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Abstract

Bet-hedging in biological phenomena is a well recognized process that can manifest itself as phe-
notypic switching: an individual has to choose the best strategy to adapt to a stochastic environment
in order to maximize the growth rate of its own population. Fluctuations can lead to the extinction
of the population itself, no matter how high the growth rate is. The same model can be applied to
Kelly’ s horse races studies, where the gambler has to choose the best strategy to maximize his payoff.
We propose to add a definition of ”risk” to Kelly’s horse races model in order to map the phenotypic
switching model into Kelly’s one, taking into account the ”bankruptcy” probability, that we want
to minimize. We end up considering the volatility as a measure of risk, as well as the probability
of extinction itself and comparing the different definitions. Results show a similarity between the
two notions. Furthermore, we analyse the model with a game-theoretic approach, to see if there is
any possible reduction, under some particular conditions, of the set of strategies into a smaller one,
called the ”essential part of the game”. We found a general way to map an optimization problem to
a game-theoretic one, showing how reduction leads to the same results.

1 Phenotypic switching in a
stochastic environment

In an environment characterized by unpredictable
fluctuations, populations may find it advantageous
to prioritize long-term risk reduction over short-
term reproductive success. This strategy serves to
safeguard individuals from the potential stochas-
tic and severe environmental variations that could
occur. This adaptive mechanism, known as ’bet-
hedging,’ becomes evident in a straightforward ex-
ample involving a population of bacteria inhabit-
ing an environment where antibiotics may sporad-
ically appear.

As studied in [8], [16], [5] let us consider a bi-
ological population of individuals which exhibit
only two phenotypes A and B. The rate of switch-
ing, for an individual, from A to B and from B to A
will be represented, respectively, by π1 and π2. In
this simple framework, let us also assume that the
environment can present itself only in two different
states, namely S1 and S2. Stochastic environmen-
tal transitions between these two states will be
described by fixed rates κ1 (from S1 to S2) and κ2

(from S2 to S1). The population vector describing
the number of individuals in each phenotype at a
time t will be denoted by N(t) = (NA(t), NB(t))

T.
The subpopulation of individuals with phenotype
A grows when placed in the environment i with
the growth rate kAi

, while the other subpopulation

with phenotype B grows with rate kBi . Since the
environmental switching rates are fixed, our aim
will be to understand what is the best strategy
of switching from phenotype A to B, namely the
rate π1, or from B to A, π2. The reactions can be
summarized in the vector equation below [8].

d

dt
N(t) = MS(t)N(t) (1)

with matrices

MS1 =

(
kA1

− π1 π2

π1 kB1 − π2

)

MS2 =

(
kA2

− π1 π2

π1 kB2 − π2

)
(2)

From these, one can define the first quantity of
interest, the growth rate of the exponential solu-
tion:

Λt =
1

t
log

N(t)

N(0)
(3)

with N(t) = NA(t) + NB(t) and we will con-
sider Λ = limt→∞ Λt. From [8], following the
Hufton–Lin–Galla approach, the variance of the
growth rate can be defined for this system of
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stochastic switching, so we have an expression for
Var(Λt). We now analyze the relation between the
average growth rate Λ and the asymptotic behav-
ior of the finite time growth rate variance, which
we denoted as Var(Λ). As stated before defin-
ing bet-hedging, higher growth rate can lead to
higher fluctuations (or risk) and therefore a suit-
able trade-off between average growth rate and
variance may be preferable. The vector (π1, π2)
represents the strategy of the individuals once the
environmental parameters (κ1 and κ2) are fixed.
We introduced α as a suitable risk-aversion pa-
rameter to give different weights to the trade-off,
so that an α of 0.5 means that we are giving the
same importance on maximizing the growth rate
of the population as minimizing the fluctuations
around its average value. Thus, we define the ob-
jective function, that has to be maximized to find
the optimal strategies (π∗

1 , π
∗
2):

J(π1, π2) = αΛ− (1− α)
√

V ar(Λ) (4)

One can easily see that, for what concerns the
phenotypic switching problem, the standard devi-
ation of the growth rate is used as definition of
risk, i.e. the quantity we want to minimize. A
numerical maximization of this objective function
leads to the following plot in Figure 1

Figure 1: Mean-variance trade-off for the long
term growth rate. The filled (blue or other col-
ors) circles represent points in the Pareto front
computed by minimizing the objective function.
Figure from [8].

The numerical optimization shows that what-
ever random strategy our population adopts, will
always be limited by a trade-off branch of the
parabola, which is the one below in the figure.
Kelly’ s strategy, in financial terms, is the green
point in figure 1, where α = 1, i.e. we’ re just max-
imizing the long-term growth rate, without any
constraint on the volatility. Similar results about
the plots and the trade-off have been achieved con-
cerning gambling models ([7], [9]) and Markovitz
portfolio studies ([10]).

2 Optimal strategies for the
gambling problem

2.1 Diagonal case introduction

To show the mapping between the phenotypic and
the gambling problem, let us introduce a simple
gambling problem inspired by Kelly’s horse races
model [7], in which we consider M horses. The
gambler, each run, can bet a quantity bx on each
horse x = 1, 2, ...,M such that

∑M
x=1 bx = 1,

meaning that the gambler is investing all of its
own capital, each run. For all x’s, bx > 0. This
specifies that the gambler bets on all horses but
only makes money from the horse x that wins
(diagonal case). ox represents the odds paid by
the bookmaker when the horse x wins, and the
probability for x to win is given by px . We can
define rx = 1

ox
for a matter of notation.

An essential characteristic of the model is its
repetitive nature where the capital gained in one
race is reinvested in the subsequent one. There-
fore, the gambler’s capital, denoted as CN+1 after
N + 1 races, is related to their capital after N
races, represented as CN , through the equation

CN+1 = oxN+1
bxN+1

CN with probability px (5)

where xN+1 = 1, ...,M is the horse that won
the N+1-th race. Again, one can define the long-
term growth rate as in the phenotypic switching
framework. Since the process is multiplicative, if
N >> 1, thanks to Central Limit Theorem

lim
N→∞

1

N
logCN =

∑
x

px log oxbx := ⟨W ⟩ (6)

We immediately get the similarity (even though
the time here is discrete and measured in number
of runs) with the biological case as soon as we
define the quantity Wx (equivalent of Λt) as Wx =
log(oxbx). Its average with respect to the ensemble
will be denoted as ⟨W ⟩, and named the average
log − capital.

Kelly’ s strategy, as stated before, is obtained
by maximizing the average growth rate over the
betting strategy with the constraint on normal-
ization, not taking into account fluctuations in
the optimization. An easy computation leads to
b∗x = px ∀x, i.e. a proportional strategy which
overlooks risks.

In practice gamblers and investors know that
optimal Kelly can be ”too risky”, that’ s why in
our optimization problem, one should take into
account a definition of risk.
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Then, starting from a certain capital C0 (i.e. an
initial log − capital logC0) we have seen that the
multiplicative process leads to some easy relations
of the type:

Cn+1 = oxn+1
bxn+1

Cn

which means that after N races, the capital will be

CN =

N∏
n=1

oxnbxnC0

hence

lim
N→∞

1

N
log

CN

C0
= lim

N→∞

1

N

N∑
n=1

log (oxnbxn)

CLT−−−→
∑
x

px log (oxbx)

which, considering that logC0 becomes negligi-
ble in the limit N ≫ 1, makes us obtain the canon-
ical relation expressed in 6. See the Appendix
(A.1) for a slightly more detailed calculation.
With this relation we define the log-capital after
N races as log − capital(N) =

∑N
n=1 log (oxn

bxn
),

since it follows from the Central Limit Theorem
(every race outcome is independent from the one
before and equally distributed, and so are the log-
arithms of these random variables), but we still
haven’t mentioned the fluctuations of this random
variable, i.e. the volatility. We will refer to the
log − capital also as W , growth rate or wealth,
throughout the article. Cases for non indepen-
dent races and the role of inference to learn from
previous outcomes have been studied in [1], [12].

2.2 Volatility as a measure of risk

There have been many attempts to generalize
Kelly’s horse races model, some ideas came from
the possibility to implement adaptive control ([1],
[3]), some others trying to implement different def-
initions of risk ([6], [4]). We initially suggest to
implement a risk definition for the gambler using
volatility.
We can proceed exactly as in the case for the

phenotypic switching: we construct a utility func-
tion as the one in [9]

J(α, b⃗) = α⟨W ⟩ − (1− α)σW (7)

where σW is nothing but the standard deviation of
the random variable Wx, which obviously depends

on the betting strategy, and it’s called volatility.
It has to be said that in the following we will solve
the optimization problem with respect to the bet-
ting strategies only when the problem is concave,
since the optimization will actually end up in a
maximum. For the same reasons, we will analyse
only the trade-off branch.

Two horses numerical optimization The nu-
merical optimization for the two horses case is a
simple one. The probabilities for the two horses,
in the example made, are described by the vector
p = (0.1, 0.9), while if one defines rx = 1

ox
∀x

then the bookmaker sets rx = (0.7, 0.3). We
showed that in the case for two horses, in the
trade-off branch, the optimization of the objec-
tive function J , for different values of α, gives
a so called ”Pareto front” along which the non-
optimized strategies lie as well. In Figure 2 the
blue dots correspond to 100 random strategies that
led to certain values of ⟨W ⟩ and σW , they lie ex-
actly in the optimized strategy line (red one).
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Figure 2: Mean-variance trade-off for 2 horses case with
p = (0.1, 0.9) and rx = (0.7, 0.3). The blue points corre-
spond to random selected strategies, whereas the red line
comes from the maximization of the objective function,
hence is the realization of the trade-off. The green point
correspond to the null strategy which has no risk, but at
the same time no payoff, while the yellow point corresponds
to the Kelly′ s strategy, leading to the highest growth rate
but also to high fluctuations.

Three horses numerical optimization For
the case of three horses the situation is differ-
ent: random strategies will not anymore corre-
spond to the solution of the optimization problem,
but they will always lie above that line, thus, for
a given average growth rate, giving an higher risk.
In the following numerical simulation we’ ve used
p = (0.1, 0.2, 0.7) and r = (0.7, 0.1, 0.2) as val-
ues for the horses winning probability and for the
bookmaker odds. The results are shown in Figure
3.
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Figure 3: Mean-variance trade-off for 3 horses case with
p = (0.1, 0.2, 0.7) and r = (0.7, 0.1, 0.2). The blue points
correspond to random selected strategies and now they lie
always above the optimal, whereas the red line comes from
the maximization of the objective function. Again, the
green point corresponds to the null strategy, while the
yellow point corresponds to the Kelly′ s strategy.

The main question we would like to ask in the
following section is: is volatility the best measure
of risk we can provide? Can we define extinc-
tion/bankruptcy in a different way?

3 Extinction probability as
new definition of risk

3.1 Probability of extinction

We want now to analyse how to deal with the case
in which our log-capital (growth rate) reaches
a certain boundary level. The point of this is
indeed to study with what frequency, hence
probability, our log-capital during time is going to
reach the ”extinction level” which in the context
of gambling stands for going bankrupt, whereas
meaning the actual extinction of the population in
the case of phenotypic switching. For simplicity,
we will still consider a diagonal case, meaning
that whenever an horse wins, the actual gain
will be proportional only to the bet put on
that specific horse. Mathematically speaking
this means that the odds matrix O is diagonal,
exactly as considered up to now, so that ox has
just a single index standing for the horse that won.

Let’s call x the log-capital after N races, which
is nothing but a sum of i.i.d. random variables:

x =

N∑
n=1

log(oxn
bxn

) = SN (8)

If N ≫ 1 for the CLT one gets:

SN ∼ N (N⟨W ⟩, Nσ2
W ) (9)

with for each random variable:

⟨W ⟩ =
∑
x

px log(oxbx)

σ2
W =

∑
x

px log
2(oxbx)− ⟨W ⟩2

Relation 9 can be checked by a simple example
for 2 horses. Let’s consider values p = (0.2, 0.8),
r = (0.6, 0.4), b = (0.4, 0.6). One can compute
the analytical average growth rate and variance,
obtaining ⟨W ⟩ = 0.243 and σ2

W = 0.106. Running
then many simulations of N = 100 runs, we may
plot an histogram showing the distribution of S100

from the outcomes we got (Figure 4).
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Figure 4: Histogram showing the distribution of 5000
different outcomes for the final log-capital measured in
100 runs. Parameters are p = (0.2, 0.8), r = (0.6, 0.4),
b = (0.4, 0.6)

As we can see, the log-capital, since N ≫ 1 fol-
lows a gaussian distribution with N⟨W ⟩ (from the
plot we see it to be around 24.3) while computing
the variance this results in σ2

S100
= 10.6 = Nσ2

W

as expected.
Hence, if the number of runs is high enough, the

log-capital is gaussian distributed. Thus, calling
B the value of the boundary leading us to extinc-
tion, we can compute analytically the probability
of reaching and being below B at the ”time”
t = N :

P (x ≤ B) =

∫ B

−∞

e
− (x−N⟨W⟩)2

2Nσ2
W√

2πσ2
WN

dx (10)

which leads to the solution
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P (x ≤ B) =
1

2

[
1 + erf

(
B −N⟨W ⟩√

2Nσ2
W

)]
(11)

with erf(x) being the error function. The prob-
lem with this definition of risk is the fact that it’s
computing the probability to be extincted only
at the specific ”time” t = N, without consider-
ing that perhaps, bankruptcy, has been reached
already at earlier times.

3.2 Geometric brownian motion
mapping

From mathematical considerations, we see that x
is nothing but a random variable whose dynam-
ics is described by a drift-diffusion model, given
by the fact that, when N is large enough, the
probability distribution describing the value of the
wealth (growth rate) at a certain time N, is a gaus-
sian distribution whose mean value and variance
increase linearly with time (number of runs). If
one discretizes the time as the number of runs
and assumes to start from an initial wealth x0,
one could write the distribution ϕx0

(x, t), i.e. the
probability of having a log − capital x at time t
starting from x0, from 9 as:

ϕx0
(x, t) =

e
− (x−⟨W⟩t−x0)2

2σ2
W

t√
2πσ2

W t
(12)

which is nothing but the solution of the Fokker-
Planck equation for a random variable following
a geometric brownian motion with ⟨W ⟩ as mean
and σW as standard deviation. x, in this sense,
becomes a random variable following its respective
Langevin equation with the just specified drift and
noise. Further considerations about the geometric
brownian motion model can be found in [11].
Since now we want to be sure that the log−capital
doesn’t go below the threshold B with B < x0

from whatever time up to time t = N, we use
the image method: first, we start taking a linear
combination of two solutions, one that started in
x0 and an other one that started in m

P (x, t) = ϕx0
(x, t)− e−ηϕm(x, t) (13)

This is still going to be a solution and m and
and η are parameters still to be determined. The
first condition is to impose that, at time t=0,
P (x = B, 0) = 0 thus giving

P (x = B, 0) = 0 =⇒ e
(B−x0)2

2σ2
W

t = e
−η+

(B−m)2

2σ2
W

t

hence
(B − x0)

2 = (B −m)2 ⇐⇒

m = 2B − x0

the second is instead to impose the same at what-
ever other time t > 0, thus giving

P (x = B, t) = 0 ∀t > 0 =⇒

(B−⟨W ⟩t−x0)
2 = 2σ2

W ηt+(B−⟨W ⟩t−2B+x0)
2

hence

−2B⟨W ⟩t+2x0⟨W ⟩t = 2σ2
W ηt+2B⟨W ⟩t−2x0⟨W ⟩t

implying

η =
2(x0 −B)⟨W ⟩

σ2
W

Thus, the probability to have a log − capital x
at time t, constrained on having zero probability
for x = B ∀t reads:

P (x, t) =
1√

2πσ2
W t

[
e
− (x−⟨W⟩t−x0)2

2σ2
W

t +

−e
− 2⟨W⟩(x0−B)

σ2
W e

− (x−⟨W⟩t−2B+x0)2

2σ2
W

t

]

Now, to compute the probability to be above the
barrier at any time up to t, i.e. the survival prob-
ability S(t) (detailed calculations in Appendix
A.2) one computes, defining erfc(x) = 1− erf(x)

S(t) =
∫ +∞
B

P (x, t) dx =

=
1

2
erfc

(
B − x0 − ⟨W ⟩t

σW

√
2t

)
+

− 1
2e

− 2⟨W⟩(x0−B)

σ2
W erfc

(
−B+x0−⟨W ⟩t

σW

√
2t

)
when t −→ 0 we get:

S(t)
t−→0−−−→

1

2

[
erfc(−∞)− e

− 2⟨W⟩(x0−B)

σ2
W erfc(+∞)

]
= 1

whereas for t −→ ∞ we have:

S(t)
t−→∞−−−−→ 1− e

− 2⟨W⟩(x0−B)

σ2
W

hence, to be sure to be extincted at large times
one needs obviously ⟨W ⟩ ≪ σ2

W or, alternatively,
extinction is reached for
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⟨W ⟩ ∼ σ2
W

2(B − x0)

meaning that for B < x0 one would need a neg-
ative growth rate (or a positive one but B > x0)
to be sure to reach bankruptcy at large times,
otherwise the probability of extinction reaches an
asymptotic value.
Once we have the survival probability up to time

t, we can compute the extinction probability as the
complementary probability distribution Pext(t) =
1− S(t).
The plot of the survival probability with re-

spect to time is shown in Figure 5, whereas the
same quantity with respect to the boundary level
is shown in Figure 6.
From these plots, and from the limits consid-

erations, it’s easy to see that, as time passes,
when the drift is positive, the survival probability
doesn’t saturate to 0 at large times, but reaches
the asymptotic value computed before. It’s easier
to go broke at earlier times since I start close to the
threshold, whereas as time passes, the log−capital
increases linearly with time while we know, from
CLT, that the standard deviation grows slowlier,
even if it starts from an higher value. For what
concerns the survival probability with respect to
the boundary values, at fixed time, it’s easy to see
that the probability of going broke increases as B
increases, reaching a probability of extinction of 1
as B = x0 = 10, since the survival one reaches 0.
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Figure 5: Survival probability with respect to time
from the analytical computation with x0 = 10, ⟨W ⟩ =
1, σ2

W = 10, B = 1.

To understand at what times is more likely to
get extincted, one could compute the first pas-
sage time probability distribution as

FPT (t) = −dS(t)

dt
=

=
⟨W ⟩

2
√
2πσ2

W t

(
e
− (x0−B−⟨W⟩t)2

2σ2
W

t e
− 2⟨W⟩(x0−B)

σ2
W +
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Figure 6: Survival probability with respect to the
position of B from the analytical computation with
x0 = 10, ⟨W ⟩ = 1, σ2

W = 10, t = 100.

e
− (B−x0−⟨W⟩t)2

2σ2
W

t

)
Thus, plotting the function as shown in figure 7,

we see how the extinction is more likely at short
times, while it becomes unlikely at large times.
This is given by the fact that the drift (growth
rate) is increasing with time faster (linearly ∼ t)
than the fluctuations (volatility) (∼

√
t), leading

us to have always less probability to go broke at
later times.
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Figure 7: First passage time (FPT) probability dis-
tribution with respect to time with x0 = 10, ⟨W ⟩ = 1,
σ2
W = 10, B = 1.

3.3 Kelly’ s implementation

The idea now is to check how the analytical pre-
diction of the mapping to a geometric brownian
motion coincides with Kelly’s gambling problem.
To do this, we implemented a Python code that
counts an average on how many times, given the
value of the boundary, we get extincted, directly
simulating a time − series of 100 runs, and
comparing it to the analytical calculation of the
geometric brownian motion mapping in which
first we get the statistics from Kelly’s model, then
we compute it for given boundaries.

6



0 2 4 6 8 10
Boundary

0.994

0.995

0.996

0.997

0.998

0.999

1.000
Data plot for strategy b= (0.3,0.7)

Pext from a time simulation
Pext from analytical GBM

0 2 4 6 8 10
Boundary

0.0

0.2

0.4

0.6

0.8

1.0
Data plot for strategy b= (0.7,0.3)

Pext from a time simulation
Pext from analytical GBM

Figure 8: Analytical (GBM) and simulated (time-
series) extinction probability comparison for p =
(0.7, 0.3), r = (0.4, 0.6), with an initial capital of 10,
a number of races of 100. The plots are for strategies
b = (0.3, 0.7), b = (0.7, 0.3)

Two horses case For this case, we set the
probability of the horses to win to be p = (0.7, 0.3)
and the bookmaker odds to be r = (0.4, 0.6), we
set a number of runs of 100, an initial log−capital
x0 = 10, and 4000 simulations to average on for
each B we are changing. We do this for many
different possible strategies . Let’s clarify this
again: ⟨W ⟩ and σ2

W will be computed by the
Kelly’s relations we obtained before given r, p, b,
the geometric brownian motion extinction proba-
bility will take this as input, and will be plotted
for different boundaries having a fixed number of
runs of 100 (from Figure 5 we’ve seen this time is
enough for Pext to settle). At the same time, we
compare this to a direct simulation of a 100 races
in which the player is gambling, and we measure
the frequency of going broke over a 4000 different
simulations for each boundary B. The results of
this are shown in figure 8 for different values of b⃗.

Plot (a) in figure 8 is done for a strategy b =
(0.3, 0.7) which is exactly the opposite as Kelly’s
strategy: we are betting in an opposite way with
respect to the probability of the horses to win.
Firstly, the results are qualitatively matching since
the GBM mapping seems to predict correctly the
time series simulation, considering that the excur-
sion in the y axis is small. Secondly, we notice that
we are betting very similar to the bookmaker odds
(r = (0.4, 0.6)) and totally differently from the

real probability of winning. Thus, the probability
of extinction is really high since our log − capital
is not going to increase much and the fluctuations
can easily bring us to bankruptcy. The case of
b = r = (0.4, 0.6) is not shown since it corresponds
to the null− strategy, meaning that everything I
win, is going to be kept by the bookmaker, having
no risk, but also no growth. So betting like that
and starting from x0 > B will always lead me to
a Pext = 0, but without any capital gained.
Plot (b) is showing Kelly’s strategy, so that for
a fixed B, the extinction probability is lower
than its opposite strategy, since we are copying
the environment. From these considerations we
can already see how the extinction probability is
strongly related to the volatility and it may be
used as definition of risk on its own. The GBM
model seems to well predict the real simulation, in
both cases obviously leading to a Pext = 1 when
B = x0 = 10, but it’s easy to see how the real
discrete simulation, based on a time-series, is giv-
ing sort of ”steps” following only on average the
theoretical calculations.

Since ⟨W ⟩ and σW are very small compared to
the range of boundaries we analysed, we could ac-
tually try to simulate many runs, in smaller range
for B’s to see a possible actual behaviour of the
extinction probability on a more specific interval,
as has been done in Figure 9.
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1.0 Pext analytical
Pext time series

Figure 9: Analytical (GBM) and simulated (time-
series) extinction probability comparison for p =
(0.4, 0.6), r = (0.4347, 0.5) (unfair odds), with an ini-
tial capital of 0, a number of races of 100, a number
of simulations for each boundary equal to 4000. The
simulation is run for Kelly’ s strategy.

We notice that, for the time simulation, there
is the appearence of constant steps of probability,
that still follow the analytical behaviour on aver-
age. This represents the main difference between
the continuous GBM model we mapped into and
the real discrete behaviour of Kelly’s model. In-
deed, we notice that, when B is low enough, no
particular steps appear, since the trajectories that
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lead to extinction must be more or less of the same
kind: they must go down a lot, to reach the bound-
ary.
When B starts increasing instead, trajectories are
more free to be different, as long as they end up
crossing the boundary, to give that frequency of
extinction. As B changes continuously, the dis-
crete trajectories aren’t able to catch the small
changement, whereas the GBM model does. This
means that there are values of B for which a sort
of ”phase transition” appears: a lot of the many
trajectories that were able to cross the boundary
with certain configurations, will not be able to do
it anymore, since a lot of the possible configura-
tions are now cut out with respect to before.

For this reason, it’ s interesting to show the be-
haviour of these trajectories for different values of
B, as shown in Figure 10.
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Figure 10: Surviving trajectories (blue) and ex-
tincting ones (green) for p = (0.4, 0.6) and r =
(0.4347, 0.5), initial wealth of 0 and different bound-
aries.

Three horses case Considering now three
horses, we analyse only the case in which b = p,

hence when we use Kelly’ s strategy, since we know
that for each boundary B, this should lead to the
highest value of extinction probability, being the
strategy that brings to the highest volatility, i.e.
fluctuations. The results are not that different
from the ones with two horses. One of the strategy
is plot in Figure 11.
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Pext from a time simulation
Pext from analytical GBM

Figure 11: Analytical (GBM) and simulated (time-
series) extinction probability comparison for three
horses with r = (0.4, 0.2, 0.4), using Kelly’s strategy.
Initial capital of 10, 100 races used.

3.4 On the minimization of a func-
tional: Karush-Kuhn-Tucker
conditions

For the sake of the minimization/maximization
of an objective function, useful here and in the
next sections, we analyse a mathematical use-
ful tool known as Karush-Kuhn-Tucker con-
ditions (KKT). This method is useful whenever
one has to optimize a function with respect to cer-
tain variables, with equalities and inequalities
constraints, thus needing functional theory.

Formal statement of the problem Given
functions f , g1,...,gm and h1,...,hl defined on some
domain Ω ⊂ Rn the optimization problem has the
form

minx∈Ω f(x)

subject to gi(x) ≤ 0 ∀i ∈ [1, m]

and hj(x) = 0 ∀j ∈ [1, n]

To perform the optimization, one should define
the Lagrangian functional L as

L(x, µ, λ) = f(x) + µTh(x) + λTg(x) (14)

Let’s focus on the case in which we have only in-
equalities as constraints, i.e.

L(x, µ, λ) = f(x) + λTg(x)

8



such that

gi(x) ≤ 0 ∀i ∈ [1, m]

Since our problem is to find a minimum (we will
assume our problem to be convex, such that it’ll
be necessary only to study the first derivative), re-
specting the inequality constraints, there can hap-
pen only two cases:

• Case 1: the constraint is not active
The minimum of f(x) is already inside the
feasibile area for some of the constraints (sup-
pose for k ∈ K ⊂ [1, m]), since the solution
without those constraints is already fulfilling
gk(x

∗) < 0 for k ∈ K . In this case, the
problem reduces to minimize only f(x) with
respect to x i.e. you can assume λk = 0 for
those k ∈ K, providing that you check that
the solution of the optimization x∗, fulfills
gk(x

∗) < 0 ∀k ∈ K.

• Case 2: the constraint is active
The minimum of f(x) is not, by itself, inside
the feasible area for some of the constraints
(l ∈ L = [1, m] \ K). This means that, to
go as close as possible to the real minimum,
but still respecting the constraints, these have
to become equalities, since the best that the
function can do to try to go to its minimum,
it’s localizing the optimal at the border of the
feasible zone given by gl(x) ≤ 0 for l ∈ L, as
close as possible to the real minimum. Then
the optimization problem becomes:

−∇xf(x) = λl∇xgl(x)

for all the l ∈ L constraints that fulfill this
second case. The assumption on the equality
can be satisfied if and only if we check that
λl > 0 ∀l ∈ L, since the constraints must be
active (λl ̸= 0). The sign λl > 0 means that
also the gradient of the function must point
in the same direction as the perpendicular to
the feasible contour, to ensure that x∗ will be
as close as possible to the real minimum of
f(x).

The method can also be adapted to find a mini-
mum when the constraints are of the form gl ≥ 0,
just checking that instead λl < 0. In the same
way, we can also generalize the problem when we
talk about a maximization

maxx∈Ω f(x)

subject to gi(x) ≤ 0 ∀i ∈ [1, m]

and hj(x) = 0 ∀j ∈ [1, n]

This problem is equivalent to state that we want
the minx∈Ω(−f(x)). This means that the mini-
mization problem has now to be done for

L(x, µ, λ) = −f(x) + µTh(x) + λTg(x) (15)

So when we differentiate this, the second case
is still respected provided that now we check λl <
0 ∀l ∈ L, whereas the problem

maxx∈Ω f(x)

subject to gi(x) ≥ 0 ∀i ∈ [1, m]

and hj(x) = 0 ∀j ∈ [1, n]

will need to check the conditions λl > 0 ∀l ∈ L,
for the constraints that belong to the second case.
Further analysis of KKT conditions and their

applications to gambling problems are discussed
in [15]. KKT maximization will be used in the
following sections for the optimization of different
objective functions.

3.5 Extinction probability as defini-
tion of risk

We now want to consider a different trade-off to
obtain optimal strategies in gambling. The aim
is to use the definition of extinction/bankruptcy
probability to constrain the problem, in order
to maximize the growth rate without letting the
probability of getting extinct too high. Suppose
we want to obtain the best optimal way to bet
when the environment and the bookmaker odds
are set, always in the case of diagonal odds, start-
ing from an initial log − capital of x0 = 1,
while asking for the probability of extinction to
be Pext = P (Wmin < B) < β, where Wmin =
mint[log − capital(t)]. The problem rephrases as:

max⃗b ⟨W ⟩ = max⃗b E(log( bxrx ))

subject to ∑
x bx = 1

P(Wmin < B) < β

with variables b⃗, where B, β ∈ (0, 1) are given
parameters. The last constraint limits the proba-
bility of a drop in total wealth (log−capital) below
value B to be no more than β. For example, we
might take B = 0.7 and β = 0.1, meaning that
we require the probability of a drawdown of more
than 30% to be less than 10%. Unfortunately this
problem is, as far as we know, a difficult optimiza-
tion one in general. Luckily, as stated and proven
in [6] (see Appendix A.3), we can solve a related
and easier problem. Indeed, it has been shown
that:
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E

((
bx
rx

)−λ
)

≤ 1 =⇒ P(Wmin < B) < β

where λ is defined as

λ =
log β

logB
∈ (+∞, 0] as β ∈ (0, 1)

This means that, varying the maximum extinc-
tion probability allowed, hence varying λ, we can
constrain our optimization to be more or less open
to factoring in risk, while betting. The optimiza-
tion problem thus becomes

max⃗b ⟨W ⟩ = max⃗b E
(
log
(

bx
rx

))
subject to ∑

x bx = 1

E

((
bx
rx

)−λ
)

≤ 1

This problem can now be treated, with Python
maximization libraries or exploiting KKT condi-
tions analytically to actually see what case and
conditions we are satisfying, depending on the
value of β or, once the extinction threshold B is
fixed, of λ.

KKT analysis Exploiting the KKT maximiza-
tion problem definition, since we are dealing with
the problem of maximizing a function (⟨W ⟩) with
an equality constraint and an inequality one, we
can write the Lagrangian of the problem as

L(b, κ, µ) =
∑
x

px log

(
bx
rx

)
+

-κ

[
E

((
bx
rx

)−λ
)
− 1

]
+ µ (

∑
x bx − 1) (16)

Equation 3.5 is working in the same framework
of KKT equations, where we have just two la-
grange multipliers, one for the equality (µ) and
one for the inequality (κ). The minus in front of
the inequality constraint is put for notation, thus
leading us to check κ > 0 and not κ < 0. As
we can see, if we are in the case of κ = 0, then
the constraint will not be active, but we’ ll have
to check that the strict inequality is satisfied, if
it is not the case, the solution will be located on
the contour of the feasible region and we will have
to check then that κ > 0. Let’s remember that
the problem is concave (see Appendix A.4), so the
study of the first derivative is enough to find the
value of maximum.

∂L
∂bx

=
px
bx

[
1 + κλ

(
rx
bx

)λ
]
+ µ = 0 (17)

Let’ s analyse the different cases for the inequal-
ity, keeping in mind that the normalization con-
straint instead must be always satisfied.

• The constraint is not active: Here we as-
sume that the maximum of the growth rate is
already in the feasible zone, without the need
of the constraint. Hence, we assume κ = 0,

and then we check E

((
b∗x
rx

)−λ
)

< 1. Equa-

tion 17 reads:

∂L
∂bx

=
px
bx

+ µ = 0

and with the constraint on normalization, the
solution will be

b∗x = px ∀x

Hence, for this case, we recover Kelly’ s strat-
egy.

• The constraint is active: Here we assume
that the maximum of the growth rate, on
its own, is not in the feasible zone for the
constraint, so we it needs to be on the con-
tour, as stated before. Hence, we assume

E

((
b∗x
rx

)−λ
)

= 1, and then we check κ > 0.

The equation for this case is obviously exactly
equation 17, but it’s not possible to find an
explicit analytical expression for b∗x.

Numerical optimization We run a simulation
to maximize the constrained problem, since an-
alytically the computation is tough. We con-
sider the case for three horses: fixing the value
of B = 0.78 [6] and starting from an initial
log− capital x0 = 1, we use p = (0.1, 0.2, 0.7), r =
(0.7, 0.1, 0.2). With these values, we analyse the
maximization that leads to the optimal strategy
b∗ for different values of β ∈ (0, 1). Once the op-
timal strategy is obtained for a fixed β, we can
compute the value of ⟨W ⟩, σW , Pext = β for
that particular strategy obtained by this maxi-
mization. Hence, we can obtain a Pareto front (a
plot (⟨W ⟩ − σW )), a plot (⟨W ⟩ − Pext), and one
(σW − Pext) for this new case where Pext is used
as definition of risk, following the problem we just
optimized.

Thus, we can compare these three plots with
what obtained using the usual definition of risk,
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the volatility, where the optimal strategies have
been obtained, for different values of B from the
maximization of the objective function in relation
(7). In that case, keep in mind that Pext has in-
stead to be computed analytically from the GBM
assumption once we obtained the value for ⟨W ⟩
and σW . The comparison is shown in figure 12
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Figure 12: Plot (a): comparison for the Pareto front
for the two definitions of risk: the yellow one uses
volatility as risk, the green one uses the extinction
probability as risk. Plot (b) and (c) shows the com-
parison respectively for the Pext-⟨W ⟩ and Pext-σW re-
lation: the red one uses volatility as risk, the blue one
uses the extinction probability instead. For both risk
definitions, the initial log − capital has been set to 1,
p = (0.1, 0.2, 0.7) and r = (0.7, 0.1, 0.2). For the first
optimization we used parameters t = 100, B1 = 0.87,
for the second B2 = 0.78.

As we can see, the Pareto fronts (a) coincide
almost perfectly no matter the boundary param-
eters chosen. On the other hand, the Extinction
Probability plots (b) coincide, for the different def-
initions of risk, only when is set a boundary for the

first optimization of B1 = 0.87 while B2 = 0.78
for the second. We suspect an explanation for this
0.09 discrepancy, but in any case, results show that
the definition of risk as the volatility has almost
the same Pareto front as when risk is defined as
the extinction probability, meaning they are as-
sociated to similar notions of risk.
Moreover, it’s relevant to notice the similarity of
the results even though we worked in different
specific frameworks for the two definitions: when
volatility is used as risk, we’re asking to maximize
an objective function J that takes into account the
trade-off through the risk-aversion parameter α,
so a part from normalization, the problem has no
constraints. When the extinction is used as risk,
instead, the problem is asking to always maxi-
mize the average wealth, constraining the problem
to fix a boundary for the extinction probability. In
this case β becomes our risk-aversion parameter,
since its value fixes the importance we’re giving
into taking into account risk.
For this reason, also the way Pext is computed be-
tween the two optimizations is not the same at
all: in the first, it comes from a continuous GBM
mapping, in the second, it’s just the bound itself.
This similarity being discovered from these com-
parisons then, proved an important point to solve
the optimization trade-off for a gambling problem,
showing connections between different notions of
risk in bet-hedging frameworks.

Important considerations It’ s interesting to
notice one thing: after a certain value of β = β∗

a phase transition appears in plot (b) of Figure
12: Kelly’ s strategy is always the optimal one
when the probability of extinction becomes high
enough, as shown by the vertical line appearing in
Figure 12. This obviously makes sense, intuitively,
but thanks to the mathematical tools given by the
KKT analysis, we can understand why this hap-
pens, for specific values of p and r. Indeed, to
have the solution of the maximization problem to
be Kelly’ s strategy, we’ve seen that we should
end up in the first case of KKT analysis. But to
be in this case, we need to be sure that, in the

region β ∈ (β∗, 1), E

((
b∗x
rx

)−λ
)

< 1. Since Kelly’

s strategy is chosen, this condition becomes

p1−λ
0 rλ0 + p1−λ

1 rλ1 + p1−λ
2 rλ2 < 1 (18)

One can check that this condition is always sat-
isfied for these values of p and r, in the range
β = (β∗, 1) as proven in figure 13. This explains
why Kelly’s strategy is always chosen as optimal
for this interval of β values: extinction is allowed
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to happen more frequently, so that Kelly’s strategy
is the best option to maximize the average wealth,
even though its extinction frequency is high.
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Figure 13: E
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rx

)−λ
)

value when b∗ = p, to

check that for high values of β this always satisfies
inequality 18

.

Condition 18 is never satisfied if we choose ri >
pi ∀i, i.e. a particular case of unfair odds, indeed,
the phase transition disappears choosing precisely
this condition on p and r as shown in Figure 14.
This means that the bookmaker is betting ”even
better” than the environment, so Kelly’s strategy
would never be a good choice, since the bookmaker
would keep all of our gain.
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Figure 14: Pext−⟨W ⟩ relation using the extinction
as definition of risk with p = (0.1, 0.2, 0.7) and
r = (0.7, 0.2, 0.8)

On the other hand, condition 18 is always satis-
fied, hence Kelly is always optimal, for ri < pi ∀i,
a particular case of superfair odds, as shown in
Figure 15. This indeed means that the bookmaker
isn’t following the environment properly, not keep-
ing enough when we ”copy” it: Kelly’s strategy is
always optimal.

For what concerns the null − strategy, it’s in-
teresting to analyse it from KKT perspective. The
expression of the constraint, since β → 0 in this
case (λ → +∞) becomes
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Figure 15: Pext−⟨W ⟩ relation using the extinction
as definition of risk with p = (0.1, 0.2, 0.7) and
r = (0.1, 0.1, 0.6)

p0

(
r0
b0

)λ

+ p1

(
r1
b1

)λ

+ p2

(
r2
b2

)λ

< 1

which implies ri ≤ bi

• If ri = bi ∀i, the solution is determined by the
second case of the KKT ones, hence following
the null − strategy.

• If ri < bi ∀i, the solution is determined by
the first case of the KKT ones, hence follow-
ing Kelly. Then bi = pi and the condition
becomes ri < pi ∀i, which was exactly anal-
ysed more in general, and not only for β → 0,
already before (Figure 15).

• If ri < bi for just some i’s and rj = bj for
some j ̸= i, the inequality is still satisfied,
and the solution will still be following Kelly.

Moreover, as can be seen from plot (a) in Fig-
ure 12, the new framework is not able to ”reach”
the null−strategy from its optimization, no mat-
ter the value of β: this is due to the fact that
now we’re always asking to maximize the average
log − capital, so that the null − strategy could
never be optimal, in contrast with the optimiza-
tion using the objective function where choosing
α = 0 made ⟨W ⟩ to lose its importance in the
maximization. Having shown again another big
difference between the frameworks, the similarity
between the definitions look even more astonish-
ing. In conclusion for this section, we show some
trajectories under the constraint of being limited
(upper bound) in their maximum extinction prob-
ability. The plots can be seen in Figure 16

4 Game-Theoretic approach
to Kelly’s problem

We now analyse a different framework, using
Game Theory to find the optimal strategy for a
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Figure 16: Constrained simulated surviving tra-
jectories (blue) and extincting ones (green) with
different values for β in an interval of t = 20 with
B = 0.78, p = (0.1, 0.2, 0.7) and r = (0.7, 0.1, 0.2)
(fair odds).

gambler in Kelly’s problem instead of using any
trade-off objective function. The main idea of
the approach will be to consider a zero-sum game
between the gambler and the environment, rep-
resenting respectively player one and player two.
The optimization problem will be based on the
fact that player one will try to maximize its own
payoff, while player two will try to minimize it.

4.1 Non-diagonal case

Up to now we based our model on a simple
assumption: whenever an horse wins, the gambler
gains a payoff based on what he had bet and
the odds of that particular horse x. Let us
now consider the matrix of the odds O to be
non-diagonal. This means that the payoff for each
run will be a linear combination of the bets the
gambler put on each horse y, given that x has
won that particular run. At time (run) t, the gain
of the gambler will be:

log

(∑
y

ox(t)yby

)
= log

(∑
y

by
rx(t)y

)
Using CLT as before the average growth rate is

⟨W (p,b)⟩ =
∑
x

px log

(∑
y

oxyby

)

4.2 Introduction to Game Theory

In game theory, when considering a zero-sum game
(a game in which what is won by a player is totally
lost by the other), we can consider that each player
has a set of different possible strategies [2]. The
convention on the gain is defined with respect to
the gain of player one, meaning that if the game is
non-mixing when we construct the Game ma-
trix A, each element aij of the matrix will repre-
sent what player one will gain if he (the gambler)
chooses to bet on i and player two (the environ-
ment) chooses j.
If the game is mixing, meaning that each player
has to bet on more than one horse i, then we
can just talk about an expected payoff, since
each player is trying to diversificate between many
horses, and not betting everything on just one of
them.
If the game is fully mixing, it means that each
player has to put a bet strictly higher than 0, on
each of the horses. In our framework, consider-
ing for example the case for three horses, player
one being the gambler, player two being the envi-
ronment, A = OT ∈ R3x3 (transposing it is nec-
essary to make the gambler to be player one in
this framework), having a fully-mixing game will
mean that pj ̸= 0 ∀j = 0, 1, 2 (every horse can
win with a certain non-zero probability) and also
bi ̸= 0 ∀i = 0, 1, 2 (the gambler has to bet some-
thing higher than 0 on all the horses). The ex-
pected payoff, mapping the game theoretical ap-
proach to our model, will be then

E(b,p) =

2∑
x=0

px log

(
2∑

y=0

oxyby

)
If the environment doesn’t play optimally, it will

increase the gambler’s payoff, whereas if the gam-
bler doesn’t play optimally he will gain less. Thus,
calling b∗ and p∗ the optimal strategies for player
one and player two, it’s true that

E(b,p∗) ≤ E(b∗,p∗) ≤ E(b∗,p)

One can also define the min-max solution [2]

v+ = min
p

max
b

E(b,p)
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And the max-min one

v+ = max
b

min
p

E(b,p)

When the game is fully-mixing for both the
players, defining v the value of the game, so the
expected payoff for player one, then

v− = v+ = v = E(i, P ) = E(B, j) ∀i, j

where E(i, P ) represents the average gain for
the gambler conditioned on the fact that the
gambler has chosen to invest everything on horse
i, whereas E(B, j) represents the average gain al-
ways for the gambler but conditioned on the
fact that the environment is allowing only horse j
to win.
In particular, it’s true that

pj > 0 ∀j =⇒ E(B, 0) = E(B, 1) = E(B, 2) = v

and using these two equalities and the normal-
ization condition, remembering matrix R = O−1

one finds the optimal strategy for the gambler to
be ([13], [2])

b∗x =
∑
y

∑
x rxy∑
l rly

py (19)

For the same reason, it’s true that

bi > 0 ∀i =⇒ E(0, P ) = E(1, P ) = E(2, P ) = v

and using these two equalities and the normal-
ization condition, the optimal strategy for the en-
vironment will be

p∗x =

∑
l rlx∑

xy rxy
(20)

Considering that both players are playing opti-
mally, the optimal solutions will be

b∗x =

∑
l rxl∑

xy rxy
p∗x =

∑
l rlx∑

xy rxy
(21)

Let’s keep in mind that these game-theoretic re-
sults have been obtained under the assumption of
both bi > 0 ∀i and pj > 0 ∀j, so the game has to be
fully-mixing [2]. To obtain relations 21 one needs
the matrix of the odds O to be invertible and sim-
plex preserving. Thus, these results, are consid-
ered true under the assumption of a fully-mixing
game and an invertible odds matrix. It’s also im-
portant to underline that this game-theoretic ap-
proach is not taking into account any definition
of risk, since its only aim is to maximize player’s
one expected payoff, hence the average growth rate
(average log − capital) we’ve always considered.

A three horses example Let’s analyze how
the game-theoretic optimization works for a sim-
ple case of three horses in which we allow only
the gambler to play optimally, since in our model
the environment is actually not really playing, its
strategy is fixed and he’s not trying to minimize
the gambler’s gain. We will specify both a diag-
onal case and a non-diagonal one, the respective
odds matrices will be

Od =

6 0 0
0 2 0
0 0 3

 Ond =

2 2
3

1
5
6

5
3

5
6

1 2
3

2

 (22)

We are giving an input environment strategy of
pinput = (p[0], p[1], p[2]) = (0.2, 0.5, 0.3) even
though we will analyse the optimal strategies b∗0,
b∗1, b

∗
2 as a function of p0 ∈ (0, 1) and the other val-

ues used will be obtained by p1 = p[1]
p[1]+p[2] (1− p0)

and p2 = p[2]
p[1]+p[2] (1 − p0). This said, we can

use equation 19, remembering rxy = (o−1)xy, to
optimize such a problem for both the matrices
considered. Before showing the results obtained
by these equations that should work only in the
fully-mixing framework, we could solve the prob-
lem with KKT conditions, that work in a more
general one, without any assumption needed. This
relies on the general problem

max⃗b ⟨W ⟩ = max⃗b E
(
log
(∑

y
bx
rxy

))
subject to ∑

x bx = 1
bx ≥ 0 ∀x

With this statement, the problem is now allow-
ing also non fully-mixing strategies, thus solving
it should make us obtain a more general solution
for the optimization we wanted.

4.3 KKT approach for the opti-
mization

This problem can, again, be solved and analysed
thanks to the KKT conditions. The problem
rephrases in the maximization of the functional

L(b, λ, µ) =
E
(
log
(∑

y
bx
rxy

))
+
∑

x λxbx + µ (
∑

x bx − 1)

Since the problem is concave for b (see proof in
Appendix A.5), we will just need to set the first
derivative to 0 to obtain the point of maximum,
i.e. the optimal strategy b∗.

14



∂L
∂bx

=
∑
k

pk
okx∑
y okyby

+ λx + µ = 0

Let’s write down all the mutually exclusive cases:

• One of the bets bi = 0, the other twos
are bj > 0: In this case one has to solve the
system of equations

∂L
∂bi

=
∑

k pk
oki∑

y ̸=i okyby
+ λi + µ = 0

∂L
∂bj

=
∑

k pk
okj∑

y ̸=i okyby
+ µ = 0 for j ̸= i

∑
x ̸=i bx = 1

for the variables bj ’s, λi and µ. This case can
be the solution if and only if, in the end{
bj > 0 j ̸= i

λi > 0

This case can happen for all i ∈ 0, 1, 2, so
three different subcases of these have to be
analysed.

• Two bets bi = 0, bj = 0 whereas the
third bl = 1: In this case it’s easy to show
that bl = 1 (because of normalization) when
l ̸= i, j and µ = −1. The system becomes{∑

k pk
oki

okl
+ λi − 1 = 0∑

k pk
okj

okl
+ λj − 1 = 0

for the variables λi and λj , since bl = 1 and
µ = −1 have already been found. This case
can be the solution if and only if, in the end{
λi > 0

λj > 0

Again, this case can happen for all l ∈ 0, 1, 2,
so three different subcases.

• None of the bets is zero, hence
bx > 0 ∀x: The equations for this case
should be exactly the same as equations 19,
since the conditions are the same{∑

k pk
okx∑

y okyby
+ µ = 0 for x = 0, 1, 2∑

x bx = 1

and has to be solved for b0, b1, b2, µ. This is
the solving case if and only if, in the end


b0 > 0

b1 > 0

b2 > 0

For each different value of p = (p0, p1, p2) one will
have to analyse all these cases to see to which of
these the solution belongs. This is obviously com-
plicated analytically, but we can solve it numeri-
cally.

Numerical solution of the KKT approach
for the three horses example Solving these
equations numerically, for the same example
stated before, we can compare the KKT max-
imization, that doesn’t require any assumption
on the fully-mixing condition of the game, with
the game-theoretical solution obtained by solving
equation 19, which instead required the game to
be fully-mixing. This comparison is shown in Fig-
ure 17.
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Figure 17: KKT maximization comparison with
the game-theoretical solution of equation 19 for
gambler’s strategy for a diagonal case (plot 1) and
for a non-diagonal one (plot 2). KKT maximiza-
tion is shown by the full dots, solution to equation
19 is instead represented by the continuous lines.
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These plots have been already obtained using
simulated annealing instead of KKT conditions,
but the latter has produced better results that
actually match more the solutions of the game-
theoretic approach, when in a fully mixing frame-
work.
It’s interesting to notice that, since we’re just

allowing the gambler to use an optimal strategy
for different strategies of the environment, only in
some cases (some values of p0) the game can be-
come non fully-mixing. Indeed, there are intervals
within which one or more bi = 0, so the game be-
comes non fully-mixing for the specific choice of
the environment strategy.
As expected, the KKT maximization shows that

the game-theoretic approach is far from reality
for small p0’s, where indeed we have a case of
non fully-mixing game. It’s also important, at
this point, to see how the intensity of the aver-
age growth rate (log − capital) behaves with dif-
ferent strategies with respect to a change in p0,
and hence, to a change in p. Results of this are
shown in Figure 18.

Figure 18: KKT maximization comparison with
the game-theoretical solution of equation 19 for
gambler’s strategy for a diagonal case (plot 1) and
for a non-diagonal one (plot 2). Colored plot rep-
resents the intensity of the average growth rate.
KKT maximization is shown by the full dots, so-
lution to equation 19 is instead represented by the
continuous lines.

Figure 18 shows the same results as [14] for
growth rate intensity, for diagonal and non-
diagonal case. As intuitively guessed, one can
see that whenever b0 is following p0, hence Kelly’s
strategy, the growth rate is the highest, so across
the green line one has the highest of the ⟨W ⟩ for a
fixed p0 and it becomes the highest possible when
we move further from p∗0 optimal, since we are
not only following Kelly’ s strategy, but the en-
vironment itself is playing not optimally for him,
making simpler for the gambler to copy him and
gaining more.
Moreover, in the non-diagonal case, we can see
the appearence of a saddle point for the aver-
age growth rate, due to the fact that moving on
the green line always represents the best (Kelly’s)
strategy for the gambler, when plotted with re-
spect to p0. On the contrary, environment’s best
choice will be the one that minimizes this growth
rate. The identifiable saddle point then is noth-
ing but the intersection of the two hyperparabolas
(here visible just in one dimension) describing the
gambler and the environment strategies’ resulting
expected growth rate, one trying to maximize it,
the other to minimize it.
The question now relies on trying to understand if
there is a way to use the game-theoretic approach
for a non fully-mixing game, in order to check that
this gives the correct result, as obtained by the
KKT maximization.

4.4 Non fully-mixing game: The es-
sential part of the game

As stated before, to apply the relations obtained in
equations 21, one needs to work under the equiv-
alent assumptions of

• Fully mixing game

• OT being invertible and simplex preserving

Now on, we’re going to work with a different
example for what concerns p, the strategy of the
environment. Indeed, the assumption on the fully-
mixing game stated before is defined for a game
before one of the player has chosen a specific
strategy. On the contrary, it’s important to no-
tice that we are choosing the strategy p, being
optimal or not, varying the value of it depending
on pinput. When our game starts, in principle, as
a fully mixing one, the optimal strategies (b∗, p∗)
will show no zeros. Nevertheless, since we are not
optimizing p in reality, but analysing instead b∗ for
different values of it, it can happen that the game
gets to be non fully-mixing only for some values of
p0, i.e. of p. The fixed ”strategy” of the environ-
ment allows the game to become non fully-mixing
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even though, if both the player would have played,
it would have been fully-mixing instead. That’s
what happened in the example before and what is
proven in Figure 17. That’s why, from now on, we
are going to work with a pinput = (0.2, 0.8, 0), so
that the strategy chosen for the environment, will
always have p2 = 0, and, as a result, b2 = 0, allow-
ing the game to be non fully-mixing, for whatever
value of p0, since p2, b2 are fixed and not depend-
ing on it.

The essential part of the game When the
game is not fully-mixing, the game-theoretical pre-
dictions are not following the correct maximiza-
tion. Having defined the odds matrix OT (so
player one is the gambler), if one has(

OT
)
ik

≥
(
OT
)
jk

∀k

the gambler would always gain more betting on
row i instead of row j. This means that b∗j = 0
and the matrix can be reduced having its row j
removed ([2]). The same happens for player two,
who wants to minimize gambler’s payoff, so what-
ever column has each of its element greater than
the same elements of another one, can be removed(

OT
)
ki

≤
(
OT
)
kj

∀k

thus, column j can be removed and p∗j = 0.
Hence, if one would want to go from a 3x3 prob-

lem being non fully-mixing to a 2x2 fully-mixing,
one would need to remove a row l and a column
m, then fixing

bl = 0, pm = 0

The reduction from a non fully-mixing to a fully-
mixing problem allows us to isolate only what is
called the essential part of the game [2], and
it can be done in two different ways depending on
the framework:

• Both players are trying to play opti-
mally
In this case the game is uniquely defined
by the odds matrix, which is not invertible,
thus there’s no possibility to compute the
optimal strategies (for both players) from
equations in 21. If the odds matrix has a
row and a column which can be removed, the
problem can be reduced to a fully mixing
one, the matrix becomes invertible and the
equations 21 give the correct results. This
is not our case since we are analyzing differ-
ent strategies for the environment, varying p0.

• Just the gambler wants to play opti-
mally
In this case the ”game” is defined by the
odds matrix and the strategy p we’ re as-
suming the environment to use in this specific
case. To have a reduction we need at least
one pj = 0 for j ∈ 0, 1, 2, even if the odds
matrix is invertible. Indeed, since we are al-
ready defining one of the strategy by ourselves
the definition of the matrix is not important.
In this case the game theoretic formulas are
computable, since O may be invertible, but
they will not give the correct result until we
perform the reduction. The reduction, as ex-
plained before, will be done removing column
j and row j (if b∗j = 0) and again the problem
will reduced to a 2x2 fully-mixing one, and
the equations 21 will give the correct results.

Reduction example As stated before, we are
working in the second framework described, since
we choose an input strategy for the environment
to be pinput = (0.2, 0.8, 0), so that while p0 varies,
p2 = 0 always, and to have a reduction we need
b∗2 = 0 ∀p0, which appears from calculations. This
means that, no matter whether O is invertible or
not, the game will always be non fully-mixing for
the input strategy chosen. Let’s consider the case
in which O is non diagonal and not invertible,
as

Oninv =

2 2
3

1
5
6

5
3

5
6

1 2
3

1

 (23)

It’ s easy to see that the game is not fully-mixing
a priori from the choice of p because we can
remove both the last row and the last column,
but also because of p, since the strategy we set
led to p2 = 0, b∗2 = 0. Indeed, no results can
be computed by the game theoretic fully-mixing
equations, since O is not invertible.
Let’s consider instead the case in whichO is non

diagonal but invertible as

Oinv =

2 2
3

1
5
6

5
3

5
6

1 2
3

2

 (24)

The game is fully-mixing a priori, since now no
rows or columns can be removed. If one would
have not chosen a strategy for the environment,
then both the players would have tried to play
optimally, with a solution correctly predicted by
equations 21.

b∗ = (0.3, 0.4, 0.3) p∗ = (0.25, 0.5, 0.25)

Nevertheless, because of the choice of the
strategy p ̸= p∗ that leads to p2 = 0, b2 = 0, the
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game becomes non fully-mixing and evidently, we
are not letting the environment to play optimally.
Indeed, trying to compare KKT with game-theory,
one ends up with Figure 19
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Figure 19: KKT maximization comparison with
the game-theoretical solution of equation 19 for
gambler’s strategy with new parameters and in-
vertible odds matrix. KKT maximization is shown
by the full dots, solution to equation 19 is instead
represented by the continuous lines.

Again as expected, the results can now be
computed, since O is invertible, but they are
wrong, since the the framework is not fully-mixing.

Now, what we want to prove is that, with p2 =
0, b2 = 0 by hypothesis, the matrix can be re-
duced to a 2x2 one, taking advantage only on the
essential part of the game, removing the last
row and the last column:

Ored =

(
2 2

3
5
6

5
3

)
(25)

The game is now fully-mixing, since O is re-
duced and what is associated to 0’s in the envi-
ronment and gambler’s strategy has been removed
from it. Applying the game-theoretical approach
to this reduced matrix, so solving equations 21 on
a problem which is now fulfilling the assumptions,
one gets the results shown in Figure 20.

As expected, the reduction led to a new 2x2
fully-mixing game, in which we are neglecting the
horse which is never going to be chosen, and we
focus on applying the game-theoretic approach on
the essential part of the game. Since the essen-
tial part now fulfills the assumptions under which
relations 21 have been derived, the theory works
again, showing that it coincides with the actual
KKT Kelly’s maximization solution.
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Figure 20: KKT maximization comparison with
the game-theoretical optimization for gambler’s
strategy with new parameters and reduced odds
matrix: solution for the essential part of the game.
KKT maximization is shown by the full dots, so-
lution to equation 19 is instead represented by the
continuous lines.

5 Conclusions

Throughout the article, we analysed a simple
gambling problem inspired by Kelly’s horse races
model. We discussed the characteristics of the
model for the diagonal and non-diagonal case. For
the first case, we tried to extend the work of Kelly
([7] and [9]) introducing at first the volatility as
a measure of risk, and then implementing a ge-
ometric brownian motion approach [11] to model
the behavior of the log − capital and to define an
extinction probability, later used as new defi-
nition of risk.
Since the GBM continuous mapping showed to be
in agreement with the races simulation, we com-
pared the results of the two definitions and ob-
tained that the Pareto fronts and the relations
between extinction probability and the statisti-
cal quantities are very similar. There seems to
be a discrepancy between the definition of the
boundary B for what concerns the analytical ex-
pression of the extinction probability from GBM
and the risk-constrained extinction threshold de-
fined in ([6]). We think that this discrepancy may
be caused by the mapping of the problem from
continuous to discrete since it’s just quantitative.
Nevertheless, we suspect a better explanation not
yet found for this behaviour.
In any case, we proved the usefulness of the
geometric brownian motion approach to map
the behaviour of the log − capital/wealth during
time, as shown by Figures 7, 8, 10, whereas we’ ve
shown the similarities and discrepancies be-
tween the two definitions of risk in Figure 12
for the main quantities of interest. A new def-
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inition of risk appliable in bet-hedging scenarios
related to econophysics, biophysics, neuroscience,
social sciences, would be useful to construct new
and more specific optimization problems in which
the fluctuations of the quantity to optimize (in
our case ⟨W ⟩) are not the main source of real risk
(i.e. in some frameworks fluctuations can be useful
to grow faster, whereas the extinction/bankruptcy
probability is always a quantity one wants to min-
imize). The generality of the approach we studied
just for a simple gambling problem, can be easily
specified and mapped into different bet-hedging
realizations, as shown by the first considerations
on phenotypic switching [8]. Indeed, the problem
settings result to be the same, but with a different
meaning, as shown by the similar ”Pareto fronts”
in Figure 1.
Subsequently, with the tools of KKT maximiza-
tion [15] we analysed the analytical behaviour
of the extinction probability with respect to the
wealth and with the same tools we introduced
the cases for a Kelly’s non-diagonal model with a
game-theoretic approach. The main results of the
last section, indeed, concern the possible reduc-
tion of the game to an essential part of it
[2], which keeps only the useful information about
the bookmaker odds and the environment fluctu-
ations.
The reduction ends up to be possible and im-
portant to apply the game-theoretic approach to
games which are non fully-mixing, extending the
possibility to treat optimization problems in which
the gambler is allowed to play not necessarily fully-
mixing strategies. We showed how the reduction
to a fully-mixing game, indeed, is possible un-
der certain conditions. This would mean that the
gambler (or the population in a phenotypic con-
text) could wait, without investing, for the first
few runs as shown in [6], using inference to study
the behaviour of the environment [1], to discover
that a certain horse (environmental condition) i
will never win (pi = 0). For a non-diagonal case
then, the optimization problem could be solved re-
moving the trivial and useless information about
horse i directly from the matrix of the game, that
is specifying for the stochasticity of the environ-
ment.
We suspect there could be a way to reduce the
problem even to a 2x3 matrix when an horse for
strategy p has a zero probability of winning while
the gambler strategy doesn’t have any, thus reduc-
ing the problem to a fully-mixing rectangular one.
In any case, our results and considerations allow
the game-theoretic fully-mixing approach to find
the same correct solutions as Kelly’s maximiza-
tion problem, meaning it could be used in new and

different frameworks, to reduce game-theoretic or
optimization problems, from biology to chemistry
or finance [8], [16], [6].
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A Appendix

A.1 On the multiplicative Kelly’s process

Here we show the detailed calculation for the average log − capital ⟨W ⟩ in the case N ≫ 1. Intro-
ducing Kelly’s process one has:

CN = oxN
bxN

CN−1 =
∏N

n=1 oxn
bxn

C0

⇐⇒

logCN = log
(∏N

n=1 oxn
bxn

C0

)
=
∑N

n=1 log (oxn
bxn

) + logC0

⇐⇒

⟨W ⟩ .
= limN→∞

1
N logCN = limN→∞

(
1
N

∑N
n=1 log (oxnbxn) +�����: 0

1
N logC0

)
CLT−−−→

∑
x px log (oxbx)

A.2 Survival probability calculation

In this subsection we show the detailed calculation of S(t), once the constrained P (x, t) has been
obtained through image method:

S(t) =

∫ +∞

B

P (x, t) dx =

=
1√

2πσ2
W t

[∫ +∞

B

e
− (x−⟨W⟩t−x0)2

2σ2
W

t − e
− 2⟨W⟩(x0−B)

σ2
W

∫ +∞

B

e
− (x−⟨W⟩t−2B+x0)2

2σ2
W

t

]
=

=
1

2

[
erf (+∞)− erf

(
B − x0 − µt√

2σ2
W t

)]
− 1

2
e
− 2⟨W⟩(x0−B)

σ2
W

[
erf (+∞)− erf

(
−B + x0 − µt√

2σ2
W t

)]
=

=
1

2

[
1− erf

(
B − x0 − µt√

2σ2
W t

)]
− 1

2
e
− 2⟨W⟩(x0−B)

σ2
W

[
1 + erf

(
B − x0 + µt√

2σ2
W t

)]
=

=
1

2
erfc

(
B − x0 − µt√

2σ2
W t

)
− 1

2
e
− 2⟨W⟩(x0−B)

σ2
W erfc

(
x0 −B − µt√

2σ2
W t

)

21



A.3 Proof of E

((
bx
rx

)−λ
)

≤ 1 =⇒ P(Wmin < B) < β

Remembering λ being defined as λ = log β
logB ∈ (+∞, 0] as β ∈ (0, 1) and following the proof by [6],

one begins introducing the Lemma 1:

Lemma 1. Consider an I.I.D. sequence X1, X2, ..., Xn from a probability measure p such that its
random walk is Sn = X1 +X2 + ...+Xn, τ is its stopping time and its cumulative generating function

Ψ(λ) = logE
(
e−λX

)
= log

∫
e−λX dp(X)

Then, it’s true that:

E
[
e−λSτ−τΨ|τ < ∞

]
P(τ < ∞) ≤ 1

The proof of this can be found in [6].

Defining the stopping time τ as

τ = inf{t ≥ 1|wt < B}

Note that τ < ∞ ⇐⇒ Wmin < B. From Lemma 1 one gets

1 ≥ E

[
e
−λ logwτ−τ logE

(
( bx

rx
)
−λ

)
|τ < ∞

]
P (Wmin < B)

Since −τ logE

((
bx
rx

)−λ
)

≥ 0 when τ < ∞, one has

1 ≥ E
[
e−λ logwτ |τ<∞

]
P (Wmin < B)

But since wτ < B when τ < ∞ one gets

1 < e−λ logBP (Wmin < B)

Ending up with

P (Wmin < B) < Bλ .
= β

A.4 Convexity of the diagonal optimization problem

In this section of the appendix, we want to show that the maximization problem in its diagonal case
can be analysed through the study of just its first derivative. Hence, we want to show the problem,
without proper constraints, to be convex down i.e. concave everywhere. To do this, we remind the
function we need to maximize with respect to the vector b:

⟨W ⟩ =
∑
x

px log

(
bx
rx

)
with derivatives

∂⟨W ⟩
∂bx

=
px
bx
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∂2⟨W ⟩
∂b2x

= −px
b2x

∂2⟨W ⟩
∂bx∂by

= 0

Thus, the Hessian will be 
−p1

b21
0 · · · 0

0 −p2

b22
· · · 0

...
...

. . .
...

0 0 · · · −p2

b22



This matrix is diagonal and its eigenvalues are all evidently non-positive for bx ∈ (0, 1]. This means
that the matrix is negative semi-definite, and the function is concave for all bx ∈ (0, 1] for x = 1, ..., n.

A.5 Convexity of the non-diagonal optimization problem

As just done in section A.4, we need to show the non-diagonal average growth rate to be concave
everywhere. The function to maximize would be:

⟨W ⟩ =
∑
i

pi log

∑
j

oijbj


with derivatives

∂⟨W ⟩
∂bx

=
∑
i

pi
oix∑
j oijbj

∂2⟨W ⟩
∂b2x

= −
∑
i

pi

(
oix∑
j oijbj

)2
∂2⟨W ⟩
∂bx∂by

= −
∑
i

pi
oixoiy(∑
j oijbj

)2
Hence, the Hessian will be:



−
∑

i pi

(
oi1∑
j oijbj

)2
−
∑

i pi
oi1oi2

(
∑

j oijbj)
2 · · · −

∑
i pi

oi1oin

(
∑

j oijbj)
2

−
∑

i pi
oi2oi1

(
∑

j oijbj)
2 −

∑
i pi

(
oi2∑
j oijbj

)2
· · · −

∑
i pi

o2xoin

(
∑

j oijbj)
2

...
...

. . .
...

−
∑

i pi
oinoi1

(
∑

j oijbj)
2 −

∑
i pi

oinoi2

(
∑

j oijbj)
2 · · · −

∑
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This matrix has all negative elements and it’s symmetric. However, this is not enough to conclude
that all its eigenvalues are non-positive, i.e. we have no sufficient information to conclude that this
Hessian is negative semi-definite and, furthermore, the analytical treatment to study its eigenvalues
wouldn’t be trivial at all. We then proceed in a different way, following the proof in [14].

Proving the convexity of ⟨W ⟩ =
∑

i pi log ((Ob)i) =
∑

i pi log
(∑

j oijbj

)
means showing that for all

b1 and b2 and for all t ∈ [0, 1]

⟨W (tb1 + (1− t)b2)⟩ ≥ t⟨W (b1)⟩+ (1− t)⟨W (b2)⟩

Knowing the logarithm to be concave for any value of its variable, one has:
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log (t (Ob1)i + (1− t) ((Ob2)i) ≥ t log ((Ob1)i) + (1− t) log ((Ob2)i)

Since pi’s are probabilities, i.e. positive quantities, we can multiply each inequality i by the respective
pi, not modifying the concavity, and then sum all the factors in order to obtain the required result:
our function is indeed concave and we just need to study its first derivative to find the maximum point
b∗ we need.
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