POLITECNICO DI TORINO

MASTER’s Degree in COMPUTER ENGINEERING

MASTER’s Degree Thesis

AlI-Based Soft Error Detection for
Embedded Application

Supervisors Candidate

Prof. STEFANO DI CARLO ENRICO MAGLIANO
Prof. ALESSANDRO SAVINO

Doctor. ALESSIO CARPEGNA

OCTOBER 2023

Summary

Soft errors pose significant challenges to the reliability of Safety-Critical Real-Time
Embedded Systems (SACRES).

Traditionally, Double Modular Redundancy (DMR) techniques have been employed
to mitigate such errors. The increasing complexity of these system, however, with
the adoption of multi-core processors, hierarchical memory systems, with multiple
levels of cache, and specialized co-processors has made this solution increasingly
unaffordable and expensive.

This thesis aims to investigate the utilization of Artificial Intelligence (AI)-based
detection of soft errors.

Soft errors can bring different possible outcomes: crash, silent data corruption,
benign, hangs or reboots. The hardest to detect is the Silent Data Corruption
(SDC), which let the program reaches the end of the computation, but cause a
wrong outcome. This behaviour makes the SDC very dangerous, because the system
does not crash and continues the operations with the wrong data/information, that
can bring to potentially dangerous decisions.

The objective of this thesis is to understand if using machine learning techniques
it is possible to detect malfunctions in the architecture of a processor, capable
of working with various target software applications. A potential approach is to
explore micro-architectural event attributes as fault detection features. Hardware
Performance Counters (HPC) are used to monitor micro-architectural events, for
example the memory access, cache hit/miss or branch events that occur during the
execution of the target application. Many processors already track these attributes
using the Performance Monitoring Unit (PMU). However, it remains an open
question to what extent these attributes are sufficient to detect faulty executions.

11

Acknowledgements

This thesis work is also thanks to the numerous people who have been close to
me and who directly or indirectly contributed. In particular, I want to thank my
supervisors and co-supervisors, Alessio Carpegna, Stefano Di Carlo, and Alessandro
Savino, who have always been available to guide me in my choices and help me with
the difficulties of my work; without them all this would not have been possible.

I also thank my parents and relatives, who always believed in me and never let me
lack their support.

Finally, I want to thank my friends, including my roommates and all the guys at
lab6 who welcomed me as one of their own from day one. These few lines are not
enough, but I hope they can give you an idea of my gratitude.

II1

Table of Contents

List of Tables
List of Figures
Acronyms

1 Introduction
1.1 Problem Presentation . .

1.2 Basic Machine Learning based Solution

1.3 Our Solution

2 State Of the Art
2.1 Fault Injection
2.1.1 HWIFT.
2.1.2 SWIFT
2.2 Machine Learning Model

3 Fault Injector
3.1 Setup.
3.2 Realization

4 Machine Learning Model
4.1 Data Analysis
4.2 Classifier

4.2.1 Gaussian Classifier

5 Conclusion
A Arm Architectural Events

Bibliography

VI

VII

IX

17
22
29

38
38
47
48

52

54

57

List of Tables

3.1

3.2
3.3

4.1

4.2

4.3

4.4

4.5

PMU Register Descriptions. There are six PMXEVCNTR and six
corresponding PMXEVTYPER identified by the last character that
is a number from zero to five. o0
Benchmarks characteristics 0L
XSCT Commands description

Breakdown of the various categories separated by benchmark
Pearson correlation values between most discriminant features and
the label separated by benchmark, ordered from the most negative
correlated to the most positive correlated
Breakdown of the various categories percentage separated by bench-
mark
Accuracy results of the Gaussian Classifier for a balanced datasets,
made use both Z-normalized data and gaussianized data.
Recall and Precision compute for every benchmarks for both z-
normalized data and gaussianized data

VI

50

List of Figures

1.1

1.2

2.1
2.2

3.1
3.2
3.3

3.4
3.5

4.1
4.2
4.3
4.4

4.5

This figure represented the basic idea of a Monitoring System (can
be ML-based) to detect faults
This figure represented our solution where the faults are generated
by a simulator that uses the debugger in the host computer, and
the HPC are used as the features for a machine learning model that
performs the fault classification.

Experimental setup based gem5 and FIMSIM.
Architecture of GDB-Based fault injectorl.

Flow Chart of the fault injector.
Pynq Z2 board.

Event selection to configure a single hardware performance counter

Histogram plot of raw features, only Z-normalized
Histogram plot of Gaussianized features.
Heatmaps of the Pearson correlations. The darkest regions represent
the features more correlated (The features are over the two axis) . .
Scatter plots of the three datasets, after applying two dimensional
PCA over z-normalized data.
Scatter plots of the three datasets, after applying two dimensional
PCA over gaussianized data.

VII

Acronyms

Al

artificial intelligence

SACRES
Safety-Critical Real-Time Embedded Systems

DMR
Double Modular Redundancy

SDC
Silent Data Corruption

ONA
Output Not Affected

PMU

Performance Monitoring Unit

HPC

Hardware Performance Counter

ISA

Instruction Set Architecture

PC

Program Counter
oS
Operating System

IX

ECC

Error Correction Code

SBU
Single-Bit Upset

FC-FFNN
Fully Connected Feed Forward Neural Network

HTDR
Hard To Detect Region

HWIFI

Hardware-Implemented Fault Injection

SWIFI

Software-Implemented Fault Injection

FIT

Failure In Time

LOC
Line Of Code

SOC
System on Chip

HAL

Hardware Abstraction Level

IDE

Integrated Development Environment

ELF

Executable and Linkable Format

XSCT

Xilinx Software Command-Line Tool

X

PCA

Principal Component Analysis

SVM
Support Vector Machine

K-NN
K-Nearest Neighbors

XI

Chapter 1

Introduction

1.1 Problem Presentation

In the Safety-Critical Real-Time Embedded Systems (SACRES) computation can
occur errors during the software execution due to many different phenomena. For
example instantaneous voltage spikes, electromagnetic interference, neutron strikes
and out-of-range temperatures.

Those phenomena can cause a switch state in the transistor, from open to closed or
vice versa. Consequently, this transistor switch can result in a bit-flipping causing
a soft-errors, a transient corruption of data stored in memory (RAM, ROM, cache
or CPU register) of the embedded system.

Soft errors pose a significant challenge to reliability, trustworthiness and security,
this lacks brings potentially the system into a dangerous state, that in some areas
can have unsafe consequences in the real world and harm people, automotive and
aerospace are two examples of these sensitive areas.

Soft-errors can lead to the occurrence of faults in application execution, in particular
the fault effect has different possible outcomes, that can be classified into these
categories:

1. Crash: the program completely stops working and exits.

2. Silent Data Corruption (SDC): the program reaches the end of the computa-
tion, but its outcome is wrong.

3. Benign: even if there was a fault, the program’s outcome is correct.
4. Hangs: the program is stuck within a loop.

5. Reboots: the operating system reboots.

1

Introduction

Crash, Hangs and the Reboots are trivial to detect, basically because in the hangs
the computation doesn’t reach the end, while for the crash and the reboots the
computation doesn’t produce a valid outcome.

The real cumbersome to detect is the Silent Data Corruption because the computa-
tion ends with a valid outcome, but the system has no idea that it is wrong, and
this wrong output can be used by the system to take potentially harmful deductions.

To mitigate the in-memory bit-flipping caused faults, the ECC memory is largely
adopted, where Error Correction Code is used to detect where data corruption
occurs caused by a bit-flipping in this kind of memory.

While for CPU based bit-flipping caused faults, traditionally, Double Modular
Redundancy (DMR) techniques have been employed to mitigate such faults. This
solution consists of Double the errors-sensitive hardware, for example, processor
cores, co-processors or caches.

Thanks to the redundancy introduced by doubling the computation in two inde-
pendent modules, in the end, by comparing the two outputs, we can detect if the
outcome is wrong or not:

o if the two module’s outputs are the same, we can presume that the two output
are both correct, which means that also the outcomes are correct.

o if the two module’s outputs are different, one of the two modules occurs in a
faults, without knowing which is the correct one, we need to reschedule the
task.

This solution works under the promise that the two modules don’t occur in the same
error. However, the most significant con is regarding the cost. The increasing the
complexity of these systems, however, with the adoption of multi-core processors,
hierarchical memory systems, with multiple levels of cache, and specialized co-
processors have made this solution increasingly unaffordable and expensive.

1.2 Basic Machine Learning based Solution

The basic idea is to use Artificial Intelligence (Al) to detect soft errors, in practice
implement a machine learning model able to classify the outcome of the computa-
tion.

To reach the final goal of detecting malfunctions in the architecture of a processor,
over different target software applications. This aims to detect malfunctions without
using expensive redundancy solutions.

On the other hand machine learning model prediction is affected by uncertainty,
according to the model accuracy, which will never reach 100%.

2

Introduction

LE TEMPERATURE

N

((‘. ’)) ELECTRO-
A7 MAGNETIC ——>

Features Monitori A
> onitoring N

LI 1lll]
@)
!
c
TTrrrrrrl

System ALARM
FIELDS
TTTTTTTT]
A HIGH- /
VOLTAGE

Figure 1.1: This figure represented the basic idea of a Monitoring System (can
be ML-based) to detect faults

For training the model we need a dataset, collected with a lot of golden or faulty
labelled executions, the golden ones are the ones that reaches the end of the com-
putation without any soft errors.

Two open questions remain; how induce or simulate the faults and how to convert
task execution in a features representation suitable for the machine learning model.

1.3 Owur Solution

The solution discussed in this Thesis is composed of three part:

1. Translation of the task execution in a form suitable for the Machine learning
model.

2. Faults injection.

3. Data Collection in a Dataset used to train a ML model.

First for representing the executions in a form suitable for the Machine Learn-
ing model, we decide to use the Architectural events, already tracked in most of
the CPU in a specific unit called Performance Monitoring Unit (PMU), which
use specific counters called Hardware Performance Counter (HPC). These micro-
architectural events, for example, the memory access, cache hit/miss or branch

3

Introduction

events that occur during the execution of the target application.
However, it remains an open question to what extent these attributes are sufficient
to detect faulty executions.

Second the solution discussed in this thesis used a fault injector simulator, able to
inject transient faults in a random part of the processor. This choice is due to the
inability to create real faults within the target architecture.

Our fault injector simulator is a basic script running in a host machine that
using serial interface to submit command to the target’s debugger, setting a break-
point in a random position, running the task and when the execution reaches the
breakpoint, select a random bit in a random register and change his value (bit
flipping) and resuming the computation.

Finally to create the dataset the simulator (executed in the host) execute more
time the task (executed on the target platform), performing the fault injection
during the computation and at the end of every computation access to the Perfor-
mance Monitoring Unit to collect all events counted in the Hardware Performance
Counter. In this scenario, a series of numbers (event counts) are used to represent
the execution, that can be labelled based on the outcomes, if is golden (without a
fault), or if instead a fault has been injected into it, depending on the type of the
fault.

Introduction

Algorithm 1 Pseudo Code of the Fault injector Simulator.

procedure FAULT INJECTION(number_of execution)
> number_of execution is the number of time the target task is executed

1:

2

3

4: 1=0

5: hpcSet = newSet()
6 while i < number_of execution do
7 1=1+1

8

9

: setRandomBreakPoint/()
10: runTarget Task()

11: waitUntilTarget ReachBreakPoint()
12: performingBitFlipping()

13: resumeTargetTask()

14: waitUntil TargetReachEnd|()

15: hpc =collectHPCfromTarget()

16: hpcSet.add(hpc)

17:

18: end while

19: return hpc set

20: end procedure

Introduction

HOST COMPUTER

FAULT
INJECTION
SCRIPT

@ PYNQ - Z2

DEBUGGER —_& LIl 111l

~
TTTTTTTT]

W

MODEL

\ 4
FAULT

CLASSIFICATION

Figure 1.2: This figure represented our solution where the faults are generated
by a simulator that uses the debugger in the host computer, and the HPC are used
as the features for a machine learning model that performs the fault classification.

Chapter 2

State Of the Art

In the last decades, many studies have been conducted on this topic, and many
mitigation to reduce the radiation effects. Within embedded systems, soft errors
potentially cause harmful malfunctions.

The design of the digital systems requires the system to expose a very high degree
of reliability and to provide fault detection mechanisms. Some works have tried
to overcome the Double Module Redundancy by applying machine learning tech-
niques, both in real or simulated environments.

This chapter is split into two subsections; the first aims to explore the state
of the art of the Fault Injection, while the second aims to explore one of the
Machine Learning techniques to detect soft errors.

2.1 Fault Injection

Literature distinguishes two main approaches to perform fault injection:

o HWIFT: fault is injected by means of specific hardware and physical processes
like a laser beams or electromagnetic fields.

o SWIFI: Software that emulates faults by means of various debugging or
virtual environments.

2.1.1 HWIFI

A widely adopted method in this field of study is to irradiate hardware to produce
a bit flipping. Karlsson J Liden P. Dahlgren P. Johansson R. and Gunneflo U. in
this research [1] inject faults into embedded systems by using heavy-ion radiation.
This approach performs hardware bit flipping, as aspected, but on the other hand

7

State Of the Art

This method generates uncontrollable results, consumes a lot of time, another
negative aspect is that it may corrupt the entire system.

Due to the fact that beam experiments generate no observable faults, except
when they manifest at the application output or when they compromise the system
responsiveness. Without no information about the spatial and temporal location
of the fault and no information about its propagation pattern.

For all these reasons in this work [2], the researcher decided to combine beam
experiments and microarchitectural fault injection over 13 benchmarks executed
on the top of Linux on an ARM Cortex-A9 system. Then, comparing the error
rate predicted with beam experiments and fault injection, we evaluate at which
level fault injection can be used to emulate the beam experiment.

The crucial points of this paper are:

1. Experimental evaluation of the reliability of ARM devices based on beam
experiments.

2. A fault injections analysis of the vulnerability of codes.

3. Comparison of the error rate predicted through beam experiment and fault
injection.

To avoid the bias of a single application, they use different benchmarks with
different computational characteristics. The same input values are used for the
benchmark for both bean experiments and fault injection.

The neutron beam experiments setup is created for irradiating the chip uniformly
without affecting the onboard DDR. Then the output is compared with the one
from the goldel execution, if the two are not equal the output is marked as an SDC.
Furthermore the target board send periodically same alive message, if the host
PC does not receive for a long period these messages, it tries to reconnect to the
boaed, if this is not posssible the execution is marked as a System Crash, instead
the execution is marked as an Application Crash.

Due to the fact that the neutron flux is low, it is highly unlikely to see more than
a single corruption during program execution.

2.1.2 SWIFI

Some works aim to induce Radiation soft errors using a Software-Implemented
Fault Injection (SWIFI).

Due to the fact that some errors can hardly be detected and monitored, the general
solution is to generate faults manually.

State Of the Art

Unfortunately, generating real fault is usually expensive and unworkable. For this
reason, many works used simulated hardware faults through Software-Implemented
Fault Injection (SWIFI), which provides machine code-level fault injection into the
architectural state.

Due to all these downsides, recent studies to modify the hardware state of the
system use software-based fault injection tools, which allow the simulation of
amounts of hardware faults.

Soft Error Fault Injection frameworks are used to analyze the target software
sensibility to soft errors by injecting, in a Virtual Machine, soft error alterations in
the logic operations using the virtual machine and processor emulator (QEMU) [3]

One more sophisticated example is the Level Soft Error Fault Injection Tool
(B-SEFI) [4] realized by Ying Wang, Jian Dong, Sen Zhang, and Decheng Zuo
to face the challenge of making hardware faults simulation more precise and dis-
tributed. This work uses binary-level fault injection technology that has proved
to be accurate and efficient in performing injection close to the source code, this
approach is going to modify the binary code.

Practically, they designed and developed a Pin-based fault injector [5] capable of
injecting soft errors in memory or registers and analyzing the consequence.

The Fault Model performs a single bit flipping for each application run, adopting a
random, uniform distribution for selecting the instructions and another for choosing
the bit to flip.

Pin is an analysis framework designed by Intel that performs runtime binary instru-
mentation and is used for implementing fault injection in multiple architectures.
Abstracting the details of the architecture allows a high portability.

B-SEFT is a fault injection tool based on binary instrumentation that injects
faults at the machine code level, using PIN to target the executable binary program
without using the source code, which is biased by the programming language.

B-SEFT is made of three modules: controller, scanner, and fault injection module.

In conclusion, this solution proposes a fault injection tool to simulate soft er-
rors at machine code level. This solution is evaluated using five classical machine
learning applications, thousands of fault injections are performed to measure the
impact of the soft errors. Experimental results show that different applications are
sensitive to soft errors on performance and accuracy but with different impacts.
Compared to the classical SWIFI, like QEMU [3], this technique has the pro of
presenting a high granularity in the code fault injection.

9

State Of the Art

Some other works, for exemple [6], use a fault injection simulation using FIMSIM
[7], a framework based on gemb [§]

The setup, figure (2.1), includes gem5 simulator used to emulate the x86 Instruc-
tion Set Architecture (ISA) hardware due to the fact that virtualization simplifies
the faults injection, while the software stack, including a Linux kernel and the
target tasks, six Mibench applications (gsort, dijkstra, susan, sha, bitcount and
basicmath).

Thanks to the simulation in this study, they performed a Bit flipping in the Integer
Register File (intRF) at any instant in time. This solution allows a high control-

(a) System architecture (a) Data collection flow
Injection period
I
Application (miBench) — ‘
Injection run _ Application
Linux i SBU P
S; 5.5 S, w.—S.,CP,

FIMSIM Pt
Fast forward cycle class

|
[ICPs — CPe
Golden run | Linux Boot | Application |

Figure 2.1: Experimental setup based gem5 and FIMSIM.

lability of the fault injection process, without any change in the source code and
allows the automation possibility through scripting and a high observability of the
fault through the performance counter in PMU.

In the literature, there are only a few reports about debugger-based fault in-
jection, especially applied to embedded systems.

One of these is the work done by Michat MOSDORF and Janusz SOSNOWSKI
[9]. They use an ARMT7 microcontroller, on it the faults are injected by the JTAG
interface available in the ARM platform, using the GNU Debugger (GDB).

The Fault Injector architecture, in figure 2.2, is composed of a JTAG interface
controlled by the GDB remote server that provides a GDB-compliant serial inter-
face used by the GNU Debugger. The remote debugging happens through a TCP
connection.

10

State Of the Art

GDB is highly adopted across a large variety of architectures, provides easy access
to processor memory and registers by the standard interface.

Thanks to an application called Control Software, implemented in .Net, we can
control the process of triggering a fault injection and performing if using a set
of the GDB commands and then checking the fault injection effects. GDB needs

PC Enviroment
usB TCP
JTAG Interface <«——» GDB Server <¢——p GDB
JTAG —B _
A stdio
Source
Embedded N\
System Control Software
Binary

Figure 2.2: Architecture of GDB-Based fault injectorl.

access to a binary file and source codes of the target program to retrieve the debug
symbol information. To trigger the Fault injection, they propose different schemes
that can be used:

o Time trigger: a specific moment is selected by the control software, and break
instruction is executed by the GDB.

» Breakpoint: A specific source code location is chosen by the control software
to perform bit-flipping.

o Whatchpoint: injection moment is defined by programmed watch point for a
chosen processor memory address.

The presented fault injector does not need software instrumentation and an addi-
tional result observation channel.

Thanks to the debugger, this approach allows a full controllability and repeatability
of the faults. The only one cons is that it requires the suspension of the target
program to inject faults or to observe their effects, and this introduces a temporal
overhead, the average overhead, measured by the control software, is 42 ms or,
in the case of handling the observational breakpoint and 52 ms in case of fault
injection that additionally requires writing a variable.

11

State Of the Art

In the performed experiments, it figured out that the most sensitive memory
areas, having injected faults with equal distribution within the whole RAM address
space are memory cells within addresses 0-10k (static global and dynamically
allocated variables) and 63k-64k (the program stack area holding function calls
data and local variables).

Simulating faults directly in processor registers, in particular it gives the possibility
to disturbing the program control flow by injecting faults on the program counter
register (PC), the result obtained disturbing the PC with a random distribution in
time:

o Data abort — 45%
Prefetch abort - 20%

Undefined instruction - 15%

Incorrect result - 10%

e Correct result - 10%

In conclusion, this paper proves that GDB, thanks to the JTAG interface, provides
the possibility of creating a fault injector, given the possibility of performing exper-
iments in a real system with easy access to processor registers and system memory.
In general, this paper confirms the high controllability and observability of the
injection processes at the the expense of some overhead (typically 40-50 ms per
simulated fault).

The growing susceptibility of multicore systems to soft errors pose the challenge of
asses the soft error resilience view in this paper [10].

In this work, they employ two fault injection frameworks over two virtual platforms:
OVPsim-FM [11] and gem5-FIM [12]. This second is event-driven and performs
better, up to 2-3 MIPS instead of 1 MIPS. Both frameworks give the possibility to
inject faults in different ISAs (multicore, ARM ...).
The workflow is composed of four phases:

1. Golden execution on target architecture and extract the system behavior

2. Create a fault list

3. compare the faulty execution behavior with the golden one

12

State Of the Art

4. create a dataset with all individual report

The fault injection framework can perform a single bit flip in a single register or
memory address. In this study only the storage elements are injected with the faults
following a random uniform distribution during the target application lifespan (OS
startup is not a faults target).

Even if the fault injection process does not change the target application source, it
introduces an overhead in terms of simulation time and ML analysis time.

Returning now on this work [2], that compare a HWIFI approach with a SWIFI
approach. The SWIFI Fault injection microarchitectural model is based on Gem5
simulator [8], while genFin fault injection framework [13] was used on top of Gemb,
GemFin was configured to inject single fault during each simulation on the CPU
memory components (L2 Cache, L1 Data and Instruction Caches, Physical Register
file, Data and Instruction Translation Lookaside Buffers (TLB)).
Microarchitecture-level fault injection offers a significant amount of observability,
Also, in this case, the soft errors have been classified in those categories: SDC,
System Crash, Application Crash.

To avoid any bias in the results, exactly the same source code, compiler (and
compiler options), and input data for both fault injection and beam experiments.
They used seven counters: CPU cycles, branch misses, L1 data cache accesses,
L1 data cache misses, L1 data TLB misses, L1 instruction cache misses, and L1
Instruction TLB misses to show if the same differences are in the two setups.
This reports acceptable deviations between the two setups, with one main dif-
ference in the implementation of TLB of Gemb5 and ARM Cortex microarchitectures.

In Conclusion, this paper presents a first detailed analysis that reports a comparison
of these two reliability assessment methods.

The failure in time (FIT) rate differences between the two experiments are extremely
small (not exceed one order of magnitude in all types of errors).

2.2 Machine Learning Model

The artificial resilience concept implies training system to detect and possibly
recover the faults, in particular for Safety-Critical Real-Time Embedded System
(SACRES).

Using microarchitectural events as features (executed instructions, cache misses, or
incorrectly anticipated branching) traced through a Performance Monitoring Unit

(PMU).

13

State Of the Art

In this paper [6], the Authors propose a preliminary study to understand if mi-
croarchitectural features can be exploited to train an Al-based hardware soft error
detector.

Particular emphasis is on understanding whether event timing could bring addi-
tional information to the model.

This preliminary study focused on Single-Bit Upsets in the Integer Register File
(intRF), faults are injected at random locations and time intervals during the
execution of the target task.

To speed up the experiments, they made every fault injection run start from a
checkpoint collected at the end of the fast-forward cycle corresponding to the end
of the Linux boot process (CPs) The fault effect was classified by comparing the
last checkpoint of the fault injection run (CPn) with the golden execution (CPe).

The HPC collected (from gemb stats) during fault injection amounts to about
600 features used to create the dataset. Data are preprocessed and normalized.
SDC and Benign classes are not balanced in a fault injection experiment. The
dataset was balanced using downsampling on the Benign (major) class to enable a
fair analysis in the training phase, avoiding bias. During the operative phase this
unbalancing must be considerated.

All experiments used a 19-32-2 network architecture composed of three layers.
These numbers are found using trial and error. that consists in determine the best
model by recognizing and removing errors or failures through various model setup.
The first model considered is a Fully Connected Feed feed-forward neural Network
(FC-FFNN). The accuracy does not improve it, using a small subset of features is
80%, and adding more features. This means that the discriminant information is
brought mainly by a few correlated features.

A second temporal model, based on Long-Short Term Memory (LSTM), was
trained on the time-expanded dataset. The performance of the LSTM model
confirms no gain on the different metrics.

Since fault detection latency is crucial in SACRES, FC-FFNN model is trained on
a cumulative dataset (cumulative data available at different checkpoints) without
waiting for the end of the program execution. This could minimize the error
detection latency.

In conclusion, even if the results show, in terms of accuracy (the percentage
of fault correctly classified). that micro-architectural events are able to detect
faulty executions. The presence of Hard To Detect Regions (HTDR) suggests that
pure microarchitectural attributes are insufficient, especially for simple tasks where
corruption is limited to the data domain.

14

State Of the Art

Returning to this [10] paper that poses the challenge of asses the soft error resilience
using Machine Learning techniques. The soft error assessment tool execution flow
is organized in three phases:

1. Feature acquisition and data homogenization, basically the tool extracts the
information in two datasets, one for the fault injection information and one
for the microarchitectural information.

2. Feature transformation and selection, for filtering the features, rearranges
the collected data to improve accuracy. Normalize all parameters by the
application length (number of instructions) to compare different applications.
The data is resized to range between 1 and 10 to enable the comparison among
distinct features.

3. Multidimensional Feature Transformation and Selection, soft error classifi-
cation is a five-dimensional problem (5 error class), prunes the features and
measures the feature impact (score) from 0 to 1 to remove the magnitude. The
tool ranks the 50 most relevant features using the soft error score, revealing
multidimensional correlations.

This paper considers the NAS Parallel Benchmark suite [14] with 29 applications.
Some are CPU intensive, some others are memory-bounded, instead for the architec-
tural configurations, it considers single, dual, quad, and octa-core ARM Cortex-A9
and AMD Cortex-AT72.

First, they exploited the access to the raw information to perform the profil-
ing of both soft error results and the microarchitectural parameters. This profiling
reveals patterns that can be used to group applications according to their behavior.
From the initial exploration, two main possible pattern hypotheses:

1. hypothesis: the increase of the feature branches leads to more occurrence of
Hang and Vanish.

2. hypothesis: Memory-bound applications present more ONA (Output not
affected).

While the first hypothesis is confirmed by the individual feature analysis, the
second one is contradicted by the result that indicates that the occurrence of faults
is due to the application itself. The applications of Group A, the one with high
OMM incidence and low number of Vanishes, are deeply studied because they are
appropriate targets to improve system reliability.

The assessment flow based on ML techniques shows that the cache memory activity

15

State Of the Art

impacts the Group A reliability. A higher hit frequency on the cache memory
results in a greater number of Hang and Vanish while it decreases the SDC incidence.

After analyzing the impact of one single feature, this work also investigates how the
combination of more features affects the system’s dependability. To do this, they
automatically, using tools, add and multiply data-frame columns in all possible
combinations for searching for more complex correlations along both microarchitec-
tural parameters and fault injection information.

For example, they observe that invalid references in cache memory cause CPU
stalls and consequently increase the number of context switches. If the bit-flip
is injected into a register that will be used later, the memory is considered dirty.
Even if the soft error is masked, the memory will remain dirty, causing an increase
in SDC. The increase in valid references of each CPU’s cache memory positively
influences the reliability of Group A.

In conclusion, this paper describes a soft error flow that enables software to
identify the occurrence of soft errors in complex software stacks and also determine
the correlation between multicore architectural features and detected soft errors
using supervised and unsupervised machine learning techniques.

The effectiveness of this soft error assessment flow was evaluated through an
extensive data set gathered from more than 1.2 million fault injections.

16

Chapter 3

Fault Injector

The Fault Injector is the module in charge of performing a bit-flipping. The bit-
flipping, performed in the memories on the board (Cache, RAM, CPU Register),
simulates the beam radiations that cause the soft error.

Before presenting the technical details and problems, some questions need an answer.

First of all, when injecting a fault, in this case, the answer is trivial, during
the execution of the benchmark at any instant. If the benchmark runs over an
operating System, the OS must be kept out of the Fault injection. Injection fault
on the OS will cause a high percentage of crash, hangs and reboots that we want
keep out from the classification.

The second question is where, in this other case, the answer is more cumber-
some. In an embedded system, there are many memories on which it is possible to
perform a bit-flipping, the RAM, the ROM, the Cache, and the CPU Register.
In a safety-critical system, Error Correction Code memory (ECC memory) can be
used to mitigate the system’s trustworthiness. For this reason, studying the effects
of soft errors in this kind of memory is less attractive. In this thesis, we decide to
inject faults only in the CPU’s registers, where ECC mechanisms are not used and
soft error effects are potentially more dangerous.

How many, or is it better to say with which frequency do we have to inject a
fault in our system, at least one, exactly one, or at most one for embedded applica-
tion runs?

Before answering this question, an important consideration has to be made. Not all
the Fault Injected brings to a Soft Error, as mentioned in the introduction of this
thesis Chapter 1, the possible outcomes are more (crash, Silent data corruption
benign hangs and reboots), and not all cause a soft error, like benign.

Increasing the number of faults per run also increases the percentage of soft errors

17

Fault Injector

in the dataset.

We decide for exactly one, which means one fault for every run. This allows us to
build a dataset that contains a good percentage of soft errors without injecting too
many faults that would otherwise simulate an unrealistic behavior because, in the
real system, it is improbable that more than two faults will occur in a short period
of time.

Another important aspect is the choice of the benchmarks. To cover various
scenarios, we decided to use more than one, with different characteristics, using
applications suitable for an embedded system, both memory intensive and CPU
intensive.

Considering now the main challenge, in practice, how to create a fault injec-
tor able to work in a real embedded system? As mentioned in chapter 2, there are
many alternatives to create a Fault Injector, physical or software-based:

» Using a hardware-implemented fault injector.
« Using a simulator like Gem5 [8].
« Using compile-time injection.

» Using a time-based triggers a timer that generates an interrupt that performs
bit-flipping.

o Using a debugger that stops the execution and accessing the register performs
the bit-flipping.

In literature, all approaches are documented and reported as valid methodologies
to perform a fault injection.

Using a hardware-implemented method is not worth for our goal due to the infeasi-
bility and the uncontrollability of the injection. In practice, it is not easy to inject
a single bit flipping in a certain instant.

Using a simulator allows us to inject a single fault and fully control the con-
sequences, but on the other hand, the simulated architecture could present some
different respect to the real ones due to the fact that we want to implement our
model in a real embedded system, for maintaining the conformity with the final tar-
get, we choose to collect the dataset over a real system, avoiding using a simulator.
Furthermore, this thesis work aims to extend the preliminary study about micro-
architectural features as soft-error markers in embedded safety-critical systems [6],
that is made over the gem5 simulator [8], proving its applicability in real embedded
safety-critical systems.

18

Fault Injector

A compile-time injection is an injection technique that allows the injection of
simulated faults into a system, modifying the source code.

Given the fact that we need to collect a whole dataset of executions with different
faults in position and time, this means we have to compile the target program every
time we want to change the fault position into the register and the fault timing
inside the execution. This makes this approach infeasible and time-consuming.

The last two possibilities are using time-based interrupt and using the debug-
ger. The first possibility needs to use a timer, which could be hardware or software.
Suppose we decide to use a hardware timer. In that case, the problem is that the
configuration of a timer and its behavior could bring the alteration of some archi-
tectural events that potentially could train the model over biased data, different
from the data that will be used during the operational phase of the model when
the fault injector is no more used.

Using a software timer presents another problem, but first, we have to take a step
forward. To execute the benchmarks, we decided to use a real-time Operating
System, FreeRTOS. Our OS implements the software timer. Unfortunately, the
ones implemented by FreeRTOS present a low granularity of one millisecond.
Given the fact that the total target application execution duration is of the order
of a few milliseconds, a potential injection triggered by the FreeRTOS timer would
also present a low granularity in terms of a temporal level.

In the end, we decided to use the debugger. Modern processors have a mod-
ule dedicated to debugging, able to control the software execution over the CPU,
and able to access CPU registers both for reading and writing.

This approach introduces a little overhead in terms of time due to the fact that
the normal execution is stopped by the external debug module. This module
has to read and write the CPU registers and, at the end, resume the standard
computation.

This behavior is repeated for each execution done to create the final dataset.

On the other hand, this approach does not modify the executable and so does not
need to recompile the code and re-flash the board.

Moreover, this approach presents a good temporal granularity, allowing computa-
tion to be blocked at the assembly instruction level simply by inserting breakpoints,
without any difference from a pure temporal approach using the timers, with the
advantage of not using precise control, debugger provides precise control over the
execution of the program, allowing you to set breakpoints, inspect memory, and
step through code to pinpoint issues. Instead, using a timer lacks repeatability, as
this approach relies on timing and interrupts, which might not always produce the
exact conditions you want to test. For example, if we configure the same injection

19

Fault Injector

point at the same time for different executions, the outcome could be different due
to the fact that the OS schedule is not deterministic.

The timer is configured to trigger the interrupt after a specific period of time. In
different executions, it could potentially stop the program in different positions in

different lines of code (LOC).

Now, exploring more in depth the debugger approach. The modern CPUs usually
integrate a debug module, which is mainly used for two modes:

 Self-hosted debug.
o External debug.

The most interesting mode for us is the second, which, as its name suggests, allows
us to control the debug phase over our target architecture from an external host.
For us, a key activity of an external debugger is to read and write the registers inside
the processor core. To do this, the debugger (external host) needs to physically
connect to the chip and then generate. Typically, an external debugger uses the
JTAG protocols (IEEE 1149.1 [15]).

Another common debug activity is to halt a processor core by stopping the execu-
tion of the program and allowing an external debugger to check the current status
of the processor core registers.

All these functionalities are exploited to create the fault injector. Given the
number of executions, the basic idea is to set a breakpoint each time in a different
random position. When the execution reaches that breakpoint, select a random
register and perform a single bit-flipping, resume the execution, wait for its com-
pletion, collect the performance counter, and restart with a new execution. This
procedure is shown more in depth in the image 3.1.

That is all for the more theoretical aspects, in the next section, we will instead go
into more detail regarding the more practical aspects.

20

Fault Injector

()
Compile and flashing

the target application
(. J

v

-
Set the number of
executions (N)

~

. J
' % ™
Set a random
Breakpoint
| J

v

(" Start the execution)
and wait until
reaches the

Y breakpoint)

v

No (" Select a random
register and performs
@ single bit flipping)

v

Resume the
execution and wait
\until reaches the endj

v

e ™
Collect the
Performance Counter
(. J

Has the program
been run N times?

=)

Figure 3.1: Flow Chart of the fault injector.

21

Fault Injector

3.1 Setup

Now, let’s move on to the more practical aspects for what concern the hardware

and software setup used in this thesis work.

Starting with the hardware setup. The chosen target architecture is a Dual

ARM Cortex A9 on board the Xilinx PYNQ Z2, image 3.2.

The PYNQ Z2 is an open-source project from Xilinx. It is a board based on Xilinx
Zynq SoC, which is designed for the Xilinx University Program to support PYNQ
(Python Productivity for Zynq). It has many features and interfaces that are useful

for trying out the capabilities of the PYNQ framework.

Some of the main characteristics are:

Processor: ARM Cortex A9.

Programmable logic FPGA.

Memory: 512MB DDR3.

Storage: MicroSD.

Video ports: HDMI In and Out.

Network: 10/100/1000 Ethernet

Expansion USB 2.0 Port

GPIO and Other I/O like LEDs and buttons.

Figure 3.2: Pynq Z2 board.

22

Fault Injector

We decided on this board given the Arm Cortex A9 processor, which is a highly
adopted platform that well represents those used in the real environment in terms

of cost and performance. Furthermore, a USB port is present, able to configure the
board through JTAG.

The Arm Cortex A9 is a 32-bit dual-core processor. It has a frequency of 650 MHz
and is based on ARMv7, but it also supports the Thumb and Thumb-2 instruction
set and presents a coherent management of the cache, it presents a configurable
Performance Monitoring Unit that is easy to configure and able to track a wide set
of architectural events.

it is one of Arm’s most widely adopted processors and is used in many systems on
a Chip (SOC), like smartphones and videogames.

The Cortex-A9 processor features a dual-issue, partially out-of-order pipeline and
flexible system architecture with configurable caches and system coherency, achiev-
ing a better than 50% performance over the Cortex-A8 processor in a single-core
configuration.

The fact that this processor is dual-core is essential. Thanks to that, in a fu-
ture work, we can run the target application, the benchmark, on a core, and thanks
to the other core, we can run a specific program able to collect statistics about
the execution of the target application. As already mentioned, the architectural
events are tracked by the performance counter in the PMU. Once we collect these
statistics, this specific support program can preprocess these data and pass them
to the pre-trained ML Model that can perform the classification. In the end, it can
also manage the outcome of the classification and potentially reschedule the target
application task that occurs in a soft error. Potentially we can also run directly
the pre-trained model on the other core of the Arm CPU.

One of the most relevant processors for our study is the Performance Monitoring
Unit (PMU). According to the Technical Reference Manual, the Cortex-A9 PMU
provides six counters to gather statistics on the operation of the processor and
memory system, in other words, the architectural events. Each counter can count
any of the 168 events available in the Cortex-A9 processor.

In the PMU are present the six counters registers and their associated event type
registers, that specify the tracked event for each of them, plus other registers for
the configuration. Accessible through the internal CP15 interface.

23

Fault Injector

configuration Register

(— Cache miss >

Memory R/W >

Architectural-Events HPC

\ 4

_ Branch BN

Figure 3.3: Event selection to configure a single hardware performance counter
(HPC).

The performance monitoring events are defined in the ARM Architecture Refer-
ence Manual (https://developer.arm.com/documentation/ddi0388/latest/). Some
examples are instruction cache miss, data cache access, data cache miss, data read,
data write, exception taken, exception return, change of the PC, immediate branch,
branch mispredicted or not predicted, and so on. For more information about these
events, see the ARM Architecture Reference Manual.

As already mentioned, the PMU can track the architectural events in six reg-
isters that act like performance counters, but these registers need to be configured.
To do that, other configuration registers are present in the PMU. According to the
32-bit based architecture, all registers are 32-bit width.

Let’s check all the registers present in the PMU and their descriptions, table 3.1.

Now that we have seen the embedded system, particularly the processor on board,
we can move to see the Software setup.

The software stack comprehends the Hardware Abstraction Level (HAL), an Oper-
ating System (OS), and, on the top, the application level.

The hardware abstraction level is a set of routines in software that provide access
to hardware resources through programming interfaces that allow the writing of
device-independent code by providing standard operating system (OS) calls. For

24

https://developer.arm.com/documentation/ddi0388/latest/

Fault Injector

Table 3.1: PMU Register Descriptions. There are six PMXEVCNTR and six
corresponding PMXEVTYPER identified by the last character that is a number
from zero to five.

Name Type Description

PMXEVCNTRO0-5 RW Event Counter Register

PMCCNTR RW Cycle Count Regiter

PMXEVTYPERO-5 RW Event Type Selection
Register

PMCNTENSET RW Count Enable Set Regis-
ter

PMCNTENCLR RW Count Enable Clear Reg-
ister

PMINTENSET RW Interrupt Enable Set Reg-
ister

PMINTENCLR RW Interrupt Enable Clear
Register

PMOVSR RW Overflow Flag Status
Register

PMSWINC WO Software Increment Reg-
ister

PMCR RW Performance Monitor
Control Register

PMUSERENR RW User Enable Register

PMSELR RW Event Counter Select
Register

this work, this part is not so relevant; we have to know that it exists and is needed
for the project, but it is not modified.

The application, in our case, acts like a target for the classification, like a benchmark.
We decided to use MiBench [16], a free representative embedded benchmark suite
that contains benchmarks and input files for each of the different programming

25

Fault Injector

groups. We use a subset of them:
e QSort from the Automotive groups.
e SHA from the Security groups.
e Dijkstra from the Network groups.

They present different characteristics in terms of time and space complexity, as we
can see in the table below 3.2.

Table 3.2: Benchmarks characteristics

Name Time Complexity Space Complexity

Dijkstra O(V?) when using a sim- Depends on the data
ple implementation, but structures used for imple-
it can be optimized to mentation. It can range
O(E + Viog(V)), (E = from O(V?) to O(V + E)
Edges, V = Vertices)

QSort O(nlog(n)), but it can O(log(n)) for the recur-
degrade to O(n?) in the sive call stack.
worst case.

SHA SHA-256 has a time com- Usually constant, as it op-
plexity of O(n). erates on fixed-size blocks

of data.

In summary, among the three benchmarks, SHA and Dijkstra’s algorithms are
typically more compute-intensive due to their computational complexity, while
QuickSort is relatively less memory-intensive and more compute-intensive. How-
ever, it’s important to note that the resource usage of these benchmarks can vary
depending on the specific implementation and input data.

Another fundamental part of the software stack is the operating system. It is
in charge of managing the application executions over the hardware, using the
routines defined on the Hardware Abstraction Level.

We decided to use FreeRTOS, which is a real-time operating system for embed-
ded systems. It is distributed under the MIT open-source License, and it is a
market-leading real-time operating system (RTOS) for microcontrollers and small
MiCcroprocessors.

26

Fault Injector

A real-time operating system is an OS for real-time computing applications, other-
wise from a time-sharing operating system (Unix), which manages the sharing of
system resources with a scheduler. All processing must occur within the defined
constraints that are event-driven and preemptive, making the OS able to change the
task priority. Event-driven systems switch between tasks based on their priorities,
while time-sharing systems switch tasks based on clock interrupts.

This kind of OS, a specialized software system designed for applications where
timing and responsiveness are critical, guarantees predictable and low latency,
unlike general-purpose systems.

They are extensively used in industries such as aerospace, automotive, and in-
dustrial automation, ensuring tasks are executed within precise time constraints,
making them ideal for Safety-Critical Real-Time Embedded Systems applications.
That is exactly what we are looking for in our work.

In particular, FreeRTOS offers features like task scheduling and inter-task commu-
nication. It is mostly written in the C programming language to make it easy to
port and maintain.

It provides methods for multiple threads, in this case, called task synchronization
primitives, like mutex and semaphores, and also provides methods for static and
dynamic memory allocation. Unlike Unix-based Os, it pones the emphasis on
compactness, low overhead, and speed execution. FreeRTOS can be thought of as
a thread library rather than an operating system.

Other key features are:

POSIX-like input/output (I/O) abstraction.

Scheduler can be configured for preemptive (priority) or cooperative multi-
tasking (round-robin).

Tick-less option for low-power applications.

Coroutine support (lightweight tasks with limited use of the call stack).

system timer based on tick (1 ms).

Now we have seen the complete software stack, image 3.4. The complete setup also
includes a host machine with Ubuntu Linux and the Xilinx Vitis IDE installation.
The host machine is in charge of compiling the freeRTOS, plus the benchmarks,
and flashing it on the Pynq Z2 board, then controlling the execution, using the
debugger commands, and, at the end, collecting the results.

27

Fault Injector

Application (MiBench)

FreeRTOS

Embedded System (ARM Cortex A9)

Figure 3.4: Software Stack.

28

Fault Injector

3.2 Realization

First of all, starting with the right version of FreeRTOS for ARM Cortex A9
embedded processors, let us go to preparing the benchmark from Mibench.

To do this, we need to configure a new task for running the benchmark with the
already implemented freeRTOS function xTaskCreate(). This function creates a
new task and adds it to the list of task that is ready to run, take as parameters:

« The pointer to the task entry function (name of the function that implements
the task).

o A text name for the task.

o The stack allocated to the task.

o The task parameter is not used set to null.

o The task priority (IDLE_PRIORITY is the lowest).

o The pointer for returning the handle to the created task.

Then we need to run this task starting the scheduler with the freeRTOS function
vTaskStartScheduler().

Listing 3.1: RTOS Task Creation Code

1

int main (void){
xTaskCreate (faultInjectorTask ,
(const char %) "fault Injector',
configMINIMAL_STACK_SIZE,

NULL,
tskIDLE PRIORITY + 1,
&xTxTask);
vTaskStartScheduler () ;
for (35);
}
static void faultInjectorTask(void xpvParameters){
confPMU () ;
beanchmark () ;
readPMU () ;
vTaskDelete (NULL);

In freeRTOS, tasks are normally implemented as an infinite loop; the function
that implements the task must never attempt to return or exit. If all is well, the
scheduler will now be running, and the infinite loop line will never be reached. If
that line does execute, then there was insufficient FreeRTOS heap memory available

29

Fault Injector

for the idle and/or timer tasks to be created.
At the end of the task with the vTaskDelete(NULL), delete the task.

Now we have a version of freeRTOS with installed our benchmark. The com-
pilation results in an Executable and Linkable Format. The ELF format is flexible,
extensible, and cross-platform, supporting different endiannesses and address sizes
to be compatible with different CPU and instruction set architectures and many
operating systems.

The main problem is the realization of a script able to control the target ap-
plication execution using debug commands. Xilinx Software Command-Line Tool
(XSCT) is an interactive and scriptable command-line interface to Xilinx SDK
that also includes Vitis. XSCT is based on Tools Command Language (Tcl) and
supports many actions, like creating and configuring hardware, board support
packages () and application projects, and flash boot images.

XSCT also includes specific commands to control the debugging of the running
application, investigating the hardware and the software.

To script those commands, we use a Python module called Pexpect. This module
makes Python able to spawn child applications, control them, and respond to ex-
pected patterns in their output. This module is useful for automating applications,
for example, ssh or ftp.

Now we have all the ingredients to create our fault injector:
e XSCT commands to control the program execution and debugging.
e Pexpect module to script those commands in a Python program.

Before starting to see in-depth the realization of the script, some problems must
be addressed. First, the architectural events are a lot, more precise 168 for this
specific architecture, but we have only six performance counters (PC) in the PMU.
To solve this problem, we ran the target application with the same fault but tracking
any time different events.

For us, a fault is a tuple of where and when a bit flipping is performed, the bit in
the register, and the line of code.

Basically, we have:

number_of _events = @ = 28 = number_of executions__for_every fault

number_of PC 6
(3.1)

This means that the number of total executions needed to create the final dataset
is significantly increased by a factor of 28, considering collecting all possible events.

30

Fault Injector

The second problem is originated by freeRTOS. In the fault injector, we need
to know when the execution reaches the end to collect all the PC and restart with a
new execution. The problem is that freeRTOS keeps executing the IDLE task if no
other tasks are available for running, this means that the execution over the board
never reaches the end. To address this problem, we can set a final breakpoint at
the end of the task with the benchmark, wait for the program to reach that final
breakpoint and then collect the PCs and start a new simulation.

According with the flow chart 3.1, the script needs to:

1. Set the global variable (number of faults, number of executions for faults, etc.)
and create an empty dataset.

2. Spawn the XSCT console and.

3. Run the initialization script (init.tcl), which is a list of XSCT commands for
connecting to the board and flashing the elf file on it.

4. set the final breakpoint.

5. Start the simulations.

Listing 3.2: example of pexpect code to setup the script

def main():
f = open("dataset",

w') #Output file

xsct = pexpect.spawn("xsct")
xsct.expect ("xsct%")
print (xsct.before.decode())

xsct.sendline ("source /home/enrico/Desktop/marvin/scriptTCL/init .
tcl")
xsct.expect (

n

.« Successfully downloaded.x")

xsct.sendline ("bpadd —file freertos hello world.c —line " +
final_bp)
xsct . expect ('

"

.« Breakpoint 0.x")

In pexpect the main functions are spawn(), to spawn the child process, expect()
to catch data in the standard output (stdout) of the child and wait for a certain
pattern, sendline() to send a line in the standard input of the child (useful to
submit commands).

31

Fault Injector

Thanks to these commands, we can control the execution and realize the fault
injector. But as already said, the pexpect Python module alone is not enough. We
also need to use the XSCT commands to access the embedded system hardware.
We need commands to:

e Connect and flash the target system.
e Control the debug.

o Access the CPU registers.

e Read and write the memory.

In particular, we need to set and delete breakpoints, start, stop, and resume
executions, read and write CPU registers and memory, see table 3.3 or more in details
on Xilinx site (https://docs.xilinx.com/r/en-US/ugl400-vitis-embedded /XSCT-
Commands).

We can now put together all these commands in a Python script to create our fault
injector. As mentioned before, it requires two cycles nested, the outer one cycles
over the faults, and for each fault generated randomly:

o Where: selecting CPU register and bit position.
e« When: Select a memory address in the code space for setting a breakpoint.

The inner cycle, instead, is in charge of executing the benchmark task more time
for each fault. Due to the fact that we have only six performance counter to collect
all the architectural events, as see in equation 3.1. Actually, as we will see in the
next chapter, we collect only a subset of all architectural events, so the number of
cycles in the inner cycle is reduced.

Another important particular is that the Python script runs on the host ma-
chine, and freeRTOS, which runs on the target system, can exchange information
using the central memory of the target system. Basically, freeRTOS can read and
write normally his memory space; instead, the host can use the XSCT commands
to write and read in the target memory.

Given that, the inner cycle has to be written in the memory, in a specific ad-
dress known by the target, and events have to be tracked. Then, set the breakpoint,
chosen by the outer for, and run the execution, wait until the first breakpoint is
reached, inject the faults, remove the fault breakpoints, resume execution until the
last breakpoint is reached, or wait for a timeout exception to occur. In the end, in
the outer for the host read in the target memory, in a specific address, the result
written by freeRTOS and written in the dataset, benign or silent data corruption,
or if a timeout occurs, the faults are marked as crash/hangs.

32

https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded/XSCT-Commands
https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded/XSCT-Commands

Fault Injector

Listing 3.3: Fault injector script

i|for i in range(int(num_of fault)): #Outer cycle

rand_bp_pos = random.randint (int (init_task , base=16), int(
fin_task , base=16))

reg_flipping = random.randint (0, 10)

pos_ flipping = random.randint (0, 31)

™

6 dataset . write(f"{i}: reg: {reg_flipping} pos: {pos_flipping} at
LOC: {rand_bp_pos}\n")

7 xsct.sendline ("mwr 0x10200 " + str(i)) #set events to track

8 crash = False

10 for y in range(num_of run): #Inner cycle

11 xsct.sendline ("mwr 0x10000 0x0")

12 xsct.sendline ("mwr 0x10000 " + str(y))
13 rand_bp_cmd = "bpadd " 4+ str(rand_bp_pos)
14 xsct.sendline (rand_bp_cmd)

15 xsct.sendline ("con —addr 0x00100000")

n

-
-1

xsct.expect (".* Breakpoint.x")

fault_injection (xsct, reg_flipping, pos_flipping, crash)
xsct.sendline ("bpremove " + str(num_bp_remove))

num_ bp_remove = num_ bp_remove + 1

xsct.sendline("con")

R,
S © w

try:
xsct.expect (" .x Breakpoint.x")
except:
#A timeout exception occurs
crash = True
break

NN N NN
o oA W N

23

NN NN
g -~

if crash == False:
xsct.sendline ("mrd 0x10100")
xsct.expect (".%10100: =")
value = xsct.readline () .decode()
34 if value[len(value)—5] = "1":
35 dataset . write("benign\n")
36 else:
37 dataset . write ("SDC\n")
38 else:
39 dataset . write("crash/hangs\n")

@ N o= O

33

Fault Injector

Now that we have seen the Python script, we can come back to the target task
in freeRTOS. Beyond the benchmark, that task also has to configure the PMU to
track the correct architectural events and read the performance counter.
Following this order, see code 3.1, the target task has to:

1. Configure the PMU.
2. Execute the benchmark.

3. Read the performance counter in the PMU.

For the benchmarks, we do not have much else to add. We tried some benchmarks
from MiBench, a little modified to fit in freeRTOS, changing the input part and
adding at the end the check of the output to control if the execution is benign or
silent data corruption and write it on his memory in a specific address, read by the
python script.

To configure the PMU, we need to use the register present on it. See table
3.1. The configuration procedure needs to configure the PMU, read in the memory
from a specific address the events that, in this run, the PMU has to track, and
then start the real configuration procedure. For writing in these PMU’s registers,
we have to use the ARM assembly command Move to Coprocessor from ARM
Register (MCR <register> <value>) where the coprocessor is the PMU. To run this
instruction from ¢ code, we used the asm keyword that allows to embed assembler
instruction within ¢ code, associated with the wvolatile keyword that forces the com-
piler’s optimizer to execute the code as is 3.4. First, we need to enable user mode
access in the PMU, then in the Performance Monitor Control Register (PMCR),
enabling all the events counter and reset them, and enable all performance counters
in the Performance Monitor Count Enable Set register (PMCNTENSET). Loop to
configure each counter. For each counter, we have to select it in the Performance
Monitors Event Counter Selection Register (PMSELR) and select an event to track
in the Performance Monitors Event Type Select Register (PMXEVTYPER).

See the complete code 3.4.

The procedure is similar for reading the PMU at the end of the benchmark,
but instead of using the MCR instruction, the Move to ARM Register from Copro-
cessor is used. For each PC, we have to select the counter in the PMSELR, read
the event type in PMXEVTYPER, and the counter in the Performance Monitors
Event Counter Register (PMXEVNCNTR). At the end, print on the console the
event type plus his value.

34

Fault Injector

Host PC

Initialize and flashing
board

Y

Generate fault

Start target ARM Cortex A9
FreeRTOS Bootstrap
Wait for.injection Configure HPC
breakpoint
Task
1°BP
Start another
execution . Resume script execution
Task
Inject fault suspended

Resume target execution

\\/:—\
Task
Wait for final
breakpoint Read HPC
Final BP
: Resume host execution IDLE Task
Append to Dataset -

Figure 3.5: Flow software execution over the host and the target.

Now we have all the parts of our fault injector. The last thing that we need is a
simple Python script, a listener that reads what is written on the serial port, in
our case, the ’/dev/ttyUSB1’, the one connected with the target system.

This script is needed to read and save the performance counter in the dataset.

35

Fault Injector

Listing 3.4: PMU Configuration

il static void confPMU(){

2 char* pointer = (char*)0x10000;

3 int ¢ = (int)pointer [0];

4

5 int events[42] = {1,3,4, ..., 144,145, 146};

6

7 // Emnable user—mode access to performance counters

g asm volatile ("MCR pl5, 0, %0, C9, Cl4, 0\n\t' :: "r"(1));

9 //Enable bit in pmecr for enabeling the events counter and reset
them

10 asm volatile ('MCR pl5, 0, %0, C9, CI12, O\n\t" :: "r'(0x4109300B)
) ;

11 // Emnable all counters in pmcntenset

12 asm volatile ('MCR pl5, 0, %0, c9, cl12, 1\t\n" :: "r"(0x8000003f)
)

13 for(int i = 0; i < 6; i++){

14 // select PC in pmselr

15 asm volatile ('MCR pl5, 0, %0, c9, cl2, 5\t\n" :: "r"(i));

16 // select event to track in pmxevtyper

17 if(c < 7)

18 asm volatile ("MCR pl5, 0, %0, C9, C13, 1" :: "r'"(events]|
i+c*6]));

19 }

2(]}

Listing 3.5: PMU Reading

static void readPMU () {

1

2 unsigned int counter_value;

3 unsigned int evn_ type;

4 for(int i = 0; i < 6; i++){

5 //selecting counter in pmselr

6 asm volatile ('"MCR pl5, 0, %0, C9, Cl12, 5" :: "r"(i));

7 //reading event type in pmxevtyper

8 asm volatile ('MRC pl5, 0, %0, C9, C13, 1" :"=r"(evn_type));
9 //reading counter in pmxevncntr

10 asm volatile ("MRC pl5, 0, %0, C9, C13, 2" :"=r"(

counter_value));
11 xil_printf("%d: %d\n", evn_type, counter_value);

12 }

36

Fault Injector

Table 3.3: XSCT Commands description

Command

Description

connect [options|
disconnect

targets <target id>

rrd [options| <reg>

rwr <reg> <value>

state

stop

con <address>

mrd [options] <address> <num>

mwr [options] <address> <values>
<num>

dow [options| <file>

fpga <bitstream-file>
rst

bpadd [option]

bpremove <id>

bplist

Allows user to connect to a TCF server
Disconnect from TCF server

Return the list of all available targets,
or if a target id is specified, set that
target as the current target

Read registe fot active target

Write the <value> to active register
specified by <reg>

Return the current execution state of
target

Suspend execution of active target

Resume execution of active target, with
<address we can optionally specified
from where reasume the execution

read <num> data values from the ac-
tive target’s memory <address>

Write <num> data values from list of
<values> to active target memory ad-
dress specified by <address>

Download ELF file <file> to active tar-
get

Configure FPGA with given bitstream.
Target reset

Set a breakpoint, option for specifing
the location address or line

Remove the breakpoints/watchpoints
specified by <id>, -all remove all break-
points

List all the breakpoints

37

Chapter 4
Machine Learning Model

Artificial Intelligence (AI) is a vast world. Many are the models, like many are the
applications from the easiest classifier to complex generative model.

Fortunately, in our case, we need a simple classifier able to distinguish the outcomes
of a fault injection occurring during the execution of benchmarks.

Despite the fact that our goal is relatively simple, many of the possibilities are split
into two main categories:

o Machine Learning models.
e Deep Learning models.

In the first category, we found all the classical classifiers like Gaussian, logistic
regression, SVM, etc. Instead, in the second, we found classifiers based on neural
networks and models derived from that.

The choice of the model and the choice of his hyper-parameters are crucial, but
before that, we need to do a little analysis of our datasets.

4.1 Data Analysis

The datasets used in this work are three, each created over a different benchmark.
That are SHA, QuickSort (QSort), and Dijkstra.

All the benchmarks include as features the values collected by the Performance
Counters (PC). To reduce the collecting time, not all the available architectural
events are tracked. Only the one that from preliminary studies figures it out stays
always constant.

In total, we have 42 architectural events that are variable across different executions.

. . BEuvents Number _ 42 _ :
According to the equation 3.1, we need W = 7§ = 7 that is the number

38

Machine Learning Model

of execution per fault needed to collect the 42 events. Comparing this result with
28 executions needed to collect all the available events, a reduction of a quarter
allows us to significantly reduce the time required to create a dataset.

Recalling our goal, we need to perform a binary classification to separate the
executions into two categories: Silent Data Corruption (SDC) and Benign. The
other possible outcomes, crash, hang, and reboot, are trivial to detect in runtime
and, for this reason, are not considered during the classification.

Due to this fact, the fault injection is only performed in the first eleven registers
from RO to R10, keeping out the special registers like the Stack Pointer Register,
Link Register, and the Program Counter Register, which are the registers most
likely to generate crashes, reboots and hangs.

On the other hand, injection faults only in standard registers (R0-R10) do not mean
that crashes, hangs, and reboots are completely avoided. In a lower percentage,
they are still present.

Those can occur for different reasons. One example could be a corruption of a
pointer that leads the program to access a portion of memory that does not exist
or in which it does not have permission to read/write, causing a segmentation fault
and, in consequence, a crash.

In the table 4.1 we can see the breakdown of the various categories separated
by benchmark.

Table 4.1: Breakdown of the various categories separated by benchmark

Benchmark Benign SDC Crash/hang Total
SHA 13657 1733 54 15444
QSort 4919 133 63 o115
Dijkstra 4920 228 32 5180

The category distributions reflect the benchmark characteristic. Looking at the
high number of crashes in QSort and Dijkstra, we can presuppose that they are
generated by the extensive use of structs and vectors in memory indexed by point-
ers.

Instead, the high number of Silent Data Corruption generated during the SHA
dataset creation could be caused by the high number of CPU operations needed to
compute the result over the same input data.

39

Machine Learning Model

Anyways, all three datasets are filtered to remove crashes, hangs, and reboots, and
keeping only the two classification’s target categories benign and SDC.

Now, we have the datasets filtered with only the potentially useful information for
the classification.

Each sample is described by 42 architectural events: 42 continuous variables and is
preprocessed employing Z-normalization, which basically is centering and scaling
to unit variance, equation 4.1.

z = u, x = sample, u = mean, o = standard deviation (4.1)
o

The Z-normalization is helpful for many reasons. Like the comparison of variables
that use different units or scales, it can improve the numerical stability of cer-
tain calculations, and also, for machine learning algorithms, standardization helps
gradient-based optimization algorithms converge more quickly.

From figure 4.1, we can observe some examples of raw feature distributions, plotted
by separating the SDC from the benign. We can notice that those raw distributions
are very irregular and sometimes seem completely overlapped. This can negatively
affect the classification.

For this reason, we have also tried to apply a Gaussianization as a prepos-
sess technique. Following the equation 4.2.

y=® (F(z)), x = sample, ® ' = inverse, F(z) = cumulative distribution func
(4.2)
Gaussianization is a data transformation technique that makes data follow a Gaus-
sian distribution.
Gaussianization can be beneficial for parametric modeling, where it assumes a
specific functional form for the data distribution. When data is Gaussianized, it
becomes easier to apply models like linear regression or the Gaussian classifier
model, and in particular, the Gaussian is less sensitive to outliers, reducing the
impact of outliers on statistical analyses.

We can see from figures 4.2 that now the features are scaled to follow a Gaussian
distribution and are more spread on the plot and, in same cases, also less over-
lapped.

This could suggest that a model based on a Gaussian Classifier could fit well our
problem.

40

Machine Learning Model

[Benign
6000 - I sDC
4000 -
2000
0

00 25 50 75 100 125
Level 1 data cache access

(a) QSort
[Benign
3/ | SDC
2 J
1.
0 — : ;
-2 -1 0
Data memory access, write
(b) Dijkstra
2501 [Benign
200 | [sDC
150 1
100 4
50 -
0 . ; :
0 10 20 30

Unaligned access, read
(c) SHA

Figure 4.1: Histogram plot of raw features, only Z-normalized

41

Machine Learning Model

[Benign
1.5 I sDC
1.0+
0.5 -
0.0

=2 =1 0 1
Level 1 data cache access

(a) QSort

0.6 B Benign
B sDC

-2 -1 0 1
Data memory access, write

(b) Dijkstra

[Benign
[sDC

0.5 1

0.4 1

0.3

0.2 1

0.1

0.0

-2 0 2
Unaligned access, read

(c) SHA

Figure 4.2: Histogram plot of Gaussianized features.

42

Machine Learning Model

A correlation analysis of the features (heatmaps 4.3) shows some correlation
computed as the absolute value of the Pearson correlation coefficient through the
features themselves:

I Cov(X,Y) (43)

\/V(ZT(X) \/Var(Y)

The Pearson correlation coefficient measures the linear relationship between two
features. It varies between -1 and +1, with 0 implying no correlation. Correlations
of -1 or +1 imply respectively a negative or positive exact linear relationship.
Instead, the p-value roughly indicates the probability of an uncorrelated system
producing features that have a Pearson correlation at least as extreme as the one
computed from these features. If this probability is lower than 5% (P < 0.05) the
correlation coefficient is called statistically significant.

This suggests we may benefit from using PCA to re-map data in a lower di-
mension space to remove the uncorrelated features and to reduce the number of
parameters to estimate. It also suggests that models that use diagonal covariance
matrix (Naive Bayes assumption) should perform significantly worse than other
models.

0 T = =
o i e
20 418 _I.'l s ‘J l.
30] u L]
G i
0 20 40
(a) QSort (b) Dijkstra (c) SHA

Figure 4.3: Heatmaps of the Pearson correlations. The darkest regions represent
the features more correlated (The features are over the two axis)

It is also possible to compute the correlation between the features and the label.
In this case, a greater correlation between the features and the labels is reflected in
a greater accuracy in the classification. Furthermore, the plots of the Gaussianized
features, figure 4.2, clearly present some regions without overlapping the two cat-
egories. This should also affect the correlation between those more discriminant
features and the label, presenting a higher correlation value.

43

Machine Learning Model

Table 4.2: Pearson correlation values between most discriminant features and the
label separated by benchmark, ordered from the most negative correlated to the
most positive correlated

Event Pearson coefficient P-value
Dijkstra

9 -0.556 1.381e-23

2 -0.407 8.317e-13

27 -0.405 1.023e-12

18 0.020 0.736

6 0.084 0.157

3 0.348 1.520e-09
QSort

25 -0.557 3.431e-17

21 -0.529 2.194e-15

11 -0.509 3.263e-14

39 0.719 0.318

33 0.451 3.794-11

38 0.475 2.336¢e-12
SHA

12 -0.851 0.0

8 -0.780 0.0

4 -0.534 4.598e-172

34 0.127 7.779¢-15

38 0.164 44 1.395¢-15

5 0.255 6.032e-36

Machine Learning Model

The correlations reported in table 4.2 prove the hypothesis that a significant corre-
lation exists between the features, with less overlapping between the two categories
and the label. See appendix A for the event description.

The last analysis performed over the three benchmark datasets is the one of
the scatter plots. A scatter plot uses dots to represent values for two different
numeric variables.

Our data are represented with more than two variables, to be precise, with 42 nu-
merical features (architectural events). Principal Component Analysis is performed
to reduce the data dimension from 42 to 2.

The Principal Component Analysis (PCA) is an unsupervised learning technique
for reducing the dimensionality of data, increasing interpretability, and at the same
time minimizing information loss.

It helps to find the most significant features in a dataset. For our purpose, it makes
data easy to plot in a 2D scatter plot. In general, it is also useful because working
with high-dimensional data is time-consuming, and often, machine learning models
seem to overfit and reduce the ability to generalize.

Thanks to the PCA, the data are represented by the projection over the N principal
component, where N are parameters that represent the numbers of dimensions after
the reduction, in our case two. The Principal Component is a straight line that
captures most of the variance of the data. They have a direction and magnitude.
Principal components are orthogonal projections (perpendicular) of data onto
lower-dimensional space.

The figures 4.4 shows the scatter plot of the z-normalize dataset after apply-
ing 2D PCA, separated by categories.

They show the distribution of the SDC in general more scattered with respect to
the benign and we a significant presence of outliers.

om2
omz2
m

s
W
& QST

25| e Bening 4 -80
sDC

-100 -75 50 -25 00 25 50 75 0 0 0 0 a0 50 60 [20 40 0 80 00 120 140
mL coml coml

(a) Dijkstra (b) QSort (c) SHA

Figure 4.4: Scatter plots of the three datasets, after applying two dimensional
PCA over z-normalized data.

45

Machine Learning Model

This can be explained: we aspect this behavior for the reasons that bit flipping
brings to a SDC has a high potential of in-deterministic behavior and consequently
a significant alteration of the architectural events.

The scatter plotted over the gaussianized data are more scattered and more legible.

5 - . @ Bening 00 . @ Bening @ Bening
A~ o soC o s 4] o o
4 N 0.‘ s
. .
. .
3 e 0, t 50 2
¢ L] L]
21 4 c e . 25
o - M . a0
§ . 5 . .) §
1 . 00 .
o X o
(X . [. ¢ . " i. '&‘. XY 5
0 se '.‘?’..‘ c- -25 ks Sttt
t g ™o, ° N
o ooy A .. oo LY T -4
e°, ° o - .‘.é N
-2 ¢ 15 6
-100 715 -50 25 0o 25 50 75 0.0 -8 -6 —4 -2 o 2 4 13 8 -10.0 =15 5.0 -25 00 25 50 75
coml oml coml
(a) Dijkstra (b) QSort (c) SHA

Figure 4.5: Scatter plots of the three datasets, after applying two dimensional
PCA over gaussianized data.

In general, the two categories are not completely overlapping but not completely
separated. In fact, they present the same region in common. This region, where
the two categories are overlapped, they are regions hard to classify. For this region,
by a trained model over those data, we did not expect a high accuracy.

46

Machine Learning Model

4.2 Classifier

A classifier in machine learning is an algorithm that aims to categorize data into a
set of classes. There are both supervised and unsupervised classifiers.

e Unsupervised machine learning classifiers are fed only with unlabeled
datasets. They classify according to pattern recognition or structures and
anomalies in the data

o Supervised machine learning classifiers are trained with labeled datasets,
from which they learn according to predetermined categories.

Depending on the task and the data, there are different typologies of classifica-
tion algorithms.

Decision Tree is a supervised machine learning algorithm used to build models
like trees to classify data into hierarchical categories tree.

Naive Bayes classifiers are probabilistic algorithms that calculate the probability

of each category for a given data point, then output for the highest probability:

B|A) x P(A)
P(B)

For each point, this equation 4.4 calculates the probability that a data point belongs

within a certain category. Examples of this are Gaussian Classifier or Logistic
Regression.

pajp) = 2 (4.4)

K-Nearest Neighbors is a pattern recognition algorithm that learns from training
data points by calculating how they correspond to each other in n-dimensional
space. K-NN places a given point within a category by calculating its nearest
neighbor.

Support Vector Machines (SVM) classify data within finite degrees of po-
larity. Practically, SVM assigns a hyperplane that best separates the two categories.
The best hyperplane is the one with the largest distance between each category.

Artificial Neural Networks are designed to work much like the human brain
does. They belong to deep learning models that require vast amounts of training
data. There are a variety of artificial neural networks, including convolutional,
recurrent, and feed-forward.

Now, to choose the correct machine learning model, we have to start consid-
ering our goal. We have to perform a binary classification to classify our three

47

Machine Learning Model

dataset samples into two categories (benign and SDC). Due to the fact that we
have labeled datasets, we can exploit supervised techniques such as the Naive Bayes
classifier or a Neural Network. Furthermore, our features are continuous variables
that a Naive Bayes model can simply manage without requiring more complex
Neural network models.

From the data analysis, we figured out that our data fit well in Gaussian distribu-
tion if properly Gaussianized. This suggests that a Naive Bayes Gaussian model
that classifies data based on Gauss distribution could bring a good classification
accuracy.

4.2.1 Gaussian Classifier

Using Bayes’theorem, we can derive a generative Gaussian classifier. These kinds
of classifiers are simple, intuitive, and interpretable. The Gaussian/normal distribu-
tion is one of the most commonly present in nature. The model assumes that the
continuous-valued features for each class follow a Gaussian (normal) distribution
The Gaussian classifier is built on Bayes’ theorem, which is a fundamental concept
in probability theory. It relates the probability of a particular event happening
based on prior knowledge of conditions that might be related to the event.

The Naive assumption of feature independence. It assumes that the features used
for classification are conditionally independent given the class label. This simplifies
the model but may not hold true for all datasets. To build the model, two sets
of parameters for each class need to be estimated: the mean (u) and the variance
(0?).

To classify a new data point, the Gaussian classifier calculates the likelihood of
the data point’s feature values under each class’s Gaussian distribution. It then
combines this likelihood with the prior probabilities of the classes using Bayes’
theorem to determine the most likely class for the data point.

It also performs well with small datasets. This point is fundamental to our
work because due to the high unbalancing of our two categories, An imbalance
occurs when one or more classes have very low proportions in the training data as
compared to the other classes, see table 4.3 for our categories proportion. Our data
presents a severe class imbalance due to the fact that the occurrence of Silent Data
Corruption is a rarer event compared to benign occurrence. The minority class is
harder to predict because there are few examples of this class by definition. This
means it is more challenging for a model to learn the characteristics of examples
from this class. Also, the abundance of examples from the majority class (or classes)
can swamp the minority class.

48

Machine Learning Model

Table 4.3: Breakdown of the various categories percentage separated by benchmark

Benchmark Benign SDC
SHA 88.7% 11.3%
QSort 97.3% 2.7%
Dijkstra 95.6% 4.4%

For example, a model trained with 99% of the major class and 1% of the minority
class can train the model with the bias of classifying all the samples belonging
to the major class, with an accuracy of 99% that actually is very high. However,
often, the goal is to detect these rare events. In SACRES, this is fundamental. It
is more relevant to identify a potentially harmful SDC instead of classifying all as
benign and missing the SDC.

For this purpose, we have to introduce two new metrics to use with accuracy:

e Precision: measures the accuracy of positive predictions, indicating how
many of the predicted positive cases were actually true positives.

o Recall: measures the ability to identify all relevant instances, indicating the
ratio of true positives to all actual positives.

They are useful metrics in unbalanced datasets. They are represented by the
following equations:

TP
Precision = ———— 4.
recision TP FP (4.5)
TP
Recall = ————— 4.6
T TP FN (4.6)

Where:

TP (True Positives) : Correctly predicted positive instances.
F P (False Positives) : Incorrectly predicted positive instances.
FN (False Negatives) : Missed positive instances.

TN (True Negatives) : Correctly predicted negative instances.

Returning to our task, where the positive class is the SDC, the most relevant to
detect and the minority, and the negative one is benign, our goal is to maximize the
recall to increase the detection of all possible SDC. At the expense of a lowering of
the precision.

49

Machine Learning Model

Practically, this means that it is better to misclassify a benign respect than mis-
classify a SDC.

To address the problem of the unbalanced dataset, many techniques are possible,
like resampling the dataset, balanced bagging classifier, or moving the threshold.
We chose the simplest one: undersampling the database. Basically, we train our
Gaussian classifier over a dataset properly filtered to randomly remove a portion of
the majority class samples to re-balance the dataset.

Now that we have chosen a proper Gaussian classifier and we have a balanced

dataset, the dataset is divided into a training dataset and into a testing dataset,
following these proportions:

« 2/3 for the Train dataset.

o 1/3 for the Test dataset.

After training the classifier and testing it with the proper balanced dataset, these
are the results in terms of accuracy:

Table 4.4: Accuracy results of the Gaussian Classifier for a balanced datasets,
made use both Z-normalized data and gaussianized data.

Benchmark Z-Norm Gaussianized
Dijkstrs 75% 70%
QSort 2% 74%
SHA 7% 72%

Despite what was hypothesized before, the Gaussianization preprocess worsen the
results, a part for the gsort dataset, but where the improvement is very limited.
In general, the accuracy results obtained from the balanced datasets show that a
trained Gaussian classifier is able to learn how to classify those samples, even if
the accuracies are not very high, they are significantly above the 50% threshold,
the percentage of a model that classify completely random.

For what concern the recall and the precision. the results are shown in table
4.5. As mentioned before, for our task the recall metric is very significant.

50

Machine Learning Model

Table 4.5: Recall and Precision compute for every benchmarks for both z-
normalized data and gaussianized data

Benchmark Recall Precision

Z-Normalized

Dijkstra 54.1% 93.8%

QSort 47.2% 94.4%

SHA 54.1% 99.0%
Gaussianized

Dijkstra 42.3% 94.7%

QSort 58.3% 84.0%

SHA 59.2% 79.9%

Unfortunately, the results show a poor recall against good precision. This means
that our classifier is good at classifying our negative class, the Benign, but not the
positive one, the SDC. This could be caused by the fact that benign distribution is
less scattered and consequentially easier to model. For this reason, the data in the
overlapped region (Region Hard to detect) are classified as Benign due to the high
density of Benign in those regions. The recall results are slightly better with the
Gaussianized data.

All the code needed to preprocess the dataset, train, test the model, and compute

the metrics is written in Python, with the use of various libraries, like numpy,
matplotlib, sklearn, and scipy.

51

Chapter 5
Conclusion

This thesis work aims to improve the Trustworthiness and the resilience of the mi-
croprocessor to soft errors caused by faults, applicable in the real scenario through
Artificial Intelligence.

As explained in this report, the basic idea is to use the events collected by the
Performance Monitoring Unit (PMU) to train a machine learning model able to
detect when a fault causes a soft error. In particular, this work is focused on the
binary classification task, considering only the Benign and Silent Data Corruption
(SDC) outcomes of a fault. Considering as fault one randomly bit flipping in the
CPU registers.

Due to our goal, the work needs to address two problems:
1. Fault Injector able to simulate real faults.
2. Machine Learning Model to detect SDC.

Starting with the Fault Injector, many possibilities were considered, from the
HWIFI by means of specific hardware to a more sophisticated SWIFI approach
with software emulates. In the end, we decided to realize a Software-Implemented
Fault Injection (SWIFI) by using the debugger. We have largely explored this
approach, creating a script in Python able to control the debug process of the
benchmark executed on the embedded target system.

Basically, the script uses the XSCT commands (3.3) to stop the execution us-
ing the debugger, then uses access randomly to a register to perform a bit-flipping,
and at the end, control the output to label the execution and collect the perfor-
mance counter. This approach gives has the full controllability and repeatability
of the fault injection process, giving the possibility to create a large dataset of

52

Conclusion

executions in a relative short time.

The second part of this thesis is about an analysis of machine learning mod-
els applied to the classification of the architectural events collected in the first
part. The primary objective was to explore the feasibility of using machine learning
techniques to detect SDC occurrences within the context of different benchmark
datasets.

The analysis began with a correlation study, which revealed significant corre-
lations between certain features and the classification label. These correlations
supported the hypothesis that distinct architectural events have less overlap be-
tween categories, making them potentially valuable for classification.
Furthermore, Principal Component Analysis (PCA) allows for visualization in 2D
scatter plots. These scatter plots highlighted the challenges of classifying SDC
instances, as there was substantial overlap between the SDC and benign regions.
This overlap, referred to as the "Region Hard to Detect," presented a significant
challenge for accurate classification.

The results indicated that the Gaussian Classifier achieved an acceptable accuracy.
However, it showed a trade-off between precision and recall, favoring precision.
This meant that the model was more successful at correctly classifying benign
instances but struggled to detect SDC instances effectively.

The evaluation of the model highlighted the challenge of detecting rare events like
SDC in an imbalanced dataset. Future work could explore additional techniques
for improving recall while maintaining a satisfactory level of precision. This may
include experimenting with more complex classifiers and exploring different features.

In conclusion, this thesis contributes to the understanding of the use of the debug-
ger to inject faults in a real embedded system and apply machine learning to the
detection of SDC in architectural events. While the results suggest potential for
improvement, they underscore the complexities of the task and the need for further
research in this area.

53

Appendix A

Arm Architectural Events

Event Number

Description

.

10

11
12

Level 1 instruction cache refill
Level 1 data cache refill
Level 1 data cache access

Level 1 data TLB refill

Instruction architecturally executed, Condition code check pass,
load

Instruction architecturally executed, Condition code check pass,
store

Instruction architecturally executed, Condition code check pass,
exception return

Instruction architecturally executed, Condition code check pass,
Software change of the PC

Branch Instruction architecturally executed, immediate

Instruction architecturally executed, Condition code check pass,
unaligned load or store

Branch instruction Speculatively executed, mispredicted or not
predicted

Cycle

Predictable branch instruction Speculatively executed

o4

Arm Architectural Events

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Level 2 data cache refill

Level 2 data cache access, read

Bus access, read

Bus access, write

Bus access, Normal, Cacheable, Shareable

Bus access, peripheral

Data memory access, read

Data memory access, write

Unaligned access, read

Exclusive operation Speculatively executed, Load-Exclusive
Exclusive operation Speculatively executed, Store-Exclusive pass
Exclusive operation Speculatively executed, Store-Exclusive fail
Operation speculatively executed, load

Operation speculatively executed, store

Operation speculatively executed, load or store

Operation speculatively executed, integer data processing
Operation speculatively executed, Software change of the PC
Operation speculatively executed, Cryptographic instruction
Branch Speculatively executed, immediate branch

Exception taken, other synchronous

Exception taken, Instruction Abort

85 (missing)

Exception taken, Hypervisor Call

Exception taken, Instruction Abort not Taken locally
Exception taken, Data Abort or SError not Taken locally
Exception taken, IRQ not Taken locally

59

Arm Architectural Events

39

40

41

Release consistency operation Speculatively executed, Load-

Acquire

Release consistency operation Speculatively executed, Store-

Release

92 (missing)

56

Bibliography

J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. «Using
heavy-ion radiation to validate fault-handling mechanisms». In: IEEE Micro
14.1 (1994), pp. 8-23. DOL: 10.1109/40.259894 (cit. on p. 7).

Athanasios Chatzidimitriou, Pablo Bodmann, George Papadimitriou, Dim-
itris Gizopoulos, and Paolo Rech. «Demystifying Soft Error Assessment
Strategies on ARM CPUs: Microarchitectural Fault Injection vs. Neutron
Beam Experimentsy. In: 2019 /9th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN). 2019, pp. 26-38. DOTI:
10.1109/DSN.2019.00018 (cit. on pp. 8, 13).

Qiang Guan, Nathan DeBardeleben, Sean Blanchard, and Song Fu. «F-SEFI:
A Fine-grained Soft Error Fault Injection Tool for Profiling Application
Vulnerability». In: May 2014. por: 10.1109/IPDPS.2014.128 (cit. on p. 9).

Ying Wang, Jian Dong, Sen Zhang, and Decheng Zuo. «B-SEFI: A Binary
Level Soft Error Fault Injection Tool». In: 2019 IEEE 19th International
Conference on Software Quality, Reliability and Security Companion (QRS-C).
2019, pp. 235-241. DOI: 10.1109/QRS-C.2019.00053 (cit. on p. 9).

Ang Jin, Jianhui Jiang, Jiawei Hu, and Jungang Lou. « A PIN-Based Dynamic
Software Fault Injection System». In: Nov. 2008, pp. 2160-2167. DOI: 10.
1109/ICYCS.2008.329 (cit. on p. 9).

Deniz Kasap, Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo.
Micro-Architectural features as soft-error induced fault executions markers in
embedded safety-critical systems: a preliminary study. 2023. arXiv: 2211.13010
[cs.AR] (cit. on pp. 10, 14, 18).

G. Yalcin, O. S. Unsal, A. Cristal, and M. Valero. « FIMSIM: A fault injection
infrastructure for microarchitectural simulators». eng. In: 2011 IEEE 29th
International Conference on Computer Design (ICCD). IEEE, 2011, pp. 431—
432. 1SBN: 9781457719530 (cit. on p. 10).

57

https://doi.org/10.1109/40.259894
https://doi.org/10.1109/DSN.2019.00018
https://doi.org/10.1109/IPDPS.2014.128
https://doi.org/10.1109/QRS-C.2019.00053
https://doi.org/10.1109/ICYCS.2008.329
https://doi.org/10.1109/ICYCS.2008.329
https://arxiv.org/abs/2211.13010
https://arxiv.org/abs/2211.13010

BIBLIOGRAPHY

[8] Nathan Binkert et al. «The Gem5 Simulatory». In: SIGARCH Comput. Archit.
News 39.2 (Aug. 2011), pp. 1-7. 1sSSN: 0163-5964. DOI: 10.1145/2024716.
2024718. URL: https://doi.org/10.1145/2024716.2024718 (cit. on pp. 10,
13, 18).

[9] Michal Mosdorf and Janusz Sosnowski. «Fault injection in embedded systems
using GNU debugger». In: Pomiary Automatyka Kontrola 57 (Jan. 2011),
pp. 825-827 (cit. on p. 10).

[10] Felipe Rocha da Rosa, Rafael Garibotti, Luciano Ost, and Ricardo Reis.
«Using Machine Learning Techniques to Evaluate Multicore Soft Error Relia-
bility». In: IEEE Transactions on Circuits and Systems I: Reqular Papers 66.6
(2019), pp. 2151-2164. pOI: 10.1109/TCSI.2019.2906155 (cit. on pp. 12,
15).

[11] Andreas Lofwenmark and Simin Nadjm-Tehrani. «Fault and timing analysis
in critical multi-core systems: A survey with an avionics perspective». In:
Journal of Systems Architecture 87 (2018), pp. 1-11. 1sSN: 1383-7621. DOT:
https://doi.org/10.1016/j.sysarc.2018.04.001. URL: https://www.
sciencedirect.com/science/article/pii/S1383762117304903 (cit. on
p. 12).

[12] Felipe da Rosa, Vitor Bandeira, Ricardo Reis, and Luciano Ost. «Extensive
Evaluation of Programming Models and ISAs Impact on Multicore So Error
Reliability». In: 2018 55th ACM/ESDA/IEEFE Design Automation Conference
(DAC). 2018, pp. 1-6. DOI: 10.1109/DAC.2018.8465855 (cit. on p. 12).

[13] Athanasios Chatzidimitriou and Dimitris Gizopoulos. « Anatomy of microarchitecturet
level reliability assessment: Throughput and accuracy». In: 2016 IEEFE In-
ternational Symposium on Performance Analysis of Systems and Software
(ISPASS). 2016, pp. 69-78. DOI: 10.1109/ISPASS.2016.7482075 (cit. on
p. 13).

[14] Wilfried Oed. «Cray Y-MP C90: System features and early benchmark results».

In: Parallel Computing 18.8 (1992), pp. 947-954. 1sSN: 0167-8191. DOI: https:
//doi.org/10.1016/0167-8191(92)90039-A. URL: https://www.science
direct.com/science/article/pii/016781919290039A (cit. on p. 15).

[15] G.D. Robinson. «Why 1149.1 (JTAG) really works». In: Proceedings of
ELECTRO °9/. 1994, pp. 749-754. DOL: 10.1109/ELECTR . 1994 . 472649
(cit. on p. 20).

[16] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B.
Brown. «MiBench: A free, commercially representative embedded benchmark
suite». In: Proceedings of the Fourth Annual IEEE International Workshop
on Workload Characterization. WWC-4 (Cat. No.01EX538). 2001, pp. 3—14.
DOI: 10.1109/WWC.2001.990739 (cit. on p. 25).

58

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/TCSI.2019.2906155
https://doi.org/https://doi.org/10.1016/j.sysarc.2018.04.001
https://www.sciencedirect.com/science/article/pii/S1383762117304903
https://www.sciencedirect.com/science/article/pii/S1383762117304903
https://doi.org/10.1109/DAC.2018.8465855
https://doi.org/10.1109/ISPASS.2016.7482075
https://doi.org/https://doi.org/10.1016/0167-8191(92)90039-A
https://doi.org/https://doi.org/10.1016/0167-8191(92)90039-A
https://www.sciencedirect.com/science/article/pii/016781919290039A
https://www.sciencedirect.com/science/article/pii/016781919290039A
https://doi.org/10.1109/ELECTR.1994.472649
https://doi.org/10.1109/WWC.2001.990739

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Problem Presentation
	Basic Machine Learning based Solution
	Our Solution
	State Of the Art
	Fault Injection
	HWIFI
	SWIFI
	Machine Learning Model
	Fault Injector
	Setup
	Realization
	Machine Learning Model (1)
	Data Analysis
	Classifier
	Gaussian Classifier
	Conclusion
	Arm Architectural Events
	Bibliography

