to vary and adapt according to how the
navigation scenario evolves. Thus, we need to estimate time-varying sets on the
basis of specific features that describe the changing scenario.
Nevertheless, the excessive time required to perform parameter estimation makes
DE unsuitable for real-time applications. Therefore, the operation of Differential
Evolution has been approximated by the use of a neural network for both the robot
and pedestrians.
To ensure the generation of realistic and variable parameters, according to the
state of the agent in the environments, the neural network has been trained in a
supervised manner by exploiting a labelled dataset.
Such dataset has been created by associating the best parameters, obtained through
the DE algorithm, with specific features that describe how the surrounding environ-
ment evolves along the considered human trajectory (such as minimum distances
from obstacles or other pedestrians).

5

Introduction

Therefore, the main objectives of this thesis are:

1. develop a social navigation algorithm for mobile robots that predicts human
motions by exploiting a model that combines Game Theory and Social Force
Model;

2. enhance social acceptability through real-time estimation of realistic SFM
parameters. Such estimation is performed by a neural network that mimics
the behaviour of the Differential Evolution algorithm;

1.3 Thesis organization
The rest of the thesis is organized as follows.

Chapter 2 reviews social navigation algorithms and Differential Evolution’s applica-
tions in the state-of-the-art. Chapter 3 presents the theoretical concepts necessary
to understand the two models underlying the navigation algorithm used in this
thesis, namely SFM and game theory. Chapter 4 briefly describes the working prin-
ciples of the Game-theoretic Social Force Model focusing more on the Differential
Evolution. Chapters 5 and 6 introduce the main hardware characteristics of the
mobile robot employed in the experimental session and the ROS framework used
for the implementation of the navigation algorithm, respectively. Section 7 outlines
the methodologies employed for conducting the experimental campaign and the
state-of-the-art metrics used for quantitative evaluating the tested algorithms. In
Chapter 8 the experimental results are discussed. Finally, Chapter 9 presents the
conclusions of this dissertation and outlines future research directions.

6

Chapter 2

Related Works

In this chapter the basic concepts of mobile robot navigation (such as global and
local planners) are provided. Then, an analysis of the main types of algorithms
used in state-of-the-art social navigation are presented. The chapter concludes
with an introduction to the state-of-the-art of Differential Evolution algorithm, the
optimization approach chosen for parameters estimation.

2.1 Autonomous navigation

In general, it is possible to identify four basic phases that characterize the au-
tonomous navigation of a mobile robot in the environment:

• Mapping: it is the method by which the robot constructs the map of the
environment in which it operate and move;

• Localization: it is the process by which the robot identifies its position
within the map;

• Trajectory planning: it is the phase in which the robot computes a sequence
of feasible poses (positions and velocities) to reach the final position;

• Actuator control: it is the stage where the robot controller computes the
precise commands that will be sent to the actuators in order to guide the
robot along the path obtained from the planning phase.

7

Related Works

MAPPING LOCALIZATION
TRAJECTORY
PLANNING

ACTUATOR
CONTROL

Sensors data
Actuators
commands

SLAM

Figure 2.1: Main phases of autonomous navigation.

In order to develop human-awareness algorithms, it is necessary to focus on how
the robot’s trajectories are generated.

Typically, the trajectory planning process can be divided into two sub-phases:

• Global planning: it has the task of providing the robot with an optimal and
collision free path that allows it to move freely from the initial position to the
goal position taking into account only static obstacles;

• Local planning: it is responsible for making local changes to the path to be
followed based on the information received from the sensors;

This division emphasizes the importance of focusing on the development of local
planning algorithms since they are the ones that effectively avoid dynamic and
unpredictable obstacles such as pedestrians.
Such algorithms must therefore be able to integrate information about pedestrians,
their behaviour and social conventions within trajectory computations to ensure
the natural, safety and social acceptability of the robot’s navigation.

In the following sections, the state-of-the-art of Social-aware navigation algorithms
and the state-of-the-art of Differential Evolution algorithm are presented.

2.2 State-of-the-art Social navigation
Currently, in the field of autonomous navigation, there are numerous classifications
of the various algorithms developed over the years. Some examples of this classifi-
cations are presented in some reviews such as: [10] or [11].
Although some of the classes proposed in these works also include approaches used
for navigation in human-shared environment, they do not represent an effective
classification of the algorithms required for social navigation.

8

Related Works

In general, it is challenging to define a clear and explanatory classification for
these types of algorithms due to their many features. For this reason, we propose a
classification based on two criteria defined as follows:

• Type of motion planning: it takes into account how robot trajectories are
computed;

• Integration of a human-motion prediction model: it considers whether
the algorithm uses a predictive model to determine the future movements of
humans and integrate them into the trajectories computation;

Using these two criteria, it is possible to classify social navigation algorithms in
four categories [12][13][14]: model-based, learning strategies, reactive and predictive.
This classification is described in fig. 2.2.

Model-based Learning strategy Reactive Predictive

ALGORITHM

TYPE OF MOTION PLANNING INTEGRATION HUMAN-MOTION PREDICTION MODEL

Figure 2.2: Classification of Social navigation algorithms: the dotted line denotes
the algorithm’s classification based on a particular criteria. The continuous line
inside the classification represents the category related to the same criteria.

In general, categories within the same class are typically complementary. Depend-
ing on the criterion considered, an algorithm may belong to different classification
categories at the same time. For example, an approach may be considered as
model-based if analysed from the point of view of motion planning, but at the
same time also reactive or predictive with respect to the use of a human-motion
predictive model.
However, especially in recent years, several studies attempt to merge model-based
algorithms with learning strategies to develop hybrid methods that exploit the
advantages of both categories and share many of their characteristics.

9

Related Works

In the following sections, the 4 categories presented in fig. 2.2 are described
individually, analyzing both their benefits and drawbacks.

2.2.1 Model-based algorithms
As the name suggests, these algorithms try to describe the dynamics of navigation
by means of a mathematical model, which are typically derived from geometric
relationships that characterize the motion [13] or through physics-based equations.
By using these models, it is possible to explicitly define different types of interactions
between the individual agent and the environment that occur during navigation
(such as agent-agent or agent-obstacle interactions). In this way, the pedestrian or
the robot will be able to establish the action to be performed.
In general, these interactions and resulting actions are individually regulated by a
set of parameters, which must be adjusted according to the navigation context.
This approach not only ensures great flexibility and generalization but also enables
the model to incorporate new interactions and behaviours that were not initially
considered. As a result, the descriptive capabilities of the model increases.
Furthermore, model-based algorithms are easier to implement than learning strate-
gies (which will be described below) because they do not require a training phase
or advanced knowledge of robotics.
Such features make model-based approaches the most widely used implementation
strategies for developing human-aware navigation systems [14].
One of the most famous algorithms in this category is the Social Force Model (SFM)
[15]. This approach models interactions among agents by means of attractive and
repulsive forces (more details in chapter 3) which cause the consequent movement
of the robot according to the laws of classical mechanics.
Given the significant potential of the model, subsequent studies have attempted
to extend it and mitigate its limitations in various ways. Some examples are [16]
where Zanlungo et al. try to model also the social behaviour of people moving in
groups or [17] in which the authors introduce a set of non-holonomic kinematics
constraints in order to remove the intrinsic isotropic behaviour and model the
tendency of humans to move along their gaze direction.
Another model-based algorithm is the Velocity Obstacle (VO) developed by Fiorini
and Shiller [18] which uses the robot’s acceleration constraints and the knowledge
of moving obstacles’ velocities to establish a dynamic feasible speed that allows
the robot to avoid collisions. The main problem is the fact that it does not take
into account the reciprocal mutual avoidance typical of human behaviour during
navigation.
This limitations was solved by Berg et al. by introducing the reactive ability also for
other pedestrians involved in the navigation via the Reciprocal Velocity Obstacle
(RVO) [19]. Later, same authors extended the concept to n-agents through ORCA

10

Related Works

(Optimal Reciprocal Collision Avoidance) [20].

Although these algorithms often have good computational complexity, one critical
issue is their high sensitivity to the model’s parameters or constraints that govern
interactions.
In order to achieve the desired behaviour, a precise calibration is required according
to the specific scenario in which the robot operates [14].
Furthermore, current state-of-the-art models are not able to describe the more
complex mechanisms of navigation, especially in the case of large crowds. This
may lead to the generation of oscillatory paths [13].

2.2.2 Learning strategies
Nowadays, the constant technological progress in the field of Deep Learning (DL)
and the introduction of Deep Neural Networks (DNN) are making learning strate-
gies increasingly popular. This is due to the possibility of approximating extremely
complex behaviours (such as navigation) in a relatively simple manner. This feature
enables the development of new approaches with the aim of making the autonomous
movement of robots more comfortable for humans [12].
By using different machine learning models, it is possible to exploit real data to
train DNNs allowing the robot to directly learn the underlying dynamics of the
navigation context. In this way, it is not necessary to explicitly model individual
interactions as in the previous category. This approach allows the robot to exhibit
extremely natural behaviour, outperforming many state-of-the-art model-based
algorithms.
Additionally, in terms of effort, the ability to perform the training phase off-line
guarantees a low on-line computational intensity, since most of the calculations are
executed before the actual navigation.

Basically, it is possible to categorize the main state-of-the-art machine learning
techniques for social navigation into three groups [12]:

• Supervised learning
In general, pedestrians show good performance when moving in a crowd. As a
result, extensive research has attempted to emulate these skills by means of
supervised learning [12]. This subclass of learning strategy is characterized by
algorithms that exploit various datasets consisting of real trajectories in order
to learn and subsequently replicate the same social behaviour exhibited by
pedestrians (Behaviour Cloning [21]).
An example is the work done by Xie et al. [22]. In their study, the authors
propose the use of a Deep Neural Network trained through expert demonstra-
tions. Taking as input an early fusion of "short history" data from LiDAR and

11

Related Works

kinematic data concerning nearby pedestrians, the network ensures a control
policy that allows the robot to navigate in a socially acceptable manner.
In [23], Shing et al. divide the robot’s workspace into five segments, each of
30 degrees, and exploit a Multilayer Perceptron (MLP) to determine the best
direction in which the robot should move. Once trained, the MLP is able to
generate a collision-free trajectory that allows the robot to reach the goal by
moving within a dynamic environment.
Other studies aim to differentiate the behaviour of the robot according to
the scenario in which it will operate. To provide the robot with the ability
to adapt to different contexts and change navigation strategy, Banisetty et
al. [24] propose a combined learning approach using Convolutional Neural
Network (CNN) and Support Vector Machine (SVM) technique to develop
a context-classifier and combine it with non-linear optimization based local
planners.

• Deep reinforcement learning
Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) algo-
rithms take inspiration from the natural world to try to replicate the way of
learning of many animals, including humans.
The navigation algorithms based on these two strategies, in particular DRL,
can enable the robot to have an autonomous learning capability and to acquire
decision-making skills [25]. They employ a reward value function, as a feedback
mechanism, to evaluate the interaction of the agent with the environment.
The training phase involves a continuous process of trial and error in which
the robot learns the sequence of actions that result in the highest cumulative
reward. Therefore, in contrast to supervised learning where the robot learns
the correct actions through real data, this approach involves instructing the
robot to recognize incorrect actions by means of a reward.
One of the pioneers in this field is Chen et al. [26]. The authors develop one of
the first decentralized multiagent collision avoidance algorithms based on DRL,
namely CADRL. Although the algorithm successfully prevented collisions with
pedestrians, the robot’s learned cooperative behaviours did not conform to
the basic social rules of human navigation. The same authors extended their
previous algorithm by integrating socially aware behaviours [13].
A further remarkable algorithm is the SARL [27] where the authors focus
more on teaching the robot to navigate in crowds by trying to predict possible
human-human and human-robot interactions. However, the robot’s learnt
navigation policy was found to be limited by the distance associated with
the training process, leading to a reduction in navigation performance for
goals far away from the robot’s position. The problem was later solved by Li

12

Related Works

and Xu [28] through the integration of a dynamic local goal setting mechanism.

• Inverse reinforcement learning
The implementation of DRL techniques requires a hand-crafted reward value
function. This needs an advanced knowledge of robotics, sensing and motion
planning [12]. Moreover, in very complex scenarios, the design of such a reward
value function can be an even more difficult challenge.
For these reasons, a possible solution is to exploit real datasets to enable
the robot to do this task autonomously. Through the use of optimal expert
demonstrations, Inverse Reinforcement Learning (IRL) algorithms will attempt
to extract the underlying reward structure so that it can subsequently be used
by Deep Reinforcement Learning algorithms to learn the appropriate policy
for the social-aware navigation [29].
An example of such an approach is [30], in which the authors propose the
use of inverse reinforcement learning to teach the robot where and how to
approach a person in an unstructured open area. This information is then used
to generate a path that allows social norms to be respected during navigation.
However, the main problem lies in the fact that the robot can only approach
isolated people, making this algorithm difficult to use in medium or large
crowds.
In another work, exploiting the potential of Generative Adversarial Networks
(GAN), Tai et al. [21] propose the use of a Generative Adversarial Imitation
Learning (GAIL) strategy to skip the process of estimating the reward value
function and directly force the generation of state-action pairs matching that
from the expert demonstrations, which are subsequently used to teach the
robot to navigate in dynamic environments through reinforcement learning.
More recently, Sun et al. [31] focused on the fact that most of IRL approaches
do not consider the kinematic constraints of the robot. For this reason,
they developed an Inverse Reinforcement Learning-based planner capable of
generating paths that respect human social rules and directly integrate the
non-holonomic constraints of the robot.

13

Related Works

RL

Environment

Rewards Behaviour

Reinforcement Learning

IRL

Environment

Rewards Behaviour

Inverse Reinforcement Learning

Figure 2.3: Schematic comparison between Reinforcement Learning and Inverse
Reinforcement Learning [32].

While learning strategies offer impressive descriptive capabilities and excellent
performance, they are also accompanied by significant drawbacks. Indeed, for their
training, such models require a vast amount of data (supervised learning) or trials
(DRL and IRL), resulting in a very time-consuming process.
Furthermore, this data must be able to accurately represent the specific navigation
scenario in which the robot will operate in order to identify all possible situations
that could occur. This feature renders these algorithms highly non-generalizable.
Moreover, the limited availability of different datasets (especially the annotated
ones required for supervised learning) makes the training of such models difficult,
since the similarity between the data can lead to the risk of overfitting DNN
parameters [33]. For this reason, some model-based algorithms can outperform
these approaches in specific cases.
Finally, the use of DNN and different machine learning strategies is related to a
phenomenon called "lack of explainability". When a system, such as a mobile robot,
makes decisions autonomously, it is crucial to establish the process that led to that
specific decision. Such a characteristic is called “explainability” [33]. Due to the
implicit nature of DNNs, it is not possible to derive an a priori model to establish
this decision-making mechanism. This therefore makes explainability extremely
difficult or even impossible in some cases.

2.2.3 Reactive algorithms
Reactive algorithms are a subset of algorithms that do not rely on any human
prediction model. For this reason, they only modify the "next step action" (action
they will perform at the next time step) of the local path, completely ignoring the
future states of other agents [12]. Then, when the algorithm detects an obstacle, it
"reacts" by changing the local path and establishing new speed commands to avoid
collision with the object.

14

Related Works

For the reasons explained at the beginning of this section, many algorithms de-
scribed as model-based (such as SFM, VO and ORCA) can also be considered as
reactive algorithms. Over the years, many works have attempted to extend such
approaches without necessarily introducing a predictive model of human behaviour.
An example is [34] where the authors modify the SFM to represent the social space
of pedestrians by a Gaussian distribution. In [35] Chen et al. merge the VO and the
Rapidly Random Tree* (RRT*) algorithm with the aim of reducing the uncertainty
of robot trajectories.
Another of the well-known models based on reactive maneuvers is the Dynamic
Window Approach (DWA) [36]. In this case, the algorithm uses obstacles and
pedestrians information from the environment and integrates it with the dynamic
and kinematic constraints of the robot to compute a "velocity space", which consists
of combinations of linear and angular velocity that do not result in any collisions
and are actually achievable in the next time interval. Such combinations are used
to generate a set of feasible trajectories, which are subsequently evaluated using a
cost function. The robot will then follow the one with the lowest cost. The process
is repeated at each time interval to take into account changes in pedestrian speed.
However, the algorithm has a limited responsiveness, making it only suitable for
scenarios with a very low number of pedestrians.
In recent years, one of the most common approaches is to use learning strategies
due to the great advantages they offer. In [37], authors consider navigation as a
classification task and use expert trajectory demonstrations to train Fully Con-
volutional Neural Networks. In this way, the networks can classify the generated
path as feasible or not, taking into account obstacles and pedestrians in the robot’s
vicinity. However, using only expert demonstrations and not also the actual trajec-
tories of pedestrians, results in an inability to incorporate information about social
interactions and generalize navigation to different scenarios.
In another work, Gil et al. [38] model navigation by means of the SFM and exploit a
trained Neural Network to extract the acceleration of the robot from the computed
interaction forces.
Although these types of algorithms are characterized by high computation efficiency
and can be well generalized [12], the inability to predict future human behaviour
by means of a incorporated human-motion model could lead to the generation of
unnatural or even unsafe trajectories, especially in contexts where the robot moves
at speed similar to those of pedestrians [13]. Nevertheless, even when dealing with
collision-free trajectories, the absence of a human-predictive model could lead to
trajectories that fail to respect the individual’s interpersonal space, resulting in
discomfort for human beings [12].
Overall, in these types of algorithms pedestrians are commonly considered as indi-
vidual dynamic passive objects rather than multiple cooperative agents, which can
result in problematic situations such as the well-known "freezing robot problem".

15

Related Works

This occurs when a robot’s navigation algorithm cannot identify free and safe paths
due to high crowd density, resulting in freezing of robot motion [39]. Therefore,
these issues make these algorithms unsuitable for an efficient implementation in
social navigation contexts.

2.2.4 Predictive algorithms
Unlike reactive algorithms, predictive algorithms exploit human-motion model to
predict the future trajectories of agents involved in the navigation. They will then
attempt to determine the action to be taken based on the future states of the
detected pedestrians [12]. This integration ensures a significant improvement in
the effectiveness of navigation in dynamic and crowded environments [40], thus,
preventing potential problematic situations such as the already mentioned "freezing
robot problem".
Indeed, the usage of a predictive model of human behaviour enables the integration
of more social information into the navigation algorithm. Pedestrians are no longer
seen as mere passive dynamic objects but as active agents capable of making
autonomous decisions and cooperating with the robot to ensure mutual avoidance
maneuvers. These characteristics make predictive algorithms particularly suitable
for application in human-aware navigation scenarios, as they will try to respect
human constraints and social rules [6].
Recent works have focused on the use of specific types of Recurrent Neural Networks
(RNN), such as Long-Short Term Memory (LSTM) networks. They are neural
networks capable of learning general human movement sequences.
In [41], Alahi et al. associate a Long-Short Term Memory (LSTM) network with
each agents, so that specific motion properties can be identified and used to make
predictions about pedestrian future positions. Since such LSTMs cannot capture the
interaction between different individuals, the predictions of future states are then
processed using a social pooling layer. However, this will result in a kind of "average
trajectory" which can lead to incorrect predictions in some cases. Kretzschmar et
al. [42] model the cooperative behaviour of agents during navigation as a mixture
distribution that captures both discrete decisions, like going left or right, and
the stochastic behaviour of humans, which determines the natural variance of
pedestrian trajectories. By using IRL, they attempt to extract parameters values
of such distributions that best match the observed expert demonstrations. This
allows the robot to learn a model of human cooperative navigation behaviour that
it can use to predict pedestrians movements.
Another research area that has been gaining momentum in recent years is the
use of Game Theory to model human behaviour during navigation (more details
in 3). In this context, the studies conducted by Turnwald et al. are particularly
important. In [8] the authors modelled human navigation as a non-cooperative game,

16

Related Works

demonstrating through real experiments how pedestrians choose trajectories that
ensure the achievement of a Nash equilibrium. In the same study, five different types
of cost functions are also analysed. Authors established that the best performances
are guaranteed by the cost function related to the path length. Later, in [7], same
considerations are employed to develop a trajectory planning algorithm able to
explicitly model the human-like decision-making process by means of Game Theory.
Based on similar ideas, Galati et al. [43] propose a game-theoretical social-aware
navigation algorithm based on an improved cost function. This improvement
is guaranteed by the integration of social information and features typically not
considered in other types of approaches (including those based on game theory) such
as group recognition, sequential decision making and human-obstacle interaction.
This approach results in an algorithm able to generate safe and socially acceptable
trajectories.
The main disadvantage of this type of algorithms is the high computational intensity
required to predict the future trajectories of pedestrians, which rise significantly
with increasing crowd density.
In addition, predictions of agents’ future states obtained from the model may
be affected by uncertainty due to the stochastic nature of human behaviour.
This uncertainty tends to increase with the time horizon, resulting in significant
inaccuracies in long-term predictions. Such behaviour implies that the robot
must frequently recompute the various possible trajectories of pedestrians during
navigation, further increasing its computational effort.

Figure 2.4: Comparison of trajectories generated by the two types of planner
(from [12]): (a) Reactive: when a person appears in its way, the robot modify the
local path to change direction; (b) Predictive planner: by exploting a human-motion
model, the robot first predicts the future states of the person and then it computes
its path considering the mutual avoidance.

17

Related Works

2.3 State-of-the-art Differential Evolution
This thesis proposes the use of a Differential Evolution algorithm to estimate the
best parameters of the Social Force model.
Differential evolution (DE) is a very powerful stochastic algorithm1 developed by
Storm and Price in 1995 [44] and used to perform global optimization of non-linear
problems in a continuous search space.
In general, the DE algorithm follows the same computational procedure as a typical
Evolutionary Algorithm (EA) [45]. However, differently from most EAs where
new individuals are obtained through the use of different probability distributions,
the DE explores the solution space by means of a scaled difference between ran-
domly selected members of the current population. Then, through the processes of
crossover and selection, it chooses the chromosomes that will be part of the next
generation.

Therefore, the DE performs three main steps, which will be repeated in a cyclic
manner until the last generation is reached. A schematic representation of how the
algorithm works is described in the fig. 2.5:

Initialization of
the population

Difference-vector
based mutation

Crossover Selection

Figure 2.5: Main steps of the Differential Evolution algorithm

A detailed description of these steps will be provided in Chapter 4 in order to
give the reader the necessary information to understand how the DE algorithm
enables the estimation of real SFM parameters.

However, some of the most important properties that characterise the Differential
Evolution algorithm are highlighted below [45]:

• No coding of solutions: in many EAs such as the Genetic Algorithm
(GA), it is necessary to encode the real values of the parameters that make

1A stochastic algorithm is a type of optimization algorithm that attempts to find an optimal
solution or a good approximation, by using random process, usually determined by probability
distributions. They differ from deterministic algorithms, where the solution is instead obtained
through steps that do not involve probabilistic process.

18

Related Works

up the chromosomes as bit strings. This leads to increased complexity and
computational effort;

• Easy implementation: the algorithm can be implemented in a few lines of
code, without the need for advanced programming knowledge. This character-
istic makes it suitable for application to various research fields;

• Excellent performance: through its operation, the DE ensures better
performance in terms of accuracy, convergence speed and robustness;

• Reduced number of control parameters: the performance of the algo-
rithm depends entirely on the calibration of three parameters, namely the
number of chromosomes (NP) in the population, the mutation factor (F) and
the crossover rate (CR). A detailed explanation of these parameters will be
presented in Chapter 4;

Due to these characteristics, the DE has become one of the most popular and
widely used optimization algorithms, both in its classical form and in its later
variants developed over time [46][47][48].

One of the many fields in which DE has great potential is the systems identi-
fication. In [49], Cheng et al. approximate complex dynamic systems by means of
linear models and exploit DE to estimate the transfer function parameters that
guarantee the most similar time-response. A similar approach is used by Yousefi
et al. [50]. In their study, the authors approximate a non-linear system (electro-
hydraulic servo system with flexible load) using two different transfer functions
according to the operating frequency range. In particular, they use a linear model
for low frequencies and a second-order system for higher frequencies. They then
exploit the DE to derive the parameters of these models using non-linear constraint
functions and constrained parameter values.
In [51], Tang et al. approximate a civil building as a model consisting of n mass-
spring-damping systems. Then, they estimate the actual parameters of an 8 DOF
and a 20 DOF system using both DE and PSO (Particle Swarm Optimization
algorithm), highlighting the better performance of the former.
However, DE is also applied in the field of automatic controls robotics. In [52],
Menon et al. apply a DE algorithm for clearance of nonlinear flight control laws
of high-performance aircafts. In general, high-performance aircraft are designed
to be naturally unstable. Control laws are therefore required to stabilize them

19

Related Works

during flight. Since the safety of the aircraft depends on the correct operation of
these control laws, it is necessary to verify their proper functioning both during
flight and malfunctions (“flight clearance problem”). Therefore, by establishing
mathematical evaluation criteria, it is necessary to derive the possible combinations
of aircraft configurations that determine the worst values. In their study, the
authors model this process as an optimization problem. They apply DE to try to
derive the combinations of aircraft configurations that result in the worst values of
these criteria and they then compare its performance with GA (Genetic Algorithm).
The DE guarantees better accuracy and speed, as it reduces the computational
overhead by 31%.
Moreno et al. [53] propose a new solution to solve the global localization problem
by means of a nonlinear evolutive filter denoted as Evolutive Localization Filter
(ELF). Using the DE, the filter stochastically searches within the state space for
the robot pose estimate that best matches the odometry and sensor measurements.
In [54], Aidin et al. develop an algorithm for planning time-optimal trajectories.
Basically, the navigation algorithm generates a road-map (a map that presents the
shortest paths between the initial position and the various possible final positions),
taking kinematic constraints into account. Then, they exploit the DE to determine
which is the optimal trajectory to follow.
In [55], the authors propose the use of parallel and distributed differential evolution
algorithms to ensure cooperative navigation of n-robots. The DE is then used to
determine the best next positions that do not result in collisions with other robots.
Another field in which DE finds application is the training of neural networks.
In [56], authors succeed in achieving better convergence in the optimization of
neural network weights by using a hybrid algorithm. This algorithm is obtained by
combining the DE with the Levenberg Marquardt algorithm (LMA).
A further work is [57] where authors use a neural network to perform the detection
of malignant regions in colonoscopy video sequences. During colonoscopy, in fact,
the probe finds itself in time-varying conditions and environments characterized
by variations in shadings, shadows, lighting and reflections. Such problems can
lead to a loss of accuracy of the neural network and its ability to recognize tumors.
Therefore, the authors propose the use of online backpropagation algorithm to train
the NN and the application of DE to derive the best learning rate. This makes it
possible to train the neural network according to the conditions under which the
probe is operating.

In all of the applications described above, DE proves to be an excellent solu-
tion, showing great adaptability to different context and scenarios.
We will therefore use this algorithm in our case to try to obtain socially acceptable
trajectories.

20

Chapter 3

Background Social Force
Model and Game Theory

3.1 Social Force Model

3.1.1 Overview

The Social Force Model (SFM) is a mathematical model introduced in 1995 by
Dirk Helbling and Péter Molnár [15]. Due to its flexibility and low computational
complexity, it is one of the most widely used state-of-the-art models to describe
the dynamics governing the movement of pedestrians in different crowd densities.
In fact, it has been applied in various real or simulated contexts, such as museums
[17] and urban environments [58], but also in hazardous situations and evacuations,
for example earthquakes [59] or terrorist attacks [60].
The operating principle of the SFM is based on the assumption that a pedestrian
can be represented as a particle whose movement is caused by the effect of specific
types of forces, called "social forces". These forces are not to be intended as actual
physical phenomena, but rather as fictitious forces generated by the individual’s
internal motivations and their interaction with other elements of the environment
in which they are moving, such as other pedestrians or obstacles. It’s the combined
effect of these interactions that causes the actual movement of the pedestrian in a
specific direction.

The notation of the model, types of forces and pedestrian’s dynamics are de-
scribed in the following sections.

21

Background Social Force Model and Game Theory

Notation

This section is intended to provide the reader with some notational conventions
that may be useful in understanding the rest of the thesis. The sets of natural, real,
real nonnegative and strictly positive real numbers will be denoted by N, R, R≥0
and R>0 respectively. We use roman font to denote scalar quantities (x ∈ R) and
bold font to denote vectors in the plane (x ∈ R2). Given a vector x = (x1, x2) ∈ R2,
∥x∥ =

√
x12 + x22 indicates the Euclidean norm.

3.1.2 Model formalization and types of forces
The model consider a set N = {1, ..., n} of n ∈ N pedestrians moving in a
continuous planar space X ∈ R2. Each pedestrian i ∈ N will be characterized by a
goal pgoal

i ∈ R2, which represents the final position that the pedestrian wants to
reach, and a state. The latter is composed by two vectors: the position pi(t) ∈ R2

and the velocity vi(t) ∈ R2 vector at the time instant t ∈ R≥0.
In the original version, the SFM includes four types of social forces that govern the
motion of each pedestrian:

• Attractive force of the goal: the pedestrian in position pi(t) is attracted
to the goal pgoal

i by a force Fgoal
i (t). This force can be expressed as:

Fgoal
i (t) = vd

i êi(t)− vi(t)
αi

(3.1)

where êi(t) = pgoal
i −pi(t)

∥pgoal
i −pi(t)∥

is the desired direction of the pedestrian, αi ∈ R>0

is a parameter called "relaxation time" that indicates how decisively the
pedestrian moves towards the goal and vd

i is the desired speed (i.e. the speed
that pedestrian want to achieve).

• Repulsive forces from other pedestrians: in real-life navigation, ap-
proaching an unknown pedestrian too closely causes a reduction of the per-
ceived comfort for both individuals involved. As a result, each pedestrian
reacts by trying to move away from the other. The Social Force Model (SFM)
describes this behaviour as the effect of a repulsive force related to the implicit
interaction that occurs between two pedestrians. Precisely, such force works
to prevent excessive approaches between the various agents involved.
From a mathematical perspective, it is possible to express the repulsive force
exerted by the pedestrian j ∈ N\{i} on the pedestrian i as an effect of a
repulsive potential that can be described using a decreasing monotonic function
dependent on the vector radius connecting the two individuals (pi(t)− pj(t)).
The definition of a potential function enables us to establish a corresponding
force expression through the application of the mathematical gradient operator:

22

Background Social Force Model and Game Theory

Frep
i,j (t) = −∇V(pi(t)− pj(t)) (3.2)

Although the original model developed by Helbling et al. assumes a function
where elliptical equipotential lines are directed towards the pedestrian’s motion,
alternative forms have been proposed over time [61].
Considering the limited size of the room used in the experimental session and
the expected number of pedestrians for each test, the crowd density in which
the algorithms has been tested can be considered high. For this reason, in this
thesis we decided to exploit a function that determines circular equipotential
lines, particularly useful in cases of high-density conditions [61].
Given these assumptions, the equation of the repulsive force Frep

i,j (t) between
two pedestrians at distance di,j(t) = ∥pi(t)− pj(t)∥ can be expressed as:

Frep
i,j (t) = Ai exp

{
ri + rj − di,j(t)

Bi

}
F fov

i,j (t)n̂i,j(t) (3.3)

where the terms Ai, Bi ∈ R>0 are constant parameters that regulate the
strength and range of the repulsive force, respectively, n̂i,j(t) = pi(t)−pj(t)

∥pi(t)−pj(t)∥ is
the unit vector of the direction between the two pedestrians and ri, rj ∈ R>0
are the radii of the personal spaces of pedestrian i and j. In addition, the term
F fov

i,j (t) ∈ [0,1] represents a time-varying anisotropic factor that capture the
effect of the limited field of view, typical of human beings. In the context of
pedestrian navigation, individuals tend to focus more on objects and entities
within their visual range. Consequently, the repulsive force must be adjusted
by means of a quantity that is strictly dependent on the bearing angle γi,j(t)
(i.e. the angle between the actual direction of motion of agent i and the
segment joining the positions of agent i and agent j) of pedestrian j measured
from pedestrian i.
The scaling factor F fov

i,j (t) is defined as:

F fov
i,j (t) = λ + (1− λ)1 + cos γi,j(t)

2 (3.4)

where λ ∈ [0,1] represents the strength of the anisotropic behaviour. As can
be observed, a higher lambda value will render the scaling effect insignificant,
leading to a more isotropic behaviour.

• Repulsive forces from obstacles/walls: it is a repulsive force related to
the proximity of the pedestrian to an obstacle or wall. The considerations
for determining this force are analogous to the force between pedestrians
seen above. It will then be necessary to define a monotonically decreasing

23

Background Social Force Model and Game Theory

potential function as a function of the vector radius between pedestrian i and
the nearest obstacle or wall. Once this potential has been defined, it will be
possible to derive the force expression via the gradient.

Fobs
i (t) = exp

(
1−

(
di,obs(t)

R0

))
F fov

i,obs(t)n̂i,obs(t) (3.5)

where di,obs(t) = ∥pi(t)− pobs∥ is the actual distance between the pedestrian i
and the nearest obstacle and R0 represents the minimum acceptable distance.
For the same reasons discussed in the previous case, the repulsive force is
scaled by a corresponding anysotropic factor Fobs

i (t) defined as:

F fov
i,obs(t) = λ + (1− λ)1 + cos γi,obs(t)

2 (3.6)

where γi,obs(t) is the bearing angle of the considered obstacle measured from
pedestrian i.

• Attractive effects from groups or objects of interest: in some cases,
pedestrians may be subject to "attractive effects" related to other pedestrians
or individual objects of interest characterized by the position pk(t) . Examples
include the formation of groups, or the necessity to pick up an object in a
different position with respect to the final destination the pedestrian wishes to
reach. Helbling et al. modelled these effects in a way that is opposite to the
repulsive interaction forces seen above, i.e. by means of an attractive potential
that can be expressed by a monotonic function that increases as the distance
between pedestrian i and the considered point of interest k becomes greater.
Therefore, as in the previous cases, by defining a suitable potential function,
it is possible to derive the expression of the force by applying the gradient.

Fattr
i (t) = −∇W(pi(t)− pk(t)) (3.7)

Although the original SFM also models this kind of interaction, the types of
tests proposed in the experimental session do not include either the formation
of groups (due to the limited space) or the presence of intermediate stages
other than the target positions of individual pedestrians. For this reason, this
type of force has not been considered in the navigation algorithm that will be
proposed later.

3.1.3 Model dynamics
As expressed above, the SFM considers pedestrians as particles subject to social
forces. By applying the principle of superposition, it is possible to derive the

24

Background Social Force Model and Game Theory

resultant force Fres
i (t) acting on the generic pedestrian i at a given time instant t

as:

Fres
i (t) = Fgoal

i (t) +
∑

jϵN \{i}
Frep

i,j (t) + Fobs
i (t) (3.8)

Since the motion of pedestrian i can be described using the laws of Newtonian
mechanics, it’s possible to express its dynamics by a system of ordinary differential
equations. Assuming, without loss of generality, that forces are re-scaled so that
pedestrians have a unitary mass and considering the discretized case with time
step ∆t, we will have:

vi(t + ∆t) = vi(t) + ∆tFres
i (t)

pi(t + ∆t) = pi(t) + ∆tvi(t + ∆t)
(3.9)

The table 3.1 summarizes all the relevant parameters of the SFM.

3.1.4 SFM drawbacks
The SFM is a useful and adaptable tool for representing human behavior in various
situations. The main advantage is its great description ability i.e. the ability to
describe pedestrian movement processes and phenomena [62]. However, it also
presents certain limitations and issues that limit this ability. Below, some of them
will be briefly outlined.

Parameters homogeneity and calibration

In the SFM model, the behaviour of the pedestrian is strongly influenced by the
choice of parameters, which influence the intensity of the interaction with the envi-
ronment. In real navigation scenarios, individuals respond differently to external
stimuli due to their personal feelings and internal motivations. This can be trans-
lated as a large heterogeneity of model’s parameter values, which will be different
for each pedestrian. However, the original SFM assumes that all individuals are
characterised by the same set of parameters, resulting in a certain homogeneity
in the possible behaviours. This consequently leads to a limitation of the model’s
description ability.

Another issue related to the parameters is their calibration. Their values may vary
considerably depending on the context in which the model is applied, leading to

25

Background Social Force Model and Game Theory

Symbol Meaning
n ∈ N number of pedestrians

X ∈ R2 planar space
pi(t) ∈ R2 position of pedestrian i at time t
vi(t) ∈ R2 velocity of pedestrian i at time t
pj(t) ∈ R2 position of pedestrian j at time t
pgoal

i ∈ R2 position of the goal of pedestrian i
Fgoal

i (t) ∈ R2 attractive force for pedestrian i at time t
Frep

i,j (t) ∈ R2 repulsive force of pedestrian j on i at time t
Fobs

i (t) ∈ R2 repulsive force of the closest obstacle on pedestrian i at time t
Fres

i (t) ∈ R2 resultant of the forces at time t
ri ∈ R>0 radius of the personal space of pedestrian i
rj ∈ R>0 radius of the personal space of pedestrian j
vd

i ∈ R>0 desired velocity (in module) of pedestrian i
αi ∈ R≤0 relaxation time of pedestrian i
Ai ∈ R>0 strength of interaction force for pedestrian i
Bi ∈ R>0 range of interaction force for pedestrian i
R0 ∈ R>0 minimum admissible distance between pedestrian and obstacle
γi,j(t) ∈ R bearing of pedestrian j measured by pedestrian i

F fov
i,j ∈ [0,1] anisotropic factor for pedestrian-pedestrian interaction

γi,obs(t) ∈ R bearing of the nearest obstacle measured by pedestrian i
F fov

i,obs ∈ [0,1] anisotropic factor for pedestrian-object interaction
λ ∈ [0,1] strength of anisotropic behavior

Table 3.1: SFM variables and parameters

more or less realistic behavior of the simulated pedestrians. For this reason, it
becomes essential to determine the optimal set of parameters that best describe the
scenario to be analysed. Consequently, this characteristic restricts the generality of
SFM and its ability to adapt to various navigation situations. An example of such
a behaviour can be seen in fig. 3.1.

Isotropic motion

In their original model, Helbling et al. implicitly assumes a holonomic motion.
In this context, pedestrians are characterised by isotropic motion determining
the ability to move in any direction at any time, regardless of their orientation.
However, in reality, the biomechanics of the human body makes pedestrians move
forward most of the time, aligning their direction of movement with the orientation

26

Background Social Force Model and Game Theory

Start 3

Start 4

Start 1

Start 5

Start 2

Goal 4

Goal 2

Goal 3

Goal 1

Goal 5

Start 3

Start 4

Start 1

Start 5

Start 2

Goal 4

Goal 2

Goal 3

Goal 1

Goal 5

(c)

Social Force Model

Start 3

Start 4

Start 1

Start 5

Start 2

Goal 4

Goal 2

Goal 3

Goal 1

Goal 5

(a) (b)

Figure 3.1: Example of pedestrians navigation behaviour with different sets of
parameters: (a) Ai = 0.2, Bi = 0.1, ri = rj = 0.1; (b) Ai = 0.45, Bi = 0.3, ri =
rj = 0.4; (c) Ai = 0.8, Bi = 0.7, ri = rj = 0.7. For simplicity, the variability was
modelled by varying only the pedestrian interaction parameters and assuming that
pedestrians have the same parameters in terms of desired speed vd

i , relaxation time
αi and anisotropic strength λ. However, this assumption is not necessarily true in
reality

of their head [17]. This behaviour has been analysed in various state-of-the-art
studies such as [63], where the authors demonstrate how the movement of humans
can be approximated by means of a nonholonomic motion model. Overall, this
factor limits the real-world applicability of the original SFM, since it is not capable
of representing all possible characteristics of human motion.

27

Background Social Force Model and Game Theory

3.2 Game Theory

3.2.1 Overview
Game theory is a discipline that studies mathematical models capable of describing
strategic interactions among rational agents. It is a fundamental tool for analysing
problems involving multiple decision-makers, where the quality of the decision
depends strictly on both the individual’s choices and those of the other participants
in the game. Although the first discussions on the mathematics of games date back
to the second half of the XVI century (1564) with Girolamo Cardano, it was only in
1928 that modern game theory was born, with John von Neumann’s contribution.
He published an article proving the general theory for solving cooperative zero-sum
games in the case of only 2 players, and later extended it to more players with the
help of Morgenstern, with whom he published the results in their book in 1944 [64].
In 1950, however, John Nash succeeded in extending the criteria proposed by von
Neumann by developing and proving the concept of the "Nash equilibrium" [65],
which applied to a wider range of games than those proposed by von Neumann
and demonstrated the existence of a solution even for non-cooperative games that
were not necessarily zero-sum.

Nowadays, thanks to its ability to describe very complex phenomena, game the-
ory is used in many different fields, such as economics and finance [66][67], politics
[68], biology and natural selection [69], control theory [70], computer science and
artificial intelligence [71][72].

3.2.2 Terminology related to game theory
A clear explanation of the main terminology used is necessary to better understand
how game theory works and its application in the context of social navigation,
which will be presented in the following chapters.

A description of the most commonly used words related to game theory is presented
below:

• Players: they are the participants in the game;

• Action set: each player has a set of possible actions (or moves) that uses to
make decisions during the different phases of the game;

• Stages: they are the phases of the game. In each phase, one or more players
must perform an action;

28

Background Social Force Model and Game Theory

• Game state: it corresponds to the set of information about the various
players at a given stage of the game;

• Strategy: it represents a plan, a set of planned actions that the player
intends to follow in order to achieve his goal. It is important to emphasize the
difference with the concept of move, which corresponds to a specific action
performed by a player during the game;
There are several types of strategy in game theory. The most common ones
used to describe the human motion in social navigation [8] are:

– Pure strategy: is a type of strategy where the action the player will take
based on the game state is deterministic and free of uncertainty. Therefore,
the player will be completely sure of his decision;

– Mixed strategy: the action/decision to be taken is determined by a proba-
bility distribution. Therefore, based on the state of the game, each action
in the player’s action set has a certain probability of being performed;

• Cost function: It corresponds to the way in which the individual player
evaluates which decision to make during the game. Therefore, it is a repre-
sentation of what drives the player to perform a particular action and will
depend on the combination of strategies applied by all players;

• Solution: It is a type of rule that describes which strategies the players will
adopt at a given stage, thus allowing the predict how the game will be played
[73].

3.2.3 Game types
Over time, several types of games have been categorized. Each of them describes
particular features that distinguish it from others. Below, an overview of the most
common game types [74] is presented. This will be helpful in understanding how
the game, implemented in the developed robot’s navigation algorithm, models
interactions with other pedestrians in the environment.

Cooperative games or non-cooperative games
A cooperative game models situations in which players can collaborate to achieve
common goals. This situation can be represented as players minimizing a common
cost function.
In contrast, a non-cooperative game describes situations where players cannot
cooperate. Each player acts independently, aiming to reduce their individual cost.

29

Background Social Force Model and Game Theory

Zero-sum games or non-zero sum games
In a zero-sum game, the gain or loss for one participant, generally referred to as
the payoff, is exactly equal to the loss or gain for another player. Thus, the total
sum of gains and losses of all participants in the game always remains constant
and equal to zero.
In the case of non-zero-sum games, the total payoff of the players is not constant.
This implies that one player’s win does not necessarily determine another player’s
loss and thus cooperation between players to obtain common benefits is possible.

Static or dynamic games
In a static game, players make decisions simultaneously without the knowledge
about other players’ choices. Some examples of static game could be rock-paper-
scissors or the well-known prisoner’s dilemma in its general formulation.
In contrast, a dynamic game is characterized by players that make decisions se-
quentially. This implies that the choices of previous players influence the current
player’s decision. An instance of such a game is chess.

Perfect information games or imperfect information games
In perfect information games, all players have complete knowledge about the game’s
state and the moves made by others. Also in this case, the most famous example
is chess.
In imperfect information games, participants possess limited and incomplete knowl-
edge regarding the game’s state. Examples of such games include Poker or Blackjack.

Symmetric or Non-symmetric games
Symmetric games are characterized by all players having the same number and
types of strategies and moves that they can perform. A classic example of a
symmetric game is the game ’rock-paper-scissors’, in which all players have the
same set of possible actions.
On the other hand, in asymmetric games, a player may have a different number
and types of strategies and actions than other participants.

Finite or Non-finite games
A finite game is a game in which there are a limited number of participants and
each of them has a limited number of actions they can perform.
In non-finite games, the number of players and the number of moves for each player
are not fixed.

30

Background Social Force Model and Game Theory

3.2.4 Nash equilibrium for Non-cooperative games
As proven in [8], it’s possible to model human navigation as a non-cooperative
non-zero sum game. In fact, during navigation each pedestrian will try to achieve
its goal by reducing its individual cost. In addition, if an agent "win" (reaches its
goal), it does not determine the defeat of another player (other pedestrian will still
have the possibility to achieve their goal).
Therefore, the game’s resolution will enable the individual agent to make predictions
concerning other pedestrians’ movements. Based on these predictions, each agent
will choose the optimal action to perform.

One of the most well-known solutions for this type of game is the previously
mentioned Nash equilibrium concept [65]. It can be defined as a combination of
strategies where no agent can reduce its own cost by changing its action if the
other agents stick to their actions [7]. Thus, the Nash equilibrium represent the
optimal response for all the agent.

Expressing a generic combination of agents’ strategies at a given game stage
j as sj =

(
sj

1, ..., sj
i , ..., sj

n

)
, we can denote the Nash equilibrium at the same stage

j with an asterisk:
sj∗ =

(
sj∗

1 , ..., sj∗
i , ..., sj∗

n

)
(3.10)

where sj∗
i represent the best strategy of agent i.

The Nash equilibrium is established when each i-th player can no longer reduce
his individual cost given the choices of the other players. In mathematical terms,
when the following equation is satisfied:

Ji

(
sj∗

1 , sj∗
2 , ..., sj∗

i , ..., sj∗
n

)
≤ Ji

(
sj∗

1 , sj∗
2 , ..., sj

i , ..., sj∗
n

)
(3.11)

where Ji corresponds to the cost function of the i-th agent.

Applying the same concept to all agents results in a system of n ∈ N inequalities
that must be satisfied simultaneously [75]:

J1
(
sj∗

1 , sj∗
2 , ..., sj∗

n

)
≤J1

(
sj

1, sj∗
2 , sj∗

3 , ..., sj∗
n

)
J2

(
sj∗

1 , sj∗
2 , ..., sj∗

n

)
≤J2

(
sj∗

1 , sj
2, sj∗

3 , ..., sj∗
n

)
...

Jn

(
sj∗

1 , sj∗
2 , ..., sj∗

n

)
≤Jn

(
sj∗

1 , sj∗
2 , ..., sj∗

n−1, sj
n

)
(3.12)

31

Chapter 4

Game-Theoretic Social Force
Model

4.1 Navigation algorithm

Despite its many advantages, the SFM is a purely reactive algorithm [12]. As
consequence, it lacks the incorporation of a human motion model that could enable
robot to make predictions. This characteristic makes the SFM less suitable for
applications in a social navigation context, where anticipating mutual collision is a
key aspect to generate human-like trajectories and enhance social acceptability [7].
In this regard, recent studies have shown how navigation can be effectively modeled
as a non-cooperative game [8]. Through this assumption and using Game Theory,
it is possible to incorporate reasoning about the actions that other agents will take
within the navigation algorithms. This results in both the ability to handle possible
conflict situations and an improvement in overall navigation performance, as the
algorithm will try to figure out what are the best actions that each pedestrian
might take.
Thus, the idea behind the algorithm proposed in this thesis is to model navigation as
a non-cooperative game between the robot and the pedestrians in the environment
and exploit the SFM to determine the possible actions that the pedestrians can
choose. Subsequently, the game is solved through the application of the concept of
Nash equilibrium.

The next section provides a detailed explanation of the game’s features and the
working principles of the algorithm.

Below, we will refer to the robot and pedestrians as "agents".

32

Game-Theoretic Social Force Model

4.1.1 Overview
The game used for navigation is defined as a non-cooperative, static, perfect infor-
mation and finite game with a finite number of rational n ∈ N agents N = {1, ..., n}
who want to minimize their individual cost. Each agent is associated with a limited
set of p actions denoted as Ai = {a1

i , ..., ap
i }. In this case, we assumed p = 4.

Therefore, the i-th agent will be characterized by an action set Ai = {a1
i , a2

i , a3
i , a4

i }.
The generic action ap

i ∈ Ai represents a specific set of parameters of the SFM
ap

i =
[
Ai, Bi, ri, rj, λ, α, vd

i

]p
already described in table 3.1.

The main idea behind the algorithm is to associate each set of parameters of
the i-th agent with the corresponding trajectories, and then use game theory to
identify the optimal action to implement.
Since the model assumes a "perfect information game", all the agents have the
knowledge about actions performed by other players and their positions at a given
time instant t. Consequently, each agent i can use the SFM to compute the
trajectory τ p

i associated with the corresponding sets of parameters ap
i ∈ Ai. In

particular, each trajectory will be computed by exploiting the system of discretized
differential equations (3.9) over a fixed-time horizon of Tprev time-steps, where each
of them has the duration of ∆t.

Next, a cost will be assigned to each trajectory of i-th agent by means of a
cost function J(τ p

i), which will be described in detail later. Regardless of the
considered cost function, by assuming that pedestrians have rational behavior and
modelling navigation as a "non-cooperative game", agents will aim to minimize
their individual cost choosing the optimal action for themselves, i.e. their optimal
trajectory.

Thus, the application of the game theory can be seen as the definition of a system
of n ∈ N interdependent optimization problems through which it is possible to
rationally determine which parameters are most suitable for the effective movement
of agents through the SFM.
The solution to such a game can be seen as the convergence to a Nash equilibrium,
a particular situation where each agent has no incentive to unilaterally change its
action unless others changing theirs [8].
When each agent computes its own best trajectories, it will apply only the motion
related to the first time step ∆t of the considered trajectory. At this point, the
scenario is changed and the process restarts.

33

Game-Theoretic Social Force Model

Scenario

Trajectories
generation through

SFM

Game-theoretic
decision making

Set of trajectories for
each agent

Best trajectories for all agents

Observed
velocities

Observed
positions

Neural Network for
SFM parameters

generation

Best SFM
parameters sets

Differential
Evolution algorithm

Dataset for Neural
Network training

Figure 4.1: Conceptual structure of the Game-Theoretic Social Force Model
(GTSFM).

One of the main advantages of the developed algorithm is the use of the SFM
which guarantees a very low computational complexity, extremely necessary to
compute multiple trajectories over a fixed-time horizon. In this way, decision-
making can be performed at every time step, mimicking the sequential nature of
the human decision-making process and making the Game-Theroretic Social Force
Model more suitable for social navigation than the original SFM. In addition, at
each time step, the SFM parameters of all agents are generated by a neural network
previously trained using a labeled dataset obtained by applying a Differential
Evolution algorithm (more details later). The conceptual structure of the overall
algorithm is depicted in fig. 4.1.
However, the robot is able to generate its trajectories by means of the SFM
parameters since it knows the final position it must reach. In the case of the other
pedestrians’ trajectories, this condition does not occur. In fact, in a real navigation
context, the robot does not have the possibility to know a priori the goal position
that a specific pedestrian will try to achieve.
For these reasons, in this thesis we assume the presence of a fictitious goal for
each pedestrian, whose position is recomputed at each time instant. Therefore,
each pedestrian will be attracted to a goal located along its direction of motion at
time instant t. Specifically, the fictitious goal position will be place at a certain
distance from the pedestrian and computed as the product of the corresponding

34

Game-Theoretic Social Force Model

pedestrian’s velocity vj(t) and a time interval equal to the time horizon (∆tTprev)
used for trajectory generation. In other words, the position of the fictitious goal at
time t will be given by:

pgoal
j (t) = pj(t) + (∆tTprev)vj(t) (4.1)

4.1.2 Cost function
As expressed above, each i-th pedestrian exploits a cost function J(τ p

i) to associate
a cost with the τ p

i trajectory generated by the corresponding ap
i parameters. Ac-

cordingly, the choice of such a cost function affects the overall performance of the
algorithm.
In general, humans tend to move according to a minimization principle [8]. Fol-
lowing this idea, multiple types of cost functions have been developed over time,
which consider the minimization of different motion aspects and characteristics.
Some examples widely used at the state-of-the-art are cost functions that minimize
the path length [76] or the energy consumption [77].
Although minimizing the length of the generated path seems to be the main goal
during movement, this single feature cannot assign realistic costs for human naviga-
tion [7]. Therefore, it is necessary to incorporate preferences and physical properties
of pedestrians that are actually relevant during navigation without causing an
excessive increase in the complexity of the resulting cost function. In fact, higher
complexity does not necessarily result in improved performance [8].
In this context, we chose to exploit a cost function previously presented in [43] and
enriching it by introducing an additional term that explicitly governs the intensity
of pedestrian interactions. Accordingly, the final cost function J(τ p

i), used for
assigning costs to each trajectory τ p

i , can be formulated as a sum of three distinct
components:

J(τ p
i) = Φgoal(τ p

i) + Φsmooth(τ p
i) + Φint(τ p

i) (4.2)
The details of each term are described below.

• Path length
The first term of the cost function is defined as:

Φgoal(τ p
i) =

Tprev∑
k=1
∥pi(t + k∆t)− pi

goal∥ (4.3)

This term is intended to take into account the overall length of the path
generated to arrive toward the goal position pgoal

i . The reduction of this term
necessarily implies the choice of a more goal-oriented motion.

35

Game-Theoretic Social Force Model

• Path regularity
The second term of the cost function is expressed as:

Φsmooth(τ p
i) =

Tprev∑
k=1
|θi(t + k∆t)− θi(t + (k − 1)∆t)| (4.4)

where θi(t + k∆t) and θi(t + (k − 1)∆t) are the orientation angle of the agent
i at the time (t + k∆t) and (t + (k − 1)∆t), respectively. The aim of this
term is the penalization of excessive rotations in order to promote the choice
of smooth trajectories. As we can seen, both the first and second terms are
closely related to the concepts of path and energy consumption minimization
described previously, which describes the human tendency to choose shorter
paths [7] and avoid too many changes in orientation [77].

• Interaction with other pedestrians
This term is the additional term mentioned above and is defined as:

Φint(τ p
i) =

∑
j∈N \{i}

Tprev∑
k=1

ρ

∥pi(t + k∆t)− pj(t + k∆t)∥
(4.5)

where pi(t+k∆t) and pj(t+k∆t) are the position of pedestrian i and pedestrian
j at the time (t + k∆t), respectively, and ∥pi(t + k∆t)− pj(t + k∆t)∥ is their
reciprocal distance. Such a term aims to encourage selecting trajectories
that maximize the distance between the two pedestrians participating in the
interaction. Minimizing such a term implies increasing the distance between
the two pedestrians, reducing the possibility of collision and maintaining
interpersonal distance. Finally, the constant weighting factor ρ ∈ R>0 is used
in order to adjust the relative influence with respect to the first and second
term in the cost function.

4.1.3 Sequential best response for Nash equilibria
As mentioned above, it is possible to model navigation as a non-cooperative game.
In this context, it is possible to consider the choice of the optimal trajectory by
the various pedestrians as the achievement of the Nash equilibrium [8].
However, for the existence of the Nash equilibrium, two fundamental assumptions
are necessary:

• common knowledge of all players: a quite realistic assumption if we consider
that human beings learn the possible alternatives to reach their goal and how
other people may behave when navigating from the everyday life experience;

36

Game-Theoretic Social Force Model

• strictly rational behaviour of all agents: so that players try to effectively
minimise their cost [8];

In general, both conditions are incorporated in our model assumptions.
Whether these two conditions are met, the existence of such an equilibrium point
is dependent on the type of strategy that characterizes the game.

In case of:

• mixed strategies: the existence of the Nash equilibrium is always guaranteed;

• pure strategies: the existence of the Nash equilibrium is ensured only for
specific forms of cost function [8];

In our navigation model, we consider "pure strategies". However, the use of
the previously described cost function (Eq. 4.2) ensure the existence of the Nash
equilibrium. To compute it, we use the "sequential best response" method [78]. To
give an idea of how this numerical method works, an example that involves two
agents is given below.

Example of "sequential best response":

Consider two agents, named 1 and 2. Agent 1 observes agent 2’s navigation at
time t and chooses the best trajectory to reach its goal, given the last observed
movement of agent 2. Subsequently, in each iteration, a control action is performed
to check whether the strategies of both agents remain unchanged from the previous
iteration; if so, the game has reached a Nash equilibrium. If not, agent 2 calculates
its optimal strategy based on the last observed strategy of agent 1. This iterative
process continues until the equilibrium is met. The logic presented can be extended
to n agents.

4.2 Parameters estimation from real trajectories
dataset

The navigation algorithm proposed above exploits an action set consisting of p = 4
different trajectories for each pedestrian. At each time instant t, these trajecto-
ries are generated directly by the various agents using the SFM. Therefore, it is
necessary to estimate four different sets of parameters, one for each trajectory.
As expressed in Chapter 3, one of the main drawbacks of the SFM is the high
sensitivity of the model to the choice of these parameters, which represent the
intensities of the agents interactions during navigation. Therefore, it is extremely
necessary to carry out a careful evaluation to identify which are the most suitable

37

Game-Theoretic Social Force Model

parameters according to the considered scenario.

Basically, in the state of the art, it is possible to divide the approaches for estab-
lishing SFM parameter values into two main methodologies, which vary according
to the simulated context.
In particular, for:

• Crowd simulation: the number of pedestrians is very high. Therefore, the most
common approach is to use optimization algorithms or learning strategies to
derive the best parameters directly from real public datasets [59][79][80];

• Social navigation: the limited number of pedestrians allows to derive the
parameters through a trial-and-error process [17][81][82]. In fact, analyzing
the behaviour of individual agents becomes more challenging in situations
where there are large crowds;

To obtain real parameter sets, it is also necessary to apply optimization al-
gorithms in the context of social navigation. In this thesis, we used Differential
Evolution, a well-known state-of-the-art optimization algorithm, that is highly
used to estimate the best SFM parameters in crowd simulation contexts from real
datasets [83][59].
However, in order to represent the real navigation more accurately, two further
fundamental aspects must be taken into account. During navigation, the type of
behaviour of pedestrians may vary over time according to how the environment
evolves. Furthermore, as already expressed in Chapter 3, each pedestrian is char-
acterized by different movement features, resulting in a certain heterogeneity of
behaviours. Therefore, in order to achieve realistic trajectory generation from the
SFM, it is necessary to ensure that parameters are different for each pedestrian
and can vary according to the environment conditions perceived by the agent.

Although DE allows to estimate best parameters that approximate real human
trajectories, this type of optimization algorithm is not suitable for real-time applica-
tion due to the high estimation time. To solve this problem, it is possible to exploit
a neural network that approximates DE operations and generates the parameter
sets required by the navigation algorithm in real-time. However, training a neural
network needs an immense amount of labelled data, which is difficult to obtain in
the state-of-the-art, especially in the case of SFM.
To address this lack of data, DE is applied to the Thör dataset in order to esti-
mate the four best parameter sets that approximate same portions of trajectories
needed to the navigation algorithm (from generic instant t to instant (t + ∆tTprev)).
Subsequently, these sets are used to generate a new dataset for training the neural
network. In this way, it is possible to obtain more realistic SFM parameters values

38

Game-Theoretic Social Force Model

than those achievable through trial-and-error process.

Below, a general description of how the DE works and the characteristics of the
Thör dataset, used for parameters estimation, are presented. Then, the chapter
provides an in-depth explanation of the DE algorithm used to create the dataset
used for the neural network training and a description of the implemented neural
network.

4.2.1 Differential Evolution algorithm (DE)
The DE operates on a population of NP D-dimensional real-valued parameter
vectors, where NP represents the number of parameter vectors in the population
and D corresponds to the number of parameters contained in each vector. These
parameters vectors are commonly known as "chromosomes" and the corresponding
parameters are called "genes". Each chromosome represents a candidate solution of
the considered optimization problem. Through the various steps, the algorithm
will establish the most suitable chromosomes to pass on to the next generation by
applying typical EAs operators such as mutation, crossover and selection, which
will be described in more detail later. This process is repeated for a defined number
of generations, denoted as NG.

Therefore, given a generic generation j, it is possible to indicate the i-th chro-
mosome with the following notation:

Xi,j =
{
x1

i,j, ..., xD
i,j

}
, for i = 1, ..., NP and j = 1, ..., NG (4.6)

To determine which chromosome will survive into the next generation, it is
essential to evaluate its performance by defining a "fitness function" f (X), which
must be designed on the basis of the system to be analysed. This function will
depend on the parameters contained in each chromosome. The purpose of the DE
is then to search for the optimal chromosome X ∗ that will ensure the minimization
of the fitness function among all the possible chromosomes obtained in the various
NG generations.

At the state-of-the-art, there are multiple variations of the Differential Evolu-
tion. These variants differ in the strategies applied to perform the individual steps
of the algorithm. For this thesis, the classical version of DE developed by Storm
and Prince [44] was used. The main phases will be described below.

1. Initialization of Parameter Vectors:
The first stage of the DE algorithm involves creating an initial population

39

Game-Theoretic Social Force Model

of parameter vectors which will represent the starting generation j=0. As
previously mentioned, each chromosome comprises D real values that represent
the physical parameters of the system to be optimised. Since they are physical
parameters, their values will be restricted within specific ranges determined
by the nature of the physical quantity they represent. For instance, if the
parameter under consideration represents a mass or a time instant, negative
values are impossible.

By defining the extremes of the range intervals for all D parameters, the
minimum and maximum limits can be expressed as:

Xmin =
{
x1

min, ..., xD
min

}
Xmax =

{
x1

max, ..., xD
max

} (4.7)

As stated in [45], the aim of the initial population is to cover these intervals
as much as possible by uniformly randomizing the chromosomes within the
search space constrained by the specified boundaries.

For this reason, the initial value of the k-th parameter of chromosome i
at generation j=0 will be given by:

xk
i,0 = xk

min + rand [0,1]ki
(
xk

max − xk
min

)
, for k = 1, ..., D (4.8)

where rand [0,1]ki is a uniformly distributed random number in the range [0,1]
generated independently for each k-th parameters of the i-th chromosome.

2. Mutation with Difference Vectors:
In the context of DE algorithms, mutation represents the process whereby each
chromosome in the current population, called Target vector Xi,j, undergoes
sudden perturbations of one or more genomes through the introduction of a
random element.
Therefore, in each generation j, the DE-mutation is responsible for associating
with each Target Vector Xi,j, a chromosome derived from it called Donor
Vector Vi,j:

Vi,j =
{
v1

i,j, ..., vD
i,j

}
, for i = 1, ..., NP (4.9)

The creation of such a Donor Vector Vi,j requires the sampling of three other
parameter vectors from the current population, denoted as Xri

1,j, Xri
2,j and

Xri
3,j. These vectors will be randomly chosen by selecting indices within the

range [1,NP], which must be mutually exclusive and also different from the
the current chromosome index i.

40

Game-Theoretic Social Force Model

In the simplest form of DE-mutation, the Donor Vector is obtained by adding
to the first random vector the difference between the other two, which will be
scaled by a factor F. It is known as "Mutation Factor" and is one of the param-
eters that influences the overall performance of the DE algorithm. Through
this factor, it is possible to regulate the effect that the difference vector will
have on the mutation of the considered chromosome. Thus, the Donor Vector
will be given by the following expression:

Vi,j = Xri
1,j + F

(
Xri

2,j −Xri
3,j

)
(4.10)

The process of mutation described above is graphically represented in fig. 4.2.DAS AND SUGANTHAN: DIFFERENTIAL EVOLUTION: A SURVEY OF THE STATE-OF-THE-ART 7

Fig. 2. Illustrating a simple DE mutation scheme in 2-D parametric space.

C. Crossover

To enhance the potential diversity of the population, a
crossover operation comes into play after generating the donor
vector through mutation. The donor vector exchanges its
components with the target vector �Xi,G under this operation
to form the trial vector �Ui,G = [u1,i,G, u2,i,G, u3,i,G, ..., uD,i,G].
The DE family of algorithms can use two kinds of crossover
methods—exponential (or two-point modulo) and binomial (or
uniform) [74]. In exponential crossover, we first choose an
integer n randomly among the numbers [1, D]. This integer
acts as a starting point in the target vector, from where the
crossover or exchange of components with the donor vector
starts. We also choose another integer L from the interval
[1, D]. L denotes the number of components the donor vector
actually contributes to the target vector. After choosing n and
L the trial vector is obtained as

uj,i,G = vj,i,G for j = 〈n〉D 〈n + 1〉D , ..., 〈n + L − 1〉D
xj,i,G for all other j ∈ [1, D] (4)

where the angular brackets 〈〉D denote a modulo function with
modulus D. The integer L is drawn from [1, D] according to
the following pseudo-code:
L = 0; DO

{
L = L + 1;
} WHILE ((rand(0, 1) ≤ Cr) AND (L ≤ D)).
“Cr” is called the crossover rate and appears as a control

parameter of DE just like F. Hence in effect, probability (L =
υ) = (Cr)υ − 1 for any positive integer v lying in the interval
[1, D]. For each donor vector, a new set of n and L must be
chosen randomly as shown above.

On the other hand, binomial crossover is performed on each
of the D variables whenever a randomly generated number
between 0 and 1 is less than or equal to the Cr value. In this
case, the number of parameters inherited from the donor has
a (nearly) binomial distribution. The scheme may be outlined
as

uj,i,G =

{
vj,i,G if (randi,j[0, 1] ≤ Cr or j = jrand)
xj,i,G otherwise

(5)

Fig. 3. Different possible trial vectors formed due to uniform/binomial
crossover between the target and the mutant vectors in 2-D search space.

where, as before, randi,j[0, 1] is a uniformly distributed ran-
dom number, which is called anew for each jth component of
the ith parameter vector. jrand ∈ [1, 2,, D] is a randomly
chosen index, which ensures that �Ui,G gets at least one
component from �Vi,G. It is instantiated once for each vector
per generation. We note that for this additional demand, Cr
is only approximating the true probability pCr of the event
that a component of the trial vector will be inherited from
the donor. Also, one may observe that in a 2-D search space,
three possible trial vectors may result from uniformly crossing
a mutant/donor vector �Vi,G with the target vector �Xi,G. These
trial vectors are as follows.

1) �Ui,G = �Vi,G such that both the components of �Ui,G are
inherited from �Vi,G.

2) �U/
i,G, in which the first component (j = 1) comes from

�Vi,G and the second one (j = 2) from �Xi,G.
3) �U//

i,G, in which the first component (j = 1) comes from
�Xi,G and the second one (j = 2) from �Vi,G.

The possible trial vectors due to uniform crossover are
illustrated in Fig. 3.

D. Selection

To keep the population size constant over subsequent gen-
erations, the next step of the algorithm calls for selection to
determine whether the target or the trial vector survives to the
next generation, i.e., at G = G + 1. The selection operation is
described as

�Xi,G+1 = �Ui,G iff (�Ui,G) ≤ f (�Xi,G)

= �Xi,G iff (�Ui,G) > f (�Xi,G) (6)

where f (�X) is the objective function to be minimized. There-
fore, if the new trial vector yields an equal or lower value
of the objective function, it replaces the corresponding target
vector in the next generation; otherwise the target is retained
in the population. Hence, the population either gets better
(with respect to the minimization of the objective function)
or remains the same in fitness status, but never deteriorates.
Note that in (6) the target vector is replaced by the trial
vector even if both yields the same value of the objective
function—a feature that enables DE-vectors to move over

Figure 4.2: Standard DE-mutation in a 2-D parametric space

3. Crossover: Performed immediately after mutation, this phase introduces
actual diversification within the chromosomes population. The purpose is to
mix parameters contained in the generic Target Vector Xi,j with those in the
associated Donor Vector Vi,j in order to generate a new chromosome denoted
as Trial Vector : Ui,j:

Ui,j =
{
u1

i,j, ..., uD
i,j

}
, for i = 1, ..., NP (4.11)

The number of genes in the Target Vector that will actually be replaced
is regulated through another crucial parameter of the algorithm, i.e. the
Crossover rate Cr.
Although there are different types of strategies to perform crossover at the

41

Game-Theoretic Social Force Model

state-of-the-art, in this thesis we decided to perform the binomial crossover.
Its name derives from the fact that the number of inherited parameters from
the Donor Vector will have a (nearly) binomial distribution [45] controlled by
the value of Cr. For this reason, the k-th element of the Trial Vector Ui,j can
be derived as follows:

uk
i,j =

vk
i,j, if randk

i [0,1] ≤ CR or k = krand

xk
i,j, otherwise

(4.12)

where randk
i is a uniformly distributed random number within the range [0,1].

In addition, krand ∈ [1,2, ..., D] represents a randomly chosen index which
guarantees that the trial contains at least one gene inherited from the donor.
This method ensures that the resulting Trial Vector Ui,j can never be identical
to the Target Vector Xi,j.

4. Selection:
It is the process of selecting which chromosome between the i-th Target
Vector Xi,j and corresponding Trial Vector Ui,j will be passed on to the next
generation. As previously mentioned, the choice is based on the value of the
fitness function determined by the individual chromosome:

Xi,j+1 =
Ui,j, if f(Ui,j) ≤ f(Xi,j)
Xi,j, otherwise

(4.13)

Once this last step is completed, a new population of chromosomes is obtained,
which will undergo mutation, crossover and selection phases again. This process
continues recursively until the final NG generation is reached.

Control Parameters of the algorithm

This section aims to provide a detailed explanation of the effects of varying the
control parameters on the performance of the Differential Evolution algorithm.

As mentioned above, the DE algorithm is characterised by three main control
parameters:

• Population Size NP: it corresponds to the number of chromosomes within
the generic population. Typically, the NP value is kept within the range
[5D; 10D], where D is the dimension of the problem [45] (i.e. the number of
parameters in each chromosome);

42

Game-Theoretic Social Force Model

• Mutation factor F : it corresponds to the factor used to scale the difference
vector

(
Xri

2,j −Xri
3,j

)
(Eq. 4.10). In [45], authors suggest an initial value of

F equal to 0.5, indicating the range of values [0.4; 1] as the operating range.
A higher value of F consequently leads to a greater perturbing effect of the
difference vector.
The main aspect of the mutation process in the DE algorithm is that the
chromosome perturbation is generated by a difference vector obtained directly
from the chromosomes in the population and not by means of a probability
density function (as in other EAs). This feature determines one of the main
advantages of this type of mutation, namely "counter matching" [44]. It corre-
sponds to the process by which, using difference vectors, the algorithm is able
to identify and then automatically explore the most promising points in the
solution space of the considered objective function.
This feature enables the algorithm to autonomously transfer the search point
of the solution, allowing it to jump out of possible local minima. Therefore,
through the choice of the value of F, it is possible to adjust this transfer
capacity of the search point. A higher value of F results in a more distant
transfer of the search point within the solution space;

• Crossover rate Cr : it controls the number of parameters altered within
members of the population and it can takes value between 0 and 1 [45].
Considering the Eq. 4.12 of binomial crossover we can say that for:

– Low values of Cr: a lower number of parameters change between one
generation and the other. In fact, the trial vector Ui,j will have a greater
number of parameters derived from the target vector Xi,j.
Therefore, the chromosomes of the new generation will be very similar
to those of the previous generation. This results in an exploration of the
solution space by stepwise movements orthogonal to the coordinate axes
(i.e. parameters axis);

– High values of Cr (near 1): a larger number of parameters are inherited
from the donor vector Vi,j. As a result, the chromosomes of the new gen-
eration will have a greater probability of being significantly different from
those of the previous generation (the final population will be obtained by
selection anyway).
Therefore, this feature prohibits the exploration of the solution space by
steps orthogonal to the coordinate axes;

43

Game-Theoretic Social Force Model
10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 15, NO. 1, FEBRUARY 2011

Fig. 4. Empirical distributions of candidate trial vectors for three different Cr values. (a) Cr = 0. (b) Cr = 0.5. (c) Cr = 1.0.

also induces an important ingredient besides selection is the
promotion of basin-to-basin transfer, where search points may
move from one basin of attraction, i.e., a local minimum, to
another one.

In PSO also the stochastic attraction toward the personal
best and neighborhood best positions are modeled by scaled
difference vectors. The velocity update formula of PSO has
similarities with the DE/target-to-best/1 scheme [see (8)] that
generates a mutated recombinant.

2) Crossover: Both DE and ES employ crossover to create
a single trial vector, while most GAs recombine two vectors to
produce two trial vectors often by one-point crossover. Note
that EP depends only on mutation to generate offspring and
does not have any crossover operator associated with. One
of the popular crossover techniques for real coded GAs is
the n-point crossover where the offspring vector is randomly
partitioned into (n + 1) blocks such that parameters in ad-
jacent partitions are inherited from different parent vectors.
Studies of n-point crossover [S193] indicate that an even
number of crossover points reduces the representational bias
(dependence of ordering of parameters within a vector) at
the cost of increasing the disruption of parameters that are
closely grouped. As analyzed by Price et al. [92, p. 93]
DE’s exponential crossover employs both one and two point
crossover with an objective of reducing their individual biases.
The representational bias inherent in n-point crossover can be
eliminated if donors are determined by D independent random
trials. This procedure is known as uniform crossover in EA
literature [S3] and this is exactly what DE employs as discrete
recombination or binomial crossover [see (5)] most often.

3) Selection: Selection can be applied to an evolutionary
process in primarily two different stages—first stage being
parent selection to decide which vectors from the current
population will undergo recombination while the second is
survivor selection to choose which vectors from the parent
and offspring populations will survive to the next generation.
Unlike GAs that select parents based on their fitness, both
ES and DE gives all the individuals equal chance for being
selected as parents. In ES, each individual has the same
chance to be selected for mutation (and recombination). In
DE also the base vectors are randomly picked up without
any regard for their fitness values. When only the offspring
vectors are allowed to advance (as done in some simple GAs

[S3]) there is no guarantee that the best-so-far solution will
not be lost. Retaining the best-so-far solution is called elitism
and it plays an important role in bringing the convergence
of the algorithm to the global optimum [S193] in long time
limits. For this reason and because of the speed improvement
it offers, most EAs including DE, EP, and some versions of
ES take into account the current population while determining
the membership of the next generation.

The (µ, λ) ES selects best µ children to become parents
in next generation. Alternatively, the (µ + λ) ES populates the
next generation with best µ vectors from the combined parent
and child populations. The survivor selection scheme of DE
is closer in spirit to the elitist (µ + λ) ES, however, instead of
ranking the combined population, the former employs a one-
to-one competition where each parent vector competes once
only against its own offspring. Evidently, unlike the tourna-
ment selection in EP, DE’s one-to-one selection holds only
NP knock-out competitions between a parent and its offspring
generated through mutation and recombination. Comparing
each trial vector (offspring) to the best performing vectors
at the same index ensures that DE retains the very best-
so-far solution at each index. Parent-offspring competition
has a superior ability to maintain population diversity when
compared with ranking or tournament selection where elites
and their offspring may dominate the population rapidly.

III. Control Parameters of the Differential

Evolution

There are three main control parameters of the DE algo-
rithm: the mutation scale factor F, the crossover constant Cr,
and the population size NP. In this section, we focus on
the effect of each of these parameters on the performance
of DE as well as the state-of-the-art methods for tuning
these parameters. A good volume of research work has been
undertaken so far to improve the ultimate performance of DE
by tuning its control parameters. Storn and Price in [88] have
indicated that a reasonable value for NP could be chosen
between 5-D and 10-D (D being the dimensionality of the
problem), and a good initial choice of F was 0.5. The effective
range of F is usually between 0.4 and 1.

The parameter Cr controls how many parameters in expec-
tation are changed in a population member. For low value

Figure 4.3: Effect of different values of Cr on a distribution of candidate trial
vectors obtained by running DE on a single starting population of ten vectors for
200 generations with selection disabled [45]: (a) Cr = 0; (b) Cr = 0.5; (c) Cr = 1.

In the state of the art, there are various studies suggesting possible operating
ranges and initial values of F and Cr. However, many of these studies lack sufficient
experimental justification [45].
For these reasons, the original ranges and reference values suggested by Storm and
Price [44] were chosen in this thesis work.

The table below provides a summary of parameters values used in the imple-
mented DE algorithm:

Symbol Value Meaning
NP 42 Number of chromosomes in the population
NG 90 Number of generations
F 0.5 Mutation factor
Cr 0.6 Crossover rate

Table 4.1: Control parameters of the implemented DE algorithm

4.2.2 Thör dataset

Thör [9] is a public dataset of human motion trajectories, recorded in a controlled
indoor experiment. To enhance the comprehension of the dataset’s content, the
following section will provide a description of the main features of the experiment
and the instrumentation used to collect these data.

Environment

The dataset was recorded in a laboratory room measuring 8.4 x 18.8 m.

44

Game-Theoretic Social Force Model

Figure 4.4: Schematic presentation of the laboratory room where the trajectories
were recorded.

As shown in fig. 4.4, five goals are placed in the room to force the pedestrians to
navigate and to create as many interactions as possible during navigation. There
are also a variable number of obstacles to prevent too straight a movement between
the goals.
The experiment also involves positioning a fixed camera and a LiDAR system.
The first device was employed to record the movements of pedestrians during the
experiment. The second instrument was used to acquire data on the environment,
including the location of the walls in the room.

Motion capture system

To track people, the authors used 10 Qualisys Oqus 7+ infrared cameras (fig. 4.5
a) mounted around the perimeter of the room to identify specific markers capable
of reflecting infrared light.

(a) (b)

Figure 4.5: (a) Qualisys Oqus 7+ infrared cameras; (b) helmets with reflective
markers, used to track pedestrians.

45

Game-Theoretic Social Force Model

These reflective markers are then attached to the helmets worn by the pedestrians
during the experiment (fig. 4.5 b). This allows the infrared cameras to identify the
movement of each reflective marker in real time. Nine helmets were used in the
experiment, one for each participant, numbered from 2 to 10.

Experiment description

To ensure different pedestrian interactions and acquire a heterogeneous dataset,
Rudenko et al. assigned social roles and tasks to each participant in the experiment.
The goal was to replicate typical activities found in densely populated indoor
environments, like offices and shopping malls, as closely as possible. Through
the use of goals and tasks, participants are motivated to engage in natural and
purposeful movements and create a rich variety of unplanned interactions.

The experiment involves three different types of pedestrians, each with its own
objective:

• Visitors: they move either individually or in groups of up to five people,
between four possible goal positions. At each reached target position, the
person selects a random card that indicates the next goal;

• Workers: they are pedestrians that transports large boxes between different
goals;

• Inspectors: type of pedestrian whose task is to navigate alone within the
room among multiple additional targets, represented by a QR code, without
any specific order. Upon reaching each QR code, the person must stop and
scan the code before moving on to the next target.

In total, the experiment involves 6 visitors, 2 workers and 1 inspector.

Data format e Data management

The dataset comprises 13 distinct records, which are classified into three types of
scenarios:

1. One obstacle: pedestrians move into the environment without any robots
present. There is only a stationary obstacle located in the center of the room;

2. Moving robot: pedestrians move through the environment with the robot. A
fixed obstacle is placed at the center of the room. Fig.4.6 shows the ideal
trajectory of each participant in the experiment, including the robot;

46

Game-Theoretic Social Force Model

3. Three obstacles: as in the first scenario, pedestrians move into the environment
where there isn’t any robot. In this case, however, there will be 3 stationary
obstacles in the room;

Figure 4.6: Ideal trajectories of the robot and the various types of pedestrians

Figure 4.7: Real trajectories of experiment’s partecipants in the three different
scenarios: (top) One obstacle - (centre) Moving robot - (bottom) Three obstacles.

47

Game-Theoretic Social Force Model

In order to ensure greater consistency, we chose to use only the recordings from
the first scenario in the dataset. This choice is related to a significant similarity
with the type of experiment we are going to propose for this thesis work, which
will be described in detail below.
This approach enabled training the previously mentioned neural network by utilizing
navigation data gathered from situations resembling those encountered during the
experiment, minimizing the risk of underfitting the data.

4.2.3 Algorithm description and simulation results
The process of parameters estimation by means of DE algorithm proposed in this
thesis work takes inspiration from [84]. In their study, Johansson et al. exploit
an evolutionary algorithm to estimate SFM parameters from video tracking data.
Based on a similar idea, in our DE each pedestrian in the dataset is replaced (one
at a time) with a simulated robot, which moves using the SFM. Such a robot will
start from the same position as the real pedestrian and move for successive Tprev

time steps ∆t.
This makes it possible to compare the positions reached by the simulated robot
driven by SFM with the actual positions reached by the real pedestrian. This
comparison will be executed during the selection phase using the following fitness
function:

f(X) =
∑(t+∆tTprev)

k=t ∥probot(k)− ppedT oSub(k)∥
N

(4.14)

where N represents the total number of points in the trajectory generated by
SFM.

The proposed algorithm is used to estimate the D = 7 main parameters of the
social force model summarized in table 4.2.

Symbol Meaning
Ai ∈ R>0 strength of interaction force for pedestrian i
Bi ∈ R>0 range of interaction force for pedestrian i
ri ∈ R>0 radius of the personal space of pedestrian i
R0 ∈ R>0 minimum admissible distance between robot and obstacle
λ ∈ [0,1] strength of anisotropic behavior
vd

i ∈ R>0 desired velocity (in module) of pedestrian i
αi ∈ R≤0 relaxation time of pedestrian i

Table 4.2: SFM parameters estimated by the implemented Differential Evolution
algorithm

48

Game-Theoretic Social Force Model

The most important steps executed by the DE are described in Algorithm 1.
Each pedestrian within the Thör dataset is characterized by a certain number of
trajectories. Each point on the trajectory is represented by a tuple (x,y,t) which
will contain the coordinates in the plane and the corresponding time instant t.
Algorithm 1 takes as input the time step ∆t, the number Tprev of time step for
generating the simulated trajectory and the Thör dataset. It returns as output the
final dataset used for the training of the neural network.
For each pedestrian to substitute (pedToSub) contained in the dataset, the algo-
rithm extracts information about all associated trajectories using the "getTrajecto-
riesInfo()" function (line 1-2). This makes it possible to know the starting position
and goal position information of each trajectory.
Since the DE is applied to each time instant t of the real trajectory, it is necessary
to verify that the simulated one (subsequently used for the selection phase) does
not exceed the time instant in which the real pedestrian actually reaches his goal
position.
For this reason, a check is performed at each time instant t to control whether the
maximum time instant associated with the simulated trajectory (t + ∆tTprev) is
greater than the time instant in which the real pedestrian reaches its goal (line 4-5).
If this condition is met, then the algorithm moves on to the next trajectory, since
the remaining points of the considered one are not sufficient to perform an effective
selection (line 6). Otherwise, the best parameters of the SFM that approximate
the actual trajectory in the time interval [t; (t + ∆tTprev)] are estimated (line 7).
At time t, the position of the robot is initialized to the same position of the real
pedestrian (line 8). Next, 4 types of distances are stored (line 9-16). Specifically,
the minimum distance between the replaced pedestrian and the nearest obstacle
and the minimum distances between the replaced pedestrian and the 3 other nearest
pedestrians are considered. The 4 best parameter sets are estimated by means
of the “bestParamsEstim()” function (line 17), which is described in more detail
in Algorithm 2. Finally, the 4 distances are labelled by the 4 sets of estimated
parameters that best approximate that portion of trajectory (line 18).

49

Game-Theoretic Social Force Model

Algorithm 1 Main algorithm
Input: ∆t, Tprev ThorDataset
Output: paramDataset

1: foreach pedToSub in ThorDataset
2: pedTrajectoriesInfo ← getTragectoriesInfo(pedToSub)
3: foreach trajectory in pedTrajectoriesInfo
4: foreach t in durationOfTrajectory
5: if (t + ∆tTprev) > reachingGoalTime then
6: break
7: else
8: probot(t) = ppedT oSub(t)
9: drobot,obs(t) = ∥probot(t)− pobs∥

10:
11: drobot,ped1(t) = ∥probot(t)− pped1(t)∥
12: drobot,ped2(t) = ∥probot(t)− pped2(t)∥
13: drobot,ped3(t) = ∥probot(t)− pped3(t)∥
14:
15: d3closestP ed(t) = [drobot,ped1(t), drobot,ped2(t), drobot,ped3(t)]
16:
17: bestSets ← bestParamsEstim(NP, F, Cr, paramsConstr)
18: paramDataset ← [drobot,obs(t), d3closestP ed(t), bestSets]
19: end if
20: end
21: end
22: end
23: return

Overall, Algorithm 2 represents the operation of the DE algorithm described
above.
After initialising the empty vector "bestSets" (which will contain the various pa-
rameters)(line 1), the DE is applied four consecutive times on the same portion
of the trajectory (line 2). For each set, the algorithm initializes three variables:
"bestChrom", "bestFitnessVal" and Pcurr (line 3-5). The first one will contain
the final best chromosome, i.e. the best set of parameters that approximate the
considered trajectory. The second one is used to compare the best chromosome
obtained from each generation with the best chromosome of all generations. For
this reason, its initial value is set very high. The last one is initialized as empty
vector, which will contain the initial population.
Each chromosome of the initial population is generated using the "generateChromo-
some()" function. It will take as input the constraints associated with the various

50

Game-Theoretic Social Force Model

SFM parameters, i.e. genes of each chromosome (line 7-10).
Subsequently, at each generation j, the algorithm first initializes an empty vector
of chromosomes that will represent the new population Pnew and then applies the
mutation, crossover and selection steps as described above (line 12-24) in order to
generate the next generation of chromosome.
Specifically, the selection function (described in detail in Algorithm 3) will return
both the chromosome selected between the trial vector U and the target vector X
(which will be part of the next generation) and the corresponding fitness function
value "minFitnessVal" (line 22).
To ensure the extraction of the best performing chromosome among all generations,
at the end of each selection step the resulting fitness function value "minFitnessVal"
is compared with the “bestFitnessVal”, initially set to 1000 (line 25-27). If the
fitness value associated with the chromosome has a lower value than the “bestFit-
nessVal”, the chromosome is stored in “bestChrom” and the “bestFitnessVal” is
updated. When the last generation is reached, the “bestChrom” will be the actual
chromosome with the lowest fitness function value so it will be stored inside the
“bestSets” vector (line 31).

Considering in more detail Algorithm 3, the “selection()” function will take as
input the pair consisting of target vector Xi,j and trial vector Ui,j.
First the algorithm initializes the variable "fitnessValues" as an empty vector (line
1). Then, for each of the two chromosomes, it sets the corresponding parameters
within the SFM integrated in the robot (line 3).
A vector of coordinates drobot,ped is initialized as empty vector in order to keep track
of the distances between the simulated robot and the real pedestrian positions at
each time step (line 4). For each time step k the algorithm updates the distance
vector drobot,ped and subsequently moves the robot to the next position by applying
the SFM equations (line 6-9).
After completing the generation of the trajectory, the algorithm evaluates the
fitness function value corresponding to the considered chromosome by using the
“evaluateFitness()” function (line 11). Such a function will take as input the
vector of coordinates drobot,ped and computes the fitness value associated with the
chromosome using Eq. 4.14. These values are stored in the "fitnessValues" vector.
Finally, the algorithm determines which chromosome ensures the minimum fitness
value contained in "fitnessValues" (line 14-15).

51

Game-Theoretic Social Force Model

Algorithm 2 The bestParametersEstimation function
Input: F , Cr, NP , paramsConstr
Output: bestSets

1: bestSets = {}
2: for nset = 1 : 4 do
3: bestChrom = [0,0, ...,0]
4: bestFitnessVal = 1000
5: Pcurr = {}
6:
7: for i = 1 : NP do
8: Xi,0 ← generateChromosome(paramsConstr)
9: Pcurr ← Xi,0

10: end for
11:
12: for j = 1 : NG do
13: Pnew = {}
14: Vi,j = [0,0, ...,0]
15: Ui,j = [0,0, ...,0]
16:
17: foreach Xi,j ∈ Pcurr

18: idxrand ← rand([1, NP],1,3)
19: Xri

1,j,Xri
2,j,Xri

3,j = Pcurr(idxrand)
20: Vi,j ← differenceMutation(Xri

1,j,Xri
2,j,Xri

3,j, F,paramsConstr)
21: Ui,j ← binomialCrossover(Xi,j,Vi,j, Cr)
22: Xi,j+1, minFitnessVal ← selection(Xi,j,Ui,j)
23:
24: Pnew ← Xi,j+1
25: if minFitnessVal ≤ bestFitnessVal then
26: bestFitnessVal = minFitnessVal
27: bestChrom = Xi,j+1
28: end if
29: end
30: end for
31: bestSets ← bestChrom
32: end for
33: return

52

Game-Theoretic Social Force Model

Algorithm 3 The selection function
Input: Xi,j,Ui,j

Output: Xi,j+1, minFitnessVal
1: fitnessValues = []
2: foreach chromosome in [Xi,j,Ui,j]
3: robot← setSFMparams(chromosome)
4: drobot,ped = []
5:
6: for k = t : (t + ∆tTprev) do
7: drobot,ped ← ∥probot(k)− ppedT oSub(k)∥
8: probot(k + 1)← moveOneStepSFM()
9: end for

10:
11: fitnessValues ← evaluateF itness(drobot,ped)
12:
13: end
14: minFitnessVal ← min(fitnessV alues)
15: Xi,j+1 = chromosome in [Xi,j,Ui,j] associated with minFitnessVal
16: return

In fig. 4.8 are shown some trajectories generated by the SFM parameters
obtained from the implemented Differential Evolution algorithm.

Goal 1

Goal 5

Goal 2

Goal 3

Goal 4

Start

Robot

 Pedestrian

Robot

 Pedestrian

Start

Goal 1

Goal 5

Goal 2

Goal 3

Goal 4

Figure 4.8: Comparison between real human trajectories contained in Thör
(green) with the corresponding robot trajectories (black) obtained by using SFM
parameters from DE estimation.

53

Game-Theoretic Social Force Model

For completeness, such portions of trajectories are compared with the corre-
sponding human trajectories from which parameters have been estimated.

4.2.4 Real-time parameters estimation through Neural Net-
work

The dataset obtained by DE algorithm is used to train a fully connected neural
network. The navigation algorithm will exploit the neural network for predicting
and providing the SFM parameters that will be used for generating both the robot
and pedestrians trajectories needed to Game Theory.
The neural network configuration involves the use of four input quantities, which
include the distance between the robot and the nearest obstacle as well as distances
between the robot and the three nearest pedestrians. This configuration results in
an input layer consisting of four neurons.
Once the neural network has been trained, it will output a total of 28 parameters,
corresponding to the 7 parameters of the four best sets. As a result, the output
layer consists of 28 neurons. The neural network’s internal structure comprises
three hidden layers that contain 200 neurons each. These neurons utilize the ReLU
(Rectified Linear Unit) function as activation function to process the combination
of inputs from the previous layer.
The training phase was performed by exploiting the "adam" optimizer, an opti-
mization algorithm implementing a stochastic gradient descent method. The loss
function employed to perform the training phase is Mean Absolute Error (MAE).
The same metrics has been used to evaluate performances of the neural network
in both the training and testing phase. The training phase has been performed
with a dataset of 420 labelled data. Overall, the neural network has been trained
for 100 epochs with a final MAE of 0.2665. The test phase has been performed
exploiting a testing dataset of 100 labelled data, with a final MAE of 0.2676.

54

Chapter 5

Hardware description

Before conducting real-world experiments, it is necessary to evaluate the developed
navigation algorithm through a simulation campaign. In this way, it is possible
to derive preliminary results to understand the effectiveness of the algorithm. To
perform such simulations and obtain concrete data, it is necessary to test the
algorithm on a simulated mobile robot model, possibly the same one that will be
used in subsequent real-world experiments. In our laboratory we have a Locobot
WX250s. For this reason, we used its simulated model in Gazebo for testing the
three considered navigation algorithms (more details in chapter 7). Therefore, the
purpose of this chapter is to describe the various hardware components of the
Locobot WX250s used for simulations.

Figure 5.1: Mobile robot Locobot WX250s-6DOF used in the simulation campaign

55

Hardware description

5.1 Mobile robot hardware

The simulation campaign employed the Locobot WX250s (fig.5.1), which was
developed and marketed by Trossen Robotics.
The system comprises numerous components that are essential for its operation.
In the following, the description of each component is presented.

5.1.1 Mobile base

The mobile base is the hardware responsible for enabling the movement of the robot
in the environment. The platform used as a mobile base is the Create3, developed
by iRobot. It is compatible with Wi-Fi, Bluetooth, Ethernet, or USB connections.

Figure 5.2: Create3 mobile base [85].

The entire operating software is implemented on ROS2. This implies that
sensors data or actuator commands are sent or received using this framework.
To ensure the possibility of ROS1 development, the mobile base uses a ’bridge’
that enables real-time communication between the different ROS versions. This
approach enables the development of navigation algorithms in ROS1 that are fully
compatible with the integrated software [85].

56

Hardware description

Figure 5.3: Bottom view of the Create3 mobile base.

As it can be seen from the fig. 5.3, Create3 has two independent drive wheels.
To ensure greater stability during movement, the mobile base also has a ’front
caster’, as the centre of gravity of the base is moved forward in relation to its
vertical axis. Each wheel is equipped with current sensors, encoders and optical
odometry sensors. Data from these sensors are integrated with data from the IMU
(Inertia Measurement Unit) to generate a fused odometry estimate. Lastly, the
entire platform is powered by a separate and independent battery which does not
power any other components of the robot.

5.1.2 Intel NUC NUC8i3BEH Mini PC
The robot’s processing system, which enables its operations and manages the
sensors, is a NUC computer with the following specifications:

• 8th Gen Intel Dual-Core i3;

• 8GB DDR4 Ram;

• 240 GB Solid State Drive (SSD);

• Intel Iris Plus Graphics 655;

• Wi-fi;

• Bluetooth 5.0;

• Gigabit Ethernet;

• USB;

• Thunderbolt 3;

57

Hardware description

• Ubuntu 20.04;

Figure 5.4: Intel NUC NUC8i3BEH Mini PC

In contrast to the mobile base, the NUC is powered by a separate 50000 mAh
secondary battery, responsible for powering other robot components that will be
discussed below.

5.1.3 WidowX-250 Robot arm
WidowX-250 Robot arm is a manipulator with six degrees of freedom. It is
controlled with 9 smart servos from DYNAMIXEL-X Series Actuators developed by
Robotis. Thanks to these features, it guarantees superior maneuverability, reaching
a maximum distance of 650 mm and full 360° rotation. Furthermore, it ensures a
working payload of 250 g with a recommended extension of no more than 50%.

Figure 5.5: WidowX-250 6DOF Robot arm.

Since our main objective is to study social navigation without necessarily
including objects manipulation, the robotic arm was not used for the purposes of
this thesis.

58

Hardware description

5.1.4 RPLIDAR A2M8

RPLIDAR A2M8 is a 360 degree 2D LiDAR designed for indoor environments.
It is mounted on top of the robot, at a height of approximately 63 cm from the
floor. Its high rotation speed enables it to take up 8000 laser ranging samples per
second, with a maximum identifiable distance of 12 meters. The resulting 2D point
cloud data can be used for both SLAM and navigation. The lidar was a critical
tool for conducting the simulation campaign. It enabled us to accurately execute
the SLAM and nearest obstacle detection phases, both of which are crucial for
evaluating the performance of the navigation algorithms.

Figure 5.6: RPLIDAR A2M8.

The main drawback of this type of LiDAR is its inability to provide vertical
resolution. As a 2D LiDAR, it can only scan in the plane perpendicular to its
rotational axis. This implies that it is unable to detect obstacles with a lower
height than the laser’s mounting position on the robot, which limits its ability to
explore and identify the environment. However, during the simulation phase, we
have considered an environment with walls high enough to overcome this limitation.

5.1.5 Intel RealSense Depth Camera D435

The RealSense Depth Camera D435 is a 3D camera developed by Intel. To
reconstruct a three-dimensional environment and provide depth data in real time,
It uses two synchronized stereoscopic cameras to capture the image from different
angles. It finds its primary application in robotics, virtual reality, and augmented
reality applications [86]. Additionally, it can also be utilized in both indoor and
outdoor environments [87].

59

Hardware description

Figure 5.7: Intel RealSense Depth Camera D435

• Depth sensor: The D435 is equipped with an infrared depth sensor that
measures the distance between the camera and objects present in the given
scene. This enables obtaining an accurate depth map of the objects captured;

• RGB camera: The D435 has a built-in colour (RGB) camera that offers a
resolution of 1280x720 and a maximum frame rate of 90 fps;

The device is mounted on the Locobot, approximately 53 cm above the floor and is
primarily used during the SLAM phase. Subsequently, the data obtained from the
camera is integrated with the one acquired from the LiDAR to create a static map
that will be used for actual navigation.

60

Chapter 6

ROS

To simulate and test new navigation algorithms, it is necessary to use a framework
that allows communication between the different simulated components of the
robot. In this context, ROS is a very useful framework due to its open source
nature and the numerous tools available. These features provide the flexibility to
work with both simulated and real robots. In particular, one of the most important
tools integrated in ROS is the navigation stack, a set of software components that
allow the movement of the mobile robot and the development of new navigation
algorithms.
In addition, ROS allows direct communication with Gazebo, the simulator used to
test the three navigation algorithms (more details in chapter 7).

Since the Game-theoretic Social Force Model requires a neural network to
approximate the operation of the Differential Evolution algorithm, Tensorflow
was chosen. It is a framework that allows the development of different machine
learning models. Once the neural network was developed, ROS was used to ensure
communication between it and the navigation stack.

Therefore, this chapter aims to provide a description of the underlying concepts
of ROS. Then, the different components of the navigation stack will be briefly
described, focusing mainly on the "move base" and its plugins. Both are necessary
for the implementation of the proposed navigation algorithm. Finally, the concepts
behind Tensorflow and the methodology used for the integration of the neural
network into ROS will be given.

61

ROS

6.1 Overview

The Robot Operating System (ROS) [88] is an open source meta-operating system
used for the development of various robotic applications. It was developed by
Willow Garage in 2007 and is currently maintained by the Open Source Robotics
Foundation. It is slowly becoming the standard technology for developing and
programming robots in both industry and research. Despite the name, ROS is
actually a framework (sometimes called middleware) that provides a set of tools
and functionalities needed to properly develop and operate a robot. Some of them
are:

• Hardware abstraction: through ROS, each hardware component of the robot
can be thought as a software component that can be programmed;

• Multiprocess communication and management: to easily enable and manage
communication among the different components and devices of the robot.

Before the introduction of ROS, robot design was extremely complex challenge
because each new application required the creation of a new and specific software
infrastructure and drivers, which were essential to ensure communication between
the various devices (sensors, actuators, programs). This situation led to a constant
"reinventing the wheel" situation, where the entire process had to be started from
scratch each time, resulting in a significant reduction in innovation capacity.

ROS has been developed to mitigate this problem. In fact, its main objective is to
promote ’code reuse’ by supporting a modular infrastructure based on open-source
code [89]. This distributed infrastructure consists of several processes (also called
Nodes, described in the next paragraph) that can be designed independently and
loosely coupled at runtime. These processes can be grouped into Packages (sets of
nodes) and Stacks (sets of packages), which can be easily shared and distributed
through Public Repositories over the Internet. This strategy allows developers to
focus mainly on the innovative phase of the development process rather than the
integration of heterogeneous robotic components, ensuring a significant increase in
efficiency.

62

ROS

Figure 6.1: Different ROS distribution over the years, from 2016 until today.

For this reason, in this thesis we have chosen to use ROS Noetic, the latest
version and currently the only one that is still continuously supported and updated.
To better understand its working principles, some key concepts and types of
communication implemented in ROS will be explained below.

6.2 Basic concepts and Communication paradigms
Conceptually, ROS tries to abstract the robot as a "network" where each device,
sensor, actuator can communicate with the others through standard and efficient
communication protocols. This network will basically consist of two basic ROS
components:

• Nodes: a ROS node is a software process that usually performs a single task
(such as reading data from a sensor or performing localization). In general, a
robotic system consists of several nodes that provide the hardware abstraction
mentioned above. Therefore, the use of ROS nodes provides multiple benefits
to the overall system, allowing a reduction in the complexity of writing code
and avoiding monolithic software architectures. In addition, the independent
development of each node guarantees the ability to write the associated code
in both C++ and Python, ensuring greater flexibility in the development
process;

• Master: it is the entity that manages communication between the different
components of the robot, allowing decentralized communication also known as
peer-to-peer communication. Its main function is to assign unique names to

63

ROS

each active node in the ROS system and to record all the relevant information
about them. Examples of such information could be the name of a second node
with which it needs to exchange information or the type of information and
how it is exchanged from one node to another. By recording this information,
the master can then enable the ROS nodes to "locate" each other, ensuring a
direct mutual communication.

In a ROS system, communication among nodes can basically take place via two
possible paradigms:

1. Publish/subscribe: it is a type of paradigm that guarantees asynchronous
communication among nodes. Thanks to its logic, it ensures a decoupling be-
tween who produces the information and who consumes it. Indeed, the receiver
of the information does not need to know the identity of who produced it.
This guarantees both extreme flexibility in the management of communication
(especially in many-to-many communication) and near real-time behaviour of
the system.

Figure 6.2: Conceptual representation of the Publish/Subscribe communication
paradigm in ROS.

This type of communication is implemented in ROS through the use of topics
and messages:

• Topic: a ROS topic corresponds to a named communication channel
through which nodes can exchange information in the form of messages.
Therefore, we call Publisher the node that publishes the information on
the topic, while Subscriber the node that subscribes to the same topic
to receive the information. Fig. 6.2 shows a simplified scheme of how
this communication process works. Both nodes must then inform the
ROS master of the name of the topic they wish to publish or subscribe.
However, each node can subscribe and publish to more than one topic at
the same time, ensuring a multi-communication process;

64

ROS

• Message: a ROS message is a data structure used by a node to exchange
information with another node by means of a topic. Each message is
characterised by a "type fields", which can be standard (generic data types
such as integer, boolean, double, etc.) or structured, i.e. made up of
several data types nested together to form more complex data structures;

2. Request/response: it is a paradigm whose operation is based on two
elements: the client (which executes the request) and the server (which
receives the request, processes it and returns the response). It guarantees a
synchronous communication since the client, after sending the request, waits
until it receives a response from the server. Unlike the approach described
above, there is no decoupling between the nodes that produces the information
and the nodes that consumes it. because the two actors must know each
other in order to communicate. This type of paradigm is implemented using
services.

Figure 6.3: A schematic representation of the request/response communication
paradigm implemented in ROS.

• Services: A ROS service corresponds to a specific type of computation or,
more generally, action that is exposed/executed by the server. Each type
of service is defined by a pair of messages (characterised by their specific
data type), one for the request and the other for the response. Therefore,
following the logic described above, we will call ROS server a ROS node
that provides a service, while ROS client a node that requests/calls this
service and waits for the response. In fig. 6.3, the working principles of
how a ROS client and a ROS server communicate are described.

65

ROS

6.3 Navigation stack

6.3.1 Overview

The navigation stack is a set of ROS packages and nodes that allow the robot to
perform the various stages of autonomous navigation described in Chapter 2. It
exploits information from the odometry and sensors to generate velocity commands.
These commands are subsequently processed and converted by the mobile base
controller into commands that can be sent to the actuators, which will enable the
actual movement of the robot.

The navigation stack:

• is intended for both differential drive and holonomic wheeled robots, typically
with circula or square shape;

• requires at least one LiDAR. The sensor will be used for both mapping and
localization phases (SLAM);

As a stack, it consists of different packages with specific purposes:

• Gmapping: it is the package that enables the use of sensors on the robot
(LiDAR and stereo camera) to perform the mapping phase. This generates a
static map of the environment [90];

• Map server: once the mapping phase is complete, this package is responsible
for storing and later providing the static map obtained earlier, which will be
used for both localization and path planning [91];

• Amcl: using LiDAR and the static map, this package performs the Monte
Carlo localization algorithm to identify the robot’s position in the environ-
ment [92];

• Move base: it performs the path and trajectory planning phase by using
information from the other packages in the stack [93].

The primary goal of this thesis is to develop navigation algorithms that are socially
acceptable. Therefore, in the following section, the discussion will focus exclusively
on the move base package composed by Nodes with different functionalities.

66

ROS

6.3.2 Move base package
The main purpose of the move base is receiving a Goal pose as input (which will
contain the final position and orientation that the robot will have to reach) and
returning as output the necessary linear and angular velocity commands to attain
that specific final pose [93].

As shown in fig. 6.4, the package consists of several interconnected nodes that
communicate with each other and with the other packages mentioned above through
specific ROS topics and messages.

Figure 6.4: Navigation stack packages and nodes with their related ROS topics
and messages [93].

Below, a high-level overview of the operation of each nodes is provided.

Global and local costmap

A costmap [94] is a spatial representation of the surrounding environment, created
using an occupancy grid. It divides the perceived environment into cells, each with
an assigned value that represents the cost or accessibility of that region of the
environment for the robot. This information allows the robot to determine whether
a given cell is occupied, free or unknown.

When it is initialized, the cost map will automatically subscribe to the sensor
topics and will start to update itself accordingly. The acquired data will then be
used to perform two fundamental operations:

• Marking: to insert obstacle information into the costmap, i.e. the cost of
each individual cell;

• Clearing: to remove obstacle information from the costmap;

67

ROS

To provide more accurate information, the move base employs the sensor data
to execute the inflation phase. This refers to the process of extending cost values
from the occupied cells, which decrease as distance increases. Indeed, each cell
has a cost ranging from 0 to 254. Based on the individual value assumed by each
cell, it will be possible to identify areas around obstacles that, although free, still
represent a danger to the robot’s movement.

Figure 6.5: Costmap inflation process [94]. The value associated with the occupied
cell is the maximum cost (254). This value decreases with increasing distance from
the center of the obstacle. Lower cost represents a lower probability of collision
hazard.

As shown in fig. 6.4, the navigation stack uses two types of costmap. The
method of assigning and updating costs is the same for both types. However, they
differ in the way they are initialized and the types of information they can provide.
Consequently, each costmap will have a specific purpose:

1. Global costmap: Its aim is to identify the elements in the environment
that represent actual static obstacles. To build this costmap, the data from
sensors is combined with a static map created during the mapping phase. As
a result, the size of the costmap will match the size of the static map used as
reference. In general, it is normally used in conjunction with a localization
system, such as the “amcl package” mentioned above. By performing the
localization process, it will be possible to use sensors data both to identify
the position of the robot and to update the costmap as it moves through the
environment. When performing SLAM directly, the procedure will be the

68

ROS

same. In this scenario, the costmap will be acquired by incorporating data
from the sensors and the map being constructed;

2. Local costmap: The purpose of the local costmap is to recognize dynamic
objects that might be close to the robot. Contrary to the global one, the local
costmap will be smaller, directly definable by the user, and will always be
centred with respect to the robot, moving in solidarity with it as it moves
through the environment. To create the local costmap, only the sensor data
within the defined costmap area is used.

After their creation, these costmaps will be given directly to the corresponding
planners in order to proceed with the next planning phases.
Although the local and global costmaps are extremely useful tools for recognizing
static and dynamic objects, the navigation algorithms developed in this thesis do
not strictly rely on their use. Indeed, the position of the closest obstacle is obtained
directly from LiDAR, as well as the pedestrians positions and robot velocity are
obtained from Gazebo related topics (more details in chapter 7).

Global planner

As can be seen from fig. 6.4, the node responsible for implementing the global
planner receives as an external input the target pose that the robot has to reach.
The global planner [95] uses the information available from the global cost map
and applies a path planning algorithm with the aim of creating a safe path that
allows the robot to move from the initial position to the goal, avoiding both fixed
obstacles and neighbouring areas that may be potentially dangerous.

By default, ROS implements two types of global planner algorithms:

• A* ;

• Dijkstra;

The explanation of how such algorithms work is beyond the scope of this thesis.

Local planner

The local planner receives as input the path generated by the global planner. It
then applies a local planning algorithm, using both the odometry data and the
information provided by the local costmap, with the aim of generating velocity

69

ROS

commands to follow the previously generated global path [96]. If dynamic obstacles
are nearby the robot, the local planner must modify velocity commands to change
the path in order to safely avoid these obstacles.
By default, ROS implements two local planning algorithms:

• Dynamic Window Approach (DWA);

• Trajectory Rollout;

Also in this case, the description of such algorithms is beyond the scope of this thesis.

Recovery behaviours

The move base package also implements default recovery behaviours [93]. They
are a series of actions that the robot can perform when it perceives itself as stuck,
i.e. unable to find a free path and produce valid velocity commands. This scenario
arises when the robot is surrounded by costmap cells whose values do not allow
it to move safely. These values could represent actual obstacles as well as some
possible errors that may occur during the costmap updating. By employing these
recovery behaviours, the move base tries to clean up the cost of the cells in order
to verify whether obstacles are actually present.
Basically, the move base package performs two types of recovery behaviours:

• Clear costmap: it uses the static map and sensor data to regenerate the
values of the individual cells of the global and local costmap. In this way, it
is possible to remove any wrongly detected obstacles and restore a correct
representation of the environment in order to resume navigation [97];

• Rotate recovery: the robot performs a 360 degree rotation in place to clean
the space and try to find a free direction for resuming navigation [98];

In general, the behaviour of the robot can be described as a state machine:

Navigating

Aborted

Clear costmap
(Conservative reset)

Rotate recovery Clear costmap
(Aggressive reset)

Rotate recovery
stuck stuck stuck

stuck

clear clear clear clear stuck

Figure 6.6: Schematic representation of the move base working conditions as a
state machine.

70

ROS

Therefore, if the robot perceives itself as stuck, it will perform one recovery
behaviour at a time and in a sequential manner as shown in fig. 6.6.

It is important to note that the “clear costmap” recovery behaviour can be per-
formed in two different ways [93]:

• Conservative reset: the robot cleans the costmap by removing obstacles outside
a user-specified region;

• Aggressive reset: the robot cleans the costmap by removing all obstacles
outside the rectangular region in which can rotate in place;

After each recovery behaviour, the move base will attempt to compute a new
path integrating the information from the new costmap. If the planning is success-
ful, the move base returns to the navigation phase and resumes generating velocity
commands via the local planner. Otherwise, the next recovery behaviour will be
executed. If all recovery behaviours fail, the robot will conclude that the goal is
not feasible and will abort the navigation.

Global and local planner plugins

The move-base package is entirely implemented in C++. This feature ensures better
efficiency and speed, enabling the robot to achieve excellent real-time performance.
To provide greater flexibility, ROS allows new planners, both local and global, to
be implemented through the use of plugins, which are portions of code used as
"extensions" to an existing program. The use of plugins makes the implementation
and testing phases of different planners easier. It also allows the user to customize
the behavior of each single planner according to the needs. To properly interact with
the move base package, such plugins must possess standard interfaces (functions),
which differ depending on the type of planner to be developed (fig. 6.7). Through
these interfaces, different planners and navigation algorithms can be developed
independently while still preserving the key functionality provided by the move base.

The following is a brief description of the interfaces needed to develop plugins for
global and local planners [99]:

• Global Planner:

– initialize: is the function that allows to initialize the global planner and
set the various parameters necessary for its operation. It returns true if
the initialization is successful or false otherwise;

71

ROS

Trajectory
rollout
(ROS)

DWA
(ROS)

Other local
planners

Local Planner
plugins

A*
(ROS)

Dijkstra
(ROS)

Other
global

planners

Global Planner
plugins

Local
planner

interfaces

Global
planner

interfaces

Move base

Figure 6.7: Schematic representation of move base local and global planner
interfaces and plugins.

– makePlan: it encapsulates the operation of the global planning algorithm.
This function is called every time the robot receives a new goal. Knowing
the current position of the robot, this function computes a feasible free
path to reach the final position. It returns a boolean flag as output, which
can be true if the path is created correctly or false otherwise. In case the
plan has been computed correctly, the function will send the plan to the
local planner via ros topic;

• Local Planner:

– initialize: as in the global planner, this function allows the local planner
to be initialized. Even in this case, it returns a boolean value according
to whether the initialization is successful or not;

– setPlan: this function is called immediately after the “makePlan” function
described above. It is responsible for receiving and setting the path
received from the global planner. It returns true or false according to
whether the obtained global plan can be set properly or not;

– computeVelocityCommands: this function encapsulates the operation of
the robot’s local navigation algorithm. It is called periodically until the
robot reaches the specified goal pose. Its purpose is to compute a new
velocity command at each time instant. Then, such a command will
be sent to the move base controller and subsequently transformed into
a direct command to robot’s actuators. The function returns true if a
feasible speed command is computed successfully or false otherwise;

72

ROS

– isGoalReached: whenever a valid velocity command is produced, this
function is executed in order to check if the goal has been reached. It
returns the value true or false according to whether or not the final pose
has been achieved;

The local planning algorithm described in Chapter 4 has been developed so that
its operation conforms to the described interfaces required to interact with the base
move.

6.4 TensorFlow
As stated in Chapter 4, the developed navigation algorithm employs a neural
network to generate the parameter sets required for the application of Game
Theory. TensorFlow was required to construct, train and test this neural network,
which was later integrated into ROS.

6.4.1 Overview
TensorFlow [100] is an open-source machine learning framework developed by
Google Brain. It enables the creation, training, and deployment of diverse machine
learning models, such as deep neural networks, across multiple platforms and
devices.

This framework is based on two basic concepts:

• Tensor: It represents a general multidimensional array. Tensors can be used
to represent scalars, vectors and matrices, including those of order greater than
2. In TensorFlow, all data is represented as a tensor. Depending on the data
represented, the tensor will be characterized by a "shape", that summarizes its
organization, and a “rank” that indicates the dimension of the tensor. Some
examples of tensors are shown in fig. 6.8 ;

• Graphs: These are patterns that TensorFlow builds to organize the math-
ematical operations necessary for training and testing the developed model
without actually performing the computation. A graph can be represented as
a collection of nodes and arcs. Nodes are the actual mathematical operations,
like multiplying matrices, applying activation functions, and optimizations.
Arcs represent the data (tensors) that the nodes take as input and return
as output after processing. Therefore, through the graph, it is possible to
describe the computational flow that will be performed on the tensors. An
example is shown in fig. 6.9;

73

ROS

(a) (b) (c)

(d) (e)

Figure 6.8: Some examples of tensors [101] with different shapes and ranks: (a)
rank=0, shape=[] ; (b) rank=1, shape=[3]; (c) rank=2, shape=[3,2]; (d) rank=3,
shape=[3,2,5]; (e) rank=4, shape=[3,2,4,5].

+

X +

X

x

y 2

Operation

Constant

Variable

Figure 6.9: Example of the TensorFlow computational graph of the function
x2y + y + 2 [102]. Nodes are represented in blue while arcs are represented in pink
(variables) and yellow (constant).

74

ROS

6.4.2 ROS Integration
TensorFlow offers various APIs for several programming languages such as C++
and Python. This characteristic makes TensorFlow easy to integrate with the ROS
environment. This enables the implementation of more complex robot functionality
through the application of machine learning.
To ensure the proper functioning of the developed algorithm, communication be-
tween the neural network and the local planner was necessary. This allowed the
latter to send the correct inputs and receive the corresponding outputs, i.e. the
parameter sets for generating the trajectories.

It’s possible to summarize this integration process in the following three steps:

1. Building the Neural Network: Using TensorFlow, it’s possible to develop,
train and test a neural network that is completely independent from ROS inter-
faces. At this stage, it will be necessary to specify the different characteristics
of the model, such as:

• number of hidden-layers;
• number of neurons for each layer;
• activation functions;
• cost function and optimization method for the training phase;

The model must be able to handle both input and output tensors, which will
have different ranks and shapes. Once the model has been tested, it is possible
to save it, i.e. to store the weights and biases of the different layers obtained
as a result of the training phase. This makes possible to delete and reload the
exact same model, even in different code scripts.

2. Creating a ROS node: In order to integrate the neural network into the
ROS environment, a simple standard node must be created. When initialized,
the node will have the task of loading the neural network saved in the previous
step. In this way, the model will be able to use all possible standard ROS
functionalities and interfaces to communicate with the other components of
the robot.

3. Design of ROS interfaces: After loading the neural network into the node,
it will be necessary to develop the actual communication interfaces with the
local planner, such as topics and services. In this way, the neural network will
be able to receive inputs, make predictions and send outputs to the various

75

ROS

other nodes in the system.
Given the method in which the neural network is deployed, the most efficient
choice is to allow communication between the node and the local planner by
means of ROS services.
Therefore, the node implementing the neural network will act as servers and
expose a single service. This service ensures the standard operation of the
neural network. It is responsible for receiving input from the local planner,
executing the corresponding prediction, and returning as output the parameter
sets necessary for the operation of the navigation algorithm.

The fig. 6.10 shows the final system architecture with the communication
interfaces between the neural network and the move base package:

Global
planner

Local planner

Move_base ROS package

Recovery
Behaviours

Global
costmap

Local
costmap

Velocity commands

Goal pose

Neural Network
ROS node

Service provider

Service consumer

Figure 6.10: Representation of the final architecture implemented in ROS.

76

Chapter 7

Experimental setup

In this chapter we expose in detail the tools and methods used to develop the
experimental simulation campaign. In the first section, we present a brief overview
of the two main simulation software (Gazebo and Rviz). Then, we provide a
complete description of the design of the simulations used to ensure the interaction
between robots and pedestrians. Finally, we briefly describe the metrics used to
quantitatively assess the social acceptability ensured by the algorithm.

7.1 Simulation tools

7.1.1 Gazebo

Gazebo [103] is an open-source simulator that is commonly used in robotics in
conjunction with the framework ROS. By utilizing various physics engines, it
offers a remarkably accurate 3D simulation environment which is crucial in the
development, testing, and validation of complex robotic systems.
With Gazebo, it is possible to model the physical behaviour of various kinds of
robots (such as mobile robots, drones or anthropomorphic robotic arms) and objects
in the environment. Furthermore, Gazebo allows virtual devices such as cameras,
lidar and ultrasound sensors to be integrated, providing realistic data for robotics
applications.
Thanks to its integration with ROS, robots in Gazebo can be controlled using
nodes and standard ROS interfaces such as topics and services, exactly as with
real robots. This greatly simplifies the transition from simulation to the real world.
In this way, it ensures the possibility to design and test the proper functioning of
the robot system in a virtual environment before moving to real implementation,
leading to benefits such as reduction in development costs and time.

77

Experimental setup

SFM plugin for pedestrians

To test and evaluate navigation algorithms through simulations, it is necessary to
create a virtual environment whose elements of interest, in this case pedestrians,
are as similar as possible to the real ones.
In its standard version, Gazebo offers the possibility to include pedestrian models,
simply called "actors", in the simulation. They will be able to move from a starting
point to an end point in the virtual environment along more or less complex
trajectories defined by a series of waypoints that the individual actor must reach
in a given time interval.
However, this procedure does not guarantee a "rational" behaviour of simulated
pedestrian. They will follow the defined trajectory despite the presence of potential
obstacles such as walls or other pedestrians. This results in a type of navigation that
differs significantly from the previous assumptions, where navigation was modelled
as a game in which agents (pedestrians and robots) make rational decisions based
on the situation. For this reason, we used a different approach to ensure robot-
pedestrians interactions during simulations.
In fact, thanks to its open-source nature, Gazebo enables the use of plugins, i.e.
software components that allow users to add specific features and robot models
to the simulator. In this project, an open-source SFM plugin [104] was used to
simulate real pedestrian motion in Gazebo. It is based on the original model
developed by Helbling et al. [15] and its later extensions [105][106]. This plugin
allows agents to move around the virtual environment according to the logic of the
Social Force Model described in Chapter 3. In the simulation, each agent has its
own individual parameters. In this way, besides ensuring a certain rationality in
choosing movement directions, it is possible to define different navigation logic for
each pedestrian, resulting in a more realistic simulation.

Figure 7.1: An example of two pedestrians moved by SFM plugins in Gazebo

78

Experimental setup

7.1.2 RViz

RViz (Robot Visualization) [107] is a 3D visualization tool included in the ROS
ecosystem. It is fundamental for the design of a robot, since it provides specific
functionalities that are particularly useful, such as:

• Real-time visualization: through RViz it is possible to graphically visualize
a wide range of data from sensors such as LiDAR and cameras, as well as maps
and planned trajectories. These data are read directly from the various topics
through which the active nodes of the system exchange messages containing
the necessary information for the correct behaviour of the robot. It is also
possible to design and visualize the model of the robot itself or any objects
that may be present in the environment;

• Planning and simulation: the tool provides the possibility to specify at
runtime the Goal pose that the robot has to reach and to display it directly
on the map. By reading specific topics, RViz can be used to visualize the path
generated by the global planner, possible changes made by the local planner,
and the real-time movement of the robot in the environment;

• Debugging: the ability to visualize the data and the resulting real-time
behaviour of the robot makes RViz a powerful resource for debugging and
testing, both in a simulated environment, such as Gazebo, and with the real
robot;

Figure 7.2: Example of locobot visualization in Rviz with the global costmap
related to the obstacles (walls) in the environment.

79

Experimental setup

7.2 Experiments and methods
The experimental phase aims to test the performance of the developed navigation
algorithm in terms of naturalness and comfort in a simulated environment. The
final goal is to evaluate social acceptability. For an accurate evaluation, the
game-theoretic Social Force Model has been compared with two other widely
used state-of-the-art approaches: the Social Force Model and Optimal Reciprocal
Collision Avoidance (ORCA) [20].
In total, the experimental campaign involved 180 simulations (trials) for each of
the considered algorithms.
The 180 simulations has been divided into two sets of 90 simulations each. Each set
of simulations has been performed considering two different navigation scenarios.
The first one includes the presence of three pedestrians while the second one involves
four pedestrians.
Both scenarios are designed to represent realistic navigation situations under
low crowd density conditions, while still providing some variability in possible
interactions between robots and pedestrians.
In these contexts, all pedestrians move from an initial position to a final position
by means of the SFM Gazebo’s plugin described above. The use of this plugin
is essential to make simulated pedestrians capable to avoid the robot enhancing
realistic evaluations of socially aware navigation. As a matter of fact, there are
a variety of benchmarks in literature for evaluating the performance of social
navigation algorithms. One of the most important ones is SocNavBench [108].
It is a simulator-based benchmark that uses real-world pedestrian trajectories to
simulate the movement of pedestrians. The interaction among robot and pedestrian
is made by replacing one pedestrian in the crowd with the robot. However, this
approach doesn’t take into account how the robot motion affect the pedestrian’s
path [109]. All pedestrians will apply a passive avoidance. They will be able to
avoid each other but not the robot. This makes it difficult to obtain realistic
evaluations of socially aware navigation.
On the other hand, modeling the movement of pedestrians through SFM makes it
possible to ensure an "active" pedestrian avoidance. Therefore, they will be able to
recognize the robot as an obstacle and avoid it.

7.2.1 Simulated environment description
All simulations have been performed in a room modeled in Gazebo having di-
mensions 8.5m x 5.5m. The total area is approximately 47 m2, comparable to
environments used in literature to perform real-world experiments [7][81].
Therefore, the room has been divided into six fictitious zones, as shown in fig. 7.3.
For each simulation, zone F is used to allow the correct spawning of the robot in

80

Experimental setup

the environment. Zones A, B, C, and D are used to spawn pedestrians. Before the
start of each simulation, every pedestrian in the scenario chooses its own spawn
zone from the available ones. This choice is characterized by a uniform distribution.
Each zone Z is defined by coordinates ranges:

Zx = {xz
min; xz

max}
Zy = {yz

min; yz
max}

(7.1)

By knowing these ranges, the j-th pedestrian can randomly generate its initial
position within the established area z. The generation of the initial position is
performed discretizing the coordinate ranges as:

xz
j = xz

min + rand(0,10)xz
max − xz

min

10
yz

j = yz
min + rand(0,10)yz

max − yz
min

10

(7.2)

where rand(0,10) represents a uniform random number between 0 and 10.
Overall, such zones are mutually exclusive. This means that a zone chosen by one
pedestrian cannot be chosen as a spawn zone by another individual.

C

B

A

D

E

F

5,5 m

8
.5

 m

X

y

Figure 7.3: Simulated environment and related spawn zones

To ensure that each simulation is characterized by at least one pedestrian-robot

81

Experimental setup

interaction, each spawn zone is associated with specific goal zones. The relationship
between the spawn zones and the corresponding goal zones is described in table 7.1.
As can be seen from fig. 7.3, the target zones are placed in opposite positions to
the related spawn zone, ensuring a greater number of encounters while navigating.

Spawn zone Goal zone
A D, E
B D, F
C E, F
D A, B
F C

Table 7.1: Goal zones associated to each spawn zone.

Once its initial position is established, each pedestrian randomly chooses the
goal zone following the order described in tab. 7.1 and generates the final position
to be reached. This process is performed by means of the same methodologies
applied for the spawn zone and the initial position. Even in this case, the goal
zones are mutually exclusive in order to avoid that multiple pedestrians can have a
common target area.

Since the robot can spawn only in zone F, the goal position is always gener-
ated in zone C. Therefore, in each simulation, the robot aims to reach the target
position located at the opposite corner of the room, while trying to avoid pedestrians
as naturally and comfortably as possible.

7.2.2 Evaluation metrics

In Chapter 1, we emphasized how developing a navigation algorithm that can
guarantee a certain level of naturalness and comfort is crucial to enhance social
acceptability of the robot. To achieve this goal, it is essential to evaluate the
navigation algorithm using specific metrics to quantify the level of naturalness and
comfort that it is able to guarantee.
A variety of metrics designed for this purpose exist in the state of the art. Each
of these metrics attempts to measure different aspects associated with these two
characteristics.
To ensure a comprehensive evaluation of the algorithm proposed in this thesis, we
performed a frequency analysis to select the most widely used metrics in the state
of the art. The results of this analysis are shown in fig. 7.4 and fig. 7.5.

82

Experimental setup

0

1

2

3

4

5

Average
displacement error

(ADE)

Final displacement
error (FDE)

Path Lenght Ratio
(PLR)

Average Speed (AS) Path Regularity (PR)

NATURALNESS

Figure 7.4: Frequencies of the most commonly used naturalness metrics in
literature.

0

1

2

3

4

5

6

7

Security metric-1 (SM1) Security Metric-2 (SM2) Closest Pedestrian Distance
(CPD)

Questionnaire

COMFORT

Figure 7.5: Frequencies of the most commonly used comfort metrics in literature.

83

Experimental setup

NATURALNESS
Metric Articles

Average displacement error (ADE) [110] [111]
Final displacement error (FDE) [110] [111]

Path Length Ratio (PLR) [108] [110] [43] [112]
Average Speed (AS) [108] [110] [113]

Path Regularity (PR) [108] [110] [43] [114]

Table 7.2: References of the analyzed naturalness metrics

COMFORT
Metric Articles

Security metric-1 (SM1) [115] [112]
Security metric-2 (SM2) [115]

Closest Pedestrian Distance (CPD) [115] [13] [21] [43] [109] [112]
Questionnaire [110]

Table 7.3: References of the analyzed comfort metrics

The final metrics that have been employed to evaluate the algorithm are:

• Path Length Ratio (PLR)
it is the ratio between the straight line between the initial and final position
of the robot and the actual path length of the robot trajectory:

PLR = ∥probot(Tgoal)− probot(0)|∑Tgoal

t=1 ∥probot(t)− probot(t− 1)∥
(7.3)

where Tgoal is the number of time-steps needed for the robot to reach its goal.
Hence, this metric takes values in the range [0,1]. In general, a higher PLR
is preferred since it indicates that the robot tends to reach its destination
minimizing the length of the path;

• Closest Pedestrian Distance (CPD)
it is the distance between the robot and the closest pedestrian j over the entire
considered trajectory:

CPD = min
t, j
∥probot(t)− pj(t)∥ (7.4)

A higher CPD value indicates that the robot tends to stay further away from
pedestrians. This ensures a higher level of comfort for humans;

84

Experimental setup

• Average Speed (AS)
it is the average speed of the robot over the entire trajectory;

AS =
∑Tgoal

t=1 vrobot(t)
Tgoal

(7.5)

• Path Regularity (PR)
it measures the (normalized) robot rotations during the navigation. It is
computed as:

PR = 1−
∑Tgoal

t=1 |θ(t)− θ(t− 1)|
PImax

(7.6)

where θ(t) represents the robot’s orientation at a generic time instant t and
the denominator PImax is the normalizing factor computed as:

PImax = max
SF M,

ORCA,
GT SF M

Tgoal∑
t=1
|θ(t)− θ(t− 1)| (7.7)

Such normalized index takes values in the range [0,1]. A value equal to 1
indicates a straight path from the initial position of the robot to the goal. A
value closer to 0 denotes a great number of rotations during the navigation.
Therefore, it is preferred to have values of PR closer to 1, since they represent
a smoother robot trajectory.

Together, these metrics give us a complete view to evaluate the effectiveness of
the navigation algorithm in a simulated environment, such as Gazebo.
All information about the positions of pedestrians and the positions and orientations
of the robot has been recorded and saved as ROS bag files and then analyzed using
Matlab.

85

Chapter 8

Test Results and Discussions

The results of our Monte Carlo numerical simulation are shown in fig. 8.1. Tables
8.1, 8.2, 8.3, and 8.4 report the mean values and corresponding standard deviations
of each algorithm for each considered metric: PLR, CPD, AS, and PR, respectively.
Our numerical validation shows that the GTSFM (Game-theoretic Social Force
Model) has significant improvements in almost all metrics, especially compared to
the SFM.

Figure 8.1: Mean value and standard deviation of the considered metrics of each
tested algorithm: SFM (Social Force Model), ORCA (Optimal Reciprocal Collision
Avoidance), GTSFM (Game-theoretic Social Force Model). The performance
metrics are: a) PLR (Path Length Ratio), b) CPD (Closest Pedestrian Distance),
c) AS (Average Speed), d) PR (Path Regularity).

86

Test Results and Discussions

Specifically, the GTSFM has a higher mean value of Path Length Ratio than
the other two algorithms. This results in a more direct movement of the robot
towards the goal, allowing a minimization of the total traversed path. Although
ORCA has a very similar mean value to the GTSFM, it has a much larger standard
deviation. This characteristic accounts for a large variability in the performance
metric between simulations.
In addition, as can be seen from the fig. 8.1, this standard deviation can result in
Path Length Ratio values greater than 1, which is the upper limit of the metric.
They represent situations where the robot was not able to definitely reach the goal.
However, this phenomenon can be explained by the distribution of the data after
the 180 simulations. The majority of the ORCA-related PLR data is distributed
above the mean value shown in fig. 8.1 and reported in tab. 8.1. However, within
this data there are numerous outliers, i.e. individual simulations characterized by
a very low PLR value. Therefore, the presence of such outliers results in a decrease
of the mean value and a significant increase in the standard deviation.

PLR
Algorithm Mean Standard deviation

SFM 0.8825 0.0582
ORCA 0.9331 0.0683

GTSFM 0.9356 0.0314

Table 8.1: Mean value and standard deviation of the PLR (Path Length Ratio)
for each algorithm

In terms of Closest Pedestrian Distance, tab. 8.2 shows that both the GTSFM
and ORCA have almost similar mean values and standard deviations between them,
resulting in superior performance if compared to SFM. This suggests that both are
able to maintain greater distances from pedestrians providing greater comfort than
SFM to humans during navigation.
Although they are characterized by very similar values, it should be noted that
the GTSFM has a slightly higher mean value than the ORCA and a slightly lower
standard deviation.

Considering the average speed, ORCA provides higher mean value than the
other two algorithms, but results in a very high standard deviation. Even in this
case, the phenomenon can be explained by the presence of outliers that increase
the overall standard deviation. This implies the inability of ORCA to effectively
manage its speed in scenarios characterized by different numbers of robot-human
interactions.

87

Test Results and Discussions

CPD
Algorithm Mean Standard deviation

SFM 0.9727 0.1697
ORCA 1.0847 0.2377

GTSFM 1.0861 0.2304

Table 8.2: Mean value and standard deviation of the CPD (Closest Pedestrian
Distance) for each algorithm

On the other hand, it can be seen from fig. 8.1 that the GTSFM still exhibits a
higher mean value than the SFM but more importantly a lower standard deviation
than the ORCA (see tab. 8.3). This implies that the average speed guaranteed
by the GTSFM remains about the same even in different scenarios. However, the
lower standard deviation indicates a greater adaptive capacity of the GTSFM than
the ORCA, even in cases with different numbers of robot-human interactions.
Although the results are promising, the obtained average speed values are still not
comparable to human speed values. This is related to the physical constraints of
the robot used for simulations, which has a maximum speed limit of 0.5 m/s.

AS
Algorithm Mean Standard deviation

SFM 0.2743 0.0370
ORCA 0.3778 0.0518

GTSFM 0.3104 0.0177

Table 8.3: Mean value and standard deviation of the AS (Average Speed) for each
algorithm

The most impressive metric that highlights the greatest benefit of using game
theory is Path Regularity. As can be seen from fig. 8.1, the GTSFM provides a
significant improvement over both the SFM and the ORCA. The ORCA’s Path
Regularity mean value is consistent with the mean values of the previous described
metrics, specifically the Path Length Ratio and Average Speed.
In general, ORCA determines paths characterized by very irregular and segmented
movements.
In fact, ORCA computes the velocity to be applied to the robot by solving an
optimization problem that takes as input the velocities of dynamic obstacles (in
this case pedestrians). In the case of a large number of interactions, the algorithm
may find it difficult to determine safe velocities that allow it to avoid pedestrians
and still move toward the goal.
In such a deadlock situation, it tends to rotate and move in the opposite direction

88

Test Results and Discussions

from the goal in order to try to find a new speed value that does not cause collisions
with pedestrians. This behavior results in a significant reduction in the path
regularity of the algorithm.

PR
Algorithm Mean Standard deviation

SFM 0.3171 0.0956
ORCA 0.1487 0.0709

GTSFM 0.5247 0.0829

Table 8.4: Mean value and standard deviation of the PR (Path Regularity) for
each algorithm

On the other hand, the SFM is able to slow down and avoid pedestrians even in
situations characterized by a high number of interactions. Despite low speeds, it
determines the generation of paths that, allow to exit from the situation without
performing an excessive number of rotations and reducing the overall steering angle.
This results in a much smoother path than ORCA.
In this context, the implementation of game theory in the GTSFM makes it possible
to determine which parameters of the SFM are best suited to ensure such an evasive
maneuver as smoothly as possible. This leads to a significant increase in PR
compared to the basic SFM.

89

Chapter 9

Future Works and
Conclusions

In this thesis we focused on the study of human-robot interaction during the
navigation process. The main goal was to develop a local planning algorithm
based on the combination of Game Theory and the Social Force Model, in order to
enhance the social acceptability of the robot. Specifically, the actions of each player
correspond to individual sets of SFM parameters. Different trajectories can be
generated from each of these sets. Game theory was then used to determine which
of the trajectories generated by the individual agent was the optimal trajectory to
follow, taking into account the possible choices of other players.
To ensure social acceptance, it was necessary to focus and increase the naturalness
and comfort provided by the algorithm. To achieve this goal, a Differential Evo-
lution algorithm was adopted. This algorithm was used to estimate the optimal
parameters of the SFM that best approximate the trajectories contained in Thör, a
dataset of real human trajectories. A neural network was employed to approximate
the functioning of the DE and ensure real-time operation. In this way, at each
time step, every single agent in the game is able to derive a set of possible actions
(trajectories). These actions vary according to the surrounding environment condi-
tions.
Through the experimental session, we tried to validate the effectiveness of our
approach and quantitatively evaluate performances of the algorithm. Such quantita-
tive validation provided promising results, although it is based only on simulations.
Overall, the developed algorithm provides a very high level of naturalness and
comfort compared to the other two state of the art algorithms, as demonstrated
by the Path Length Ratio and Closest Pedestrian Distance indices. These results
remain consistent even in different navigation situations, especially in cases with a
high number of human-robot interactions.

90

Future Works and Conclusions

In addition, it is important to note that the use of Game Theory allows for a
significant increase in Path Regularity than SFM and ORCA. This leads to much
smoother movements and paths than those generated by other state-of-the-art
algorithms, resulting in a significant increase in naturalness.
Our work could find promising applications in a variety of fields other than just
the autonomous movement of mobile robots. A concrete example may be Virtual
Reality, where the model can be used to simulate realistic human motions [116].
The proposed algorithm could also be useful in gaming applications to develop
Non-Player Characters (NPCs) that respond realistically to player’s movements
within the game [117] or autonomous guidance, where the algorithm could result
in increased safety of people through the prediction of the future human move-
ments [118].
Our work can be extended in various directions. An example could be increasing
the number of actions (set of SFM parameters) available to each agent. This would
allow for greater variability in the behaviors of the various agents involved in the
game. Another approach might be to increase the number of agents so as to test
performances even in situations with higher crowd density. However, increasing
the number of agents and actions would decrease the overall performance of the
algorithm and its ability to find real-time solutions of the game. In that case, a
possible solution might be to apply a neural network that approximates how game
theory works and derive the Nash equilibrium directly.
In addition, it would be useful to investigate other possible types of solutions
of the game, different from the Nash equilibrium, and compare them with the
solutions established by our algorithm. Some examples can be Pareto optimal [119]
or Stackelberg equilibrium [120].
An alternative approach could be to improve the quality of the optimal parameters
estimation by applying possible variants of the Differential Evolution algorithm.
A promising example is Self Adaptive Differential Evolution (SaDE) [121]. As a
matter of fact, it can automatically adapt the values of DE control parameters
(mutation factor F and Crossover rate Cr) by learning directly from previous
experiences of generating promising solutions [45].
Nevertheless, future works will focus on the creation of a real-world experimental
session that involves both the robot and humans in order to obtain more consistent
results. In that case, it might also be interesting to perform an evaluation from
a qualitative point of view. Such qualitative evaluation could include the use
of questionnaires that are already widely used in the state of the art, such as
Goodspeed [122], RoSAS [123] or HRIES [124]. This makes it possible to obtain
feedback on the social acceptability of the robot directly from the pedestrians
involved in the navigation.

91

Bibliography

[1] Wolfram Burgard, Armin B Cremers, Dieter Fox, Dirk Hähnel, Gerhard
Lakemeyer, Dirk Schulz, Walter Steiner, and Sebastian Thrun. «Experiences
with an interactive museum tour-guide robot». In: Artificial intelligence
114.1-2 (1999), pp. 3–55 (cit. on p. 1).

[2] Hideki Asoh, Satoru Hayamizu, Isao Hara, Yoichi Motomura, Shotaro Akaho,
and Toshihiro Matsui. «Socially embedded learning of the office-conversant
mobile robot jijo-2». In: IJCAI (2). 1997, pp. 880–887 (cit. on p. 1).

[3] Masaki Takahashi, Takafumi Suzuki, Hideo Shitamoto, Toshiki Moriguchi,
and Kazuo Yoshida. «Developing a mobile robot for transport applications
in the hospital domain». In: Robotics and Autonomous Systems 58.7 (2010),
pp. 889–899 (cit. on p. 1).

[4] Eduardo Zalama, Jaime Gómez García-Bermejo, Samuel Marcos, Salvador
Domínguez, Raúl Feliz, Roberto Pinillos, and Joaquín López. «Sacarino,
a service robot in a hotel environment». In: ROBOT2013: First Iberian
Robotics Conference: Advances in Robotics, Vol. 2. Springer. 2014, pp. 3–14
(cit. on p. 1).

[5] Jorge Rios-Martinez, Anne Spalanzani, and Christian Laugier. «From prox-
emics theory to socially-aware navigation: A survey». In: International
Journal of Social Robotics 7 (2015), pp. 137–153 (cit. on pp. 1, 2).

[6] Thibault Kruse, Amit Kumar Pandey, Rachid Alami, and Alexandra Kirsch.
«Human-aware robot navigation: A survey». In: Robotics and Autonomous
Systems 61.12 (2013), pp. 1726–1743 (cit. on pp. 2–4, 16).

[7] Annemarie Turnwald and Dirk Wollherr. «Human-like motion planning
based on game theoretic decision making». In: International Journal of
Social Robotics 11 (2019), pp. 151–170 (cit. on pp. 2, 4, 17, 31, 32, 35, 36,
80).

92

BIBLIOGRAPHY

[8] Annemarie Turnwald, Daniel Althoff, Dirk Wollherr, and Martin Buss. «Un-
derstanding human avoidance behavior: interaction-aware decision making
based on game theory». In: International journal of social robotics 8 (2016),
pp. 331–351 (cit. on pp. 4, 16, 29, 31–33, 35–37).

[9] Andrey Rudenko, Tomasz P Kucner, Chittaranjan S Swaminathan, Ravi T
Chadalavada, Kai O Arras, and Achim J Lilienthal. «Thör: Human-robot
navigation data collection and accurate motion trajectories dataset». In:
IEEE Robotics and Automation Letters 5.2 (2020), pp. 676–682 (cit. on pp. 5,
44).

[10] Jose Ricardo Sanchez-Ibanez, Carlos J Perez-del-Pulgar, and Alfonso García-
Cerezo. «Path planning for autonomous mobile robots: A review». In: Sensors
21.23 (2021), p. 7898 (cit. on p. 8).

[11] BK Patle, Anish Pandey, DRK Parhi, AJDT Jagadeesh, et al. «A review:
On path planning strategies for navigation of mobile robot». In: Defence
Technology 15.4 (2019), pp. 582–606 (cit. on p. 8).

[12] Jiyu Cheng, Hu Cheng, Max Q-H Meng, and Hong Zhang. «Autonomous
navigation by mobile robots in human environments: A survey». In: 2018
IEEE international conference on robotics and biomimetics (ROBIO). IEEE.
2018, pp. 1981–1986 (cit. on pp. 9, 11, 13–17, 32).

[13] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P How. «So-
cially aware motion planning with deep reinforcement learning». In: 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2017, pp. 1343–1350 (cit. on pp. 9–12, 15, 84).

[14] Truong Xuan Tung and Trung Dung Ngo. «Socially aware robot navigation
using deep reinforcement learning». In: 2018 IEEE Canadian Conference on
Electrical & Computer Engineering (CCECE). IEEE. 2018, pp. 1–5 (cit. on
pp. 9–11).

[15] Dirk Helbing and Peter Molnar. «Social force model for pedestrian dynamics».
In: Physical review E 51.5 (1995), p. 4282 (cit. on pp. 10, 21, 78).

[16] Francesco Zanlungo, Zeynep Yücel, Florent Ferreri, Jani Even, Luis Yoichi
Morales Saiki, and Takayuki Kanda. «Social group motion in robots». In:
Social Robotics: 9th International Conference, ICSR 2017, Tsukuba, Japan,
November 22-24, 2017, Proceedings 9. Springer. 2017, pp. 474–484 (cit. on
p. 10).

[17] Francesco Farina, Daniele Fontanelli, Andrea Garulli, Antonio Giannitrapani,
and Domenico Prattichizzo. «Walking ahead: The headed social force model».
In: PloS one 12.1 (2017), e0169734 (cit. on pp. 10, 21, 27, 38).

93

BIBLIOGRAPHY

[18] Paolo Fiorini and Zvi Shiller. «Motion planning in dynamic environments
using velocity obstacles». In: The international journal of robotics research
17.7 (1998), pp. 760–772 (cit. on p. 10).

[19] Jur Van den Berg, Ming Lin, and Dinesh Manocha. «Reciprocal velocity
obstacles for real-time multi-agent navigation». In: 2008 IEEE international
conference on robotics and automation. Ieee. 2008, pp. 1928–1935 (cit. on
p. 10).

[20] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. «Recipro-
cal n-body collision avoidance». In: Robotics Research: The 14th International
Symposium ISRR. Springer. 2011, pp. 3–19 (cit. on pp. 11, 80).

[21] Lei Tai, Jingwei Zhang, Ming Liu, and Wolfram Burgard. «Socially compliant
navigation through raw depth inputs with generative adversarial imitation
learning». In: 2018 IEEE international conference on robotics and automation
(ICRA). IEEE. 2018, pp. 1111–1117 (cit. on pp. 11, 13, 84).

[22] Zhanteng Xie, Pujie Xin, and Philip Dames. «Towards safe navigation
through crowded dynamic environments». In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2021, pp. 4934–
4940 (cit. on p. 11).

[23] NH Singh and K Thongam. Neural network-based approaches for mobile
robot navigation in static and moving obstacles environments. Intel. Serv.
Robot. 12 (1), 55–67 (2018). 2018 (cit. on p. 12).

[24] Santosh Balajee Banisetty, Vineeth Rajamohan, Fausto Vega, and David Feil-
Seifer. «A deep learning approach to multi-context socially-aware navigation».
In: 2021 30th IEEE International Conference on Robot & Human Interactive
Communication (RO-MAN). IEEE. 2021, pp. 23–30 (cit. on p. 12).

[25] Huihui Sun, Weijie Zhang, Runxiang Yu, and Yujie Zhang. «Motion planning
for mobile robots—Focusing on deep reinforcement learning: A systematic
review». In: IEEE Access 9 (2021), pp. 69061–69081 (cit. on p. 12).

[26] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How. «De-
centralized non-communicating multiagent collision avoidance with deep
reinforcement learning». In: 2017 IEEE international conference on robotics
and automation (ICRA). IEEE. 2017, pp. 285–292 (cit. on p. 12).

[27] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexandre Alahi. «Crowd-
robot interaction: Crowd-aware robot navigation with attention-based deep
reinforcement learning». In: 2019 international conference on robotics and
automation (ICRA). IEEE. 2019, pp. 6015–6022 (cit. on p. 12).

94

BIBLIOGRAPHY

[28] Keyu Li, Yangxin Xu, Jiankun Wang, and Max Q-H Meng. «SARL*: Deep
reinforcement learning based human-aware navigation for mobile robot in
indoor environments». In: 2019 IEEE International Conference on Robotics
and Biomimetics (ROBIO). IEEE. 2019, pp. 688–694 (cit. on p. 13).

[29] Yigit Yildirim and Emre Ugur. «Learning Social Navigation from Demon-
strations with Deep Neural Networks». In: () (cit. on p. 13).

[30] Omar A Islas Ramírez, Harmish Khambhaita, Raja Chatila, Mohamed
Chetouani, and Rachid Alami. «Robots learning how and where to approach
people». In: 2016 25th IEEE international symposium on robot and human
interactive communication (RO-MAN). IEEE. 2016, pp. 347–353 (cit. on
p. 13).

[31] Shiying Sun, Xiaoguang Zhao, Qianzhong Li, and Min Tan. «Inverse re-
inforcement learning-based time-dependent A* planner for human-aware
robot navigation with local vision». In: Advanced Robotics 34.13 (2020),
pp. 888–901 (cit. on p. 13).

[32] Skanda Vaidyanath. Inverse Reinforcement Learning. https://skandav
aidyanath.github.io/post/inverse-rl-paper/. Accessed: 2023-08-27
(cit. on p. 14).

[33] Alessandro Antonucci, Gastone Pietro Rosati Papini, Paolo Bevilacqua, Luigi
Palopoli, and Daniele Fontanelli. «Efficient prediction of human motion for
real-time robotics applications with physics-inspired neural networks». In:
IEEE Access 10 (2021), pp. 144–157 (cit. on p. 14).

[34] Sheng Fei Chik, Che Fai Yeong, Eileen Lee Ming Su, Thol Yong Lim, Feng
Duan, Jeffrey Too Chuan Tan, Ping Hua Tan, and Patrick Jun Hua Chin.
«Gaussian pedestrian proxemics model with social force for service robot
navigation in dynamic environment». In: Modeling, Design and Simulation of
Systems: 17th Asia Simulation Conference, AsiaSim 2017, Melaka, Malaysia,
August 27–29, 2017, Proceedings, Part I 17. Springer. 2017, pp. 61–73 (cit. on
p. 15).

[35] Yuying Chen, Ming Liu, and Lujia Wang. «Rrt* combined with gvo for
real-time nonholonomic robot navigation in dynamic environment». In:
2018 IEEE International Conference on Real-time Computing and Robotics
(RCAR). IEEE. 2018, pp. 479–484 (cit. on p. 15).

[36] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. «The dynamic window
approach to collision avoidance». In: IEEE Robotics & Automation Magazine
4.1 (1997), pp. 23–33 (cit. on p. 15).

95

https://skandavaidyanath.github.io/post/inverse-rl-paper/
https://skandavaidyanath.github.io/post/inverse-rl-paper/

BIBLIOGRAPHY

[37] Noé Pérez-Higueras, Fernando Caballero, and Luis Merino. «Learning human-
aware path planning with fully convolutional networks». In: 2018 IEEE
international conference on robotics and automation (ICRA). IEEE. 2018,
pp. 5897–5902 (cit. on p. 15).

[38] Óscar Gil, Anaís Garrell, and Alberto Sanfeliu. «Social robot navigation
tasks: Combining machine learning techniques and social force model». In:
Sensors 21.21 (2021), p. 7087 (cit. on p. 15).

[39] Pete Trautman, Jeremy Ma, Richard M Murray, and Andreas Krause. «Robot
navigation in dense human crowds: Statistical models and experimental
studies of human–robot cooperation». In: The International Journal of
Robotics Research 34.3 (2015), pp. 335–356 (cit. on p. 16).

[40] SF Chik, CF Yeong, ELM Su, TY Lim, Y Subramaniam, and PJH Chin. «A
review of social-aware navigation frameworks for service robot in dynamic
human environments». In: Journal of Telecommunication, Electronic and
Computer Engineering (JTEC) 8.11 (2016), pp. 41–50 (cit. on p. 16).

[41] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet,
Li Fei-Fei, and Silvio Savarese. «Social lstm: Human trajectory prediction in
crowded spaces». In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 961–971 (cit. on p. 16).

[42] Henrik Kretzschmar, Markus Spies, Christoph Sprunk, and Wolfram Bur-
gard. «Socially compliant mobile robot navigation via inverse reinforcement
learning». In: The International Journal of Robotics Research 35.11 (2016),
pp. 1289–1307 (cit. on p. 16).

[43] Giada Galati, Stefano Primatesta, Sergio Grammatico, Simone Macrì, and
Alessandro Rizzo. «Game theoretical trajectory planning enhances social ac-
ceptability of robots by humans». In: Scientific Reports 12.1 (2022), p. 21976
(cit. on pp. 17, 35, 84).

[44] Rainer Storn. «Differrential evolution-a simple and efficient adaptive scheme
for global optimization over continuous spaces». In: Technical report, In-
ternational Computer Science Institute 11 (1995) (cit. on pp. 18, 39, 43,
44).

[45] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. «Differential evolu-
tion: A survey of the state-of-the-art». In: IEEE transactions on evolutionary
computation 15.1 (2010), pp. 4–31 (cit. on pp. 18, 40, 42–44, 91).

[46] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential evolu-
tion: a practical approach to global optimization. Springer Science & Business
Media, 2006 (cit. on p. 19).

96

BIBLIOGRAPHY

[47] Hui-Yuan Fan and Jouni Lampinen. «A trigonometric mutation operation to
differential evolution». In: Journal of global optimization 27 (2003), pp. 105–
129 (cit. on p. 19).

[48] Hamid R Tizhoosh. «Opposition-based learning: a new scheme for machine
intelligence». In: International conference on computational intelligence for
modelling, control and automation and international conference on intelligent
agents, web technologies and internet commerce (CIMCA-IAWTIC’06). Vol. 1.
IEEE. 2005, pp. 695–701 (cit. on p. 19).

[49] Shih-Lian Cheng and Chyi Hwang. «Optimal approximation of linear systems
by a differential evolution algorithm». In: IEEE Transactions on Systems,
man, and cybernetics-part a: systems and humans 31.6 (2001), pp. 698–707
(cit. on p. 19).

[50] Hassan Yousefi, Heikki Handroos, and Azita Soleymani. «Application of
differential evolution in system identification of a servo-hydraulic system
with a flexible load». In: Mechatronics 18.9 (2008), pp. 513–528 (cit. on
p. 19).

[51] Hesheng Tang, Songtao Xue, and Cunxin Fan. «Differential evolution strategy
for structural system identification». In: Computers & Structures 86.21-22
(2008), pp. 2004–2012 (cit. on p. 19).

[52] Prathyush P Menon, Jongrae Kim, Declan G Bates, and Ian Postlethwaite.
«Clearance of nonlinear flight control laws using hybrid evolutionary opti-
mization». In: IEEE transactions on evolutionary computation 10.6 (2006),
pp. 689–699 (cit. on p. 19).

[53] Luis Moreno, Santiago Garrido, Dolores Blanco, and M Luisa Munoz. «Dif-
ferential evolution solution to the SLAM problem». In: Robotics and Au-
tonomous Systems 57.4 (2009), pp. 441–450 (cit. on p. 20).

[54] Serkan Aydin and Hakan Temeltas. «Fuzzy-differential evolution algorithm
for planning time-optimal trajectories of a unicycle mobile robot on a pre-
defined path». In: Advanced Robotics 18.7 (2004), pp. 725–748 (cit. on
p. 20).

[55] Jayasree Chakraborty, Amit Konar, Lakhmi C Jain, and Uday K Chakraborty.
«Cooperative multi-robot path planning using differential evolution». In:
Journal of Intelligent & Fuzzy Systems 20.1-2 (2009), pp. 13–27 (cit. on
p. 20).

[56] Bidyadhar Subudhi and Debashisha Jena. «Differential evolution and lev-
enberg marquardt trained neural network scheme for nonlinear system
identification». In: Neural Processing Letters 27 (2008), pp. 285–296 (cit. on
p. 20).

97

BIBLIOGRAPHY

[57] George D Magoulas, Vassilis P Plagianakos, and Michael N Vrahatis. «Neural
network-based colonoscopic diagnosis using on-line learning and differential
evolution». In: Applied Soft Computing 4.4 (2004), pp. 369–379 (cit. on
p. 20).

[58] Gonzalo Ferrer, Anais Garrell, and Alberto Sanfeliu. «Social-aware robot
navigation in urban environments». In: 2013 European Conference on Mobile
Robots. IEEE. 2013, pp. 331–336 (cit. on p. 21).

[59] Meifang Li, Yongxiang Zhao, Lerong He, Wenxiao Chen, and Xianfeng Xu.
«The parameter calibration and optimization of social force model for the
real-life 2013 Ya’an earthquake evacuation in China». In: Safety science 79
(2015), pp. 243–253 (cit. on pp. 21, 38).

[60] Qian Liu. «A social force model for the crowd evacuation in a terrorist
attack». In: Physica A: Statistical Mechanics and its Applications 502 (2018),
pp. 315–330 (cit. on p. 21).

[61] Francesco Zanlungo, Tetsushi Ikeda, and Takayuki Kanda. «Social force
model with explicit collision prediction». In: Europhysics Letters 93.6 (2011),
p. 68005 (cit. on p. 23).

[62] Xu Chen, Martin Treiber, Venkatesan Kanagaraj, and Haiying Li. «Social
force models for pedestrian traffic–state of the art». In: Transport reviews
38.5 (2018), pp. 625–653 (cit. on p. 25).

[63] Gustavo Arechavaleta, Jean-Paul Laumond, Halim Hicheur, and Alain
Berthoz. «On the nonholonomic nature of human locomotion». In: Au-
tonomous Robots 25 (2008), pp. 25–35 (cit. on p. 27).

[64] John Von Neumann and Oskar Morgenstern. Theory of games and economic
behavior (60th Anniversary Commemorative Edition). Princeton university
press, 2007 (cit. on p. 28).

[65] John Nash. «Non-cooperative games». In: Annals of mathematics (1951),
pp. 286–295 (cit. on pp. 28, 31).

[66] W Brian Arthur. «Complexity in economic and financial markets». In:
Complexity 1.1 (1995), pp. 20–25 (cit. on p. 28).

[67] Kalyan Chatterjee and William Samuelson. Game theory and business appli-
cations. Springer, 2001 (cit. on p. 28).

[68] Steven J Brams. Game theory and politics. Courier Corporation, 2011 (cit. on
p. 28).

[69] Peter Hammerstein and Reinhard Selten. «Game theory and evolutionary
biology». In: Handbook of game theory with economic applications 2 (1994),
pp. 929–993 (cit. on p. 28).

98

BIBLIOGRAPHY

[70] Jason R Marden and Jeff S Shamma. «Game theory and control». In: Annual
Review of Control, Robotics, and Autonomous Systems 1 (2018), pp. 105–134
(cit. on p. 28).

[71] Tim Roughgarden. «Algorithmic game theory». In: Communications of the
ACM 53.7 (2010), pp. 78–86 (cit. on p. 28).

[72] Yoav Shoham. «Computer science and game theory». In: Communications
of the ACM 51.8 (2008), pp. 74–79 (cit. on p. 28).

[73] Wikipedia contributors. Solution concept — Wikipedia, The Free Encyclope-
dia. [Online; accessed 25-August-2023]. 2023. url: https://en.wikipedia.
org/w/index.php?title=Solution_concept&oldid=1149748360 (cit. on
p. 29).

[74] Kevin Leyton-Brown and Yoav Shoham. Essentials of game theory: A concise
multidisciplinary introduction. Springer Nature, 2022 (cit. on p. 29).

[75] Annemarie Turnwald, Wiktor Olszowy, Dirk Wollherr, and Martin Buss.
«Interactive navigation of humans from a game theoretic perspective». In:
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE. 2014, pp. 703–708 (cit. on p. 31).

[76] Stephen Bitgood and Stephany Dukes. «Not another step! Economy of
movement and pedestrian choice point behavior in shopping malls». In:
Environment and behavior 38.3 (2006), pp. 394–405 (cit. on p. 35).

[77] R McNeill Alexander. «Energetics and optimization of human walking and
running: the 2000 Raymond Pearl memorial lecture». In: American journal
of human biology 14.5 (2002), pp. 641–648 (cit. on pp. 35, 36).

[78] Simone Sagratella. «Algorithms for generalized potential games with mixed-
integer variables». In: Computational Optimization and Applications 68.3
(2017), pp. 689–717 (cit. on p. 37).

[79] Zhiqiang Wan, Xuemin Hu, Haibo He, and Yi Guo. «A learning based
approach for social force model parameter estimation». In: 2017 International
Joint Conference on Neural Networks (IJCNN). IEEE. 2017, pp. 4058–4064
(cit. on p. 38).

[80] Ramachandra Raghavendra, Alessio Del Bue, Marco Cristani, and Vittorio
Murino. «Abnormal crowd behavior detection by social force optimization».
In: Human Behavior Understanding: Second International Workshop, HBU
2011, Amsterdam, The Netherlands, November 16, 2011. Proceedings 2.
Springer. 2011, pp. 134–145 (cit. on p. 38).

99

https://en.wikipedia.org/w/index.php?title=Solution_concept&oldid=1149748360
https://en.wikipedia.org/w/index.php?title=Solution_concept&oldid=1149748360

BIBLIOGRAPHY

[81] Xuan-Tung Truong and Trung Dung Ngo. «Toward socially aware robot
navigation in dynamic and crowded environments: A proactive social motion
model». In: IEEE Transactions on Automation Science and Engineering
14.4 (2017), pp. 1743–1760 (cit. on pp. 38, 80).

[82] Hasan Kivrak, Furkan Cakmak, Hatice Kose, and Sirma Yavuz. «Social
navigation framework for assistive robots in human inhabited unknown
environments». In: Engineering Science and Technology, an International
Journal 24.2 (2021), pp. 284–298 (cit. on p. 38).

[83] Jinghui Zhong and Wentong Cai. «Differential evolution with sensitivity
analysis and the Powell’s method for crowd model calibration». In: Journal
of computational science 9 (2015), pp. 26–32 (cit. on p. 38).

[84] Anders Johansson, Dirk Helbing, and Pradyumn K Shukla. «Specification
of the social force pedestrian model by evolutionary adjustment to video
tracking data». In: Advances in complex systems 10.supp02 (2007), pp. 271–
288 (cit. on p. 48).

[85] Create3 mobile base. https://iroboteducation.github.io/create3_
docs/. Accessed: 2023-08-23 (cit. on p. 56).

[86] RealSense | Use cases. https://www.intelrealsense.com/use-cases/.
Accessed: 2023-10-05 (cit. on p. 59).

[87] RealSenseD435. https://www.intelrealsense.com/depth-camera-d435
/. Accessed: 2023-10-05 (cit. on p. 59).

[88] ROS. https://www.ros.org/. Accessed: 2023-08-23 (cit. on p. 62).
[89] ROS/Introduction. https://wiki.ros.org/ROS/Introduction. Accessed:

2023-08-23 (cit. on p. 62).
[90] ROS gmapping package. http://wiki.ros.org/gmapping. Accessed: 2023-

08-23 (cit. on p. 66).
[91] ROS map_server package. http://wiki.ros.org/map_server?distro=

noetic. Accessed: 2023-08-23 (cit. on p. 66).
[92] ROS amcl package. http://wiki.ros.org/amcl. Accessed: 2023-08-23

(cit. on p. 66).
[93] ROS move_base package. http://wiki.ros.org/move_base. Accessed:

2023-08-23 (cit. on pp. 66, 67, 70, 71).
[94] ROS costmap_2d package. http://wiki.ros.org/costmap_2d. Accessed:

2023-08-23 (cit. on pp. 67, 68).
[95] ROS global_planner package. http://wiki.ros.org/global_planner?

distro=noetic. Accessed: 2023-08-23 (cit. on p. 69).

100

https://iroboteducation.github.io/create3_docs/
https://iroboteducation.github.io/create3_docs/
https://www.intelrealsense.com/use-cases/
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
https://www.ros.org/
https://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/gmapping
http://wiki.ros.org/map_server?distro=noetic
http://wiki.ros.org/map_server?distro=noetic
http://wiki.ros.org/amcl
http://wiki.ros.org/move_base
http://wiki.ros.org/costmap_2d
http://wiki.ros.org/global_planner?distro=noetic
http://wiki.ros.org/global_planner?distro=noetic

BIBLIOGRAPHY

[96] ROS base_locale_planner package. http://wiki.ros.org/base_local_
planner?distro=noetic. Accessed: 2023-08-23 (cit. on p. 70).

[97] ROS clear_costmap_recovery package. http://wiki.ros.org/clear_
costmap_recovery?distro=noetic. Accessed: 2023-08-23 (cit. on p. 70).

[98] ROS rotate_recovery package. http://wiki.ros.org/rotate_recovery?
distro=noetic. Accessed: 2023-08-23 (cit. on p. 70).

[99] Sergi Hernández Juan and Fernando Herrero Cotarelo. «Autonomous navi-
gation framework for a car-like robot». In: (2015) (cit. on p. 71).

[100] TensorFlow. https://www.tensorflow.org/overview?hl=it. Accessed:
2023-08-23 (cit. on p. 73).

[101] Introduzione ai tensori | TensorFlow. https://www.tensorflow.org/
guide/tensor?hl=it. Accessed: 2023-08-23 (cit. on p. 74).

[102] Easy TensorFlow. https://www.easy-tensorflow.com/tf-tutorials/
basics/graph-and-session. Accessed: 2023-08-23 (cit. on p. 74).

[103] Gazebo simulator. https://gazebosim.org/home. Accessed: 2023-08-23
(cit. on p. 77).

[104] gazebo_sfm_plugin. https://github.com/robotics-upo/gazebo_sfm_
plugin. Accessed: 2023-08-23 (cit. on p. 78).

[105] Mehdi Moussaïd, Dirk Helbing, Simon Garnier, Anders Johansson, Maud
Combe, and Guy Theraulaz. «Experimental study of the behavioural mech-
anisms underlying self-organization in human crowds». In: Proceedings of
the Royal Society B: Biological Sciences 276 (2009), pp. 2755–2762 (cit. on
p. 78).

[106] Mehdi Moussaïd, Niriaska Perozo, Simon Garnier, Dirk Helbing, and Guy
Theraulaz. «The walking behaviour of pedestrian social groups and its impact
on crowd dynamics». In: PloS one 5.4 (2010), e10047 (cit. on p. 78).

[107] Rviz docs. http://wiki.ros.org/rviz. Accessed: 2023-08-23 (cit. on
p. 79).

[108] Abhijat Biswas, Allan Wang, Gustavo Silvera, Aaron Steinfeld, and Henny
Admoni. «Socnavbench: A grounded simulation testing framework for evalu-
ating social navigation». In: ACM Transactions on Human-Robot Interaction
(THRI) 11.3 (2022), pp. 1–24 (cit. on pp. 80, 84).

[109] Noé Pérez-Higueras, Roberto Otero, Fernando Caballero, and Luis Merino.
«HuNavSim: A ROS 2 Human Navigation Simulator for Benchmarking
Human-Aware Robot Navigation». In: arXiv preprint arXiv:2305.01303
(2023) (cit. on pp. 80, 84).

101

http://wiki.ros.org/base_local_planner?distro=noetic
http://wiki.ros.org/base_local_planner?distro=noetic
http://wiki.ros.org/clear_costmap_recovery?distro=noetic
http://wiki.ros.org/clear_costmap_recovery?distro=noetic
http://wiki.ros.org/rotate_recovery?distro=noetic
http://wiki.ros.org/rotate_recovery?distro=noetic
https://www.tensorflow.org/overview?hl=it
https://www.tensorflow.org/guide/tensor?hl=it
https://www.tensorflow.org/guide/tensor?hl=it
https://www.easy-tensorflow.com/tf-tutorials/basics/graph-and-session
https://www.easy-tensorflow.com/tf-tutorials/basics/graph-and-session
https://gazebosim.org/home
https://github.com/robotics-upo/gazebo_sfm_plugin
https://github.com/robotics-upo/gazebo_sfm_plugin
http://wiki.ros.org/rviz

BIBLIOGRAPHY

[110] Yuxiang Gao and Chien-Ming Huang. «Evaluation of socially-aware robot
navigation». In: Frontiers in Robotics and AI 8 (2022), p. 721317 (cit. on
p. 84).

[111] A Alessandro. «Socially aware robot navigation». In: (2022) (cit. on p. 84).
[112] Fagner Pimentel and Plinio Aquino. «Performance evaluation of ROS local

trajectory planning algorithms to social navigation». In: 2019 Latin American
Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR)
and 2019 Workshop on Robotics in Education (WRE). IEEE. 2019, pp. 156–
161 (cit. on p. 84).

[113] Junxian Wang, Wesley P Chan, Pamela Carreno-Medrano, Akansel Cosgun,
and Elizabeth Croft. «Metrics for Evaluating Social Conformity of Crowd
Navigation Algorithms». In: 2022 IEEE International Conference on Ad-
vanced Robotics and Its Social Impacts (ARSO). IEEE. 2022, pp. 1–6 (cit. on
p. 84).

[114] Dizan Vasquez, Billy Okal, and Kai O Arras. «Inverse reinforcement learning
algorithms and features for robot navigation in crowds: an experimental
comparison». In: 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE. 2014, pp. 1341–1346 (cit. on p. 84).

[115] Nelson David Munoz Ceballos, Jaime Alejandro Valencia, and Nelson Lon-
dono Ospina. «Quantitative Performance Metrics for Mobile Robots Naviga-
tion, Mobile Robots Navigation». In: Alejandra Barrera (Ed.) (2010) (cit. on
p. 84).

[116] Sahil Narang, Andrew Best, and Dinesh Manocha. «Simulating movement
interactions between avatars & agents in virtual worlds using human motion
constraints». In: 2018 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR). IEEE. 2018, pp. 9–16 (cit. on p. 91).

[117] Eloi Alonso, Maxim Peter, David Goumard, and Joshua Romoff. «Deep
reinforcement learning for navigation in aaa video games». In: arXiv preprint
arXiv:2011.04764 (2020) (cit. on p. 91).

[118] Kunming Li, Mao Shan, Karan Narula, Stewart Worrall, and Eduardo Nebot.
«Socially aware crowd navigation with multimodal pedestrian trajectory
prediction for autonomous vehicles». In: 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC). IEEE. 2020, pp. 1–
8 (cit. on p. 91).

[119] SS Rao. «Game theory approach for multiobjective structural optimization».
In: Computers & Structures 25.1 (1987), pp. 119–127 (cit. on p. 91).

[120] Valeriu Ungureanu. Pareto-Nash-Stackelberg game and control theory. Vol. 80.
Springer, 2018 (cit. on p. 91).

102

BIBLIOGRAPHY

[121] A Kai Qin, Vicky Ling Huang, and Ponnuthurai N Suganthan. «Differential
evolution algorithm with strategy adaptation for global numerical optimiza-
tion». In: IEEE transactions on Evolutionary Computation 13.2 (2008),
pp. 398–417 (cit. on p. 91).

[122] Christoph Bartneck, Dana Kulić, Elizabeth Croft, and Susana Zoghbi. «Mea-
surement instruments for the anthropomorphism, animacy, likeability, per-
ceived intelligence, and perceived safety of robots». In: International journal
of social robotics 1 (2009), pp. 71–81 (cit. on p. 91).

[123] Colleen M Carpinella, Alisa B Wyman, Michael A Perez, and Steven J
Stroessner. «The robotic social attributes scale (RoSAS) development and
validation». In: Proceedings of the 2017 ACM/IEEE International Conference
on human-robot interaction. 2017, pp. 254–262 (cit. on p. 91).

[124] Nicolas Spatola, Barbara Kühnlenz, and Gordon Cheng. «Perception and
evaluation in human–robot interaction: The Human–Robot Interaction Eval-
uation Scale (HRIES)—A multicomponent approach of anthropomorphism».
In: International Journal of Social Robotics 13.7 (2021), pp. 1517–1539 (cit.
on p. 91).

103

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Socially-aware navigation
	Our approach
	Thesis organization

	Related Works
	Autonomous navigation
	State-of-the-art Social navigation
	Model-based algorithms
	Learning strategies
	Reactive algorithms
	Predictive algorithms

	State-of-the-art Differential Evolution

	Background Social Force Model and Game Theory
	Social Force Model
	Overview
	Notation

	Model formalization and types of forces
	Model dynamics
	SFM drawbacks
	Parameters homogeneity and calibration
	Isotropic motion

	Game Theory
	Overview
	Terminology related to game theory
	Game types
	Nash equilibrium for Non-cooperative games

	Game-Theoretic Social Force Model
	Navigation algorithm
	Overview
	Cost function
	Sequential best response for Nash equilibria
	Example of "sequential best response":

	Parameters estimation from real trajectories dataset
	Differential Evolution algorithm (DE)
	Control Parameters of the algorithm

	Thör dataset
	Environment
	Motion capture system
	Experiment description
	Data format e Data management

	Algorithm description and simulation results
	Real-time parameters estimation through Neural Network

	Hardware description
	Mobile robot hardware
	Mobile base
	Intel NUC NUC8i3BEH Mini PC
	WidowX-250 Robot arm
	RPLIDAR A2M8
	Intel RealSense Depth Camera D435

	ROS
	Overview
	Basic concepts and Communication paradigms
	Navigation stack
	Overview
	Move base package
	Global and local costmap
	Global planner
	Local planner
	Recovery behaviours
	Global and local planner plugins

	TensorFlow
	Overview
	ROS Integration

	Experimental setup
	Simulation tools
	Gazebo
	SFM plugin for pedestrians

	RViz

	Experiments and methods
	Simulated environment description
	Evaluation metrics

	Test Results and Discussions
	Future Works and Conclusions
	Bibliography

