
Politecnico di Torino

Computer Engineering
A.Y. 2022/2023

Graduation session October 2023

Web UI code generation
A transformer-based model applied to real-world screenshots

Supervisors:

Luigi De Russis

Tommaso Calò

Candidate:

Giuseppe Salvi

Table of Contents

List of Tables vi

List of Figures viii

1 Introduction 1
1.1 Context . 1
1.2 Contributions and thesis outline . 4

2 Literature review 6
2.1 Related works . 6

2.1.1 Example-based automatic website generation 7
2.1.2 Artificial Intelligence-driven website generation 8
2.1.3 Mock-up-driven automatic website generation 9

3 Website code and screenshot extraction tool 13
3.1 System overview . 14
3.2 Obtaining HTML code . 16

3.2.1 Retrieve website’s HTML code 16
3.2.2 Code sanitizing . 16
3.2.3 Code cleansing and formatting 17

3.3 Obtaining CSS code . 18
3.3.1 Get the CSS files related to the HTML file 18
3.3.2 CSS file processing . 18
3.3.3 CSS file minimization . 18
3.3.4 Merge of CSS files . 20

3.4 Screenshot extraction . 20
3.5 Collection of statistics . 20

4 Dataset creation 24
4.1 First experiment on blog websites 24

4.1.1 Experiment setup and evaluation methodology 24

iii

4.1.2 Framework detector . 25
4.1.3 Exclusion of websites without CSS 25
4.1.4 Results . 25

4.2 Second and third experiment on a different list of websites 25
4.2.1 Majestic million list and second experiment 25
4.2.2 Third experiment on .blog websites from Majestic million list 27

4.3 Introduction of the screenshot classifier and fourth experiment . . . 28
4.3.1 Dataset . 29
4.3.2 Model . 29
4.3.3 Training and testing . 30
4.3.4 Fourth experiment . 30

4.4 Final experiment on scale . 32
4.4.1 Statistics . 32
4.4.2 Errors . 34

5 Model for website code generation 38
5.1 Introduction . 38
5.2 Model: Pix2Struct . 39

5.2.1 Model overview . 39
5.2.2 Comparison with other models 41
5.2.3 Addressing model challenges 43

5.3 Metrics . 45
5.3.1 BLEU . 45
5.3.2 Edit Distance . 46
5.3.3 HTML Tree Edit Distance 46
5.3.4 Structural Similarity Index 47

5.4 Datasets . 47
5.4.1 Pix2Code Dataset . 47
5.4.2 Synthetic Bootstrap Dataset 51
5.4.3 WebUI2Code Dataset . 54
5.4.4 Rico Dataset . 60
5.4.5 UI2Code Dataset . 62

5.5 Pre-processing and post-processing 62
5.5.1 Pix2Code Dataset processing 63
5.5.2 Synthetic Bootstrap Dataset processing 63
5.5.3 WebUI2Code Dataset processing 64
5.5.4 Rico Dataset processing . 65
5.5.5 UI2Code Dataset processing 66

5.6 Experiments . 66
5.6.1 Experiments on Pix2Code Dataset 68
5.6.2 Experiments on Synthetic Bootstrap Dataset 72

iv

5.6.3 Experiments on WebUI2Code Dataset 75
5.6.4 Experiments on Rico Dataset 79
5.6.5 Experiments on UI2Code Dataset 81

6 Conclusions 116

Bibliography 118

v

List of Tables

3.1 Excluded CSS properties . 19

4.1 Web frameworks searched keywords 26
4.2 First experiment grades . 27
4.3 First experiment statistics . 27
4.4 Second experiment grades . 28
4.5 Third experiment grades . 28
4.6 Screenshot classifier metrics . 30
4.7 Experiment results comparison . 31
4.8 Final experiment results . 32
4.9 Final experiment statistics . 33
4.10 Most common extraction errors . 36

5.1 Generation probabilities of WebGenerator 52
5.2 Pix2Code vs Synthetic Bootstrap: number of lines 55
5.3 WebUI2Code: distribution of websites based on token thresholds . . 57
5.4 Pix2Code: test set metrics analysis 68
5.5 Pix2Code Pytorch model: test set metrics analysis 69
5.6 Pix2Code HTML: test set metrics analysis 70
5.7 Pix2Code HTML LI: test set metrics analysis 71
5.8 Synthetic Bootstrap Mini: test set metrics analysis 72
5.9 Synthetic Bootstrap: test set metrics analysis 73
5.10 Sketch Synthetic Bootstrap: test set metrics analysis 75
5.11 WebUI2Code: average validation BLEU scores across experiments

with varying repetition penalties . 77
5.12 WebUI2Code-4096: test set metrics analysis 78
5.13 Rico: validation set BLEU score with different hyperparameters . . 80
5.14 Rico-sampling: test set metrics analysis 81
5.15 UI2Code: validation set BLEU scores with varying repetition penalties 82
5.16 UI2Code: test set metrics analysis 84
5.17 UI2Code-sampling: test set metrics analysis 84

vi

6.1 Summary of test results on all the datasets 117

vii

List of Figures

3.1 Process diagram . 15
3.2 Unprocessed vs sanitized vs cleansed HTML 17
3.3 Default image of black cross . 20
3.4 Screenshot of website before any processing 22
3.5 Screenshot of website after processing 23

4.1 Samples from the dataset of the screenshot classifier 29
4.2 Confusion matrix for test set . 31
4.3 Frequency of CSS files across extracted websites 33
4.4 Frequency of HTML nodes across extracted websites 34
4.5 CSS line count: before vs. after processing 35
4.6 HTML line count: before vs. after processing 37

5.1 Variable resoultion vs fixed resolution inputs 40
5.2 Pix2Struct schema . 42
5.3 Sliding window mechanism example 44
5.4 SSIM map and gradient images . 48
5.5 Pix2Code: DSL vs HTML code . 49
5.6 Pix2Code: sample screenshots . 50
5.7 Element distribution in Pix2Code DSLs 50
5.8 HTML tags distribution in Pix2Code HTML codes 51
5.9 Synthetic Bootstrap: sample screenshots 53
5.10 Synthetic Bootstrap: sample code 54
5.11 Element distribution in Synthetic Bootstrap HTML codes 55
5.12 Sketch Synthetic Bootstrap: sample screenshots 56
5.13 Element distribution in WebUI2Code HTML codes 58
5.14 WebUI2Code-4096: image widths vs heights before cleaning 60
5.15 WebUI2Code-4096: distributions of images sizes before cleaning . . 86
5.16 WebUI2Code-4096: distributions of CSS and HTML numbers of

lines before cleaning . 87
5.17 WebUI2Code-4096: number of CSS vs HTML lines before cleaning . 88

viii

5.18 WebUI2Code-4096: distributions of images sizes after cleaning . . . 89
5.19 WebUI2Code-4096: distributions of CSS and HTML numbers of

lines after cleaning . 90
5.20 WebUI2Code-4096: sample screenshots 91
5.21 WebUI2Code-8192: sample screenshots 92
5.22 WebUI2Code-12288: sample screenshots 93
5.23 WebUI2Code-16384: sample screenshots 94
5.24 Rico: sample view hierarchy vs extracted code 95
5.25 Rico: sample screenshots . 96
5.26 Rico: frequency of number of classes nodes across samples 97
5.27 Classes distribution in Rico codes 97
5.28 Rico: Filtered file count based on class frequency thresholds 98
5.29 Element distribution in UI2Code codes 98
5.30 UI2Code: sample code . 99
5.31 UI2Code: sample screenshots . 100
5.32 Pix2Code: comparison of answers and predictions screenshots . . . 101
5.33 Pix2Code Pytorch model architecture 102
5.34 Pix2Code Pytorch vs Pix2Struct model BLEU scores distributions . 102
5.35 Pix2Code HTML: comparison of answers and predictions codes . . 103
5.36 Pix2Code HTML: comparison of answers and predictions screenshots104
5.37 Pix2Code HTML LI: comparison of answers and predictions screenshots105
5.38 Pix2Code experiments: max text length distributions 106
5.39 Pix2Code experiments: Normalized Edit Distance distributions . . . 106
5.40 Pix2Code experiments: BLEU Score distributions 106
5.41 Synthetic Bootstrap Mini: SSIM distribution for test set 107
5.42 Synthetic Bootstrap Mini: comparison of answers and predictions

screenshots . 108
5.43 Synthetic Bootstrap: BLEU Score distribution for test set 109
5.44 Synthetic Bootstrap: comparison of answers and predictions screen-

shots . 110
5.45 Synthetic Bootstrap: SSIM distribution for test set 111
5.46 Synthetic Bootstrap: correlation matrix for test set metrics 111
5.47 Sketch Synthetic Bootstrap: SSIM distribution for test set 112
5.48 Sketch Synthetic Bootstrap: comparison of answers and predictions

screenshots . 112
5.49 WebUI2Code-4096: comparison of answers and predictions screenshots113
5.50 WebUI2Code-4096: BLEU Score distribution for test set 113
5.51 WebUI2Code-4096: comparison of answers and predictions screenshots114
5.52 Rico-sampling: BLEU Score distribution for validation set 114
5.53 UI2Code: visualization of BLEU Scores with different values of

repetition penalty . 115

ix

6.1 Answers vs predictions screenshots comparison for various datasets 117

x

Chapter 1

Introduction

1.1 Context

In today’s digital age, the prominence of online platforms has heightened the
significance of websites in establishing a strong online presence for both individuals
and businesses alike. The virtual face of an entity, whether it’s a personal blog or a
corporate site, plays an important role in creating the first impression and ensuring
sustained engagement with the audience. As a result of the high importance of
websites, there is a growing requirement to develop complex, attractive, and sleek
websites to gain a competitive advantage.

A crucial step of website creation involves conceptualizing the User Interfaces
(UI) design through various stages, from drafting to prototyping. This iterative
process engages end-users, stakeholders, and developers, enabling them to deliberate
upon the website’s proposed layout, composition, and interactivity.

Three primary artifacts dominate the web design landscape: hand-drawn
sketches, wireframes, and mock-up designs [1, 2, 3]. The sketch serves as a
preliminary, often rudimentary, representation of the intended UI design, enabling
designers to swiftly consolidate and visualize their ideas. A wireframe, acting as a
visual prototype, pinpoints the positioning of UI elements and content on the site.
Lacking styling, graphics, or colors, it resembles a website’s blueprint. The mock-
up design stands as a more refined and visually enriched version of a wireframe.
It encompasses styling, graphics, colors, typography, and other intricate visual
specifics. After securing approval for a wireframe or mock-up design from end-users
or stakeholders, a web developer proceeds with the actual website creation. Given
that design and implementation typically fall under separate teams, the journey
from concept to completion is not just time-consuming but can also be expensive.
Such professionals invest immense effort in iterating, designing, and developing a
site to meet clients’ expectations.

1

Introduction

Considering these challenges, the concept of automatic website generation has
arisen. Automatic web generation refers to the use of software and technologies
to automatically produce websites without the need for manual coding. This
method integrates design and implementation phases, minimizing the need for
back-and-forth adjustments between separate teams. By doing so, it ensures a
more direct translation of design intent into the final product. Consequently, the
reduced iterations lead to quicker delivery times, cost savings, and fewer chances
for miscommunication or errors that arise from repeated handoffs between design
and development teams.

Furthermore, the integration of automation allows for real-time adjustments
based on immediate feedback loops. In traditional development scenarios, alter-
ations post-deployment often require a revisit of the entire design-development-
deployment cycle. With automatic generation, modifications can be made on the fly.
Moreover, automatic website generation can help democratize web creation. Those
without a technical background or coding skills can still venture into designing and
deploying professional-level websites. This bridges the gap between developers and
those without technical expertise and fosters a more inclusive digital landscape
where creativity isn’t bounded by technical constraints.

Within the predominant modalities for automatic website generation, the mock-
up-driven approach, as the name implies, derives its functionality from mock-up
designs and wireframes. Directly converting detailed mock-up designs or wireframes
into functional GUI code eliminates the conventional, manual transition from design
to coding. The fidelity of the resulting websites can be considerably high, given the
detailed nature of mock-ups, thereby ensuring a closer alignment with the designer’s
original intent. Similar to the mock-up-driven approach, which utilizes the most
refined artifacts, the sketch-driven conversion method uses the most preliminary
stage of design representation: hand-drawn sketches.

The approach is particularly beneficial for novices; it offers an opportunity for
those unfamiliar with web development processes to transform their basic sketches
into functional websites.

Sketches serve as a natural form of human-AI interaction because they harness
the inherent human ability to visualize and express ideas through simple drawings,
irrespective of technical expertise. This universal method of representation ensures
intuitiveness and ease of use for a wide range of users, bridging the gap between
imagination and digital creation.

Moreover, for designers, sketch-driven conversion allows them to rapidly test
their interactive prototypes, making it easier to iterate and refine their ideas at a
faster pace, as well as gain feedback.

Two modalities of mockup-driven and sketch-driven automatic website generation
are possible: the heuristic-based approach and the end-to-end approach. The
heuristic-based approach processes sketches and mockups by leveraging a set of

2

Introduction

predefined rules and patterns. In this framework, algorithms make determinations
based on known patterns and guidelines. For instance, in the context of automatic
web UI creation, a rectangular shape in a mockup might be recognized as a button,
and a series of parallel lines might be interpreted as text fields. The algorithm then
generates the necessary code based on these identified patterns.

Yet, this method has its limitations. Heuristic-based systems can be inflexible,
and their effectiveness heavily relies on the quality and capabilities of the rules they
are based on. If a design includes a novel element or a unique layout, the heuristic
model might misinterpret it or fail to recognize it altogether. Moreover, it’s a
challenge to constantly update and maintain the ruleset as design trends evolve
and as the complexity of designs increases. This means that while heuristic-based
methods are generally efficient for more standardized and common designs, they
may fall when faced with more intricate or innovative mockups.

On the other hand, the end-to-end approach represents a shift from relying on
hard-coded rules. It adopts machine learning, specifically deep learning models, to
handle the entire process of converting a mockup to a functional web UI. Instead of
operating on a set of fixed rules, these models are trained on vast amounts of data,
comprising various mockups and their corresponding web UI outputs. The more
data they are exposed to, the better they become at making accurate predictions.

The advantages of the end-to-end method are several. First and foremost, it
can handle a broader array of designs, including those that might fail for heuristic
systems. Given adequate training data, it can continually adapt and improve,
keeping pace with evolving design trends. Furthermore, it can discern and learn
subtle patterns and nuances in designs that might not be explicitly defined in
heuristic rules.

To illustrate, consider an unconventional mockup where buttons are represented
by ellipses instead of the typical rectangles. While a heuristic system might struggle
to identify these as buttons due to its rule-based nature, an adequately trained
end-to-end model could recognize them based on its exposure to diverse design
patterns.

Building on the innovations offered by deep learning architectures, end-to-end
approaches have emerged as a powerful tool for turning mock-ups and wireframes
directly into functional code. The encoder-decoder framework, a common struc-
ture in these methodologies, traditionally leverages convolutional neural networks
(CNNs) to parse image features, converting visual representations into intermediate
language constructs, which are subsequently decoded to yield the desired code.
Pix2code [4] was the first contribution introducing an end-to-end approach for the
task; it is capable of translating web user interface screenshots and transcribing
them into domain-specific language (DSL) representations, which can then be
compiled into specific HTML code.

While the advantages of these deep learning models are multiple, there remain

3

Introduction

limitations that cannot be ignored. One of the more important issues revolves
around the datasets these models are trained on. Many of the currently available
UI/code datasets lack diversity, often being overly simplistic and not adequately
representative of the complexities encountered in real-world scenarios. This simplic-
ity limits the true applicability of these models in practical settings. The models,
having been trained on such datasets, do not generalize well when exposed to more
complex, real-world designs, thereby hampering their effectiveness.

Moreover, a significant portion of these models remains rooted in somewhat
outdated machine learning architectures. For instance, while many of the described
models employ Long Short Term Memory (LSTM) structures for decoding the
visual representations, the potential of transformer-based architectures remains
largely unexplored in this context.

Attention mechanisms, central to transformer models, can be especially advanta-
geous for multimodal tasks. Due to the attention mechanism, they have improved
capabilities of capturing relationships between visual components and their cor-
responding code representations, which can result in a more accurate conversion
from design to code. By integrating these newer models, it’s conceivable that the
accuracy and applicability of mockup-to-code and sketch-to-code conversions could
see substantial improvements.

1.2 Contributions and thesis outline
Our contributions are threefold and can be concisely summarized as follows:

• Architectural shift: At the architectural level, the previous dependence on
Recurrent Neural Networks (RNNs), especially LSTM-based models, provided
a foundational contribution to the domain. However, for the specific task,
there is a need for improved performance and scalability to suit real-world
applications. To accomplish this we introduce a multimodal transformer
architecture that, when trialed over existing website datasets, outperforms
the traditional LSTM-based models, aligning with the broader AI trends and
hinting at the potential of such architectures (i.e., scalability and expressivity)
in the future.

• Dataset Enhancement: We introduced a new real websites dataset and a
specialized scraping pipeline to curate and clean scraped code. By eliminating
non-essential tags and scripts for visual appearance, our approach ensures that
the resultant dataset is less noisy. This, in turn, optimizes the transition from
design mockups to functional website code, making the process more efficient.

• Innovation in Practical Application: Moving beyond the technical ad-
vancements, starting from generating a synthetic dataset of HTML Bootstrap

4

Introduction

websites that mirrors the diversity of web designs, we leverage it to adapt
our model to enable direct sketch-to-code translations. By facilitating the
transition from rudimentary sketches to functional code, our system serves as
a powerful tool to bring advancements to end-user website development and
Human Computer Interaction (HCI) research.

Through our work, we aspire to advance and enhance the research in the realm
of design-to-code transitions, especially in real-world settings. We believe that the
methodologies we introduce can foster a more accessible and efficient creation of
web interfaces.

The thesis is structured as follows:

• Chapter 2 focuses on the literature study of automatic code generation tech-
niques

• Chapter 3 presents an overview of the tool for the extraction of website code
and screenshots

• Chapter 4 shows the experiments conducted for the dataset creation and
additional components introduced to guarantee results quality

• Chapter 5 focuses on the Pix2Struct model presentation and modification
together with experimental results

• Chapter 6 offers a concluding discussion regarding the results, as well as the
future prospects of both the tool and the model

The code used for the generation of the dataset and the notebooks used to run
the experiments are available in this GitHub repository:

• https://github.com/giuseppesalvi/webUI2code.

5

https://github.com/giuseppesalvi/webUI2code

Chapter 2

Literature review

2.1 Related works

Automatic website generation has emerged as a solution to ease the challenges
associated with web design and development. Automating the process makes it
possible to quickly and efficiently create websites without wasting time on manual
coding.

There are three primary methodologies underpinning automatic website genera-
tion: Example-based automatic website generation, Artificial Intelligence-driven
website generation, and Mock-up-driven automatic website generation.

Example-based automatic website generation allows users to create websites by
referencing and adapting features from existing, professionally designed sites. By
referencing real-world designs, it ensures quick customization and aesthetic appeal
without the need for in-depth technical knowledge. Artificial Intelligence-driven
website generation employs AI algorithms to design and build personalized websites
based on user preferences, requiring minimal user intervention. Mock-up-driven
automatic website generation transforms visual mock-ups or sketches of websites
into working digital prototypes, often using heuristic techniques or deep learning
models. It ensures that the final product closely aligns with the initial vision.

Each method has its nuances. Mock-up-driven generation streamlines the
transformation of a visual idea into a working prototype, but it requires a clear
mock-up or further programming and designing effort in the case the translation
starts from wireframes or sketches. The example-based approach provides more
freedom to those less technically inclined, allowing for customization based on
real-world examples, but it might not be as tailored or unique. On the other hand,
while AI-driven tools are powerful and user-friendly, they might not always offer
the depth of customization that professionals need, and the results might vary
based on the sophistication of the AI algorithms. [5, 4, 26, 37, 43, 44, 45, 46, 47, 6,

6

Literature review

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42]

2.1.1 Example-based automatic website generation
Many novice designers and developers, often with minimal web expertise, increas-
ingly turn to pre-designed website templates. These templates help them establish
aesthetically pleasing sites without delving into the complexities of GUI code [42].
Though such templates offer customization options, including theme colors, font
adjustments, and image uploads, their scope remains limited. Thus, some users
might find them insufficient for their specific needs.

Addressing this issue, researchers devised a method allowing those with little
technical know-how to easily construct custom websites inspired by real-world,
professionally designed sites. This system empowers beginners to explore these
design exemplars, discern layout structures, select appealing elements and themes,
and amalgamate these into their own designs through automated code generation.

Myers et al. [48] presented WebCrystal, a game-changing tool facilitating the
extraction and replication of desirable HTML and CSS attributes from existing
websites. The tool guides users with pre-set queries about adjusting HTML/CSS
features. These questions come with textual descriptions, helping users choose
the right attributes. WebCrystal then generates the suitable HTML/CSS code,
which can be integrated directly or tweaked further. However, it has two main
limitations: it’s compatible only with HTML and CSS, neglecting client-side scripts
like JavaScript, and occasionally, the extracted code might not perform identically
across different sites.

Hashimoto et al. [49] introduced a system allowing UI designers to probe for site
designs mirroring their sketched layouts. Using a crawler, it amasses web pages into
a database. When users sketch a desired layout, the system offers sites with similar
designs. This aids novices in selecting and understanding HTML/CSS design
structures. Still, due to database constraints and matching algorithm limitations,
it doesn’t always locate the perfect design match.

Swire [50], geared towards mobile UI/UX design, lets designers explore Android
UI designs resonating with their sketches or screen captures. Unlike the method by
Hashimoto et al. [49], which relied on heuristic analysis, Swire uses a deep learning
approach. However, Swire struggles with unique UI widgets or varied colors.

Xiaofei [51] developed a tool that identifies Android apps resembling hand-
drawn GUI sketches. It translates sketches into an intermediary language, applies
deep learning to generate GUI frameworks, and then finds analogous apps from a
database. While promising, it doesn’t consistently provide perfect matches due to
search strategy limitations.

Behrang et al. [52] introduced GUIFetch, offering Java source code for Android

7

Literature review

apps closely matching users’ GUI sketches. It involves two main stages: analyzing
to detect potential Android apps and computing similarity scores between the
sketched GUI and app GUIs. This tool aids in the tedious UI development phase,
but currently, it can’t detect or compare images.

2.1.2 Artificial Intelligence-driven website generation

The contemporary field of web development is significantly enriched by the ad-
vancements in artificial intelligence. Modern AI-driven website builders collect
user preferences through a series of predefined questions. Following this, they
autonomously design and construct personalized websites based on the user’s pref-
erences, theme, and content, obviating the need for manual coding. Consequently,
even those without a background in web design or tech can effortlessly establish
their online presence using these platforms.

A few pioneering commercial platforms dabbling in this artificial design in-
telligence are highlighted below: The Grid [53] is an AI web design tool that
guides users through selections of color schemes, web components, fonts, and layout
patterns. After inputting content, The Grid crafts the website, and users can
recalibrate their initial style choices for further refinements. One drawback is its
minimal design editing features.

Bookmark [54] is a cloud-based AI website platform that allows users to simply
and quickly build responsive one-page websites that, through a question-intensive
first phase, ensure to meet the layouts and styles specified by the users. On top of
this, it offers an expansive library of e-commerce and industry-specific templates.

Firedrop [55] specializes in building websites for small enterprises. By chatting
with a virtual assistant, users can communicate their design preferences, which
Firedrop then translates into the final design.

Wix ADI [56], has established itself as a leading contemporary AI website
platform, offering affordability and customizability. It excels in producing websites
by integrating optimal design layouts and components.

In 2018, Leia [57] emerged as an AI website platform enabling the building of
mobile-responsive sites initiated by simple voice commands or keywords.

Zyro [58], introduced in 2019, specializes in crafting SEO-optimized, responsive
websites for small businesses with an array of template options and a user-friendly
drag-and-drop interface. Additionally, it offers a complimentary logo-making tool,
although its template range is somewhat restricted and basic.

While these AI website platforms signify an important shift in web development,
a comprehensive exploration of their underlying mechanisms and research is not
publicly accessible.

8

Literature review

2.1.3 Mock-up-driven automatic website generation

A prevalent strategy to transform mock-up designs of websites into working pro-
totypes harnesses heuristic techniques. The heuristic-based approach to website
generation focuses on the use of domain-specific rules to guide the process. Such
techniques typically extract web elements, discern their semantic relations, choose
the fitting tags for these elements, structure the web elements hierarchically, and
subsequently produce the source code.

The method proposed by Huang et al. [43] identifies vertical and horizontal
separators on the mock-up based on color differentiation. The resultant sections
contain distinct web elements for which tags are generated. The tag generation
uses the Random Forest method [59] for basic elements and a bottom-up approach
for more complex elements. The heuristically proofed tags then inform the final
website’s HTML and CSS structure.

Shifting our focus to mobile app development, Nguyen et al. [44] introduced
REMAUI, a method that automates UI source code generation for mobile apps
from mock-ups. REMAUI’s six-step process begins with the Tesseract Optimal
Character Recognition (OCR) engine, which extracts text from screen captures. To
rectify OCR’s occasional misclassifications, domain-specific heuristics are employed.
Alongside, computer vision methods identify UI boundaries to establish a UI
hierarchy. REMAUI then refines this hierarchy, constructing a UI suitable for
mobile apps. Upon testing, REMAUI averaged a 9-second runtime but faced
challenges with certain OCR limitations and prototyping multi-page applications.

P2A [45], in contrast, addresses REMAUI’s limitation by prototyping animated
mobile UIs from screen captures. Like REMAUI, P2A employs computer vision
and OCR to detect UI widgets, but with the added capability of enabling users
to add custom animations and transitions. After integrating these enhancements,
P2A produces an executable with necessary asset files. However, while heuristic
methods can be accurate and efficient, they come with the limitation of the inherent
imperfections of heuristic rules, which might not account for every scenario or
outlier.

Transitioning from heuristic, a distinctly different approach gaining traction
in the domain of website generation is the use of end-to-end methods. These
methods utilize deep learning models to transform website mock-ups or sketches
directly into operational Graphical User Interface (GUI) code. They harness deep
learning classifiers for converting visual layouts to code via an encoder-decoder
setup. Notably, this strategy doesn’t use preliminary image processing or heuristics
but relies purely on the inherent capabilities of neural networks to interpret and
translate visual designs. It is within this area that our contribution stands out,
introducing innovative solutions to the existing challenges.

Pioneering this field, Beltramelli [4] introduced the “Pix2Code” model, leveraging

9

Literature review

a dataset of UI snapshots from iOS, Android, and websites; the method works
by producing intermediate Domain Specific Language (DSL) code. This model
includes one CNN and two LSTM networks. First, a CNN-driven vision model
encodes UI captures into a fixed-length vector, and an LSTM parallelly encodes
the DSL context into an intermediate representation. These vectors combine and
are decoded using an LSTM, eventually classifying DSL tokens through a SoftMax
layer.

Several modifications of the architecture of “pix2code” [4] then emerged: Zhu
et al. [46] introduced a model emphasizing UI components’ hierarchical layout in
the code. A CNN-based vision model extracts visual details from UI components,
feeding a hierarchical LSTM decoder. With attention mechanisms, this model
demonstrated a more accurate GUI code generation. Liu et al. [28] substituted
LSTM with Bidirectional LSTM (BLSTM) (see Fig. 8), improving the accuracy
results on pix2code’s dataset.

Han et al. [6] aimed to create webpages with Cascading Style Sheets (CSS) styling
details; their model utilized object detection methods and attention mechanisms to
determine CSS contents.

Kumar [7] developed SketchCode, converting hand-drawn wireframes to HTML;
leveraging the pix2code framework, it incorporated Gated Recurrent Units (GRUs)
for encoding and decoding.

Yong Xu et al. [8] crafted image2emmet, detecting GUI elements in web images,
converting them to HTML-CSS; the tool integrated a Faster RCNN [33] and an
LSTM, focusing on individual GUI elements instead of entire websites.

Chen C. et al. [9] transitioned web mock-ups to mobile design code using a
generative tool with an RNN encoder and decoder and tested on 1208 real-world
Android screen captures.

Building on the work of prior models, our research identifies and addresses the
limitations often seen in RNN-based architectures, especially when considering
their training dynamics and scalability. While RNNs have been foundational in
the earlier stages of automatic website generation, the true power of attention
mechanisms, central to transformer architecture, remained untested. We thus
introduced a multimodal transformer architecture, aligning with the recent trends
seen in the broader AI community. Our empirical data clearly underscores its
superior performance over existing datasets. Beyond performance enhancements,
this approach sets the stage for enhanced scalability, offering the promise of more
sophisticated models in the future of automatic website generation research.

The power of the end-to-end approach comes from the ability of these models
to learn from vast amounts of data and generalize to new, unseen data. End-to-
end methods can sometimes produce more fluid and adaptive results due to their
learning nature. However, they might require significant amounts of labeled data
for training. Many current end-to-end solutions for automatic website generation

10

Literature review

are benchmarked against Beltramelli’s “pix2code” dataset. Such a dataset, while
beneficial for initiating research, might not sufficiently capture the complexities of
real-world web designs. As a consequence, models trained solely on these datasets
could be confined in their abilities and may not generalize well when faced with
more intricate and diverse designs outside their training scope.

Moreover, more complex proposed datasets, such as the one proposed by Chen [9],
or RICO [41], focus primarily on mobile UI hierarchies, not on compilable HTML
code. This highlights a significant gap in the available resources: a complex dataset
of websites’ code and mockups remains absent. The recently proposed WebUI
dataset [60] does take a step in this direction by comprising scraped HTML code
of the webpage. However, it brings along unnecessary tags and scripts that do
not contribute directly to the reconstruction of the mockup. This excess of data
can introduce noise and complexities, making the task of code generation from
mockups more challenging than it needs to be.

In response to this identified challenge, we introduce a scraping pipeline specif-
ically designed to clean the scraped code. By removing unnecessary tags and
scripts, our processed dataset becomes more streamlined and better suited for
code generation from mockups. This approach ensures that the models are not
overwhelmed or misled by irrelevant code, making the translation from design
mockup to functional website code more efficient.

Additionally, in recognizing the value of human-computer interaction (HCI) and
the evolving landscape of website design, it’s important to ground our research
in real-world applications and to ensure it remains user-centric. More than just
performance metrics, research in automatic website generation should aim to
enhance collaboration between designers, developers, and end-users.

Towards this, we present an HTML bootstrap synthetic dataset that, unlike
other datasets, offers a wide array of components and layouts, targeting a diverse
range of design elements to mirror different design scenarios.

Given the synthetic nature of our dataset, we provide precise component local-
ization. Utilizing this, along with the “synz” dataset [61]—comprising sketched web
components by designers—we transform our dataset into a sketch-HTML dataset
that we use to train a sketch-to-code system. Unlike previous proposals, our system
is more than a technical showcase. We present it as a foundational tool for subse-
quent explorations in end-user website development, HCI, and broader computer
science research. By simplifying the transition from a sketch to functional code,
sketch-to-code systems would facilitate a more intuitive design process, lowering the
barrier of entry for novice developers and catalyzing collaborative efforts between
designers and developers.

In conclusion, our research extends beyond the scope of traditional automatic
website generation. By bringing technological advancement and showcasing their
practical applications, we hope to inspire and contribute meaningfully to the

11

Literature review

interplay between human creativity and computational capabilities in the field of
website design and development.

12

Chapter 3

Website code and screenshot
extraction tool

At their core, websites are built from a blend of codes and resources that enable
them to operate and present their design in an aesthetically pleasing and user-
friendly way. The transformation from code to visual is orchestrated by three
fundamental building blocks: HTML, CSS, and JavaScript.

HTML (HyperText Markup Language) gives structure to the web content,
defining elements like paragraphs, headings, and areas where other media, like
images and videos, will be displayed. HTML creates a tree of elements, allowing
browsers to understand and display the intended structure of the pages.

CSS (Cascading Style Sheets) enriches websites’ appearance by providing style,
color, and layout. It defines rules on how the various building blocks of the website
should be displayed visually. It can be used to ensure that websites maintain a
consistent look and feel across different platforms and screen sizes.

JavaScript enables interactivity, allowing the website’s reaction to user inputs
and a dynamic update of the displayed content. Modern JavaScript frameworks
can be used to build websites, and their appearance is profoundly influenced by
Javascript code. Moreover, to embed additional resources like images, videos, or
fonts, websites often include various files and links.

In our context, since the final goal is the creation of a dataset of static represen-
tations of website pages through their screenshots, alongside their code, we decided
to collect only HTML and CSS files, avoiding JavaScript. The screenshots were
collected in this setting, and some strategies were used to identify websites that
rely massively on JavaScript code through frameworks. To limit the amount of
information needed to represent each website, we decided to avoid downloading all
the resources associated with the websites and replace images with a static default
one. This is particularly relevant for downstream machine learning tasks, where a

13

Website code and screenshot extraction tool

network is asked to predict website code and cannot retrieve the original website
resources.

In the output of our tool, a website is represented by three fundamental files:
an HTML file, a CSS file, and a PNG image of the screenshot.

3.1 System overview
This tool is designed to accomplish two primary objectives: extracting the code
and taking a screenshot of a website. In addition, this tool is primarily intended
for the generation of a dataset of websites, which will be used in machine learning
applications.

For this reason, a key feature of this tool is to simplify and minimize the code and
the screenshots. This is to ensure that all websites produce comparable results, thus
minimizing unnecessary variability in their final appearance. However, this tool is
highly flexible and can be customized by disabling specific features as necessary for
alternative purposes.

The tool consists of three primary components, one for retrieving HTML code,
another for fetching CSS code, and a third for capturing a screenshot of the
website. Moreover, several utility functions are available to process the final output,
including some for extracting statistics, some for relocating and rearranging the
results, and a classifier for analyzing the screenshots and distinguishing good and
bad results.

The diagram in figure 3.1 shows the step-by-step process of obtaining website
code and screenshot.

1. Download of HTML file, which is then sanitized and cleansed.

2. The HTML file goes through a Web Framework detector that filters out files
containing specific Frameworks.

3. CSS URLs are extracted from the HTML file, and CSS files are then down-
loaded, minimized, and merged.

4. A detector is used to exclude files that have zero CSS classes.

5. Processed HTML and CSS files are used to extract website screenshots.

6. The screenshots are labeled based on their quality by a classifier

14

Website code and screenshot extraction tool

Figure 3.1: Diagram showcasing the website code and screenshot extraction
pipeline.

15

Website code and screenshot extraction tool

3.2 Obtaining HTML code
The process of obtaining the HTML code of a website involves three distinct stages.
Firstly, retrieving the HTML code rendered by the browser, secondly sanitizing
the code, and finally, cleansing and formatting the sanitized code appropriately.
With the term "sanitize", we refer to the process of removing unnecessary code
lines, and also fixing code syntactical errors, like tags not closed or in the wrong
position. "Cleansing" and "formatting" include the removal of comments, multiple
white spaces or tabs, and adjusting the structure and layout of the code, making
it uniform and more readable. This involves fixing the indentation, adopting a
consistent use of quotes (single or double quotes), and aligning tag attributes.
Additionally, an HTML parser is used to extract statistics such as the number of
HTML nodes and the number of different HTML tags and classes.

3.2.1 Retrieve website’s HTML code
For the first step, Selenium [62] is used, an open-source automated testing tool
commonly used for web application testing. Selenium enables the automation of
the process of interacting with a website and retrieving its HTML code. The chosen
browser is Google Chrome, with a 1280x1024 window size.

3.2.2 Code sanitizing
To sanitize the code, the sanitize-html tool [63] is used. It is built on top of
htmlparser2 [64] and effectively removes undesirable HTML code by eliminating
tags specified in a deny list. It also corrects poorly closed tags and allows tag and
attribute substitution.

Tags that do not affect website structure, are associated with external resources,
or impact only the dynamic behavior of the websites are excluded, like <script>,
<meta>, <noscript>, <svg>, <path>, and <iframe>.

Additionally, attribute substitutions are performed for tags including ,
<href>, <picture>, <a>, <source>, <link>, <div>, and <figure>. Specifically,
"data-src" and "data-lazy-src" attributes are replaced with "src", and "data-srcset"
and "data-lazy-srcset" are substituted with "srcset". All links to images are also
replaced with a link to the default image within the project.

These HTML attributes are normally replaced asynchronously and are used to
speed up website rendering and enhance user experience. Since in our scenario this
is not needed, and images are substituted with a default one, we can substitute
them during this phase. The HTML tags remain unchanged, while the attribute
name is replaced according to the substitutions previously listed. The attribute
value is left unaltered, except for the link to the default image change.

16

Website code and screenshot extraction tool

This enables each website to have a default image that can be used in place of
the original images. This resolves the issue of resource downloads for each website.
It will also provide a common appearance for images, facilitating their recognition
in subsequent machine-learning tasks.

Another transformation used is the replacement of all tags with
tags to minimize tag variability when there are no apparent structural differences.

3.2.3 Code cleansing and formatting

For the last step, a tool called clean-html is used. It cleans up HTML code, by
removing comments, random line breaks, and mixed tabs. It also formats and
indents code correctly.

We can see the result of the process after each step in Figure 3.2, where from
left to right we have displayed the first 50 rows of the unprocessed raw HTML,
sanitized HTML, and cleansed HTML (final result) respectively.

The first processing step is responsible for a major reduction in the line number
through filters and transformations. In the final step, empty lines are removed.
Each non-empty line can potentially generate one or more lines due to formatting,
because it distributes one HTML tag per line, with a few exceptions.

Figure 3.2: Comparison between unprocessed, sanitized and cleansed HTML code

17

Website code and screenshot extraction tool

3.3 Obtaining CSS code
The methodology for obtaining CSS code starts with getting all the CSS related
to the website. Each of those is then processed individually, and cleansed and
minimized according to some rules. In the end, the CSS files are merged, and their
references are updated.

3.3.1 Get the CSS files related to the HTML file
The first step consists of searching for CSS file references in the HTML file obtained
in the previous phase. Each file is then downloaded and processed.

3.3.2 CSS file processing
To process each CSS file, a custom-made parser was used. This parser is built
on top of tinycss2 [65], which is a low-level CSS parser and generator, capable of
processing CSS strings and returning CSS tokens and objects.

This allows for identifying all CSS components and recognizing CSS patterns
such as qualified rules or at-rules. Each rule, based on the category is decomposed
into different parts and recursively analyzed.

3.3.3 CSS file minimization
To minimize CSS code, the general idea is to remove all code that does not impact
the website’s appearance.

In fact, it is common practice to put all the style rules for all pages of a website
inside one or more common CSS files, avoiding code duplication. However, in our
scenario, we are interested only in the rules that affect the page rendered by the
previously gathered HTML file. This means that, in many cases, CSS files can be
reduced by a lot.

An even bigger reduction is possible when references to big CSS files from
frameworks or libraries are present. This is because, usually, only a small portion
of their classes are used. Some examples of those frameworks are Bootstrap [66],
Tailwind CSS[67], and Bulma[68].

The strategy is to exclude the rules specified for tags or classes, which are not
used in the HTML file. For this reason, a complete list of all the tags and classes
used in the HTML file is extracted.

Moreover, CSS properties that have a small impact on the appearance of the
resulting website screenshot are excluded too. These properties include those
related to the website’s dynamic behavior, and style properties that do not bring

18

Website code and screenshot extraction tool

structural changes. In addition, browser-specific CSS properties that are valid for
other browsers but not for the one used in the experiment are excluded too.

Table 3.1 shows the lists of excluded properties, divided by type. Only a
smaller portion of the Mozilla Firefox and Internet Explorer properties is shown
for readability. The full list can be viewed in the code repository.

Experimental results show that the aforementioned measures result in an average
size reduction of the number of lines in the output CSS file by a factor of 10.

type properties
dynamic transition, transition-timing-function,

transition-delay, transition-duration,
transition-property, animation-delay,
animation, animation-direction,
animation-duration, animation-fill-mode,
animation-iteration-count, animation-name,
animation-play-state, animation-timing-function

various font-style, text-transform,
letter-spacing, word-spacing,
line-height, text-shadow,
box-shadow, background-image,
background-repeat, background-position,
hyphens, border-radius,
border-style, border-color,
order-width, -webkit-font-smoothing

Mozilla Firefox -moz-appearance, -moz-border-right-colors,
-moz-binding, -moz-border-bottom-colors,
-moz-box-align, -moz-border-left-colors,
-moz-box-flex, -moz-border-top-colors,
-moz-box-direction, -moz-box-shadow,
-moz-box-ordinal-group, -moz-box-orient, ...

Internet Explorer -ms-accelerator, -ms-behavior,
-ms-block-progression, -ms-content-zooming,
-ms-filter, -ms-flex,
-ms-flex-align, -ms-flex-direction,
-ms-flex-item-align, -ms-flex-line-pack,
-ms-flex-order, -ms-flex-pack,
-ms-flex-wrap, -ms-grid-column, . . .

Table 3.1: List of excluded CSS properties divided by type.

19

Website code and screenshot extraction tool

3.3.4 Merge of CSS files
To simplify matters, a single CSS file is created by combining all the processed
CSS files. Any references to CSS files in the HTML code are updated to point to
this specific local file.

3.4 Screenshot extraction
To capture website screenshots Selenium [62] is used, with the same setup as when
obtaining HTML code. Two possibilities exist: one connects the website URL
and captures the screenshot, while the other (the one used in our experiments)
loads the local HTML file and captures the screenshot, producing a website image
representative of the processed HTML and CSS files.

Another useful feature is added to close the "accept cookies" pop-ups, which are
common on many websites and usually occupy a significant portion of the resulting
screenshot. This is particularly important in the first scenario, as in the second one,
numerous pop-ups are eliminated due to removing during the sanitizing process of
the <script> tag that typically contains them. This functionality simply attempts
to locate buttons with common words to dismiss the popups, such as "I Accept",
"Ok", and other variants and clicks on them.

Figures 3.4 and 3.5 show the results of the screenshot obtained for the website
WPBeginner.com, using the two possibilities.

Figure 3.3: Image of black cross used as default for images substitutions.

We can notice how the images from the original website are replaced with the
default image, the black cross in Figure 3.3. Some small details are missing in the
processed version as a result of sanitization, but the overall structure is the same.

3.5 Collection of statistics
Various statistics are extracted for each website with the purpose of monitoring
certain metrics that hold potential significance for the development of subsequent
machine learning models or other relevant tasks. Statistics are saved in JSON files,
one per website.

The dimensions of the recorded screenshot, including its width and height, are
preserved alongside the count of lines present within the CSS and HTML files.

20

WPBeginner.com

Website code and screenshot extraction tool

The number of nodes, CSS URLs, distinct CSS classes, and tags is extracted
from the HTML files. Moreover, CSS files provide information about CSS classes
and properties, as well as those excluded during minimization.

Statistics are collected also for the "raw" HTML and CSS files, those without the
sanitizing and minimization process, to evaluate the impact of such procedures.

21

Website code and screenshot extraction tool

Figure 3.4: Screenshot of website before any processing.

22

Website code and screenshot extraction tool

Figure 3.5: Screenshot of website after processing.

23

Chapter 4

Dataset creation

4.1 First experiment on blog websites

4.1.1 Experiment setup and evaluation methodology
To validate the process and evaluate the script’s behavior, an initial experiment was
performed on a limited number of websites. A set of blog websites was identified as
suitable for this purpose, given their relative simplicity and standard appearance.
Specifically, a list of 51 popular blog websites was obtained from the website
https://passionwp.com/most-popular-blogs/.

Subsequently, each resulting website screenshot was reviewed and compared to
the original website’s appearance, without processing or minimization. Based on
this comparison, a comprehensive list of observations was recorded, considering
factors such as the degree of similarity between the processed screenshot and the
original website, the identification of website frameworks, and the nature of the
differences between the two versions.

The differences that are typical effects of HTML processing, such as image
substitution, are not considered part of the abnormal differences.

A grade was given to each website from 0 to 5:

• 5 to websites almost identical to the original, and with minor differences

• 4 to websites similar to the original, with slight differences, or with differences
in small parts of the website (ex: a list is different in a part of the footer)

• 3 to websites with a structure comparable to the original, but with some
differences

• 2 to websites with large portions of the screenshot that do not reflect the
original website, or with major differences

24

https://passionwp.com/most-popular-blogs/

Dataset creation

• 1 to empty websites, websites without styles, and websites completely different
from the original ones

• 0 to websites with errors, that did not produce a final screenshot.

4.1.2 Framework detector
Based on the analysis of the first experiment, it was observed that some critical
results that received a grade of 1 exhibited the presence of a web framework. As a
result, additional system functionality was introduced to detect web frameworks.
This is achieved by examining certain keywords and attributes in the website’s
HTML code.

The web frameworks that are considered include React[69], Gatsby[70], Next[71],
Nuxt[72], Backbone[73], Vue[74], Angular[75], and Ember[76]. Table 4.1 shows the
keywords searched for each framework.

By comparing the previously assigned grades of websites with the detected
frameworks, it was found that only some of these frameworks consistently produced
poor results, while three of them (Vue, Angular, Ember) did not. Therefore, if
a framework from the remaining five (React, Gatsby, Next, Nuxt, Backbone) is
present, the website is marked as "excluded".

4.1.3 Exclusion of websites without CSS
Another similar pattern was recognized among websites with a resulting CSS file
with no CSS classes. For this reason, these are marked as "excluded" too.

4.1.4 Results
Upon removing the "excluded" websites (grade -1), only a few websites had bad
results (grades 1, 2). Overall, 62.75% of websites had good results (grades 3, 4, 5).

After calculating the statistics on the good results, we can see some interesting
trends, like the average reduction of lines of CSS code by over 90%, and a reduction
of HTML lines by more than 35%.

4.2 Second and third experiment on a different
list of websites

4.2.1 Majestic million list and second experiment
A second experiment was conducted on a portion of a larger list of websites, which
could be used later in the final experiments at scale.

25

Dataset creation

Framework Keywords
React data-reactid=".*?"

React.createElement’
ReactDOM.render’

Gatsby gatsby-
_gatsby
GATSBY_.*_POST

Next _app.js
_document.js
_error.js
_documentSetup
_appContent
__NEXT_DATA__

Nuxt nuxt-
__NUXT__.js
fetch__.js
nuxt.js

Backbone backbone−
backbone.js
backbone.min.js

Vue vue−
Vue.js
Vue.min.js

Angular ng-
angular.js
angular.min.js

Ember ember-
ember.js
ember.min.js

Table 4.1: Keywords used to detect the presence of the different web frameworks.

The list used was Majestic Million [77], a list of a million website domains
with the most referred subnets. The initial 100 websites were analyzed in this
experiment.

The results of this experiment are worse than the first one, as was expected by
introducing all kinds of websites, some more complicated than blogs. In particular,
there is a significant increase in the number of websites with errors from 1 to 10,
and websites with very low grades (white pages, websites without CSS).

The reason could be that, since these websites are more popular and drive

26

Dataset creation

Grades Total
0 1

-1 14
1 0
2 4
3 7
4 9
5 16

total 51

Table 4.2: Websites grades obtained during first experiment.

Averages Raw Processed
css classes 1788.03 143.39

css classes skipped 0 1596.25
css properties 220.31 78.42

css properties skipped 0 17.83
css urls 8.14 8.11

html classes 238.64 234.75
html tags 35.94 26.86

n html nodes 860.75 699.58
n lines css 20240.5 2255

n lines html 1542.25 996.08

Table 4.3: Websites statistics obtained during first experiment.

more traffic, they have additional measures to prevent web scraping. In addition,
they are more sophisticated and complex overall. This is suggested by the error
messages, that, in some cases mention the impossibility of making screenshots or
the detection of automatic tools.

4.2.2 Third experiment on .blog websites from Majestic
million list

At this point, the idea was to test the tool on another portion of the Majestic
Million list. This was the first 100 websites with the .blog top-level domain. This
was done to extract from the same list a sublist of easier websites, more similar to
the ones used in the first experiment.

The outcomes demonstrate a marked improvement compared to the second
experiment and are more in line with the first. The percentage of good website
screenshots (grade 3, 4, 5) is slightly higher (72% versus 64.29%), but also in this

27

Dataset creation

Grades Total
0 10

-1 35
1 29
2 6
3 4
4 9
5 7

total 100

Table 4.4: Websites grades obbtained during second experiment.

case, the number of bad results, not excluded by the system’s filters is not negligible
(12%).

Grades Total
0 7

-1 9
1 9
2 3
3 8
4 29
5 35

total 100

Table 4.5: Websites grades obtained during third experiment.

4.3 Introduction of the screenshot classifier and
fourth experiment

Initial experiments indicated that the system performed better on simpler websites.
However, the difficulty in obtaining large lists of simple websites led us to examine
the problem from a different perspective.

Since most of the poor results are easily recognizable by a human and present
common patterns, such as blank white pages or unstructured pages lacking CSS,
the idea was to train a convolutional neural network to classify the results as either
"good" or "bad", and filter out the second ones, similarly to the websites excluded
during the previous phases by the framework detector and the detection of websites
with zero CSS classes.

28

Dataset creation

4.3.1 Dataset
A dataset is composed of previous experiments’ results, which have been manually
classified as "good" or "bad" and some of them have been removed since they are
less easily identifiable than others. It contains 219 images, of which 112 are "good"
and 107 are "bad". The dataset is almost balanced, with the first class containing
approximately 51.1%.

75% of the dataset is used for training and validation, while 25% is for testing.
The training-to-validation split is also 75:25.

Some samples from the dataset are shown in picture 4.1

Figure 4.1: Samples from the dataset of the screenshot classifier.

4.3.2 Model
The model used is based on the ResNet50 architecture, a widely adopted neural
network for image classification.

It is pre-trained on the ImageNet dataset, which contains millions of labeled
images across thousands of classes. By leveraging these pre-trained features, the
network is able to learn from a small amount of data and achieves high classification
accuracy on new images.

29

Dataset creation

The top layer of the ResNet50 model, responsible for the final classification task,
is removed. New layers are added on top to fine-tune it for our specific classification
task. Additionally, the model includes a dropout layer to reduce overfitting, a
random-cropping layer for data augmentation, and layers to resize and scale the
images.

The model is trained to classify images into "good" and "bad" using binary
cross-entropy loss function and the Adam optimizer.

4.3.3 Training and testing
Several metrics were considered during the training of the model, namely loss,
accuracy, precision, recall, and AUC. An "early stopping" strategy was used to
avoid overfitting, monitoring the validation loss with a patience value set to 10
epochs. The model was trained for 30 epochs and reached a training accuracy of
83.74% and a validation accuracy of 87.70%.

As a comparison, the model without pre-training on ImageNet reached a training
accuracy of 52.03%, and a validation accuracy of 51.22%, always predicting the
second class.

This shows the inability of the model to learn from the small data at its disposal.
It also shows the impact of transfer learning in a scenario with a scarcity of training
data.

During testing, the model reached an accuracy of 81.82%, a precision of 80.00%,
a recall of 85.71%, and an AUC of 85.19%. Table 4.6 and Figure 4.2 show the
classifier results during training, validation, and testing and the confusion matrix
on the test set.

Training Validation Testing
Loss 0.332 0.354 0.703

Accuracy 0.837 0.878 0.818
Precision 0.812 0.864 0.800

Recall 0.889 0.905 0.857
AUC 0.935 0.946 0.852

Table 4.6: Screenshot classifier performance metrics.

4.3.4 Fourth experiment
A new experiment was performed to see the results after the screenshot classifier
introduction. The list of websites analyzed comes from the second one hundred
websites at the top of the Majestic Million [77] list.

30

Dataset creation

Figure 4.2: Confusion matrix illustrating the performance of the screenshot
classifier on the test set by displaying the true and predicted classifications.

By merging the previous grades 3:5 into the class "good", and the grades 1:2 into
the class "bad", it is possible to compare the results with the previous experiments.

Blogs (1) MM 1-100 (2) MM.blog (3) MM 101-200 (4)
Errors 1 10 7 20

Excluded 14 35 9 26
Bad images 4 35 12 25

Good images 32 20 72 29
TOT 51 100 100 100

Table 4.7: Table comparing results across different experiments.

Table 4.7 presents a comparison of the four experiments’ outcomes.
The columns of the table correspondingly exhibit the results of the initial

experiment performed on blog websites, the second experiment conducted on the
first 100 websites listed in the Majestic Million [77] ranking, the third executed
on 100 websites enlisted in the Majestic Million ranking with .blog domain, and,
finally, the results obtained from the current experiment.

The results of this experiment are similar to the human-classified websites on the
top one hundred websites of the Majestic Million list. Specifically, the proportion of
websites retained (not excluded and without errors) was 54% (compared to 55% of
human evaluation), with a higher proportion being classified as "good", i.e. 53.70%
(versus 36.36% of human evaluation).

Again, the number of websites with errors is high, and the motivations are the
same ones mentioned in the previous example.

Overall, the final result of this early experiment on a small list is that almost

31

Dataset creation

30% of websites analyzed produce results classified as "good".

4.4 Final experiment on scale
A final experiment was conducted on a larger list, containing the top 100000
websites from the Majestic Million list. It was performed on the Politecnico di
Torino Big Data Cluster [78], on a BigDataLab Education environment, with 30
GB of RAM reserved.

It lasted for about 3 weeks, and the 100000 websites were divided into 10 batches
of 10000 each. The training of the screenshot classifier took approximately 10
minutes, while the main script ran for around 50 hours for each batch. The other
minor scripts consumed a negligible amount of time, while the classification of the
non-excluded websites took about 45 minutes for each batch of websites.

The experiment generated about 100GB of files, with the final dataset containing
files of websites classified as good taking up 54GB of space.

The results showed similar numbers to the previous experiment in terms of
the percentage of the "included" website. The percentage of errors increased from
20% to 29.74%, while the percentage of excluded websites dropped from 26% to
16.46%, and these two experiments somehow balanced the total number of not
included websites at around 46%. From the included websites the percentage of
them classified as "good" increased from 52.70% to 63.36%.

Total
Errors 29736

Excluded 16459
Bad images 19716

Good images 34089
TOT 100000

Table 4.8: Results for the final experiment.

4.4.1 Statistics
The number of CSS files found in a random website from the analyzed list reproduces
a decreasing exponential function, as shown in Figure 4.3. The average is around 7
files per website, and only less than 10% of the websites have more than 15 CSS
files.

The average number of nodes in the processed HTML files is 1061.61%, with an
average reduction of 11.34% during cleansing and sanitizing.

32

Dataset creation

Averages Raw Processed
css classes 1965.54 139.92

css classes skipped 0 1775
css properties 172.55 67.34

css properties skipped 0 16.56
css urls 7.09 7.07

html classes 224.31 220.69
html tags 34.28 27.44

n html nodes 1197.39 1061.61
n lines css 23037.31 2264.85

n lines HTML 1794.84 1478.43

Table 4.9: Statistics on the extracted codes from the final experiment.

Figure 4.3: Distribution illustrating the number of CSS files associated with
various websites.

The reduction of the number of lines in the CSS files before and after processing
is around an order of 10, and it is quite consistent from small files to large files, as
shown in Figure 4.5. The average length before processing is 23037.31 lines, and
after processing is 2264.85 lines.

The impact of processing on the number of lines for HTML files is lower, with
an average reduction of 17.63%, as shown in Figure 4.6 In particular, when the

33

Dataset creation

Figure 4.4: Distribution illustrating the number of HTML nodes associated with
various websites.

number of lines is low, the number of lines in the processed file can be higher than
the number of lines in the raw file. The reason for this behavior could be the
addition of correct indentation and formatting of such files, where each line of the
original file can generate one or more.

4.4.2 Errors
The experiment showed a significant percentage of websites that generated errors,
about 29%. Further analysis was done to understand the causes of these errors and
their nature.

Table 4.10 shows all the most common errors encountered during the experiment,
with a percentage of occurrence greater than 0.5%.

The majority are related to connection issues or SSL certificates. They occur at
the beginning of the experiment, during the connection to the target website to
retrieve HTML code. These issues are often caused by firewalls or networking rules
that prevent automatic tools from connecting.

The error "List index out of range" occurs during the CSS extraction phase, and
is usually caused by using incorrect CSS syntax or invalid characters.

Two errors occurred during screenshot extraction. The first error with the
message "Element click intercepted" is raised during the click on Cookies pop-ups,

34

Dataset creation

Figure 4.5: Comparative distributions (on a logarithmic scale) illustrating the
number of lines in CSS files before and after processing, emphasizing the efficiency
and impact of the processing step.

but it is not a blocking error, so the process continues after handling the error.
The second error is "Unable to capture screenshot", which can be due to various

issues such as browser incompatibility, network issues, insufficient permissions, or
timing issues.

Overall, many of the previous errors are inevitable mainly due to the nature
of the experiment setup and the target websites that populate the target list.
Some of these websites may be inaccessible to the public, while others may have
sophisticated security defenses to avoid suspicious traffic. However, some other
errors could be investigated more accurately and handled, like those related to CSS
files.

35

Dataset creation

Percentage Type Message
16.69% ConnectTimeoutError Connection timed out

13.29% SSLError <hostname> doesn’t match
<allowed hostnames>

13.17% NewConnectionError No address associated with hostname
8.14% List index out of range
7.38% NewConnectionError Connection refused
5.29% Read timed out.

5.05% Timed out receiving message
from renderer

3.92% SSLError Self signed certificate
3.80% SSLError Certificate has expired
3.79% SSLError Unable to get local issuer certificate
3.53% Element click intercepted
2.90% NewConnectionError Temporary failure in name resolution
2.67% UnknownError Unable to capture screenshot
2.49% NewConnectionError Name or service not known
1.59% ConnectionResetError Connection reset by peer
0.98% OSError Connection aborted
0.78% SSLError Wrong version number
0.69% SSLError Alert internal error
0.66% NewConnectionError No route to host

0.65% Remote end closed connection
without response

0.50% SSLError Alert handshake failure

Table 4.10: Most common errors encountered during scraping of websites.

36

Dataset creation

Figure 4.6: Comparative distributions (on a logarithmic scale) illustrating the
number of lines in HTML files before and after processing, emphasizing the efficiency
and impact of the processing step.

37

Chapter 5

Model for website code
generation

5.1 Introduction
The recent months have marked a significant turning point in the field of generative
textual models, with the initial recognition of success attributed to models like
GPT[79] and BARD[80]. These transformer-based models laid the foundation for
understanding context and generating coherent texts, proving effective in multiple
tasks.

Progress has also been remarkable for specialized task-specific transformer
models, including code interpretation and generation. As an example, GitHub
Copilot[81], based on OpenAI’s Codex model [82], can understand existing code and
provide suggestions on new code lines. CodeGen[83], an autoregressive model for
program synthesis, can automatically generate code based on descriptive prompts.

By integrating a visual component to extract features from images, multi-modal
image-to-text models can be developed, thereby unlocking possibilities for various
tasks. These range from image captioning and classification to visual question
answering, among others.

Long Short-Term Memory (LSTM) models, a type of Recurrent Neural Network
(RNN), process texts step by step, using the output from one step as the input
for the next. This sequential processing enables them to retain a memory of
previous inputs in the sequence. In contrast, transformer-based models feature an
architecture that allows them to process inputs in parallel rather than sequentially.
While they lack a built-in memory of previous inputs, they utilize a self-attention
mechanism that enables them to weigh the importance of different words or tokens
in the input data. This trait makes them more scalable and capable of efficiently
handling longer sequences. Considering the nature of website codes, involving

38

Model for website code generation

extensive text and long-range dependencies between elements, we decided to apply
transformer-based models to the context of website code generation.

All the successful models previously mentioned share one common characteristic:
they possess a colossal internal architecture, containing hundreds of millions, if not
billions, of trainable parameters. Given time and cost constraints, fully training a
model of this type is not feasible in our setting. One viable approach is to fine-tune
an existing model for a new downstream task.

In the context of machine learning and natural language processing, fine-tuning
refers to the process of taking a pre-trained model and further training it to adapt to
a specific task. The pre-trained model already learned from a larger, general-purpose
dataset, and possesses foundational knowledge and patterns. By fine-tuning, the
model adapts its pre-learned patterns to the peculiarities and specifics of the
targeted task, thereby enabling enhanced performance with relatively minimal
computational cost compared to training a model from scratch. It is important
to avoid major architectural modifications to preserve the foundational knowledge
of the model, obtained during the initial training. The loss of this general-base
information can undermine the model’s ability to apply it effectively to new specific
tasks, obtaining poor results.

These considerations led us to choose Pix2Struct as a baseline model, which
was fine-tuned for website code generation tasks.

5.2 Model: Pix2Struct
Introduced by Google Research in October 2022, Pix2Struct [84] is a pre-trained
image-to-text model designed for understanding visually situated textual informa-
tion. Ready to be fine-tuned for tasks involving text in images, this model has
achieved state-of-the-art performance on various tasks across multiple domains,
including documents, illustrations, interfaces, and natural images. Unlike its prede-
cessors in visual language understanding tasks, Pix2Struct does not rely on Optical
Character Recognition (OCR) systems but starts directly from the input image
pixels. Furthermore, it is more general-purpose, not depending on task-specific
metadata or utilizing other inputs or tools.

5.2.1 Model overview
Two variants of the Pix2Struct model are available: the Pix2Struct-Base, which
has 282 million parameters, and the Pix2Struct-Large, with 1.3 billion parameters.
This work utilizes the first version.

The model was pre-trained on 80 million screenshot web pages from the C4
Corpus[85], a large dataset created by researchers at Google, which includes a
diverse range of internet text. Its pre-training process involved predicting the text

39

Model for website code generation

in randomly masked parts of the websites. The provided text is a simplified HTML
version of the code, retaining only visible elements like texts and images filenames,
or alternative texts. Any other structural information, such as element tags, style,
titles, and URLs, is omitted.

The context in which this model was pre-trained appears particularly relevant
to our task. The goal is to fine-tune the model to determine whether it can
predict more complex code structures with syntactical accuracy. Moreover, it needs
to predict the whole website code skeleton from scratch, starting only from its
screenshot.

Pix2Struct is based on Vision Transformer (ViT)[86], a model that represented a
notable shift in the field of computer vision by adopting techniques from the world
of natural language processing. Unlike traditional convolutional neural networks
(CNNs) which have been predominant in image processing tasks, the ViT leverages
transformer architectures, which were originally designed for text data.

In ViT, each image is divided into fixed-size, non-overlapping patches, which
are flattened and linearly transformed into vectors using a fully connected layer. A
key aspect is the addition of positional embedding to the linear ones, compensating
for the spatial information lost during flattening. The enriched vector is then fed
into a standard transformer architecture [87].

In Pix2Struct, there is a modification to how the image is processed and the
patches are extracted, which makes the model more robust to images of different
aspect ratios. Rather than scaling the images to a predefined resolution before
extracting the patches, the image is scaled up or down to allow for the extraction
of the maximum number of patches while still maintaining the aspect ratio. Using
a 2-dimensional positional embedding, the number of patches per row and column
can vary, adapting to the original image shape. Figure 5.1 shows the comparison
between the patches extraction process in the two architectures.

Figure 5.1: Comparison between variable resolution inputs (Pix2Struct) and fixed
resolution inputs (ViT).

Source: https: // arxiv. org/ abs/ 2210. 03347

The version of Pix2Struct used in this work is designed for conditional generation
and is available from the Hugging Face Transformers library [88]. It has a language

40

https://arxiv.org/abs/2210.03347

Model for website code generation

modeling head, which can be used for sequence generation tasks. This encoder-
decoder architecture consists of two main components: a vision model responsible
for understanding the image and encoding its features, and a textual model that
handles the translation of features extracted from the image into coherent textual
output.

After the previously mentioned embedding, the Pix2Struct vision encoder in-
troduces a dropout layer for regularization. Dropout is a technique that involves
randomly disabling a fraction of the input units at each update during training time,
which forces the network to learn more robust features and prevents overfitting. The
encoder is then composed of 12 identical layers, each with multi-head self-attention
and multi-layer perceptron (MLP) sublayers. Each layer presents also a residual
connection, followed by layer normalization.

Self-attention is a key mechanism in transformer-based architectures. It enables
the model to encode each input element while considering other parts in the
sequence, capturing dependencies among them. Specifically in visual transformers,
this mechanism allows the model to integrate information from different image
patches when encoding each one, thereby understanding spatial and contextual
relationships within the image.

The textual decoder of the model consists of 12 identical layers, each comprising
self-attention, cross-attention, and MLP sub-layers. The self-attention mechanism
operates similarly to its functionality in the encoder. However, it now incorporates
a mask to ensure the network attends only to preceding tokens when processing a
new one, thereby preventing it from accessing future tokens it is tasked to predict.
On the other hand, cross-attention facilitates the decoder’s focus on pertinent
sections of the encoded image during textual generation, enhancing its capability to
generate coherent and contextually relevant text. Moreover, each sub-layer presents
layer normalization and residual connections, alongside a dropout mechanism.

Figure 5.2 displays the high-level schema of Pix2Struct model.

5.2.2 Comparison with other models
As mentioned in this chapter’s introduction, the availability of a pre-trained open-
source model becomes a necessity in our setting. The Hugging Face transformers
library [88] provides numerous implementations of transformer-based models, along
with their pre-trained weights. The unified, straightforward interface to these
models allows easy access to them, ensuring reproducibility and consistency. Several
textual and multi-modal models are available, and there is the possibility to combine
independent visual and textual components to create multi-modal encoder-decoder
architectures.

Several models were considered for their unique characteristics. For example,
CodeGen [83] is a family of large language models, with configurations up to 16.1B

41

Model for website code generation

Figure 5.2: Pix2Struct model schema: an image is processed through a Vision
Encoder, after dividing it into patches with positional embeddings. Together with
text embeddings they are passed through a Text Decoder, with a Cross Attention
mechanism linking visual and textual data, leading to the prediction of the next
token in the sequence.

parameters, trained on a corpus of natural language and programming language
data. Its performance on code synthesis tasks can have an advantage in a context
like Web code generation, compared to other general-purpose models. Exhibiting
competitive capabilities in code synthesis tasks, particularly in zero-shot Python
code generation as assessed on HumanEval, CodeGen may present advantages in
our Web code generation context compared to other general-purpose models. The
model notably excels in multi-turn program synthesis, where a single program is
divided into multiple prompts, each specifying subproblems, thereby augmenting
both the efficiency and precision of the program synthesis process. Nevertheless,
this diverges from our multimodal context, where the input is a website screenshot,
casting uncertainty on the model’s suitability for our task.

Longformer [89] presents an element that would suit our limited-resources sce-
nario. It is a textual model designed to handle long text sequences, which are
problematic for traditional transformer models, due to their quadratic compu-
tational complexity with respect to input length. Unlike standard transformers,
which compute attention over all pairs of input tokens, Longformer utilizes a sliding

42

Model for website code generation

window attention mechanism that computes attention only over a limited number
of neighbor tokens. This reduces the computational complexity to linear with the
sequence length. It combines this sliding-window attention mechanism with global
attention for the tokens that require looking at all the other tokens.

Regarding the visual component, the benefits of using a model that preserves
various image aspect ratios seem crucial, especially when dealing with website
screenshots. This makes choosing Pix2Struct, over alternatives like ViT, a clear de-
cision. Additionally, the convenience of using the Pix2Struct model for Conditional
Generation as a unified solution, without needing to couple it with a separate tex-
tual component, affirmed our choice. The model’s pre-training is notably relevant
to our context, and its established proficiency in predicting diverse structural texts
contributes to its preference over other models, like those mentioned before.

5.2.3 Addressing model challenges
The primary challenges stem from limited available resources, including GPU RAM,
time, and costs. All experiments were run on Google Colab [90], with limited
access to Tesla T4, V100, and A100 GPUs. Some initial experimental tests were
executed to identify the most suitable GPU between the three. In a trade-off
between performance and costs V100 was revealed to be the best for sampling
purposes, with similar performance as the A100 but with almost a third of the
costs. A100, however, was clearly superior during training, not only for its speed-up
but also for allowing longer sequences and multiple data in parallel.

The batch size could be increased to a maximum of 4 before exceeding the
memory capabilities. Since this value is relatively low compared to the usual
ones used in this kind of experiment, and because batch size is important for
stabilizing the learning process and exploiting computational resources, a gradient
accumulation strategy was employed. Gradient accumulation allows the model
to be trained with an effective batch size that is larger than what the hardware
could handle per single forward and backward pass, without requiring additional
computational resources. When a batch of samples is passed through the network
and the loss and gradients are calculated, the model parameters are not immediately
updated; instead, the gradients are stored. The values accumulate over several
"mini-batches", and once the desired batch size is reached, they are used to update
the model parameters. This strategy simulates having bigger batch sizes, by
delaying the model updates. In our setting, a value of 8 was used, doubling the
batch size that is physically allowed, and updating the model parameters every two
passes.

With 40 GB of available RAM, much higher than 16GB of V100, the A100 GPU
is capable of handling sequences with a maximum length of 1024 tokens. This
proved to be sufficient for simpler datasets but was not enough for datasets with

43

Model for website code generation

HTML codes, especially the more complex ones.
For this reason, a sliding window approach was utilized. The fundamental

concept involves dividing a larger sentence into chunks of a fixed maximum size,
in this case, 1024. By incorporating an overlap between these chunks, the model
can comprehend the context from the preceding segment and continue predictions
for subsequent words. This necessitated a modification in the data passed to the
model. Specifically, the model’s textual decoder now needs to receive the last
tokens of the previous chunk to maintain context and understand at which point
in the generation it is situated. A modification to the decoder’s attention mask
was required to ensure it could perceive these tokens.

Figure 5.3 illustrates an example of the sliding window mechanism, with a
sentence length of 4096, a chunk length of 1024, and an overlap of 256. Each chunk
is composed of 256 tokens from the previous one and 768 new tokens. An exception
is the first chunk, which has 1024 new tokens. This configuration was used in some
of the experiments and resulted in a maximum of 5 windows per sample.

Figure 5.3: Illustration of the sliding window mechanism applied to a sentence
with a length of 4096, using chunks of 1024 and a context of 256, yielding 5 distinct
windows.

The term "maximum" is used because an optimization strategy was introduce to
avoid processing empty chunks for shorter samples. During the construction of the
training dataset, the textual component of each sample undergoes processing, and
the tokens are extracted. Instead of padding each sentence to the maximum length
and loading them directly, while managing the sliding window logic inside the
training loop, the sentence is immediately divided into chunks. This approach is
feasible because the context length and overlap are already known. Empty chunks
are discarded, and the data loader is now populated with the chunks, not with
whole samples. Each entry also has an annotation indicating its position because
the first chunks need to be treated differently, as they don’t have overlapping parts
at the beginning. Additionally, each chunk has a reference to the index of the
image associated with the sample. The index is utilized to prevent excess memory
consumption, ensuring the image is stored in memory only once.

44

Model for website code generation

This strategy is not possible during evaluation, as the sample must be fully
reconstructed to save the final prediction and calculate the metrics.

The model begins by generating text with a maximum length equal to the chunk
size. The last portion of the prediction is used as an overlapping context for the
next generation iteration. This process continues until all iterations are completed,
going through all the possible sliding windows. After each generation step, the
overlapping context is truncated from the predicted sentence, and the predicted
chunk is concatenated to the preceding ones. In the case of the first iteration,
since context is not present, it is not removed, and the prediction is saved as is.
An optimization is performed here by marking in a mask which sentences in the
batch are already finished before all iterations are completed. When all the data in
the batch are marked as finished, or when the maximum number of iterations is
reached, the generation loop ends, and the predictions are ready to be evaluated.

5.3 Metrics
Several metrics are collected to measure the model’s ability to predict website code
starting from a screenshot. Most of the textual ones are calculated starting from the
unprocessed version of the answer and its prediction. In other cases, like Structural
BLEU, or HTML tree edit distance, it is required to have fully compiling code and
the texts go through post-processing steps to guarantee it. During post-processing
correction, the encountered errors are saved so that they can be analyzed later.
The codes are then rendered by a browser and the screenshots are collected, to
calculate the image similarity metric.

5.3.1 BLEU
BLEU[91], which stands for Bilingual Evaluation Understudy is a metric for
evaluating machine-translated text. It provides a score that measures how many
words and sentences in a machine prediction match with a reference one, taking
into account both precision and recall. Since its introduction, it has been widely
used by the machine translation community but has also been employed in various
other natural language processing tasks, including those of language models for
text prediction.

BLEU provides a single score, making it easy to understand and communicate
results. It doesn’t require human evaluators, making it a fast and cheap automatic
metric. It considers overlapping n-grams (sequences of n words) of varying lengths
in the generated and reference text. For language modeling tasks, this means BLEU
can help evaluate how well the model predicts both individual words and longer
sequences or structures in the language.

45

Model for website code generation

One limitation of this metric in the context of code prediction, is that code is
highly syntactic. A missing or misplaced character can render code non-functional.
BLEU, which primarily measures n-gram overlaps, might not emphasize these
crucial syntactic distinctions sufficiently. Moreover, multiple code snippets can
correctly perform the same function but look very different syntactically. In this
scenario, they would obtain a very low value, despite both being a valid solution
for the problem.

Additionally, all the words inside the text have the same impact on the BLEU
score. This aspect differs from code programs, where structural keywords and
constructs have a much more important role than textual elements. For this reason,
I introduced an additional metric called "structural BLEU". This metric calculates
the BLEU score on a modified version of the prediction and answer by removing
non-structural elements such as texts, titles, and button texts.

The implementation of the BLEU score from the Natural Language Toolkit
(NLTK) [92] is used, with "Smoothing method 4" as the smoothing function. Since
shorter translations may have inflated precision values due to having smaller
denominators, this function is used to give them proportionally smoothed counts.

5.3.2 Edit Distance
Edit distance is the Levenshtein edit distance between two strings or texts, in our
case prediction and answer. This distance is the number of characters that need to
be substituted, inserted, or deleted, to transform the first string in the second one.

For example, transforming "rain" to "shine" requires three steps, consisting of
two substitutions and one insertion: "rain" -> "sain" -> "shin" -> "shine". These
operations can be done in different orders, but at least three steps are needed.
This metric is implemented using NLTK [92] version, setting the cost of all three
operations to one.

As an additional metric, the normalized version of edit distance is also used,
dividing it by the maximum number of characters between the answer and the
prediction.

5.3.3 HTML Tree Edit Distance
For the same motivation that led me to introduce the "structural BLEU" metric, I
decided to introduce a new distance metric, more focused on structural elements.
In particular, the HTML code is represented with a tree, whose nodes are its
constitute tags. Then, the tree edit distance between the answer HTML tree and
the prediction tree is calculated using the Zhang-Shasha algorithm, whose revision
was presented by Paassen[93].

46

Model for website code generation

Zhang-Shasha, introduced in 1989, is an efficient dynamic programming algo-
rithm computing the tree edit distance. Tree edit distance is the minimum number
of node deletions, insertions, and replacements that are necessary to transform
one tree into another. Beautiful Soup parser is used to extract the nodes to re-
cursively create the HTML tree and Tim Henderson’s Python implementation of
Zhang-Shasha algorithm[94] to calculate the final metric.

Additionally, the normalized version of the tree edit distance is also used, after
dividing it by the highest number of nodes in the two trees.

5.3.4 Structural Similarity Index
As a metric to measure visual similarity between the resulting website screenshots,
the Structural Similarity Index (SSIM)[95] is used. SSIM evaluates the structural
similarity between two images. It takes luminance, contrast, and structure into
account and outputs a score between -1 and 1, with 1 indicating two identical images.
Compared to other methods like Mean Squared Error (MSE), which estimates
absolute pixel-level errors between two images, the concept of structural information
focuses on the strong inter-dependencies between pixels, particularly when they
are in close proximity. These dependencies convey crucial information about the
structure of objects within a visual scene. Scikit-image[96] implementation of
structural similarity index is used, which outputs also an image with the full SSIM
map and an image of its gradient.

The biggest drawback of this metric is that it requires the two images to have the
same size, so a resizing is needed. After this resizing the texts and the components
of the image can be moved by some pixels, and this would be recognized as a
change in the SSIM index calculation. This behavior is shown in figure 5.4, which
corresponds to a final SSIM index of 0.88.

5.4 Datasets
5.4.1 Pix2Code Dataset
Introduced by Beltramelli in 2017[4], the Pix2Code dataset is a relatively small and
simple collection containing screenshots of various web and mobile applications.
For each image, there is a corresponding Domain Specific Language (DSL) code,
which represents the structure and elements of the UI, such as buttons, text fields,
and images. This intermediate representation is used to facilitate the translation
from image to actual usable code, such as HTML or Android XML. A sample of
the DSL code and its corresponding HTML code is illustrated in Figure 5.5.

The dataset consists of three parts, for Android, iOS, and Web user interfaces
respectively. The latter is the one taken into consideration for this scope. The web

47

Model for website code generation

Figure 5.4: Example of the resulting Structural Similarity Index map and gradient
images.

portion of the dataset consists of 1742 samples, identified as the original 1750 used
in the Pix2Code[4] experiments after the removal of erroneous samples, performed
later on by the author.

The availability of only 12 distinct structural elements limits the size and
simplicity of the dataset. Also, the sample’s internal variability is restricted, as the
website codes consist only of the mentioned elements and curly brackets to specify
their internal hierarchy. No other texts or elements without structural impact are
present.

The elements "small-title", "text", and "quadruple" are used the most, accounting
for almost 50% of all elements in the entire dataset codes, as shown by Figure 5.7.
Each of the first two is used on average more than 6 times per website, which is
significant since the average number of elements per website is only 32. The smallest
website code comprises just 8 elements, while the largest has 56. The number of
lines in the sample DSL codes ranges from a minimum of 8 to a maximum of 45,

48

Model for website code generation

Figure 5.5: Comparison of DSL code and the corresponding HTML code for a
Pix2Code sample.

with a median of 30 lines.
Using a compiler, it is possible to retrieve the HTML code corresponding to the

simplified DSL code. This result can be rendered by a browser to obtain the same
user interface represented in the screenshot.

For this reason, another version of the original dataset was used, with the samples
consisting of HTML code and screenshots. Since the compiler that generates the
HTML code picks random characters to form the words to put in titles, buttons,
and paragraphs and this process is not deterministic, the resulting websites have a
different text compared to the original sample screenshots. To solve this issue, new
screenshots were taken from the newly generated HTML codes.

Additionally, a new version of the dataset was created, by substituting the
random texts with random words taken from the Lorem Ipsum placeholder text,
limiting the number of different words used and recognized. This was revealed
to be a significant factor in the capability of the model to recognize not only the
words but also the overall interface structure.

These two versions differ only in the internal texts, and the number of different
tags is limited to 17, as shown in figure 5.8. The average number of lines goes
to 64.28 and 58.11 for the original HTML and HTML Lorem Ipsum versions
respectively.

49

Model for website code generation

Figure 5.6: Nine representative screenshots taken from the Pix2Code Dataset.

Figure 5.7: Pie chart visualizing the frequency distribution of different elements
used in the Pix2Code DSL codes.

50

Model for website code generation

Figure 5.8: Pie chart visualizing the frequency distribution of different elements
used in the Pix2Code HTML codes.

5.4.2 Synthetic Bootstrap Dataset

As an intermediate step between simple datasets and a real-world dataset, a more
complex synthetic dataset was created. This was achieved using an open-source
software for the creation of synthetic web-based UIs, called WebGenerator [97]. It
is a script-based tool capable of generating single-page websites built on Bootstrap
[66] framework. It can also generate colored websites, using random palettes and
changing accordingly the CSS file referenced in the HTML code. The chosen colors
are annotated also at the beginning of the HTML files, making it possible to have
every information in a single file and generate the CSS file with the correct colors
in a second moment, before taking the screenshot. Allowing processing in batches,
it is possible to easily build a big dataset using this tool, obtaining at the end a
set of HTML codes and the corresponding website screenshots, extracted using
Selenium [62].

It is possible to generate websites with various visual elements, like cards,
placehoders, tables, navigation , carousels, forms, and others. To populate the
elements’ textual components, random Lorem Ipsum sentences are generated and
used. The probability of obtaining different kinds of websites can be controlled
with a set of parameters. Table 5.1 shows those parameters and the values that
were used for the dataset generation. In particular, layouts refer to four different

51

Model for website code generation

websites structures, with different positioning and extension of elements, such as
lateral navigation bar. In our case, the probabilities of these layouts were set to
be equal to 0.25 for each one. The choice was done empirically, by looking at the
resulting websites during early experiments and trying to mimic the aspect of most
common websites.

Name Description Value
with_sidebar_p Probability that the sidebar is present 0.7
with_header_p Probability that the Header is present 0.5
with_navbar_p Probability that the Navbar is present 0.8
with_footer_p Probability that the Footer is present 0.6

layouts_p Probabilities for each layout. 0.25 each
boxed_body_p Probability that the page’s Body is

boxed inside a container
0.0

big_header_p Probability of having a big header (>
50% of the screen height)

0.0

sidebar_first_p Probability of the Sidebar being at the
left side of the Body

0.8

navbar_first_p Probability of the Navbar being above
the header

1.0

bg_color_classes_p Probabilities for the combination of CSS
Bootstrap’s background color classes.

Default

Table 5.1: Generation probabilities of website characteristics for WebGenerator
tool

The result is a dataset composed of 50,000 samples, each one consisting of a
screenshot of the website and its HTML code. Figure 5.9 displays the screenshots of
some samples from the generated dataset, while Figure 5.10 illustrates the HTML
code related to the first sample of the previous image.

Note the <meta> element at the beginning with the annotation of the color
palette used for the website.

During the experiments, only a smaller portion of this dataset was used with
10000 samples, due to resources limitations. Additionally, a "mini" version with
only 1000 samples was used in one experiment for a comparison of the results.

Compared to the Pix2Code Dataset in the HTML version, the number of distinct
HTML elements almost doubles, from 17 to 32. Figure 5.11 shows that <div> and
<a> are still the most used in the dataset with around 41% of the whole number
of tags being these two. The maximum number of lines is 264, while the smallest
website has 28 lines and the average is 104.

A new variant of this dataset was created having sketches of website components

52

Model for website code generation

Figure 5.9: Nine representative screenshots taken from the Synthetic Bootstrap
Dataset.

instead of the normal Bootstrap elements. This was done by identifying the area
that each real element occupies and substituting it with a sketched version of it. The
creation of this dataset started from scratch because it required black-and-white
websites.

The result is a dataset of almost 10000 websites (9789), whose HTML codes are
created in the same way and with the same parameters as the original Synthetic
Bootstrap dataset. Figure 5.12 shows some samples of this dataset.

53

Model for website code generation

Figure 5.10: Code of a sample taken from Synthetic Bootstrap Dataset

5.4.3 WebUI2Code Dataset

"WebUI2Code" refers to the dataset created in chapter 4, using the tool for scraping
website codes and screenshots from the web. Compared to the previous synthetic
datasets, this dataset contains much more complex and diverse data, directly
extracted from real-world websites. This dataset includes 34089 samples, each
comprising an HTML file, a related CSS file, and a screenshot. Additional files,

54

Model for website code generation

Figure 5.11: Pie chart visualizing the frequency distribution of different elements
used in the Synthetic Bootstrap HTML codes.

Pix2Code P. HTML P. HTML LI SynthB. SketchSB.
count 1742 1742 1742 50000 9789
mean 27.07 67.07 61.00 104.00 104.00
median 30.00 64.28 58.11 109.03 108.19
std 6.51 9.09 7.81 35.72 35.38
min 8 36 34 28 32
max 45 104 82 264 258

Table 5.2: Statistical analysis of the line count across various versions of the
Pix2Code and Synthetic Bootstrap Datasets.

that are not essential for the following experiments are present, such as a JSON
file containing information and statistics from the scraping process, and the raw
HTML and CSS files.

An initial analysis of the dataset revealed its variety and diversity exceed what
is suitable for our experimental scenario, particularly given our limited resources.
GPU memory requirements, time, and cost consumption scale with the length of
the processed texts. Even after pre-processing, it became evident that managing
the entire dataset in our setting was not feasible.

The average number of lines in the entire dataset is 2327.52, more than 20 times

55

Model for website code generation

Figure 5.12: Nine representative screenshots taken from the Sketch Synthetic
Bootstrap Dataset.

larger than the largest of the previous ones, which is 104.00, as shown in Figure
5.2.

Table 5.3 displays the number of samples from the dataset that remain below-
specified token thresholds. This is determined by tokenizing the pre-processed code
samples with the model’s processor and recording the resultant token counts. The
Pix2Struct model utilizes the T5 tokenizer [98], which converts input texts into
tokens, the smallest units processed by the model. These tokens can represent
words, subwords, or characters, depending on the training data and tokenization
strategy. The first table column reports different values as thresholds, starting from
4096, which is the value used in the experiments on other datasets, and continuing
with its multiples. The second column provides information on how many samples

56

Model for website code generation

finished under that threshold. The third column aggregates this value with those
of the smaller thresholds, indicating the total number of samples available if that
threshold is chosen. The last column provides the number of windows necessary to
process files with that number of tokens, assuming a maximum sentence length of
1024 and an overlapping context of 256, as these values resulted in the maximum
capability of our system.

Thresholds # samples # aggr. # windows
< 4096 2442 2442 5
< 8192 1906 4348 11
< 12288 2170 6518 16
< 16384 2355 8873 21
< 20480 2466 11339 27
< 24576 2486 13825 32
< 28672 2275 16100 37
< 32768 2091 18191 43
< 36864 1896 20087 48
< 40960 1629 21716 53
All 12373 34089

Table 5.3: Breakdown of websites from WebUI2Code Dataset by token thresholds,
with cumulative aggregation and required window counts for each threshold.

Two thresholds were chosen for our experiments: 4096 and 16384. The first one
matches the threshold used for other datasets; however, the number of samples
is limited to 2442. The second threshold is a compromise between the number of
samples and the number of sliding windows, with 8873 and 21, respectively. Larger
thresholds were not analyzed because they are not usable in our setting. Different
versions of the dataset were created, each identified by the threshold number.

The dataset showcases a notable diversity with 5354 distinct HTML tags, a stark
contrast to other synthetic datasets, which peak at 32 tags. Figure 5.13 presents
a pie chart, showcasing the most frequently used tags along with their respective
percentages. To streamline model training, it was imperative to curtail this number.
Consequently, through a detailed methodology outlined in the subsequent pre-
processing section, the total was reduced to 130 varied HTML tags.

The first version of the dataset that was analyzed includes the samples under 4096
tokens, with a starting number of 2442 samples. An initial study on the screenshots’
dimensions and on the number of CSS and HTML lines was performed. In particular,
the width and height of images are important because they significantly impact
image size, which can create problems during the opening and processing of the
images. Moreover, when textual files consist of a limited number of lines is often

57

Model for website code generation

Figure 5.13: Pie chart visualizing the frequency distribution of different elements
used in the WebUI2Code HTML codes.

a symptom of having encountered problems during content extraction. This was
discovered when analyzing CSS files with very few lines, which usually contained
the word "error". Small HTML files, on the other hand, can be considered outliers
in this dataset, since they have almost no information inside them, given the long
nature of HTML language and the formatting performed after code extraction.

Figure 5.15 illustrates the distribution of widths, heights, and aspect ratios of
images within the WebUI2Code-4096 dataset version. Most images showcase a
width ranging between 1100 and 1500 pixels, with the narrowest being less than
300 pixels wide, and the widest reaching up to more than 5000 pixels. The height
distribution is even more varied, including outliers extending up to almost 40000
pixels. The majority of the files exhibit an aspect ratio (width/height) between
0.4 and 1.4. Figure 5.14 presents a scatter plot of images widths and heights.
Each point in the plot symbolizes a sample in the dataset. From this analysis and
through the manual evaluation of the quality of screenshots with varying heights,
sizes, and aspect ratios, it was decided to establish certain thresholds and exclude
all the samples falling outside of them. The maximum allowed width was set to
2,000, the minimum width to 250, the maximum height to 8,000, and the minimum
height to 250, all while maintaining a minimum aspect ratio of 0.10 and a maximum
of 2. These limits do not dramatically reduce the intrinsic diversity of the dataset
but aim to remove the outliers and problematic images.

58

Model for website code generation

Figure 5.16 shows the distribution of the number of lines in the samples’ HTML
and CSS files. The scatter plot in Figure 5.17 highlights that files with a large
number of CSS lines typically do not have a high number of HTML lines, and vice
versa. This is expected since all the files populating this dataset are constrained
by the number of tokens being lower than 4096. These tokens are extracted from
the text obtained through concatenating the HTML and CSS files. Several files
are characterized by a very low number of CSS lines, while this is true for a lower
number of HTML files. For the reason previously expressed, a threshold was set
to 10 as the minimum number of CSS lines, as well as the minimum number of
HTML lines, and files that do not meet those limits are excluded.

The number of samples that did not meet one of the images’ constraints was 69.
55 of the samples did not meet the minimum number of CSS or HTML lines, with
52 failing due to CSS and 3 due to HTML. Considering some files were excluded
for violating both rules, the final number of samples excluded was 120, leaving 2322
samples in the ’cleaned’ version of the dataset. Figures 5.18 and 5.19 display the
distributions of image sizes and text line counts, respectively, in the final version of
the dataset after the exclusion procedure.

For brevity, plots of the other portions of the dataset are not presented, however
here are some general considerations:

• The distribution of widths in the datasets with longer websites is shifted to
the right compared to the simpler dataset. The majority of the websites’
screenshots have still a maximum width of 2000 pixels, with outliers that reach
up to 14,000.

• In terms of screenshot heights, a bigger number of websites do not respect
the threshold, having a bigger height due to the bigger number of texts inside
the website. The outliers’ maximum height scales almost regularly, passing
from 40000 to 60000, to 80000 to 100000, in the 4096, 8192, 12288 and 16384
versions, respectively.

• Compared to the first dataset, the other versions have an increase in the
percentage of websites with small aspect ratios, between 0 and 0.5. This
is correlated with the bigger heights of the websites, caused by the higher
number of words and elements.

• The number of CSS and HTML lines increases coherently with the number of
tokens in the files in the dataset. While in the bigger datasets, the number of
files with few HTML lines is reduced, there is always a significant amount of
websites with few CSS lines.

In version WebUI2Code-8192, out of the initial 1906 websites, 243 fail to meet
the size threshold, 53 do not satisfy the number of lines constraint, and 26 violate
both conditions. In total the exclusions are 270, leaving 1636 websites.

59

Model for website code generation

Version WebUI2Code-12288 begins with 2170 websites, excluding 407 for not
meeting the size threshold and 60 for the number of lines threshold, with a total of
428 exclusions, since some of them were excluded twice, and a final count of 1742
websites.

WebUI2Code-16384 starts with 2355 samples, excluding 604 for size and 48 for
the number of lines, totaling 624 exclusions with 24 websites excluded twice, and
resulting in a final dataset of 1731 websites.

Figure 5.14: WebUI2Code-4096: Scatter plot illustrating the distribution of
image dimensions, comparing widths to heights, prior to data cleaning.

Figures 5.20, 5.21, 5.22, and 5.23 display samples from the four portions of
the dataset, with thresholds of 4096, 8192, 11228, and 16384, respectively. These
images illustrate how an increase in tokens correlates with a rise in the amount of
text present on the website screenshot, leading to overall more complex websites.

5.4.4 Rico Dataset
To expand our collection of real-world interface datasets, we have included mobile
UI datasets, the first example is Rico. Rico is a dataset composed of more than 66
thousand Android user interfaces, mined from over 9000 free mobile applications.
The dataset consists of several components, each offering a unique lens through
which to explore UI design and interaction:

60

Model for website code generation

• UI Screenshots and View Hierarchies: involves original UI screenshots alongside
their respective view hierarchies.

• UI Metadata: encompasses metadata related to the UIs, such as app name,
alongside user interaction traces, providing a glimpse into user navigation and
interaction.

• UI Layout Vectors: provide 64-dimensional vector representations of each UI
screen. These encode layouts by discerning the distribution and arrangement
of text and images.

• Interaction Traces: categorizes interaction traces by app, with each app
potentially having multiple traces. Each trace is a sequence of UIs, captured
as both screenshots and view hierarchies.

• Animations: offers GIFs illustrating screen animations in response to user
interactions, visually showcasing UI dynamics.

• Play Store Metadata: contains Google PlayStore metadata linked to each app,
enhancing contextual understanding.

• UI Screenshots and Hierarchies with Semantic Annotations: contains UI
screenshots and hierarchies with semantic annotations, indicating the meanings
and usage of screen elements.

The part of the dataset utilized in our experiment is the first one. The view
hierarchy is described in a structured JSON format, representing a recursive
hierarchy of UI components. All elements in the UI can be accessed by traversing
the hierarchy, starting at the root node. Each element presents the "class" property,
which specifies the component class name, and the "children" property, which
offers a recursive representation of the sub-components. Additional information is
provided for each node, such as bounds, ancestors, and properties of the element,
including whether it is clickable, visible, or focused.

In our experiments, we extracted only the class names from the hierarchy and
organized them in a structured way by separating them with curly brackets when
they included children. This procedure is described more in detail in the pre-
processing section. This representation is similar to Pix2Code DSL codes and
simplifies the texts. A comparison between the original layout view hierarchy code
and the resulting simplified structural code can be seen in Figure 5.24

Figure 5.25 displays nine samples’ screenshots from the Rico dataset.
Figure 5.26 illustrates the distribution of the number of classes per sample within

the dataset, revealing that the majority of samples include fewer than 100 classes.
A minority portion of samples encompass up to nearly 500 classes.

61

Model for website code generation

A comprehensive analysis across the entire dataset identified a total of 34142 dis-
tinct classes. The most utilized classes are depicted in Figure 5.27. In all the samples
combined, there are almost one million and a half classes. "widget.LinearLayout"
is the most used, averaging more than 20 repetitions per sample. The next three
more common are "widget.AppCompatTextView", "widget.RelativeLayout", and
"widget.TextView" with around 10 repetitions per sample.

To constrain the class quantity, we tried applying a threshold, dictating the
minimum usage frequency required for a class to be retained and deemed "valid".
Given the challenge of substituting "excluded" classes, the approach involved
testing different thresholds, identifying valid classes that adhere to the threshold
requirement, and subsequently omitting all samples that incorporate classes not
present in the valid list.

Figure 5.28 shows how changing the threshold value impacts the number of
classes and the final number of filtered samples. As a good compromise between
the number of classes and the number of samples, a threshold equal to 2000 was
chosen. This leads to a total of 131 classes and 12480 files.

5.4.5 UI2Code Dataset
UI2Code is a large dataset of Android UI screenshots and GUI skeletons comprising
more than 185277 pairs, extracted from 6000 mobile applications. The collected
GUI codes use 291 unique Android GUI components, including Android’s native
layouts and widgets and those from third-party libraries. The distribution of the
components across the whole dataset is shown in Figure 5.29. The GUI structure
is similar to the one adopted for the original Pix2Code dataset. It contains the
names of the components in a structured hierarchy, separated by curly brackets.
An example of GUI code is shown in Figure 5.30, while Figure 5.31 shows some
samples screenshots. In the original version of the dataset, the screenshots are
rotated by 90 degrees counter-clockwise. They have a width and height of 300 and
200 respectively.

5.5 Pre-processing and post-processing
This section outlines the comprehensive data processing pipeline, from initial pre-
processing to final post-processing. The initial segment of the following sections
describes all steps involved in transforming the original data from the dataset into
a format suitable for model input. Subsequently, the post-processing steps are
detailed, involving the reversion of the model’s output back to the original text
format, to extract the screenshots, and calculate all relevant metrics.

In particular, for HTML files, some metrics, and also the tool that extracts
screenshots, require the code to be syntactically correct. To achieve this, and to

62

Model for website code generation

correct any minor errors that might prevent screenshot extraction, a tool called
HTML-Tidy[99] is utilized. Tidy is a console application that corrects HTML and
XML markup errors. Modern browsers are capable of achieving the same result
and can still render a website even if it contains some errors. The command that
was used returns all the types of errors encountered, and indicates their positions.
These are saved in a JSON file, unique for each sample processed so that a record
of all the sample errors is maintained.

5.5.1 Pix2Code Dataset processing
The pre-processing of the original Pix2Code dataset was very limited. The newline
characters inside the DSL codes were replaced by spaces, and multiple spaces were
truncated to have always one space separating the elements or the curly brackets.

For the other two versions of this dataset, namely the HTML version and the
HTML Lorem Ipsum one, one more pre-processing step was performed in addition
to the two mentioned before for the original dataset. This consists of the removal
of three tags from all the HTML codes: <header>, <footer> and <script>. These
tags are always in the same position and have the same content for all the samples,
independent of the visual interface. This removal was done to make the texts
shorter, limiting the number of tokens. They were added back in the same position
during post-processing, before the extraction of the screenshots and the metrics
calculation.

5.5.2 Synthetic Bootstrap Dataset processing
Four pre-processing operations were used both for the original version of this dataset
and the sketch one. The first two were the same ones used for Pix2Code datasets:
replacing newlines with spaces and substituting multiple spaces with a single space.
The third one was the removal of HTML comments. These codes presented some of
them because they originated in the generation script, like a comment that specifies
which type of layout was generated. The last operation reduces the precision of
decimal numbers present in the code. In particular, numbers with many decimal
digits are used in the metadata element to specify the RGB values of the chosen
color palette. To facilitate the model prediction of the colors, and given that such
high precision was not necessary, the numbers were truncated to 0 decimal digits.

No particular post-processing was needed for the HTML files of these datasets
beyond the standard steps that are common to all HTML files, as explained at
the outset of this section. Prior to capturing screenshots of the predictions, it was
crucial to place the folders containing all requisite CSS and JavaScript files from
the original dataset along the correct path. Furthermore, replicating the screenshot
extraction procedure used during the dataset generation was necessary to allow

63

Model for website code generation

for modifications to the CSS file using the palette derived from the HTML file
metadata, ensuring that the screenshots remained faithful to the original.

5.5.3 WebUI2Code Dataset processing
Three main pre-processing steps were followed for all utilized variants of the
WebUI2Code Dataset: one for the HTML file, one for the CSS file, and one for the
combination of the two. The sample screenshot, did not require any processing.

For the HTML file processing, the same operations previously mentioned for
the Synthetic Bootstrap dataset were also applied in this case. Specifically, these
operations included the replacement of newlines with spaces, the substitution of
multiple spaces with single ones, and the removal of HTML comments. The latter
was still used, even though these codes should not have any comments because they
were removed during the extraction of the website codes (see: Section 3.2). Some
new operations were performed. All references to external websites, beginning with
"http" or "https", and conforming to the URL format, were substituted with a default
one: "https://example.com". Similarly, all references to local files, excluding the one
linking to the CSS file, were replaced with "ref.placeholder". These modifications
were implemented because the network lacks knowledge about this information and
can only select random words. Furthermore, this information does not affect the
appearance of the website’s screenshot, and the usage of this common name can
facilitate the prediction task.

The largest pre-processing procedure involved reducing the number of HTML
tags. As previously mentioned in the dataset section, the original dataset includes
more than 5000 tags. This is possible because HTML allows the definition of
custom tags. They replace, by default, the generic inline tags , and are also
commonly used to substitute <div> tags by providing a CSS rule to change their
display type to block. The idea is to use them as components, enabling easier style
and behavior encapsulation without relying on generic tags and applying numerous
different classes. Their use is not recommended for replacing HTML semantic tags
because doing so can destroy the meaning of the markup code and have a negative
impact on website indexing, as their behavior cannot be understood. With this
premise, the approach was the following:

• Create a comprehensive list of all existing HTML tags.

• Identify all tags (including custom ones) referenced in the CSS files.

• Exclude from the original list all tags that are not present in either of the two
lists.

• This resulting list is now considered the list of "valid" tags. When processing

64

Model for website code generation

the HTML file, all tags that are not in the valid list are replaced with a generic
one, either <div> or , depending on whether it’s a block or inline tag.

The list of all HTML tags contains 131 tags, while the list of tags referenced at
least 100 times in the CSS files comprises 334 tags. Those referenced fewer than 100
times were truncated because their number of references is very low, considering
that the dataset has more than 30000 files. The final list of valid tags contains 129
tags, encompassing most of the tags from the first list and some from the second
one. The <s> tag was removed and replaced with an equivalent tag because it is
the special character used as the starting token in the tokenizer of our model. It
was easier to replace the <s> HTML tag than to change the special tags of the
model.

The last pre-processing done was removing any special character or non-ASCII
character from the textual parts of the HTML codes. Again to limit unnecessary
variability and especially to avoid expanding the dictionary of the tokenizer too
much, with all the unrecognized words and subwords that these special characters
bring.

CSS files underwent several of the previous pre-processing steps, which included
the removal of comments (specifically, CSS comments), rounding of floating-point
numbers, truncation of spaces, replacement of newlines, and finally, substitution of
URLs with a placeholder.

The final step involved combining the two resulting text blocks by inserting the
following string between them: " /* START CSS */ ". This special block is utilized
in post-processing to divide the text back into two separate files. Since this follows
the syntax of CSS comments, and all of those were removed during pre-processing,
each file is guaranteed to have one of these special phrases.

Post-processing starts with the separation of HTML and CSS files. If the special
string is not found, the sample is marked with an error in the recap JSON file,
to keep track of it. Inside the HTML file, a reference to the name of the output
CSS file is added. This is because the network cannot know the name of the file to
reference by looking only at the website screenshot and choosing a random name.

5.5.4 Rico Dataset processing
Rico dataset codes are processed to extract only the class names of the components
and organize them in a structured way, using curly brackets for separation. The
"class" attribute of an element is extracted, and its full name is reduced by taking
only the last two parts of the path, which indicate the element package and name
respectively. Then, each of its children, if any, is processed in a similar way.
The children are put between curly brackets, to maintain a clear hierarchy. No
post-processing function is performed, and the predictions are compared with the

65

Model for website code generation

original texts with the application of the class extraction methodology. Both have
the same format.

5.5.5 UI2Code Dataset processing
The UI2Code dataset necessitates minimal pre-processing, as the provided GUI
texts are already appropriately formatted, with elements separated by single spaces
and confined to a single line. Additionally, screenshots are rotated 90 degrees
clockwise to restore their canonical vertical orientation.

No post-processing is required, given that the predictions retain the original
text format.

5.6 Experiments
All the experiments were conducted using Google Colab[90]. The majority of the
training sessions were performed on A100 GPUs equipped with 40GB of RAM.
Most of the testing sessions were executed on V100 GPUs, optimizing both costs
and time consumption without compromising the required performance. However,
the initial experiment utilized a T4 GPU due to its lesser resource requirements.

Some training parameters were common for all the experiments, while others
were chosen based on the dataset characteristics.

For example, the maximum number of patches for the images was set to 1024.
With the ability of the model to resize the images to always extract as many patches
as possible while still maintaining the correct aspect ratio, we decided to keep this
parameter constant.

The number of epochs for training ranged from 10 to 15 epochs, based on the
dataset size, and training speed to respect time and cost limitations. In the case of
the biggest experiment performed on the WebUI2Code dataset in the 16384 version,
the experiment was suspended after 5 epochs due to hardware limitations. Batch
size was always set to 4 during training. Bigger values caused the experiment to
crash, because of memory limits exceeding. Accumulation of gradient batches was
used to simulate using a bigger batch size of 8, as explained in Section 5.2.3.

The training-testing dataset split was always around 90:10. A small portion
of training is used for validation, monitoring metrics during training, and finding
optimal hyper-parameters. This value changed depending on the experiment. In
the most costly experiments, the validation set was restricted to a few samples,
because the inference of samples required a lot of time and resources. Validation
was almost always run every five epochs, to save resources.

The optimizer used was Adafactor [100], known for its effectiveness in training
large-scale Transformer models with a reduced memory footprint compared to
other popular optimizers such as Adam. Instead of maintaining a moving average

66

Model for website code generation

of parameter gradients and squared gradients for each parameter, Adafactor ap-
proximates the second-moment matrix (which represents the variance of gradients)
using only a few parameters, thus conserving memory. Weight decay is applied to
penalize the optimizer for having large weights, helping the model generalize better
and preventing overfitting to the training data.

The optimizer is linked to a scheduler that dynamically adjusts the learning rate
based on the current training step. The strategy employed is a cosine similarity
schedule with a warm-up. The learning rate starts from zero and increases linearly
to the starting value in the first period called warm-up; after warm-up, it decreases
following the values of the cosine function to 0. This type of schedule has been
shown to typically yield benefits in training and fine-tuning deep networks such as
Transformers.

As another form of regularization, gradient clipping was used. Gradient clipping
is a technique used to prevent gradients from becoming too large during neural
network training, which can cause numerical instability and hinder model conver-
gence. This problem is called "exploding gradients". By capping the gradients
during back-propagation, gradient clipping ensures that the updates to the model
parameters remain controlled and within a specified range, thereby stabilizing the
training process and facilitating convergence to a good model.

The chosen loss function is Cross Entropy Loss, which quantifies the dissimi-
larity between the predicted probability distribution and the real distribution of
subsequent tokens in a sequence during language model training. This loss function
penalizes highly confident incorrect predictions, with the goal of enhancing the
model’s capacity to generate or predict the next token in a sequence by minimizing
the gap between the predicted and actual distributions.

The moving average loss was employed to monitor loss behavior during training.
Loss values may exhibit fluctuations due to various factors, including mini-batch
noise, gradient noise, or other sources of variability. These fluctuations can com-
plicate the assessment of the true trend in loss reduction. The calculation of a
moving average helps to smooth out these fluctuations, making it easier to discern
the overall trend.

Our implementation of the moving average loss utilizes the exponential moving
average (EMA) method, which calculates a weighted average between the current
loss and the previous moving average. The weight assigned to the current loss
is determined by the parameter alpha, while the weight assigned to the previous
moving average is 1 - alpha. In this implementation, the smoothing factor (alpha)
was set to 0.1.

67

Model for website code generation

5.6.1 Experiments on Pix2Code Dataset
The initial experiment with the Pix2Code dataset was carried out using the original
dataset, which comprised DSL codes and associated screenshots. The maximum
sentence length was set at 250 tokens. This decision was made after preprocessing
the DSL codes and observing that the lengthiest code contained 200 tokens.

The results highlighted the model’s proficiency in handling this basic dataset,
as evidenced by an average BLEU score of 98.9% on the validation set.

Table 5.4 offers an in-depth statistical breakdown of metrics derived from the
test set used in the experiment. This includes the total number of samples, mean
value, standard deviation (std), minimum observed value (min), the 25%, 50%, and
75% percentiles, and maximum recorded value (max).

BLEU ED N.ED SSIM
count 174 174 174 174
mean 0.983 4.437 0.016 0.942
std 0.028 6.522 0.028 0.026
min 0.873 0.000 0.000 0.875
25% 0.964 0.000 0.000 0.922
50% 1.000 0.000 0.000 0.949
75% 1.000 14.000 0.035 0.956
max 1.000 14.000 0.125 0.992

Table 5.4: Statistics on the metrics from the Pix2Code Dataset’s test set.

BLEU Score is high across the whole dataset, with a minimum value of 87.3%.
Edit distance is very low, with only an average of 4.4 characters per website that
are incorrect.

Each row in Figure 5.32 juxtaposes the correct answer screenshot (left) with
its prediction (right) for 4 test set samples. The colors and elements are largely
accurate, with the exception of some additional buttons present in the predictions.
The texts do not match because they are randomly generated during the compilation
of the predicted DSL and HTML code, and were not a prediction target in this
experiment.

Table 5.5 shows the results on the Pix2Code dataset of an improved variant of
the original Pix2Code model, proposed by Angerer et al. [101]. It is a Pytorch
implementation of a model based on the original one proposed by Beltramelli [4],
with the substitution of the CNN model used for visual encoding. The original
VGGNet model is replaced with another CNN, namely ResNet-152, pre-trained
on the ImageNet dataset. The features of the input image, extracted by the CNN,
and the sequence of GUI tokens pass then through an LSTM model, similarly to
the original model architecture. The complete model architecture schema can be

68

Model for website code generation

seen in Figure 5.33.
The authors’ proposed experiment settings were preserved to train the model,

generate testing predictions, and calculate the desired metrics.

BLEU ED N.ED SSIM
count 348 348 348 348
mean 0.878 44.925 0.132 0.935
std 0.091 33.041 0.086 0.025
min 0.421 0.000 0.000 0.873
25% 0.870 25.000 0.075 0.913
50% 0.904 36.000 0.105 0.937
75% 0.925 54.000 0.159 0.951
max 1.000 236.000 0.567 0.992

Table 5.5: Statistics on the metrics for the LSTM-based model from the Pix2Code
Dataset’s test set.

The LSTM-based model attains an average BLEU score of 87.8%, though it
encounters difficulties with some samples, dropping to a minimum value of 42.1%.
In contrast, Pix2Struct outperforms this, achieving an average score of 98.3%, with
its minimum value remaining above 87%. Figure 5.34 juxtaposes the BLEU score
distributions of the two models. It is noteworthy that the full-scale minimum values
in the two graphs are 0.88 and 0.4, respectively.

In evaluating normalized edit distance, the Pix2Struct model demonstrates a
notable improvement over the Pix2Code Pytorch. The discrepancy, measured as
the average percentage of incorrect characters between predicted and answer texts,
reduces dramatically from 13.2% to 1.6%. Additionally, the similarity index shows
a marginal enhancement in the Pix2Struct results, posting an average value of 0.94
against the 0.93 of Pix2Code Pytorch.

The second experiment, initiated from a checkpoint obtained after the first,
utilized the HTML version of the dataset. Due to the presence of longer HTML
code texts in this dataset, the maximum sentence length was increased to 1024.
However, the model was unable to effectively predict the website codes, achieving
a modest validation BLEU score of approximately 21%.

Figure 5.35 shows the comparison between the answer and the prediction for one
sample in the validation set. The behavior highlighted in the comparison is common
to all the samples in the validation set. While the model accurately predicts the
first part of the code, it struggles to correctly decipher the text of buttons and
paragraphs in the middle section. This issue becomes even more pronounced in the
final part of the text, where the model repeatedly produces the same characters
and fails to complete other structural components, leaving a partial and broken

69

Model for website code generation

code.
The cause of this phenomenon may be catastrophic forgetting (CF), where a

machine learning model loses previously acquired knowledge while learning new
data. Luo et al. [102] showed how CF has a significant impact on large language
models, and in particular on encoder-decoder ones, such as the one used in these
experiments. This experiment started from a checkpoint from the fine-tuning of
the original version of the Pix2Code dataset, where button texts and paragraphs
were not meaningful because the DSL codes only contained structural elements.
So, the model can have lost the ability to recognize those texts, focusing only on
elements forms, colors, and positions.

A new experiment was conducted on the same Pix2Code HTML dataset, starting
from the original base-model weights. The model achieved a validation BLEU score
of 84%, accurately predicting most of the code. However, it did miss some button
colors and texts, specifically those with white text on colored backgrounds. Figure
5.36 shows this phenomenon.

The statistics of the metrics calculated on the test set for this experiment are
shown in table 5.6. From left to right the metrics present are BLEU score, edit
distance, normalized edit distance, structural BLEU score, HTML tree edit distance,
normalized HTML tree edit distance, and structural similarity index. These now
include Structural Bleu and Tree Edit distance, which can be calculated from
HTML codes.

BLEU ED N.ED S.BLEU TED N.TED SSIM
count 174.000 174.000 174.000 174.000 174.000 174.000 174.000
mean 0.847 176.345 0.124 0.955 1.770 0.033 0.970
std 0.021 44.626 0.018 0.022 1.456 0.027 0.012
min 0.781 36.000 0.081 0.879 0.000 0.000 0.912
25% 0.832 155.000 0.112 0.936 0.000 0.000 0.967
50% 0.847 184.500 0.125 0.955 2.000 0.036 0.971
75% 0.860 203.750 0.134 0.970 2.000 0.049 0.974
max 0.904 292.000 0.188 1.000 4.000 0.108 0.994

Table 5.6: Statistics on the metrics from the Pix2Code HTML Dataset’s test set.

Another variant of the dataset was then analyzed, with the random-characters
words being replaced with Lorem Ipsum words. Maximum sentence length is kept
to 1024 tokens. Again, a first experiment was executed starting from the last
checkpoint of the fine-tuning on the original Pix2Code dataset. This time the
model didn’t have the code-breaking prediction tendency, while still not being able
to predict correctly most of the titles and button texts. However, it still reached
77% validation BLEU score, thanks to its capability to predict correctly almost all

70

Model for website code generation

the structural elements of the samples.
The last experiment was done on this version of the dataset starting from

the original base-model weights. The model was able to reach the same level of
correctness shown on the original Pix2Code dataset, with a validation BLEU score
of 98%.

Table 5.7 shows the statistical analysis of the metrics calculated on the test set
for this last experiment. The results were consistent with validation ones, obtaining
an average BLEU Score of 97.4%.

BLEU ED N.ED S.BLEU TED N.TED SSIM
count 175.000 175.000 175.000 175.000 175.000 175.000 175.000
mean 0.974 29.646 0.023 0.998 0.114 0.002 0.994
std 0.020 16.157 0.019 0.009 0.466 0.010 0.003
min 0.873 5.000 0.003 0.941 0.000 0.000 0.985
25% 0.970 16.500 0.013 1.000 0.000 0.000 0.992
50% 0.978 29.000 0.020 1.000 0.000 0.000 0.994
75% 0.986 39.000 0.027 1.000 0.000 0.000 0.997
max 0.996 91.000 0.116 1.000 2.000 0.057 1.000

Table 5.7: Statistics on the metrics from the Pix2Code HTML Lorem Ipsum
Dataset’s test set.

Figure 5.37 displays the comparison of answers and predictions screenshots for 4
samples of this dataset. The model is now correctly predicting the buttons’ colors
and texts, overcoming the previous limitations.

Overall, these experiments showed Pix2Struct model capability to predict struc-
tured code for web UIs, both for a simplified DSL language and more sophisticated
HTML code. However, they also highlighted some critical issues of the model when
it finds complex or unknown words. In particular, it is interesting the tendency of
the model to not be able to finish the prediction of the structured code when it
enters in a loop where it doesn’t know how to exit from.

Figure 5.38 displays the distribution of maximum lengths across the test set
samples used during the Pix2Code final experiments, highlighting a 5x increase from
the samples of the original dataset to those of the HTML and HTML Lorem Ipsum
versions. Maximum length here refers to the maximum between prediction and
answer number of characters, which is used as the denominator for the calculation
of normalized edit distance metric.

Figure 5.39 displays the distribution of normalized distance for test samples in
the previously mentioned experiments. It highlights a discernible improvement in
model performance on the HTML LI version of the dataset compared to the HTML
experiment. However, it still does not attain the minimum number of incorrect

71

Model for website code generation

characters achieved on the original dataset, which features significantly shorter
texts, as previously demonstrated.

Similar conclusion can be derived by looking at the distribution of BLEU score
in Figure 5.40.

Experiments on both HTML and HTML LI versions slightly enhance the average
Structural Similarity Index (SSIM), compared to experiments on the original version
of Pix2Code. This metric, being the first non-textual one and not affected by
the simplicity of the original dataset codes, is higher for the two more complex
datasets.

5.6.2 Experiments on Synthetic Bootstrap Dataset
The first experiment was performed using the "mini" version of the dataset with
1000 samples. Maximum sentence length was set to 4096 tokens, using the sliding
window system with chunks of 1024 tokens, and a context overlap of 256 tokens.
After 20 epochs, the model achieved an average validation BLEU Score of 81%,
peaking at 93% in certain samples but also underscoring a poorer performance in a
substantial number of instances with a score dipping to 41%. When evaluated on
the test set, which offers a larger and more representative data subset, the model’s
performance slightly improves. The overall average BLEU score rounds to 88%,
showcasing impressive scores of 93.6% and 96.5% in the 50th and 75th percentiles,
respectively. However, a notable decline to 85.7% is observed in the 25th percentile,
highlighting disparities in model performance across different samples.

BLEU ED N.ED S.BLEU TED N.TED SSIM
count 100 100 100 100 100 100 96
mean 0.878 774.120 0.134 0.903 11.010 0.126 0.741
std 0.132 963.414 0.133 0.086 12.848 0.147 0.091
min 0.480 41.000 0.014 0.579 0.000 0.000 0.399
25% 0.857 142.250 0.043 0.878 2.000 0.032 0.688
50% 0.936 332.500 0.081 0.939 5.000 0.069 0.753
75% 0.965 933.000 0.173 0.960 18.000 0.195 0.792
max 0.986 4033.000 0.530 0.986 68.000 0.971 1.000

Table 5.8: Statistics on the metrics from the Synthetic Bootstrap Mini Dataset’s
test set.

Similar numbers are obtained for the Structural BLEU score, with a couple of
percentage points higher for the average value (90.2%) and the 25th percentile one
(87.8%). The distributions of the BLEU Score and Structural BLEU score are very
similar, presenting a considerable percentage of samples with lower performance.

72

Model for website code generation

This indicates that their fallback is related not only to textual elements but also to
the structural ones, like HTML tags and attributes.

The mean of the Structural similarity index (SSIM) is 0.74, and its distribution
approximates a normal distribution, extending from a lower extreme of 0.4 to an
upper limit of 1.0, as shown in Figure 5.41. In this case, the SSIM was calculated
only on 96 out of the 100 test set samples, since 4 of them presented some errors
during the extraction of the screenshots.

Figure 5.42 displays the screenshots for answers and predictions of 3 samples
of the test set. Most of the elements and the texts are correct, but the colors are
completely wrong or missing, and some structural components are out of position.

These difficulties have been overcome with the second experiment on the dataset
of 10000 samples. Note that the full dataset of 50000 samples was not used for
computational limitations, as mentioned in the dataset section. The setup in this
experiment was the same as the previous one, and the validation BLEU score was
92%, with a minimum of 76% and a maximum of 98%.

Table 5.9 shows the statistics of the metrics calculated on the test set for the
experiment on the Synthetic Bootstrap Dataset. The mean test BLEU is very high
and reflects the validation results.

BLEU ED N.ED S.BLEU TED N.TED SSIM
count 1000 1000 1000 1000 1000 1000 1000
mean 0.929 443.890 0.081 0.951 3.946 0.049 0.783
std 0.079 668.592 0.090 0.052 6.486 0.075 0.110
min 0.359 23.000 0.005 0.524 0.000 0.000 0.293
25% 0.918 94.000 0.023 0.951 0.000 0.000 0.720
50% 0.962 170.500 0.042 0.969 1.000 0.018 0.790
75% 0.976 478.750 0.105 0.977 5.000 0.067 0.848
max 0.993 6099.000 0.605 0.994 55.000 0.592 1.000

Table 5.9: Statistics on the metrics from the Synthetic Bootstrap’s test set.

Figure 5.43 shows the distribution of BLEU score across the samples of the test
set, highlighting a low number of outliers with low score values.

In comparison to the prior experiment utilizing the mini dataset, the Structural
Similarity Index (SSIM) measured in this experiment demonstrates a generally
elevated mean value of 0.78. Although the distribution retains a shape analogous
to the previous experiment, it is now shifted to the right and features a peak at
1.0, as shown in Figure 5.45. This suggests a surge in the proportion of samples
achieving a flawless screenshot.

Figure 5.44 illustrates the screenshots of answers and predictions for three test
set samples. Although the colors are not uniformly accurate across all samples, the

73

Model for website code generation

disposition of lighter and darker parts appears to be preserved, with all structural
elements correctly positioned.

The average value of the HTML tree edit distance has reduced to nearly a
third, now standing at 3.94 compared to the previous 11.01. Additionally, the
edit distance, reflecting the number of differing characters between answer and
prediction, has decreased from 774.12 to 443.89.

The correlation matrix between the metrics is depicted in Figure 5.46. Prediction
length, answer length, and the maximum between the two are also present in the
matrix. There are negative correlations between BLEU Score and textual lengths,
with values ranging from 0.19 to 0.38. This suggests that the BLEU Score tends
to decrease as the length of predictions and answers increases. BLEU score
has a notably strong negative correlation with edit distance and its normalized
counterpart, around -0.88 for both. This is as expected because as the edit distance
increases, indicating greater dissimilarity, BLEU Scores tend to decrease. In
this experiment, the newly introduced structural BLEU is confirmed to capture
aspects of text similarity comparable to traditional BLEU. This aligns with our
expectations, given that textual elements are present in the images, enabling the
model to effectively predict them. Similarly, the HTML tree edit distance shows a
strong correlation with edit distance (0.67). The similarity index generally shows a
very low correlation with other metrics, indicating that is the only measure capable
of monitoring some visual aspects of the data, and none of the textual ones can
identify them.

The final experiment was conducted on the Sketch Dataset variant. The samples
with more than 4096 tokens in the HTML code were filtered out, having a resulting
total of 9775 samples. This experiment started from the last checkpoint of the
previous one and lasted only 10 epochs. The model achieved a notable average
validation BLEU score of 83%, a significant accomplishment given that texts were
replaced by sketches and not visible in the interface. The BLEU score is inherently
limited since the model selects all Lorem Ipsum words randomly. Thus, other
metrics may more accurately represent the model’s success on this specific dataset
during testing on the test set. Table 5.10 shows the statistics for the metrics
calculated on the test set of this dataset.

As expected, the Structural BLEU score is considerably higher than the BLEU
score, a difference attributable to the texts not being visible in the sketches. It
increases from an average value of 82.5% to 92.2%, approaching the result on the
other dataset, which recorded a 92.9% BLEU score and a 95.1% Structural BLEU
score.

The edit distance in this dataset has risen substantially from the previous one,
escalating from an average of 443.9 to 1146.7 for consistent reasons. This signifies
a jump from 8.1% to over 20% concerning the percentage of incorrect characters
throughout the entire text. The HTML tree edit distance has also experienced

74

Model for website code generation

BLEU ED N.ED S.BLEU TED N.TED SSIM
count 979 979 979 979 979 979 979
mean 0.825 1146.678 0.202 0.922 6.619 0.072 0.810
std 0.115 1066.018 0.109 0.071 11.721 0.094 0.097
min 0.333 126.000 0.041 0.516 0.000 0.000 0.342
25% 0.767 478.000 0.117 0.907 0.000 0.000 0.750
50% 0.870 763.000 0.170 0.943 2.000 0.037 0.820
75% 0.911 1428.000 0.268 0.965 8.000 0.105 0.877
max 0.959 6096.000 0.612 1.000 97.000 0.519 0.986

Table 5.10: Statistics on the metrics from the Sketch Synthetic Bootstrap Dataset’s
test set.

a rise, averaging 6.62 per website compared to 3.95 in the prior dataset. When
normalized, an average of 7.16% of HTML tags are either improperly used or
mispositioned, marking an increase from the 4.88% found in the preceding dataset.
However, this increase is considerably lower when compared to the one in edit
distance. The reason is the same as previously mentioned for BLEU and Structured
BLEU. The presence of random texts, due to the non-visibility of texts in the
sketches, has a significant impact on metrics that are not general and ’structural’,
but instead focus on entire texts.

The Structural Similarity Index (SSIM) is computed by comparing the rendered
website screenshots between the predicted sample code and the answer. This
screenshot was never seen by the model, which only saw its corresponding sketch
version, but reflects the original and predicted HTML code.

The SSIM is higher in this experiment with a mean value of 81%, compared to
the 78.3% calculated on the previous dataset. Its distribution is shown in Figure
5.47.

Figure 5.48 displays screenshots comparing answers and predictions for four
test set samples. The first column contains the sketch versions provided to the
model, the second column presents the original website screenshots, and the third
column showcases the model’s predicted website screenshots. The model is capable
of recognizing all the website components from the sketch and providing the correct
HTML code.

5.6.3 Experiments on WebUI2Code Dataset
Due to limitations related to hardware, costs, and time, most experiments were
conducted using the WebUI2Code-4096 version, which aligns with the maximum
number of textual tokens per file seen in previous experiments on synthetic datasets.

In the first experiment, the starting point was the checkpoint obtained after

75

Model for website code generation

training on the synthetic Bootstrap dataset. The sliding window mechanism was
employed to process sentences of 4096 tokens, using chunks of 1024 and contexts of
256 tokens.

After fine-tuning the model for 10 epochs, it exhibited a combination of relatively
positive and negative results. Specifically, some predictions for the validation set
displayed an issue with the repetition of tokens. After a certain point in the
prediction, the model "loses focus" and repeats the same pattern over and over
again. This continues until the maximum generation length is reached, and because
of the inability to complete the correct structure, this leads to syntactically incorrect
code. Moreover, the repetition of the same pattern numerous times significantly
impacts the resulting BLEU score, reaching values as low as 9% on the validation
set. Consequently, the average BLEU score is quite low at 35%. On the other
hand, for some samples, the model was able to predict functional HTML/CSS code.
Figure 5.49 shows a comparison between answer and prediction screenshots. The
principal textual components were correctly predicted; however, the model was not
capable of positioning all the elements correctly. For example, the navigation bar
at the top is missing, and the disposition of the three bottom elements is incorrect.
The prediction also lacks the correct colors, and the buttons have a different style.

The greedy search strategy, utilized during the generation of text by the model,
is characterized by the selection of the next token with the highest probability.
This strategy can lead to the generation of repetitive words or sentences, even
in thoroughly trained models. To mitigate this issue, Keskar et al. proposed an
alternative sampling technique. While emulating the functionality of the greedy
search, it also curtails repetitions by integrating a penalty mechanism [103].

The choice of the penalty value is crucial because, if it is too high, the model
might generate unnatural or incoherent text. This could occur as it might overly
avoid using the same words or phrases, thereby potentially sacrificing contextual
accuracy.

Various repetition penalty values, ranging from 1.1 to 1.5, were tested. A higher
value increases the model’s aversion to repetitions but also tends to encourage
shorter predictions. A penalty value of 1.4 emerged as optimal, yielding an average
validation BLEU score of 51.6% and a minimum of 41%. In the validation set, the
model successfully eliminated repetition loops, accurately completing the entire
code structure predictions.

A second experiment was conducted, altering the context size in the sliding
window mechanism from 256 to 512. The number of new tokens predicted in each
iteration was reduced from 768 to 512, with a maximum of 7 windows needed to
cover the 4096 sentences. This change did not bring any improvement to the final
result and obtained its best validation BLEU score of 51.1%, with the repetition
penalty set to 1.3.

A new experiment was conducted using a larger portion of the WebUI2Code

76

Model for website code generation

dataset. The selected threshold was 16384, corresponding to a maximum of 21 slid-
ing windows, with a context of 256 and a chunk size of 1024. The resources required
to train the model were significantly higher compared to previous experiments,
even though it was trained for only 5 epochs, pushing our capabilities to their
limits. The results were notably lower than those of previous trials, with the best
average BLEU score on the validation set being 17.3%, achieved using a repetition
penalty of 1.4. This version of the dataset introduces a new level of complexity,
suggesting that additional experiments are necessary to find the optimal settings
for the model. Given our computational limitations, a decision was made to focus
on the smaller version of the dataset for subsequent experiments.

In the fourth experiment, the model was fine-tuned, starting from the original
Pix2Struct-base weights, and not from those obtained in the previous training on
the synthetic Bootstrap dataset. This new configuration achieved the best result to
date, securing an average BLEU score of 56.1% on the validation set while utilizing
a repetition penalty of 1.3.

An additional experiment attempted to mimic the behavior exhibited during the
experiments on the HTML version of Pix2Code. The texts inside the HTML without
syntactic function were replaced by Lorem Ipsum words, and new screenshots were
obtained. This strategy reduced the maximum number of words inside the dataset.
However, this time, the results did not improve, achieving an average BLEU score
of 36.7% on the validation set, with a repetition penalty of 1.3.

Table 5.11 illustrates the average BLEU score, determined from the validation
set across various experiments, by varying the repetition penalty from 1.0 (unused)
to a peak of 1.5. Each row corresponds to an experiment, with "512" corresponding
to the experiment done with a bigger context, "FULL" to the experiment fine-tuned
from scratch, and "LI" to the Lorem Ipsum experiment. Across all experiments, the
optimal repetition penalty value is identified between 1.3 and 1.4, as lower values
still present the problem of repeated words, while higher values lose context.

1.0 1.2 1.3 1.4 1.5
W2C 4096 0.350 0.426 0.486 0.516 0.378
W2C 4096 - 512 0.290 0.391 0.511 0.508 0.446
W2C 4096 - FULL 0.092 0.403 0.561 0.470 0.372
W2C 4096 - LI 0.088 0.273 0.367 0.357 0.232
W2C 16384 0.061 0.062 0.153 0.173 -

Table 5.11: Average validation BLEU scores across experiments on WebUI2Code
datasets with varying repetition penalties.

The best model, which corresponds to experiment number four, and reached
a validation BLEU score of 56.1%, was trained on the whole test set. Table 5.12

77

Model for website code generation

contains a statistical analysis of all the metrics calculated on the test set. The
average BLEU score declines to 43.6%, indicating a potential discrepancy between
the distributions of samples in the validation and testing sets. The difference is
likely caused by the limited sample size in the validation set, which was chosen
for its time and cost efficiency. The distribution of BLEU is displayed in Figure
5.11, indicating that some samples received a very low score, with seven of them
registering a 0. Upon examination of the codes of the results, it is evident that
a repetition penalty is still present in a portion of the results. Structural BLEU
result is even lower with 43.3%, indicating that the difference between predictions
and answers is not only related to the textual portions of the code but also to its
structural components. Also in this case samples with repetition penalty massively
influence the result, with multiple of them reaching 0. This becomes clear when
looking at the HTML tree edit distance result, which averages 80 different HTML
tags per website, between answer and prediction. The Structural Similarity Index
could be calculated for only 221 out of the 233 samples because some samples
presented errors during screenshot extraction. Overall, it exhibited an average
value of 0.547, with a maximum of 0.990 and a minimum of 0.001.

When filtering out the samples that are clearly incorrect—due to their lack of a
token that separates HTML and CSS code, resulting in empty CSS code—the total
number of samples is reduced by 20%. Upon examining the remaining samples,
the average BLEU score increases to 49.9%, and the structural BLEU score rises
to 46.4%.

BLEU ED N.ED S.BLEU TED N.TED SSIM
count 233 233 233 233 233 233 221
mean 0.436 6920.180 0.714 0.433 80.558 0.691 0.547
std 0.210 3087.700 0.108 0.227 57.073 0.286 0.249
min 0.000 252.000 0.166 0.000 0.000 0.000 0.001
25% 0.266 5155.000 0.658 0.254 52.000 0.602 0.367
50% 0.477 6008.000 0.726 0.457 76.000 0.735 0.620
75% 0.605 8129.000 0.779 0.621 102.000 0.906 0.746
max 0.835 21535.000 0.960 0.954 335.000 1.031 0.990

Table 5.12: Statistics on the metrics from the WebUI2Code-4096 Dataset’s test
set.

Figure 5.51 presents the screenshots for both answers and predictions of two
test set samples. Overall, the experiments on WebUI2Code demonstrated how the
Pix2Struct model struggles to predict real-world complex websites, showcasing
lower performance compared to synthetic Datasets. New problems emerge, like
repetition of words. The use of techniques, like repetition penalty, was shown to

78

Model for website code generation

partially mitigate the issue, suggesting that more experimentation and the usage
of more data might lead to better results.

5.6.4 Experiments on Rico Dataset
The training on the Rico dataset lasted 15 epochs, employing a maximum sentence
length of 4096, which was enough to cover the largest text, containing 2698 tokens.
Final outcomes revealed mixed results, with both high and low BLEU scores on the
validation set, mirroring observations from the WebUI2Code Dataset. Also in this
case, some elements were characterized by repetitions of words and small phrases,
resulting in very low value scores. On the other hand, the best predictions achieved
relatively high BLEU scores, peaking at 82%. Attempting different repetition
penalty values did not suffice to eliminate all repetition issues in the validation set.
The best value found was 1.4, which attained an average BLEU score of 34% on
the validation set, with the top prediction reaching 93%.

This dataset proved to be particularly tricky, with many samples yielding results
close to 0, while others managed to obtain high values. This could potentially be
related to the nature of the dataset, especially its code structure. For example,
compared to the previous HTML codes, here there are only structural elements
composing the text, and not visible textual elements. Moreover, although the tags
were extracted directly from the application’s layout, this doesn’t necessarily mean
that the information correlates directly with what is visible in the screenshot.

Given this premise, the research expanded to explore other hyper-parameters,
including temperature, top-k, and top-p for sampling mode.

In contrast to the previously employed greedy search strategy for text prediction,
we now employ sampling. Greedy search entails selecting the word with the highest
probability as the next word in the sequence at each step. This approach is suitable
when the desired output should be deterministic and coherent, aligning well with
our current context.

However, in an effort to address the issue of word repetition, we opted to test
the sampling mode. By choosing always the optimal word, a greedy search can
lead to a repetition problem, and the model remains blocked. Sampling selects the
next word by drawing from the probability distribution of potential next words,
and this intrinsic randomness of the choice can avoid repetition problems. It can
be adjusted using three parameters, which can be employed either simultaneously
or individually.

The first parameter, Top-k, involves sampling from the top k most probable
next words. The second parameter, Top-p (also known as nucleus), selects samples
from the smallest set of words whose cumulative probability surpasses a specified
threshold. Lastly, Temperature adjusts the probability distribution, making it
either flatter (more random) or sharper (more deterministic).

79

Model for website code generation

When these three parameters are combined, they provide control over both the
diversity and the quality of the generated text. This allows for more varied yet
controlled text generation, potentially addressing the aforementioned issue.

Experiments were conducted on the validation set by varying three parameters
and observing the resultant model behavior, as detailed in Table 5.13. Initial
experiments, represented by the first three rows, report the previous three results
using a greedy search alongside varied repetition penalty values. Subsequent rows
detail variations in Temperature, Top-k, and Top-p, utilizing sampling. Though
the hyperparameter space was not exhaustively explored, the impact of these
parameters is evident, improving both the average and the maximum BLEU score
with 0.4 and 0.96, respectively.

Id Sampling R. Pen. Temp. Top-k Top-p Mean Min Max
0 False 1.0 None None None 0.14 0.01 0.82
1 False 1.2 None None None 0.34 0.01 0.82
2 False 1.4 None None None 0.34 0.0 0.93
3 True 1.4 0.9 40 None 0.36 0.0 0.94
4 True 1.2 0.9 40 None 0.37 0.0 0.95
5 True 1.2 0.5 None None 0.38 0.02 0.96
6 True 1.3 0.9 10 None 0.4 0.0 0.95
7 True 1.3 0.9 5 None 0.36 0.0 0.86
8 True 1.2 0.7 5 None 0.35 0.0 0.95
9 True 1.4 0.5 5 None 0.38 0.0 0.86
10 True 1.3 0.8 None 0.2 0.32 0.01 0.91
11 True 1.3 0.4 10 None 0.38 0.01 0.92
12 True 1.3 0.9 5 None 0.39 0.01 0.89

Table 5.13: Analysis on the impact of different hyperparameters, including
repetition penalty, temperature, top-k, and top-p, on the BLEU Score for the Rico
Dataset’s validation set.

Figure 5.52 shows the distribution of the BLEU scores for samples in the
experiments conducted on the validation set. Compared to the first experiment,
which did not employ any repetition penalty, all subsequent experiments have a
much-improved distribution of BLEU scores, with higher median values, indicated
by black lines. Additionally, most of the samples are positioned in a higher portion
of the plot, reflecting elevated BLEU values. The most consistent experiment
is the number 6, with sampling, repetition penalty of 1.3, Temperature of 0.9,
and Top-k equal to 10. It presents not only the highest average BLEU score,
but the distribution of the majority of the samples is higher, compared to other
experiments.

80

Model for website code generation

This setting, together with the best setting with repetition and without sampling
is chosen for the final evaluation on the test set. The results show a big drop in
performance for the greedy setting, reaching an average BLEU score of 22.9%. On
the contrary, the sampling setting maintained a similar behavior, attaining an
average BLEU score of 41.9%.

Table 5.14 presents the statistical analysis of the results using sampling con-
figuration. The average normalized edit distance is notably high, with erroneous
character predictions exceeding 50% between answers and predictions on average.
BLEU scores peak at a maximum value of 1.0, indicative of a perfect prediction,
while 75% of the scores surpass the 65% mark. The heterogeneity of the results
once again underscores the challenges Pix2Struct encounters when predicting codes
for this specific dataset. The employment of sampling proved to be a viable method-
ology, offering a balanced and enhanced performance in comparison to the greedy
search approach.

BLEU ED N.ED
count 125 125 125
mean 0.419 910.840 0.560
std 0.272 1070.783 0.199
min 0.000 0.000 0.000
25% 0.206 332.000 0.447
50% 0.421 610.000 0.546
75% 0.663 1041.000 0.707
max 1.000 7524.000 0.948

Table 5.14: Statistics on the metrics from the Rico Dataset’s test set using
sampling.

5.6.5 Experiments on UI2Code Dataset
The model was trained using a subset of the UI2Code dataset, proposed by Chen
et al. [9]. A total of 10,000 samples were extracted from the original training
split, mirroring the methodology utilized in preceding experiments and constrained
by available resources. The maximum sentence length was established at 512,
sufficiently covering all samples, which exhibited a maximum token count of 444.

Upon conclusion of the experiment, the model yielded an average BLEU score
of 65% on the validation set. It demonstrated a varied predictive capability, with
some samples that were exactly predicted (BLEU 100%), while others obtained
scores as low as 15%.

Analysis of the predictions revealed a recurrent issue observed in previous
experiments on real-world datasets: the unwarranted repetition of a word at the

81

Model for website code generation

end of a prediction. This phenomenon has a massive impact on the average
performance since the incorrect word is repeated many times, sometimes reaching
the maximum possible sentence length.

Considering the relatively low cost associated with conducting experiments
using this dataset, compared to the previous ones, we opted to engage in further
experimentation with this dataset and its validation set.

In experimenting with hyperparameters, we investigated their impact on model
performance and identified the optimal values to achieve a higher average score.

The first hyperparameter considered is the repetition penalty. This factor was
already showcased in previous experiments and relates to penalizing the model
when it repeats the same token. Values ranging from 1.05 to 1.4 were tested, where
a higher value indicates a higher penalty and 1.0 indicates no penalty. The mean
BLEU values obtained with different repetition penalties are shown in Table 5.15

Figure 5.53 displays the BLEU scores achieved by individual samples throughout
various experiments. When the repetition penalty is set to a high value, an increase
is observed in the number of samples yielding a BLEU score of 0. This behavior is
attributed to the high repetition penalty’s inclination toward smaller predictions,
which can sometimes be entirely inaccurate and therefore penalized during BLEU
score computation. Utilizing a smaller repetition penalty value can alleviate
the original issue of word repetitions while still avoiding the tendency to short
predictions. The optimal value was found to be 1.05, marking a 9-percentage-point
improvement compared to the initial experiment without repetition penalty.

Repetition penalty Mean BLEU
1.0 0.65
1.05 0.74
1.1 0.73
1.2 0.64
1.3 0.57
1.4 0.51

Table 5.15: Analysis on the impact of repetition penalty on the BLEU Score for
the UI2Code Dataset’s validation set

After conducting the repetition penalty experiment, the research expanded to
explore other hyper-parameters, including Temperature, Top-k, and Top-p for
sampling mode. These parameters were already used during experiments for Rico,
and they provide control over both the diversity and the quality of the generated
text, influencing the balance between prediction randomness and coherence. Based
on our initial test results and considering our problem context, we have defined
specific constraints for the parameters as follows: Temperature is constrained to

82

Model for website code generation

values between 0.60 and 1.0. Values higher than 1.0 increase randomness, while
values lower than 1.0 reduce it. Therefore, we have decided to limit it within this
second range. The Top k parameter is restricted to values between 0 (no effect)
and 50. The Top p is constrained between 0.3 and 1 (no effect). Lower values
lead to a more focused and deterministic generation. To analyze the impact of
these parameters with reasonable values, we decided to truncate the lower half
of Temperature (below 1) and Top-p, as well as the higher values of Top-k. This
approach allows us to assess the effects of these parameters when activated, as we
have already addressed the "deterministic" search using greedy search. Additionally,
we have introduced a repetition penalty ranging from 1.0 to 1.3.

"Weights & Biases" (Wandb) [104] platform offers functionality that enables
hyperparameter sweeps for machine learning experiments. A hyperparameter sweep
is a technique used to search for the best set of parameters for a machine-learning
model. This method navigates through the hyperparameter space, using a Bayesian
probabilistic model to predict which configurations are likely to yield improved
model performance.

After 72 runs, the model was able to identify the optimal configuration, resulting
in a mean BLEU score of 76.3%, not only matching the result of the greedy "deter-
ministic" search but also surpassing it by 2 percentage points. This achievement
was realized while utilizing a Temperature of 0.7, a Top-k value of 47 (one of the
highest possible values with minimal impact), a Top-p value of 1 (non-active), and
a repetition penalty of 1.02 (very low).

All runs that achieved a BLEU score greater than 74% had a repetition penalty
ranging between 1.01 and 1.07, a Temperature of 0.6, 0.7, or 1.0 (inactive), indicating
a preference for values related to more deterministic outputs. The Top-k value
varied from 2 to 49, and Top-p values were typically very high when active, so their
impact seems to be either non-influential or limited.

In particular, configurations that allowed for a lot of freedom and creativity in
the choice of words did not perform well. The same also occurred with settings
with high repetition penalties, similar to what was observed in the greedy search
experiments.

Final tests were conducted on the model using the two best configurations: one
with greedy search and a repetition penalty, and the other with sampling using
the best-discovered hyperparameters. These tests were conducted on a test set
consisting of 1000 samples.

Tables 5.16 and 5.17 display the statistical analysis of the results obtained from
the two methodologies. The sampling method appears to exhibit slightly superior
performance in terms of BLEU, boasting an average value of 74.4% as opposed to
73.0% achieved by the greedy search approach. Furthermore, it demonstrates a
higher level of consistency, as evidenced by a lower standard deviation. Additionally,
both the edit distance and normalized edit distance are lower in the sampling

83

Model for website code generation

method. Overall, the performance of the two methods is quite similar, with the
sampling method holding a slight advantage.

BLEU ED N.ED
count 1000 1000 1000
mean 0.730 290.822 0.268
std 0.264 395.743 0.241
min 0.000 0.000 0.000
25% 0.568 48.000 0.074
50% 0.820 139.500 0.198
75% 0.942 362.250 0.432
max 1.000 2365.00 0.967

Table 5.16: Statistics on the metrics from the UI2Code Dataset’s test set.

BLEU ED N.ED
count 1000 1000 1000
mean 0.744 210.691 0.255
std 0.253 232.057 0.225
min 0.000 0.000 0.000
25% 0.606 53.750 0.081
50% 0.833 132.500 0.186
75% 0.931 284.000 0.398
max 1.000 1487.000 0.963

Table 5.17: Statistics on the metrics from the UI2Code Dataset’s test set using
sampling.

Overall, the final result is not far behind what was achieved with the model
presented together with the UI2Code dataset. That model combines a Convolutional
Neural Network (CNN) for visual encoding and a Recurrent Neural Network (RNN)
for code prediction and achieved a BLEU score of 79.09% with a greedy search
strategy. However, it’s important to note that the model in our experiment was
trained on a smaller dataset, consisting of only 9000 samples for training and
not the original 180000 samples, due to resource limitations. Furthermore, it’s
worth mentioning that the original experiment used a strategy of encoding words
as entire tokens, which imposes significant limits on sentence length. This factor
could potentially be advantageous for the network, as it needs to predict sequences
with shorter dependencies. It could be interesting to test the Pix2Struct model on
the entire dataset while employing a similar strategy, as opposed to the sub-word
tokenizer used in this particular setting.

84

Model for website code generation

To summarize, experiments on real-world mobile UIs experienced the same
issues discovered during experimentation on real website datasets. A more complete
analysis of hyperparameters leads to considerable improvements, suggesting that
further experiments on WebUI2Code could also see results enhancements.

85

Model for website code generation

Figure 5.15: WebUI2Code-4096: distributions of image widths, heights and aspect
ratios prior to data cleaning.

86

Model for website code generation

Figure 5.16: WebUI2Code-4096: distributions of CSS and HTML numbers of
lines prior to data cleaning.

87

Model for website code generation

Figure 5.17: WebUI2Code-4096: scatter plot illustrating the distribution of CSS
and HTML numbers of lines, prior to data cleaning.

88

Model for website code generation

Figure 5.18: WebUI2Code-4096: distributions of image widths, heights and aspect
ratios after data cleaning.

89

Model for website code generation

Figure 5.19: WebUI2Code-4096: distributions of CSS and HTML numbers of
lines after data cleaning.

90

Model for website code generation

Figure 5.20: Six representative screenshots taken from the WebUI2Code-4096
Dataset.

91

Model for website code generation

Figure 5.21: Six representative screenshots taken from the WebUI2Code-8192
Dataset.

92

Model for website code generation

Figure 5.22: Six representative screenshots taken from the WebUI2Code-12288
Dataset.

93

Model for website code generation

Figure 5.23: Six representative screenshots taken from the WebUI2Code-16384
Dataset.

94

Model for website code generation

Figure 5.24: Rico: comparison between sample View Hierarchy code and the
extracted structural code.

95

Model for website code generation

Figure 5.25: Nine representative screenshots taken from the Rico Dataset.

96

Model for website code generation

Figure 5.26: Distribution illustrating the number classes associated with various
samples codes.

Figure 5.27: Pie chart visualizing the frequency distribution of different classes
used in the Rico codes.

97

Model for website code generation

Figure 5.28: Rico: visualization of the number of filtered files corresponding to
various frequency thresholds for valid class names.

Figure 5.29: Pie chart visualizing the frequency distribution of different elements
used in the UI2Code codes.

98

Model for website code generation

Figure 5.30: Code of a sample taken from UI2Code Dataset

99

Model for website code generation

Figure 5.31: Nine representative screenshots taken from the UI2Code Dataset
(original orientation).

100

Model for website code generation

Figure 5.32: Comparison of answers and predictions screenshots from the
Pix2Code Dataset’s test set.

101

Model for website code generation

Figure 5.33: Architecture schema of Pix2Code Pytorch model
Source: https: // github. com/ timoangerer/ pix2code-pytorch

Figure 5.34: Comparison of BLEU score distributions between the LSTM-based
model and Pix2Struct for Pix2Code’s test set.

102

https://github.com/timoangerer/pix2code-pytorch

Model for website code generation

Figure 5.35: Comparison of answers and predictions codes from the Pix2Code
HTML Dataset’s validation set.

103

Model for website code generation

Figure 5.36: Comparison of answers and predictions screenshots from the
Pix2Code HTML Dataset’s validation set.

104

Model for website code generation

Figure 5.37: Comparison of answers and predictions screenshots from the
Pix2Code HTML Lorem Ipsum Dataset’s test set.

105

Model for website code generation

Figure 5.38: Comparison of max text length distributions across different versions
of the Pix2Code Dataset.

Figure 5.39: Comparison of Normalized Edit Distance distributions across different
versions of the Pix2Code Dataset.

Figure 5.40: Comparison of BLEU Score distributions across different versions of
the Pix2Code Dataset.

106

Model for website code generation

Figure 5.41: Distribution of the Structural Similarity Index (SSIM) for test set
experiments on the Synthetic Bootstrap Mini Dataset.

107

Model for website code generation

Figure 5.42: Comparison of answers and predictions screenshots from the Syn-
thetic Bootstrap Mini Dataset’s test set.

108

Model for website code generation

Figure 5.43: Distribution of BLEU Score for test set experiments on the Synthetic
Bootstrap Dataset.

109

Model for website code generation

Figure 5.44: Comparison of answers and predictions screenshots from the Syn-
thetic Bootstrap Dataset’s test set.

110

Model for website code generation

Figure 5.45: Distribution of the Structural Similarity Index (SSIM) for test set
experiments on the Synthetic Bootstrap Dataset.

Figure 5.46: Correlation matrix for Synthetic Bootstrap Dataset’s test set metrics

111

Model for website code generation

Figure 5.47: Distribution of the Structural Similarity Index (SSIM) for test set
experiments on the Sketch Synthetic Bootstrap Dataset.

Figure 5.48: Comparison of answers and predictions screenshots from the Sketch
Synthetic Bootstrap Dataset’s test set.

112

Model for website code generation

Figure 5.49: Comparison of answers and predictions screenshots from the
WebUI2Code-4096 Dataset’s test set.

Figure 5.50: Distribution of BLEU Score for test set experiments on the
WebUI2Code-4096 Dataset.

113

Model for website code generation

Figure 5.51: Comparison of answers and predictions screenshots from the
WebUI2Code-4096 Dataset’s test set.

Figure 5.52: Distribution of BLEU Score for validation set experiments on the
Rico Dataset using sampling.

114

Model for website code generation

Figure 5.53: Visual representation of BLEU Scores values for UI2Code’s Dataset
validation set samples

115

Chapter 6

Conclusions

The thesis aimed to achieve two main objectives: firstly, to use web scraping
techniques to generate a public dataset of websites reflecting real-world complexity,
and secondly, to employ a transformer-based model for the automatic generation
of website code.

The first part of this research focused on creating an automated pipeline to
extract code and screenshots from websites while minimizing noise. This tool was
subsequently utilized to construct WebUI2Code: a dataset comprising more
than 34000 samples, derived from 100000 websites. All challenges encountered
when dealing with scraping tools and real websites were described. A variety of
techniques and strategies were used to reduce the samples’ code while ensuring
quality.

The second part investigated applying Pix2Struct to website code generation
tasks. It was fine-tuned using various datasets, including a public simple synthetic
dataset called Pix2Code, a new more complex synthetic dataset of HTML Bootstrap
websites, and its variant with hand-written sketches. Additionally, it was tested on
the newly created WebUI2Code dataset and on other real-world datasets of mobile
application UIs, like RICO and UI2Code.

Overall, the model can be considered suitable for the automatic generation of
synthetic websites, being able to improve performance on Pix2Code compared to
other models, and to obtain good results also for other, more complex datasets.
The transition to real-world data saw a drop in performance and the emergence
of new hurdles, like the prediction of repetitive phrases. An initial exploration of
different hyper-parameters managed to mitigate this problem and indicates that
additional training and experimentation might further improve the results.

Exploring the complexities of extensive transformer models has revealed the
challenges brought forth by these powerful architectures, especially in scenarios
bound by time, cost, and hardware resources.

These limitations have constrained the usage to a smaller portion of the available

116

Conclusions

data, highlighting an opportunity for future research to enhance model performance
and applicability in real-world website code generation.

In conclusion, by implementing an automated website extraction pipeline, the
generation of large and diverse datasets has become achievable. This advancement
may enable more comprehensive experiments and promote the development of
improved transformer models, particularly for website code generation.

Pix2Struct P2C UI2C
Pix2Code 0.98 0.88 -
Pix2Code HTML 0.85 - -
Pix2Code HTML LI 0.97 - -
Synthetic Bootstrap 0.93 - -
Sketch Bootstrap 0.83 - -
WebUI2Code-4096 0.44 - -
RICO 0.42 - -
UI2Code 0.74 - 0.79

Table 6.1: Summary of test results across all the datasets: mean BLEU Score

Figure 6.1: Comparison of ground truth screenshots(1st row) with corresponding
predictive outputs (2nd row) across experiments on various datasets

117

Bibliography

[1] G.J. James. The Elements of User Experience: User-Centered Design for the
Web and beyond. 2nd ed. Pearson Education, 2010 (cit. on p. 1).

[2] R. Hartson and P.S. Pyla. The UX Book: Process and Guidelines for Ensuring
a Quality User Experience. 2nd ed. Morgan Kaufmann, 2019 (cit. on p. 1).

[3] T. Memmel and H. Reiterer. «Support Collaboration, Model-based and
prototyping-driven user interface specification to and creativity». In: Int. J.
Univ. Comput. Sci. 14.19 (2009), pp. 3217–3235 (cit. on p. 1).

[4] T. Beltramelli. «pix2code: Generating code from a graphical user interface
screenshot». In: Proceedings of the ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. 2018, pp. 1–6 (cit. on pp. 3, 6, 9, 10, 47, 48,
68).

[5] T. Beltramelli. Hack your design sprint: Wireframes to prototype in under 5
minutes. 2019. url: https://uizard.io/ (cit. on p. 6).

[6] Y. Han, J. He, and Q. Dong. «CSSSketch2Code: An automatic method to
generate web pages with CSS style». In: Proceedings of the 2nd International
Conference on Advances in Artificial Intelligence. Spain, 2018, pp. 29–35
(cit. on pp. 6, 10).

[7] A. Kumar. Automated front-end development using deep learning. 2018.
url: https://blog.insightdatascience.com/automated-front-end-
development-usingdeep-learning-3169dd086e82 (cit. on pp. 7, 10).

[8] Y. Xu, L. Bo, X. Sun, B. Li, J. Jiang, and W. Zhou. «image2emmet:
Automatic code generation from web user interface image». In: J. Softw.:
Evol. Process 33.8 (2021), e2369 (cit. on pp. 7, 10).

[9] Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu.
«From UI design image to GUI skeleton: A neural machine translator to
bootstrap mobile GUI implementation». In: Proceedings of the 40th Inter-
national Conference on Software Engineering. ACM. New York, NY, USA,
2018, pp. 665–676 (cit. on pp. 7, 10, 11, 81).

118

https://uizard.io/
https://blog.insightdatascience.com/automated-front-end-development-usingdeep-learning-3169dd086e82
https://blog.insightdatascience.com/automated-front-end-development-usingdeep-learning-3169dd086e82

BIBLIOGRAPHY

[10] K. Ellis, D. Ritchie, A. Solar-Lezama, and J. Tenenbaum. «Learning to
infer graphics programs from hand-drawn images». In: Advances in Neural
Information Processing Systems. 2018, pp. 6059–6068 (cit. on p. 7).

[11] Y. Deng, A. Kanervisto, J. Ling, and A.M. Rush. «Image-to-markup genera-
tion with coarse-to-fine attention». In: International Conference on Machine
Learning. PMLR. 2017, pp. 980–989 (cit. on p. 7).

[12] Kim Bada, Sangmin Park, Taeyeon Won, Junyoung Heo, and Bongjae Kim.
«Deeplearning based web UI automatic programming». In: Proceedings of the
2018 Conference on Research in Adaptive and Convergent Systems. ACM,
2018, pp. 64–65 (cit. on p. 7).

[13] B. Aşıroğlu, B.R. Mete, E. Yıldız, Y. Nalçakan, A. Sezen, M. Dağtekin,
and T. Ensari. «Automatic HTML code generation from mock-up images
using machine learning techniques». In: 2019 Scientific Meeting on Electrical-
Electronics & Biomedical Engineering and Computer Science, EBBT. IEEE,
2019, pp. 1–4 (cit. on p. 7).

[14] A. Halbe and A.R. Joshi. «A novel approach to HTML page creation
using neural network». In: vol. 45. International Conference on Advanced
Computing Technologies and Applications (ICACTA). 2015, pp. 197–204.
url: http://www.sciencedirect.com/science/article/pii/S1877050
915003580 (cit. on p. 7).

[15] S. Chen, L. Fan, T. Su, L. Ma, Y. Liu, and L. Xu. «Automated cross-platform
GUI code generation for mobile apps». In: 2019 IEEE 1st International
Workshop on Artificial Intelligence for Mobile (AI4Mobile). IEEE, 2019,
pp. 13–16 (cit. on p. 7).

[16] J. Ferreira, A. Restivo, and H.S. Ferreira. «Automatically generating websites
from hand-drawn mock-ups». In: Proceedings of the 16th International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications. 2021 (cit. on p. 7).

[17] Saad Hassan, Manan Arya, Ujjwal Bhardwaj, and Silica Kole. «Extraction
and classification of user interface components from an image». In: Int. J.
Pure Appl. Math. 118.24 (2018), pp. 1–16 (cit. on p. 7).

[18] P. Myznikov and Y. Huang. «A new method for hierarchical image segmenta-
tion from visual designs». In: 2020 54th Annual Conference on Information
Sciences and Systems, CISS. IEEE, 2020, pp. 1–6 (cit. on p. 7).

[19] X. Xiao, X. Wang, Z. Cao, H. Wang, and P. Gao. «Iconintent: Automatic
identification of sensitive UI widgets based on icon classification for android
apps». In: 2019 IEEE/ACM 41st International Conference on Software
Engineering, ICSE. IEEE, 2019, pp. 257–268 (cit. on p. 7).

119

http://www.sciencedirect.com/science/article/pii/S1877050915003580
http://www.sciencedirect.com/science/article/pii/S1877050915003580

BIBLIOGRAPHY

[20] S. Kim, J. Park, J. Jung, S. Eun, Y.S. Yun, and S. So. «Identifying UI
widgets of mobile applications from sketch images». In: J. Eng. Appl. Sci.
13.6 (2018), pp. 1561–1566 (cit. on p. 7).

[21] H. Pham, T. Nguyen, P. Vu, and T. Nguyen. «Toward mining visual log of
software». In: (2016). arXiv preprint arXiv:1610.08911 (cit. on p. 7).

[22] Young-Sun Yun, Jinman Jung, Seongbae Eun, Sun-Sup So, and Junyoung
Heo. «Detection of GUI elements on sketch images using object detector based
on deep neural networks». In: Proceedings of the Sixth International Con-
ference on Green and Human Information Technology. Singapore: Springer
Singapore, 2019, pp. 86–90 (cit. on p. 7).

[23] Microsoft AI labs. Sketch2Code. 2019. url: https://sketch2code.azurew
ebsites.net/ (cit. on p. 7).

[24] Benjamin Wilkins. Sketching interfaces - airbnb design. 2017. url: https:
//airbnb.design/sketching-interfaces/ (cit. on p. 7).

[25] M. Bajammal, D. Mazinanian, and A. Mesbah. «Generating reusable web
components from mock-ups». In: 2018 33rd IEEE/ACM International Con-
ference on Automated Software Engineering, ASE. IEEE, 2018, pp. 601–611
(cit. on p. 7).

[26] S. Suleri, V.P. Sermuga Pandian, S. Shishkovets, and M. Jarke. «Eve: A
sketch-based software prototyping workbench». In: Extended Abstracts of
the 2019 CHI Conference on Human Factors in Computing Systems. 2019,
pp. 1–6 (cit. on p. 6).

[27] J.M. Rivero, G. Rossi, J. Grigera, J. Burella, E.R. Luna, and S. Gordillo.
«From mock-ups to user interface models: An extensible model driven ap-
proach». In: International Conference on Web Engineering. Berlin, Heidel-
berg: Springer, 2010, pp. 13–24 (cit. on p. 7).

[28] Y. Liu, Q. Hu, and K. Shu. «Improving pix2code based bi-directional LSTM».
In: 2018 IEEE International Conference on Automation, Electronics and
Electrical Engineering (AUTEEE). IEEE. 2018, pp. 220–223 (cit. on pp. 7,
10).

[29] Ó.S. Ramón, J.S. Cuadrado, J.G. Molina, and J. Vanderdonckt. «A layout
inference algorithm for graphical user interfaces». In: Inf. Softw. Technol. 70
(2016), pp. 155–175 (cit. on p. 7).

[30] N. Sinha and R. Karim. «Compiling mock-ups to flexible UIs». In: Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering. 2013,
pp. 312–322 (cit. on p. 7).

[31] B. Mihalcea. User Interface Construction with Mock-Up Images. U.S. Patent
8, 650, 503. 2014 (cit. on p. 7).

120

https://sketch2code.azurewebsites.net/
https://sketch2code.azurewebsites.net/
https://airbnb.design/sketching-interfaces/
https://airbnb.design/sketching-interfaces/

BIBLIOGRAPHY

[32] V.P.S. Pandian, S. Suleri, and M. Jarke. «Blu: What GUIs are made of».
In: Proceedings of the 25th International Conference on Intelligent User
Interfaces Companion. USA, 2020, pp. 81–82. url: https://blu.blackbox-
toolkit.com/ (cit. on p. 7).

[33] S. Ren, K. He, R. Girshick, and J. Sun. «Faster R-CNN: Towards real-time
object detection with region proposal networks». In: Advances in Neural
Information Processing Systems. 2015, p. 28 (cit. on pp. 7, 10).

[34] R.J. Williams and D. Zipser. «A learning algorithm for continually running
fully recurrent neural networks». In: Neural Comput. 1.2 (1989), pp. 270–280
(cit. on p. 7).

[35] Z. Zou, Z. Shi, Y. Guo, and J. Ye. «Object detection in 20 years: A survey».
In: (2019). arXiv preprint arXiv:1905.05055 (cit. on p. 7).

[36] T. Kohonen. «Learning vector quantization». In: Self-Organizing Maps.
Berlin, Heidelberg: Springer, 1995, pp. 175–189 (cit. on p. 7).

[37] K.P. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett, and D. Poshyvanyk.
«Machine learning-based prototyping of graphical user interfaces for mobile
apps». In: IEEE Trans. Softw. Eng. (2018) (cit. on p. 6).

[38] Z.Q. Zhao, P. Zheng, S.T. Xu, and X. Wu. «Object detection with deep
learning: A review». In: IEEE Trans. Neural Netw. Learn. Syst. 30.11 (2019),
pp. 3212–3232 (cit. on p. 7).

[39] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu. «A survey of
deep learning-based object detection». In: IEEE Access 7 (2019), pp. 128837–
128868 (cit. on p. 7).

[40] Worldwide Usage of JavaScript Front-end Libraries. the annual developer
survey of the JavaScript ecosystem. 2020. url: https://2020.stateofjs.
com/en-US/ (cit. on p. 7).

[41] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols,
and R. Kumar. «RICO: A mobile app dataset for building data-driven
design applications». In: Proceedings of the 30th Annual ACM Symposium
on UIST (UIST ’17). New York, NY, USA: ACM, 2017, pp. 845–854. doi:
http://dx.doi.org/10.1145/3126594.3126651 (cit. on pp. 7, 11).

[42] D. Gibson, K. Punera, and A. Tomkins. «The volume and evolution of
web page templates». In: Special Interest Tracks and Posters of the 14th
International Conference on World Wide Web. ACM, 2005, pp. 830–839
(cit. on p. 7).

121

https://blu.blackbox-toolkit.com/
https://blu.blackbox-toolkit.com/
https://2020.stateofjs.com/en-US/
https://2020.stateofjs.com/en-US/
https://doi.org/http://dx.doi.org/10.1145/3126594.3126651

BIBLIOGRAPHY

[43] Huang Ruozi, Yonghao Long, and Xiangping Chen. «Automatically generat-
ing web page from a mock-up». In: International Conference on Software
Engineering & Knowledge Engineering. USA, 2016, pp. 589–594 (cit. on
pp. 6, 9).

[44] Nguyen Tuan Anh and Christoph Csallner. «Reverse engineering mobile
application user interfaces with REMAUI». In: 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE. IEEE, 2015,
pp. 248–259 (cit. on pp. 6, 9).

[45] S. Natarajan and C. Csallner. «P2A: A tool for converting pixels to animated
mobile application user interfaces». In: 2018 IEEE/ACM 5th International
Conference on Mobile Software Engineering and Systems (MOBILESoft).
IEEE. 2018, pp. 224–235 (cit. on pp. 6, 9).

[46] Z. Zhu, Z. Xue, and Z. Yuan. «Automatic graphics program generation using
attention-based hierarchical decoder». In: Asian Conference on Computer
Vision. Springer, Cham, 2018, pp. 181–196 (cit. on pp. 6, 10).

[47] T.F. Liu, M. Craft, J. Situ, E. Yumer, R. Mech, and R. Kumar. «Learning
design semantics for mobile apps». In: Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. 2018, pp. 569–579
(cit. on p. 6).

[48] Kerry Shih-Ping Chang and Brad A. Myers. «WebCrystal: Understanding
and reusing examples in web authoring». In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2012, pp. 3205–
3214 (cit. on p. 7).

[49] Y. Hashimoto and T. Igarashi. «Retrieving web page layouts using sketches
to support example-based web design». In: SBM. 2015, pp. 155–164 (cit. on
p. 7).

[50] F. Huang, J.F. Canny, and J. Nichols. «Swire: Sketch-based user interface
retrieval». In: Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems. USA: ACM, 2019, pp. 1–10 (cit. on p. 7).

[51] X. Ge. «Android GUI search using hand-drawn sketches». In: 2019 IEEE/ACM
41st International Conference on Software Engineering: Companion Proceed-
ings (ICSE-Companion). IEEE, 2019, pp. 141–143 (cit. on p. 7).

[52] F. Behrang, S.P. Reiss, and A. Orso. «GUIFetch: Supporting app design and
development through GUI search». In: Proceedings of the 5th International
Conference on Mobile Software Engineering and Systems. 2018, pp. 236–246
(cit. on p. 7).

[53] The Grid. Available at: https://the-grid.org/. 2023 (cit. on p. 8).
[54] Bookmark. Available at: https://www.bookmark.com. 2023 (cit. on p. 8).

122

https://the-grid.org/
https://www.bookmark.com

BIBLIOGRAPHY

[55] Firedrop. Available at: https://firedrop.ai. 2023 (cit. on p. 8).
[56] Wix ADI. Available at: https://www.wix.com/. 2023 (cit. on p. 8).
[57] Leia. Available at: https://heyleia.com. 2023 (cit. on p. 8).
[58] Zyro. Available at: https://zyro.com. 2023 (cit. on p. 8).
[59] T.K. Ho. «Random decision forests». In: Proceedings of 3rd International

Conference on Document Analysis and Recognition. Vol. 1. IEEE, 1995,
pp. 278–282 (cit. on p. 9).

[60] Jason Wu, Siyan Wang, Siman Shen, Yi-Hao Peng, Jeffrey Nichols, and
Jeffrey P Bigham. «WebUI: A Dataset for Enhancing Visual UI Under-
standing with Web Semantics». In: CHI ’23. Hamburg, Germany: Associ-
ation for Computing Machinery, 2023. isbn: 9781450394215. url: https:
//doi.org/10.1145/3544548.3581158 (cit. on p. 11).

[61] Vinoth Pandian Sermuga Pandian, Sarah Suleri, and Matthias Jarke. «SynZ:
Enhanced Synthetic Dataset for Training UI Element Detectors». In: 26th
International Conference on Intelligent User Interfaces - Companion. IUI
’21 Companion. College Station, TX, USA: Association for Computing
Machinery, 2021, pp. 67–69. isbn: 9781450380188. doi: 10.1145/3397482.
3450725. url: https://doi.org/10.1145/3397482.3450725 (cit. on
p. 11).

[62] Selenium. Available at: https://www.selenium.dev/. 2023 (cit. on pp. 16,
20, 51).

[63] sanitize-html. Available at: https://github.com/apostrophecms/saniti
ze-html. 2023 (cit. on p. 16).

[64] htmlparser2. Available at: https://github.com/fb55/htmlparser2. 2023
(cit. on p. 16).

[65] tinycss2. Available at:https://github.com/Kozea/tinycss/. 2023 (cit. on
p. 18).

[66] bootstrap. Available at:https://getbootstrap.com/. 2023 (cit. on pp. 18,
51).

[67] tailwind CSS. Available at:https://tailwindcss.com/. 2023 (cit. on p. 18).
[68] bulma. Available at:https://bulma.io/. 2023 (cit. on p. 18).
[69] react. Available at:https://it.reactjs.org/. 2023 (cit. on p. 25).
[70] gatsby. Available at:https://www.gatsbyjs.com/. 2023 (cit. on p. 25).
[71] Next. Available at:https://nextjs.org/. 2023 (cit. on p. 25).
[72] Nuxt. Available at:https://nuxtjs.org/. 2023 (cit. on p. 25).

123

https://firedrop.ai
https://www.wix.com/
https://heyleia.com
https://zyro.com
https://doi.org/10.1145/3544548.3581158
https://doi.org/10.1145/3544548.3581158
https://doi.org/10.1145/3397482.3450725
https://doi.org/10.1145/3397482.3450725
https://doi.org/10.1145/3397482.3450725
https://www.selenium.dev/
https://github.com/apostrophecms/sanitize-html
https://github.com/apostrophecms/sanitize-html
https://github.com/fb55/htmlparser2
https://github.com/Kozea/tinycss/
https://getbootstrap.com/
https://tailwindcss.com/
https://bulma.io/
https://it.reactjs.org/
https://www.gatsbyjs.com/
https://nextjs.org/
https://nuxtjs.org/

BIBLIOGRAPHY

[73] backbone. Available at:https://backbonejs.org/. 2023 (cit. on p. 25).
[74] Vue. Available at:https://vuejs.org/. 2023 (cit. on p. 25).
[75] Angular. Available at:https://angularjs.org/. 2023 (cit. on p. 25).
[76] Ember. Available at: https://emberjs.com/. 2023 (cit. on p. 25).
[77] Majestic Million. Available at: https://majestic.com/reports/majestic-

million. 2023 (cit. on pp. 26, 30, 31).
[78] Computing@PoliTO. Available at: https://computing.polito.it/serviz

i-per-la-ricerca. 2023 (cit. on p. 32).
[79] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL] (cit. on

p. 38).
[80] Bard. Available at: https://ai.google/static/documents/google-

about-bard.pdf. 2023 (cit. on p. 38).
[81] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse

Khomh, Michel C. Desmarais, Zhen Ming, and Jiang. GitHub Copilot AI pair
programmer: Asset or Liability? 2023. arXiv: 2206.15331 [cs.SE] (cit. on
p. 38).

[82] Mark Chen et al. Evaluating Large Language Models Trained on Code. 2021.
arXiv: 2107.03374 [cs.LG] (cit. on p. 38).

[83] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. 2023. arXiv: 2203.13474
[cs.LG] (cit. on pp. 38, 41).

[84] Kenton Lee et al. Pix2Struct: Screenshot Parsing as Pretraining for Visual
Language Understanding. 2023. arXiv: 2210.03347 [cs.CL] (cit. on p. 39).

[85] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. «Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer».
In: Journal of Machine Learning Research 21.140 (2020), pp. 1–67. url:
http://jmlr.org/papers/v21/20-074.html (cit. on p. 39).

[86] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale. 2021. arXiv: 2010.11929 [cs.CV] (cit. on
p. 40).

[87] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2023. arXiv: 1706.03762 [cs.CL] (cit. on p. 40).

[88] Thomas Wolf et al. HuggingFace’s Transformers: State-of-the-art Natural
Language Processing. 2020. arXiv: 1910.03771 [cs.CL] (cit. on pp. 40, 41).

124

https://backbonejs.org/
https://vuejs.org/
https://angularjs.org/
https://emberjs.com/
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://computing.polito.it/servizi-per-la-ricerca
https://computing.polito.it/servizi-per-la-ricerca
https://arxiv.org/abs/2303.08774
https://ai.google/static/documents/google-about-bard.pdf
https://ai.google/static/documents/google-about-bard.pdf
https://arxiv.org/abs/2206.15331
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2210.03347
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1910.03771

BIBLIOGRAPHY

[89] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The Long-
Document Transformer. 2020. arXiv: 2004.05150 [cs.CL] (cit. on p. 42).

[90] Colab. Available at: https://colab.research.google.com/. 2023 (cit. on
pp. 43, 66).

[91] Kishore Papineni, Salim Roukos, Todd Ward, and Wei Jing Zhu. «BLEU: a
Method for Automatic Evaluation of Machine Translation». In: (Oct. 2002).
doi: 10.3115/1073083.1073135 (cit. on p. 45).

[92] Edward Loper Bird Steven and Ewan Klein. Natural Language Processing
with Python. O’Reilly Media Inc, 2009 (cit. on p. 46).

[93] Benjamin Paaßen. Revisiting the tree edit distance and its backtracing: A
tutorial. 2022. arXiv: 1805.06869 [cs.DS] (cit. on p. 46).

[94] ZhangShashaPython. Available at: https://github.com/timtadh/zhang-
shasha. 2023 (cit. on p. 47).

[95] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. «Image quality
assessment: from error visibility to structural similarity». In: IEEE Trans-
actions on Image Processing 13.4 (2004), pp. 600–612. doi: 10.1109/TIP.
2003.819861 (cit. on p. 47).

[96] Scikit-image. Available at: https://scikit-image.org/. 2023 (cit. on
p. 47).

[97] WebGenerator. Available at: https://github.com/agsoto/webgenerator.
2023 (cit. on p. 51).

[98] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. 2023. arXiv:
1910.10683 [cs.LG] (cit. on p. 56).

[99] Html-Tidy. Available at: http://www.html-tidy.org/. 2023 (cit. on p. 63).
[100] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive Learning Rates with

Sublinear Memory Cost. 2018. arXiv: 1804.04235 [cs.LG] (cit. on p. 66).
[101] M. Knoll T. Angerer. pix2code pytroch implementation. 2021. url: https:

//github.com/timoangerer/pix2code-pytorch/tree/master (cit. on
p. 68).

[102] Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang.
An Empirical Study of Catastrophic Forgetting in Large Language Models
During Continual Fine-tuning. 2023. arXiv: 2308.08747 [cs.CL] (cit. on
p. 70).

125

https://arxiv.org/abs/2004.05150
https://colab.research.google.com/
https://doi.org/10.3115/1073083.1073135
https://arxiv.org/abs/1805.06869
https://github.com/timtadh/zhang-shasha
https://github.com/timtadh/zhang-shasha
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://scikit-image.org/
https://github.com/agsoto/webgenerator
https://arxiv.org/abs/1910.10683
http://www.html-tidy.org/
https://arxiv.org/abs/1804.04235
https://github.com/timoangerer/pix2code-pytorch/tree/master
https://github.com/timoangerer/pix2code-pytorch/tree/master
https://arxiv.org/abs/2308.08747

BIBLIOGRAPHY

[103] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong,
and Richard Socher. CTRL: A Conditional Transformer Language Model for
Controllable Generation. 2019. arXiv: 1909.05858 [cs.CL] (cit. on p. 76).

[104] Weight and Biases. Available at: https://wandb.ai/site. 2023 (cit. on
p. 83).

126

https://arxiv.org/abs/1909.05858
https://wandb.ai/site

	List of Tables
	List of Figures
	Introduction
	Context
	Contributions and thesis outline

	Literature review
	Related works
	Example-based automatic website generation
	Artificial Intelligence-driven website generation
	Mock-up-driven automatic website generation

	Website code and screenshot extraction tool
	System overview
	Obtaining HTML code
	Retrieve website's HTML code
	Code sanitizing
	Code cleansing and formatting

	Obtaining CSS code
	Get the CSS files related to the HTML file
	CSS file processing
	CSS file minimization
	Merge of CSS files

	Screenshot extraction
	Collection of statistics

	Dataset creation
	First experiment on blog websites
	Experiment setup and evaluation methodology
	Framework detector
	Exclusion of websites without CSS
	Results

	Second and third experiment on a different list of websites
	Majestic million list and second experiment
	Third experiment on .blog websites from Majestic million list

	Introduction of the screenshot classifier and fourth experiment
	Dataset
	Model
	Training and testing
	Fourth experiment

	Final experiment on scale
	Statistics
	Errors

	Model for website code generation
	Introduction
	Model: Pix2Struct
	Model overview
	Comparison with other models
	Addressing model challenges

	Metrics
	BLEU
	Edit Distance
	HTML Tree Edit Distance
	Structural Similarity Index

	Datasets
	Pix2Code Dataset
	Synthetic Bootstrap Dataset
	WebUI2Code Dataset
	Rico Dataset
	UI2Code Dataset

	Pre-processing and post-processing
	Pix2Code Dataset processing
	Synthetic Bootstrap Dataset processing
	WebUI2Code Dataset processing
	Rico Dataset processing
	UI2Code Dataset processing

	Experiments
	Experiments on Pix2Code Dataset
	Experiments on Synthetic Bootstrap Dataset
	Experiments on WebUI2Code Dataset
	Experiments on Rico Dataset
	Experiments on UI2Code Dataset

	Conclusions
	Bibliography

