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Summary
In the context of Network Games, the linear quadratic model has been extensively
used to model strategic interactions between a group of individuals or organisa-
tions. Due to its intrinsic simplicity, it allows to study games where a player’s
payoff not only depends on his own action but also on those of their neighbors,
in an underlying network structure, with numerous potential applications in eco-
nomics and social sciences. When all players have full and perfect knowledge of
the game, including the rules, possible strategies, payoffs, and the actions taken by
other players, the analysis of Nash equilibria can be done by studying the topologi-
cal properties of the network (1). However, in more realistic scenario, it is common
to observe uncertainty on both the network structure and game properties, leading
to the study of a generalized game where a player lacks information on who he’s
interacting with, and the strength of his externalities. The best response is then
based on a subjective beliefs: we imagine that an agent is unaware of the identity
of her neighbors and she receives only an aggregate contribution she best responds
to in order to maximize her utility. The learning process leads to conjectural best
response paths that may possibly converge to a steady state, which represents a
generalization of the equilibrium state, called Self-Confirming Equilibrium (SCE)
(2). When only local externalities are present, the SCE set can be characterized by
means of the Nash equilibrium of the auxiliary game with complete information
where only active agents are present, this is related to the fact that if an agent be-
comes inactive after a certain time period of the learning dynamics, it will remain
inactive for the rest of the game. As a consequence, the outcome of the learning
process will result in a portion of the community that will reach an inactive ab-
sorbing state, while the rest will, possibly, converge to a steady state. A similar
scenario can be observed in the study of the generalized Lotka-Volterra equations,
which are frequently used to describe the dynamics of predator-prey interactions
in ecology. Similarly to the linear quadratic model, one must analyze the dynamics
of N interacting degrees of freedom, which is in principle deterministic once the
initial conditions and network topology are fixed. To focus on typical properties of
the community, the ecosystem can be treated as the outcome of a random choice,
within a statistical ensemble of possible network structures: random Lotka-Volterra
equations can then be recasted into a 1 body self-consistent stochastic dynamics
through a dynamical mean field theory approach in the thermodynamical limit (3),
averaging over all possible sources of uncertainty. In ecology, one finds a region in
which one competitive equilibrium exists and one region in which the total biomass
in the system explodes as a consequence of unbalanced interactions. In this work
the linear quadratic model is analysed with the same approach, focusing on the
role of anticorrelated and mutualistic interactions, stability and connectivity of the
network. Similarly to the case of ecological communities, it is shown that under
some conditions on the structure of the network, the learning process can lead to
inactivity traps, in which a, possibly large, fraction of the network does not con-
tribute to the system. Non-cooperative interactions surprisingly promote stability,
while also favouring an increasing fraction of surviving agents at the steady state.
Connectivity plays a crucial role in the outcomes of the learning process, promoting
as well the stability of the community.
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Chapter 1

Introduction to the models

1.1 Generalized Lotka Volterra Equations

1.1.1 Introduction to the L-V two species model

Lotka Volterra equations provide a simple tool for understanding how the popula-
tions of species might change over time in response to each other’s interactions. In
the simplest case, the equations account for the evolution of two interacting species.
The model was developed independently during the 1920s by American mathemati-
cian and physical scientist Alfred J. Lotka and Italian physicist Vito Volterra. The
equations take the form:

dx1(t)
dt

= r1x1(t)[K1 − x1(t) + z12x2(t)]

dx2(t)
dt

= r2x2(t)[K2 − x2(t) + z21x1(t)]
(1.1)

Where:

• xi(t) is the population density of species i at time t, with initial conditions
xi(t = 0)

• ri is the basal growth rate of species i

• Ki is the carrying capacity of species i

• zij is the interaction strength from i to j, that is to say the strength of the effect
that species j has on the dynamics of species i

In absence of interactions, assuming initial conditions smaller than the carrying
capacities, the density of the two species will exponentially increase in time until
they will saturate to the asymptotic values K1 and K2 according to the logistic
growth. On the other hand, interaction introduces a lot of variety in the outcomes
of the dynamics. The existence of an equilibrium point will depend on the initial
conditions for densities xi(t), parameters ri and Ki and the sign and absolute value
of interaction strengths zij and zji, that can be seen as entries of an interaction
matrix Z. Interaction represents the type and strength of the relation between the
two species: a competitive interaction occurs when both zij and zji are negative
(such as competition between shared common resources), predator prey interaction
when zij > 0 and zji < 0 , in which case species i and j will be respectively the prey
and the predator, or mutualistic interactions when both parameters are positive.
Once the initial conditions and parameters of the model are fixed, the outcome will
be deterministic. In general, we can find four possible scenarios: either species can
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be the sole survivor, one species is always the sole survivor (competitive exclusion),
or the two species can reach a coexistent equilibrium state, whose stability depends
again on the parameters of the model.

1.1.2 Generalized Lotka Volterra

The Generalized Lotka Volterra equations (GLV) model the dynamics of ecological
communities made of an arbitrary number of interacting species.

dxi(t)
dt

= rixi(t)[Ki − xi(t) + ∑
j∈∂i

zijxj(t)] (1.2)

For i = 1...N.
Now species i can be imagined as a node inside a network G = (I, Z) that interacts
with his out-neighbourhood ∂i through interaction coefficients zij. In some applica-
tions, a small immigration rate λi is added to model situations of new individuals
arriving to the ecosystem from the outside. Similarly to the two species model,
once initial conditions and parameters are fixed, the equations are deterministic
and can possibly converge to a stationary solution whose stability will depend on
the topological properties and parameters of the network, especially on the spectral
properties of the interaction matrix Z. The analysis of global stability is in general
difficult to approach, as an alternative, one can test for local asymptotic stability,
that is to ask whether the system will return to the equilibrium if perturbed in-
finitesimally, or move away from it. An alternative approach would be to focus
on random communities, where the structural parameters of the model, as well
as initial conditions, follow a specific probability distribution. In order to study
the stability of large random communities, the results obtained in Random Matrix
theory have shown to be very useful (4). The analysis of dynamical systems with
random parameters also allows one to derive interesting results that are meant to
describe the “typical” or “expected” community rather than a particular realization
of the network, by working with a statistical ensemble of graphs in the thermody-
namical limit N → ∞. One of the main advantages is that the obtained results can
be associated to topological properties of the graph, such as connectivity or central-
ity. This approach also allows to account for interaction types, since in ecological
communities the effect of species i on j and viceversa are usually not independent:
in the case of competition we expect both coefficients to be negative, while for the
predator prey case we expect them to have opposite sign, and so forth. A more re-
fined model for the interaction matrix would therefore sample interactions in pairs,
from a bivariate distribution with components (zij, zji). A convenient choice would
be to draw the couplings zij (i ̸= j) from a gaussian bivariate distribution defined
by its mean µ and covariance matrix, this introduces a model parameter controlling
the correlation between the interaction coefficients zij and zji, and hence the fraction
of prey predator pairs in the artificial ecological system. For any i < j we have

zij =
µ

N
+

σ√
N

wij zji =
µ

N
+

σ√
N

wji (1.3)
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Where wij and wji are drawn from a Gaussian distribution with wij = 0 and
covariance matrix

Σ =

(
1 γ
γ 1

)
(1.4)

The scaling of the moments of the zij with N is necessary to produce a well
defined limit N → ∞ in which the statistical mechanics theory applies. The param-
eter −1 ≤ γ ≤ 1 describes the correlations between wij and wij, i.e. wijwji = γ.
For γ = 1 one has wij = wji, and as a consequence zij = zji, with probability one.
For γ = 0, wij and wji are uncorrelated, and for γ = −1 one has wij = −wji with
probability one. In the limit of large system size, a given pair of species i ̸= j forms
a predator prey pair (zijzji < 0) if and only if wij and wji are of opposite sign. The
percentage p of predator prey interactions in the network can then be computed
by performing a suitable Gaussian integral over the joint distribution of wij and
wji. This leads to an explicit, non linear and decreasing dependence of p on γ.
In particular one has p = 1 for γ = −1 (for γ = −1 the system consists fully of
predator prey interactions ); one has p = 1/2 for γ = 0 (50% predator prey pairs),
and p = 0 for γ = 1 (i.e., no prey predator pairs are present for γ = 1). In all cases,
the remaining fraction of 1 − p interaction pairs is not of the predator prey type.
In the limit N → ∞, half of these will be of a mutualistic interaction type (zij and
zji both positive), and the other half of a strictly competitive type (zij and zji both
negative). This approach allows to investigate the role of predator prey pairs in the
properties, such as stability, of this artificial ecosystem. In order to analyze fixed-
point properties and statistics of the random ecological community at stationarity
one can use dynamical methods from spin-glass physics (5), in the limit N → ∞,
that will be discussed in chapter 2.

1.2 Linear Quadratic Network Games

The interaction of multiple independent decision-makers can be modelled inside a
network, where each agent represents a node inside a graph interacting through
links. It has a wide range of applications in contexts where individuals or groups
interact with one another, and an individual’s payoff depends not only on their ac-
tion but also on those of her neighbors. The topological properties of the networks
play a crucial role in determining the behaviour and actions of the players. The
analysis of existence and unicity of Nash equilibria for a system of N interacting
degrees of freedom is, in general, not an easy task to tackle. It is convenient to
consider games simple enough to be studied, while still being able to represent
the outcomes of a game due to interaction. That’s why the linear quadratic (LQ)
model represents a broad class of games that have been extensively studied in the
literature. The utility function for player i has the following form:

ui(ai, a−i) = αiai −
1
2

a2
i + ai ∑

j∈∂i

zijaj (1.5)

With G = (I, Z) ; i, j ∈ I.
Where I is the set of players (|I| = N), and ai ∈ Ai = [0, ∞[ ∈ R ∀i ∈ I . The
utility of player i not only depends on her action ai ≥ 0 but also those of the other
players a−i, specifically of her neighbors. The first term is a linear contribution in
the action of player i weighted by the real coefficient αi > 0, which represents the
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individual pleasure of agent i from being active on the network in isolation. The
second term, quadratic in ai, yields a linear best response. The third term captures
interaction: zij ∈ Z is the intensity and the type (sign) of externality from j to i,
it can be seen as an entry to the weighted adjacency matrix Z of the network. If
zij ̸= 0 then j is a peer of i, i.e. the activity of j influences the utility of i. The last
term will be referred in the following as the term of local externalities. In some
applications, in addition to local externalities, a global term of the form γai ∑j∈I aj
might be added, to model situations where players experience global competitive
effects. The linear quadratic form of the payoff function in equation (1.5) allows for
an easy characterization of equilibrium as a function of the network. It has been
widely used to model competitive scenarios with relevant features of the strategic
interactions , such as games of strategic complements and strategic substitutes. In
games of strategic complements, an increase in the actions of other players leads
a given player’s higher actions to have relatively higher payoffs compared to that
player’s lower actions. That would be the case of students working together into
a joint assignment or firms working on a collaborative research project. In games
of strategic substitutes, however, the situation is opposite, such as the case of firms
competing on market prices or individuals on local public goods. Also it can be
used as a toy model to approximate games with complex non-linear payoffs. Some
applications of the quadratic model are the analysis of crime activity, education
outcomes, and competition between firms (2). In some particular cases it is possible
to find an explicit solution for equilibrium behavior as a function of the network
properties (1).

1.2.1 Game with complete information

When all players share common knowledge of the network structure, action sets,
couplings and utility functions it is possible to characterize the set of Nash equi-
libria and to study its stability properties. In games of strategic complements and
strategic substitutes, one can exploit some natural and useful monotonicity prop-
erties of the interaction in payoffs between players. We can look as example to the
case where interaction occurs on a graph with unweighted adjacency matrix W,
with a unique constant coupling parameter β among all players that are connected
through an edge.

ui(ai, a−i) = αiai −
1
2

a2
i + βai ∑

j∈∂i

Wijaj (1.6)

The sign of β determines the type of strategic interactions: β can either be positive
or negative, and it represents respectively a case of strategic complements and sub-
stitutes. In this case Z = βW. It has been shown that, assuming that the spectral
radius of the matrix βW, denoted by ρ(βW), is less than 1, there exists a unique
interior Nash equilibrium with the following matrix from:

a = (I − βW)−1α (1.7)

Where α = αi1 with 1 being an N-dimensional column vector of ones and I

the identity matrix. The equilibrium state in equation (1.7) can be rewritten as
a = ∑∞

p=0 βpWpα which shows that, if α is a vector of all ones, then each entry of a
is the Katz-Bonacich centrality of the corresponding agent, that is to say the number
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of walks of any length p originated from that node discounted exponentially by β.
This shows that despite the presence of only local externalities in equation (1.5)
the payoff interdependency actually spreads indirectly throughout the network,
and that the Nash equilibrium action state of a player is strictly connected (that
is, proportional) to her Bonacich centrality inside the graph, thus establishing a
bridge with the sociology literature on social networks. It was also shown that a
denser and larger network of local interactions increases the aggregate equilibrium
outcome, roughly because both the number of paths and their weights increases
with an increase in network connectivity and size (1).
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1.2.2 Game with incomplete information

The current literature has largely focused on analyzing the characteristics of net-
work games where the structure of the network is known beforehand. In more
realistic scenarios, however, while the actions of the players may be observable,
the underlying interaction network remains hidden. Agents may ignore how the
network affects their payoffs, how the network is shaped, or even that they are
interacting in a network. This raises the question of when and why we might ex-
pect that observed play in a game will correspond to one of the Nash equilibria.
An alternative explanation is that equilibrium arises as the long run outcome of
a process in which less than fully rational players grope for optimality over time.
Learning models can thus suggest useful ways to evaluate and modify traditional
equilibrium concepts, leading to refinements of Nash equilibrium, while still be-
ing consistent with the latter, hence Nash equilibrium action profiles will be limit
outcomes of learning paths where agents have perfect feedback about the payoff rel-
evant aspects of others’ behavior, while with imperfect feedback non-Nash action
profiles may result as the steady state limits of learning paths. A variety of learning
models have been proposed, with different motivations, and they differ widely in
terms of what prompts players to make decisions and how sophisticated players
are assumed to be. In the simplest models, players behaves by using strategies
that have worked in the past. In other models, players explicitly maximize payoffs
given beliefs, these beliefs may involve varying levels of sophistication. We’ll use
the latter approach to model a learning process for the game shown in equation
(1.5), following the work of Battigalli P. et all in (6).
As already discussed, uncertainty about the game introduces the need for refine-
ments of Nash equilibrium. Depending on the source of uncertainty, an agent could
learn by best responding to subjective beliefs about the payoff relevant aspects of
what others are doing, such as their play, and that may or may not be correct, with
the possibility for beliefs to be confirmed by the observed outcome while being
incorrect about off-path play. As a result, the learning process can converge to out-
comes that cannot be generated by any Nash equilibrium of the game. For this
reason, notions of "subjective" equilibrium have been developed in the context of
repeated games: in a Self-Confirming Equilibrium (SCE) each player’s strategy is
optimal given his beliefs about the opponents’ strategies, but each player’s beliefs
are correct only at the information sets that are reached in her play. While for a
Nash, each player’s beliefs are correct at every information set (2). The notion of
SCE will be crucial in the analysis of our learning process.
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1.2.3 Conjectural best-reply learning paths

The learning process will be structured as follows: an agent i will be unaware of
the identity of her neighbors, receiving only an aggregate contribution she best
responds to in order to maximize her utility for the next iteration of the game,
while she will know that her optimal action depends on an unknown state, also
referred in the following as payoff state, that is, actually, an aggregate of the actions
of her neighbors. The corresponding sequence of action profiles (at)∞

t=0 forms a
conjectural best-reply path. An agent i doesn’t know neither who’s interacting with
nor what type of influence their specific play have on her utility. In light of this, we
rewrite eq (1.5) as:

vi(ai, bi) = αiai −
1
2

a2
i + aibi (1.8)

Where now vi is the realized payoff observed by player i, and bi is the payoff state,
i.e. the realized value of the aggregate contribution of the term ∑j∈∂i

zijaj. Agent i
knows αi, the form of her utility and how it depends on his action, which will be
chosen in a bounded interval ai ∈ [0, ai] = Ai, as consequence the payoff state will
be bounded bi ∈ [bi, bi] = Bi. Starting from a set of initial conditions {ai(0)}i=1..N ,
an agent receives vi(t = 0) as feedback, conjectures the value of the payoff state
b̂i and best responds to it by choosing an action that maximizes her utility, and
that will be valid for the next time step. This update will be simultaneous for all
players. From the form of vi we notice that the feedback received by players is such
that, if an agent i decides to be inactive (ai = 0), then she cannot learn anything
about the game and about what others are doing (the realized value of bi), thus she
cannot observe whether inactivity was a best reply to peers’ activity. If she finds it
subjectively optimal to be inactive, such lack of information about the payoff state
creates an “inactivity trap”, allowing her possibly wrong conjecture to persist. If we
imagine ai to be an activity level for the agent, this framework mimics situations
where agents are likely to ignore relevant information if they opt out from the
network, while active players have a quasi-perfect feedback about what happens,
being able to deduct the payoff state.

bi =
vi − αiai +

1
2 a2

i
ai

=
vi

ai
− αi +

1
2

ai

If an agent experiences a negative payoff because some of her neighbors whose
externalities toward her are negative played high actions (hence, giving negative
feedback), then she may choose to abstain from interacting. Later, game conditions
may improve, making it objectively profitable to be active, but the now inactive
agent cannot observe it, thus remaining in an inactive absorbing state. Agents
update their beliefs in response to the feedback they receive, which is assumed
to be their payoff, and maximize their instantaneous expected payoff given such
updated beliefs. This updating process yields learning paths that do not necessarily
converge to a Nash equilibrium of the game. Nevertheless, in equilibrium, an agent
conjecture must be consistent with the feedback received, that is, confirmed. The
best reply function for player i has the following form:

BRi(bi) =


0, bi ≤ −αi

αi + bi −αi ≤ bi ≤ ai − αi

ai bi ≥ ai − αi
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Since αi > 0, we may have BRi(bi) = 0 only if bi < 0.
A profile (a∗i , b∗i ) ∈ ∏i∈I(Ai × Bi) of actions and determinsitic conjectures is a Self
Confirming Equilibrium at Z if, for each i ∈ I

1. (Subjective rationality) a∗i = BRi(b̂i)

2. (Confirmed conjecture) vi(a∗i , b̂i) = vi(a∗i , bi)

Condition 1 requires that each agent best responds to her subjective belief about
the payoff state, while condition 2 requires that the expected payoff is equal to the
realized payoff. Notice that the latter condition do not imply conjectures to be cor-
rect. One can draw a correspondence between the set of actions profiles that are
Self Confirming Equilibria NSCE

Z , and the set of (pure) Nash action profiles NNE
Z ,

for a given game described by interaction matrix Z. First we can notice that any
Nash equilibrium a∗ corresponds to a Self Confirming Equilibrium with correct
conjectures, from which we can deduce NNE

Z ⊆ NSCE
z . Within our learning process,

inactivity traps are deeply related to the structure of the SCE set, since the only
way to observe in the steady states conjectures that are confirmed but not correct
is given by the possibility for an agent i to enter an absorbing state ai = 0. If being
inactive is dominated, for example when local externalities are positive and this is
known, then Nash and Self Confirming equilibrium action profiles coincide. How-
ever, if there are agents for whom being inactive is not dominated, for example
when some negative local externalities are present, then any subset of this set of
agents may be inactive in some Self Confirming equilibrium. In this case inactiv-
ity is a best reply to confirmed, but possibly false conjectures. Since, for each Z,
the joint best-reply function is a continuous self-map on the compact and convex
subset ∏i∈I Ai ⊂ RI Brower Fixed Point Theorem implies that a Nash equilibrium
, and as a consequence a Self Confirming equilibrium, exists for each game given Z.

Let I0 be the set of players for whom being inactive is justifiable, that is

I0 := {i ∈ I : ∃ bi ∈ Bi, BRi(bi) = 0} = {i ∈ I : αi + bi ≤ 0}

Also, for each interaction matrix Z and non-empty subset of players J ⊆ I, let
ANE

J,Z be the set of Nash equilibria of an auxiliary game where only the subset J of
agents is considered. Then, for each Z the set of Self Confirming action profiles is

ASCE
Z =

⋃
J:I\J⊆I0

ANE
J,Z × 0I\J

In every possible SCE action profile there will be subset (possibly null) of inac-
tive agents, for whom being inactive is undominated, while the rest will converge
to a (possibly unique) Nash Equilibrium of the auxiliary game where only active
players are present. If being inactive is unjustifiable for every agent then the SCE
coincides with NE set. Notice that I0 and J are not necessarily disjoint sets. Thus,
the SCE set can be characterized by means of the Nash equilibria of the auxiliary
games in which only active agents are considered. For example, in the game given
in eq (1.6), for β > 0 where all local externalities are positive and this is common
knowledge, the two equilibrium sets coincide. For the game in eq (1.8), assum-
ing certain properties of the matrix Z, one can also provide sufficient conditions to
have arbitrary sets of inactive and active players in a Self Confirming Equilibrium,
as shown in (6).
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Chapter 2

Dynamical mean field theory

2.1 Introduction to DMFT

Both models that were introduced involve systems of heterogeneous agents that
interact in cooperative and competitive manner, leading to a rich and complex dy-
namics. We are dealing with disordered systems, that is, systems whose structural
parameters are themselves the outcome of a random choice. Rather than focusing
on the analysis of a system where the network structure is fixed, it is possible to
describe the large scale competitive behaviours, by developing a theoretical frame-
work whose purpose is to grasp the typical features of the community, and to
consider the full dynamics of these out-of-equilibrium systems. The typically large
size of these systems opens the possibility of exploiting the thermodynamical limit
N → ∞ to obtain a tractable theory, with the prospect of obtaining universal results.
Dynamical mean field theory (DMFT) is a theoretical approach to disordered statis-
tical models that describes the time evolution of a typical degree of freedom after
the average over the quenched disorder has been carried out, and yields a closed
description of the dynamics in terms of an effective species and a small number
of order parameters. Where "quenched" describes a disordered state that is not in
thermodynamic equilibrium. DMFT method was first introduced to describe the
dynamics of spin glasses (5), it also proved to be successful in describing phase
transitions in other areas, such as neural networks and ecosystems. For the latter,
the generalized Lotka-Volterra model is taken as a starting point, the theory has
revealed that dynamical models for ecosystems can exist in a variety of phases,
characterized either by a single equilibrium, multiple marginally-stable equilibria,
or chaos. The main ingredients to construct a dynamical mean field theory are the
following. Consider a generic theory with dynamical variables xi(t) with i = 1, ..., N
in the presence of disorder. Depending on the context, these could be spin variables,
or species abundances, for which disorder is introduced via random coupling coef-
ficients, or random inter-species interactions. In a Dynamical mean field theory, one
usually finds a Langevin dynamics for the variables xi(t), either by path-integral
methods (3), or the dynamical cavity methods (7), by performing a disorder average.
The many-species dynamical problem is then reduced to an effective process for a
representative degree of freedom: from a set of N coupled differential equations
we find a 1-body stochastic dynamics x∗, that captures the statistics of the commu-
nity, following self-consistent equations. A consequence of the disorder average is
however to introduce time quantities and time correlation effects. The most basic
of these are the correlation function C(t, t′) = 1

N ∑i < xi(t)xi(t′) >, where < (...) >
denotes the average over disorder subject to appropriate initial conditions. Also a
response function R(t, t′) = 1

N ∑i <
δxi(t)
δhi(t′)

|h=0 >, here hi(t) is a field conjugate to
the dynamical variable xi(t). In the simplest class of DMFTs, one obtains a pair
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of integro-differential equations involving C(t, t′) and R(t, t′). In the following,
the DMFT approach is applied both to the GLV and LQ models via a generating
functional approach, with the purpose to draw a meaningful correspondence be-
tween the obtained results. Finally, the same results will be obtained via the cavity
method, in order to gain more of a physical insight on this approach.

2.2 Random Lotka-Volterra systems

We start from GLV equations 1.2, setting ri = Ki = 1.

dxi(t)
dt

= xi(t)[1 − xi(t) + ∑
j∈∂i

zijxj(t)] (2.1)

For i = 1...N.
We’ll assume that the elements of the interaction matrix (zij, zji) follow a bivariate
gaussian distribution given by (1.3) and (1.4). xi(t) ≥ 0 is the population density
of species i at time t. The initial conditions x1(0), ..., xN(0) can also be random,
that is, drawn from some joint probability distribution. Scalar functions of time
will be denoted by underlined symbols, e.g. x = (x(t = 0), x(t = 1), ..., x(t = T)),
while general column vectors by bold face letters, such as x = (x1, ..., xN)

T. Once
initial conditions and interaction parameters are fixed, the GLV dynamics contains
no further randomness during the time evolution.

2.2.1 Generating functional approach

First, we write a dynamical generating functional for the process, which is defined
as:

Z[Ψ] =
∫

DξDxp(ξ)δ(equations of motion)ei ∑i
∫

dtxi(t)Ψi(t)

Where ξ is the source of stochasticity for the dynamical process xi(t). In our case
it will be the interaction parameters zij, assuming initial conditions are fixed. Once
parameters are drawn, xi(t) is constrained to paths of the dynamics of the Lotka-
Volterra equations through a delta function. Also, it can be seen as:

Z[Ψ] =

〈
ex·Φ

〉

Where x = {xi(t)}i,t is a random vector, continuous in time, while
〈
(..)
〉

denotes
the average over disorder. We now proceed with various manipulations in the
generating functional. Expressing the delta function as its Fourier transform, and
keeping at first the network parameters as fixed,we have:

Z[Ψ] =
∫

D[x, x̂] exp

{
i ∑

i

∫
dt x̂i(t)

[
ẋi(t)
xi(t)

−
(

1 − xi(t) + ∑
i ̸=j

zijxj(t) + h(t)
)]}

x exp

{
i ∑

i

∫
dtxi(t)Ψi(t)

}
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Where we denoted D[x, x̂] = Dx Dx̂.
A time dependent field h(t′) is introduced in the equation of motion. This is needed
to describe how the density xj(t) ‘typically’ reacts to perturbations at time t′ by
looking at the response function. Now, let us introduce some macroscopic order
parameters:

M(t) =
1
N ∑

i
xi(t)

P(t) =
i
N ∑

i
x̂i(t)

C(t, t′) =
1
N ∑

i
xi (t) xi

(
t′
)

K(t, t′) =
1
N ∑

i
xi (t) x̂i

(
t′
)

L(t, t′) =
1
N ∑

i
x̂i (t) x̂i

(
t′
)

Next, we isolate the term X containing the disorder (the {zij}i ̸=j):

X = =̇ exp

{
−i ∑

i ̸=j

∫
dtx̂i(t)zijxj(t)

}

and perform the Gaussian average, exploiting eqs (1.3) and (1.4). The final form
of the disorder term can be expressed in terms of the macroscopic parameters de-
scribed above:

〈
X
〉
=

〈
exp

{
−i ∑

i ̸=j

∫
dtx̂i(t)zijxj(t)

}〉

= exp

{
−µN

∫
dtP(t)M(t)

− 1
2

Nσ2
∫

dtdt′
[
L(t, t′)C(t, t′) + γK(t, t′)K(t′, t)

]
+ O(N0)

}

The notation O(N0) indicates that we have left out sub-leading contributions in
N (i.e, terms of order N0 or lower). This includes for example terms such as
−i µ

N ∑i
∫

dtx̂i(t)xi(t)
We do this because we are eventually going to take the limit N → ∞ after which

these terms do not contribute.
These order parameters can formally be introduced into the generating func-

tional as delta-functions in their exponential representation, e.g:

1 =
∫

∏
t,t′

dC(t, t′)δ
(

C(t, t′)− 1
N ∑

i
xi(t)xi(t′)

)

=
∫

DCDĈ exp

{
iN
∫

dtdt′Ĉ(t, t′)
(

C(t, t′)− 1
N ∑

i
xi(t)xi(t′)

)}
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and similarly for the other order parameters. We have chosen the scaling of the
conjugate parameter Ĉ(t, t′) such that the overall exponent contains a prefactor N.

The disorder-averaged generating functional can be written as follows:

∫
D[M, C, L, K, P, M̂, Ĉ, L̂, K̂, P̂] exp

{
N
[

Ψ + Φ + Ω + O(N−1)

]}
(2.2)

The term:

Ψ = i
∫

dt
[

M̂(t)M(t) + P̂(t)P(t)
]

+ i
∫

dtdt′
[

Ĉ(t, t′)C(t, t′) + K̂(t, t′)K(t, t′) + L̂(t, t′)L(t, t′)
]

results from the introduction of the macroscopic order parameters. The contribu-
tion

Φ = −1
2

σ2
∫

dtdt′
[

L(t, t′)C(t, t′) + γK(t, t′)K(t′, t)
]

− µ
∫

dtM(t)P(t)

comes from the disorder average, while Ω describes the details of the micro-
scopic time evolution

Ω = N−1 ∑
i

log
[ ∫

D[xi, x̂i]p
(i)
0 (xi(0)) exp

{
i
∫

dtψi(t)xi(t)
}

× exp
{

i
∫

dtx̂i(t)
[

ẋi(t)
xi(t)

−
(

1 − xi(t)
)
− h(t)

]}
× exp

{
−i
∫

dtdt′
(

Ĉ(t, t′)xi(t)xi(t′) + L̂(t, t′)x̂i(t)x̂i(t′) + K̂(t, t′)xi(t)x̂i(t′)
)}

× exp
{
−i
∫

dt
(

M̂(t)xi(t) + iP̂(t)x̂i(t)
)}]

(2.3)

The quantity pi
0(·) describes the distribution from which the initial values of the

{xi}i=1..N are drawn. We next use the saddle-point method to carry out the integral
in Eq. (2.2). This is valid in the limit N −→ ∞, and amounts to finding the extrema
of the term in the exponent. Setting the variation with respect to the integration
variables M, P, C, K and L to zero gives

iM̂(t) = µP(t)

iP̂(t) = µM(t)

iĈ(t, t′) =
σ2

2
L
(
t, t′
)

iK̂
(
t, t′
)
= γσ2K

(
t, t′
)

iL̂
(
t, t′
)
=

σ2

2
C
(
t, t′
)
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On the other hand, extremizing with respect to M̂, P̂, Ĉ, K̂, L̂

M(t) = lim
N→∞

N−1 ∑
i
⟨xi(t)⟩Ω

P(t) = lim
N→∞

N−1 ∑
i
⟨ix̂i(t)⟩Ω

C(t, t′) = lim
N→∞

N−1 ∑
i

〈
xi(t)xi(t′)

〉
Ω

K(t, t′) = lim
N→∞

N−1 ∑
i

〈
xi(t)x̂i(t′)

〉
Ω

L(t, t′) = lim
N→∞

N−1 ∑
i

〈
x̂i(t)x̂i(t′)

〉
Ω

Where the average ⟨(·)⟩Ω is to be taken against a measure defined by the exponent
of the expression in Eq. (2.3) in the limit h → 0.

From the latter equations, and taking the thermodynamical limit, one also no-
tices that:

C(t, t′) = − lim
N→∞

N−1 ∑
i

δ2Z[ ]
δψi(t)δψi(t′)

∣∣∣∣∣
ψ=0,h=0

K(t, t′) = lim
N→∞

N−1 ∑
i

δ2Z[ ]
δψi(t)δh(t′)

∣∣∣∣∣
ψ=0,h=0

L(t, t′) = − lim
N→∞

N−1 ∑
i

δ2Z[ ]
δh(t)δh(t′)

∣∣∣∣∣
ψ=0,h=0

P(t) = − lim
N→∞

N−1 ∑
i

δZ[ ]
δh(t)

∣∣∣∣∣
ψ=0,h=0

Given that Z[ψ = 0, h] = 1 for all h due to normalisation we conclude that
L(t, t′) = 0 for all t, t′, and P(t) = 0 for all t. We now set ψ = 0. We will also assume
that initial conditions are chosen from identical distributions for all components xi

(i..e p(i)0 (·) does not depend on i). Then we have

Ω = log
[ ∫

D[x, x̂]p0(x(0)) exp
{

i
∫

dtx̂(t)
[

ẋ(t)
x(t)

−
(

1 − x(t)
)
+−h(t)− µM(t)

]}
× exp

{
−σ2

∫
dtdt′

[
1
2

C(t, t′)x̂(t)x̂(t′) + iγG(t, t′)x(t)x̂(t′)
]}

(2.4)

where we have used the above saddle point results, and introduced G(t, t′) =
iK(t, t′).
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2.2.2 The representative process

The final result for the generating functional post disorder average is therefore

Ze f f =
∫

D[x, x̂]p0(x(0)) exp
{

i
∫

dtx̂(t)
[

ẋ(t)
x(t)

−
(

1 − x(t)
)
− h(t)− µM(t)

]}
× exp

{
−σ2

∫
dtdt′

[
1
2

C(t, t′)x̂(t)x̂(t′) + iγG(t, t′)x(t)x̂(t′)
]}

This is is recognised as the generating function of the effective dynamics

ẋ(t) = x(t)

[
1 − x(t) + γσ2

∫
dt′G(t, t′)x(t′) + µM(t) + η(t) + h(t)

]

where

G(t, t′) =
〈 δx(t)

δh(t′)

〉
∗

〈
η(t)η(t′)

〉
∗ = σ2〈x(t)x(t′)

〉
∗

〈
x(t)

〉
∗ = M(t)

(2.5)

and where
〈
· · ·
〉
∗ denotes an average over realizations of the effective dynamics.

Given that this is to be evaluated at h =0 we can equivalently write

ẋ(t) = x(t)

[
1 − x(t) + γσ2

∫
dt′G(t, t′)x(t′) + µM(t) + η(t)

]
(2.6)

The equations in (2.5) determine G(t, t′), C(t, t′) =
〈

x(t)x(t′)
〉
∗ and M(t) self-

consistently.

2.2.3 Fixed points analysis

We now assume that the system reaches a stationary state and that this stationary
state does not depend on the initial condition (i.e., we assume absence of long-term
memory). The response function G is then a function of time differences only, i.e.
G(t, t′) = G(τ), where τ = t − t′. Causality dictates G(τ < 0) = 0. Assuming
further that the dynamics reaches a fixed point, C(t, t′) is constant (independent of
t and t’); we write C(t, t′)=̇q.

Fixed points of the effective dynamics are given by the solutions of

x∗
[

1 − x∗ + γσ2χx∗ + µM∗ + η∗
]
= 0 (2.7)



2.2. Random Lotka-Volterra systems 15

where we have written χ =
∫ ∞

0 dτG(τ). We note that η(t) becomes static
Gaussian randomness η∗, at the fixed point, due to the self-consistency relation〈

η(t)η(t′)
〉
∗ = σ2〈x(t)x(t′)

〉
∗=̇σ2q. We write η∗ =

√
qσz with z a static Gaussian

random variable of mean zero and unit variance.
Eq (2.7) always has the solution x∗ = 0. The second solution

x∗ =
1 + µM +

√
qσz

1 − γσ2χ

is physical when this expression is non- negative. In the following we use

x(z) =
1 + µM +

√
qσz

1 − γσ2χ
Θ

(
1 + µM +

√
qσz

1 − γσ2χ

)
(2.8)

Where Θ(x) is the heavyside function, Θ(x) = 1 for x > 0 , and Θ(x) = 0 else-
where. The zero solution can be seen unstable when the expression in the Heavy-
side function is positive, see below.
The order parameters χ, q, M are to be determined from the self- consistency rela-
tions depending on averages over the effective process.

χ =
1

√
qσ

〈∂x(z)
∂z

〉
∗〈

x(z)
〉
∗ = M∗

q =
〈
(x(z))2〉

∗

That can be expressed as

χ =
1

√
qσ

∫ ∞

−∞
Dz

∂x(z)
∂z

M∗ =
∫ ∞

−∞
Dz x(z)

q =
∫ ∞

−∞
Dz (x(z))2

where Dz = dz√
2π

e
z2
2

Only the non-zero fixed points contribute to these integrals. We proceed under
the assumption 1 − γσ2χ > 0. The range x(z) > 0 is then equivalent to 1 + µM +
√

qσz > 0 i.e z > −∆ where ∆ = 1+µM∗
√

qσ .

This means that the fraction of surviving species is given by Φ =
∫ ∞
−∆ Dz. In the

integration range we have:

x(z) =
√

qσ
∆ + z

1 − γσ2χ

Equations for χ, M∗ and q then turn explicitly into closed non-linear integral
equations:
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χ =
1

1 − γσ2χ

∫ ∆

−∞
Dz

M∗ =
√

qσ
1

1 − γσ2χ

∫ ∆

−∞
Dz (∆ + z)

1 =
σ2

1 − γσ2χ

∫ ∆

−∞
Dz (∆ + z)2

(2.9)

Along the way, we have made the assumption 1−γσ2χ > 0. This can be checked
retrospectively from the numerical solution. It is also required self-consistently in
the third relation in Eq. (2.9), as M∗ ≥ 0. We also note that the first relation in Eq.(
2.9) then implies χ > 0, which we will use below.
We have ∆ = 1+µM√

qσ . We also have

Φ =
∫ ∆

−∞
Dz (2.10)

2.2.4 Numerical procedure

We define

wl(∆) =
∫ ∆

−∞
Dz(∆ − z)l

And note

w0(∆) =
1
2

[
1 + er f

( ∆√
2

)]
w1(∆) =

1
2

[
e
−∆2

2

√
2
π
+ ∆

(
1 + er f

( ∆√
2

))]
w2(∆) =

1
2

(
1 + ∆2

)[
1 + er f

( ∆√
2

)]
+

1√
2π

e
−∆2

2 ∆

This means

w2(∆) = w0(∆) + w1(∆)

In order to find a solution we fix µ and γ, varying ∆ and obtaining σ2, q, χ, M as
functions of ∆.

More precisely we find by dividing the square of the first equation in (2.9) by
the third

σ2χ2 =
w2

0
w2

(2.11)

From the first relation on the other hand,

χ − γσ2χ2 = w0
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Putting this together we have

χ = w0 + γ
w0

2

w2

Using this in Eq. ( 2.11) we find

σ2 =
w2

0
w2χ2

=
w2

(w2 + γw0)
2

Next we introduce b=̇1 − γσ2χ as an auxiliary variable, and note that

b = 1 − γ
w2

(w2 + γw0)
2

(
w0 + γ

w2
0

w2

)
= 1 − γ

w0

w2 + γw0

=
w2

w2 + γw0

From the second relation in Eq. (2.9) we have:

σ
√

q =
bM
w1

which, combined with ∆ = 1+µM√
qσ give

1
M

=
∆
w1

b − µ

=
∆
w1

w0

w2 + γw0
− µ

Finally

q =
( bM

σw1

)2

This gives M, q, Φ as a function of σ2 in parametric form.

2.2.5 Order parameters

The notation x∗i indicates abundances at stable fixed points.
The quantity ϕ = w0 is the fraction of surviving species, i.e., ϕ = 1

N ∑i Θ(x∗i ),
where Θ(x∗i ) is the Heaviside function, Θ(x∗i ) = 1 for x > 0, and Θ(x∗i ) = 0 for
x ≤ 0. To measure this in simulations one needs to apply a threshold, θth, and
identify species i as surviving if xi ≥ θth.
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The quantity M is the mean abundance per species, M = 1
N ∑i x∗i , i.e., the first

moment of abundances. (The sum includes the species that have died out.).
The quantity q is, q = M = 1

N ∑i (x∗i )
2 (second moment of the distribution of abun-

dances).
χ is a susceptibility and measures how strongly species abundances change if an
external perturbation is applied. It is very hard to measure this directly in simula-
tions.
The species abundance distribution (distribution of the x∗i ’s) has a delta peak at
zero, plus a part which describes the surviving species

p(x) = (1 − ϕ)δ(x) + psurv(x)

The weight of the delta-peak at x = 0 is 1 − ϕ, and we have
∫ ∞

0 psurv(x) = ϕ
The functional form of psurv is a clipped Gaussian. More specifically, this is a
Gaussian with the following properties:

• mean 1+µM
1−γχσ2

• variance qσ2

(1−γσ2χ)2

with cut off at x = 0.

2.2.6 Linear stability of steady states

The linear stability analysis of (2.8) reveals:

• Perturbations around zero fixed points decay. The zero fixed point is not
stable if the object 1 + µM∗ +

√
qσz is positive, justifying retrospectively that

we use in that case the non-zero solution for x∗.

• Perturbations around the non-zero fixed point diverge when ϕσ2 =
(
1 − γχσ2)2.

One finds ϕσ2 <
(
1 − γχσ2)2 in the stable phase.

For the non-zero solution, the condition ϕσ2 =
(
1 − γχσ2)2 leads to ∆ = 0. To

see this we insert this condition into 1 = σ2

1−γσ2χ

∫ ∆
−∞ Dz (∆ − z)2 and find

ϕ =
∫ ∆

−∞
Dz (∆ − z)2

On the other hand we also have ϕ =
∫ ∆
−∞ Dz. Comparing the two expressions

gives ∆ = 0 and hence ϕ = 1
2 .

Using this, we have

2χ =
1

1 − γσ2χ

2 =
σ2

(1 − γσ2χ)2

(2.12)
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from which we find χ2 = 1
2σ2 . Using χ > 0 we have χ = 1√

2σ
. Substituting this

in the first relation in Eq. (2.12) in turn leads to

σ2
c (γ) =

2

(1 + γ)2 (2.13)

Figure 1: Critical value of the variance of interactions as a function
of correlation parameter γ. The red dashed line shows the smallest

possible value of σ2
c , obtained at γ = 1.

The linear stability results are shown to be independent from the mean of in-
teractions as long as µ < 0. While the outcome of the dynamics beyond the stable
regime actually depends on the mean of interactions. From the Dynamical mean
field theory analysis it is also possible to determine a phase diagram (σ, µ) of the
GLV model, given a fixed value of γ (7). In the limit of large system size, three
dynamical phases are found.

• Phase 1: Unique Fixed Point phase. Any given system admits a unique, stable
fixed point. This equilibrium state is stable to local and global perturbations,
up to a critical value of variance that can be computed according to (2.13).

• Phase 2: Multiple attractors. Above the critical threshold σ2
c (γ) the system is

not linearly stable anymore. The outcome will be history dependent. For a
given system, it can be a fixed point or in general a dynamical attractor, but it
will depend on initial conditions and the specific dynamics.

• Phase 3: Unbounded Growth: When the average interaction is positive µ >
0, or for sufficiently large variance σ2, cooperation prevail on single species
saturation, and the system is driven to a state where the biomass explodes.
If we fix a lower mean and increase the variance, at some point a portion
of the community of species will have cooperative interactions stronger than
their own saturation and this subgroup of species will thus grow without
bound, even though all the other species will die out. The borders between
phases can be computed analytically: I/II and I/III are exact, but II/III is only
approximate (7) .
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Figure 2: Qualitative phase diagram (σ, µ) for γ = 0.
With σ =

√
Nstd(zij) and µ the mean of interactions.

2.2.7 Results of the model

Through the generating functional approach, the study of a large size community
reduces to the stochastic dynamics of an effective species, while still being represen-
tative for the whole statistical ensemble determined by equations (1.3) and (1.4). A
phase diagram can be computed, showing the complexity of the possible scenarios,
from unique or multiple fixed points to chaotic regimes, depending on the struc-
tural parameters and nature of interactions. The non-zero steady solution results to
be stable withing a specific range of variability for the interactions, from zero up to
a critical value σ2

c (γ) that increases as γ increases, as shown in Figure 1. This crit-
ical value separates stable fixed-point regimes from phases in which characteristic
quantities such as the biomass and individual species concentrations can diverge
or fluctuate in time, as it will be discussed in comparison with numerical solutions.
For γ = 1 (0 % of predator-prey pairs) we find the smallest range of stability for the
variance σ2 < σ2

c = 0.5, for γ = 0 (50 % of predator-prey pairs) we find σ2
c = 2,

while for γ = −1 (100 % of predator-prey pairs) the steady state is stable for any
possible finite value of variance. This result shows how predator prey interactions
actually promote the stability of the community, coherently with the results found
from random matrix theory. One can also investigate the effect that the model pa-
rameters σ, µ and γ have on the properties of the steady state such as the fraction of
surviving species ϕ and the average density of species M, also referred as biomass.

Figure 3: Figures on the left and right show respectively the fraction
of surviving species ϕ and total biomass M as a function of the vari-
ance σ2, for different values of γ. Vertical dashed gray lines indicate

σ2
c (0) and σ2

c (1).
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Results in Figure 3 can be interpreted in terms of complexity (measured by σ2

and diversity (measured by γ) of the ecosystem, within the theoretical model. The
fraction of surviving species ϕ is a decreasing function of the variance, indepen-
dently of the percentage of predator prey pairs in the food web. On the other hand,
the biomass is enhanced by diversity (for γ equal to 0 and 1), while it stabilizes to
a finite value when all interaction pairs are of predator prey type. Therefore while
the network is destabilized by an increasing variance, the community reduces to
a smaller size. The total biomass increases as the diversity of species interaction
is increased. The size of the remaining ecosystem and stability are thus positively
correlated. Communities with a large number of surviving species are hence more
likely to be stable than smaller ones. We can notice that the community is stable
when at least 50% of species survive, and unstable otherwise, as shown in the an-
alytical solution. Numerical studies of the GLV have shown to be coherent with
these theoretical predictions (3).

2.2.8 Cavity Method

Consider the GLV model in its general form, looking at dynamics of the population
density xi(t) ≥ 0 for a system of N species i = 1, .., N.

dxi

dt
= xi

[
1 − xi + ∑

j ̸=i
zijxj + hi(t)

]
(2.14)

Where the parameters involved are equivalent to the ones discussed for equation
(1.2). An external field hi(t) is added to define the response of the system to a
perturbation. The elements {zij}i ̸=j follow in pairs a bivariate Gaussian distribution

zij =
µ

N
+ σwij zji =

µ

N
+ σwji (2.15)

Where (wij, wji) follow a bivariate gaussian with mean 0 and covariance matrix

Σ =
1
N

(
1 γ
γ 1

)
(2.16)

The result does not depend on the particular distribution for the zij’s but only
on the existence of the first two cumulants. The initial conditions are sampled from
a joint distribution P{xi(t = 0)} = ∏i=1,..,N(xi(t = 0)). The notation ⟨(··)⟩ refers to
the average over the couplings {zij}i ̸=j and initial conditions {xi(0)}i=1,..,N .
For given parameters µ, σ, γ and system size N, consider a system whose interaction
couplings and initial conditions are drawn for every species. We can define the
deterministc trajectories {xi(t)}i=1,..N . We now add a new species with density
x0 along with newly sampled interactions {zi0, z0i}i=1,..,N with the existing system,
and comparing the properties of the solution with N species to that with N + 1
species, requiring that the new species has the same properties as the rest. If N is
large enough, the impact of this new species on the previous trajectories is a small
perturbation and therefore we only consider linear response for the trajectories
{x̃i(t)}i=1,..N in the presence of new species ’0’:
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x̃i(t) = xi(t) + ∑
j=1,..,N

∫ t

0

δxi(t)
δhj(s)

∣∣∣∣∣
h=0

zj0x0(s)ds (2.17)

The partial derivative are to be understood in a functional sense. We introduce
the notation for the response function:

χij(t, s) =
δxi(t)
δhj(s)

∣∣∣∣∣
h=0

(2.18)

We can now plug these new trajectories in the equation for x0:

ẋ0 = x0(1 − x0 + ∑
i ̸=0

z0i x̃i + h0(t)) (2.19)

The interaction term can be rewritten exploiting the definition of the zij’s. The
summations ∑j stand for ∑j=1,..,N .

∑
j

z0j x̃j =
µ

N ∑
i

xi(t) +
µ

N ∑
ij

∫ t

0
χij(t, s)

( µ

N
+ σwj0

)
x0(s)ds

+ σ ∑
i

w0ixi(t) + σ ∑
ij

w0i

∫ t

0
χij(t, s)

( µ

N
+ σwj0

)
x0(s)ds

We take the large N limit and analyze the statistical properties of all terms, by
performing an average over coupling parameters and initial conditions. Since by
construction the trajectories {xi(t)}i=1,..N are independent from zi0 and z0i, one can
use central limit arguments. We look at the response function terms ∑ij w0i χij(t, s)wj0.
The different χij(t, s) are random functions that will depend on the initial condi-
tions xi ̸=0(0) and the interaction matrix {zij}i,j>0, but are otherwise independent
from zi0 and z0i. We first treat the diagonal part. According to the central limit the-
orem and up to second order contribution, the term ∑i w0i χii(t, s) wi0 will converge
towards its average:

S⟨χiiwi0w0i⟩ = S⟨χii⟩⟨wi0w0i⟩ = γ⟨χii⟩ (2.20)

while the non diagonal part ∑i ̸=j w0i χij(t, s) wj0 has zero average since the cou-
pled parameters are only correlated in pairs, i.e ⟨w0iwj0⟩i ̸=j = 0. To determine
the scaling of its fluctuations we look at the variance of each term in the sum
⟨χij⟩2

i ̸=j⟨w
2
j0w2

0i⟩i ̸=j
, it can be shown by perturbation theory in the strength of inter-

actions that χij is of order N−1/2 for i ̸= j. Regrouping the scalings we obtain that
the off-diagonal term ∑i ̸=j w0i χii(t, s) wj0 behaves as

N(N − 1)⟨χij⟩i ̸=j⟨wi0w0i⟩i ̸=j +
√

N(N − 1)
√
⟨χij⟩2

i ̸=j

√
⟨w2

j0w2
0i⟩i ̸=j

Z ∼ 0 +
1√
N

Z



2.2. Random Lotka-Volterra systems 23

where Z is a standard Gaussian, thus the off-diagonal term induces correction of
O(N− 1

2 ) that are negligible in the thermodynamical limit. Using the same proce-
dure for the remaining terms, we get

ẋ0 = x0{1 − x0 + µ⟨xi(t)⟩+ ση(t) + γσ2
∫ t

0
χ(t, s)x(s)ds + h(t)} (2.21)

Where η is a Gaussian noise with zero mean and covariance ⟨η(t)η(s)⟩η = ⟨xi(t)xi(s)⟩.
But once species “0” has been added to the system it is in no way different from the
other species, so we may drop the subscript 0 to obtain the dynamical mean field
theory:

ẋ = x{1 − x + µm(t) + ση(t) + γσ2
∫ t

0
χ(t, s)x(s)ds + h(t)} (2.22)

With the following self consistent equations for the average population m(t),
noise correlator C(t, s) = ⟨η(t)η(s)⟩η , and response function χ(t, s).

m(t) = E[x(t)]
C(t, s) = E[x(t)x(s)]

χ(t, s) = E[
δx(t)
δh(s)

∣∣∣∣∣
h=0

]

In these definitions, the averages E[(··)] are now taken with respects to the noise
trajectories η and the initial condition x(0). Finally, from an deterministic system
of coupled differential equations in N degrees of freedom we ended up with a
one-body stochastic self-consistent differential equation. It has been mathemati-
cally proven for spin glasses that in the thermodynamical limit N → ∞, there is a
convergence in law between the statistics of the two descriptions (5).
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2.3 Linear quadratic systems

Removing the assumption of boundness for the action profile space Ai = [0, ∞[, the
equations of the learning process can be rewritten as

at
i = max

{
0, αi + bt

i
}

(2.23)

bt+1
i =

{
bt

i if at
i = 0

∑j∈I zijat
j if at

i > 0
(2.24)

with initial conditions b0
i .

The process is deterministic, the only stochasticity being in the initial conditions
and in the quenched disorder determining the structure of the network and the
parameters αis. Using the learning process,

at+1
i = max

{
0, αi + bt+1

i

}
= max

{
0, αi + bt

i + Θ
(
αi + bt

i
) [

∑
j∈I

zijat
j − bt

i

]}

= max

{
0, Θ

(
at

i
) [

αi + ∑
j∈I

zijat
j

]} (2.25)

and adding a time-dependent external field ht
i , we obtain a single equation for

actions,

at+1
i = max

{
0, Θ

(
xt

i
) [

αi + ∑
j∈I

zijat
j + ht

i

]}
. (2.26)
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2.3.1 Generating Functional approach

We introduce a dynamical partition function Z [ψ] using a path integral approach
as follows

Z [ψ] =

〈〈
exp

(
i ∑

i
∑

t
ψt

i a
t
i

)〉
i.c.

〉
z

=

〈∫
Da

∫
Dα ∏

i
f (αi)∏

i
p
(
a0

i
)

exp

(
i ∑

i
∑

t
ψt

i a
t
i

)

× ∏
i,t

δ

(
at+1

i − max

{
0, Θ

(
at

i
) [

αi + ∑
j∈I

zijat
j + ht

i

]})〉
z

=

〈∫
Da

∫
Dâ

∫
Dα ∏

i
f (αi)∏

i
p
(
a0

i
)

exp

(
i ∑

i
∑

t
ψt

i a
t
i

)

× e ∑i ∑t ât
i

(
at+1

i −max
{

0,Θ(at
i)
[
αi+∑j∈I zijat

j+ht
i

]})〉
z

=

〈∫
Da

∫
Dâ

∫
Dy

∫
Dα ∏

i
f (αi)∏

i
p
(
a0

i
)

exp

(
i ∑

i
∑

t
ψt

i a
t
i

)
× ei ∑i ∑t ât

i(at+1
i −max{0,Θ(at

i)yt
i})

×∏
i,t

δ

(
yt

i − αi − ∑
j∈I

zijat
j − ht

i

)〉
z

=

〈∫
DaDâDyDŷ

∫
Dα ∏

i
f (αi)∏

i
p
(
a0

i
)

× ei ∑i ∑t ψt
i at

i+i ∑i ∑t ât
i(at+1

i −max{0,Θ(at
i)yt

i})+i ∑i ∑t ŷt
i

(
yt

i−αi−∑j∈I zijat
j−ht

i

)〉
z

.

Reordering terms and introducing g (a, y) = max (0, Θ (a) y),

Z [ψ] =

〈∫
Da

∫
Dâ

∫
Dy

∫
Dŷ

∫
Dα ∏

i
f (αi)∏

i
p
(
a0

i
)

× ei ∑i ∑t ψt
i at

i+i ∑i ∑t{ât
i(at+1

i −g(at
i ,y

t
i))+ŷt

i(yt
i−αi−ht

i)} ∏
i<j

e−i ∑t

(
ŷt

i zijat
j+ŷt

jzjiat
i

)〉
z

=
∫

Da
∫

Dâ
∫

Dy
∫

Dŷ
∫

Dα ∏
i

f (αi)∏
i

p
(
a0

i
)

× ei ∑i ∑t
t
i a

t
i+i ∑i ∑t{ât

i(at+1
i −g(at

i ,y
t
i))+ŷt

i(yt
i−αi−ht

i)}

×
〈

∏
i<j

e−i ∑t

(
ŷt

i zijat
j+ŷt

jzjiat
i

)〉
z

In order to perform the average over the disorder we notice that zij =
µ
N + σ√

N
wij

with wij normal random variables. More precisely we assume that random vari-
ables on different links are independent but those on the same link are correlated.
Let us assume that N

(
wij, wji

)
is a bivariate normal distribution with zero mean
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and covariance Σ =

(
1 γ
γ 1

)
, that is

〈
w2

ij

〉
=
〈

w2
ji

〉
= 1 and

〈
wijwji

〉
= γ. Per-

forming the gaussian average, the interaction term becomes〈
∏
i<j

e−i ∑t

(
ŷt

i zijat
j+ŷt

jzjiat
i

)〉
z

= ∏
i<j

∫
dN

(
wij, wji

)
e−i σ√

N ∑t

(
ŷt

i wijat
j+ŷt

jwjiat
i

)

= ∏
i<j

e−
σ2
2N ∑tt′

(
ŷt

i a
t
j ŷ

t′
i at′

j +ŷt
j a

t
i ŷ

t′
j at′

i +2γŷt
i a

t
j ŷ

t′
j at′

i

)
.

Now we obtained a process on N degrees of freedom in which there is no disorder
anymore

Z [ψ] =
∫

Da
∫

Dâ
∫

Dy
∫

Dŷ
∫

Dα ∏
i

f (αi)∏
i

p
(
a0

i
)

× ei ∑i ∑t ψt
i at

i+i ∑i ∑t{ât
i(at+1

i −g(at
i ,y

t
i))+ŷt

i(yt
i−αi−ht

i)}

× ∏
i<j

e−i µ
N ∑t

(
ŷt

i a
t
j+ŷt

j a
t
i

)
− σ2

2N ∑tt′
(

ŷt
i a

t
j ŷ

t′
i at′

j +ŷt
j a

t
i ŷ

t′
j at′

i +2γŷt
i a

t
j ŷ

t′
j at′

i

)
.

It is now convenient to introduce collective averages and correlation functions by
enforcing the following definitions

M(t) =
1
N ∑

i
ai(t)

Y(t) =
i
N ∑

i
ŷi(t)

Q11
(
t, t′
)

=
1
N ∑

i
ai (t) ai

(
t′
)

Q21
(
t, t′
)

=
1
N ∑

i
ŷi (t) ai

(
t′
)

Q12
(
t, t′
)

=
1
N ∑

i
ai (t) ŷi

(
t′
)

Q22
(
t, t′
)

=
1
N ∑

i
ŷi (t) ŷi

(
t′
)

by means of functional delta functions of the type

δ

(
NQ11

(
t, t′
)
− ∑

i
ai (t) ai

(
t′
))

=
∫

DQ̃11eiN ∑tt′(Q̃Q−Q̃N−1 ∑i ai(t)ai(t′))
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and we get

e−i µ
N ∑t

(
ŷt

i a
t
j+ŷt

j a
t
i

)
− σ2

2N ∑tt′ ∑ij

(
ŷt

i a
t
j ŷ

t′
i at′

j +γŷt
i a

t
j ŷ

t′
j at′

i

)
=∫

DQ̃11

∫
DQ̃12

∫
DQ̃21

∫
DQ̃22

∫
DQ11

∫
DQ12

∫
DQ21

∫
DQ22

∫
DM̃

×
∫

DỸ
∫

DM
∫

DY eiN ∑t(M̃M−M̃N−1 ∑i at
i)eiN ∑t(ỸY−iỸN−1 ∑i ŷt

i)

× eiN ∑tt′
(

Q̃11Q11−Q̃11 N−1 ∑i at
i a

t′
i

)
eiN ∑tt′

(
Q̃12Q12−Q̃12 N−1 ∑i at

i ŷ
t′
i

)

× eiN ∑tt′
(

Q̃22Q22−Q̃21 N−1 ∑i ŷt
i ŷ

t′
i

)
eiN ∑tt′

(
Q̃21Q21−Q̃21 N−1 ∑i ŷt

i a
t′
i

)
× e−

σ2 N
2 ∑tt′ (Q22(t,t′)Q11(t,t′)+γQ21(t,t′)Q12(t,t′))−µN ∑t M(t)Y(t).

The full dynamical partition function becomes

Z [ψ] =
∫

DM̃
∫

DỸ
∫

DM
∫

DY
∫

DQ̃11

∫
DQ̃12

∫
DQ̃21

∫
DQ̃22

∫
DQ11

∫
DQ12

∫
DQ21

×
∫

DQ22

∫
DaDâDyDŷDαe∑i{log f (αi)+log p(a0

i )+i ∑t ψt
i at

i+i ∑t{ât
i(at+1

i −g(at
i ,y

t
i))+ŷt

i(yt
i−αi−ht

i)}}

× e−i ∑i ∑t(M̃(t)at
i+Ỹ(t)iŷt

i)+N ∑t(M̃(t)iM(t)+Ỹ(t)iY(t)−µM(t)Y(t))

× e−i ∑i ∑tt′
(

Q̃11(t,t′)at
i a

t′
i +Q̃12(t,t′)at

i ŷ
t′
i +Q̃21(t,t′)ŷt

i a
t′
i +Q̃22(t,t′)ŷt

i ŷ
t′
i

)

× eN ∑tt′
(

iQ̃11Q11+iQ̃12Q12+iQ̃21Q21+iQ̃22Q22− σ2
2 Q22(t,t′)Q11(t,t′)− σ2

2 γQ21(t,t′)Q12(t,t′)
)

which can be written as

Z[ψ] =
∫

DM̃
∫

DM
∫

DỸ
∫

DY
∫

DQ̃11

∫
DQ̃12

∫
DQ̃21

∫
DQ̃22

∫
DQ11

×
∫

DQ12

∫
DQ21

∫
DQ22eN(Ψ+Φ+Ω+O(N−1))

(2.27)

with

Ω =
1
N ∑

i
log
[∫

DaiDâiDyiDŷiDαi f (αi) p
(
a0

i
)

ei ∑t ψt
i at

i+i ∑t{ât
i(at+1

i −g(at
i ,y

t
i))+ŷt

i(yt
i−αi−ht

i)}

×e−i ∑t(M̃(t)at
i+Ỹ(t)iŷt

i)−i ∑tt′
(

Q̃11(t,t′)at
i a

t′
i +Q̃12(t,t′)at

i ŷ
t′
i +Q̃21(t,t′)ŷt

i a
t′
i +Q̃22(t,t′)ŷt

i ŷ
t′
i

)]
,

Φ = i ∑
t

(
M̃(t)X(t) + Ỹ(t)Y(t)

)
+ i ∑

tt′

(
Q̃11

(
t, t′
)

Q11
(
t, t′
)

+ Q̃12
(
t, t′
)

Q12
(
t, t′
)
+ Q̃21

(
t, t′
)

Q21
(
t, t′
)
+ Q̃22

(
t, t′
)

Q22
(
t, t′
)

and

Ψ = −µ ∑
t

M(t)Y(t)− σ2

2 ∑
tt′

(
Q22

(
t, t′
)

Q11
(
t, t′
)
+ γQ21

(
t, t′
)

Q12
(
t, t′
))

.
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At the saddle point, when N → ∞, the individual-dependent part assumes a limit-
ing form

Ω = log
[∫

DaDâDyDŷDα f (α) p
(
a0) ei ∑t ψtat+i ∑t{ât(at+1−g(at,yt))+ŷt(yt−α−ht)}

×e−i ∑t(M̃(t)at+Ỹ(t)iŷt)−i ∑tt′
(

Q̃11(t,t′)atat′+Q̃12(t,t′)at ŷt′+Q̃21(t,t′)ŷtat′+Q̃22(t,t′)ŷt ŷt′
)]

.

(2.28)

Moreover, performing the extremization with respect to M, Y, Q11, Q12, Q21 and
Q22, we get the conditions

iM̃(t) = µY(t)

iỸ(t) = µM(t)

iQ̃11
(
t, t′
)
=

σ2

2
Q22

(
t, t′
)

iQ̃12
(
t, t′
)
=

σ2

2
γQ21

(
t, t′
)

iQ̃21
(
t, t′
)
=

σ2

2
γQ12

(
t, t′
)

iQ̃22
(
t, t′
)
=

σ2

2
Q11

(
t, t′
)

On the other hand, extremizing with respect to Q̃11, we obtain

iQ11
(
t, t′
)
=

δΩ
δQ11

= i
1

Z11

∫
DaDâDyDŷ p(a0)(atat′)

× ei ∑t{ψtat+ât(at+1−g(at,yt))+ŷt(yt−α−ht)−M̃(t)at−Ỹ(t)iŷt}

× e−i ∑t

{
∑t′
(

Q̃11(t,t′)atat′+Q̃12(t,t′)at ŷt′+Q̃21(t,t′)ŷtat′+Q̃22(t,t′)ŷt ŷt′
)}

= i
〈

atat′
〉

Ω

which is the expected behavior of product atat′ performed over a sample dynamical
process in the N → ∞ limit. This is the usual definition of correlation function.
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Performing the other extremizations we obtain

M(t) =
〈

at〉
Ω

Y(t) =
〈
iŷt〉

Ω = − δ

δht 1
∣∣∣∣
ψ=0

= 0

Q11
(
t, t′
)
=
〈

atat′
〉

Ω

Q12
(
t, t′
)
=
〈

atŷt′
〉

Ω
=

δ
〈

at〉
Ω

δht′

Q21
(
t, t′
)
=
〈

ŷtat′
〉

Ω
=

δ
〈

at′
〉

Ω
δht

Q22
(
t, t′
)
=
〈

ŷtŷt′
〉

Ω
=

δ2

δhtδht′ 1
∣∣∣∣
ψ=0

= 0.

2.3.2 The representative process

Using this set of results, we can interpret Ω as the dynamical partition function of
a representative single-degree of freedom

Zeff [ψ = 0] =
∫

DaDâDyDŷDα f (α) p
(
a0) e∑t{iât(at+1−g(at,yt))+ŷt(yt−α−ht−µM(t))}

× e∑t

{
− σ2

2 ∑t′
(

γatQ21(t,t′)ŷt′+γŷtQ12(t,t′)at′+ŷtQ11(t,t′)ŷt′
)}

=
∫

DaDyDŷDα f (α) p
(
a0)∏

t
δ
(

at+1 − g
(
at, yt))

× e∑t

{
ŷt(yt−α−ht−µM(t))− σ2

2 ∑t′
(

2γŷtQ12(t,t′)xt′+ŷtQ11(t,t′)ŷt′
)}

=
∫

DaDyDŷDα f (α) p
(
a0)∏

t
δ
(

at+1 − g
(
at, yt))

× e∑t

{
ŷt
(

yt−α−ht−µM(t)− σ2
2 ∑t′

[
2γQ12(t,t′)at′+Q11(t,t′)ŷt′

])}
.

The representative process, which is parametrized by the variable α, involves
the local field yt,

at+1 = g

(
at, α + ht + µM(t) + σ2γ ∑

t′
Q12

(
t, t′
)

at′ + ηt

)
(2.29)

with
〈
ηt〉 = 0 and

〈
ηtηt′

〉
= σ2Q11 (t, t′) and where

Q12
(
t, t′
)

=
〈

atŷt′
〉
=

δ
〈

at〉
δht′ = G

(
t, t′
)

(2.30)

Q11
(
t, t′
)

=
〈

atat′
〉
= C

(
t, t′
)

, (2.31)

are, respectively, the response function and the correlation function of the process
itself.
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2.3.3 The stationary state (at fixed α)

It is possible to analyze the stationary state solution of the representative stochastic
process. Since the underlying microscopic process is in fact deterministic except for
its initial conditions, the stationary solution of the representative process will be a
random fixed-point solution, in which the stochasticity is relegated to a quenched
disorder term η∗, which represents the long-term effect of having different ini-
tial conditions. In the analysis, we also assume that, in the long-time limit, time-
translation invariance holds, so that we can replace G (t, t′) = G (t − t′) = G (τ)
and C (t, t′) = C (t − t′) = C (τ). At the fixed point, a∗ we get the condition

a∗ = g
(

a∗, α + µM∗ + σ2γ
∫

dτG (τ) a∗ + η∗
)

= g
(
a∗, α + µM∗ + σ2γχa∗ + η∗)

= g
(
a∗, α + µM∗ + σ2γχa∗ +

√
qσζ

)
(2.32)

where η∗ =
√

qσζ with q2 = C (0) =
〈
(a∗)2

〉
and ζ is a normal random variable.

The above expression gives, at fixed α,

a∗ (ζ) = max
(
0, Θ (a∗) (α + µM∗ + σ2γχa∗ +

√
qσζ

)
) (2.33)

The zero solution is unstable when the argument of the function is positive, which
means

a∗ (ζ) =
α + µM∗ +

√
qσζ

1 − σ2γχ
Θ
(

α + µM∗ +
√

qσζ

1 − σ2γχ

)
. (2.34)

We can also compute explicit expressions for χ and q by using

χ =
1

√
qσ

〈
δa∗ (ζ)

δζ

〉
∗

=
1

√
qσ

∫ +∞

−∞

dζ√
2π

e−ζ2/2 δa∗ (ζ)
δζ

,

M∗ = ⟨a∗(ζ)⟩∗

=
∫ +∞

−∞

dζ√
2π

e−ζ2/2a∗(ζ)

and

q =
〈
(a∗ (ζ))2

〉
∗

=
∫ +∞

−∞

dζ√
2π

e−ζ2/2 (a∗ (ζ))2 .
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The range a∗ > 0 is equivalent to say that α + µX∗ +
√

qσζ > 0, that is ζ >

− α+µM∗
√

qσ ≡ −∆; therefore, the above conditions become

χ =
1

1 − σ2γχ

∫ ∆

−∞

dζ√
2π

e−ζ2/2

M∗ =

√
qσ

1 − σ2γχ

∫ ∆

−∞

dζ√
2π

e−ζ2/2 (∆ − ζ)

1 =
σ2

(1 − σ2γχ)2

∫ ∆

−∞

dζ√
2π

e−ζ2/2 (∆ − ζ)2 .

(2.35)

The three equations can be solved numerically in order to find q, M∗ and χ as
functions of α, σ and γ.

2.3.4 Numerical procedure

To compute the order parameters as a function of σ2, µ and γ, the procedure is
along the line of the one already seen for the GLV model. We found the same self-
consistent equations, but a different definition of ∆ = α+µM∗

√
qσ . As a consequence we

obtain, from the second equation of (2.35):

1
M∗ =

1
α

( ∆
w1

b − µ
)

=
1
α

( ∆
w1

w0

w2 + γw0
− µ

)
And again

q =
(bM∗

σw1

)2

Φ =
∫ ∆

−∞
Dz

With the same definitions of w0, w1 and w2.
This gives M, q, Φ as a function of σ2 in parametric form.

2.3.5 Stability analysis of the stationary state

It is also possible to verify the existence of an instability of the learning process
analytically, by performing a stability analysis on the representative process. We
can follow a standard approach by Opper M. and Diederich S (8). We slightly
perturb the stationary state by adding a small term δξt where ξt is an external
normal noise and also setting perturbed values for ηt = η∗ + δηt

1, and at = a∗ + δat
1.
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The evolution equation gives

at+1 = a∗ + δat+1
1

= g
(

a∗ + δat+1
1 , α + µM∗ + σ2γχ

(
a∗ + δat

1
)
+ η∗ + δηt

1

)
+ δξt

= g
(
a∗, α + µM∗ + σ2γχa∗ + η∗)

+ g′
(
a∗, α + µM∗ + σ2γχa∗ + η∗) (σ2γχ

)
δat

1

+ g′
(
a∗, α + µM∗ + σ2γχa∗ + η∗) δηt

1 + δξt

= a∗ + g′
(
a∗, α + µM∗ + σ2γχa∗ + η∗) [σ2γχδat

1 + δηt
1
]
+ δξt

and at O(δ)

at+1
1 = g′

(
a∗, α + µM∗ + σ2γχa∗ + η∗) [σ2γχat

1 + ηt
1
]
+ ξt.

Consider the autocorrelation function of the perturbation C1 (τ) = ∑+∞
t=−∞ at

1at+τ
1 ,

for linear stability to occur we expect this quantity to decay for τ → +∞, which
means we have to analyze its Fourier transform C̃1 (ω) in the limit ω → 0. Using

at
1 =

1
2π

∫ 2π

0
ã1 (ω) eiωtdω

at+1
1 =

1
2π

∫ 2π

0
ã1 (ω) eiω(t+1)dω

we get
ã1 (ω) eiω = σ2γχ ã1 (ω) + η̃1 (ω) + ξ̃ (ω)

then

ã1 (ω) =
η̃1 (ω) + ξ̃ (ω)

eiω − σ2γχ

and averaging over the process

〈
|ã1 (ω)|2

〉
=

〈
|η̃1 (ω)|2

〉
+
〈∣∣ξ̃ (ω)

∣∣2〉
(eiω − σ2γχ) (e−iω − σ2γχ)

= ϕ
σ2
〈
|ã1 (ω)|2

〉
+ 1(

1 − (eiω + e−iω) σ2γχ + (σ2γχ)2
)

in which ϕ = Pr [a∗ > 0] takes into account that on average only a fraction of indi-
viduals reach the non-zero fixed point. Hence,〈

|ã1 (0)|2
〉
=

ϕ

(1 − σ2γχ)2 − ϕσ2
(2.36)

being finite implies the stability condition

ϕσ2

(1 − σ2γχ)2 ≤ 1. (2.37)
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Thus finding the same results obtained in (3) for the GLV model.

σ2
c (γ) =

2

(1 + γ)2
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Chapter 3

Comparison with simulations

3.1 Introduction to the method

The theoretical results found in chapter 2 can be compared with numerical simu-
lations of the linear quadratic model, where the renormalized aggregate of actions
M = 1

N ∑i a∗i and fraction of surviving agents ϕ are estimated by averaging over
a large number of network realizations {zij, zji}i ̸=j. We assume that the only form
of disorder comes from the coupling parameters while the initial conditions of
the game are kept fixed. Starting from a network of N = 300 agents, the learn-
ing process in (2.25) is numerically implemented sampling an interaction matrix
Z according to equations (1.2) and (1.3) . Simulations start with initial conditions
ai(t = 0) = 1 , αi = α = 1 ∀i ∈ I, fixing thresholds in the total number of iteration
time steps, actions and M to identify the nature of the simulations. Notice that
one can equivalently assume initial conditions on beliefs {bi(t = 0)}i∈I rather than
actions. Different scenarios can arise as outcome of learning: a convergent Self Con-
firming equilibrium state where a fixed point for the conjectural best response is
reached, unstable states where actions fluctuate in time, and divergent states where
the aggregate of actions explodes. Although DMFT results for linear stability are
equivalent to the ones found for the Generalized Lotka Volterra equations, the two
models differ both in the nature of time (discrete in LQ, continuous in GLV) and in
the properties of the learning process itself. The Linear Quadratic model presents
a crucial non-linearity (given by the max function) which is not present in Lotka
Volterra dynamics.

bt+1
i =

{
bt

i if at
i = 0

∑j∈I zijat
j if at

i > 0

at+1
i = max

{
0, α + bt+1

i

}
= max

{
0, Θ

(
at

i
) [

α + ∑
j∈I

zijat
j

]}

While in Lotka Volterra the steady state is reached smoothly, in the LQ model
the max function can change abruptly players’ action depending on the competitive
effect between the individual pleasure of being active α and the effect of neighbors’
externalities ∑j∈I zijaj.
As soon as the local externalities term is sufficiently negative to guarantee the con-
dition α + bt

i < 0 at a time t, agent i enters the absorbing inactive state, while in
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Lotka Volterra species reach extinction smoothly. As a consequence, both M and ϕ
will change abruptly during the dynamics, especially during the first iteration steps
of learning. In light of this, the results on the steady state of representative agent
cannot hold since it is assumed a smooth behaviour of the dynamics. To overcome
this effect of non-linearity, we assume an experience weighted learning process: the
action at+1

i of player i at time t + 1 will be a convex combination between the ac-
tion at previous time step at

i and the upgrade due to the conjectural best response,
weighted by a learning rate ϵ ∈ [0, 1].

at+1
i = (1 − ϵ)at

i + ϵ max

{
0, Θ

(
at

i
) [

α + ∑
j∈I

zijat
j

]}
(3.1)

When ϵ = 1, the learning in eq (2.25) is restored. The effect of the max func-
tion strictly depends on how large is the term ∑j∈I zijat

j, and as consequence on
the variance σ2 of the coupling parameters: the bigger the value of σ2 involved,
the smaller the value of learning rate ϵ is needed to guarantee a smooth behaviour.
When σ2 is large, or when µ is negative and large in absolute value, negative ex-
ternalities will win over the individual effort thus favouring the abrupt extinction
of species through the max function. The chosen value of ϵ will be reported along
with the results. Numerical simulations will be compared with the theoretical plots
in Figure 3, focusing on the regime where linear stability results hold. Starting
from initial conditions a0

i = 1 and α = 1, players’ action are upgraded at each time
step according to eq (3.1) up until a maximum of t time steps. Within the total
time t, simulations are either classified as convergent, unstable or divergent. The
detection of a steady state is based on a threshold in the change of each player’s
action: in our convention a simulation reach convergence whenever the condition
|at+1

i − at
i | < ∆ath = 0.001 holds ∀i ∈ I. Species are considered as survived based

on a threshold in the population density at the steady state a∗i > θth = 0.01. Ns indi-
cates the total number of surviving agents . As a consequence, for each convergent
simulation M = 1

N ∑i a∗i and ϕ = Ns
N are computed, then their average is computed

over T different realization of the network. Simulations are classified as divergent
whenever the condition M(t) ≥ Mth = 103 holds. The threshold Mth was chosen
two orders of magnitude bigger than the theoretical results. It needs to be suffi-
ciently bigger than the order of magnitude of convergent simulations in order to be
consistent with numerical results. Finally, unstable fluctuating states are detected
using the total time t = 10000 as threshold: simulations that do not converge within
t are classified as unstable, the value of t must be chosen sufficiently bigger with
respect to the typical time of convergence of numerical results. First, the complete
graph will be discussed in comparison with the DMFT result, also looking at the
particular case of µ = 0. Secondly, a purely numerical work was performed for the
case of the K-Regular graph focusing on the role of the coordination number K in
the stability properties of the steady state.
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3.2 Case of complete graph

The results obtained in chapter 2 with dynamical field theory hold, in both models,
in the case of a complete graph, where each of the N nodes in the network is con-
nected to the rest of the community with a direct link weighted by an entry of the
interaction matrix Z. A crucial assumption within the theory is the thermodynam-
ical limit N → ∞, while numerical simulations are inevitably affected by finite size
effects. First, a numerical example to show what is the typical behaviour of simu-
lations for a negative value of the mean, where the stability results hold, reporting
histograms and box plots for the case of µ = −2 , γ = 1 and a value of variance
σ2 = 0.45 near the critical one (0.5).

Figure 4: Histograms of ϕ, M for γ = 0, σ2 = 0.45, ϵ = 0.5

Figure 5: Box Plots of ϕ, M for γ = 0, σ2 = 0.45, ϵ = 0.5. The box
plot extends from the first quartile to the third quartile of the data,
with a line at the median. The whiskers extend from the box to the

farthest data point lying within 1.5x of the inter-quartile range.

The results for both M and ϕ are distributed around the predicted results, with
a variability that increases with the variance. Due to the finite size of the sample,
the two distributions do not always behave in a gaussian like manner as one would
expect in theory. As consequence, the observed results are represented by box
plots instead of the mean, in order to better describe the behaviour of the bulk of
simulations and the presence of possible outliers. To compare our result with the
theoretical ones displayed in figure 3, for a given value γ a point (M, σ2) and (ϕ, σ2)
will correspond to a numerical box plot of the type shown in figure 4 and 5. First,
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the results are reported for µ = −2 and values of γ = −1, 0, 1 with a corresponding
suitable learning rate ϵ. We considered samples of 300 simulations of systems with
N = 300 agents and tth = 2000.

Uncorrelated interactions: γ = 0

Figure 6: Numerical results for µ = −2 and γ = 0, with ϵ = 0.5

Correlated interactions: γ = 1

Figure 7: Numerical results for µ = −2 and γ = 1, with ϵ = 0.5

Anticorrelated interactions: γ = −1

Figure 8: Numerical results for µ = −2 and γ = −1, with ϵ = 0.05
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3.2.1 Interpretation of the results

For all cases of γ numerical results show consistency with the results found in chap-
ter 2. In all three case the chosen value of σ2 has a visible effect on the distribution
of the renormalized aggregate of the actions M, a larger variance leads to a larger
variability in the outcome of the simulations, while still being distributed around
the predicted value. The same observation holds for the fraction of surviving agents
ϕ. The anticorrelated case is, in the DMFT result, stable for any finite value of σ2,
as a consequence, the value of the learning rate ϵ plays also a role in establishing a
range of variance within the finite size results agree with the theory. Results show
good agreement in the range σ2 ∈ [0, 16], both in M and ϕ . Decreasing further the
learning rate ϵ would enlarge the possible value of σ2 to test against the theory. On
the other hand, for the case of uncorrelated and correlated interactions, decreas-
ing further the value of ϵ has no effect on the range of stability, above the critical
threshold σ2

c a non negligible fraction of diverging simulations is found, even in the
limit of small learning rate.

3.2.2 Effect of divergence and instability

A numerical study is also reported for µ = 0 and values of γ = −1, 0, 1, with a
corresponding suitable learning rate ϵ. We considered samples of 300 simulations
of systems with N = 300 agents and tth = 10000. For this particular value of µ, if we
assume that the bulk of simulations still behaves according to the predicted results,
the box plot representation is more suited to show the variability of the simulations
since multiple equilibrium points appear due to the emergence of instability, near
the transition a variety of possible scenarios are observed, especially in the values
of M∗. To show this, we look at a numerical example for the uncorrelated case
γ = 0 and µ = 0, for a value of the variance σ2 = 1.8 near the critical one, with
learning rate ϵ = 0.8 .

Figure 9: Dynamics of 100 simulations for M∗, with a time threshold
tth = 5000.

µ = 0 is a limiting case where the critical value of variance signs the emergence
of both instability and unbounded growth. In the plot of Figure 9 we find a portion
of simulations that are well behaved, reaching a value M of the same order of
the theoretical one (which, in this case, is roughly Mth ≈ 6, 6) in less then a few
hundreds of steps. In other cases convergence is obtained for much higher values
of M and in a much longer time (less than 2000 or more). Different steady states
sign the emergence of instability, since they show the presence of history dependent
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systems. Finally we also find fluctuating states with M again of the order of the
theoretical one, and a variety of divergent simulations. We can look now at the
distribution of M, ϕ , and total time steps for those simulations that have been
classified as convergent.

Figure 10: Histograms of ϕ, M, and time of convergence

Although the aggregate of actions does not match the expected behaviour, we
assume that the bulk of simulations will still behave according to the theoretical
prediction, this is the reason why we decided to describe M, ϕ and t with the
median instead of the mean to capture the behaviour of the largest portion of the
simulated systems. This statistical parameter also allows to capture how strong is
the effect of instability, while still well representing the mean when both M and ϕ
behave in a gaussian manner, like in the case of smaller variance, or more in general
simulations with negative mean µ < 0.

Figure 11: Corresponding box plots
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First, we consider the case of correlated interactions γ = 1 and uncorrelated
interactions γ = 0 .

Figure 12: Numerical results for γ = 1 and ϵ = 0.1

Figure 13: Numerical results for γ = 0 and ϵ = 0.1

The two cases show a similar behaviour both in terms of M and ϕ. For low
variances the aggregate of actions shows good agreement with the DMFT result,
since the bulk of data is highly peaked around the theoretical value. The variability
in M (described by the interquartile range) increases with the variance σ2, as well as
the number of unstable simulations, either unbounded or fluctuating, and outliers
of the distribution of the finite values observed. On the other hand, the fraction of
surviving agents is less affected by finite size effects, showing a good agreement in
both cases and even for larger variability in the interactions. The behaviour for the
time of convergence follows qualitatively the one of M∗, also justifying a posteriori
our choice on the chosen time threshold.
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We look now at the numerical results for the anticorrelated case γ = 0.

Figure 14: Numerical results for γ = −1 and ϵ = 0.05

Convergent simulations are concentrated within a narrow IQR around the ana-
lytical predictions, while fluctuating simulations play the same role of the previous
cases, increasing in number with the variability of couplings {zij, zji}i ̸=j. On the
other hand, unbounded growth of M∗ is never observed, coherently with what
found in theory.
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3.3 Case of K regular random graph

In the particular case of µ = 0, numerical results show the emergence of instability
before the critical threshold of variance predicted by the theory: a non negligible
increasing fraction of unstable and diverging simulations is observed as the vari-
ability of interactions increases, even within the range of σ2 where the system is, in
theory, linearly stable.

Figure 15: Fraction of unstable and diverging simulations as a func-
tion of variance σ2.

Numerical results for µ=0, γ = 0 and ϵ = 0.8

Figure 15 shows that a non negligible percentage is found as the variance in-
creases, and the same has been observed for the other values γ. One possible
explanation for this behaviour is the effect of the finite size of the system, a finite
size scaling analysis is difficult to approach for this model due to the dependence
of the outcomes of the dynamics not only on the system size N , but also on other
parameters such as γ, σ2 and learning rate ϵ . Nonetheless, we can explore what is
the role of connectivity in determining the features of this effect. Since the DMFT
results holds at the thermodynamical limit N → ∞ in the complete case, where
the coordination number of the network K is such that K = N − 1, we can already
imagine that the low connectivity regime will lead to different results, that may
influence the stability properties of the steady states. To qualitatively show this, we
can exploit the observation that the fraction of unstable simulations increases with
the variance: chosen the percentage obtained at the critical value σ2

c (γ) as thresh-
old, we can compare what we found in the complete case with what is observed in
a random K-regular graph while varying K. If the connectivity has a role in promot-
ing stability, we expect to obtain the same percentage for higher value of variance
as the connectivity increases, while matching the results for the complete graph as
K = N − 1. Fixing µ = 0, for each value of γ we performed simulations for a K-
regular random graph with the same scheme used for the complete case. For each
K, a critical value of variance σ2

K,c(γ) is identified as the smallest value for which
an equal or bigger fraction of unstable and diverging simulation is observed with
respect to the complete case σ2

c (γ) . The plots will be reported by renormalizing
the range of stability for the variance in an interval [0, 1].
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Figure 16: Results obtained for the K-random regular case for differ-
ent values of γ. Gray lines represent the value of critical variance σ2

c
obtained in the complete case.

By the results of numerical simulations connectivity seems to play a role in
promoting the stability of the steady states. For small values of K systems are
typically stable only within a small range of variability, in this regime the DMFT
results are especially affected by the sparsity of connections. For larger values of
connectivity stability is promoted, until the results of the complete graph is reached
above a sufficiently large value of K (around 30% of the system size N = 300), after
which the theoretical results for the complete case are again obtained.
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Chapter 4

Conclusions

Although the Lotka Volterra and Linear Quadratic model are used in apparently
different scenarios, they both investigate the role of competition and cooperation in
determining the equilibrium properties of an interacting community. The learning
dynamics that we applied can be imagined to represent a toy model to analyze the
effect of interactions on the level of participation that agents have in an active net-
work, where partial knowledge about the community properties affect the way an
agent partecipate in an equilibrium state. A key assumption used to apply method
is that a form of correlation exists only between pairs of interactions, which must
be taken into account when applying this results to practical scenarios. Within the
model, anti-correlated interactions between agents promote stability, while the vari-
ability of interactions yields the opposite effect, it reduces the size of the remaining
active community, while increasing the aggregate of actions played at the steady
state. Communities with larger size thus seem more likely to be stable. The DMFT
results holds in a case of a complete graph, where center limit theorem arguments
can be exploited in the large size limit to obtain a mean field result. Connectivity
helps to stabilize the system against an increasing diversity of network interactions.
As connectivity increases the typical community converge for a larger range of vari-
ability, while reaching the results of the complete case for a sufficiently connected
network.
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