
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Smart Contract and DevSecOps

Supervisor:

Prof. Danilo BAZZANELLA

Company Supervisor:

Emiliano ORRÙ

Candidate

Diego ZANFARDINO

October 2023

To my family

ii

Summary

Recent years have brought significant changes in software development practices.
The demand for continuous development has given rise to DevOps methodolo-
gies, which emphasise iterative and ongoing practices over sequential activities.
Therefore, automation for development and operation practices have become
widely adopted in enterprise scenarios, enabling individuals with different roles
and responsibility to perform actions on the pipeline that regulate software
development. With the automation of security measures and controls (DevSec-
Ops), these actions and roles have gained increased importance and liability.

The automation of security processes can lead to increased risk, both for
the delivered product and the DevOps infrastructure as a whole. Unauthorised
access, for instance, may result in unapproved changes reaching the production
environment. Therefore, the purpose of this thesis work was to apply security
by design principle through the use of modern technologies in order to mitigate
these threats. To further improve system security and accountability for each
entity’s action, smart contracts were identified as a suitable solution. To vali-
date the feasibility of the proposed approach, a Proof of Concept was built in
association with a cybersecurity team of Security Reply.

The presented system involves designing a permissioned blockchain network
which can communicate with an enterprise-grade DevSecOps platform, secure
digital assets and record executed operations. To enable the smart contract to
receive off-chain information, a custom oracle was implemented that would relay
received data to the network. Given the potential target of such a solution,
and to provide an additional layer of security, an Hardware Security Module
has been integrated in the proposed architecture to act as a Root of Trust and
securely store sensitive information.

iii

Acknowledgements

Firstly, I would like to express my gratitude to Professor Danilo Bazzanella for
giving me the opportunity to work on this thesis.
I extend my thanks to Emiliano and his team at Security Reply S.r.l for their
cordial welcome and the provision of the necessary technological resources for
development. I am thankful to Fabio, Andrea and Dario for their constant
support and feedback during this project, they have proved to be excellent
mentors to aspire to.
Finally, I would like to express my gratitude to those with whom I shared this
extraordinary journey at the Politecnico, without which this would not have
been possible.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xi

1 Introduction 1
1.1 Objectives . 2
1.2 Outline . 3

2 Background 4
2.1 DevSecOps . 4

2.1.1 CI/CD . 5
2.1.2 DSO framework vulnerabilities 6

2.2 Blockchain . 7
2.2.1 Operation . 8
2.2.2 Permission . 9
2.2.3 Consensus mechanism 10
2.2.4 Smart Contract . 12
2.2.5 Oracles . 13

2.3 HSM (Hardware Security Module) 15
2.3.1 PKCS#11 . 17

3 State of the art 21
3.1 Transparent continuous delivery 21
3.2 Blockchain based framework for software development using DevOps 24

4 Solution design 27
4.1 DevSecOps platform . 27

4.1.1 Jenkins . 27

vi

4.1.2 GitHub Actions . 28
4.1.3 GitLab . 28

4.2 Blockchain . 29
4.2.1 Hyperledger Fabric . 32

4.2.1.1 Network structure 33
4.2.1.2 Membership Service Provider 35
4.2.1.3 Policies . 37
4.2.1.4 Ledger . 38
4.2.1.5 Chaincode Lifecycle 39
4.2.1.6 Transaction flow 40

5 PoC implementation 44
5.1 DevSecOps environment . 44
5.2 Network structure . 47
5.3 Chaincode development . 52
5.4 Application development . 56
5.5 HSM integration . 59

6 Conclusion 62
6.1 Future improvements . 63

6.1.1 Single Point of Failure Oracle 63
6.1.2 Information reliability 65
6.1.3 Identity management . 66

Bibliography 67

vii

List of Tables

2.1 Thales Luna HSM Appliance-level role 19
2.2 Thales Luna HSM-level role . 20
2.3 Thales Luna Partition-level role 20

4.1 Popular smart contract platform comparison 30

viii

List of Figures

2.1 DevSecOps Lifecycle Phases and Philosophies [1] 5
2.2 Gitlab vulnerabilities in recent years 7
2.3 Blockchain structure [5] . 9
2.4 PBFT algorithm flow [6] . 11
2.5 Oracle function for blockchain network 14
2.6 PKCS#11 object attribute hierarchy [15] 17
2.7 PKCS#11 interaction model [16] 18

3.1 Bimodal DevOps using blockchain [18] 22
3.2 Architecture for DevOps with Blockchain 25

4.1 Average latency of Ethereum and Hyperledger with varying num-
ber of transactions (left); Average throughput of Ethereum and
Hyperledger with varying number of transactions (right) [28] . . 31

4.2 Hyperledger Fabric network [30] 33
4.3 Hyperledger Fabric Ledger . 38
4.4 Hyperledger Fabric transaction flow 41

5.1 PoC CI/CD pipeline . 46
5.2 Complete pipeline artifacts and details 48
5.3 Proposed network structure . 49
5.4 Implemented base asset structure 53
5.5 Application and peer interaction 56

6.1 SPoF Oracle solution . 64

ix

Acronyms

API
Application Programming Interface

BCCSP
Blockchain Crypto Service Provider

CA
Certificate Authority

CI/CD
Continuous Integration and Continuous Deployment/Delivery

CVSS
Common Vulnerability Scoring System

DAST
Dynamic Application Security Testing

DLL
Dynamic Link Library

DLT
Distributed Ledger Technology

DSL
Domain Specific Language

DSO
DevSecOps

xi

HF
Hyperledger Fabric

HSM
Hardware Security Module

IPFS
InterPlanetary File System

MSP
Membership Services Provider

PBFT
Practical Byzantine Fault Tolerance

PoC
Proof of Concept

PoW
Proof-of-Work

PKCS
Public Key Cryptography Standard

RoT
Root of Trust

RNG
Random Number Generator

SAST
Static Application Security Testing

SDL
Software Development Life cycle

SDK
Software Development Kit

xii

SO
Shared Object

SoD
Segregation of Duties

SPoF
Single Point of Failure

TRNG
True Random Number Generator

VSCC
Validation System ChainCode

XSS
Cross Site Scripting

xiii

Chapter 1

Introduction

Software development methodologies have profoundly changed over the past
decades. They consist of a framework to plan, build and control the process
of application development. Traditionally it was a sequential process, where
security teams would assess and solve vulnerabilities before the software was de-
ployed. The need of continuous development has led to the emergence of DevOps
methodologies, where development (Dev) and operations (Ops) practices are
iteratively and continuously performed. Together with continuous and frequent
development needs, strict requirements for what concerns the security of the
developed applications became integral to the development process, since the
speed of development and release must not undermine security. DevSecOps has
been conceived to merge together in a unified SDL (Software Development Life-
cycle) Development, Security and Operation. The core principle that enabled
the transition from DevOps to DSO (DevSecOps) is the "shift-left" approach, in
which security controls and requirements are introduced as early as possible in
the classical DevOps pipeline. This principle ensures that security is prioritized
from the initial stages of development, reducing the number of vulnerabilities
and their impact.

Different groups of people, with different roles and responsibilities, have to
access and modify information on the CI/CD pipeline in order to push develop-
ment forward. For each action there could be associated risks and liabilities.
Currently existing DSO tools, give the user the possibility to implement custom
security policies. Those policies may require a minimum number of approvals
to effectively accept incoming changes or a minimum number of allowed vulner-
abilities in new code. Since each of these action is performed via one’s personal
account, it is not exempt from the dangers of loss of credentials and account

1

Introduction

compromise.

A new possible implementation was therefore sought to address these concerns.
The innovative solution would provide the necessary liabilities and immutability
to each of the performed actions, thus improving also the overall security of the
stored information. Among all the most recent technologies, smart contracts
were identified as a suitable solutions for our needs. In fact they provide a mech-
anism to design and securely store self-executing contract that can guarantee,
upon correct design and implementation, the aforementioned security measures.
The definition of the immutable code stored on the blockchain will administer
all the interactions of the different parties involved with the information stored
on the blockchain.

DSO organizational patterns are typically used with large code bases that are
subject to continuous change, usually in an enterprise scenario. This considera-
tion is taken into account when choosing a specific blockchain or framework for
PoC development. In this particular use case the above requirements become
even more critical. Any action or change performed in the DSO pipeline can
result in major losses both from a financial perspective but most importantly in
terms of users privacy and security.

1.1 Objectives
The main objective of this thesis was to investigate and develop a Proof of
Concept that could improve the existing DSO model and interaction. This
work was carried out at Security Reply S.r.l. consulting company, whose focus
is on cybersecurity and personal data protection. The company also provided
the necessary technological means useful to build the PoC such as the physical
hardware and the HSM. More in details here are the objectives of this thesis
work:

• Research for state of the art and already existing solution for smart-contract
integration with DSO architecture;

• Identification of the best platform and framework that better suits the
requirements;

• Realization of a PoC;

• Study of main concept related to HSM (Hardware Secure Module) and

2

Introduction

PKCS#11 standard and implementation in the existing PoC in order to
increase the security of the overall solution.

1.2 Outline
The remaining sections of the document are structured as follows:

• Chapter 2 - Background: this section aims to provide a basic background
knowledge of the main topic of this thesis work;

• Chapter 3 - State of the art: in this section the current state-of-the art for
smart contract and DSO integration is analyzed;

• Chapter 4 - Solution design: in this chapter, following the workflow that
led to the PoC, the main design choices are analyzed;

• Chapter 5 - PoC implementation: this chapter describes the actual imple-
mentation of the PoC;

• Chapter 6 - Conclusion and future development: this final section sum-
marises the result obtained and provides some analysis for future develop-
ment.

3

Chapter 2

Background

This thesis was characterised by a high level of multidisciplinarity and mod-
ern technologies and concepts. Therefore, this section aims to provide a solid
background to fully understand all the topics covered, such as blockchain and
DevSecOps. Both concepts have become very successful in recent years: DSO
because of its advantages compared to previous software development method-
ologies, while blockchain because of its technological novelty, which could have
many different applications to improve the security of already existing systems.

2.1 DevSecOps
DSO has been developed in recent years as an evolution of DevOps practises. Key
concept for DevSecOps development are traceability, verifiability and visibility.
More specifically DevSecOps describes an organization’s cultural and technical
practices, aligning them in such a way to enable the organization to reduce the
gaps between a software developer team, a security team, and an operations
team. [1] The thing that most characterize this organizational pattern is the
constant interaction both between members of different DSO team and also
with product stakeholders.

Together with security, the other two main aspects of DSO are Continuous
Integration (CI) and Continuous Delivery/Deployment (CD) which enable the
coupling of development and operation practises. Those concept are translated
into practice through the building of a pipeline composed of several jobs and
stages, according to the needs, that automatically react to some performed
action.

4

Background

Figure 2.1: DevSecOps Lifecycle Phases and Philosophies [1]

2.1.1 CI/CD
This practise is used to automate frequent integration of changes made by
different developers in a central repository. It is typically divided into stages,
each of them having their input needed and artifact produced during the stage.
More in details some of them could be the following:

• During the initial planning stage, general requirements to understand
scope and objectives are discussed between DSO team and stakeholders.
During this phase deadlines and security needs are defined and agreed;

• During the development phase, developers make changes in their local
copy of the code implementing the planned features. Typically in this
phase no artifact is produced by the pipeline but there’s the possibility to
run tests locally before pushing in the main repository;

• Build phase should be automated. It is possible to specify policies in order
to trigger the build phase. It is also possible to build Docker container using
specific Dockerfile in order to carry out test at later date. Once the build is
complete, it is possible to run some static analysis on the entire application,
in order to find common vulnerabilities like XSS (Cross Site Scripting) or
injections. More specifically through SAST (Static Application Security
Testing) tools is possible to perform white box testing, therefore heavily
reducing the review code effort [2]. SAST tools are considered the most
important security within the whole SDL[3];

5

Background

• During the test phase, after the build one, it is possible to perform also
different type of tests. For security concerns DAST (Dynamic Application
Security Testing) analysis on the running application is one of the most
used and effective. Those black box tools allow to find a different spectre
of vulnerabilities with respect to SAST analysis. In both cases, artifacts
containing the found vulnerabilities are produced during the pipeline stages.
If containers are used, some additional security checks on those can be
performed;

• Once the test are successfully passed, in order to release, deliver and deploy
the application it is possible to require:

– a minimum number of approval
– a minimum number of found vulnerabilities

This last phase marks the application’s transition to operation stage.

By defining approval rules for merge request, it is possible to set the mini-
mum number of required approvals before work can merge in the project. It is
possible to define as approvers users with specific permissions or user belonging
to specific groups. It is also possible to select the level of granularity of those
approval rules: project, merge request or instance level. After a merge request
receive the required number of approvals, the corresponding is automatically
merged unless merge conflict of failure of following stages of the pipeline are
encountered.

It is also possible to set a minimum number of vulnerabilities in order to make
the commit proceed through the pipeline: these controls are called security
gates. These gates can be designed in order to be triggered if a specific number
and type of vulnerabilities is found, developers and stakeholders are typically
informed and the current pipeline running can be automatically stopped ac-
cording to specific design. For example, if one or more critical vulnerability are
found, the deployment stage is not reached.

2.1.2 DSO framework vulnerabilities
Several tools and utilities need to be used in DSO scenario, typically a complete
and existing framework is preferred, rather than performing and implementing
all the needed actions individually and then integrate them all together in a

6

Background

single and continuous flow.

As it is possible to see from [4] more than 800 vulnerabilities have been found
in the last five years in Gitlab, that is one of the most popular tools used to
perform DSO activities in enterprises.

Figure 2.2: Gitlab vulnerabilities in recent years

These are the most relevant vulnerabilities for the scope of this thesis project.
As a matter of fact they give unauthorized users the possibility to gain informa-
tion or perform malicious actions. As an example CVE-2019-2428, discovered
in early 2020 with a CVSS (Common Vulnerability Scoring System) score of 7.5,
in which users could bypass the mandatory external authentication provider
sign-in restrictions by sending a specially crafted request. In this way some of
the security controls mentioned above can be maliciously bypassed.

2.2 Blockchain
Blockchains are tamper evident and tamper resistant digital ledgers imple-
mented in a distributed fashion and usually without a central authority. At
their basic level, they enable a community of users to record transactions in a
shared ledger within that community, such that under normal operation of the
blockchain network no transaction can be changed once published. Blockchains
are composed of cryptographically signed transactions that are grouped into
blocks. Each block is cryptographically linked to the previous one (making it

7

Background

tamper evident) after validation and undergoing a consensus decision. As new
blocks are added, older blocks become more difficult to modify (creating tamper
resistance). New blocks are replicated across copies of the ledger within the
network, and any conflicts are resolved automatically using established rules. [5].

This technology has seen widespread success in recent years, mainly due to its
adoption in the development of cryptocurrencies, like Blockchain end Ethereum.
Apart for its use in financial sector as the basic element of decentralized and
electronic cash, the underlying technology has the potential to be broadly
applicable in different domains and scenarios. Key concept of blockchain
technology are:

• Security and integrity: it is chryptographically secure, ensuring that data
contained in the ledger are tamper proof;

• Distribution: the ledger is shared among different nodes of the network;

• Auditability: all the changes in the blockchain network remain stored in
the ledger.

The above-mentioned characteristics closely align with the DSO principles
outlined in section 2.1

2.2.1 Operation
The main component of blockchain technology are cryptographic hash functions.
They are used to compute a unique digest for nearly any input size data.
Cryptographic hash functions have the following important characteristics [5]:

• Preimage resistance: they are one-way function. It is impossible to compute
the correct initial value given some output;

• Second preimage resistance: given a specific input it is computationally
infeasible to find a second input which produces the same output. That
is, given x, is impossible to find y such that hash(x) = hash(y), unless
exhaustive search on the entire input space is used;

• Collision resistance: one cannot find two inputs that hash to the same
output. It is computationally unfeasible to find x and y such that hash(x)
= hash(y).

In a blockchain network a transaction is an interaction between different
parties. In an enterprise scenario that could also be used as a way of recording

8

Background

activities occurring on physical or digital systems. Each block in a blockchain
can contain zero or more transactions and the ledger is a secure, append-only
collection of these transactions.

Figure 2.3: Blockchain structure [5]

In figure 2.3 it possible to see how the chain of blocks is composed. Together
with data section, that contains the information on the transactions, each block
can contain other essential material in order to prevent chain tampering. Each
specific blockchain implementation can define its own fields and block structure,
but many of them include some field with the following function:

• Block Header:

– The hash of the previous block header;
– A timestamp of when the transaction is submitted;
– A nonce;
– The hash of the data block.

• Block Data

2.2.2 Permission
Blockchain can be categorized by their permission model, that is how user can
publish blocks on the network. It can be:

• Permissionless (also called public): decentralized ledger platforms open
to anyone publishing blocks, that do not require any permission from any
authority. Anyone that can publish blocks have the visibility to read all
the published transactions as well. These types of blockchains are typically
free and open source. Due to their public nature, they are the most subject

9

Background

to attack that try to control the system. In order to prevent this, consensus
mechanism have been established in order to publish a new block;

• Permissioned (also called private): these type of network require some
authority, either centralized or decentralized, to assign an identity and
authorize user in order to publish new block. Since only authorized users
maintain the network, it is possible to restrict the read access to authenti-
cated individuals only. The main advantage of this permissioned networks
is that, being private, they do not require a consensus algorithm as complex
as the permissionless one. The members sustaining the blockchain need
to have an already established level of trust in order to receive an identity
and submit transactions. For those reasons permissioned blockchain are
typically faster and less computationally expensive with respect to per-
missionless ones. Since this type of network do not perform, by choice,
any type of anonymisation or pseuodnymisation, can be used to achieve
a shared business process with the assurance of uniquely identifying the
malicious user in case of fraud or misbehaviour.

2.2.3 Consensus mechanism
The integrity of the system is guaranteed by its protocol operation and can
be verified at any time by any user by checking the entire chain correctness.
In order to determine which user will publish the next transaction consensus
mechanisms are used to ensure integrity and consistency among all peers of the
network.

The first block in the chain is called genesis-block and set the initial state for
the new blockchain network. Every new transaction is then added after it, once
consensus among the publishing peers is reached. These algorithms can differ
widely when designed for a permissioned or permissionless environment.

In private networks, among the most commonly used consensus algorithms
[6] we can find the following ones:

• PoW (Proof-of-Work): this protocol was first used in Bitcoin. Using this
consensus protocol, each node calculates an hash value of the block header.
The block header contains a nonce that is modified by the miners and
consensus is reached when the calculated value is equal to or less than
a certain given one. When the correct value is reached, the node would
broadcast the block to other nodes who would verify the correctness of the

10

Background

hash value. If the block is validated by other blocks, it can be added to
any peer chain [7];

• PBFT (Practical Byzantine Fault Tolerance): this protocol is a replication
algorithm to tolerate byzantine faults [8]. This consensus protocol could
handle up to 1/3 malicious byzantine replicas. Two main roles exists:
clients are the external entities that submits transactions to the PBFT
networks, while replicas are the nodes that make up the core consensus
group. Figure 2.4 shows the algorithm flow that starts whenever a client C
makes a transaction request. The subsequent stages of the process can be
divided into five phases:

Figure 2.4: PBFT algorithm flow [6]

– request: in each round a primary replica would be selected and it is
responsible for ordering the transactions;

– pre-prepare: the primary replica assigns a sequence number n and
broadcasts the transaction proposal to all other replicas in the same
group;

– prepare: in this phase each replica that received pre-prepare message
verifies proposal’s validity, checking against pre-prepare view, sequence
number and digest. If the received message is accepted, then each
replica sends a prepare message, otherwise it does nothing. The prepare
state is said to be true when the replica has collected at least 2f prepare,
where f is the number of faulty replicas the system can tolerate;

11

Background

– commit: when prepared becomes true the replica multicasts a commit
message. Replicas accept commits messages and insert them in their
log if they’re verified. A replica is committed if and only if prepared
check is true for all i in some set of f + 1 non faulty replicas. A replica
is committed-local if and only if prepared is true and it has accepted 2f
+ 1 commits (possibly including its own) from different replicas;

– reply: each replica executes the operation requested by client C when
committed-local is true and the state reflects the sequential execution
of all requests with lower sequence numbers. After executing the
requested operation, reply message is sent back to client.

The pre-prepare and prepare phases are used to totally order requests sent
in the same view even when the primary, which proposes the ordering of
requests, is faulty. A view in PBFT refers to a specific point in time during
which the algorithm operates. Prepare and commit phases instead, are
necessary to ensure that requests that are successfully committed are fully
ordered across views.
The algorithm provides both safety and liveness assuming no more than
⌊n−1

3 ⌋ replicas are faulty, where n is the total number of replicas in the
group. In figure 2.4 it is possible to see that replica number 3 fails and
do not respond to pre-prepare, prepare and commit messages, nonetheless
consensus is reached.

2.2.4 Smart Contract
Smart contracts can be defined as the computer protocols that digitally facilitate,
verify, and enforce the contracts made between two or more parties on the
blockchain [9]. Smart contracts are typically deployed on and secured by
blockchain, and therefore inherit the characteristics of the underlying technology:

• The code, being recorded and stored on the blockchain, is tamper-resistant;
therefore can be used as a trusted third party;

• The execution of smart contracts is enforced among trustless individual
nodes without centralized control and coordination;

• These contracts can include digital assets or cryptocurrency and transfer
them whenever predefined conditions are met.

Depending on the implementation, smart contracts can be written in specific
programming languages, such as Solidity and Vyper, or using already existing

12

Background

non-specific programming languages, such as Go, JavaScript and Rust.

They are deployed on the blockchain like normal transactions, but can be
invoked by peers, who send a transaction proposal along with some additional
information if the contract requires it. All nodes that execute the smart contract
must derive the same result from the execution, and the results are recorded on
the chain. Therefore the smart contract must be deterministic: given an input
the same output will always be produced based on that input. All the nodes
executing the smart contract at the end of the proposed transaction must agree
on the final state. The distinction between permissioned and permissionless is
also extended in this context as well:

• In permissionless blockchain network, such as Ethereum, the user issuing
a transaction will typically have to pay some fee, usually referred as gas, to
cover the cost of code execution. A limit on how much execution time can
be consumed by a call to a smart contract is set. This not only allows the
publisher to be rewarded for executing the smart contract but also prevents
malicious users from deploying and accessing smart contracts resulting in
a denial of service;

• In permissioned blockchain network, such as Hyperledger Fabric, it is
not necessarily required to pay some fees to propose transactions. These
networks are built and designed between known peers. Smart contracts
can be used to ensure that the agreement between the parties is honoured,
but there is no need to prevent fraudulent activity in this scenario, as any
fraudulent action can be traced back to a specific known peer.

Smart contracts, however, need to overcome different challenges due to their
nature. First of all, the fact that they’re immutable once published in the
chain, leads to several restriction on their dynamism. This can limit their
applicability and gives a lot of responsibility to smart contract developers: in
case the published smart contract is wrong or contains some vulnerabilities it is
no longer possible to modify it, so malicious actors can exploit it.
Another major issue is the interaction between data contained in blockchain
network (on-chain data) and data coming from external sources (off-chain data).
This problem will be discussed in the following section.

2.2.5 Oracles
In this domain oracles act as a gateway between on-chain and real-world data.
Blockchain is designed to ensure that all the information it contains is accurate

13

Background

as each transaction is validated before being added to the chain and secured
once stored. Incorporating information coming from outside the chain can be a
threat to this assumption. In case the information reported by the Oracle is
wrong the whole network may operate the smart contract on wrong data, hence
leading to a loss of trust and compromise in integrity. Oracles do not produce
data themselves, they simply collect data coming from other sources and report
those data to the network.

Figure 2.5: Oracle function for blockchain network

These are the main issues with blockchain oracles [10]:

• Data reliability: there’s the need to ensure the correctness and accuracy
of the provided information. They tend to change quickly and, given
the distributed environment, it is difficult to get all the peers to agree
on the correct value to use in transactions. They may even operate on
non-deterministic data;

• Single Point of Failure: they introduce centralization in a decentralized
system, being the oracle the centralized authority that provides information.
This also lead to SPoF in case the oracle gets compromised or stops working,
even if the collected data are correct;

• Violating trustless environment promise: blockchain was designed to be
implemented in trustless environments. If an oracle is introduced in the
network there’s the need to trust both the data source and the oracle itself;

• Latency: the desire to maintain the decentralized structure of the network
even for oracle, results in a high level of communication overhead. The
oracle may need to aggregate data from different sources and eventually
perform computations. All these factors may lead to increased latency for
the whole network.

14

Background

2.3 HSM (Hardware Security Module)
Cryptographic devices normally perform two types of operations [11]:

• Storage of the cryptographic objects such as asymmetric keys, symmetric
keys and X.509 certificates;

• Performing cryptographic operations such as asymmetric key pair gen-
eration, symmetric key generation, hashing, encryption, decryption and
signing.

Several cryptographic devices exists with different capabilities and capable of
performing different cryptographic operations.

Hardware security modules are dedicated hardware devices that physically
and logically secure cryptographic keys and cryptographic processing [12]. They
are used to protect sensitive data such as encryption keys and digital signatures
from unauthorized access and tampering. They perform generation, distribu-
tion, rotation, storage, termination, and archival functions over cryptographic
information.

Unlike cryptographic smart cards, which are used to store and manage per-
sonal keys and sensitive data, HSMs are typically used in organizations, where
many objects needs to be stored and used. Together with this difference, HSMs
are capable of performing complex cryptographic operations very efficiently
having high-performance dedicated hardware.
Because of their size and targeted marked they’re typically equipped with a
TRNG (True Random Number Generator), that generates random numbers
based on an high-entropy source, such as unpredictable physical processes or
phenomena [13]. The use of a TRNG, as opposed to a simple RNG (Random
Number Generator), ensures that generated keys and cryptographic data are not
predictable or susceptible to cryptographic attacks based on the predictability
of pseudo-random number generation.

HSMs are available in a variety of forms: as standalone network attached
appliance, as hardware cards that plug into existing network-attached systems
or as portable USB-connected HSMs that connect to a client system. The
network HSM manages cryptographic storage and operations in a centralized,
high assurance appliance providing a root of trust for sensitive cryptographic
data transactions [12].

15

Background

RoT (Root of Trust) is the fundamental concept that enables the creation of
a trustworthy foundation within a system. It is the component upon which the
whole system relies to ensure integrity, confidentiality and authenticity. It is
typically an hardware device that is completely trusted by all the members of the
system either because is hardwired or cryptographically resistant to tampering
and unauthorized access. HSMs can act as a RoT in an environment where
asymmetric cryptography is used, thus providing key storage and operations.

The following security measures are the key to HSM reliability:

• Layered Encryption: no object is left unencrypted on the device. Objects
are encrypted by multiple layers and fully decrypted in volatile memory
when needed [14]:

– One general storage key (GSK) is used to encrypt general storage
objects possibly needed by different roles;

– User storage keys (USK) are used to protect the contents of the partition
accessed by that role;

– Master tamper keys (MTK) are used to strongly encrypt each object
generated and stored within the HSM;

– Key encryption key (KEK) is used to further encrypt every used key
to ensure that they are never showed in plaintext.

Each HSM or partition belong to a security domain, also called cloning
domain. Object can be copied between partitions that share the same
security domain. In this way it is not possible for attackers to copy stored
material to an unauthorized device not sharing cloning domain with the
one where cryptographic object are stored.

• Tamper Protection: it is typically ensured by strong cryptographic
algorithm, intrusion-resistant and tamper-evident hardware. In the event
that a security breach is detected, HSMs have the ability to lock themselves
until a user with a specific role solves it or the HSM is reset.

HSM allows its physical space to be divided into logical partitions, each with
independent data, access controls and policies. This allows multiple application
sharing one single HSM without fear of compromise from other partition residing
on it.

16

Background

2.3.1 PKCS#11
As explained in the previous paragraph, there are several types of cryptographic
devices, possibly from different manufacturers. In order to enable a common
interface to communicate with these devices, RSA Security has developed the
PKCS (Public Key Cryptography Standards) family. In particular, PKCS#11
standard specifies an API (Application Programming Interface) for devices that
hold cryptographic information and perform cryptographic functions [15].

This standard, also known as cryptoki, isolates an application from the
details of the cryptographic device. In this way the application doesn’t need to
change in order to interface to a different type of device, making the application
highly portable. To enable this technology independence and resource sharing
capabilities, an object based approach is followed.
Each object consists of a set of attributes, each with a given value. In figure 2.6
it is possible to see an high level view of Cryptoki objects and their attributes.
They are generally defined in one of four classes [16]:

• Data objects: objects defined by an application;

• Certificate objects: digital certificates such as X.509;

• Key objects: public or private keys;

• Vendor defined objects.

Figure 2.6: PKCS#11 object attribute hierarchy [15]

17

Background

The API model is distributed as C header files, which are part of PKCS#11
standard specification [11]. It is then up to all suppliers to implement these
header files and distribute as DLL (Dynamic Link Library) for Windows or as
SO (Shared Object) for Linux operating system. Developed application can
then load these DLL or SO files to access the cryptographic device. Here in the
following PKCS#11 specific terminology:

• Slot: uniquely identifies an HSM logical space. One physical HSM can be
composed of multiple logical partitions;

• Token: it is the physical device where applications store object and perform
cryptographic operations. When a slot is initialized in HSM then the token
is present in the slot;

• Session: is the logical connection between a slot and the corresponding
token. Once session is established it is possible to use the session object
together with the token to store information or perform operations. This
relationship, better visualized in figure 2.7, allows for stronger isolation
and security when applications connect to HSMs.

Figure 2.7: PKCS#11 interaction model [16]

18

Background

• User: cryptographic devices contains both private and public objects. To
access private objects, such as private keys, users must be authenticated
from the device. In order to adhere to PKCS#11 standard at least two
roles must be present: the security officer (SO) and standard users. Luna
network HSMs define an enhanced version of PKCS#11 role hierarchy
described above. Each role grants permission to perform specific action at a
different level of granularity, offering great freedom for personalisation and
providing great security when properly configured. The following tables
summarize the possible roles and their functions [17]:

Appliance-level role Description

Admin

– Performs all administrative and configura-
tion tasks on the appliance.

– Creates custom users and roles with access
to specific sets of commands.

Operator

– Can perform administrative tasks on the
appliance.

– Cannot execute any commands that affect
other roles on the appliance

Monitor

– Executes commands that present informa-
tion about the appliance and HSM, cannot
affect the state or contents of the appliance
or HSM.

Audit – Manages HSM audit logging

Table 2.1: Thales Luna HSM Appliance-level role

19

Background

HSM-level role Description

Security Officer (SO)

– Initializes the HSM, creating SO credential
– Creates/deletes application partition and

configure policies
– Must have admin-level access to the appli-

ance in order to perform all actions

Auditor
– Manages HSM audit logging
– Must have audit-level access to the appli-

ance in order to perform all actions

Table 2.2: Thales Luna HSM-level role

Partition-level role Description

Partition Security Officer (PSO)

– Initializes the partition, creating PO creden-
tial, setting cloning domain and configuring
partition policies.

– Initializes Crypto Officer (CO) role and can
reset its credential

Crypto Officer (CO)

– Creates and modifies cryptographic objects
on the partition. Can perform crypto-
graphic functions via user applications

– Initializes Crypto User role and can reset
its credential

Crypto User (CU) – Performs cryptographic functions via user
application but can create public object only

Table 2.3: Thales Luna Partition-level role

20

Chapter 3

State of the art

During the initial phase of this thesis work, existing solution that shared re-
quirements and solutions with what was described previously. Various proposals
have been presented in recent years, which will be analyzed in this chapter in
order to gather the current state of the art for blockchain and DSO integration
via smart contracts.

3.1 Transparent continuous delivery
In this article [18] presented by Kimberly Connors et al. blockchain technol-
ogy is seen as a possible solution to enable a transparent SoD (Segregation of
Duties) compliance, in order to increase delivery efficiency and agility. SoD is
an important security requirement that aims to prevent errors and fraudulent
activities through separation of critical tasks and responsibilities between differ-
ent individuals or roles.
Key concepts of SoD that are common to those of this dissertation proposal,
together with error detection and compliance, are the following:

• Fraud prevention: division of responsibilities results in fewer problems
with unauthorized access and control over processes that could be exploited
to perform underhanded activities. This concept is strongly reflected in
blockchain networks, where the entity giving consent to add a transaction
is different from the one proposing it;

• Accountability: responsibilities are shared between different individuals.
This increases transparency. The use of smart contracts and blockchain is
intended to improve the accountability of the systems in which they are
applied;

21

State of the art

• Conflict of interest: decision making from processes and decisions are
made from entities with different roles.

A specific DevOps model, called Bi-modal DevOps, is used for the analysis.
This methodology combines both agile and waterfall to implement changes in
the systems. This enables a strict gate before the product reaches the production
stage. Here are some of the delivery controls that have been identified and can
be audited in a DevOps model: management of delivery artifacts, traceability
of code changes, authorization for builds and promotion of code into delivery
and production environment, role-based access control and logging.

In the proposed solution, summarized in figure 3.1, a blockchain based code
repository would offer a decentralized solution to immutability and auditability.

Figure 3.1: Bimodal DevOps using blockchain [18]

22

State of the art

This suggested solution, also called Enterprise DevOps Blockchain (EDOB),
has been designed in such a way that:

• all activities are automatically recorded as transactions;

• all network participants run nodes in EDOB, implemented as permissioned
blockchain;

• transactions can be independently validated and processed.

The proposed framework, following counterclockwise direction of figure 3.1,
is able to perform the following actions:

1. The specific Line of Business (LoB) problem is captured by initializing the
blockchain and setting requirements and needs;

2. Code repositories are integrated in EDOB and activities are treated as
transactions in the network;

3. DevOps activities are recorded as well. For example new code developed,
test results and code promotion to production environment can be some of
the relevant information;

4. Deployment to production should be a fully automated process and is also
recorded in EDOB, along with any access to production activities and
other automated vulnerability code scanning results when in production
environment;

5. Smart contract can be used to trigger acceptance testing, both manual
or automatic. Test scripts and results can be recorded as transactions in
EDOB;

6. Management and responsible executives have complete transparency over
the project and all its milestones;

7. In case an approval from change management is needed, it can be notified
and the outcome can be recorded as well in the blockchain;

8. At any point, internal or authorized external auditor can review the process
and access every transaction performed in every step of the activities.

EDOB solution offers a trusted data source for transactions recorded on
chain, improved security and increased efficiency and agility of delivery process.
Moreover the distributed nature of the project makes it fault-tolerant and very

23

State of the art

scalable, relying on peer-to-peer network where each node is managed by the
respective network participant.
Although the main purpose of the analysed solution is to improve and facilitate
compliance with modern and more stringent SoD policies, it is certainly possible
to draw useful information and practices from this specific use case, which will
be taken into account in the solution design.

3.2 Blockchain based framework for software
development using DevOps

In this document [19], presented at the 2021 International Conference on Nascent
Technologies in Engineering, a different approach is described with respect to
the previously cited solution. The solution proposed by Bankar and Shah aims
to support DevOps processes giving all stakeholders access to all the documents
on a single decentralised network.

The overall architecture, shown in figure 3.2, is composed of two main com-
ponents: a permissioned blockchain network and an IPFS (InterPlanetary File
System) that acts as distributed database. A client SDK (Software Development
Kit) allows for peers in the network, such as developers, tester and managers,
to submit transaction requests.

IPFS is a modular suite of protocols for organising and transmitting data,
based on the principles of content addressing and peer-to-peer networking. In
such a network, each peer has the same capabilities and can initiate a commu-
nication session. In addition, unlike traditional system, each file is addressed by
its hash value rather than by location or path [20]. In the mentioned solution
hashes of different directories are saved in a JSON file, in this way access to
those file is faster.

In continuous development, an initial phase in which client and manager
interact in order to outline all the details of the project. These interactions,
which take place through the client interface, are all recorded and shared across
the distributed system. Once everything is set up, a git repository is created in
the IPFS database. Any authorized contributor can perform CRUD (Create-
Read-Update-Delete) operations on the project. The blockchain is used to
authenticate and authorize the collaborator to access the IPFS. After a suc-
cessful transaction on the IPFS a new hash of the project is generated and

24

State of the art

Figure 3.2: Architecture for DevOps with Blockchain

stored in the blockchain’s state database. All the SDL related operations are
performed on the IPFS server. Administrators have the ability to interface with
the middelware in order to create new users and provide identity materials in
order to enable strong authentication.

The proposed framework bring the following advantages:

• All document history is traced and origin of changes is easily recovered;

• All stakeholders can be brought on a single platform;

25

State of the art

• All documents are stored in a tamper-proof manner thanks to blockchain
technology;

• All latest update are easily available to all stakeholders at the same time.

Principles and practices previously proposed, developed for DevOps method-
ologies, are certainly useful and applicable when DevSecOps practices take place.
These benefits will be further analyzed in following chapters and have been
considered in the development of this thesis project proposal design.

26

Chapter 4

Solution design

This thesis work focuses on improving security when different groups of people
with different roles and responsibilities need to access and modify information
in a DevSecOps pipeline in order to push development forward.

In order to demonstrate the feasibility of the proposed approach a Proof
of Concept has been developed. As there’s currently no integrated system
for combining blockchain technology with DSO, it was necessary to develop a
customized solution, which required careful consideration of design choices. The
following chapter explains the rationale behind each decision and outlines the
benefits in terms of improved security, reliability, efficiency and accountability.

4.1 DevSecOps platform
One of the first decisions to be made is which DevSecOps platform to use.
A number of choices exists today, and each offers some common and unique
features, with different ways of interacting.

The aim of the following sections is to provide a summary of the most
frequently used tools capabilities, so that it is possible to compare them and
choose the one that best suits the needs of this project. The comparison will be
between Jenkins [21], GitHub Actions [22] and GitLab [23].

4.1.1 Jenkins
Jenkins is a very flexible and extensible open source automation server. There
are several plugins for source code management, build and deploy, testing and
more. This variety allows Jenkins to integrate with a wide range of tools and

27

Solution design

services. Jobs can be configured through its web interface, using different type
of projects, build steps and triggers.

Pipelines are written using a DSL (Domain Specific Language) based on
Groovy. Among all the solutions the are presented, this is the more customisable:
users can create custom plugins if needed. The scalability of the system
depends on the installation configuration. It is possible to set up a master-slave
architecture to distribute workloads and handle parallel builds.

4.1.2 GitHub Actions
This CI/CD platform integrates with GitHub repositories and has the ability
to automate and make software development more efficient. Steps, jobs and
triggers for the CI/CD pipeline are stored inside .github/workflows inYAML
files together with the repository. It is said to be event-driven, in fact, each of
the action specified inside the configuration files is triggered by specific events,
such as code pushes, pull requests, comments and many more. It supports
matrix build, enabling to run jobs for different configurations in parallel.

A very collaborative community exists that develop and share custom actions
inside the marketplace. Those actions can be reused by developers if needed.

4.1.3 GitLab
GitLab CI/CD is tightly integrated with the GitLab platform, providing a single
interface for source code management, issue tracking and pipeline management.
Pipelines are deployed in gitlab-ci.yml file, written in YAML markup language
and versioned along with the code. GitLab CI/CD has native support for Docker
containers, that can be used to build, test and deploy applications. With the
added benefit of parallel and distributed build support, this can scale efficiently
at both individual project and group level.

It provides Auto DevOps feature with the purpose of automating common
pipelines based on the repository content. It offers some integration with other
tools and services but most of the feature are implemented inside this framework.
The Enterprise Edition (EE), depending on the subscription tier, supports most
of features that enable DevSecOps development and a shift-left mindset. Some
of these tools are:

• Security testing: it is possible to use both built in and custom scanners

28

Solution design

in order to perform SAST, DAST, secret scanning, dependency scanning
and many others;

• Vulnerability management: security teams can manage vulnerabilities
directly from pipelines, third party tools or on-demand scans.

Some common features of the last two proposed frameworks are the following:

• They provide options for securely storing sensitive data such as API keys
and credentials using secrets;

• Workflows, pipelines and configurations updates can be secured using access
control mechanisms. These are linked to each platform’s access controls,
defining role and responsibility for each entity;

• They allow users to use self-hosted runners, which can provide additional
security control by running pipelines in a self-managed infrastructure.

After an evaluation of the proposed DSO platform, GitLab was chosen for
its comprehensive set of tools, on-demand technical support and high level of
customisation. Jenkins would have been an unnecessary burden for this project
due to the complexity of its setup and was therefore discarded. The solution
was also found in this instrument because the proposed work is aimed at an
enterprise environment and this DSO platform is one of the most widely used
in companies worldwide.

In addition, GitLab provides the ability to easily set up and run a complete
instance locally, giving the opportunity to experiment with different configu-
rations on a local machine. Because a local installation is used for the scope
of this project, runners and container registries have to be set up manually in
order to run pipelines.

4.2 Blockchain
When developing a smart contract, choosing the right blockchain platform is
a crucial decision that can significantly impact the effectiveness and security
of the contract. The choice of blockchain platform depends on various factors,
such as requirements, technical considerations and ecosystem support.

One of the critical factors to consider when choosing a blockchain platform
is the type of blockchain. Permissioned blockchains, such as Hyperledger Fabric

29

Solution design

[24] and Corda [25], are designed for private networks, and access is restricted
to a selected group of participants. In contrast, permissionless blockchain such
as Ethereum [26], enables anyone to participate in the network and validate
transactions.

Another important consideration is the scalability and performance of the
blockchain platform. Smart contracts can involve multiple parties and complex
logic, making it essential to choose a platform that can handle the transaction
volume and execute the contract efficiently.

Moreover, the cost of using the blockchain platform should also be considered.
The cost of deploying and maintaining a smart contract can vary significantly
depending on the platform’s features and services. Ethereum, for example,
charges a fee for every transaction on the network, while Hyperledger Fabric do
not.

Below, there’s a concise comparison between the most commonly used plat-
form [27] for smart contract development:

Hyperledger Fabric Ethereum
Network type Permissioned Permissionless
Consensus
mechanism

customisable, PBFT
based

PoW (v 1.0), PoS (v
2.0)

Smart con-
tract lan-
guage

GO, JavaScript, Java Solidity (DSL)

Scalability efficient consensus
mechanism

scalability chal-
lenges

Typical use
case

Enterprise solutions DApps 1, NFTs 2

Table 4.1: Popular smart contract platform comparison

For the reasons that follow, which will be more comprehensively discussed
in subsequent chapters, Hyperledger Fabric was selected to develop the smart

2DApps stands for Decentralized Application and is a type of software application that is
designed to operate on a decentralized and distributed blockchain network.

2Non-fungible tokens

30

Solution design

contract:

• Scalability: Fabric’s architecture supports high scalability, enabling effi-
cient handling of large transaction volumes and diverse workloads, making
it highly scalable compared to other platforms as also reported in [28];

Figure 4.1: Average latency of Ethereum and Hyperledger with varying number
of transactions (left); Average throughput of Ethereum and Hyperledger with
varying number of transactions (right) [28]

• Permissioned network: Fabric is designed for permissioned blockchain
networks, where all participants are explicitly known, making it suitable
for enterprises use cases requiring privacy and access control.
The specific scenario presented in this work requires to have all these
characteristics: a permissionless network, where every peer could join and
make transaction is discarded;

• Modular architecture: Fabric’s modular architecture facilitates the
customization of the consensus mechanism, membership services, and
numerous other components. This flexibility enables customization to suit
various requirements;

• Smart contract flexibility: Fabric’s smart contracts, also known as
"chaincode" can be written in multiple programming languages, including
Go, Java and JavaScript;

• Membership: Fabric’s membership services enable fine-grained access
control and identity management. Participants must be authorized to access
the network, which covers the accountability that this project requires;

31

Solution design

• Consensus validation: its endorsement and consensus model separates
transaction endorsement from validation, thereby improving efficiency and
decreasing redundancy. It can also leverage consensus protocol that does
not require a native cryptocurrency.

4.2.1 Hyperledger Fabric
According to its documentation [29] Hyperledger Fabric (HF) is an open-source
enterprise-grade permissioned distributed ledger technology (DLT) platform,
designed for use in enterprise contexts, that delivers some key differentiating
capabilities over other popular distributed ledger or blockchain platforms. Some
of these peculiar characteristics, developed together with the Linux Foundation,
are the ones introduced at the end of the previous chapter and are the main
needs that have driven the development of this new framework.

The majority of the existing smart-contract capable blockchain platforms
follow an order-execute architecture in which:

• the consensus protocol is needed to validate transactions and propagate
them to all peer nodes;

• each peer then executes the transaction sequentially.

These type of blockchain must be deterministic in order to reach the required
consensus and a DSL, such as Solidity, is needed to address non-determinism at
a different level.
Fabric introduces a new approach that is called execute-order-validate that
addresses the order-execute model’s resiliency, flexibility, scalability, performance
and confidentiality. It does so by partitioning the transaction flow into three
stages, better detailed in subsequent sections:

• Executes a transaction and check its correctness, hence endorsing it;

• Orders transactions via a consensus protocol;

• Validates transaction against an application-specific endorsement policy
before committing to the ledger.

The first phase eliminates non-determinism, in this way DSL are no longer
necessary and it is possible to use standard programming languages.

32

Solution design

4.2.1.1 Network structure

As described in the official documentation [30], HF’s network is the infrastructure
that provides ledger and smart contract services to applications. Its distributed
architecture provides an high level of transparency and accountability. In most
enterprise scenarios, multiple organisations or parties can come together to
form a channel where transactions are invoked through chaincodes and where
permissions are determined by a set of policies are agreed upon when the channel
is initially configured.

Figure 4.2: Hyperledger Fabric network [30]

In figure 4.2, it is possible to see an example of a complete network that will
be referenced when explaining the infrastructure. The starting point for building
a new network is to define the organisations, also called members, that will
join the blockchain network. In the picture three different organizations are
present: R0, R1 and R2. The channel configuration, CC1, has been agreed
by organizations R0, R1 and R2 and is contained in the configuration block.
This block contains a record of the organisations that can join components
and interact on the channel, as well as policies that govern transactions, and is
built using configtxgen. This is a command-line tool that has been developed to
create and inspect channel configuration related artifacts, using the information
contained in the configtx.yaml file.

Each organisation must be created by a Certificate Authority (CA) associated
with each organisation, CA0, CA1 and CA2 respectively. Each CA has the

33

Solution design

ability to register and enroll participants for each organisation, including the
identities of each member’s administrator. Their role is to distribute X.509
certificates that are used within the network to

• Identify components as belonging to an organization;

• Sign transactions, meaning that an organization endorses the transaction
result.

The organisation’s CA issues the required certificate, while the MSP (Mem-
bership Service Provider) maps this certificate to the member organisation. The
channel configuration can assign rights and permissions to each organisation
by defining custom policies. Issued certificates are used in the transaction
generation and validation process, more specifically by the client application
when a transaction proposal is issued and by the smart contract when there’s a
need to sign the transaction response.

Other important actors in the network are the peers, such as P1 and P2,
respectively belonging to organisation R1 and R2. They both store the digital
ledger (L1) and a copy of the chaincode (S5). Organisations can submit transac-
tions either by using a peer to connect to a channel or by using an application.
A chaincode can be considered physically hosted on a peer but logically hosted
on a channel. A peer can be part of as many channels as needed, depending on
its configuration.

For each channel an ordering service needs to be present. It collects
endorsed transactions from applications and peers, orders them into transaction
blocks and then distributes them to each peer node in the channel. Each
committing peer records the transactions and updates the local copy of the
ledger. In the figure 4.2 there is only one orderer, labelled as O and belonging
to organisation R0. In a production environment it is recommended to deploy
at least three orderer nodes for each channel.
It is important to note that the ordering service only includes the blockchain
portion of a ledger and not the state database nor the chaincode, as they do
not propose transactions.

The final component depicted in figure 4.2 is the client application, which
can be used to invoke transaction on a chaincode, via the Fabric Gateway
service. The client applications, like both peers and orderers, possess an identity
associated with an organisation: A1 belongs to R1, while A2 belongs to R2.

34

Solution design

The client application builds a gRPC 3 connection to the gateway, managing
the transaction proposal and endorsement on the application’s behalf.

4.2.1.2 Membership Service Provider

Since we are in a permissioned environment peers, orderers and client applica-
tions are identified by their digital identity encapsulated in an X.509 certificate.
Access to resources and information within the blockchain network is enabled
based on this identity. For an identity to be verifiable, it must come from a
trusted authority, namely the MSP [31]. In order for a member to transact on
a Fabric network it is needed to:

• Have an identity that is trusted by an organization, according to the MSP
configuration;

• Check that the organization MSP is part of the channel on which the
transaction is proposed;

• Ensure that the MSP is included in the policy definition of the network.

The function of the MSP is to assign each network participant a specific role
according to its digital identity. That occurs in two domain inside the network,
depending on the scope for which they define the role:

• Local MSP: it specifies permissions for a node, such as peers and orderers.
Each node must have a local MSP defined so as to permit authentication of
member messages outside the context of a channel and to define permissions
over a specific node, such as for organization administrators;

• Channel MSP: it outlines administrative and participatory rights at a
channel level. It establishes the authorities at a channel level, specifying
the relationships between the identities of channel members (local MSP)
and the implementation of channel-level policies. If greater detail is needed
within an organisation, it is possible to further logically structure the
organisation in different organizational units (OUs).

When issuing X.509 certificates, the OU field can specify the LoB to which
the identity belongs. Employing OUs with this capacity, enable the utilization
of these fields in policy definition to restrict access or in smart contracts for

3Google Remote Procedure Call: it is an open-source framework developed by Google that
facilitates communication between distributed systems

35

Solution design

attribute-based access control. Here is shown the certificate for an administrator
belonging to an organization called "org1". The administrator’s available actions
are defined by the policies that regulate system resources.

Certificate:
Data:

Version: 3 (0x2)
Serial Number:

7a:8d:41:11:d5:93:85:7f:16:3c:13:0d:59:a0:d5:5a
Signature Algorithm: ecdsa-with-SHA256
Issuer: C = IT, ST = Turin, L = Turin,
O = org1.example.com, CN = ca.org1.example.com
Validity

Not Before: Aug 23 09:15:00 2023 GMT
Not After : Aug 20 09:15:00 2033 GMT

Subject: C = IT, ST = Turin, L = Turin,
OU = admin, CN = Admin@org1.example.com
Subject Public Key Info:

Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:

04:da:33:71:8b:e5:ef:6e:96:3c:33:08:24:cf:4b:
a2:ee:97:72:f6:62:25:b7:e2:af:3e:b8:8c:29:61:
02:2f:31:a0:ed:ce:28:6b:82:19:b0:02:f6:16:5b:
dd:10:75:05:16:95:d6:a7:b2:be:24:07:ed:ca:f9:
58:4a:53:a8:1a

ASN1 OID: prime256v1
NIST CURVE: P-256

X509v3 extensions:
...

Only one local MSP exists, both physically and logically, in each node. In
contrast, channel MSP are accessible to all nodes and are logically defined once
in the channel configuration. Nevertheless, a channel MSP is instantiated on
the file system of each node in the channel and kept synchronized via consensus.
A local MSP folder is structured as follows:

• config.yaml: defines accepted roles and enables OUs;

• cacert: this directory contains a list of self-signed X.509 certificates of the
root CA trusted by this organization’s MSP. This folder identifies the CA

36

Solution design

that all other certificates must originate from to be recognised as members
of the appropriate organisation;

• keystore: this folder is mandatory for a local MSP and contains the
private key of the node. Access to this folder should be restricted to the
identities that possess administrative responsibility over the peer. If an
HSM is used, this folder will be empty as the private key is generated and
stored internally within the secure module;

• signcert:this directory holds the node’s certificate issued by the CA. This
certificate is used to verify node’s signature over transactions;

• tlscacerts: it contains a list of self-signed X.509 certificates for the root
CA that is trusted by this organisation for secure communication between
nodes via TLS.

A channel MSP includes this additional information:

• Revoked Certificates: if X.509 based identities are used this folder
contains the list of revoked certificates in the pair {SKI (Subject Key
Identifier) : AKI (Authority Access Identifier)}. This act as a normal CA’s
CRL plus revoking membership from an organization.

4.2.1.3 Policies

In the context of permissioned blockchain like Hyperledger Fabric policies allow
members to decide which organizations can access or update the network. They
specify the list of organisation that have access to a given resource and how
many organisation need to agree on a proposal to update resources [32]. The
policies, described in configtx.yaml, outline the approval necessary for changes
proposed to a specific resource, which can be either an individual’s explicit sign
off (Signature type policies) or that of a group (ImplicitMeta type policies).
This last type of policy is beneficial when group members are not fixed over
time, as it does not require a particular member to sign off. There are three
main section for defining policies:

• Member organisations: defines organisations that will be members of
the channel. It is possible to specify policies for readers, writers, admins
and endorsement procedures;

• Application and roles: these are the policies regarding important fea-
tures of application channels, such as who may query the ledger, invoke a
chaincode or update channel configurations;

37

Solution design

• Chaincode lifecycle: this is a crucial aspect for the network’s security.
The policies describes the approval process when chaincode requires en-
dorsement of organizations members and subsequent committing to the
channel.

4.2.1.4 Ledger

In HF the ledger consists of:
• World state: it is a database that stores current values. Ledger states

are represented as {key;value} pairs and simplify access to the latest value,
rather than requiring traversal of the entire transaction chain to obtain
the correct value. Information stored in the world state can be created,
updated and deleted. Together with the key and value, the version of each
record is also stored, to keep track of the changes;

• Blockchain: the transaction log that record all the changes occurred to
reach the current world state. Unlike the world state, once data is recorded
on the blockchain, it becomes immutable. It can be used at any moment
to reconstruct the current world state.

Figure 4.3: Hyperledger Fabric Ledger

The Block Data described in section 2.2.1 for this specific implementation
may contain several transactions. Each of these will have the following content,
the usefulness of which will be clearer once the consensus process has been
explained:

• Header: capture relevant metadata about the transaction (i.e. name and
version of the chaincode);

• Signature: cryptographic signature performed by the client application to
ensure integrity of transactions;

38

Solution design

• Proposal: when invoking chaincode it is necessary to provide some input
parameters in order to update the current world state;

• Response: captures the before and after values of the world state as a
Read Write set (RW-set);

• Endorsement: the list of signed transaction responses from the required
organisations according to the endorsement policy.

4.2.1.5 Chaincode Lifecycle

Hyperledger Fabric smart contracts, known as chaincodes, are programs that run
within a segregated Docker environment that is also isolated from the endorsing
peer process. Chaincode lifecycle is the process whereby organisations agree on
the parameters that define a chaincode, such as the version and endorsement
policies. Four steps occurs during chaincode installation in a channel:

1. Packaging the chaincode: chaincode needs to be packaged in a tar
file (.tar.gz extension) in order to be installed on peers. This compressed
folder contains compressed chaincode files and another file, metadata.json,
containing information on chaincode language, path and label;

2. Installing the chaincode: peer administrator is responsible for installing
the chaincode on each peer participating in transaction execution and
endorsement. After installation, each peer will compile the chaincode and
return the respective chaincode package identifier upon success. As multiple
chaincodes can be installed on a single peer, this identifier is formed by the
package label and the hash of the package itself;

3. Chaincode approval for organization: at this stage channel members
may give their approval for a chaincode definition, signifying their agreement
on the parameters of the chaincode, that are common for each organisation
on the channel and are the following:

• Name;
• Version;
• Package ID;
• Sequence: in the event of chaincode upgrades, this integer value is

incremented by 1. The starting value is set at 1. This value ensures
that all organizations remain synchronized with regard to approving
and committing chaincode definition;

39

Solution design

• Endorsement Policy: represent the necessary organisations needed
to execute and validate the transaction output. By default, the en-
dorsement policy requires a transaction to be endorsed by a majority
of the organisations of the channel;

• Initialization: an Init function that is used to initialize the chaincode
needs to be specified. This is helpful in establishing an initial state
prior to the invocation of chaincode transactions by applications and
peers.

Each channel member wishing to use the chaincode must submit its approval
to the ordering service, which then distributes it to all peers. Once approved,
it is stored in a collection available to all peers in an organisation, so that
only one chaincode approval is required for each organisation.

4. Chaincode definition commit: when the required number of channel
members have approved the chaincode definition, according to the specified
policy, an organisation can commit the definition to the channel.
The proposed commit transaction is sent to the peers of the channel mem-
bers, who query the chaincode definition approved for their organisation
and endorse the definition if their organisation has approved it. An ad-
ministrator submits the transaction to the ordering service, which then
commits the chaincode definition to the channel.

4.2.1.6 Transaction flow

As already mentioned in section 4.2.1, most blockchain systems follow an
order-execute architecture, where the network first orders transaction using the
consensus protocol and then executes them sequentially in all peers in the same
order. Instead, Fabric’s execute-order-validate paradigm involves the client,
peers and orderers in the following transaction flow, also displayed in figure 4.4
[33]:

1. Execution phase: it begins when a client signs and sends a transaction
proposal to one or more endorsers for execution. These endorsers are
those specified in the endorsement policy of the chaincode. Each proposal
contains:

• The identity of the submitting client, according to MSP;
• The transaction payload and parameters;
• The called chaincode identifier;

40

Solution design

Figure 4.4: Hyperledger Fabric transaction flow

• A nonce;
• The transaction identifier, consisting of the client identifier and the

nonce.

The endorsing peers simulate executing the proposed transaction according
to the chaincode definition. Without synchronising with the other peers
yet, the proposal is simulated against the endorser’s local blockchain state.
Each endorser produces a value writeset, which is the state update produced
by the simulation, and a readset, which represents all the keys read during
the simulation along with their version numbers. Once the simulation is
complete and RW-set is built, an endorsement message, also containing
metadata such as transaction ID, endorser ID and endorser signature is
sent back to the client as a proposal response. The client then collects the
endorsements until the required number has been reached in accordance
with the endorsement policy. If and only if a sufficient number of readsets
and writesets match in the messages, a proposed response will be accepted
by the clients.

This process ensures the required determinism of the transactions, as the
endorsement phase will not be successful if different RW-sets are presented
to the client. This is an advantage over an order-execute architecture where

41

Solution design

this situation leads to an inconsistent state between peers;

2. Ordering phase: when sufficient endorsements have been collected from
a client, a transaction is created and submitted to the ordering service.
This contains the transaction payload, transaction metadata, and a set of
endorsements. The aim of this phase is to achieve a complete order on
all submitted transactions within the channel. This is accomplished by
grouping several transactions into blocks and producing an hash-linked
sequence, also improving the throughput of the fault-tolerant protocol. The
ordering service supports the following two operation when called by a
peer:

• broadcast(tx): used to broadcast a transaction tx ;
• B← deliver(s): called by a client to retrieve a block B using a sequence

number s.

Every ordering implementation may have its own liveness 4 and fairness 5

guarantees regarding client requests.
A gossip service is additionally used to exchange data between peers. It can
be scaled up and is indifferent to the execution of the consensus algorithm,
enabling it to function seamlessly with both CFT (Crash Fault Tolerant)
and BFT ordering services.

It is a crucial innovation that the ordering service does not maintain any
state of the blockchain or validate and executes transactions. This ensures
that the consensus algorithm is highly modular and efficient.

3. Validation phase: during this stage blocks are distributed to peers either
by the ordering service or via the gossip service. This phase is made up of
three consecutive steps:

• Endorsement policy evaluation: the validation system chaincode
(VSCC), which is a static library included in blockchain’s configuration,
has the responsibility for validating the endorsement in accordance with

4In a distributed system is the property that guarantees progress over time. Here means
that the system makes progress towards consensus, even if some nodes are unresponsive or
experiencing failures

5In a distributed system is the property that guarantees that all participant have an equal
chance of being elected as leader, participating in a consensus protocol or accessing shared
resources

42

Solution design

the endorsement policy specified in the definition of the chaincode. In
case the endorsement does not meet the requirements, the transaction
will be considered invalid;

• RW conflict check: for all transactions in the block’s read-write
set, a sequential check is performed. For each transaction, the keys in
the readset undergo a check against those in the current state of the
ledger, as stored locally by the peer. If the version does not match,
the transaction is marked as invalid and its effect does not update the
world state;

• Ledger update: the block is appended to the locally stored ledger
and the blockchain state is updated. Any update to the state is applied
by writing all key-value pairs in writeset to the local state.

Due to its design choices, unlike other blockchains such as Bitcoin and
Ethereum, Fabric’s ledger contains also invalid transaction. This choice
is made because the ordering service only create the block chain and the
validation is done by peers. Additionally, the ability to store rejected
transactions in a permissioned network, assists with network auditing in
the event of malicious activities or DoS attacks.

43

Chapter 5

PoC implementation

After completing the design stage, during which the key components were
selected, the implementation phase was carried out to demonstrate the feasibility
of the proposed approach. The Proof of Concept was constructed based on
the design choices previously described, through a sequential approach that
involved the following steps:

• CI/CD pipeline definition using GitLab tools;

• Hyperledger Fabric network’s structure definition;

• Smart contract (chaincode) programming;

• Application development;

• HSM integration.

The implementation was performed on a RHEL 8.7 Linux distribution, with its
IP address referred to as RHEL_IP.

5.1 DevSecOps environment
A local instance of GitLab is installed on the working environment, ensuring
that no service is exposed on a public network. The version used is 15.10.3-ee
(Enterprise Edition). In order to fully leverage this tool’s potential and to access
its GUI, the command ssh -L 9090:localhost:80 dzanfardino@RHEL_IP is used.
This allows access to what is exposed in the remote machine’s port 80 through
port 9090 on the local one.

44

PoC implementation

The initial phase of implementing a functional pipeline involves the configura-
tion of an executor capable of running pipelines jobs, known as GitLab Runner.
As a self-managed GitLab instance is used, the runners must be manually
downloaded and registered. A runner is an agent that runs the code within a
Docker container on the host platform. A single shared runner, accessible to all
local projects, is used in the implementation. Even though several of them can
be installed to improve efficiency and reliability, one of them is sufficient for
this project without sacrificing any required features.

Additionally, the Container Registry must be enabled as well. This provides
a repository for application images, allowing distribution across multiple stages
of SDL. It is typically used during the push phase to store an image of the
application, which allows for further analysis and deployment.

WebGoat [34], a well-known deliberately vulnerable web application devel-
oped by OWASP, was used to implement the CI/CD pipeline. The stages have
been designed to integrate DevSecOps principles as outlined in section 2.1. The
resulting CI/CD flow, as also described in figure 5.1, is composed of four jobs:

• Build: when the pipeline is triggered, the web application is built including
the most recent updates;

• SAST: using GitLab’s semgrep 1 SAST analyzer, a static analysis of the
code is performed. The results are stored as job artifact;

• Push: the built image is pushed to the container registry, following an
authentication process;

• DAST: using the latest build image present in the container registry, a
dynamic analysis of the application is performed and results are saved as
job artifact.

1Semgrep is an open-source static analysis engine for locally finding bugs and detecting
vulnerabilities.

45

PoC implementation

Figure 5.1: PoC CI/CD pipeline

During SAST and DAST analysis, information about the found vulnerabilities
are stored in an artifact that can be accessed through authenticated APIs.
More specifically, SAST analysis produces a JSON file containing an array of
vulnerabilities. This array includes multiple items, each corresponding to a
specific vulnerability, like the following one:

In the proposed scenario developed for the Proof of Concept, only some
initial steps are present to demonstrate feasibility without adding unnecessary
complexity. It should be noted that in real scenarios, as better represented in
figure 5.2, multiple complex steps are typically integrated. Each step usually
generates one or more artifacts in which relevant information produced in that
stage is saved. Additionally, as detailed in section 2.1.1, security gates that
regulate the passage from one stage to the following one are implemented. The
use of security gates necessitates a premium subscription. Therefore, during de-
velopment, the closest approximation to their behavior is employed. Whenever
the pipeline is triggered, a minimum numbers of approvals may be required for
the merging of new code to proceed. Security gates offer similar capabilities
but with more detailed control for each stage of the pipeline. For example, in
addition to requiring a specific number of approvals, it is possible to require
also a minimum number of vulnerabilities discovered during automatic analysis.

The scope of this work was to find a way to include the information produced
by the artifact and during the pipeline execution on the blockchain, providing
access to necessary details for both DevSecOps team and product stakeholders.
The DSO teams would likely be interested to share all technical elements
obtained during development, whereas stakeholders can use relevant information
to understand the development’s progress or vulnerabilities and threats present
in the product.

46

PoC implementation

Listing 5.1: SAST result
{
"id": "63 e8ae85fc ...",
" category ": "sast",
" message ": " Improper Limitation of a Pathname to a Restricted

Directory (’Path Traversal ’)",
" description ": "A file is opened to read its content . The

filename comes from an input parameter ...",
"cve": " semgrep_id : find_sec_bugs . PATH_TRAVERSAL_IN -1:41:41",
" severity ": " Critical ",
" scanner ": {

"id": " semgrep ",
"name": " Semgrep "

},
" location ": {

"file": "webgoat - lessons /path - traversal /src/main/java/org/
owasp/ webgoat / path_traversal / ProfileUploadBase .java",

" start_line ": 41
},
" identifiers ": [
{

"type": " semgrep_id ",
"name": " find_sec_bugs . PATH_TRAVERSAL_IN -1",
"value": " find_sec_bugs . PATH_TRAVERSAL_IN -1"

},
{

"type": "cwe",
"name": "CWE -22",
"value": "22",
"url": "https:// cwe.mitre.org/data/ definitions /22.html"

},
{

"type": " find_sec_bugs_type ",
"name": "Find Security Bugs - PATH_TRAVERSAL_IN ",
"value": " PATH_TRAVERSAL_IN "

}
]
}

5.2 Network structure

Hyperledger Fabric allows the network to be highly customisable and, as ex-
plained in 4.2.1, several choices can be made. Keeping in mind the scope of

47

PoC implementation

Figure 5.2: Complete pipeline artifacts and details

the project and the description made in the previous chapter, the following
structure, also shown in figure 5.3, can be implemented:

• Organisations: this represent a logical and physical partition for the
different entities interacting with the network. Two different organization
are created:

– DSO team: they can update pipeline implementation and, according
to defined policies, perform required approval;

– Stakeholders: they have visibility over current status of the project,
including latest pipeline run and all found vulnerabilities.

Each organisation has its own certificate authority, which releases and
manages PKI-based certificates for network member organisations and

48

PoC implementation

Figure 5.3: Proposed network structure

their users. Each CA is created based on specific configuration files that
define its characteristics. Some of the most significant ones are the following:

– TLS has been enabled for communication with network members. The
NoClientCert option has been selected, which means that no client
certificate should be requested during the handshake;

– Details regarding certificate issuing and signatures are specified, such
as the validity period for each released certificate, as well as permitted
usage and values for certificate signing requests;

– BCCSP (BlockChain Crypto Service Provider) section determines
which cryptographic library to use and, in this preliminary implemen-
tation a software-based provider is selected, which has to be used
for development purposes only. The provider generates keys using a
software-based PRNG (Pseudo Random Number Generator), which
are then stored in specified keystore files.

• Peers: for the purpose of this project each organizations will be provided
with an administrator peer, which is mandatory for each organization, and
one other peer. It is unlikely that in a real-world scenario an organisation
will consist of only one peer, considering that multiple peers must be

49

PoC implementation

present to fully exploit the decentralized and distributed aspect of the net-
work. Nevertheless, for the development of this PoC it is sufficient to have
one peer for each organisation to assess the validity of the proposed net-
work composition. Similar to CAs, in this initial implementation peers also
use a software keystore file to store and retrieve needed keys and certificates.

An additional peer belonging to the DSO Team organisation, named "Dae-
mon Peer" in Figure 5.3 is also defined. This is the identity designated
to invoke the chaincode when changes occur in the pipeline or when jobs
result become available. An application is used to make the peer access
the ledger and two main operation can be performed: ledger-query and
ledger-update [35].

• Orderer: the proposed network implements a single orderer node. However,
as also anticipated in chapter 4.2.1.1, in order to maximise infrastructure
benefits, reduce bottleneck and improve security, a minimum of three nodes
should be used in production environment. Nonetheless, using a single
orderer node does not compromise the validity of the proposed architecture.
Additional ordering nodes can be easily added by appending the respective
addresses and ports in the "orderer" section of configtx.yaml file, ensuring
the corresponding containers have been deployed.

To establish agreement within the network, a suitable algorithm must
be selected. Hyperledger Fabric allows for several consensus algorithm
including Raft, Kafka and Solo. Ultimately a Crash Fault Tolerant (CFT)
ordering service based on an implementation of Raft protocol is used [36].
This protocol adopts a "leader and follower" approach, where followers
replicate the entries suggested by the leader. In case the leader crashes, a
new one is elected after a timeout period. The system can sustain the loss
of nodes as long as there is a majority of the ordering nodes remaining. In
case three ordering nodes are present, the system can withstand the loss of
one node, this leaving two active nodes.
The "etcd" implementation of Raft protocol, already in use and tested
in several distributed frameworks like Kubernetes and Docker Swarm, is
selected as consensus algorithm for this project. Raft nodes identify each
other using TLS pinning, meaning that an attacker must first discover
the private key of the certificate used in the communication in order to
maliciously impersonate the node. Therefore, the configuration file must
include the path to the certificate, along with host and port details;

50

PoC implementation

• Policies: the policies section inside configtx.yaml defines policies for readers,
writers and endorsers at different level of granularity. Both Signatures and
Implicit Meta policies are defined for the proposed network. The following
one, for example, refers to Organisation 1:

P o l i c i e s :
Readers :
Type : S ignature
Rule : "OR(’Org1MSP . admin ’ , ’ Org1MSP . peer ’ , ’ Org1MSP . c l i e n t ’) "

Writers :
Type : S ignature
Rule : "OR(’Org1MSP . admin ’ , ’Org1MSP . c l i e n t ’) "

Admins :
Type : S ignature
Rule : "OR(’Org1MSP . admin ’) "

Endorsement :
Type : S ignature
Rule : "OR(’Org1MSP . peer ’) "

By specifying the rules above, read access is restricted to clients, peers or
administrators from organisation 1, while writing privileges are granted to
admin or client. Similarly,endorsement of transactions is only permitted
for peers from organisation 1.
Other higher level policies, such as those outlined below, are defined at
the application level. This approach ensures that whenever the underlying
network structure changes slightly, such as a new organisation joining the
network, those rules do not need to be completely rewritten:

P o l i c i e s :
Readers :
Type : Impl ic i tMeta
Rule : "ANY Readers "

Writers :
Type : Impl ic i tMeta
Rule : "ANY Writers "

Admins :
Type : Impl ic i tMeta
Rule : "MAJORITY Admins "

Li fecyc leEndorsement :
Type : Impl ic i tMeta
Rule : "MAJORITY Endorsement "

Endorsement :
Type : Impl ic i tMeta
Rule : "MAJORITY Endorsement "

51

PoC implementation

Several additional basic policies have been implemented to ensure proper
network operation. These policies can be further customized to target
specific behaviour.

In order to create a new network, the following actions need to be performed:

1. Each organisation must generate the cryptographic material, consisting
of keys and certificates, that will define that organisation in the network.
The organisation’s CA serves as a Root of Trust and a separate Docker
container for each of them is deployed. Each CA need to:

• Enroll the CA administrator, the entity that is in charge of mancreate-
Org1aging CA activities;

• Register peer, user and admin;
• Generate MSPs and TLS certificates for each of the previously created

entities.

2. The genesis block is generated based on the information present in the
configtx.yaml file. This block contains information related to organisations
and peers. References to MSPs created in the previous step are then used
to create the channel MSP. Subsequently, a Docker Compose file is used to
define and deploy the peers and ordering service inside a common channel;

When these operations have been successfully completed, the network is properly
configured and running, ready for chaincode installation.

5.3 Chaincode development
The chaincode, as discussed in Section 2.2.4 is responsible for handling the
mutually agreed business logic among the members of the network. In the
context of Hyperledger Fabric, the code can be written in Go, Node.js or Java,
and runs in a separate process from the peers. Each programming language
provides the same functionality for accessing the chaincode. In this project,
Node.js has been selected for development.

52

PoC implementation

By considering the implemented CI/CD pipeline, and also a more complete
scenario as shown in Figure 5.2, Figure 5.4 shows the structure that has been
defined as the base asset stored in the blockchain.

CommitID
InitialTimestamp
FinalTimestamp

Approvals
Vulnerabilities

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

Figure 5.4: Implemented base asset structure

More specifically:

• CommitID: for the purpose of this PoC, it is assumed that one single
project is shared between the DSO Team and stakeholders. However this
assumption will not prevent the demonstration of the concept’s feasibility in
this project as a more general use case can be easily established by slightly
modifying the proposed base asset. This field contains the CommitID of
the project, a unique identifier that represents an interaction with the
pipeline. All other information present in the proposed structure are linked
to a specific CommitID and some may change based on action performed
by DSO team members;

• InitialTimestamp and FinalTimestamp: considering Figure 5.2 it is
noticeable that is important to save also timestamps related to security
controls that are automatically performed by the pipeline. This allows to
monitor when the event that triggered the pipeline occurred and how long
the analysis lasted;

• Approvals: as also previously stated, one of the main objective of this
project is to integrate blockchain and DSO through the implementation of
smart contracts to increase security and ensure the necessary liability for
the action performed on the pipeline. For this reason the list of all users

53

PoC implementation

that, according to the specified policies, approve the incoming changes and
accept the found vulnerabilities are stored. This field consist of an array of
{userID, action} objects, where the "action" parameter can either indicate
approval or rejection;

• Vulnerabilities: this section includes the information related to the
vulnerabilities found during security analysis such as SAST and DAST.
Due to the typically large scale of enterprise project, vulnerability lists
can be quite lengthy. By looking at a possible vulnerability report artifact
in Listing 5.1, we can select the relevant information to store to increase
the network throughput and reduce the information replicated by each
peer. Those artifact are provided by CI/CD pipeline as array of JSON
objects, each containing a single identified vulnerability. For every object
the following fields are saved:

– Message: a short description of the vulnerability;
– Severity: the severity level of the vulnerability, depending on the

classification can be low, medium or high;
– Location: the specific line of code in which the vulnerability is found;
– Name: an identifier representing either the specific vulnerability type

or the class to which it belongs, according to a well-defined standard
such as CWE (Common Weakness Enumeration) which provides a
standard categorisation for known software weaknesses or CVE (Com-
mon Vulnerabilities and Exposures), which define a unique identifier
for the found vulnerability.

Through the use of the fabric-contract-api, a high-level API for smart contract
development provided by Fabric, it is possible to write the required logic. The
context "ctx" is passed, together with required parameters, to each implemented
chaincode function. Using the provided SDK it is possible to:

• Invoke transaction: the purpose of this operation is to modify the ledger
state, which involves writing new data to the blockchain. Specific policies
governing this operation have been defined and explained in previous
subsection. These transactions must go through the entire consensus
mechanism of execution, ordering and validation, and consensus must be
reached for the transaction to be effective;

• Query the ledger state: this operation is used to retrieve data from
the blockchain ledger without making any update to the current ledger’s

54

PoC implementation

state. It is a read-only operation which does not involves any consensus
mechanism. As a result it is faster and less resource-intensive compared to
the "Invoke" operation. This can be executed immediately by the developed
application, as a peer can immediately answer with the required information
by consulting its own copy of the ledger.

The chaincode includes the following functionalities that network members
can invoke:

• InitLedger: this function is used to initialize the ledger state. In the
proposed scenario an empty state is created at the beginning since no
information is needed when the network is deployed, all the required assets
will be created when pipeline runs and is modified;

• CreateAsset: this is the function that is called to initialize the base asset
using data available at the beginning of the CI/CD pipeline run, such as
the CommitID, the InitialTimestamp and the array of required approvers;

• ReadAsset: this function returns the asset stored in the current world
state given its CommitID;

• UpdateAsset: according to the parameters provided to this function, the
asset with the corresponding CommitID is updated;

• DeleteAsset: this function deletes the asset stored in the current world
state given its CommitID;

• AssetExists: this function, like the "ReadAsset" function, performs a
query operation. However, its purpose is to determine whether the asset
currently exists or not. Developed applications typically uses this as a
service function to perform controls prior invoking a transaction;

• GetAllAssets: this function returns all the assets stored in the ledger;

• GetHistoryForKey: This function returns an array of all the modifica-
tions that an asset has undergone given a specific CommitID. It is especially
useful for audit purposes to obtain the full history of a particular asset.

Once the definition of the chaincode has been completed, it is possible, from
a blockchain network point of view to continue the steps presented in Chapter
5.2 in order to proceed with chaincode lifecycle and install the chaincode on the
peers. More specifically at this stage it is needed to:

55

PoC implementation

3. Package the chaincode: compress the developed chaincode together with
other information in order to send it to interested network members;

4. Install the chaincode on each peer associated with participating organisa-
tions;

5. Approve the installed chaincode by the organisations in which the chain-
code is being installed.

If all preceding steps have been successfully completed, it is possible to commit
the installed chaincode on the peers. At this stage peers and applications can
invoke the chaincode.

5.4 Application development
To interact with an installed chaincode, an application follows the procedure
presented in Figure 5.5.

Figure 5.5: Application and peer interaction

More specifically for both Invoke and Query operations, the initial steps are
the same: the application connects to the Peer and invokes the chaincode. This
results in the generation of a query or update proposal response which is sent
back to the application.
In the event of transaction invocation, in which changes to the ledger are made,
additional steps are required. In step 4 of the diagram in Picture 5.5 the applica-
tion collects all the responses and builds a transaction, which is then sent to the
ordering service. The ordering service receives the transactions from the network

56

PoC implementation

and in step 4.1 distributes these to all peers. The Peer must validate the received
transaction before committing to the ledger state in step 4.2. An asynchronous
event notifies the application that the operation has been successfully completed.

All the previous steps are hidden behind the provided SDK, that can be
used to develop an application that interacts with the existing network. The
server that has been developed should operate as an oracle, daemon service that
unnoticeably relays information received from the pipeline into the blockchain.
This task is highly complex and a major topic in current research activities.
While it is directly related, it was not the primary focus of this thesis work
and was therefore simplified for clarity of the proposed structure. Despite the
simplifications, the main security mechanism has been implemented to ensure
secure communication and provide an high level of trust in the service.

With reference to Picture 5.3 the aim of the proposed server is to enable
communication between pipeline events and the blockchain network. In order
to do so, it is possible to enable and configure GitLab webhooks [37], which are
HTTP callbacks triggered by pipeline events that can transmit information to a
configured URI endpoint. As all the development was performed locally on the
same machine, the pipeline webhooks can communicate with the server through
a designated port on the loopback interface.

When configuring webhooks, it is possible to specify which events to subscribe
to within the project, such as push, pipeline, job, deployment or merge request
events. The key events that can provide the required information for this project
are essentially merge request, pipeline and job events, which send data related
to changes and events happening when the pipeline is triggered. Pipeline events
for example are triggered whenever there is a change in the status of the pipeline
and the payload of the HTTP POST contains, among other information, the
following useful ones:

• The reason that triggered the pipeline, such as a merge request;

• All the information that can be used to identify the project, such as the
project ID, the branch, the name and the URL;

• Pipeline and jobs identifiers, together with timestamp related to each job
and their status. For each of them, information about the artifacts are also
reported.

Similarly, job events provide more detailed information on individual job statuses

57

PoC implementation

and activate upon a job’s state change.
Merge request event instead, among other actions, are triggered when:

• A new merge request is created by a user;

• An existing merge request is updated, approved, unapproved, merged, or
closed;

• An individual user adds or removes their approval to an existing merge
request.

These type of callback can provide information on the merge request itself and
on the required approval status.
The information received from the webhooks can be used to populate the base
asset data. Along with this, it is also possible to retrieve, using the GitLab API,
the artifact produced by the pipeline jobs, such as SAST and DAST report,
as the projectID and jobID are provided by the webhooks, which also notifies
when these reports are available.
All the interactions between the server and the pipeline require authentication
through a private access token, which must be included in the PRIVATE-
TOKEN header of each request. SSL verification can also be enabled for
outgoing HTTP requests, although it has not been enabled for this project, as
self-signed certificate cannot be verified. Nonetheless, this does not invalidate
the proposed schema, since authentication mechanism are in place to protect
each call.

The developed server must to listen for incoming webhooks and retrieve
the necessary information either from the payload of the HTTP callbacks or
invoking GitLab APIs. The chaincode is called as described in Figure 5.5 and
is updated with the latest updates coming from the pipeline. It is composed of
three main modules:

• DSOApp: this main component contains the required routes to receive the
callbacks, as well as logic for extracting and parsing necessary information;

• DaemonUtils: this module is responsible for interacting with GitLab to
retrieve additional information need to be retrieved, such as artifact files.
For instance, to obtain the SAST report, the API to retrieve the artifact
is called when the analysis is completed. The received file is unzipped,
processed, and only the necessary information is passed to the main module;

58

PoC implementation

• ChaincodeAccess: this is the module responsible of interacting with the
chaincode when needed. For both query and invoke transactions, it is
needed to:

– Build an in memory object with the current network configuration,
called connection profile;

– Build an instance of the CA client based on the information provided
in the connection profile, that reflect the already established one in the
network;

– Setup the wallet that holds credentials of the application users;
– Create a gateway instance by using the provided API, which allow for

a connection to the fabric network. All the transaction submitted by
the gateway are signed using the specified user credential stored in the
wallet. For the proposed infrastructure, the additional "Daemon Peer"
user of DSO organisation, presented in Picture 5.3 has been used;

Once all necessary step has been completed, the smart contract can be
invoked using the functionality developed and described in Section 5.3.

5.5 HSM integration
The proposed architecture makes extensive use of digital certificates and public
key infrastructure to enable secure communication between all the involved
actors. To enhance security of the overall system, an HSM can be used to store
keys and perform cryptographic operations as described in Section 2.3. The
default implementation for CAs, Peers and Orderers binaries uses a software-
based cryptographic library and a software file-based key store. This preference
is due to its fast generation of pseudo-random values for keys and its ability to
be employed in a testing environment.

If stricter security measures are required, particularly in an enterprise scenario
like the one proposed in this thesis, it is possible to integrate an HSM in the
network. Security Reply S.r.l provided a Thales SafeNet Luna A750 [12] which
possess the characteristic described in section 2.3. In order to integrate an HSM
with Hyperledger fabric the following actions are required:

1. Create a partition on the HSM, either dedicated or shared by multiple
applications. The first option is the one that has been used in this project
and is safer;

59

PoC implementation

2. After downloading the most recent binaries and Docker images, binaries
have been recompiled with PKCS#11 support enabled. This operation
needs to be performed with fabric-ca-client, fabric-ca-server, peer and
orderer;

3. Modify Dockerfiles for each network component to:

• Include the necessary libraries and configuration files;
• Create a group with the same group ID as the one enabled on the host

machine to access the HSM and add the user running the container to
the newly created group.

4. Modify the BCCSP section of all the configuration files to include the
following information:

BCCSP:
Defau l t : PKCS11

SW:
. . .

PKCS11 :
Library : / usr / s a f e n e t / l u n a c l i e n t / l i b / l ibCryptoki2_64 . so
Label : test_tesiHsm
Pin : #######
Immutable : f a l s e
Hash : SHA2
Secur i ty : 256

This includes details on the path to the shared object that has to be used
to interface with the HSM, specified in the "Library" section. The "Label"
and the "Pin" are used to identify the partition and authenticate with
the HSM. The "Immutable" field is used to indicate that the private key
attributes can be altered after key generation. The last two fields specify
hash and security level required;

5. Even if the information is redundant, the above mentioned details have
been also specified in the Docker Compose used to bring up the network.

Thus, each actor connects to the HSM to perform the signature operation
more efficiently and to securely generate and store the corresponding keys. All
peers, orderers and CAs in the implemented PoC access the same HSM partition.
In a more realistic scenario:

60

PoC implementation

• Each organisation will have its personal HSM for storing keys and executing
cryptographic operations for its users;

• Multiple partitions for each group of users within the same organisation’s
HSM can be created, improving segregation and reducing the impact in
the event of a compromise.

These changes can be easily implemented by changing all required configuration
files, without changing the existing network structure.

61

Chapter 6

Conclusion

The main objective of this master’s thesis was to investigate and implement a
new integration of DevSecOps and blockchain, through smart contracts. Ini-
tially, research was conducted to better understand the DSO environment, how
existing frameworks work, possible actions and associated security risks. The
automation of various aspects of the SDL has increased the risk in the event
that these framework are improperly configured or accessed in an unauthorized
manner. The most critical data that should be securely stored and for which
improved accountability of actions performed is needed has been identified.
Smart contracts were selected as a potential means of securing information
about the agreements and policies defined between DSO team and stakeholders,
thus increasing transparency and trust between the involved parties. The limited
number of research on such an integration was also examined. Nevertheless the
frameworks outlined in this project differs from those presented in available
articles, despite some common principles.

The next task involved selecting the proper blockchain that would allow
the development of smart contract in the proposed scenario. After considering
several options, Hyperledger Fabric was finally selected because of its highly
configurability and because it was developed specifically for enterprise scenarios.
To achieve a fully functional PoC, the network structure has to be defined,
composed of organisations, certificate authorities, peers and orderers, as well as
policies and configurations. The chosen blockchain framework is well-suited to
the suggested structure as the DSO team and stakeholders have no common
interest beyond the enforcement of the initially made agreements. Node.js was
used to develop both the smart contract, called chaincode, and an application

62

Conclusion

that enables interaction with the contract installed on the network. The de-
veloped application functions as a basic oracle, injecting off-chain data into
the blockchain. The chaincode may be invoked by the network’s peers or the
application to update or query required information.

As Public Key Infrastructure is essential to the security of communications
in the proposed structure, PKCS#11 has been leveraged to interface with
an Hardware Security Module. This instrument enables efficient signature
operations, as well as secure generation and storage of keys associated to X.509
certificates. As the final task to complete the PoC, binaries, Dockerfiles, Docker
Compose and configuration files for peers, CAs and orderer have been updated
to incorporate HSM integration.

6.1 Future improvements
As the proposed one is a decentralized infrastructure, it inherits certain limitation
and criticalities. The following sections provide an analysis of the identified
issues and suggested solutions. As the implementation of the proposed solutions
was not the primary objective of this project, they have not been put into
operation, but they can be easily implemented in the existing architecture.

6.1.1 Single Point of Failure Oracle
As already introduced in section 2.2.5, blockchain oracles are one of the main
weaknesses of blockchain, undermining the adoption of this technology in com-
plex scenarios, where off-chain data is also involved. Their trustworthiness
is a key concept when data coming from external sources is injected into an
environment that is considered secure by design, such as blockchain networks.
The use of a single oracle node, in contrast with the proposed decentralized
infrastructure, poses a security risk if the data is incorrect or manipulated.

Thanks to recent research effort, some solutions are being developed in this
area, although integration is not without challenges. Adopting a proper design,
it is possible to build a secure blockchain middleware exploiting Hyperledger
Fabric’s highly customisable network and some of its features. In typical
scenarios, channels are segregated from each other, to guarantee privacy and
confidentiality. Nevertheless, cross-channel communications are possible and can
be leveraged to build a more secure and resilient oracle. A chaincode installed
in a channel, can call another chaincode installed both in the same channel

63

Conclusion

and in a different one. If the chaincode being called is on a separate channel
with respect to the one calling it, only the Query operation can be used. This
operation is not involved in state validation checks, hence read-only operation
are allowed.

Figure 6.1: SPoF Oracle solution

The renewed structure is composed by the same organisations, but an addi-
tional channel is created. Two daemon peers, with the same functionalities as
outlined in section 5.4 join the new channel, called "staging channel".

64

Conclusion

Each peer belongs to a different organisation, and this is how the workflow
has been modified:

1. Both daemons peer write on the staging channel relevant information
coming from pipeline changes;

2. The chaincode installed on the primary channel ("common channel" in
Picture 6.1) performs a cross-channel chaincode invocation by comparing
data saved by each daemon peer. If the reported information is found to
be consistent, only then is saved in the primary channel. In case of any
discrepancies between two versions, the data is not stored on the main
channel and an alarm or event is triggered.

The dual organisation structure is particularly suitable for this latest addition,
as the two daemon peers added do not have any common interest beyond the
provision of accurate information. This model can be extended to include
multiple peer to enhance the resistance to compromised daemon peer, although
the storage overhead increases with the number of peers.

6.1.2 Information reliability
Maintaining the accuracy of information derived from the source remains a
challenge posed by the decentralized nature of the blockchain. Although the
architecture proposed in the previous section partially addresses this issue,
some additional mechanisms can be added in order to ensure the reliability of
the information provided. Using the already existing architecture with some
adjustments, the following steps can be implemented:

1. As git is utilized, it is possible to require signed commits using GPG (GNU
Privacy Guard)1 keys, along with either SSH keys or X.509 certificates.
This ensures authenticity and integrity of the contributions;

2. Public keys belonging to the users can be stored on the ledger state;

3. The chaincode can be used to verify the correctness and validity of the
signature for each received commit.

By implementing these additional measures, even if daemon peers have been
compromised or are relaying modified information, it can be detected.

1It is an implementation of the OpenPGP standard.

65

Conclusion

6.1.3 Identity management
The developed PoC, includes the co-existence of two distinct profiles for each
user:

• The identities issued by the MSP, together with the associated certificates.
They are used inside the blockchain network by peers and applications
interfacing with the chaincode;

• The GitLab accounts for all DSO team members and stakeholders that
require interaction with the pipeline.

Although enough information to identify the entity accountable for each action
on the pipeline is stored in the ledger, a deeper comparison between the two
identities could be implemented in order to make this integration more compre-
hensive. Nevertheless, this is not a straightforward solution given that there
is no guaranteed existence of one peer per user in the CI/CD environment. A
mapping and linking service between the two identities can be put in place to
enhance auditability of the proposed integration. Once the mapping is complete,
additional actions could be executed by directly calling the chaincode instead
of interacting with the pipeline. This approach would improve integration and
provide more accurate auditability for the performed actions.

66

Bibliography

[1] United States Department of Defense. «DoD Enterprise DevSecOps Strat-
egy Guide». In: (Sept. 2021), p. 6 (cit. on pp. 4, 5).

[2] Devarshi Singh; Varun Ramachandra Sekar; Kathryn T. Stolee; Brittany
Johnson. «Evaluating How Static Analysis Tools Can Reduce Code Review
Effort». In: IEEE Symposium on Visual Languages and Human-Centric
Computing (Oct. 2017), pp. 101–105 (cit. on p. 5).

[3] Juan de Vicente Mohino; Javier Bermejo Higuera; Juan Ramón Bermejo
Higuera; Juan Antonio Sicilia Montalvo. «The Application of a New Secure
Software Development Life Cycle (S-SDLC) with Agile Methodologies».
In: Electronics (2019) (cit. on p. 5).

[4] Gitlab: vulnerability statistics. https://www.cvedetails.com/vendor/
13074/Gitlab.html [Accessed: (July 2023)] (cit. on p. 7).

[5] Dylan Yaga; Peter Mell; Nik Roby; Karen Scarfone. «Blockchain Tech-
nology Overview». In: (Oct. 2018). doi: 10.6028/NIST.IR.8202 (cit. on
pp. 8, 9).

[6] Yue Hao, Yi Li, Xinghua Dong, Li Fang, and Ping Chen. «Performance
Analysis of Consensus Algorithm in Private Blockchain». In: 2018 IEEE
Intelligent Vehicles Symposium (IV) (2018), pp. 280–285. doi: 10.1109/
IVS.2018.8500557 (cit. on pp. 10, 11).

[7] Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin
Wang. «An Overview of Blockchain Technology: Architecture, Consensus,
and Future Trends». In: 2017 IEEE International Congress on Big Data
(BigData Congress) (2017), pp. 557–564 (cit. on p. 11).

[8] Miguel Castro; Barbara Liskov. «Practical Byzantine Fault Tolerance».
In: Proceedings of the Third Symposium on Operating Systems Design and
Implementation (Feb. 1999) (cit. on p. 11).

67

https://www.cvedetails.com/vendor/13074/Gitlab.html
https://www.cvedetails.com/vendor/13074/Gitlab.html
https://doi.org/10.6028/NIST.IR.8202
https://doi.org/10.1109/IVS.2018.8500557
https://doi.org/10.1109/IVS.2018.8500557

BIBLIOGRAPHY

[9] Shuai Wang, Liwei Ouyang, Yong Yuan, Xiaochun Ni, Xuan Han, and
Fei-Yue Wang. «Blockchain-Enabled Smart Contracts: Architecture, Ap-
plications, and Future Trends». In: IEEE Transactions on Systems, Man,
and Cybernetics: Systems 49.11 (2019), pp. 2266–2277. doi: 10.1109/
TSMC.2019.2895123 (cit. on p. 12).

[10] Ammar Hassan, Imran Makhdoom, Waseem Iqbal, Awais Ahmad, and Asad
Raza. «From trust to truth: Advancements in mitigating the Blockchain
Oracle problem». In: Journal of Network and Computer Applications 217
(2023), p. 103672 (cit. on p. 14).

[11] PKCS#11 Terminology. http://www.pkiglobe.org/pkcs11_terminolo
gy.html [Accessed: (August 2023)] (cit. on pp. 15, 18).

[12] Luna Hardware Security Modules. https://thalesdocs.com/gphsm/
luna/7/docs/network/Content/Product_Overview/the_luna_hsm.
htm [Accessed: (August 2023)] (cit. on pp. 15, 59).

[13] Boaz Barak; Ronen Shaltiel; Eran Tromer. «True Random Number Gen-
erators Secure in a Changing Environment». In: Department of Computer
Science and Applied Mathematics Weizmann Institute of Science (Dec.
2003) (cit. on p. 15).

[14] Luna Hardware Security Modules Security. https://thalesdocs.com/
gphsm/luna/7/docs/network/Content/Product_Overview/security.
htm [Accessed: (August 2023)] (cit. on p. 16).

[15] OASIS Standard. «PKCS #11 Cryptographic Token Interface Base Speci-
fication Version 2.40». In: (Apr. 2015) (cit. on p. 17).

[16] An introduction to PKCS#11. https://thalesdocs.com/gphsm/ptk/
5.9/docs/Content/PTK- C_Program/intro_PKCS11.htm [Accessed:
(August 2023)] (cit. on pp. 17, 18).

[17] User Access Control. https://thalesdocs.com/gphsm/luna/7/docs/
network / Content / Product _ Overview / user _ access _ control . htm
[Accessed: (August 2023)] (cit. on p. 19).

[18] Kimberly Connors; Abhishek Sinha; Petar Nikolic; Ivica Popovic; Ron
Stokes. «Blockchain in DevOps Implementing transparent continuous
delivery». In: (Sept. 2017) (cit. on pp. 21, 22).

[19] Sandip Bankar and Deven Shah. «Blockchain based framework for Software
Development using DevOps». In: (2021), pp. 1–6. doi: 10.1109/ICNTE51
185.2021.9487760 (cit. on p. 24).

68

https://doi.org/10.1109/TSMC.2019.2895123
https://doi.org/10.1109/TSMC.2019.2895123
http://www.pkiglobe.org/pkcs11_terminology.html
http://www.pkiglobe.org/pkcs11_terminology.html
https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Product_Overview/the_luna_hsm.htm
https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Product_Overview/the_luna_hsm.htm
https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Product_Overview/the_luna_hsm.htm
https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Product_Overview/security.htm
https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Product_Overview/security.htm
https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Product_Overview/security.htm
https://thalesdocs.com/gphsm/ptk/5.9/docs/Content/PTK-C_Program/intro_PKCS11.htm
https://thalesdocs.com/gphsm/ptk/5.9/docs/Content/PTK-C_Program/intro_PKCS11.htm
https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Product_Overview/user_access_control.htm
https://thalesdocs.com/gphsm/luna/7/docs/network/Content/Product_Overview/user_access_control.htm
https://doi.org/10.1109/ICNTE51185.2021.9487760
https://doi.org/10.1109/ICNTE51185.2021.9487760

BIBLIOGRAPHY

[20] What is IPFS. https://docs.ipfs.tech/concepts/what-is-ipfs/
[Accessed: (August 2023)] (cit. on p. 24).

[21] Jenkins homepage. https://www.jenkins.io/ [Accessed: (August 2023)]
(cit. on p. 27).

[22] GitHub homepage. https://github.com/features/actions [Accessed:
(August 2023)] (cit. on p. 27).

[23] GitLab homepage. https://about.gitlab.com/ [Accessed: (August
2023)] (cit. on p. 27).

[24] Introduction - Hyperledger Fabric Documentation. https://hyperledger-
fabric.readthedocs.io/en/release- 2.5/whatis.html [Accessed:
(August 2023)] (cit. on p. 30).

[25] Corda - The open permissioned distributed application platform. https:
//corda.net/ [Accessed: (August 2023)] (cit. on p. 30).

[26] What is Ethereum? The foundation for our digital future. https : / /
ethereum.org/en/what-is-ethereum/ [Accessed: (August 2023)] (cit.
on p. 30).

[27] Tharaka Mawanane Hewa, Yining Hu, Madhusanka Liyanage, Salil S.
Kanhare, and Mika Ylianttila. «Survey on Blockchain-Based Smart Con-
tracts: Technical Aspects and Future Research». In: IEEE Access 9 (2021),
pp. 87643–87662. doi: 10.1109/ACCESS.2021.3068178 (cit. on p. 30).

[28] Yue Hao, Yi Li, Xinghua Dong, Li Fang, and Ping Chen. «Performance
Analysis of Consensus Algorithm in Private Blockchain». In: (2018),
pp. 280–285. doi: 10.1109/IVS.2018.8500557 (cit. on p. 31).

[29] Hyperledger Fabric Docs - Introduction. https://hyperledger-fabric.
readthedocs.io/en/latest/whatis.html [Accessed: (August 2023)]
(cit. on p. 32).

[30] Hyperledger Fabric Docs - How Fabric networks are structured. https://
hyperledger-fabric.readthedocs.io/en/latest/network/network.
html [Accessed: (August 2023)] (cit. on p. 33).

[31] Hyperledger Fabric Docs - Membership Service Provider (MSP). https:
//hyperledger- fabric.readthedocs.io/en/latest/membership/
membership.html [Accessed: (August 2023)] (cit. on p. 35).

[32] Hyperledger Fabric Docs - Policies. https://hyperledger-fabric.rea
dthedocs.io/en/latest/policies/policies.html [Accessed: (August
2023)] (cit. on p. 37).

69

https://docs.ipfs.tech/concepts/what-is-ipfs/
https://www.jenkins.io/
https://github.com/features/actions
https://about.gitlab.com/
https://hyperledger-fabric.readthedocs.io/en/release-2.5/whatis.html
https://hyperledger-fabric.readthedocs.io/en/release-2.5/whatis.html
https://corda.net/
https://corda.net/
https://ethereum.org/en/what-is-ethereum/
https://ethereum.org/en/what-is-ethereum/
https://doi.org/10.1109/ACCESS.2021.3068178
https://doi.org/10.1109/IVS.2018.8500557
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
https://hyperledger-fabric.readthedocs.io/en/latest/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/latest/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/latest/membership/membership.html
https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html
https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html

BIBLIOGRAPHY

[33] Elli Androulaki et al. «Hyperledger Fabric: A Distributed Operating Sys-
tem for Permissioned Blockchains». In: Proceedings of the Thirteenth Eu-
roSys Conference. EuroSys ’18. Porto, Portugal: Association for Computing
Machinery, 2018. isbn: 9781450355841. doi: 10.1145/3190508.3190538.
url: https://doi.org/10.1145/3190508.3190538 (cit. on p. 40).

[34] OWASP WebGoat. https://owasp.org/www-project-webgoat/ [Ac-
cessed: (August 2023)] (cit. on p. 45).

[35] Applications and Peers. https://hyperledger-fabric.readthedocs.
io/en/release-2.2/peers/peers.html#applications-and-peers
[Accessed: (August 2023)] (cit. on p. 50).

[36] Diego Ongaro and John Ousterhout. «In Search of an Understandable
Consensus Algorithm». In: Proceedings of the 2014 USENIX Conference on
USENIX Annual Technical Conference. Philadelphia, PA, 2014, pp. 305–
320. isbn: 9781931971102 (cit. on p. 50).

[37] Gitlab webhooks. https://docs.gitlab.com/ee/user/project/integr
ations/webhooks.html [Accessed: (August 2023)] (cit. on p. 57).

70

https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1145/3190508.3190538
https://owasp.org/www-project-webgoat/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.html#applications-and-peers
https://hyperledger-fabric.readthedocs.io/en/release-2.2/peers/peers.html#applications-and-peers
https://docs.gitlab.com/ee/user/project/integrations/webhooks.html
https://docs.gitlab.com/ee/user/project/integrations/webhooks.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Objectives
	Outline

	Background
	DevSecOps
	CI/CD
	DSO framework vulnerabilities

	Blockchain
	Operation
	Permission
	Consensus mechanism
	Smart Contract
	Oracles

	HSM (Hardware Security Module)
	PKCS#11

	State of the art
	Transparent continuous delivery
	Blockchain based framework for software development using DevOps

	Solution design
	DevSecOps platform
	Jenkins
	GitHub Actions
	GitLab

	Blockchain
	Hyperledger Fabric
	Network structure
	Membership Service Provider
	Policies
	Ledger
	Chaincode Lifecycle
	Transaction flow

	PoC implementation
	DevSecOps environment
	Network structure
	Chaincode development
	Application development
	HSM integration

	Conclusion
	Future improvements
	Single Point of Failure Oracle
	Information reliability
	Identity management

	Bibliography

