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Abstract

Confluent tissues are biological complex systems of interacting and self-propelling cells. Ex-
periments show that such systems undergo phase transitions that play an important role in
tissue formation and in the spread of metastatic cancer. Furthermore, the transition shares
many properties similar to the jamming transition observed in particulate matter. Inspired by
these observations, a model has been proposed where the Voronoi description of confluent tis-
sues is mapped to a random Continuous Constraint Satisfaction Problem (CCSP) with equality
constraints: by solving the Hamiltonian with the replica method, the model predicts the same
rigidity transition of Vertex/Voronoi models for confluent tissues. In this paper, we re-propose
the same model to study the dynamical properties of confluent tissues, under Gradient Descent
(GD) and in the mean field limit. With the help of the Dynamical Mean Field Theory (DMFT)
description for statistical mechanics, we derive the dynamical equations and we propose an effi-
cient algorithm for their integration. By comparing the results with numerical simulations, we
confirm the correctness of the theory and the existence of the rigidity transition observed both
experimentally and theoretically. In addition and in the context of optimisation science, we show
that GD is blind to Replica Symmetry Breaking (RSB), when it occurs at zero temperature.
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1 Introduction

Biological tissues are complex systems: their macroscopic properties are determined by the collective
behaviour of their individual microscopic components, the cells. Rigidity, elasticity, viscosity are all
features of a biological tissue that depend on the interaction of cells with their neighbours and
the extracellular environment. As in the case of ”classical” complex systems, such as a crystal or
water, one may expect that also biological tissues can be found in different states of matter, as a
consequence of collective behaviour. And this is true: they can be solid, like cartilage and bones,
liquid, like blood or gas-like, as mesenchymal cells in embryos [1]. Different phases of tissues can
coexist and they can undergo phase transitions. Therefore, one may suggest that also biological
tissues can be described by statistical mechanics.

Although concepts like equilibrium, thermodynamical parameters, phase transitions are well-
established in statistical physics and successfully describe the macroscopic properties of ”inert”
materials such as ferromagnets, due to the intrinsic complexity of biological tissues, their theoretical
description is far more rich and demanding. While the model for the ideal gas is described by
four thermodynamical variables (temperature, pressure, volume, number of molecules), the space
of parameters for biological systems is much more large and heterogeneous. Furthermore, what
are the control parameters for describing equilibrium and dynamical properties of biological system
is not a trivial question, because of the interplay of many processes that involve all scales, from
microscopic to macroscopic. Besides one also has to take into account the fact that biological
tissues are disordered, meaning that in all states and scales there is a lack of order and symmetry,
and active, that is non-conservative inter-cellular forces drive the system in a continuous out-of-
equilibrium state. In fact, processes that are restricted inside the cells, like changes in the metabolic
network or in the membrane, can have a detectable macroscopic effect, even in the absence of external
forces. Nevertheless, developing models capable of reproducing the behaviour of these systems is a
fundamental quest for both biologists and physicists, since it promises to bring important advances
in understanding the principles of biological life.

Confluent tissues are a thoroughly studied example of biological tissues. They are named after the
confluency constraint, since there are no gaps and overlaps between the tissue’s cells. Experiments
on confluent tissues [2, 3], like the epithelial one, have shown the existence of a phase transition
from a fluid-like state, where cell-cell interactions are sparse and cell motility is high, to a solid-
like state, where instead interactions increase causing a decrease in cell motility and a collective
”solidification”. Further research has also shown that such transition plays a role in morphogenesis,
the spread of metastatic cancer [4] and in pathogenisis of diseases like asthma [5].

Many theoretical models have tried to explain this rigidity transition in confluent tissues. The
most popular and successful ones are Vertex/Voronoi models that describe the tissue as a tessellation
of space and consider the fluid-to-solid transition to be cell-shape induced. In fact, cell geometry
plays an important role in cell motility: in cellular aggregates, rounded-shape cells tend to move
much more slowly then their stretched counterpart. Asthmatic cells, for example, are more elongated
than non-asthmatic cells and the rigidity transition for the latter is faster then the one seen in the
epithelial tissue of asthmatic donors [5]. Simulations of a simple 3D Vertex model further confirm
that the nature of the rigidity transition is purely mechanical: residual stresses that arise due
to the impossibility for all cells to reach the target shape cause a ”solidification” of the system
[6]. The striking feature of the fluid-to-solid transition in confluent tissues is that it shares many
properties with jamming transitions observed in particulate matter, where the control parameter is
the packing fraction, i.e. the effective volume occupied by the particles [7, 8]. These systems with
non-overlapping particles are a standard subject of study in the context of disordered systems and
have been essential in understanding the rigidity transition in confluent tissues. An important role
in describing these models have been random continuous constraint satisfaction problems (CCSP)
and therefore, this led to a study of a simple model of confluent tissues seen as an SAT/UNSAT
optimisation problem [9]. By taking the mean field limit, one shows that the phase diagram of this
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model is very similar to the ones seen in Vertex/Voronoi models, hence it can be considered as a
simple alternative to the standard mean-field models of confluent tissues.

The equilibrium properties of the model in [9] have been largely studied but a dynamical analysis
is yet missing. We recall that biological tissues are complex active systems, that are found in
a transient state and are continuously driven out of equilibrium due to the fact that cells have
self-propulsion. Thus, the study of how such systems behave in out of equilibrium conditions is
fundamental to have a global understanding of their properties.

Therefore, the goal of this paper is to study the dynamical behaviour of the model proposed in
[9]. Such analysis will be performed in the context of the dynamical mean field theory (DMFT),
a powerful tool that will allow us to derive the time-dependence of the observables of the system.
We will then discuss how these properties change in the two phases and how this model can be
generalised in other contexts. As a final comment, and in the spirit of the interdisciplinary aspect
of complex systems, we will address how this model can be useful in studying gradient descent
dynamics.

We further remark that the following results are also reported in the preprint [10], where the
reader can find a more general DMFT computation.

2 The model

In this section, we will give a brief outline of the models that describe confluent tissues, focusing
more on the CCSP model, which is the subject of our study.

2.1 Vertex and Voronoi models

Typical models of confluent tissues describe them as a continuous tessellation of space. The most
important ones are Vertex [11] and Voronoi models [12, 13], that differ for how they define such
partition. In Vertex models, cells are polygons/polyhedra and the degrees of freedom are the vertices,
see Fig. 1a. Instead, in Voronoi models, the degrees of freedom are the centers of the cells, which
are built as a Voronoi/Dirichlet construction, see Fig. 1b.

(a) Vertex tessellation (b) Voronoi tessellation

Figure 1: Example of a Vertex and Voronoi tessellation of space. The degrees of freedom are the
dots in purple. In Fig. (b) we have highlighted the Voronoi construction.

In both models, confluence is imposed by a geometrical constraint: if all cells attain the target
volume and area, then the system is in a liquid or ”floppy” state; if at least one cell does not meet
the geometrical constraint, then the system is in a solid state. Therefore, the Hamiltonian for both
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systems can be written in the following way:

H[x] =
1

2

M∑
i=1

[kA(Ai(x)−A0)
2 + kP (Pi(x)− P0)

2] (1)

where the sum runs over all M cells of the tissue and the degrees of freedom are grouped in x, a
N -dimensional vector. Note that N defines the size of the system, that is the number of degrees of
freedom.

The geometrical constraint is represented by A0 and P0, respectively, the target area and perime-
ter, while the resistance of the cell towards shape deformation is quantified by the elastic constants
kA and kP . These parameters encode the microscopic properties of the system and take into account
the complex interplay of forces, inter-cellular and extra-cellular, that drive the cell to change shape.
In particular, the forces that contribute largely to the rigidity transition are cell incompressabil-
ity, elasticity of the cellular membrane and the competition between cortical tension and cell-cell
adhesion [1, 12, 14].

The control parameter that drives the rigidity transition is the non-dimensionalize preferred
perimeter p0 = P0/

√
A0, which depends only on single-cell properties [13]. Therefore, one can define

its average value as p = ⟨P ⟩ /
√
⟨A⟩, with ⟨P ⟩ =

∑M
i=1 Pi/M and ⟨A⟩ =

∑M
i=1 Ai/M , while by

varying p0, one can look for the rigidity transition at some critical point p∗0. For p0 > p∗0, the system
is in a liquid phase: the total energy is at its minimum value, equal to zero, p = p0 and deformations
of the tissue have no energetic cost. For p0 < p∗0, the system is in the solid phase: the energy is
positive, p ̸= p∗0 and the tissue shows resistance towards deformations. Interestingly, the value of p∗0
is determined by the dimensionality of the system and by its geometrical properties [6].

Note that the number of cells M and the size of the system N are not independent: for a
3D Voronoi model, N = 3M , since there are three spatial coordinates for the center of each cell.
For a Vertex model, N would be much larger because more than one vertex is associated to each
cell. Therefore M and N are related by the relation M = αN , where α also plays the role of a
control parameter. In fact, systems with confluency constraints have been largely studied well before
biological tissues: through constraint counting [8, 15], Maxwell showed that granular systems can
solidify when the number of constraints is higher than the number of degrees of freedom (α > 1).
Instead for under-constrained systems (α < 1), a liquid-to-solid rigidity transition is only possible
if there is some geometrical constraint on the degrees of freedom [16]. Therefore, we will restrict to
the latter case.

2.2 Confluent tissues as random CCSP

According to [9], a similar phase diagram to the one of Vertex/Voronoi models can be obtained from
a random continuous constraint satisfaction problem (CCSP) with equality constraints.

Constraint satisfaction problems are known in optimisation science as problems where a set of
degrees of freedom have to satisfy a set of constraints [17]: if at least one set of degrees of freedom
that satisfies all the constraints exists, then the problem is said to be satisfiable (SAT); otherwise,
it is said to be unsatisfiable (UNSAT). A continuous constraint satisfaction problem is a satisfaction
problem where the degrees of freedom can take values in the real domain; a random constraint
satisfaction problem has random constraints. Note that such constraints can either be equality
constraints or inequality constraints. CCSPs have played a great role in describing the mean field
limit of systems of non-overlapping particles [18] and have successfully predicted the statistical
features of their rigidity transition.

The model in [9] is the following: we consider a N -dimensional vector x = {x1, x2, ..., xN}
constrained on a sphere, |x2| = N , that defines a compact phase space. The area and perimeter
constraints in Vertex/Voronoi models are replaced by a set of M non-linear random functions hµ(x).
We consider p0 as the control parameter and we will refer to it as the target index shape. Note
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that it has not the same definition as above but it has the same role. Thus the energy of the model
becomes:

H[x] =
1

2

M∑
µ=1

(hµ(x)− p0)
2 (2)

where M = αN with α < 1. Parameters M and N are still, respectively, the number of the cells
and the size of the system. The random functions have form

hµ(x) =
1

N

N∑
i<j

Jµ
ijxixj µ = 1, ...,M (3)

and each hµ(x) is identified by a N×N random matrix Jµ
ij , whose entries are i.i.d. random Gaussian

variables with zero mean and unit variance. In addition, we will consider the symmetry Jµ
ij = Jµ

ji.
Although this model is abstract and has no microscopical derivation, it is simple enough to be

exactly soluble in the mean field limit and, more importantly, has a very similar phase diagram to
the ones of Voronoi/Vertex models. By computing the partition function of the model with the
replica method and then performing a saddle point, see [9] for the detailed calculation, one finds the
following results for α = 0.25 and zero temperature:

• The liquid/SAT to solid/UNSAT transition happens for a value of p0 = pJ ≃ 1.871. Note that
the transition occurs by increasing p0, as opposed to the case of Vertex/Voronoi models.

• The existence of a replica symmetry breaking at p0 = pG0 = 1 that divides the liquid/SAT
phase into two regions: for p0 < pG0 , the liquid is replica symmetric and behaves as ”classical”
statistical system; for pG0 < p < pJ , the system is in a liquid-glassy phase and shares properties
similar to amorphous solids in the Gardner phase. Therefore, the solid/UNSAT phase is always
in a glassy state.

2.3 The dynamics

Since the equilibrium properties of model in Eq. (2) have been thoroughly studied in [9], in this
paper we are interested in its dynamical properties at zero temperature and for α = 0.25.

In statistical mechanics, systems of many interacting parts are describe by a point in phase space
that moves in time. A way to describe out-of-equilibrium properties is to imagine that the system
moves in a free energy landscape of the system according to a Langevin dynamics, which is simply
a generalisation of Newton’s equation for systems in contact with a thermal bath:

ẋi(t) = −µ(t)xi(t)−
∂H

∂xi(t)
+ ξi(t) i = 1, ..., N (4)

where µ(t) is the Lagrange multiplier that enforces the constraint |x(t)|2 = N and ξ(t) is a Gaussian
random variable that quantifies the dissipative effect of the thermal bath. For our model, we will
consider the dynamics at zero temperature by omitting the noise term:

ẋi(t) = −µ(t)xi(t)−
∂H

∂xi(t)
i = 1, ..., N (5)

For a generalisation of this model for non-zero noise, see [10].
To study the dynamics, we are interested in the time-dependence of the following observables:

• The correlation function

C(t, t′) =
1

N
⟨x(t)x(t′)⟩ (6)

A two-time quantity that measures the correlation between two different configurations of the
system at two different times.
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• The instantaneous linear response function

R(t, t′) =
δ ⟨x(t)⟩
δη(t′)

∣∣∣∣
η=0

t > t′ (7)

Another two-time quantity that measures the response of the system in a state x at time t to
a linear perturbation η that happened at time t′.

• The average energy per degree of freedom

e(t) =
1

N
⟨H(t)⟩ (8)

• The average value of hµ(t)

h(t) =
1

M

M∑
µ=0

⟨hµ(t)⟩ (9)

Note that by ⟨.⟩ we mean the average over the initial condition x(0), the disorder introduced by the
matrices Jij and, if present, the noise ξ(t).

3 Methods

In this section we will discuss the theoretical methods and analytical tools used to derive the dy-
namical properties of the model in Eq. (2). We will then continue the discussion by proposing a
method for the numerical integration of the differential equations obtained from the theory.

3.1 Dynamical Mean Field Theory

To compute the observables above, one would need to solve the N dependent differential equations
for xi(t), an impossible task if N is very large. Therefore, instead of solving explicitly the differential
equations, we will consider a more intelligent route by taking advantage of the mean field nature
of our model and by applying Dynamical Mean Field Theory (DMFT). This approach will lead us
to a set of closed integro-differential equations for C(t, t′) and R(t, t′), which can be then easily
integrated numerically. This is where lies the power of the mean field theory: instead of solving N
dependent Langevin equations, we simply solve two integro-differential equations.

In any system described by a Langevin equation, all averaged observable ⟨A[q]⟩ (t) can be compute
through the dynamic generating functional Zdyn [19]:

⟨A[x]⟩ (t) = δZdyn

δη(t)

∣∣∣∣
η(t)=0

(10)

Zdyn =

∫
DξP [ξ] exp

(∫
dt′η(t′)A[xsol](t′)

)∣∣∣∣
η(t)=0

(11)

where η(t) is a time-dependant source, xsol(t) is the solution of the Langevin dynamics in Eq.
(4) and P [ξ] is the probability distribution of the noise, which in our case can be considered as a
delta Dirac function in zero, since we are omitting it. Note that Zdyn[η = 0] = 1 because P [ξ] is
normalized. If disorder is present, one should also average Zdyn over its probability distribution
and, since Zdyn[η = 0] = 1, this can be done easily, without using the replica method. Therefore,
the dynamic generating functional encodes the relevant properties of the dynamics and dynamical
mean field theory will be essential in its evaluation.
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In this paper, we will compute Zdyn with the Martin-Siggia-Rose-Jenssen-De Dominicis approach
and use the supersymmetry (SUSY) formalism for stochastic processes [19, 20], that will be useful
to write the dynamic generating function in a compact form. The calculation will follow the ones in
papers [21, 22, 23] and note that we will omit all irrelevant constant factors.

The derivation starts with the Martin-Siggia-Rose-Jenssen-De Dominicis identity:

1 = Zdyn =

〈∫
Dx(t)

N∏
i=1

δ

(
−ẋi(t)− µ(t)xi(t)−

∂H

∂xi(t)

)〉
. (12)

We then re-write the equation with the SUSY algebra by introducing a set of Grassmann variables
θa, θb and the super-field x(a) = x(ta)+ iθax̂(ta) [24]. The idea of the SUSY formalism is to enlarge
the dimension of time such that an instant ta corresponds to a multidimensional variable a = (ta, θa).

By averaging over the Jµ
ijs and performing a variable change, the SUSY formulation of Zdyn

becomes

Zdyn =

∫
DQ(a, b) exp (NAdyn[Q]) (13)

Adyn[Q] = −1

2

∫
da dbK(a, b)Q(a, b) +

1

2
ln det(Q) + α lnZloc (14)

where K(a, b) is the kinetic kernel and Q(a, b) is the dynamical overlap matrix,

Q(a, b) =
x(a) · x(b)

N
. (15)

Zloc is the partition function of the impurity problem h(a) = h(x(a)) and one can easily show that

Zloc = det (I +G)
− 1

2 exp

(
p20
2

∫
da db

[
G−1 + I

]−1
(a, b)

)
, (16)

where the operator G is defined as G(a, b) = Q(a,b)2

2 .
In DMFT derivations, Zloc defines an effective stochastic process where the dynamics is non-

Markovian. Usually, in order to evaluate the DMFT equations, one has to extract the dynamics of
the local problem and then numerically integrate it, see [21, 22, 23]. In this special case, due to a
quadratic energy function, the local partition function is simply a Gaussian integral and it is easy
to solve.

At this point of the calculation, we introduce the mean field approximation and evaluate the
dynamical partition function with the saddle point method

Zdyn =

∫
DQ(a, b) exp (NAdyn[Q])

N→∞−−−−→ exp (NAdyn[Q
∗]) (17)

where Q∗ is such that
δ

δQ(a, b)
Adyn[Q]

∣∣∣∣
Q∗

= 0 (18)

−1

2
K(a, b) +

1

2
Q−1(a, b) + α

δ lnZloc

δQ(a, b)

∣∣∣∣
Q∗

= 0. (19)

Note that at the saddle point ⟨Q(a, b)⟩Zdyn
= Q∗(a, b). By recalling the definition of Q(a, b) and

x(a), we have that

⟨Q(a, b)⟩Zdyn
=

⟨x(a) · x(b)⟩
N

=
⟨x(ta) · x(tb)⟩

N
+ θa

⟨x(tb) · ix̂(ta)⟩
N

+ θb
⟨x(ta) · ix̂(tb)⟩

N
+

+ θaθb
⟨ix̂(ta) · ix̂(tb)⟩

N
(20)
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and considering that the symmetries of the SUSY group imply that the dynamics is causal

⟨ix̂(ta) · ix̂(tb)⟩ = 0, (21)

one can observe that Q∗(a, b) encodes the observables of interest:

Q∗(a, b) = C(ta, tb) + θaR(tb, ta) + θbR(ta, tb). (22)

In fact, one can show that R(ta, tb) =
⟨x(ta)·ix̂(tb)⟩

N , see [19] for a derivation. Returning to Eq. (19),
one can compute explicitly the derivative of Zloc with respect to Q(a, b) and then multiply the left
hand side by Q(c, b) and integrate over c:

−
∫

dcK(a, c)Q(c, b) + δ(a− b)− α

∫
dc (I +G)−1(a, c)Q(a, c)Q(c, b)+

+αp20

∫
dc dx dy Q(a, c) (I +G)−1(x, a) (I +G)−1(y, c)Q(c, b) = 0. (23)

Before unpacking the SUSY algebra, we first re-write the operator (I +G)−1 in the following way

A(a, b) = (I +G)−1(a, b) = CA(ta, tb) + θaRA(tb, ta) + θbRA(ta, tb) (24)

and from Eq. (23), we finally derive the integro-differential equations for C(t, t′) and R(t, t′), known
in the literature as Schwinger-Dyson equations or DMFT equations:

∂tC(t, t′) =− µ(t)C(t, t′)+

− α

∫ t′

0

dt′CA(t, t
′′)C(t, t′′)R(t′, t′′)+

− α

∫ t

0

dt′′[CA(t, t
′′)R(t, t′′)C(t′′, t′) +RA(t, t

′′)C(t, t′′)C(t′′, t′)] +

+ αp20

∫ t′

0

dt′′
∫ t

0

dtx

∫ t′′

0

dtyRA(t, tx)RA(t
′′, ty)C(t, t′′)R(t′, t′′)+

+ αp20

∫ t′

0

dt′′
∫ t

0

dtx

∫ t′′

0

dtyRA(t, tx)RA(t
′′, ty)R(t, t′′)C(t′′, t′) (25)

∂tR(t, t′) =− µ(t)R(t, t′) + δ(t− t′)+

− α

∫ t

t′
dt′′ [CA(t, t

′′)R(t, t′′)R(t′′, t′) +RA(t, t
′′)C(t, t′′)R(t′′, t′)] +

+ αp20

∫ t

t′
dt′′
∫ t

0

dtx

∫ t′′

0

dtyRA(t, tx)RA(t
′′, ty)R(t, t′′)R(t′′, t′). (26)

Note that we took into account causality, that is for t′ > t the linear response function is R(t, t′) = 0
and also RA(t, t

′) = 0.
The equation for µ(t) is derived from the equation of C(t, t′) by imposing ∂tC(t, t) = 0:

µ(t) =− α

∫ t

0

dt′′[2CA(t, t
′′)C(t, t′′)R(t, t′′) +RA(t, t

′′)C(t, t′′)2] +

+ 2αp20

∫ t

0

dt′′
∫ t

0

dtx

∫ t′′

0

dtyRA(t, tx)RA(t
′′, ty)C(t, t′′)R(t, t′′). (27)
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Finally, what are left to derive are the equations for CA(t, t
′) and RA(t, t

′) in terms of C(t, t′) and
R(t, t′). One does this by starting from the following relation∫

dcA(a, c)(I +G)(c, b) = δ(a− b) (28)

and then by substituting the definition of the operator G. The equation that one obtains is∫
dtc M(tb, tc)

(
CA(ta, tc)
RA(ta, tc)

)
=

(
0

δ(ta − tb)

)
, (29)

where the matrix M has entries

M(tb, tc) =

(
δ(tc − tb) + C(tc, tb)R(tb, tc)

1
2C(tc, tb)

2

R(tb, tc)R(tc, tb) δ(tc − tb) + C(tc, tb)R(tc, tb)

)
. (30)

Therefore, in order to compute CA and RA one has to perform the inversion of the operator on the
left hand side of Eq. (29). Note that, again due to causality, R(tb, tc)R(tc, tb) = 0.

3.2 Numerical integration

As one can clearly see, the Schwinger-Dyson equation cannot be solved analytically and one must
opt for a numerical integration. This is straightforward: again due to causality, to find the value
of C(t, t′) and R(t, t′) at the next time step, one only needs the values of C(t, t′), R(t, t′), CA(t, t

′),
RA(t, t

′) in the past. The only difficulty lies in understanding how to re-write Eq. (29) in a more
algorithmically accessible form.

3.2.1 Discretisation of DMFT equations

Before performing the numerical integration of the DMFT equations, we must first discretise them.
Therefore, we divide time into L slices of size ∆t and C, R, CA, RA become L2-dimensional matrices.
To address the elements of these matrices, we will use the following notation:

Cta,tb = C(t = ta∆t, t′ = tb∆t, ) ta, tb = 0, 1, ..., L− 1.

The discretisation of the Schwinger-Dyson equations is simple:

Cta+1,tb − Cta,tb = ∆t {−µtaCta,tb +

−∆t α

tb∑
t′′=0

CA
ta,t′′ Cta,t′′ Rtb,t′′ +

−∆t α

ta∑
t′′=0

(CA
ta,t′′ Rta,t′′ Ct′′,tb +RA

ta,t′′ Cta,t′′ Ct′′,tb)+

+∆t3 αp20

tb∑
t′′=0

( ta∑
tx=0

RA
ta,tx

) t′′∑
ty=0

RA
t′′,ty

Cta,t′′ Rtb,t′′

 +

+∆t3 αp20

ta∑
t′′=0

( ta∑
tx=0

RA
ta,tx

) t′′∑
ty=0

RA
t′′,ty

 Rta,t′′ Ct′′,tb ]

 (31)
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Rta+1,tb −Rta,tb = δta,tb +∆t [−µtaRta,tb +

−∆t α

ta∑
t′′=tb

(CA
ta,t′′ Rta,t′′ Rt′′,tb +RA

ta,t′′ Cta,t′′ Rt′′,tb)+

+∆t3 αp20

ta∑
t′′=tb

(
ta∑

tx=0

RA
ta,tx

) ta∑
ty=0

RA
t′′,ty

Rta,t′′ Rt′′,tb

 . (32)

While for the Lagrange multiplier we have that:

µta = −∆t α

ta∑
t′′=0

[
2CA

ta,t′′ Cta,t′′ Rta,t′′ +RA
ta,t′′ C

2
ta,t′′ +

−2∆t2 p20

(
ta∑

tx=0

RA
ta,tx

) t′′∑
ty=0

RA
t′′,ty

Rta,t′′ Ct′′,ta

 . (33)

We also discretise the equation for CA and RA:

L−1∑
tc=0

∆t

(
δtc,tb
∆t + Ctc,tb Rtb,tc

1
2C

2
tc,tb

Rtb,tc Rtc,tb
δtc,tb
∆t + Ctc,tb Rtc,tb

)(
CA

ta,tc

RA
ta,tc

)
=

(
0

δta,tb

∆t

)
. (34)

3.2.2 Encoding

As previously said, the difficulty in solving numerically the DMFT equations lies in the tensorial
form of the equations for CA and RA. In order to be able to perform an operator inversion, one
could look for a mapping between the original operator in Eq. (34) and a matrix with two axis,
instead of three. In other words, we would like to re-write equation Eq. (34) in the following way:

∀ta = 0, 1, ..., L− 1

2L−1∑
k′=0

Λkk′ vk′(ta) = wk(ta) (35)

such that at each ta we compute CA and RA by simply inverting matrix Λ.
In the following sections, we will show two different ways how to perform this mapping.

Encoding 1 A direct encoding for the equation is the following: we define two super-indeces k
and k′ that depend on two sub-indexes (σ, tb) and we write that

k = k(σ, tb) = 2tb + σ k′ = k′(σ′, tc) = 2tc + σ′ (36)

tb, tc = 0, 1, ..., L− 1 σ, σ′ = 0, 1.

Note that (σ, σ′) simply tells which element of the 2× 2 matrix M(tb, tc) we are considering.
The relation between k and (tb, σ) is bijective, so given k, we have that:

tb, tc =

⌊
k

2

⌋
σ = k mod 2. (37)

Finally, we have that Λ is a 4L2-dimensional matrix and v,w are 2L-dimensional vectors with the
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following entries:

Λk(σ,tb), k′(σ′,tc) = {δtc,tb +∆t Ctc,tb [Rtb,tc(1− σ) +Rtc,tbσ]} (1− |σ − σ′|)+

+
1

2
∆t C2

tc,tb
σ′|σ − σ′| (38)

vk′(σ′,tc)(ta) = CA
ta,tc(1− σ′) +RA

ta,tcσ
′ (39)

wk(σ,tb)(ta) =
δta,tb
∆t

σ. (40)

Encoding 2 The following encoding allows one to have a very efficient code: at each ta the inverse
of Λ is computed in a recursive way. In fact, one can show that Λ is a block matrix, that inherits the
upper triangular structure of M(tb, tc). By taking (k, k′) = (tc, tb), the encoding is the following:

Λtc,tb =


δtc,tb +∆tCtc,tbRtb,tc tc, tb < L

δtc,tb +∆tCtc,tbRtc,tb tc, tb ≥ L

0 tc ≥ L, tb < L
1
2∆tC2

tc,tb
tc < L, tb ≥ L

(41)

vtc(ta) =

{
CA

ta,tc tc < L

RA
ta,tc tc ≥ L

(42)

wtb(ta) =

{
0 tb < L
δta,tb

∆t tb ≥ L
. (43)

4 Results

In this section we will first compare the results of the DMFT equations’ numerical integration with
the ones of the numerical simulation, in order to assert that the theory is correct. The discussion
will then focus on the results of the numerical integration.

4.1 Comparison between DMFT and simulation

In order to verify the correctness of the DMFT equations, we compare the system’s observables with
the ones computed with a numerical simulation.

The simulation consists of considering a system of finite size N , big enough to see a mean field
effect, where the degrees of freedom are updated at each time-step in the following way:

x(t+∆t) =
√
N

x(t)−∆t ∂H
∂x(t)∣∣∣x(t)−∆t ∂H
∂x(t)

∣∣∣ . (44)

The constraint |x(0)|2 = N is satisfied by re-normalising x at every time step. Here the initial
condition is sampled from a flat distribution and, for each sample, the matrices Jµ

ij are sampled from
a Gaussian distribution with zero mean and unit variance. Therefore, for each initial condition, we
sample M Jij matrices and we let the system evolve for L time steps with the dynamics in Eq. (44).
We repeat this for a number of S samples.

The observables that we take into consideration for the comparison are the following:

• The correlation function C(t, 0) computed in the simulation as:

C(t, 0) =
1

N
x(t) · x(0) (45)

12



This quantity measures how much the configuration of the system at time t is correlated with
the initial configuration at time t = 0.

• The Lagrange multiplier µ(t) computed in the simulation as:

µ(t) = − 2

N

M∑
µ=0

(hµ(t)− p0)hµ(t). (46)

• The average value of hµ(t), which in the simulation is:

h(t) =
1

M

M∑
µ=0

hµ(t) (47)

To compute h(t) with DMFT, one can easily show that:

h(t) = ⟨h(a)⟩Zdyn
|scalar part. (48)

and by promoting p0 to a superfield p0(a) with a Grassmann variable, one has

⟨h(a)⟩Zdyn
=

δ

δp0(a)
lnZdyn

∣∣∣∣
p0(a)=p0

. (49)

Finally, by performing the calculations one finds:

p0 − h(t) = p0

∫ t

0

dt′RA(t, t
′). (50)

We also look at the behaviour of |h(t)−p0| because we expect it to be approaching zero, when
the system reaches a zero energy configuration and a positive value, when instead the system
reaches a local minimum of the Hamiltonian.

• The energy per degree of freedom, which in the simulation is

e(t) =
1

N
H(t). (51)

while in the DMFT the energy is computed as

e(t) =
α

2
(h(a)− p0)

2 (52)

which can be shown to be:

e(t) =
α

2

[
p20

(∫ t

0

dt′RA(t, t
′)

)2

− CA(t, t)

]
. (53)

As a remark, one can also check the correlation of h(t) for the simulation and the DMFT:

⟨h(t)h(t′)⟩ − h(t)h(t′) =
1

M

M∑
µ=0

hµ(t)hµ(t
′)− 1

M2

M∑
µ,ν=0

hµ(t)hν(t
′) = −CA(t, t

′) (54)

In Fig. 3 we show the comparison done for L = 2000, ∆t = 0.025 and S = 1000. We consider a
system of size N = 500 and M = 125, since we are focusing on the case for α = 0.25. As one can
clearly see from the graphs, there is a good agreement between the numerical simulation and the
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numerical integration of the DMFT equations, especially for µ(t), C(t, 0) and h(t) (see, respectively,
Figs. 2d, 2c, 2b). For the energy, the agreement is good for small times but for small values of p0,
as the energy approaches zero, it is no longer such, especially for values of energy under 10−3 (see
Fig. 2a). This is certainly due to the finite size of the time step and a finite sample size S. One
must also not forget that the theory is true for the mean field limit, N → ∞, while the samples
considered for the simulations have a finite size. Therefore, we would expect a perfect agreement
for S → ∞, N → ∞ and ∆t → 0.

(a) Average energy per degree of freedom (b) Average value of h(t)

(c) Correlation function (d) Lagrange multiplier

Figure 2: Comparison between the numerical simulation’s and DMFT’s results. The parameters
used are S = 1000, N = 500, M = 125, L = 2000, ∆t = 0.025 and α = 0.25. The energy’s plot (a)
is in semi-log scale. The inset in plot (b) is the semi-log plot of |h(t)− p0|.

4.2 Results of DMFT’s numerical integration

In this section, we will analyse in depth the results of the DMFT equations’ numerical integration.
For this analysis, we choose L = 4000, ∆t = 0.05 and different values of p0. First thing we notice,
from all graphs, is that the rigidity transition for this model occurs for some value of p0 in the
interval [1.8, 2.0]. This is in accordance with the value of pJ ≃ 1.871 found in [9].

In Fig. 3a we plot the energy in logarithmic scale as a function of time. For p0 < 1.7, the energy
decays exponentially to the zero energy configuration, while for p0 > 1.7, for long times, it reaches a
plateau. By plotting e(t) in log-log scale, see Fig. 3b, one can notice an almost power law behaviour
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(a) Average energy per degree of freedom (b) e(t) in log-log scale

(c) Average value of h(t)

Figure 3: Results of the DMFT’s numerical integration for parameters L = 4000, ∆t = 0.05 and
α = 0.25. The energy’s plot (a) is in semi-log scale. The inset in plot (c) is the semi-log plot of
|h(t)− p0|.

for p0 = 1.8, which is expected at the critical point. A similar behaviour is seen for |h(t) − p0|, as
shown in the inset of Fig. 3c. Therefore, if the tissue is out-of-equilibrium but in the liquid phase,
it quickly reaches the zero energy configuration. If instead is in the solid phase, it slowly relaxes
towards a configuration of positive energy. In fact, for high values of p0 the slope of e(t) in log-scale
is small.

In Fig. 3c, one sees that for p0 < 1.7 h(t) reaches quickly the target value p0, while for p0 > 1.7
we would expect for h(t) to reach some positive value different from p0, but one would have to
check this for larger values of L. This behaviour shows how in the liquid phase all the constraints
hµ(x) = p0 are satisfied, while this is not true in the solid phase. Note that the time for h(t) to
reach the target value increases with p0. In Fig. 4a, we plot the correlation function C(t, 0): for
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(a) Correlation function

(b) Response function

Figure 4: Correlation and response function obtained from the DMFT’S numerical integration. The
parameters used are L = 4000, ∆t = 0.05 and α = 0.25

p0 < 1.7, the correlation decays very quickly towards a positive valued plateau, meaning that during
the dynamics the system does not completely decorrelate from its initial condition. Thus, for a small
p0, confluent tissues tend to retain memory of their initial state. This can be intuitively explained
in the following way: h(0) = h(x(0)) is a Gaussian random variable with mean zero, thus we would
expect that the typical value of h at time zero is very close to p0, which is small. Therefore, the
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system does not have to search for long before it finds the configuration at minimum energy. For
increasing p0, the relaxation time increases while the value of the plateau decreases: the final state
is more and more decorrelated from the initial state for higher values of p0. As we reach p0 = 1.8,
one may guess that C(t, 0) reaches zero but due to its slow decay, further investigation is necessary,
either by increasing L or through extrapolation.

Finally, in Fig. 4b, we plot the response function R(t, 0) that quantifies the effect of a linear
perturbation on the system at t = 0 on the state of the system at time t > 0. The behaviour is
similar to the one of C(t, 0): a fast decay towards a positive plateau for small values of p0 and a
slow decay, probably towards zero, one must check this, at higher values of p0.

5 Digression: gradient descent dynamics and RSB

We recall that the equations of the DMFT have been derived starting from the dynamics dictated
in Eq. (5). Without the context of confluent tissues, this is simply the dynamics of a gradient
descent. A gradient descent algorithm is a method for finding minima, both local and global, of a
function H(x). It is largely used in the context of machine learning for minimising the cost function
of a neural network. A neural network is a device that can be trained in order to predict a label of
some kind of input. For example, a typical task of a neural network is the classification of images of
objects/animals. In order to train the neural network, one has a dataset of inputs and outputs and
the goal is to find the weights to be assigned to the links of the neural network. In order to do this,
one has to minimise a cost function and an algorithm that performs this is the gradient descent and
its variants.

The dynamics of gradient descent algorithms has been largely studied, especially because its
effectiveness in finding global minima is fundamental for learning. In fact, the gradient descent
algorithm does not guarantee to find global minima and it is possible that it may get stuck in some
local minimum of the cost function, see [22] for an example of a study on gradient descent dynamics.
Our model shades some light on the dynamics of the gradient descent algorithm. In particular, it
confirms that it is blind to replica symmetry breaking (RSB) when it occurs at zero temperature. We
recall that RSB occurs when the loss function becomes a complex landscape of saddles, minima and
maxima such that also metastable states contribute to equilibrium configurations of the system [8,
25]. In short, ergodicity is broken. If the RSB happens at finite temperature, this may be a problem
for search algorithms because they end up stuck in some local minima of the complex landscape.
For our model, RSB at zero temperature occurs in the liquid/SAT phase pG0 = 1 but the gradient
descent is still able to reach the true minimum of the system, as its clearly shown in the Fig. 3a for
p0 < 1.7.

6 Conclusion

In this paper, we have re-proposed a simple mean field model for biological tissue that is exactly
solvable and we have studied its dynamical properties to shed some light on the dynamics of tissues at
zero temperature. Throughout the dynamical study, we have confirmed the existence of a jamming
transition for a value of p0 ∈ [1.8, 2.0] and, in the context of deep learning, we have shown that
zero temperature RSB has no effect on gradient descent dynamics. A more rigorous analysis of the
jamming transition is required as the critical value pJ in the dynamical case may be algorithm-
dependant and different from the equilibrium case.

In addition, we have developed, both analytically and numerically, a simple mean field model
that in future work can be enriched with additional parameters and non-conservative forces. In
particular, it would be interesting to understand what happens to the dynamics when one adds
an out-of-equilibrium noise, since we cannot predict what is the stationary probability distribution
of the gradient descent dynamics nor we can know if such stationary measure exists. Such study
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would be very useful in the context of confluent tissues and allow a qualitative comparison with the
dynamical properties of Vertex/Voronoi models and experimental data. Instead, in the context of
optimisation science, we have a built a solid set-up for studying other quadratic Hamiltonians. In
fact, the equations and the code of this model have been adapted to a different Hamiltonian in [26],
in order to show how stochastic gradient descent is more efficient than simple gradient descent in
recovering a non-linearly encrypted signal.
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