
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Automatic fixing of vulnerabilities:
SQL Injection in Java

Supervisor
Prof. Riccardo Sisto

Candidate
Mattia Di Leo

Reply Liquid corporate tutors
Dr. Ivan Aimale
Dr. Marco Oria
Dr.ssa Luisa Gatto

Accademic Year 2022-2023

Summary

This thesis work has been made in collaboration with the company Liquid Reply,
the aim is to develop a tool capable of automatically correcting vulnerabilities
within the source code.

The development of an application is a complex activity that requires a huge
amount of resources. Among the various aspects, security cannot be underesti-
mated; it is as essential as the functionalities. No matter how sophisticated and/or
cutting-edge a software is, if it is vulnerable, it will still be a failure.

This aspects is usually underrated, as developers focus more on the pure logic of a
program, overlooking the cybersecurity aspects due to one reason: they do not have
time. Firstly, it would be necessary to study the fundamental of this discipline,
and more important, the secured solutions are often more difficult and challenging
to implement.

The tool I have developed aims to assist programmers by saving them precious time.
Analyzing the state of the art, it has been observed that we are still in a nascent
state. AI solutions such as ChatGPT have been discarded in favor of developing a
tool that is not based on artificial intelligence.

It was chosen Java both as the development language and as the target lan-
guage. Regarding vulnerabilities, SQL injection in the “vanilla” language was
selected.

After developing the tool, it was initially tested to assess its effectiveness and
its ability to make corrections. Finally, to optimize it further, we decided to inte-
grate it with Git, so that at the end of the execution, the results were automatically
pushed to the Git repository, utilizing it for comparing the modified files.

I

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Riccardo Sisto,
for his availability and for all the advice he has provided me during this journey. I
also want to express my gratitude to Ivan Aimale, Marco Oria, and Luisa Gatto
for proposing this thesis project to me and for guiding me through this incredibly
important path of personal and academic growth. Of course, I must also extend my
thanks to all the colleagues with whom I have collaborated, as they have played a
crucial role in my personal growth. I am proud to have been able to apply what
I have learned at the Politecnico di Torino in a reputable company with highly
skilled and supportive individuals.

I will never cease to be grateful to my mother, my father, and my sister for
always being there for me and providing support not only financially but, above
all, emotionally. If I have reached this point, it is primarily thanks to them.

I also want to thank my girlfriend, who, throughout my journey at the Politecnico,
albeit from a distance, has always been by my side and has given me the strength
to move forward without ever turning away. I thank her for all the moments, both
beautiful and challenging, because thanks to her, I have been able to grow and
improve myself.

A massive thanks also goes to my friends, who have always been available to help
me and capable of bringing a smile to my face even in the most difficult moments.

II

Table of Contents

List of Tables VII

List of Figures VIII

List of Codes IX

Acronyms XII

1 Introduction 1
1.1 Objective . 1
1.2 Structure of the thesis . 1

2 Vulnerabilities and how to detect them 3
2.1 Cybersecurity key concept . 3
2.2 Vulnerabilities . 4
2.3 Vulnerabilities and time . 5
2.4 SQL Injection . 6
2.5 Vulnerability detection . 8
2.6 SonarQube . 10

3 State of art 13
3.1 SAST tool, automatic fixing . 13

3.1.1 Mend.io (formerly WhiteSource) 13
3.1.2 Veracode fix . 14
3.1.3 CheckMarx SAST . 15
3.1.4 Rapid7 InsideAppSec . 15
3.1.5 Snyk Code and Sourcegraph 15

3.2 ChatGPT . 16
3.2.1 ChatGPT and coding . 16
3.2.2 ChatGPT IDE integrations 18

IV

4 Taken choices 19
4.1 ChatGPT integration . 19

4.1.1 ChatGPT from the browser 19
4.1.2 OpenAI API . 20
4.1.3 Results . 20

4.2 Standard code . 22
4.2.1 Choosen vulnerability . 22
4.2.2 Choosen language . 22

5 Development of the tool 23
5.1 The idea . 23
5.2 Dependencies . 25

5.2.1 JavaParser . 25
5.2.2 StreamEx . 29
5.2.3 json . 30
5.2.4 Maven Invoker Plugin . 30
5.2.5 Gradle Tooling API . 31
5.2.6 Commons CLI . 33
5.2.7 Jgit . 34
5.2.8 GitHub API . 34
5.2.9 Http Client . 34

5.3 Development, core logic . 34
5.3.1 VulnerabilityFixer . 35
5.3.2 Modules, Module and Method 35
5.3.3 Vulnerability and SQLInjection 38
5.3.4 Core logic . 42
5.3.5 Parameters class . 43
5.3.6 Replacement first constructor 44
5.3.7 Replacement second constructor 50
5.3.8 Replacement recursive . 51
5.3.9 Part . 52
5.3.10 Variable . 57
5.3.11 Setter . 61
5.3.12 Applying fixes . 65

5.4 Input . 65
5.5 Integration with Git . 66

6 Testing 71
6.1 Method of testing . 71
6.2 Projects . 72
6.3 True positive . 74

V

6.4 Strange cases . 76
6.5 Not exploitable vulnerabilities . 77
6.6 Example of testing . 79
6.7 Example results . 81

6.7.1 Default statement simple cases 81
6.7.2 Default statement complex cases 82
6.7.3 Partial statement . 85

7 Conclusion 87
7.1 Pros of the tool . 87
7.2 Cons of the tool . 88
7.3 Future works . 88

Bibliography 89

VI

List of Tables

2.1 OWASP top 10 software vulnerabilities (2021) [11] 5

VII

List of Figures

2.1 Sonar workflow [15]. 10

3.1 GitLab DevSecOps workflow [26] 15

4.1 ChatGPT results. 21

5.1 Schema of recursive call . 43
5.2 Example of a tree of setters. 63

6.1 Total SQL Injection for each project 73
6.2 Distribution of the 62 vulnerabilities 73
6.3 Pie chart of True positives . 74
6.4 Pie chart of not exploitable vulnerabilities. 78
6.5 EasyBuggy SQLInjection Home page. 80
6.6 EasyBuggy SQLInjection exploit. 80

VIII

List of Codes

2.1 Example of SQL Injection in Java 7
2.2 Result of inputs in SQL . 7
2.3 Result of inputs in SQL . 7
2.4 Example of correct query in Java 8
3.1 Java test on ChatGPT-3 . 16
5.1 Java example of variable used in different scopes 24
5.2 Java wrong example of variable used in different scopes 25
5.3 Configuration of TypeSolver . 27
5.4 Example of Visitor . 28
5.5 StreamEx example of distinct() . 29
5.6 Example of usage json . 30
5.7 Maven dependencies Jar . 30
5.8 Gradle dependencies Jar . 31
5.9 Setting of commons CLI . 33
5.10 fields of Modules . 35
5.11 Module initialitation . 36
5.12 definition of Method class . 36
5.13 Vulnerability class . 38
5.14 SQLInjection constructor . 40
5.15 Seaching for name to give to index 41
5.16 Parameters class . 43
5.17 Constructor of First Replacement 44
5.18 Partial Type . 45
5.19 Extraction of all setters . 46
5.20 Additional initialization. 46
5.21 Standard Type. 46
5.22 Constructor of other Replacements. 50
5.23 Part constructor . 52
5.24 startRecursiveFind() of Part . 54
5.25 Part recontructor. 56
5.26 If-then-else from NotSecureBank [68] 57

IX

5.27 Child of the previous if. 58
5.28 startFind() of Variable. 58
5.29 startFindOutOfScope() of Variable. 60
5.30 Setter fields. 62
5.31 prepareSetter method. 63
5.32 reconstructSetter() method. 64
5.33 Git integration. 66
6.1 Example of not fixable query. 75
6.2 Example of WebGoat not fixable. 76
6.3 Proposed fix. 76
6.4 Example of first type. 78
6.5 Example of fix first type. 78
6.6 Example of second type. 78
6.7 Default query, simple case from easybuggy. 81
6.8 Default query, fix simple case from easybuggy. 81
6.9 Default query, case with “\’”from SQLInjectionTest. 81
6.10 Default query, fix case with “\’”from SQLInjectionTest. 81
6.11 Default query, multi parameteres initialization case from NotSecure-

Bank. 82
6.12 Default query, fix multi parameteres initialization case from NotSe-

cureBank. 82
6.13 Default query, parts into setting phase case from WebGoat. 83
6.14 Default query, fix parts into setting phase case from WebGoat. . . . 83
6.15 Default query, multi branch case from WebGoat. 83
6.16 Default query, fix multi branch case from WebGoat. 84
6.17 partial query from WebGoat. 85
6.18 partial query fix from WebGoat. 85

X

Acronyms

DB
database

OWASP
Open Worldwide Application Security Project

SQL
Structured Query Language

SAST
Static Application Security Testing

DAST
Dynamic Application Security Testing

CWE
Common Weakness Enumeration

DOS
Denial Of Service

LLMs
large-scale language models

XII

Chapter 1

Introduction

Web application are becoming more and more common, they are easy-to-use and al-
most everyone has a device capable of surfing the internet. Whenever talking about
an online service we may think that the most significant aspect is the user interface.
Unfortunately, there is another aspect that usually is overlooked and it is the one of
cybersecurity. Indeed, if an application is vulnerable it is a real threat not only for
the company providing the service, but also for the final user, data disclosures can
lead to password being discovered and in the worst scenario also credit card number
could be stolen. At this point, needless to say, that having a secure application is
another key aspect. Usually,developers do not have enough time to keep in mind the
basic rules of secure coding, this could lead to introduce vulnerabilities of various
type in the source code. It would be convenient to have a software capable of
automatic fixing all the vulnerabilities, this would help to save huge amount of time.

1.1 Objective
This thesis was made in collaboration with the company Liquid Reply, and the aim
of this work is to develop a tool capable of automatically fixing vulnerabilities in
the source code. To achieve this, it was first analyzed the state of the art, seeking to
understand what the market offers, highlighting the pros and cons of each solution
found. Subsequently, it was the moment of the development phase, and finally,
it was conducted the validation part, which involves assessing the quality of the
results obtained.

1.2 Structure of the thesis
The thesis is composed of the following chapters:

1

Introduction

1. Chapter 1, this one, where the thesis is introduced;

2. Chapter 2, dedicated to the background of some vulnerabilities and tools
used to find them (like SonarQube);

3. Chapter 3, study about the state of the art of the tools capable of fixing
vulnerabilities;

4. Chapter 4, explanation about the decision taken to implement the tool;

5. Chapter 5, the development of the tool;

6. Chapter 6, describes the validation phase, showing reports and percentage
of fixing;

7. Chapter 7, conclusion of the thesis and possible future works;

2

Chapter 2

Vulnerabilities and how to
detect them

In this chapter we will analyse what is a vulnerability and how to detect and fix
it. We will focus on SQL injection and on SonarQube that are two of the main
aspects of this thesis work.

2.1 Cybersecurity key concept
Whenever developing a software we must keep in mind the importance of cyber-
security. Security in this context means to protect any computer systems. Here
there are some keyword that will help us to understand:

• assets are the resources that we want to protect because of their value, they
are precious. Assets are data, they could be credentials of users or credit cards
number, or anything that must be protected in a system;

• threats, they are basically what can compromise the security of our assets,
not all threats can be used to provoke real danger to our system. The one
that can be used are called exploitable;

• vulnerabilities, this is the actual name of “exploitable threats”, it is very
important to detect them in order to prevent them.

• security control are all the countermeasures actuated to prevent damage to
our system;

• security requirements are the standards of security that we want to achieve
and what is needed to implement such mechanisms;

3

Vulnerabilities and how to detect them

• security risk, it is a value indicating how much a system is vulnerable. It is
calculated using all the previous concepts.

2.2 Vulnerabilities
Now that we have introduced the most important keywords, we can start speaking
about what actually is a vulnerability. As we have discovered, it is an exploitable
threat, and it could have been introduced in our system in any of the phase of the
development. It usually is in the form of a bug or a flaw. They are similar but not
the same thing.
A bug is an error that prevents the normal execution of our code, they may be
caused by many factors, programmers have forgotten something in the source code,
some user inputs are not well handled and so on.
On the other hand, a flaw is again a threat and could lead to a vulnerability, but
doesn’t necessarily mean that the execution of our program will be interrupted, for
example if a password is stored in clear text, it won’t be a problem from the point
of view of the logic, but of course it could lead to the disclosure of this password in
case someone is able to read the content of our DB. As you can see in this case
the problem is in the design of our application and for this reason it is harder to
find and solve this type of problems, we have to change many components of our
system in order to solve the issue.
As we can see, not all flaws are bugs, but all bugs are flaws. As said before whenever
they are exploitable they could lead to different types of vulnerabilities. Talking
about all the vulnerabilities would be almost impossible, for this reason we are
reporting here the top ten published by OWASP:

Position Type Explanation

1 Broken Access Control

The access control is in charge of enforc-
ing policies. It means that only authen-
ticated users with certain privileges can
modify certain type of data [1]

2 Cryptographic Failures
If working with sensitive data, it is fun-
damental to use strong crypto algorithm
[2]

3 Injection

When inputs’ data are not checked this
could lead to an injection. Some of the
most commons are SQL and command
injection [3]

4

2.3 – Vulnerabilities and time

Table 2.1 – continued from previous page
Position Type Explanation

4 Insecure Design

It happens when users do not use secure
design patters. Whenever wanting a se-
cure application it must be built includ-
ing secure libraries and methodologies
[4]

5 Security Misconfiguration Security is not well configured.
e.g.permission improperly configured [5]

6
Vulnerable

&
Outdated Components

This could happen when we use out-
dated library or components that are no
longer secure [6]

7
Identification

&
Authentication Failures

It happens when an attacker can bypass
the authentication phase and imperson-
ate another user. Usually it is because
we permit weak password or we use weak
credential recovery mechanisms [7]

8
Software

&
Data Integrity Failures

When integrity of software/data is not
checked for example when downloading
libraries from untrusted repositories [8]

9
Security Logging

&
Monitoring Failures

When logging is not well integrated, at-
tackers may attack without being dis-
covered and/or detected [9]

10 Server-Side Request
Forgery (SSRF)

An application is vulnerable to SSRF
when it fetches a remote URL without
validating it [10]

Table 2.1: OWASP top 10 software vulnerabilities (2021) [11]

The ranking was made according to one critical aspects: the most common issues
that companies are facing nowadays, in other words the most critical vulnerabilities.

2.3 Vulnerabilities and time
Before discussing SQL injection (the vulnerability addressed in this thesis), it is
important to emphasize the significance of the time factor. This particularly affects
the lifecycle of every vulnerability.
Various scenarios can occur, but they all begin with the unintentional introduction of

5

Vulnerabilities and how to detect them

a new vulnerability in a product. This is also known as a zero-day vulnerability,
which means that even the vendor is unaware of it. From this point onwards, the
evolution of this vulnerability depends on when two main events occur:

1. the development team becomes aware of the vulnerability;

2. the vulnerability is discovered by someone outside the company.

Once the company becomes aware of the vulnerability, they must strive to resolve
it as quickly as possible, as the risk of someone developing an exploit increases over
time. Talking about the former event (1), it can occur in three different ways:

1. in the best-case scenario, the vendor discovers the vulnerability and immedi-
ately begins working on a patch;

2. if it is discovered by another team and communicated to the vendor, a grace
time is usually given, which is a deadline by which the vulnerability must
be fixed, or else it will be publicly disclosed to the world. This practice is
also useful to incentivize the development of a patch that might otherwise be
postponed. This scenario is known as responsible disclosure;

3. the vulnerability is publicly disclosed to the entire world without any grace
time. This is, of course, the worst-case scenario and the most delicate one, it
is called full disclosure;

Once the company is aware of the vulnerability, it will work to develop the patch
as quickly as possible to reduce the risk percentage to nearly zero (though the risk
can never truly be zero).

As noted, the third case is the worst, and it is evident that it is a race against time
between those defending (the companies releasing products) and those attacking
(hackers or external research teams). Therefore, the less time it takes to fix
the vulnerability, the better. The period of time from when the vulnerability is
introduced until the patch is released and installed is referred to as the window
of exposure, which is, once again, a measure of time. It is essential to always
minimize this as much as possible. This highlights the fact that having a tool
capable of automatically fixing vulnerabilities could be very helpful and of course
would speed up the entire fixing process, reducing risks.

2.4 SQL Injection
As evident from the table in section 2.1 (OWASP top 10: 2021), the category
“injections” ranks third, indicating that they are relatively common vulnerabilities
and, most importantly, have a significant impact when exploited. Therefore,

6

2.4 – SQL Injection

preventing and addressing them is of utmost importance. In this section, we will
discuss the vulnerability that the tool is capable of fixing: SQL injections. First and
foremost, it’s important to clarify that SQL stands for Structured Query Language,
which is a language used for querying databases.
SQL injections are vulnerabilities where the attacker exploits unsanitized and
unvalidated input to add SQL code to a query defined by the programmer in order
to alter its behavior [12]. Typically, this is done to execute SQL commands or to
modify the behavior of the original query, such as bypassing password checks. It is
not important the language used, we must face and handle with SQL injection in
all the possible programming languages: Java, PHP, Javascript... .

First of all, we must say that in SQL a common way to add a comment is with
this sequence of characters “–”. Now we can try to analyze the following line of
codes:

1 St r ing s q l = "SELECT ∗ FROM use r s WHERE username= ’ "+username + "
’ AND password=’ " + password + " ’ " ;

2

3 Connection connect ion = db . getConnect ion () ;
4 Statement statement = connect ion . execute (s q l) ;

List of Codes 2.1: Example of SQL Injection in Java
This is a simple query that checks if in the DB there is that specific username with
that password (this example was made just for simplicity, it is seriously dangerous
to store in clear text passwords in the DB). An attacker could send the following
input:

• “admin’ –” as username;

• whatever as password, for example “123”;
In this case the query would assume this form:

1 SELECT ∗ FROM use r s
2 WHERE username = ’ admin ’ −− ’AND password = ’1 2 3 ’ ;

List of Codes 2.2: Result of inputs in SQL

We can clearly see that by adding that comment, the password check is bypassed.
Doing this, an attacker is capable of logging in as admin (in case user “admin”
exists) and the password won’t be checked. There are other approaches similar to
this one, one of them is using an always true clause, such as “1 = 1”, in this case
changing the inputs we could achieve something like this:

1 SELECT ∗ FROM use r s
2 WHERE username = ’ ’ OR 1=1 −− ’AND password = ’1 2 3 ’ ;

List of Codes 2.3: Result of inputs in SQL

7

Vulnerabilities and how to detect them

Again this will lead to be logged in without entering any password, because “1 =
1” is always true, so it will match all the users.

This is just one type of SQL injection attack and it is part of the tautologies,
but there are many others such as the Union Query which intent is to retrieve
other sensitive data from a query by using the Union command of SQL. Another
one is the Piggy Backend, where the intent is DOS (Denial Of Service) or altering
table states [13].

To prevent this type of attacks there are many approaches, we will only talk about
the easiest that doesn’t completely alter the structure of our code. Instead of the
variable “Statement statement” we will use another type PreparedStatement.
The code will become as follow:

1 St r ing s q l = "SELECT ∗ FROM use r s WHERE username= ? AND password=
? " ;

2

3 Connection connect ion = db . getConnect ion () ;
4 PreparedStatement statement = connect ion . prepareStatement (s q l) ;
5

6 statement . s e t S t r i n g (1 , username) ;
7 statement . s e t S t r i n g (2 , password) ;
8

9 statement . execute () ;

List of Codes 2.4: Example of correct query in Java

As we can see we don’t concatenate username and password directly inside the
string “sql”, we have used placeholders “?”. After that we must set each “?” and
this is the reason why we have added those two lines of code (6 and 7). At this point
the PreparedStatement understands that everything that is inside “username”
must be replaced with the first “?” and if it contains SQL commands those will be
escaped, so even if there are commands and/or comment in “username” and/or
“password”, they will be escaped and so, they will not be executed.

2.5 Vulnerability detection
We have analyzed some vulnerabilities, focusing on SQL injections. Now, however,
we will concentrate on how to determine if the code we need to study contains them.
This type of activity is called “security assessment” (we will omit the analyses on
Networked Systems). First, we need to distinguish between two approaches:

• Static: the application is never launched. Testing is done by examining
what is happening in the code itself. This involves checks on both semantics
and variable types. Additionally, theorem prover techniques are adopted,
and the flow of variables, as well as their sources, is controlled. To be even

8

2.5 – Vulnerability detection

more precise, symbolic execution is performed, where a model is generated
based on the original code (this phase should not be confused with actual
execution). Typically, in this type of analysis, white-box tests are performed,
which means that you have full access to everything, and your knowledge of
how the program functions is at 100%.

• Dynamic: In this approach, the code is executed, and vulnerabilities are
sought through testing. This type of analysis is accompanied by black-box
tests, where you simulate not knowing anything and attempt to attack the
application. During this phase, tools such as decompilers and/or disassemblers
come in handy.

Depending on whether the analysis is static or dynamic, the tools are given the fol-
lowing names: SAST (Static Application Security Testing) and DAST (Dynamic
Application Security Testing).

SAST has the following advantages

• it can find more vulnerabilities;

• it can point to the exact location in the code;

• the type of vulnerability is reported;

• it can be used in every phase of the development.

On the other hand, here there are SAST cons:

• since the code is not actually executed, false positives can be introduced in
this type of analysis;

• each tool used is specific to a certain programming language.;

• it is also challenging to obtain good results regarding external libraries.

Talking about DAST, it has has some pros:

• introducing fewer false positives;

• it is not depending on the programming language used.

However, the cons are:

• it finds fewer vulnerabilities;

• it can only be used in the latest stage of development;

9

Vulnerabilities and how to detect them

• it does not provide information about where the vulnerability was introduced
in the code and what type it is.

Recently, a new type of analysis called IAST (Interactive Application Security
Testing) has been introduced. It seeks to combine the advantages of both approaches
to be more comprehensive like SAST while trying to reduce false positives like
DAST. Its operation is similar to DAST, but it also includes context information
in the code of the vulnerability[14].

2.6 SonarQube
In this section we will analyse SonarQube, a SAST, that is the one used in this
thesis work to find vulnerabilities in the code. Talking about Sonar, it is an
automatic code review tool that can be integrated into the workflow of any project.
It is capable of detecting issues in the source code and providing info about these
(bug, vulnerability, secure hotspot...). It is powerful because it works on several
programming languages. It also provides extension for IDE to help the programmer
since the beginning of the development [15].

Figure 2.1: Sonar workflow [15].

You can select different quality profiles that will help you identifying each issue in
your code, this is done because each profile contains a set of rules to be applied
during code analysis. SonarQube comes out with the BUILT-IN profile, however
the final user can define his own set [16]. The most powerful feature of SonarQube
is the capability to integrate other plugins in a very simple way, indeed there is a
section called “marketplace” that works like an app store. Among the countless
available plugins, we will focus on FindBugs (or FindSecBugs), which offers four
different quality profiles for Java. Their strength lies in the fact that among the

10

2.6 – SonarQube

various rules, they have specific ones for identifying vulnerabilities in the code.
FindSecBugs has 141 bug pattern and it can be integrated in IDE, or can run
locally, or (in our case) can be integrated with SonarQube. The tool has been
developed keeping in mind the top 10 published by OWASP (OWASP top 10: 2021)
and also CWE (Common Weakness Enumeration)[17]. Now we will focus on a
specific rule, the one of SQL Injection, it it called “Potential SQL Injection”, it
refers to standard Java (Java vanilla) and it is different from the other rules that
has a similar name (starting with “Potential SQL Injection”) because those rules
refer to other framework such as Hibernate or JPA and so on. As we can read
from their website: “The input values included in SQL queries need to be passed
in safely. Bind variables in prepared statements can be used to easily mitigate the
risk of SQL injection”[18]. We are focusing on this rule because this is the one used
by our tool to distinguish which vulnerabilities it is able to fix.

11

12

Chapter 3

State of art

In this chapter it will be discuss the state of the art of tools that are capable of
automatically fixing vulnerabilities. This was the first step to understand what the
market offers, after this chapter we will discuss the various solutions considering
their pros and cons. We will start from SAST, and then we will move on to the
latest solutions that are based on Artificial Intelligence: ChatGPT.

3.1 SAST tool, automatic fixing
As we said before SAST are tools capable of spotting vulnerabilities inside the source
code. However, most of them are not capable of solving the issue. For example
SonarQube can find some problem inside the code describing the vulnerability and
possible attacks, but it cannot fix the code automatically. Anyway, developers
are recently attempting to integrate features into their products to automatically
correct some vulnerabilities. Considering that coding, despite the existence of
standards, is a highly creative process, this implies that every program is different
from another, even if they perform the same task. It is easily evident that fixing
every vulnerability in every type of code is almost impossible, as there will always
be cases that cannot be resolved without human intervention. Now, it will be
reported some of the best solutions according to Gartner [19]. As we can read from
their page, the market is evolving day by day, so everyday the ranking of a product
could change.

3.1.1 Mend.io (formerly WhiteSource)
Mend.io is a company that offers various services, one of the most intriguing is
Mend SAST because in their page we can read about its functionalities and it
is said to be capable of fixing some vulnerabilities and there is also a picture

13

State of art

showing it [20]. Furthermore, there is a demonstrative video at this link: https:
//www.mend.io/mend-platform/?wvideo=zmkarqybre. Standing to what others
say:

• “Mend (formerly WhiteSource) does a great job of that and we had quite a
few when we first put this in place. Mend does a very good job of finding the
open-source, checking the versions, and making sure they’re secure” [21];

• “The remediation-centric approach (automated remediation being the auto-
matically created pull requests with the appropriate lines of code to be changed
to resolve the issue) is a game-changing innovation.” [22];

• “Mend has a security research team to find and evaluate vulnerablities faster
than the entries in the NVD database” [23];

In an email we asked for having more information regarding how the tool operate,
they only told us that the product is capable of doing all the stuffs that was written
in their site. Basically it is able to fix the source code, and that they have started
working keeping in mind the top ten produced by OWASP (OWASP top 10: 2021).
This is a great step forward because all the other softwares usually can sanitize
only the dependencies. Continuing the research on this company, it was discovered
that the tool was not always able to fix vulnerabilities and still limited itself to a
few simple cases.

3.1.2 Veracode fix

At the time of writing, Veracode is considered the best solution according to
Gartner ranking [19]. It is a solution that offers both SAST and DAST. In June
2023, the development team decided to integrate a new feature called “Veracode
Fix”, which, leveraging machine learning, will become capable of automatically
fixing code vulnerabilities. This will be based on artificial intelligence, similar to
the one of ChatGPT, but of course, it also requires a good training dataset [24].
The suggested fixes come from the real word, and the team continuously updates
this set. Again we have a video showing a demo: https://share.vidyard.com/
watch/gYTrj7MW1uUtrYqCBPsURR?.
The problem is that this features came out in June and our deadline to decide what
to do next was the beginning of May, at that time Veracode had released a demo
of this functionalities, but it was not so powerful. It was not able to fix a SQL
injection for example. As other tool at that time, it was able to fix vulnerabilities
in the dependencies.

14

https://www.mend.io/mend-platform/?wvideo=zmkarqybre
https://www.mend.io/mend-platform/?wvideo=zmkarqybre
https://share.vidyard.com/watch/gYTrj7MW1uUtrYqCBPsURR?
https://share.vidyard.com/watch/gYTrj7MW1uUtrYqCBPsURR?

3.1 – SAST tool, automatic fixing

3.1.3 CheckMarx SAST
CheckMarx SAST is the second one in Gartner ranking [19], we discovered that
actually it is not capable of fixing automatically. Its points of strength are absolutely
providing a great integration with GitLab and GitHub (in the DevSecOps workflow)
and also sorting issue according to their criticality [25].

Dev Ops

Plan

Create

Verify

Package

Release

Configure

Monitor

Secure

Govern

Manage

Figure 3.1: GitLab DevSecOps workflow [26]

Here there is a video demonstration on how CheckMarx SAST works https:
//www.youtube.com/watch?v=pNlxH07iRZY.

3.1.4 Rapid7 InsideAppSec
Differently from the other this is a DAST tool, it is integrated in DevSecOps
workflow like the others. It is said to be capable of recognising more than 95
different vulnerabilities. Its peculiarity is that is capable of making “Attacks
replay”, it means that directly from the generated report anyone can recreate
the attack to exploit that specific issue. This makes easier the fixing procedure.
Despite all those useful features, it does not fix automatically.

3.1.5 Snyk Code and Sourcegraph
We will discuss Snyk Code [27] and Sourcegraph [28] together because they have
one common feature: fixing automatically dependencies. Often, programmers use
existing libraries to assist themselves and avoid rewriting everything from scratch.
However, in general, not all introduced dependencies are necessarily secure. In fact,
if there is a vulnerability in the library’s code, it could have repercussions on the
application that uses it. To address this type of vulnerability, we must be careful
about how libraries are used (if we are lucky the vulnerable part of the code may

15

https://www.youtube.com/watch?v=pNlxH07iRZY
https://www.youtube.com/watch?v=pNlxH07iRZY

State of art

not be used), and unfortunately, in some cases, there is no choice but to wait for a
patch to be released.

These two tools do just that: if they find dangerous dependencies for which an
update is available, they perform it. Typically, it is sufficient to change the version
number, for example, from “version 1.2.1” to “version 1.2.2”. Clearly, doing
this kind of work on huge amounts of libraries could be time-consuming, so having
tools that automate this process is convenient, but unfortunately, it is not what we
are interested in for the purposes of this thesis.

3.2 ChatGPT

3.2.1 ChatGPT and coding
With the advent of AI, the way we program has been revolutionized. There are now
products like ChatGPT by OpenAI, which can interpret, generate, and/or correct
the code we give as input. Recently, large-scale language models (LLMs) have also
been developed, trained on massive datasets containing both human conversations
and numerous examples of code. This has made AI increasingly proficient over
time in communicating with us and even working on source code [29]. From this,
projects like GitHub Copilot have emerged, capable of directly assisting us in the
programming phase. The more code we write, the more precise this AI becomes
and it can “emulate” our style.
We have tried ChatGPT to see how capable it is in fixing vulnerabilities. Only
giving to it the vulnerable code, without adding anything else, the AI detects
the vulnerability and fix it accordingly to what the user has asked. The response
unfortunately was not always the same, so sometimes it was the fixed code, while
other times it was the definition of the vulnerability found in the code. The former
could be very helpful, while the latter could lead to serious problem if integrated
in a tool that must correct the source code.

Another test was done on some common vulnerabilities present in a git repository
[30], ChatGPT-3 was capable of detecting 213 vulnerabilities, much more than
Snyk that only found 99 vulnerabilities. Both tools found many false positive, but
anyway this experiment let us understand how powerful is this AI [31]. Just to let
the user understand, we are reporting an example in Java:

1 c l a s s U t i l s
2 {
3 // Function to s e r i a l i z e an ob j e c t and wr i t e i t to a f i l e
4 pub l i c s t a t i c void S e r i a l i z e T o F i l e (Object obj , S t r ing f i l ename)
5 {
6 t ry

16

3.2 – ChatGPT

7 {
8 FileOutputStream f i l e = new FileOutputStream (f i l ename) ;
9 ObjectOutputStream out = new ObjectOutputStream (f i l e) ;

10

11 // S e r i a l i z a t i o n o f the ob j e c t to f i l e
12 System . out . p r i n t l n (" S e r i a l i z i n g " + obj . t oS t r i ng () + " to

" + f i l ename) ;
13 out . wr i teObject (obj) ;
14

15 out . c l o s e () ;
16 f i l e . c l o s e () ;
17 }
18 catch (Exception e)
19 {
20 System . out . p r i n t l n (" Exception : " + e . t oS t r i ng ()) ;
21 }
22 }
23

24 // Function to d e s e r i a l i z e an ob j e c t from a f i l e
25 pub l i c s t a t i c Object Dese r i a l i z eFromFi l e (S t r ing f i l ename)
26 {
27 Object obj = new Object () ;
28

29 t ry
30 {
31 Fi leInputStream f i l e = new Fi leInputStream (f i l ename) ;
32 ObjectInputStream in = new ObjectInputStream (f i l e) ;
33

34 // D e s e r i a l i z a t i o n o f the ob j e c t to f i l e
35 System . out . p r i n t l n (" D e s e r i a l i z i n g from " + f i l ename) ;
36 obj = in . readObject () ;
37

38 in . c l o s e () ;
39 f i l e . c l o s e () ;
40 }
41 catch (Exception e)
42 {
43 System . out . p r i n t l n (" Exception : " + e . t oS t r i ng ()) ;
44 }
45

46 re turn obj ;
47 }
48 }

List of Codes 3.1: Java test on ChatGPT-3

Given that code, ChatGPT generated the follwing response:

17

State of art

Vulnerabilities Detected:

1. Insecure Deserialization: Deserializing untrusted data can lead to
remote code execution.

2. Insecure File Permissions: The file being written to or read from may
have insecure permissions, allowing unauthorized access.

This example is taken from the test described above [31]. It is crucial to highlight
this test was made using ChatGPT-3, nowadays there is ChatGPT-4 that is even
more sophisticated.

3.2.2 ChatGPT IDE integrations
To help developers, many plugins were introduced for the IDE, among them we are
reporting the most significant one:

• CodeGPT is an extension for IntelliJ that allows you to send selected code
directly from the IDE to ChatGPT, which can then correct it in case you are
interested in fixing bugs or generate tests [32].

• As for Visual Studio Code, there is GPT coder, which, however, is not
capable of having ChatGPT evaluate the code but can interact with it to
generate code based on a description provided by the user [33].

Unfortunately, none of this tool is capable of automatically fixing the source code.
Indeed, the former asks to ChatGPT to optimize the code and the response will
contain the fix made by the AI but this is done randomly. It means that in some
cases it is a non-vulnerable version, but in many other cases it is an optimization
related to performance, that has nothing to do with the security of the source code
(this is a problem of all the AI, it will be explained better in the next chapter).
The latter is not capable of fixing the code, it can “only” generate new methods.

18

Chapter 4

Taken choices

As it can be seen from the previous chapter, none of the solutions available on the
market is truly capable of automating the fixing process. For this reason, it has
been decided to develop a tool from scratch. To do this, there are two viable paths:

• AI (Artificial Intelligence), ChatGPT;

• standard code;

In this chapter, both of these possibilities will be explained, highlighting their pros
and cons.

4.1 ChatGPT integration
After analyzing the capabilities of OpenAI’s AI, it was decided to conduct tests to
understand how it performed with various examples. In this case, there are two
possible options:

1. Open the browser and send the request through chat.

2. Use the APIs.

Using the first solution has several limitations, as the user does not have freedom to
choose the AI’s behavior. The second option allows for a higher level of configuration.
In both cases, being a language model, the response can vary even if the question
remains the same.

4.1.1 ChatGPT from the browser
The browser approach is straightforward, requiring only an account to query
the AI. ChatGPT (version 3.5) is capable of generating solutions for various

19

Taken choices

vulnerabilities in many programming languages, although it does so with limitations.
For instance, if the problem is already known, you can send the code and ask it to
fix that particular vulnerability. The response is generally quick, although it may
occasionally get blocked due to excessive requests. However, when developing a
tool, it is much simpler to invoke the APIs.

4.1.2 OpenAI API

This solution provides users with various levels of customization. You can choose the
model and version that should generate the response, adjust various parameters
that control the AI’s freedom during generation (e.g., temperature), and instruct
the model on how to behave when generating a response (e.g., generate the response
as if you were an experienced programmer). All these factors help tailor requests
and make them more precise. Moreover, adjusting the parameters also means
trying to limit the variation in responses.

4.1.3 Results

The results obtained show that the second approach is the better one. In both cases,
SQL Injection, XSS, Command Injection, and Path Traversal vulnerabilities were
corrected in many programming languages, such as JavaScript, Java, PHP, and
more. To test the APIs, a Python script was written to connect to the APIs using
an auth-token. The AI was asked to fix SQL Injection with the question “Can you
fix the SQL injection in this code?” The response was then analyzed with various
degrees of temperature. It was observed that reducing this parameter made the
responses much more deterministic. However, it often resulted in incorrect responses.
So, reducing the AI’s freedom too much led to consistently identical responses
to the question. In seeking a middle ground, it was noticed that unfortunately,
the response shifted from being static and incorrect directly to a dynamic version.
Therefore, the middle ground was not achievable. It was also observed that the
APIs were quite slow. It took 3 hours to perform 100 tests because each request
took at least 30 seconds and often failed, requiring a retry. However, the results
were quite positive, as out of 100 tests, the AI only responded incorrectly 8 times
(incorrect code or a response containing the vulnerability’s definition).

20

4.1 – ChatGPT integration

Figure 4.1: ChatGPT results.

Once the testing phase was completed, the pros and cons of the APIs were studied.
Pros:

• Corrects many vulnerabilities.

• Corrects in many different programming languages.

• Improves with updates from OpenAI.

Cons:

• Often fails and requires repeating the question in response.

• Takes approximately 30 seconds for each response.

• Requires an account to invoke the APIs, and there is a small cost for each
token sent and received.

• Code to be submitted needs to be selected for privacy reasons (loses the great
potential of ChatGPT to fix various vulnerabilities using existing libraries).

• Token limit for each question.

• The response changes even if the question remains the same.

• Being tied to OpenAI, it’s uncertain how the company will behave with the
APIs (changes, removal).

21

Taken choices

4.2 Standard code
Given all the various flaws of AI, it was decided to abandon that path and focus
on standard code. Developing a new application from scratch solves many of
the problems seen before, such as latency, privacy concerns, and also because the
effort required to select pieces of code to send to ChatGPT (again, for privacy
reasons) or to directly solve the problem with a new tool is equivalent. However,
there are also drawbacks to this approach. In fact, AI is capable of understanding
and resolving almost any vulnerability, while writing code capable of performing
this type of processing would take too much time. For this reason, some choices
have been made to make this thesis feasible.

4.2.1 Choosen vulnerability
As for the vulnerability, SQL Injection was chosen, which still ranks third in the
OWASP ranking (Chapter 2.2). In fact, if present in the code, it could be used
for attacks with multiple purposes. In the best case, it could lead to a Denial of
Service (DOS) attack, but in the worst cases, it could also be exploited to obtain
users’ private data. Clearly, it was necessary to focus on a single programming
language, and for this reason, Java was chosen. It is one of the most widely
used languages in web development. It was decided to address only the vanilla
version of this vulnerability, i.e., the case where parameters are concatenated
into a statement that is then passed to the database, without the use of plugins
(SpringBoot, Hibernate, JdbcTemplate, etc.).

4.2.2 Choosen language
Once the vulnerability was chosen, it was also necessary to decide in which language
to write the tool. To keep this phase from becoming too resource-intensive, an
object-oriented language was needed. Since there was no need to work with network
connections (for which Python would have been suitable), Java was chosen. This
language has many libraries that can assist during programming, and since the
goal is to fix SQL Injection in Java, it makes it easier to attempt code parsing.

22

Chapter 5

Development of the tool

As is evident from the previous chapter, it was decided to develop the tool from
scratch in Java so that it could automatically correct SQL Injections in Java
code. Before proceeding with the actual development, it is important to discuss
the structure of the following chapter. Firstly, the idea will be described, then
the various libraries used will be introduced, and finally the actual code will be
presented. Talking of the last one, it will be analysed the main logic and and the
integration with git.

5.1 The idea
To address this issue, the first step was to study the type of vulnerability and
attempt to develop an algorithm by outlining the necessary steps to tackle the
entire process. It was assumed that:

• the input would consist of a report (from SonarQube) containing various code
vulnerabilities.

• the output would be shown using Git.

Analyzing how to fix a SQL Injection (Chapter 2), it was evident that certain steps
were the same each time, so it was possible to design an algorithm. However, there
was another criticality: Java had to be able to understand other Java code because
before fixing each vulnerability, it’s necessary to comprehend the problem at the
code level. Therefore, it was essential for Java to be able to parse other Java files
(this will be addressed in the next section). Once this problem was solved, we could
begin to consider the various steps to be executed in summary:

1. Read the vulnerable line.

2. Change the type to PreparedStatement (if it’s not already).

23

Development of the tool

3. Recursively search for all parameters used in the SQL query, simultaneously
saving those that need to be set in the final part. This mean that starting
from the vulnerable line a new replacement, consisting of a fixed line, is saved.
Then all the parameters involved in the query are studied and for each line
where they are involved is produced a replacement’s line (if needed). Each
parameter in the new replacement is searched in this way recursively (saving
new fixed line). Whenever a new variable that must be set later is found, it is
saved.

4. Replace all vulnerable lines with revised versions. All the replacements saved
at point 3 are applied.

5. Add the setting part: stmt.setString(1, username).

6. Add the execute line.

As it can be seen from the above list, some clarifications need to be made. The
first one is about the type of Statement present in the code:

• Completely vulnerable query, thus having a Statement that needs to be
changed to PreparedStatement.

• Partially vulnerable query, with a poorly written PreparedStatement, so it
needs to be refined, and the order of variables in the setting phase must not
be altered.

Other cases to be handled are all the forms in which each vulnerable line may
appear. It could be a variable declaration or a simple assignment. In addition,
the result of the execution is sometimes not useful (“INSERT”) and other times
essential (“SELECT”).

Furthermore, it’s necessary to consider that variables must be studied; it must
be determined what comes from the user and what is already present in the code.
It’s also important to pay attention to various scopes; a variable may be used in
multiple places, and when modifying it, it’s crucial that it can still be visible in
subsequent usages. Moving the declaration of a variable inside an “if” statement
will make it no longer visible outside.

1 pub l i c void example (i n t a) {
2 St r ing r e s u l t = new St r ing () ;
3

4 i f (a%2==0){
5 r e s u l t = "EVEN" ;
6 } e l s e {
7 r e s u l t = "ODD" ;
8 }
9 System . out . p r i n t l n ("Number i s : " + r e s u l t) ;

24

5.2 – Dependencies

10 }

List of Codes 5.1: Java example of variable used in different scopes

In this case defining “result” at the beginning is fundamental, if the code was like
this, then there would have been a compilation error:

1 pub l i c void example (i n t a) {
2 i f (a%2==0){
3 St r ing r e s u l t = "EVEN" ;
4 } e l s e {
5 r e s u l t = "ODD" ;
6 }
7 System . out . p r i n t l n ("Number i s : " + r e s u l t) ;
8 }

List of Codes 5.2: Java wrong example of variable used in different scopes

This because “result” is not defined both for the else clause and for the body of
the method. the only place where we can use this variable is inside the if. All
these cases significantly complicate the algorithm above but must be managed to
avoid altering the program’s functionality and the behavior of a query.

5.2 Dependencies
In this section we will discuss the dependencies used in the code, some of them
have a key role, because they are involved in the core logic, others are used only
for helping during input/output.

5.2.1 JavaParser
JavaParser [34] is the library that addresses the first major challenge of the entire
project: enabling Java to parse Java code. We will now delve into explaining how
this library works because it plays a truly pivotal role; in fact, the entire project
revolves around it. Let’s begin by stating that it is a project based on the work of
Sreenivasa Viswanadha and Júlio Vilmar Gesser [35], which commenced in 2008.
Since then, this library has been consistently updated to align with various Java
updates.

Using this library, it is possible to provide a Java file, and then it will be parsed.
The obtained result is a CompilationUnit [36], the Java file in its parsed version,
i.e., essentially, its syntax tree. Therefore, there is a section dedicated to imports
(where other can be added). It is possible to search for one or more pieces of code
and then operate on them using streams.

Before proceeding, let’s also introduce the concept of Node. In this JavaParser,
everything inherits from this class. Every variable, code block, method, and

25

Development of the tool

CompilationUnit can be considered a Node. This type provides several useful
methods, such as “findAll()” and “findFirst()”, where you can specify what
you want to find within that node. There are methods like “getParentNode()”
to get the node before the one under analysis. For example, if the Node is an
“if” statement within a method, “getParentNode()” would return the method’s
body. Then there are also methods like “isAncestorOf()” to determine if one
node is the parent of another one. Another valuable method is “replace(Node)”,
which allows replacing nodes. The Node also contains information about the Range,
basically the starting/ending lines and columns.

In addition to the Node, we also have the MethodDeclaration, which represents
the declaration of a method. It includes the method’s arguments, return type, and
the method’s body, which is a BlockStmt.

To understand what it is, it is needed to first define what a Statement [40] is.
It’s a class that extends Node and can contain one or more lines of code. Statements
are generic, but from this class, several specific types inherit:

• BlockStmt: One or more lines of code enclosed in curly braces {...}. Inside,
there are other Statements, so multiple BlockStmts can be nested. It has very
useful methods that allow you to obtain a NodeList, which is a list of Nodes
on which you can perform operations as if it were a regular list. The most
important method is “getStatements()”, which allows you to get this NodeList
[41].

• IfStmt: It’s a BlockStmt but also contains information about the condition
and any “else if” or “else” clauses present afterward [42].

• WhileStmt: This is also a BlockStmt with loop conditions [43].

• DoStmt: Similar to WhileStmt [44].

• ForStmt: It also includes various conditions and a BlockStmt [45].

• TryStmt: It’s the Statement for a try block [46].

• ExpressionStmt: These are Statements that contain an Expression within
them, usually a single line of code [47].

To clarify, let’s now discuss Expressions [48], which are the “units” of code. Like
Statements, Expressions are extended by other classes:

• AssignExpr: It represents simple assignments like “a = 5” or “a = b+1”.
They are characterized by the operator used, which can be various, such as
“+=”, “=”, “-=”, “++”, and also by the variables involved, which are NameExpr
[49].

26

5.2 – Dependencies

• NameExpr: It’s an expression that represents a variable, in all instances except
during declaration [50].

• VariableDeclarationExpr: This is the Expression that identifies the decla-
ration of new variables, like “int a = 5” or “String s = new String()”. Inside,
they have a VariableDelcarator, which is how the declaration is defined. During
the definition, the variables are not considered NameExpr [51].

• MethodCallExpr: It represents the invocation of a method, like “a.getName()”.
It can have multiple components: arguments, which are NodeList<Expression>
(a list of Expressions), representing the parameters passed to the function;
scope, which can be present or absent (it’s optional), referring to the variable
to which a method refers. For example, “a.getName()” has “a” as its scope,
while “getVar()” has no scope. Finally, there’s the method name, which can
be obtained as a String or a SimpleName, that is another type for defining
names [52].

• ConditionalExpr: It represents a condition in the code using the “?” operator,
i.e. String a = b.equals(“Hello”) ? b : “World!”. It is composed of
three Expressions: condition, then and else [53].

• StringLiteralExpr: It is a String in the code, i.e. String sql = “SELECT *
FROM table”, the String “SELECT * FROM table” is a StringLiteralExpr
[54].

In general, both Expressions and Statements have methods for casting them to
other types and boolean functions to determine if a certain Expression or Statement
is of a particular type. For example, “isAssignExpr()” or “isForStmt()”.

Now that we have analyzed the components of this library, let’s discuss the
TypeSolver [55]. It’s the component that allows to understand variable types. In
the tool, it was used a CombinedTypeSolver [56], and below is its configuration.

1 pub l i c c l a s s Modules {
2 pub l i c s t a t i c S t r ing pro jectPath ;
3 pub l i c s t a t i c S t r ing s r c ;
4 pub l i c s t a t i c JavaParserTypeSolver typeSo lver ;
5 pr i va t e JavaSymbolSolver symbolSolver ;
6

7 pub l i c Modules (S t r ing path , S t r ing javaF i l e , L i s t <Str ing >
dependenc ies) throws IOException {

8 pro jectPath = path ;
9 s r c = pro jectPath+j a v a F i l e ;

10

11 /∗Some l i n e s where removed because not u s e f u l to understand
the type s o l v e r ∗/

12

27

Development of the tool

13 typeSo lver = new JavaParserTypeSolver (new F i l e (s r c)) ;
14 CombinedTypeSolver combinedTypeSolver = new CombinedTypeSolver () ;
15 combinedTypeSolver . add (new Ref l e c t i onTypeSo lve r ()) ;
16 combinedTypeSolver . add (typeSo lver) ;
17 f o r (S t r ing dependecy : dependenc ies) {
18 combinedTypeSolver . add (new JarTypeSolver (dependecy . s t r i p ())) ;
19 }
20 Parse rCon f i gurat ion par s e rCon f i gu ra t i on = new Parse rCon f i gurat ion

() ;
21 t h i s . symbolSolver = new JavaSymbolSolver (combinedTypeSolver) ;
22 par s e rCon f i gu ra t i on . setSymbolResolver (t h i s . symbolSolver) ;
23 j avaParser= new JavaParser (pa r s e rCon f i gu ra t i on) ;
24 }
25 }

List of Codes 5.3: Configuration of TypeSolver

As we can see, to be more precise the one in charghe of understanding the types is
the JavaSymbolSovler [57], that accept as parameters the TypeSolver. In this
code we have:

• src is the directory containing the various “.java” files. These files are needed
to understand if the type in question has been defined by the user. To do this,
you must grant JavaParser access to all the source files;

• ReflectionTypeSolver is a type that instructs JavaParser to search for
various types among the passed files [58];

• dependencies are all the Jar files required for a program to function (external
libraries). All of these must be provided; otherwise, JavaParser will struggle
to interpret types from the libraries, such as HttpRequest, for example;

Another peculiarity of JavaParser is the Visitor class, it can be configured to find
whatever we want in the code, here there is an example:

1 pr i va t e c l a s s MethodVisitor extends VoidVis itorAdapter<Map<Str ing
, Method>> {

2 pr i va t e Module mod ;
3

4 pub l i c MethodVisitor (Module m) {
5 t h i s .mod = m;
6 }
7 @Override
8 pub l i c void v i s i t (MethodDeclaration m, Map<Str ing , Method> r e s) {
9 r e s . put (m. getNameAsString () , new Method (m, t h i s .mod)) ;

10 }
11 }

List of Codes 5.4: Example of Visitor

28

5.2 – Dependencies

In this code we can see that, starting from a Module, that in the tool is a class that
contains a CompilationUnit, we can extract all the MethodDeclaration inside
this CU, and save them inside a Map (this has as key the name of the method and
as value a Method, a class created in order to store the MethodDeclaration and
also other information).

5.2.2 StreamEx
StreamEx [59] is a library that addresses the limitations encountered in classic Java
Stream. The main reason for using it was the ability to define additional conditions
in the “distinct()” operation. Normally, as also stated in the documentation
[60], to perform comparisons between elements, the “equals()” method of the
object under analysis is invoked. In JavaParser, when “equals()” is invoked, it
compares the type first, so whether it’s a Statement, Expression, or anything
else, and then the content. In our case, this allows to take two different pieces
of code and compare them, when the two pieces of codes contain the same code,
they would be considered equals (independently from the position in the code).
However, in our case, there are times when we need to ensure that a piece of code
is not repeated multiple times, so we need to compare the Range as well (i.e., the
position in the code). To solve this problem, there are multiple approaches. The
first is to modify the equals method defined in the various classes, but then it is
lost the ability to compare pieces of code that are different, meaning that if two
NameExpr instances (i.e., two variables), that don’t come from exactly the same
code location, are compared the result would be “Not equals”. However, this
feature is very useful, especially for identifying identical variables in different parts
of the code. The second solution (that is also the one adopted) is to use StreamEx,
so that it can be specified what to perform the comparison on, in this way you do
not need to modify the “equals()” method. Here there is an example:

1 s t a t i c L i s t <Part> s p l i t S t r i n g (Express ion expr , Method method) {
2 re turn StreamEx . o f (expr . f i n d A l l (Express ion . c l a s s))
3 . f i l t e r (e−> e . i s S t r i n g L i t e r a l E x p r () | | e . isNameExpr ())
4 .map(e −> getB igge rExpre s s i onUnt i lOr i g in (expr , e))
5 . d i s t i n c t (e −> Arrays . a s L i s t (e , e . getBegin () . get () , e . getEnd () .

get ()))
6 .map(e −> new Part (expr , e , method))
7 . c o l l e c t (C o l l e c t o r s . t o L i s t ()) ;

List of Codes 5.5: StreamEx example of distinct()

This function starting from an Expression, finds all the inner Expressions, then
it creates a Stream (using StreamEx) and then operates on the results. Firsty
we check rather it is a StringLiteralExpr or a NameExpr. After this filtering
operation, we get the biggest Expression, before the one passed to the function,

29

Development of the tool

in this case before expr. Now we want to remove the duplicated results. For
example in case both the then and the else clause of a ConditionalExpr are a
StringLiteralExpr, then getting the bigger Expression would lead to have the
same ConditionalExpr twice. This is the reason why, a distinct() is needed,
now we will explain the reason behind the usage of the Begin and the End. In
the same Expression we may have variable repeated, if those are used inside the
same Expression the distinct will cut out one of them, using the position we will
additionally compare this information in order to know if they are actually the
same Expression. The rest of the code will be explained in the section dedicated
to the logic of the tool.

5.2.3 json
This library is not essential; it is used for input and output purposes, can read and
manipulate objects in JSON format, and can convert them to CSV [61]. It can also
perform the reverse operation. Since the report extracted from SonarQube is in
JSON, it is very convenient to use this package. It is also useful to print out the
CSV containing the result.

1 pub l i c void readCSV () throws IOException {
2 St r ing csv = new St r ing (F i l e s . readAl lBytes (Paths . get (t h i s .

vu lnerab i l i tyCSV))) ;
3 JSONArray j son = CDL. toJSONArray (csv) ;
4

5 . . .
6

7 }

List of Codes 5.6: Example of usage json

5.2.4 Maven Invoker Plugin
Maven Invoker Plugin [62] is also a library primarily used for input-related
reasons. As can be seen from the section regarding TypeSolver, all the JAR files
are required to make the application work, including those related to dependencies.
Through this library, it is possible to launch Maven commands directly from
Java. Below is the code to obtain the list of complete paths for each JAR of the
dependencies. This process is carried out for every “pom.xml” file found in the
project.

1 pr i va t e S t r ing [] mavenDependencies (S t r ing b u i l d e r) throws
MavenInvocationException {

2 St r ing mavenHome = System . getenv ("MAVEN_HOME") ;

30

5.2 – Dependencies

3 i f (mavenHome == n u l l) throw new I l l e g a l S t a t e E x c e p t i o n ("To use
maven you must s p e c i f y an ENV v a r i a b l e that po int to the Maven
d i r e c t o r y ") ;

4 Invocat ionRequest r eque s t = new Defau l t Invocat ionRequest () ;
5 r eque s t . setPomFile (new F i l e (b u i l d e r)) ;
6

7 r eque s t . s e tGoa l s (C o l l e c t i o n s . s i n g l e t o n L i s t (" dependency : bui ld−
c l a s spa th ")) ;

8

9 Invoker invoker = new Defau l t Invoker () ;
10 invoker . setMavenHome (new F i l e (mavenHome)) ;
11

12 ByteArrayOutputStream output = new ByteArrayOutputStream () ;
13 PrintStream printStream = new PrintStream (output) ;
14

15 InvocationOutputHandler outputHandler = new PrintStreamHandler (
printStream , t rue) ;

16 InvocationOutputHandler e r rorHandler = new PrintStreamHandler (
printStream , t rue) ;

17

18 r eque s t . setInputStream (InputStream . nul l InputStream ()) ;
19 r eque s t . setOutputHandler (outputHandler) ;
20

21 Invocat ionResu l t r e s = invoker . execute (r eque s t) ;
22

23 List <Str ing > l i n e s = Arrays . a s L i s t (output . t oS t r i ng () . s p l i t (" \n "))
;

24 i n t indexDependec ies = l i n e s . indexOf (l i n e s . stream () . f i l t e r (l−> l .
conta in s (" Dependencies ")) . f i n d F i r s t () . get ()) + 1 ;

25 re turn l i n e s . get (indexDependec ies) . s p l i t (" ; ") ;
26

27 }

List of Codes 5.7: Maven dependencies Jar

As we can read from line 7, the command executed is “mvn dependency:build-classpath”

5.2.5 Gradle Tooling API
Gradle Tooling API [63] is the equivalent of Maven in Gradle. In this case, the
process is slightly more complex because before proceeding, we need to define a
new task in the “build.gradle” file, specifically to generate the list of JAR files
required to initiate and execute the process.

1 pr i va t e Lis t <Str ing > gradleDependenc ies (S t r ing b u i l d e r) throws
IOException {

2

3 GradleConnector connector = GradleConnector . newConnector () ;
4 St r ing gradleHome = System . getenv ("GRADLE_HOME") ;

31

Development of the tool

5 i f (gradleHome == n u l l) throw new I l l e g a l S t a t e E x c e p t i o n ("To use
g rad l e you must s p e c i f y an GRADLE_HOME that po int to the Gradle
i n s t a l l a t i o n d i r e c t o r y ") ;

6 connector = connector . useGradleUserHomeDir (new F i l e (gradleHome)) ;
7 F i l e bu i ld = new F i l e (b u i l d e r) ;
8 connector . f o r P r o j e c t D i r e c t o r y (bu i ld . g e tParentF i l e ()) ;
9 ProjectConnect ion connect ion = connector . connect () ;

10

11 GradlePro ject p r o j e c t = connect ion . getModel (Grad lePro ject . c l a s s) ;

12 i f (p r o j e c t . getTasks () . stream () . noneMatch (t−> t . getName () . equa l s ("
pr in tDependenc i e s_Vulnerab i l i tyF ixe r "))) {

13 Fi l eWr i t e r wr i t e r = new Fi l eWr i t e r (bui ld , t rue) ;
14 St r ing taskToAdd = " " "
15 task pr in tDependenc i e s_Vulnerab i l i tyF ixe r {\ r
16 doLast {\ r
17 c o n f i g u r a t i o n s . runtimeClasspath . each { p r i n t l n i t }\ r
18 }\ r
19 }
20 " " " ;
21 wr i t e r . wr i t e (taskToAdd) ;
22 wr i t e r . c l o s e () ;
23 }
24

25 ByteArrayOutputStream output = new ByteArrayOutputStream () ;
26 t ry {
27 // Create a launcher f o r the ’ c l ean ’ task
28 BuildLauncher launcher = connect ion . newBuild () ;
29 l auncher . forTasks (" pr intDependenc ies ") ;
30

31 l auncher = launcher . setStandardOutput (output) ;
32

33 // Run the task
34 l auncher . run () ;
35 } f i n a l l y {
36 // Close the connect ion
37 connect ion . c l o s e () ;
38 }
39

40 re turn Arrays . a s L i s t (output . t oS t r i ng () . s p l i t (" \ r \n ")) . stream ()
41 . f i l t e r (d−> d . endsWith (" . j a r "))
42 . t o L i s t () ;
43 }

List of Codes 5.8: Gradle dependencies Jar

The task to add is the one inside the variable taskToAdd, firstly we check if this
task, called printDependencies_VulnerabilityFixer, already is in the file. If
it is, then nothing is added, otherwise the new task is added to the “buld.gradle”.

32

5.2 – Dependencies

After that, we execute the task and we get the list of Jars. This process is repeated
for each “build.gradle” file in the project.

5.2.6 Commons CLI
Commons CLI [64] is a necessary library for processing input parameters. It allows
you to define the parameters that will be used and then save them. In the case of
our tool, we have defined commands such as:

• “-d” or “-directory”, for the project directory, if not provided, it defaults to
the current working directory.

• “-s” or “-source”, for specifying where the files are located in the project passed
earlier, if not provided, it defaults to “src/main/java”.

• “-r” or “-report”, to specify the name of the file from which to take the initial
report; if not defined, it defaults to “report.csv”.

• “-out” or “-output”, the name of the report printed after execution, if not
present, it defaults to “Fixed_vulnerability.csv”.

Here there is the code to configure this parameters in the project:
1 Option input = new Option ("d " , " d i r e c t o r y " , true , " input

d i r e c t o r y ") ;
2 Option source = new Option (" s " , " source " , true , " java l i b r a r y

l o c a t i o n ") ;
3 Option repor t = new Option (" r " , " r epor t " , true , " r epor t f i l e name

") ;
4 Option output = new Option (" out " , " output " , true , " output name o f

the r epor t ") ;
5 Options opt ions = new Options () ;
6 opt ions . addOption (input) ;
7 opt ions . addOption (source) ;
8 opt ions . addOption (r epor t) ;
9 opt ions . addOption (output) ;

10 CommandLineParser c l i P a r s e r = new Defau l tParse r () ;
11 CommandLine c l i = c l i P a r s e r . parse (opt ions , args) ;
12 St r ing pro jectPath = c l i . getOptionValue ("d ") ;
13 St r ing j a v a F i l e s = c l i . getOptionValue (" s ") ;
14 St r ing vulnerab i l i tyCSV = c l i . getOptionValue (" r ") ;
15 St r ing outputReport = c l i . getOptionValue (" out ") ;
16

17 i f (pro jectPath != n u l l) {
18 t h i s . pro jectPath = projectPath ;
19 }
20 i f (! (t h i s . pro jectPath . endsWith (" / ") | | t h i s . pro jectPath . endsWith (

" \\ "))) {

33

Development of the tool

21 t h i s . pro jectPath += " / " ;
22 }
23 i f (j a v a F i l e s != n u l l) {
24 t h i s . j a v a F i l e s = j a v a F i l e s ;
25 }
26

27 i f (vu lnerab i l i tyCSV != n u l l) {
28 t h i s . vu lnerabi l i tyCSV = vulnerab i l i tyCSV ;
29 }
30

31 i f (outputReport != n u l l) {
32 t h i s . outputReport = outputReport ;
33 i f (! outputReport . s tartsWith (" \\ ") && ! outputReport . s tartsWith ("

/ ")) {
34 t h i s . outputReport = " / "+ t h i s . outputReport ;
35 }
36 }

List of Codes 5.9: Setting of commons CLI

5.2.7 Jgit
Jgit [65] is a library that allows to make Git calls directly from Java code. It
has been used for output purposes, and its functionality will be described later.
For now, let’s mention that to use it, it is sufficient to provide the username and
password, or preferably an access token valid for git.

5.2.8 GitHub API
GitHub API [66] is an added dependency for output purposes. Indeed, JGit is
unable to perform certain operations, so this library handles communication with
GitHub. Again, username and password/token are required to function. In our
case, this library manages “pull requests”.

5.2.9 Http Client
To perform “merge requests” in GitLab, the equivalent of GitHub’s “pull requests”,
we have chosen to directly query the APIs. Therefore, HTTP Client [67] is required
to interact with GitLab’s APIs. In this case as well, an access token is necessary.

5.3 Development, core logic
In this section, we will discuss the underlying logic of the program. As previously
mentioned, for simplicity, we will assume the following:

34

5.3 – Development, core logic

• the SonarQube report is available (and preferably has been filtered for false
positives);

• the project is already on Git and up-to-date (no commits are required);

That being said, we can proceed with the actual code description, keeping in mind
that the mechanisms handling input and output will be explained later.

5.3.1 VulnerabilityFixer
The first class to be initialized is the VulnerabilityFixer, its contructor takes
as input all the args given to main. At this point, as exposed in the previous
section (here), the commons CLI package will be capable of setting the needed
variables. After that piece of code, the modules variable will be instanciated. The
VulnerabilityFixer type exposes three methods:

1. readCSV, the one in charge of loading the report produced by SonarQube, the
list of vulnerabilities is also sorted according to the name of the file and then
to the line where it appears.

2. fix, responsible of instanciating each class of the vulnerabilities and applying
the fixing solutions.

3. exportResults, it is used to handle and print the result on Git and/or locally.

5.3.2 Modules, Module and Method
As the first step, the Modules variable is initialized, which receives the complete
path to the project to be fixed along with the name of the source code folder.
At this point, as can be seen from the schema mentioned above (this one), the
SymbolSolver and JavaParser are configured, which will be used globally to
interpret the Java code. This type is characterized by the following fields:

1 pub l i c c l a s s Modules {
2 pr i va t e Map<Str ing , Module> modules ;
3 pub l i c s t a t i c S t r ing pro jectPath ;
4 pr i va t e S t r ing s r c ;
5 pr i va t e JavaParserTypeSolver typeSo lver ;
6 pub l i c s t a t i c JavaParser javaParse r ;
7 pr i va t e JavaSymbolSolver symbolSolver ;
8 pr i va t e boolean al lModulesLoaded = f a l s e ;
9

10 . . .
11 }

List of Codes 5.10: fields of Modules

35

Development of the tool

Now we will analyse the variables not already discussed:

• modules is a map containing a Module, it is useful to get a module using its
name (its relative path);

• allModulesLoaded is a boolean used to know if all the Java files have been
loaded;

Before proceeding, it is needed to explain also the class Module. It is particularly
useful because it is the one containing the CompilationUnit. We are reporting its
initialization and its fields:

1 pub l i c c l a s s Module {
2

3 pr i va t e CompilationUnit cu ;
4 pr i va t e Map<Str ing , Method> methods ;
5 pr i va t e S t r ing name ;
6 pr i va t e Lis t <Str ing > importsToAdd = new ArrayList <>() ;
7 pr i va t e Modules modules ;
8

9 pub l i c Module (S t r ing projectPath , S t r ing f i l ePa th , Modules modules)
throws FileNotFoundException {

10

11 t h i s . modules = modules ;
12 t h i s . cu = Modules . j avaParser . parse (new F i l e (pro jectPath+f i l e P a t h)

) . ge tResu l t () . get () ;
13 t h i s . name =f i l e P a t h ;
14 t h i s . methods = new HashMap<Str ing , Method>() ;
15 new MethodVisitor (t h i s) . v i s i t (t h i s . cu , methods) ;
16 }

List of Codes 5.11: Module initialitation

This code is basically creating a new Module starting from a Java file (filePath
variable), we are also saving a reference to all the Modules. Then we are creating a
list with all the missing imports that are needed: importsToAdd. Finally we got
two instructions at line 15 and 16. The former is just a definition of a new Map,
that has as key a String and as value a class called Method. The former is the
usage of what we have seen before while talking of the visitors, basically “this
code” is extracting all the methods and is saving them inside this map. Now is
time to discuss about the Method class. Here there is the definition of each field
and also its constructor, we will summarize its usage and we will see the full details
when we will talk about the algorithm.

1 pub l i c c l a s s Method {
2 pr i va t e MethodDeclaration method ;
3 pr i va t e Lis t <Parameter> arguments ;
4 pr i va t e S t r ing seque l Index ;

36

5.3 – Development, core logic

5 pr i va t e Lis t <ExpressionStmt> variableToAdd ;
6 pr i va t e Map<VariableDec larat ionExpr , L i s t <ExpressionStmt>>

var iab leDec larat ionDependency ;
7 pr i va t e Map<VariableDec larat ionExpr , L i s t <Entry<ExpressionStmt ,

NameExpr>>> addedDeclarat ion ;
8 pr i va t e Lis t <Statement> d e l e t e L i s t ;
9 pr i va t e Map<ExpressionStmt , NameExpr> SQLNames ;

10 pr i va t e Map<VariableDec larat ionExpr , Set<Statement>>
i n i t D e c l a r a t i o n ;

11 pr i va t e Module module ;
12

13 pub l i c Method (MethodDeclaration method , Module module) {
14 t h i s . method = method ;
15 t h i s . arguments = t h i s . method . getParameters () ;
16 t h i s . var iab leDec larat ionDependency = new HashMap<>() ;
17 t h i s . addedDeclarat ion = new HashMap<>() ;
18 t h i s . variableToAdd = new ArrayList <>() ;
19 t h i s . d e l e t e L i s t = new ArrayList <>() ;
20 t h i s . SQLNames = new HashMap<>() ;
21 t h i s . i n i t D e c l a r a t i o n = new HashMap<>() ;
22 t h i s . module = module ;
23 }
24

25 . . .
26

27 }

List of Codes 5.12: definition of Method class

Starting from the top we got:

1. method is the MethodDeclaration, so what this Method class is describing;

2. arguments are what the method is accepting;

3. sequelIndex is a String that identify the name to give to the index used inside
the PreparedStatement during the setting phase. i.e., stmt.setString(index,
name), in this case “index” is the sequelIndex;

4. variableToAdd is a list of ExpressionStmt that contains all the new needed
variable, they will be initialized at the beginning of the method. e.g., if
sequelIndex is not defined, it will be added to this list.

5. variableDeclarationDependency is a Map containing as key a Variable-
DeclarationExpr, while as value it has a list of ExpressionStmt. This is
done to trace all the usage of a variable. For example if a variable is used four
times, then we will got its declaration as key and as value the four expession
where this variable is used.

37

Development of the tool

6. addedDeclaration is again a Map that contains all the information regarding
a specific VariableDeclarationExpr and the various ExpressionStmt. As
we will see, this is used to maintain the dependencies of the variables. So,
if the original developer has used only one variable and, every time, this is
riassaigned to avoid the declaration of a new one, then the tool will try to
mantain this behaviour, but to do so, it is needed to know the dependencies
of each declaration and their name (it will be analysed better).

7. deleteList is the list of the Statement that are no more needed and so they
can be removed.

8. SQLNames is again a variable to track all the name usage. It is fundamental in
case the tool have declared variables like this: “stmt”, “stmt_1”, “stmt_2”,
... , “stmt_n”. Whenever possible, it will try to replace each name with the
one with the lowest value;

9. initDeclaration, in case of a initialization of some properties of the Statement
(i.e., “statement.setMaxRows(int row)”) the tool will save those and will
put them in the correct place.

The constructor consists only in the creation of these Lists and Maps.

5.3.3 Vulnerability and SQLInjection
The tool was initially designed to correct all types of vulnerabilities. Unfortunately,
there wasn’t enough time to perform such extensive work. However, it was decided
to keep an abstract class called Vulnerability, which was intended to serve
as a wrapper for all other vulnerabilities. Currently, it is extended only by the
SQLInjection class. The parameters accepted by this class are as follows:

• The line where the vulnerability is located.

• The location, which is the module in which it is found.

• The modules variable, which is a list of all modules, providing access to more
general information and the ability to search within the entire codebase.

Once these parameters are accepted, the constructor of Vulnerability that accepts
all three parameters is called directly. Below is the definition of this class and its
corresponding constructor:

1 abs t r a c t c l a s s V u l n e r a b i l i t y {
2

3 protec ted i n t lineNumber ;
4 pr i va t e S t r ing l o c a t i o n ;

38

5.3 – Development, core logic

5 protec ted Method method ;
6 pr i va t e Modules modules ;
7 protec ted Module module ;
8 protec ted Statement stmt ;
9 protec ted List <Variable> v a r i a b l e s ;

10

11 pub l i c V u l n e r a b i l i t y (i n t l i n e , S t r ing l o ca t i on , Modules modules)
throws IOException {

12 t h i s . lineNumber = l i n e ;
13 t h i s . l o c a t i o n = l o c a t i o n ;
14 t h i s . modules = modules ;
15 t h i s . module = t h i s . modules . getModuleByName (l o c a t i o n) ;
16 t h i s . method= t h i s . module . getMethodFromLineNumber (t h i s . lineNumber)

;
17 t h i s . stmt = t h i s . module . l i n e F i n d e r (t h i s . lineNumber , t h i s .

lineNumber) ;
18 List <Express ion> e x p r e s s i o n s = JavaParserUt i l . e x t r a c t A l l V a r i a b l e s

(t h i s . stmt) ;
19 t h i s . v a r i a b l e s = e x p r e s s i o n s . stream () .map(Var iab le : : new) . c o l l e c t (

C o l l e c t o r s . t o L i s t ()) ;
20 }
21

22 pub l i c ab s t r a c t void f i x () ;
23 }

List of Codes 5.13: Vulnerability class

The input parameters are saved as protected so that the SQLInjection class can
also access them. Afterward, the getModuleBy method of Modules is used, which
searches for a specific module in a map by name, and if the name is not found,
it loads the new one. Once this operation is completed, the next step involves
extracting the Method on which to work from the module, and this is done using
the line of the vulnerability (line 17). Finally, the Statement is extracted starting
from the module. This operation concludes with a search for all the variables
(inside the Statement), which are then collected and saved in a list of Expression
objects. The choice here is Expression and not NameExpr because it should be
noted that variable declarations have only VariableDeclarationExpr. So, in the
case of a line like “int a = b+3”, if only NameExpr were extracted, we would
only get “b” without “a”. For this reason, the filtering operation selects both
NameExpr and VariableDeclarationExpr. Actually, it would be possible to cast
a VariableDeclarationExpr into a NameExpr, but doing so would result in the
loss of information about its origin in the code, such as its Range. Once this is
done, all these expressions are used to initialize a new class called Variable (which
will be discussed in the upcoming sections).

On the other hand, speaking of the SQLInjection class, let’s begin by saying
that it contains a variable inside it that defines its type: either DEFAULT or PARTIAL.

39

Development of the tool

This is solely to understand whether we are dealing with a vulnerability of type
Statement or PreparedStatement, respectively. In the latter case, there are many
other factors to consider, including the fact that the user might have already
defined some “setters”, and these need to be found and placed correctly. Instead of
providing readers with all the variables present in this class, we prefer to describe
only the main ones necessary for initialization (the others will be introduced as
needed during the explanation). The following is the code of the constructor for
this class:

1 pub l i c c l a s s SQLInject ion extends V u l n e r a b i l i t y {
2 enum SQL_INJ_VULNERABILITY{
3 DEFAULT,
4 PARTIAL
5 }
6 pr i va t e Parameters params ;
7 pr i va t e NameExpr queryVar iab le ;
8 pr i va t e ExpressionStmt exprStmt ;
9 pr i va t e S t r ing l e f t P a r t = " " ;

10

11 . . .
12

13 pr i va t e Lis t <Replacement> replacements ;
14 pr i va t e SQL_INJ_VULNERABILITY s q l V u l n e r a b i l i t y ;
15 pr i va t e S t r ing [] indexNames = { " index " , " i " , " indexParameters " , "

indexValue " } ;
16 pr i va t e S t r ing index ;
17

18 pr i va t e boolean acceptingReplacement = true ;
19

20 pub l i c SQLInject ion (i n t l i n e , S t r ing l o ca t i on , Modules modules)
throws IOException {

21 super (l i n e , l o ca t i on , modules) ;
22 Express ion expr ;
23 i f (t h i s . stmt . isReturnStmt ()) {
24 expr = t h i s . stmt . asReturnStmt () . ge tExpres s ion () . get () ;
25 } e l s e {
26 t h i s . exprStmt = t h i s . stmt . asExpress ionStmt () ;
27 expr = t h i s . exprStmt . getExpres s ion () ;
28 }
29 i f (t h i s . exprStmt != n u l l &&(expr . i sVar i ab l eDec l a ra t i onExpr () | |

expr . i sAss ignExpr ())) {
30 t h i s . l e f t P a r t = JavaParserUt i l . extractLeftPartFromExprAsStr ing (

t h i s . exprStmt) ;
31 t h i s . v a r i a b l e s . remove (0) ;
32 }
33 t h i s . rep lacements = new LinkedList <>() ;
34

35 t h i s . queryVar iab le = t h i s . v a r i a b l e s . remove (0) . asNameExpr () ;

40

5.3 – Development, core logic

36 // I f c l earParameter s i s used then need to r e c o n s t r u c t f o r a l l the
s e t t e r s

37 s ta r t IndexSearch () ;
38 t h i s . params = new Parameters (t h i s) ;
39 t h i s . params . s ta r tRecur s iveF ind () ;
40

41 i f (t h i s . s q l V u l n e r a b i l i t y == SQL_INJ_VULNERABILITY.PARTIAL)
42 s t a r t S e a r ch Fo r Se t t e r s () ;
43 }
44 }

List of Codes 5.14: SQLInjection constructor

As you can see, we immediately perform a check on the type of stmt, inherited from
Vulnerability, in order to proceed with the extraction of the Expression present
in it. Once this is done, the left side is “extracted” using a function defined in a
module called JavaParserUtil. Then, the first variable is removed from the list of
variables (remember that the first one on the left has already been saved). A list of
Replacements is initialized; these are the types responsible for the code changes
to be made. They have an original (what’s initially there) and a replacement
(what should be substituted); we will go into detail later. At this point, we take
the name given by the user to the Statement variable, for example, “statement”,
and save it into queryVaraible. Then, we proceed with the search for the name
to be given to a variable that will be used for setting (e.g., index). The code seems
interesting; here it is:

1 pub l i c void s ta r t IndexSearch () {
2 //Find an a v a i l a b l e name f o r s e t t e r index
3 i f (t h i s . method . hasSQLIndex ()) index = t h i s . method . getSQLIndex

() ;
4 e l s e {
5 f o r (S t r ing n : indexNames) {
6 i f (! t h i s . method . isThisNameVariable (n)) {
7 index = n ;
8 t h i s . method . setSQLIndex (index) ;
9 break ;

10 }
11 }
12 }
13 // I f none found i t e r a t e u n t i l one i s ok :
14 //Ex : index_1 , index_2 , index_3 , index_4 . . .
15 i f (index==n u l l) {
16 i n t i = 1 ;
17 do {
18 index = indexNames [0]+ "_"+i ++;
19 } whi l e (t h i s . method . isThisNameVariable (index)) ;
20 }
21 }

41

Development of the tool

List of Codes 5.15: Seaching for name to give to index

Once this phase is completed, the Params type is initialized, which represents the
contents of the vulnerable query. For example, if the variable “sql” is passed
to the “execute” method, params will only contain “sql”, otherwise, it will be
composed of various elements. This type is the one that triggers the recursive
search in the code. This is evident from the fact that after its initialization, the
startRecursiveFind method is called. Once this phase is completed, a search is
performed for any new Setters, but only if the type of SQLInjection is “PARTIAL”.
This instruction will be explained shortly.

5.3.4 Core logic
Now it is time to talk about the core of the tool, the most relevant part: the logic
behind. First, we need to revisit the algorithm mentioned at the beginning, at
point 3. As you can see, it requires performing a recursive search within the code.
To do this, it’s necessary to develop a robust structure that is always capable of
pinpointing the specific point we are referring to. However, when necessary, it
should be able to view the general context, such as the vulnerability line or the
various modules. To achieve this, all classes, in one way or another, must be able
to access the vulnerability from which they originate, namely the SQLInjection.
In particular, recursion occurs by exploiting three components:

1. Replacement, which is a line that needs to be replaced with another, and
it has fields such as “ExpressionStmt original” and “ExpressionStmt
replacement”.

2. Part, each Replacement will have various types of parts inside it, for example:
stmt.execute(“SELECT * FROM students WHERE id=’”+studentId+“’”). In
this case, the parts will be “SELECT * FROM students WHERE id=’”, studentId,
and finally, “’”.

3. Variable, all parts that are not fixed Strings define variables. For example,
in the previous case, the part studentId is a variable.

These three classes are intertwined with each other because whenever a Variable is
found, other lines in the code where it is used are searched for, and for each line
that requires replacement, a new Replacement is initialized. Parts are extracted
from the Replacement, and the cycle continues.

42

5.3 – Development, core logic

Figure 5.1: Schema of recursive call

5.3.5 Parameters class

The first class to be analysed will be the Parameters class. This is the one that
triggers the entire recursive process, here there is the code:

1 package i t . r ep ly . chatGPT ;
2

3 import java . u t i l . L i s t ;
4 import java . u t i l . stream . C o l l e c t o r s ;
5

6 pub l i c c l a s s Parameters {
7 pr i va t e Lis t <Part> part s ;
8 pr i va t e Replacement replacement ;
9 pr i va t e SQLInject ion s q l ;

10

11 pub l i c Parameters (SQLInject ion s q l I n j e c t i o n) {
12 t h i s . s q l = s q l I n j e c t i o n ;
13 t h i s . replacement = new Replacement (t h i s . s q l . getExpress ionStmt () ,

t h i s . s q l) ;
14 }
15

16 pub l i c L i s t <Part> getPart s () {
17 re turn t h i s . par t s ;
18 }
19 pub l i c L i s t <Part> ge tVar i ab l eS t r i ngPar t s () {

43

Development of the tool

20 re turn t h i s . par t s . stream () . f i l t e r (Part : : i s S t r i n g) . c o l l e c t (
C o l l e c t o r s . t o L i s t ()) ;

21 }
22

23 pub l i c void s ta r tRecur s iveF ind () {
24 t h i s . replacement . s ta r tF ind (t h i s . s q l . g e t S e t t e r ()) ;
25 }
26

27 pub l i c void r e c o n s t r u c t S e t t e r (S e t t e r s e t t e r) {
28 t h i s . replacement . s ta r tF ind (s e t t e r) ;
29 }
30

31 }

List of Codes 5.16: Parameters class

It contains a List of parts, the first Replacement and the reference to the
SQLInjection (this is fundamental to be able to retrieve information about the
whole project). As it can be seen from the code, in this case we are passing to the
constructor of the Replacement, the original vulnerable ExpressionStmt and also
a reference to the SQLInjection.

After that, the function startRecursiveFind() is invoked, it will be analysed
later the reason why it is also passed a Setter.

5.3.6 Replacement first constructor
It must be highlighted that Replacement has more than one constructor. Now we
will report the one invoked above, that is also the one used to initialized the first
Replacement, the one referred to the vulnerable line. The code is now reported:

1 pub l i c Replacement (ExpressionStmt express ionStmt , SQLInject ion s q l) {
2 t h i s . o r i g i n a l = express ionStmt ;
3 t h i s . referedSQLVuln = s q l ;
4 NameExpr r i g h t F i r s t ;
5 i f (t h i s . o r i g i n a l != n u l l) {
6 t h i s . l e f t P a r t = JavaParserUt i l . extractLeftPartFromExprAsStr ing (

t h i s . o r i g i n a l) ;
7 t h i s . r i gh tPar t = JavaParserUt i l . ext ractRightPart (t h i s . o r i g i n a l) ;
8 r i g h t F i r s t = t h i s . r i gh tPar t . f i n d F i r s t (NameExpr . c l a s s) . get () ;
9 } e l s e {

10 r i g h t F i r s t = t h i s . referedSQLVuln . getStatement () . asReturnStmt () .
ge tExpres s ion () . get () . asMethodCallExpr () . getScope () . get () .
asNameExpr () ;

11 }
12

13 St r ing varType ;
14 i f (r i g h t F i r s t . ca lcu lateReso lvedType () . i s R e f e r e n c e ()) {

44

5.3 – Development, core logic

15 varType = r i g h t F i r s t . ca lcu lateReso lvedType () . asReferenceType () .
getTypeDeclarat ion () . get () . getName () ;

16 } e l s e i f (r i g h t F i r s t . ca lcu lateReso lvedType () . i s C o n s t r a i n t ()) {
17 varType = r i g h t F i r s t . ca lcu lateReso lvedType () . asConstraintType () .

getBound () . asReferenceType () . getTypeDeclarat ion () . get () . getName () ;
18 } e l s e varType = "S " ;
19 i f (varType . equa l s (" Connection ")) {
20 t h i s . referedSQLVuln . s e t S q l I n j V u l n e r a b i l i t y (SQL_INJ_VULNERABILITY.

PARTIAL) ;
21 handlePartialSQL () ;
22 } e l s e {
23 t h i s . referedSQLVuln . s e t S q l I n j V u l n e r a b i l i t y (SQL_INJ_VULNERABILITY.

DEFAULT) ;
24 handleStandardSQL (r i g h t F i r s t) ;
25 }
26 }

List of Codes 5.17: Constructor of First Replacement

Basically we are extracting the right part, so the one that involves the stmt. It
will be analysed the type and depending on it the SQLInjection type will be set
(“STANDARD” or “PARTIAL”). At this point one of two functions is called. The first
one is for the “PARTIAL” types:

1 pr i va t e void handlePartialSQL () {
2 Method m = t h i s . referedSQLVuln . getMethod () ;
3 NameExpr statementName ;
4 i f (t h i s . o r i g i n a l . ge tExpres s ion () . i sVar i ab l eDec l a ra t i onExpr ()) {
5 Var iab leDec larat ionExpr vde = t h i s . o r i g i n a l . ge tExpres s ion () .

a sVar iab leDec larat ionExpr () ;
6 statementName = vde . ge tVar i ab l e (0) . getNameAsExpression () ;
7 } e l s e {
8 statementName = t h i s . o r i g i n a l . f i n d F i r s t (NameExpr . c l a s s) . get ()

;
9 }

10 t h i s . referedSQLVuln . setQueryVar iab le (statementName) ;
11 t h i s . par t s = JavaParse rUt i l . s p l i t S t r i n g (t h i s . r i gh tPar t .

asMethodCallExpr () . getArgument (0) ,
12 t h i s . referedSQLVuln . getMethod ()) ;
13 t h i s . replacement = t h i s . o r i g i n a l . c l one () ;
14 List <Statement> expre s s i onStmtL i s t = m. ge tDe f i n edSe t t e r s (t h i s .

o r i g i n a l , statementName) ;
15 t h i s . referedSQLVuln . s e t D e f i n e d S e t t e r s (expre s s i onStmtL i s t) ;
16 t h i s . referedSQLVuln . i n i t F o r P a r t i a l () ;
17

18 t h i s . type = ExpressionType .NONE;
19 }

List of Codes 5.18: Partial Type

45

Development of the tool

In this code we are getting the name of the statement variable (i.e.,stmt). We are
splitting each parts using the code seen for StreamEx. After that, there is the
extraction of all the user defined setters, because after a PreparedStatement the
user must instruct the code on how to replace each placeholder “?”. Then, a useful
initialization is done inside the referred SQLInjection. What concerns the type
will be explained in the recursive part of the Replacement. Before going on, the
two methods will be analysed.

1 pub l i c void s e t D e f i n e d S e t t e r s (L i s t <Statement> u s e r S e t t e r) {
2 t h i s . u s e r S e t t e r L i s t = new ArrayList <>() ;
3 LinkedList<Statement> subLi s t = new LinkedList <>() ;
4 f o r (Statement stmt : u s e r S e t t e r) {
5 i f (stmt . i sExpress ionStmt ()) {
6 i f (stmt . asExpress ionStmt () . ge tExpres s ion () .

isMethodCallExpr ()) {
7 MethodCallExpr mce = stmt . asExpress ionStmt () .

ge tExpres s ion () . asMethodCallExpr () ;
8 i f (mce . getNameAsString () . equa l s (" c l earParameter s ")) {
9 t h i s . u s e r S e t t e r L i s t . add (subLi s t) ;

10 subLi s t = new LinkedList <>() ;
11 cont inue ;
12 }
13 }
14 }
15 subLi s t . add (stmt) ;
16 }
17 i f (! subLi s t . isEmpty ()) t h i s . u s e r S e t t e r L i s t . add (subLi s t) ;
18 i f (! t h i s . u s e r S e t t e r L i s t . isEmpty ()) swithNewUserSetter () ;
19 }

List of Codes 5.19: Extraction of all setters

In case of a PreparedStatement we could find more then one execute, this because
of the usage of the function clearParameters(). In this case the tool will look for
this specific statement and, in case it is present, multiple lists will be instanciated.
On the other hand, the other function is this one.

1 pub l i c void i n i t F o r P a r t i a l () {
2 t h i s . s e t t e r L i s t = new LinkedList <>() ;
3 t h i s . setterAlreadyDone = new HashMap<>() ;
4 t h i s . s e t te rAl readyRep laced = new HashMap<>() ;
5 }

List of Codes 5.20: Additional initialization.

It is just the creation of new Maps and Lists that will be used later.
Now, let’s move on to the other function in case the SQLInjection is “STANDARD”:

1 pr i va t e void handleStandardSQL (NameExpr name) {

46

5.3 – Development, core logic

2 // The o r i g i n a l statement i s something l i k e :
3 // Result r = statement . execute (query)
4 t h i s . type = ExpressionType .NONE;
5 Method m = t h i s . referedSQLVuln . getMethod () ;
6 NameExpr nameDeclaration ;
7

8 // Importing the dependenc ies i f needed
9 t h i s . referedSQLVuln . getModule () . checkImport (" java . s q l .

PreparedStatement ") ;
10

11 // Statement statement = connect ion . createStatement ()
12 Var iab leDec larat ionExpr statement = m. f indDec larat ionStmt (t h i s .

o r i g i n a l , name) ;
13 i f (statement == n u l l) throw new I l l e g a l S t a t e E x c e p t i o n (" I l l e g a l

s t a t e ") ;
14

15 // Removing the vu lne rab l e statement from the l i s t o f the
v a r i a b l e d e c l a r a t i o n

16 // In case the l i s t doesn ’ t e x i s t i t w i l l be c rea ted
17 m. updateDeclarationMap (statement , o r i g i n a l) ;
18 Optional<NameExpr> variableName = m. getNewDeclarat ionInScope (

statement , t h i s . o r i g i n a l) ;
19

20 // Gett ing : statement . execute (. . .)
21 MethodCallExpr mce = t h i s . r i gh tPar t . f i n d F i r s t (MethodCallExpr .

c l a s s) . get () ;
22 // S p l i t t i n g par t s from execute (Lis t <Part >)
23 t h i s . par t s = JavaParse rUt i l . s p l i t S t r i n g (mce . getArgument (0) , m) ;
24 List <Express ion> arguments = mce . getArguments () . subLi s t (1 , mce .

getArguments () . s i z e ()) ;
25 // Change : statement . execute (Lis t <Part >)
26 // To : connect ion . prepareStatement (Lis t <Part >)
27

28 // F i r s t g e t t i n g : connect ion . createStatement ()
29 MethodCallExpr dec larat ionMethodCal l ;
30 i f (statement . ge tVar i ab l e (0) . g e t I n i t i a l i z e r () . get () .

i s N u l l L i t e r a l E x p r ()) {
31 List <ExpressionStmt> ass ignStmts = m. f indAss ignments (

statement . ge tVar i ab l e (0) . getNameAsString () , t h i s . o r i g i n a l . getBegin
() . get () . l i n e) ;

32 ExpressionStmt ass ignStmt = ass ignStmts . get (ass ignStmts . s i z e
() −1) ;

33 dec larat ionMethodCal l = ass ignStmt . getExpres s ion () .
asAssignExpr () . getValue () . c l one () . asMethodCallExpr () ;

34 m. addStmtToDelete (ass ignStmt) ;
35 } e l s e {
36 dec larat ionMethodCal l = statement . ge tVar i ab l e (0) .

g e t I n i t i a l i z e r () . get () . c l one () . asMethodCallExpr () ;
37 }

47

Development of the tool

38

39 //Changing to : connect ion . prepareStatement ()
40 dec larat ionMethodCal l . setName (" prepareStatement ") ;
41

42 //Adding argument : connect ion . prepareStatement (" query ")
43 arguments . addAll (dec larat ionMethodCal l . getArguments ()) ;
44 arguments = arguments . stream () . d i s t i n c t () . t o L i s t () ;
45 f o r (Express ion arg : dec larat ionMethodCal l . getArguments ()) {
46 dec larat ionMethodCal l . getArguments () . remove (arg) ;
47 }
48 System . out . p r i n t l n (dec larat ionMethodCal l) ;
49 i f (dec larat ionMethodCal l . getArguments () . isEmpty ()) {
50 dec larat ionMethodCal l . addArgument (Part . r e c o n s t r u c t o r (t h i s .

par t s)) ;
51 } e l s e {
52 dec larat ionMethodCal l . setArgument (0 , Part . r e c o n s t r u c t o r (t h i s .

par t s)) ;
53 }
54 f o r (Express ion arg : arguments) {
55 dec larat ionMethodCal l . addArgument (arg) ;
56 }
57 i f (variableName . i s P r e s e n t ()) {
58 nameDeclaration = variableName . get () ;
59 i f (!m. var iab l eDec la rat ionHasDependenc i e s (statement)) {
60 nameDeclaration . setName (statement . ge tVar i ab l e (0) .

getNameAsString ()) ;
61 }
62 // Ass ign ing : statement = connect ion . prepareStatement (" query ")
63 AssignExpr as s ignRep lace = new AssignExpr (nameDeclaration ,

dec larat ionMethodCal l , Operator .ASSIGN) ;
64 t h i s . replacement = new ExpressionStmt (as s ignRep lace) ;
65 } e l s e {
66 i f (!m. var iab l eDec la rat ionHasDependenc i e s (statement)) {
67 nameDeclaration = statement . ge tVar i ab l e (0) .

getNameAsExpression () ;
68 }
69 e l s e {
70 i n t i = 0 ;
71 whi le (m. isThisNameVariable (statement . ge tVar i ab l e (0) .

getNameAsString () + "_" + ++i)) ;
72 nameDeclaration = statement . ge tVar i ab l e (0) .

getNameAsExpression () ;
73 nameDeclaration . setName (statement . ge tVar i ab l e (0) .

getNameAsString () + "_" + i) ;
74 }
75 m. addSQLName(t h i s . o r i g i n a l , nameDeclaration) ;
76 //Adding name to the map o f SQL i n i t i a l i z a t i o n
77 m. addVariableForSQL (statement , t h i s . o r i g i n a l , nameDeclaration

) ;

48

5.3 – Development, core logic

78 // I n i t i a l i z i n g : PreparedStatement statement = connect ion .
prepareStatement (" query ")

79 Var iab leDec larat ionExpr newDeclarat ion = new
Var iab leDec larat ionExpr (

80 new Var iab l eDec la ra to r (
81 Stat i cJavaParse r . parseType (" PreparedStatement

") ,
82 nameDeclaration . getName () ,
83 dec larat ionMethodCal l)) ;
84 t h i s . f inalName = nameDeclaration ;
85 t h i s . replacement = new ExpressionStmt (newDeclarat ion) ;
86 }
87

88 t h i s . referedSQLVuln . setQueryVar iab le (nameDeclaration) ;
89 t h i s . referedSQLVuln . s e t In i tPha s e (m. ge t In i tUnt i l S tmt (statement ,

t h i s . o r i g i n a l)) ;
90 // Saving i n s i d e the v u l n e r a b i l i t y
91 t h i s . referedSQLVuln . addReplacement (t h i s) ;
92 }

List of Codes 5.21: Standard Type.

As you can observe, this method is considerably more complex than the previous one.
This is primarily because no assumptions can be made. The variable declaration
must be altered, and it is possible that other variables will depend on it, necessitating
the preservation of dependencies.

The procedure begins by checking the imports to determine whether Prepared-
Statement is imported. Subsequently, the search for the Statement declaration
is carried out, followed by the storage of all the dependencies within the Method
class. At this point, an examination of the name is undertaken to ascertain if an
alternative name is available or if a new one is required (please refer to the
variable definitions in the Method class for further clarification).

In any case, it is known that a MethodCallExpr (connection.createState-
ment(...)) will be present, and it will be transformed into a PreparedStatement.
Initially, the method name is altered to prepareStatement, and subsequently, the
parameters passed to the method are adjusted to preserve the previous initializations
and incorporate the SQL query. Upon completing this process, an evaluation of the
variable name ensues. If the name was previously in use, it is retained; otherwise,
the new name is saved along with a reference to the corresponding ExpressionStmt.
In both scenarios, this ExpressionStmt is stored in the replacement field (the
Expression could be an AssignExpr in the event of an existing name, or a
VariableDeclarationExpr in the case of a new name).

The transformation is readily apparent, as we transition from a construct like
“statement.execute(sql)” to the form “connection.prepareStatement(sql)”.
The execution part will be reintegrated subsequently.

49

Development of the tool

5.3.7 Replacement second constructor

Another important method of this class that need to be discussed is the second
constructor. Indeed, the first one is use only once to analyse the vulnerable line,
all the other times it is used the following one.

1 pub l i c Replacement (ExpressionStmt expr , SQLInject ion SQLVuln ,
Var iab le va r i ab l e , MethodCallExpr currentMce) {

2 t h i s . o r i g i n a l = expr ;
3 t h i s . referedSQLVuln = SQLVuln ;
4 t h i s . v a r i a b l e = v a r i a b l e ;
5 i f (currentMce != n u l l) {
6 t h i s . l i m i t e r = JavaParserUt i l . getExpressionStmtFromExpression

(currentMce) ;
7 t h i s . currentMce = currentMce ;
8 }
9 i f (t h i s . v a r i a b l e . isOutOfScope ())

10 t h i s . i s InVulnScope = f a l s e ;
11 e l s e {
12 i s InVulnScope = JavaParserUt i l . haveScopeWithoutLoop (expr ,

t h i s . l i m i t e r == n u l l ? SQLVuln . getExpress ionStmt () : t h i s . l i m i t e r)
;

13 }
14 i f (o r i g i n a l . ge tExpres s ion () . i sVar i ab l eDec l a ra t i onExpr ()) {
15 t h i s . l e f t P a r t = JavaParserUt i l .

extractLeftPartFromExprAsStr ing (o r i g i n a l) ;
16 t h i s . r i gh tPar t = JavaParserUt i l . ext ractRightPart (o r i g i n a l) ;
17 t h i s . type = ExpressionType .VARIABLE_DECLARATOR;
18 } e l s e i f (o r i g i n a l . ge tExpres s ion () . i sAss ignExpr ()) {
19 t h i s . l e f t P a r t = JavaParserUt i l .

extractLeftPartFromExprAsStr ing (o r i g i n a l) ;
20 t h i s . r i gh tPar t = JavaParserUt i l . ext ractRightPart (o r i g i n a l) ;
21 t h i s . type = ExpressionType .ASSIGN_EXPRESSION;
22 } e l s e {
23

24 t h i s . type = ExpressionType .METHOD_CALL;
25 }
26

27 i f (! l e f t P a r t . isEmpty ())
28 toRewrite = l e f t P a r t + " = " ;
29

30 i f (t h i s . type == ExpressionType .METHOD_CALL) {
31 t h i s . initReplacementForMethodCall () ;
32 } e l s e i f (t h i s . type == ExpressionType .ASSIGN_EXPRESSION) {
33 t h i s . in i tReplacementForAss ign () ;
34 } e l s e i f (t h i s . type == ExpressionType .VARIABLE_DECLARATOR) {
35 t h i s . in i tRep lacementForDec larator () ;
36 }
37

50

5.3 – Development, core logic

38 i f (t h i s . v a r i a b l e . partHasFather ()) {
39 Part f a t h e r = t h i s . v a r i a b l e . getFatherPart () ;
40 t h i s . par t s . forEach (p −> {
41 p . se tFather (f a t h e r) ;
42 p . setBranch (t h i s . v a r i a b l e . getPartBranch ()) ;
43 }) ;
44 }
45 }

List of Codes 5.22: Constructor of other Replacements.

The first part is there to handle strange cases, the one with ConditionalExpr.
Then the statement is studyed and differently from the first case, there are three
main possibilities:

• MethodCallExpr, the original ExpressionStmt is a method call (e.g., sql-
.append(“SELECT * FROM student WHERE id=’” + studentId + “’”)).

• AssignExpr, the original ExpressionStmt is just an assignment (e.g., sql=
“SELECT * FROM student WHERE id=’” + studentId + “’”).

• VariableDeclarationExpr, the original ExpressionStmt is a new variable
(e.g., String sql=“SELECT * FROM student WHERE id=’” + studentId +
“’”).

Once recognized the type, it is saved in a variable “ExpressionType type” and
then the initialization is made using the three method that we can see in the code:

• initReplacementForMethodCall();

• initReplacementForAssign();

• initReplacementForDeclarator();

These functions do almost the same thing, they must extract all the Parts from
the original statement and create the replacement. The replacement is not “final”,
it means that we could change it, this will be clear after the discussion of the class
Part.

The last few lines are there to assign to the ConditionalExpr the correct father
and branch.

5.3.8 Replacement recursive
Now let’s move into the main part of the Replacement, the method startFind().
It follows the code.

51

Development of the tool

1 pub l i c void s ta r tF ind (Se t t e r s) {
2 t h i s . par t s . forEach (p −> p . s ta r tRecur s iveF ind (t h i s . referedSQLVuln ,

s , t h i s . currentMce)) ;
3 // I f we don ’ t have par t s i t i s u s e l e s s to go up
4 i f (t h i s . par t s . isEmpty ()) re turn ;
5 i f (t h i s . type == ExpressionType .METHOD_CALL) {
6 t h i s . instanciateReplacementForMethodCal l () ;
7 } e l s e i f (t h i s . type == ExpressionType .ASSIGN_EXPRESSION) {
8 t h i s . instanc iateReplacementForAss ign () ;
9 } e l s e i f (t h i s . type == ExpressionType .VARIABLE_DECLARATOR) {

10 t h i s . in s tanc ia teRep lacementForDec la rator () ;
11 } e l s e i f (t h i s . type == ExpressionType .NONE) {
12 t h i s . replacement . f i n d F i r s t (MethodCallExpr . c l a s s) . get () .

setArgument (0 , Part . r e c o n s t r u c t o r (par t s)) ;
13 }
14 i f (t h i s . referedSQLVuln . i sAccept ingReplacement () && ! t h i s .

o r i g i n a l . t oS t r i ng () . equa l s (t h i s . replacement . t oS t r i ng ()))
15 t h i s . referedSQLVuln . addReplacement (t h i s) ;
16 }

The first thing that is done is to iterate over the parts, after that we need to fix the
replacement, because during the research inside the code we could have changed
the type of some Parts. Taking the case in which the type is “None”, it is the case
of the first Replacement, the one instanciated in the first constructor, we need to
call Part.reconstructor(). Finally, we save the replacement if the original is
different from replacement.

5.3.9 Part
This is another significant class. In order to understand the logic behind Part
.reconstructor(), it must first be studied its constructor.

1 pub l i c c l a s s Part {
2

3 enum Type{
4 FIXED,
5 FINAL,
6 STRING,
7 CONDITIONAL,
8 OUT_OF_SCOPE
9 }

10

11 . . .
12

13 pr i va t e Express ion fu l lExpr ;

52

5.3 – Development, core logic

14 pr i va t e Express ion cur rent ;
15 pr i va t e S t r ing part ;
16 pr i va t e Type type ;
17 pr i va t e Var iab le var = n u l l ;
18 pr i va t e Express ion cond i t i on ;
19 pr i va t e Lis t <Part> i f C l a u s e s ;
20 pr i va t e Lis t <Part> e l s e C l a u s e s ;
21 pr i va t e Part f a t h e r ;
22 pr i va t e Branch branch ;
23

24 pub l i c Part (Express ion fu l lExpr , Express ion expr , Method method) {
25 t h i s . f u l lExpr = fu l lExpr ;
26 t h i s . part = expr . t oS t r i ng () ;
27 Optional<NameExpr> ne = expr . f i n d F i r s t (NameExpr . c l a s s) ;
28 Express ion parsedExpr = JavaParserUt i l . exct rac tCond i t i ona lExpr (

expr) ;
29 t h i s . cur rent = parsedExpr ;
30 i f (ne . i s P r e s e n t ()) {
31

32 t h i s . var = new Var iab le (ne . get () , th i s , method) ;
33

34 i f (t h i s . var . isOutOfScope () && JavaParserUt i l .
i sS t r ingOrEqu iva l en t (parsedExpr . ca lcu lateReso lvedType ())) {

35 t h i s . type = Type .OUT_OF_SCOPE;
36 }
37 e l s e i f (parsedExpr i n s t a n c e o f Condit ionalExpr) {
38 Condit ionalExpr condExpr = parsedExpr . asCondit ionalExpr () ;
39 t h i s . type = Type .CONDITIONAL;
40 t h i s . c ond i t i on = condExpr . getCondit ion () ;
41 t h i s . i f C l a u s e s = JavaParserUt i l . s p l i t S t r i n g (condExpr .

getThenExpr () , method) ;
42 t h i s . e l s e C l a u s e s = JavaParserUt i l . s p l i t S t r i n g (condExpr .

getElseExpr () , method) ;
43

44 }
45 e l s e i f (JavaParserUt i l . i sS t r ingOrEqu iva l en t (parsedExpr .

ca lcu lateReso lvedType ())) {
46 i f (t h i s . var . isOutOfScope ()) {
47 t h i s . type = Type .OUT_OF_SCOPE;
48 } e l s e {
49 t h i s . type = Type .STRING;
50 }
51 }
52 e l s e t h i s . type = Type .FINAL;
53 } e l s e t h i s . type = Type .FIXED;
54 }
55 }

List of Codes 5.23: Part constructor

53

Development of the tool

This constructor accepts the complete Expression, the specific one we are referring
to, and the Method it is located in. By process of elimination, a type is assigned to
the Part, which can be:

1. “FIXED”, defined in the code, immutable.

2. “FINAL”, user-derived, to be replaced in the statement.

3. “CONDITIONAL”, i.e., with a condition.

4. “STRING”, of string type.

5. “OUT_OF_SCOPE”, outside of the method.

The first type is assigned to all StringLiteralExpr. Initially, “FINAL” is only as-
signed to non-string variables. Therefore, all the latter will be labeled as “STRING”,
and a search is performed in the various calling methods to determine whether
they actually contain SQL code or are user-derived. Finally, work is also done
on the CONDITIONAL type, from which the sides of the “if” statement and the
“else” statement are extracted (even in the case of recursion). Now it is possible
to understand the function startRecursiveFind() invoked by the Replacement.
In fact, in the init phase of Replacement, this function creates the Parts that, in
turn, create the Variables, but the actual search is triggered when this method is
called.

1 pub l i c void s ta r tRecur s iveF ind (SQLInject ion sqlVuln , S e t t e r s e t t e r ,
MethodCallExpr currentMce) {

2 i n t indexWhereToAdd = s e t t e r . getIndex () ;
3 boolean wasStr ing = f a l s e ;
4 i f (t h i s . type == Type .STRING) {
5 t h i s . var . s ta r tF ind (sqlVuln , s e t t e r , currentMce) ;
6 wasStr ing = true ;
7 } e l s e i f (t h i s . type == Type .OUT_OF_SCOPE) {
8 TypeOutOfScope out= t h i s . var . startFindOutOfScope () ;
9 i f (out == TypeOutOfScope .USER) t h i s . type = Type .FINAL;

10 e l s e throw new I l l e g a l S t a t e E x c e p t i o n (" Unable to f i x because
invoker o f t h i s method have i n s e c u r e SQL, the t o o l i s not ab le to
change methods ’ prototypes ") ;

11 }
12

13 i f (t h i s . type == Type .CONDITIONAL) {
14 hand l eSta r tRecur s iveCond i t i ona l (sqlVuln , s e t t e r , currentMce) ;
15 } e l s e i f (t h i s . type == Type .FINAL && wasStr ing) {
16 addSetToSetter (s e t t e r , sqlVuln , indexWhereToAdd) ;
17 } e l s e i f (t h i s . type == Type .FINAL) {
18 addSetToSetter (s e t t e r , sqlVuln) ;
19 } e l s e i f (t h i s . type == Type .OUT_OF_SCOPE) {
20 addSetToSetter (s e t t e r , sqlVuln) ;

54

5.3 – Development, core logic

21 } e l s e i f (sqlVuln . getType () == SQL_INJ_VULNERABILITY.PARTIAL) {
22 handlePartialSQLFixed (sqlVuln , s e t t e r) ;
23 }
24 }

List of Codes 5.24: startRecursiveFind() of Part

It is evident from the code that if the variable type is a String, a search is performed
within the method. If it is of type ‘OUT_OF_SCOPE‘, it is searched in the calling
methods. As for the first two methods, they will be discussed when we study the
Variable class. However, it is essential to clarify that both can change the type of
the Part.

Now, let’s explain what happens from line 13 onwards. Starting with the first
case, it is nothing more than a wrapper to recursively call startRecursiveFind
but using the “if” or “else” as the part.

The other cases add the respective Part to the setters. In the case with
“indexWhereToAdd”, the position in the setter is also specified, while in the second
case, an append operation is performed in the list of setters. To understand what
happens in the setter, it is needed to delve into how the Setter class works.

The last case is the most interesting and is the one we will focus on. In the case
of a partially vulnerable query, there could be several scenarios. First of all, we need
to divide the code into two parts: the initialization of the PreparedStatement,
where the query is passed and the various “?” placeholders are positioned, and
the setting part, where the variables are assigned values, i.e., how to replace each
previously inserted placeholders.

These two code sections can also have different loops. For example, for a “?”, it
might assigned through an “if” statement. In general, we distinguish three cases
depending on these code sections:

1. They have the same branches. This is the simplest case, where each “?”
corresponds to a single setting statement.

2. The “?” has more branches than the setting phase. This is the case where
we have conditions (if-then-else) above the “?” where one condition executes
one type of query, and another condition executes a different type of query.
However, in the end, there is always only one “?” to set.

3. The setters have more branches than the “?”. In this case, the setting phase
can have an if-then-else, while above, there is only one “?”.

These cases can be further complicated by the presence of multiple placeholders
in the same statement. This function’s task, where possible, is to reconstruct the
entire setting phase and insert each setter in the right place in the setters. We
won’t analyse its details, but case 1 is handled simply at the beginning of the

55

Development of the tool

function; while there are two other methods, handlePartMoreThanSetter and
handlePartLessThanSetter, which handle cases 2 and 3. Note that in these
methods, it is very easy to throw an exception because it is always preferred to
avoid correction rather than add non-working code.

Now that we’ve understood how the Part class works, let’s take a look at the
reconstructor. First, it searches for delimiters that can be either “"” or “’”. Once
this is done, the parts of type “FINAL” are replaced with the placeholder “?”
(because at this point, the search within the code will already be completed). Below
is the main code.

1 f o r (Part p : par t s) {
2 i f (p . type == Type .FIXED) {
3 i f (! isOpenFixed) {
4 concat += de l im i t e rF ixed ;
5 isOpenFixed = true ;
6 }
7

8 concat += p . getWithoutQuote () ;
9 } e l s e i f (p . type == Type .FINAL) {

10 i f (! isOpenFixed) {
11 concat += de l im i t e rF ixed ;
12 isOpenFixed = true ;
13 }
14 concat += " ? " ;
15 } e l s e i f (p . type == Type .CONDITIONAL) {
16 i f (isOpenFixed) {
17 concat += de l im i t e rF ixed+" +" ;
18 isOpenFixed = f a l s e ;
19 }
20 concat += " ("+ p . cond i t i on + " " +placeHolder+" " ;
21 concat += r e c o n s t r u c t o r (p . i f C l a u s e s) + " : " ;
22 concat += r e c o n s t r u c t o r (p . e l s e C l a u s e s) + ") +" ;
23 } e l s e {
24 i f (isOpenFixed) {
25 concat += de l im i t e rF ixed ;
26 isOpenFixed = f a l s e ;
27 }
28 concat += "+ " + p . part + " +" ;
29 }
30 }
31 i f (concat . s tartsWith ("+")) concat = concat . sub s t r i ng (1) ;
32 i f (concat . endsWith ("+")) concat = concat . sub s t r i ng (0 , concat . l ength ()

−1) ;
33 e l s e concat += de l im i t e rF ix ed ;

List of Codes 5.25: Part recontructor.

56

5.3 – Development, core logic

Actually, several checks are subsequently performed to ensure that the replace-
ment is done correctly, with special attention to everything inside the delimiters
to avoid losing important pieces. For example in cases where we have some-
thing like: sql=“SELECT * FROM students WHERE dateEnroll = ’” + date +
“_00:00:00’”, the last part about the time is fundamental and so it must be
inserted in the setter, the whole statement needs to become this one: sql=“SELECT
* FROM students WHERE dateEnroll = ?”.

5.3.10 Variable
Variable can also have multiple constructors depending on the caller. However,
unlike Replacement, its behavior remains the same. When other constructors are
called this class will only have additional information, but behind will call the first
constructor. This one will infer the type of the Variable and save the Expression
to which it refers.

Much more interesting is the operation of the two functions we’ve seen in Part:
startFind() and startFindOutOfScope(). Despite being profoundly different,
both have the task of searching for every line that uses this variable. The first
does this within the method, while the second does it externally.

The “startFind” function is responsible for finding the lines of code that use
the variable previously. Once this is done, it initializes new Replacements if
needed (there is a dedicated method in Replacement that returns a boolean:
Replacement.needReplacement(Statement)). However, to understand the func-
tioning of this method, it’s necessary to anticipate that Setters need to know the
variable’s branch (if, while, for) and thus its scope to work. For each of these, a
new Setter is required. For this reason, in this method, it will be found a map used
to associate a Statement with a particular Branch.

It’s important to note that JavaParser doesn’t always work perfectly with
“if_then_else” constructs. To illustrate, consider the following code example:

1 i f (s tar tDate != n u l l && star tDate . l ength () > 0 && endDate != n u l l &&
endDate . l ength () > 0) {

2 dateSt r ing = "DATE BETWEEN ’ " + star tDate + " 0 0 : 0 0 : 0 0 ’ AND ’ " +
endDate + " 2 3 : 5 9 : 5 9 ’ " ;

3 } e l s e i f (s tar tDate != n u l l && star tDate . l ength () > 0) {
4 dateSt r ing = "DATE > ’ " + star tDate + " 0 0 : 0 0 : 0 0 ’ " ;
5 } e l s e i f (endDate != n u l l && endDate . l ength () > 0) {
6 dateSt r ing = "DATE < ’ " + endDate + " 2 3 : 5 9 : 5 9 ’ " ;
7 }

List of Codes 5.26: If-then-else from NotSecureBank [68]

In this case, JavaParser will interpret this entire Node as an IfStmt. This
means that it also includes the “else if” and “else” inside it. To access the “child”

57

Development of the tool

that is actually the “else if”, it is needed to invoke getElseStatement(), which
returns the following result.

1 i f (s tar tDate != n u l l && star tDate . l ength () > 0) {
2 dateSt r ing = "DATE > ’ " + star tDate + " 0 0 : 0 0 : 0 0 ’ " ;
3 } e l s e i f (endDate != n u l l && endDate . l ength () > 0) {
4 dateSt r ing = "DATE < ’ " + endDate + " 2 3 : 5 9 : 5 9 ’ " ;
5 }

List of Codes 5.27: Child of the previous if.

To resolve this issue, it was decided to distinguish two different maps: one for
all Statements and another one for if_then_else constructs. In practice, the
first map contains only the parent if_then_else that encompasses the others.
Branches are associated with Setters in these two maps. If a branch is in the map,
the Setter to use is that one. Otherwise, a new Setter must be created and added
to this map. Below is the code for this function.

1 pub l i c void s ta r tF ind (SQLInject ion SQLVuln , S e t t e r s e t t e r ,
MethodCallExpr currentMce) {

2 S e t t e r a c t u a l S e t t e r = s e t t e r ;
3 Map<Node , Set te r > setterMap ;
4 Map<Node , Set te r > i fSetterMap = new HashMap<>() ;
5 Map<ExpressionStmt , Node> exprMap ;
6

7 i f (t h i s . method == n u l l) {
8 t h i s . method = SQLVuln . getMethod () ;
9 t h i s . setIsOutOfScope () ;

10 }
11

12 t h i s . s tatements = t h i s . method . f indAss ignments (t h i s . v a r i a b l e .
getNameAsString () , l a s t V a l i d L i n e) ;

13

14 i f (t h i s . s tatements == n u l l) {
15 t h i s . r e f e r edPar t . setType (Type .FINAL) ;
16 re turn ;
17 }
18 ExpressionStmt s ink = SQLVuln . stmt . asExpress ionStmt () ;
19

20 i f (currentMce != n u l l && ! SQLVuln . getMethod () .
getMethodDeclarat ion () . equa l s (JavaParserUt i l . getMethodDeclarat ion (
currentMce))) {

21 t h i s . rep lacements = t h i s . s tatements . stream ()
22 .map(stmt−> new Replacement (stmt , SQLVuln , th i s ,

currentMce))
23 . t o L i s t () ;
24 s ink = JavaParserUt i l . getExpressionStmtFromExpression (

currentMce) ;
25 } e l s e {

58

5.3 – Development, core logic

26 t h i s . rep lacements = t h i s . s tatements . stream ()
27 . f i l t e r (stmt−> Replacement . needReplacement (stmt))
28 .map(stmt−> new Replacement (stmt , SQLVuln , th i s ,

currentMce))
29 . t o L i s t () ;
30 }
31

32 i f (t h i s . rep lacements . isEmpty () && t h i s . s tatements . stream () .
noneMatch (stmt−> JavaParserUt i l . containsSQLCode (stmt))) {

33 t h i s . r e f e r edPar t . setType (Type .FINAL) ;
34 re turn ;
35 }
36

37 f i n a l ExpressionStmt toUse = s ink ;
38 // I t i s fundamental to keep found order , the LinkedHashMap i s

needed
39 exprMap = t h i s . rep lacements . stream ()
40 . c o l l e c t (C o l l e c t o r s . toMap(
41 r−> r . g e t O r i g i n a l () ,
42 r−> JavaParserUt i l . getBiggerNodeBeforeSink (r . g e t O r i g i n a l

() , toUse) ,
43 (a , b)−>a ,
44 LinkedHashMap : : new
45)) ;
46

47 // Create a map with a <Node , Set te r >
48 setterMap = exprMap . va lue s ()
49 . stream ()
50 . d i s t i n c t ()
51 . c o l l e c t (
52 C o l l e c t o r s . toMap(
53 node −> node ,
54 node −> S e t t e r . createFromBranch (node ,

s e t t e r) ,
55 (a , b) −> a ,
56 LinkedHashMap : : new
57)) ;
58 //For each s e t t e r add i t to the parent
59 setterMap . va lue s () . forEach (a c t u a l S e t t e r : : addSetter) ;
60

61 t h i s . rep lacements . forEach (r−>{
62 Map<Node , Set te r > referedMap = setterMap ;
63 Node keySet t e r = exprMap . get (r . g e t O r i g i n a l ()) ;
64 S e t t e r s = setterMap . get (keySet te r) ;
65 List <Statement> branches = JavaParserUt i l . extractBranch (r .

g e t O r i g i n a l () , keySet te r) ;
66 i f (! branches . isEmpty () && ! branches . get (0) . i s I f S t m t ())

branches . remove (0) ;

59

Development of the tool

67 i f (! branches . isEmpty ()) branches = JavaParserUt i l .
mergeIfStatement (branches) ;

68

69 f o r (Statement branch : branches) {
70 S e t t e r support ;
71 i f ((branch . i s I f S t m t () | | branch . isBlockStmt ()) &&

referedMap != i fSetterMap) referedMap = i fSetterMap ;
72 i f ((! branch . i s I f S t m t () && ! branch . isBlockStmt ()) &&

referedMap != setterMap) referedMap = setterMap ;
73

74 i f (referedMap . containsKey (branch)) {
75 support = referedMap . get (branch) ;
76 } e l s e {
77 support = S e t t e r . createFromBranchesNotFirst (branch , s)

;
78 s . addSetter (support) ;
79 referedMap . put (branch , support) ;
80 }
81 s = support ;
82 }
83 r . s ta r tF ind (s) ;
84 }) ;
85

86 i f (t h i s . rep lacements . stream () . al lMatch (r−> r . g e t O r i g i n a l () . equa l s
(r . getReplacement ()) && ! JavaParserUt i l . containsSQLCode (r .
g e t O r i g i n a l ()))) {

87 t h i s . r e f e r edPar t . setType (Part . Type .FINAL) ;
88 }
89 }

List of Codes 5.28: startFind() of Variable.

On the other hand this is the code for “startFindOutOfScope”:
1 pub l i c TypeOutOfScope startFindOutOfScope () {
2 Parameter p = t h i s . method . getMethodDeclarat ion () .

getParameterByName (t h i s . v a r i a b l e . t oS t r i ng ()) . get () ;
3 i n t index = t h i s . method . getMethodDeclarat ion () . getParameters () .

indexOf (p) ;
4 i f (t h i s . method . getMethodDeclarat ion () . getAnnotat ions () . stream () .

anyMatch (a−> a . getNameAsString () . endsWith (" Mapping "))) re turn
TypeOutOfScope .USER;

5 Map<Method , Li s t <MethodCallExpr>> c a l l e r = t h i s . method . getModule
() . getModules () . g e t C a l l e r s (t h i s . method . getMethodDeclarat ion ()) ;

6 List <Var iab leExplorer > v a r i a b l e s = new ArrayList <>() ;
7

8 f o r (Entry<Method , Li s t <MethodCallExpr>> e : c a l l e r . entrySet ()) {
9 Method m = e . getKey () ;

10 f o r (MethodCallExpr mce : e . getValue ()) {
11 Express ion expr = mce . getArgument (index) ;

60

5.3 – Development, core logic

12 Part part = new Part (mce , expr , m) ;
13 part . g e tVar i ab l e () ;
14 Var iab leExp lore r ve = new Var iab l eExp lore r (part .

g e tVar iab l e () , m) ;
15 v a r i a b l e s . add (ve) ;
16 }
17 }
18 i f (v a r i a b l e s . isEmpty ()) re turn TypeOutOfScope .USER;
19 TypeOutOfScope r e s u l t = n u l l ;
20 f o r (Var iab l eExp lore r ve : v a r i a b l e s) {
21 TypeOutOfScope typeOut = ve . def ineType () ;
22 i f (r e s u l t == n u l l) {
23 r e s u l t = typeOut ;
24 }
25 i f (typeOut==TypeOutOfScope .UNDEFINED) {
26 cont inue ;
27 }
28 i f (typeOut != r e s u l t) {
29 System . out . p r i n t l n (typeOut) ;
30 System . out . p r i n t l n (r e s u l t) ;
31 throw new I l l e g a l S t a t e E x c e p t i o n (" Parameters a s s i gned to

the func t i on are not coherent ") ;
32 }
33 }
34 i f (r e s u l t==TypeOutOfScope .OUT_OF_SCOPE | | r e s u l t ==

TypeOutOfScope .UNDEFINED) return TypeOutOfScope .USER;
35 re turn r e s u l t ;
36 }

List of Codes 5.29: startFindOutOfScope() of Variable.

The first step is to search for calling methods until the first caller is reached (which
could be the Spring Controller). Once the methods are found, the variable is
searched for in them, and it is ensured that everything is consistent and that the
tool is indeed capable of fixing it. If it is discovered that sometimes the variable
can contain SQL code and other times it cannot, an error is raised. Additionally,
the tool cannot modify prototypes, so if such an operation is needed, the program
will inform the user of its inability to perform the fix (again launching an exception)
and will continue with other vulnerabilities.

5.3.11 Setter
In the previous sections, it has been mentioned several times that the Setter class
is responsible for writing the setting phase. Although it is being discussed only
now, this process occurs in parallel. Firstly, the structure of the Setter is that of a
tree, where each node (by node, it is meant the one in the tree, not in JavaParser)

61

Development of the tool

can have from 0 to n child. Before showing an image describing its structure, below
are the various types of setters:

• ROOT: The first Setter, the parent of all others.

• FOR, WHILE, IF_THEN_ELSE, DO_WHILE: Nodes that describe
the type of node based on the branch.

• IF_CLAUSE, ELSE_CLAUSE, ELSE_IF_CLAUSE: Types that are
found only when the parent is an IF_THEN_ELSE.

• WRAPPER: Used only to indicate a generic branch (e.g., a BlockStmt).

• STMT: Nodes where ExpressionStmts to be added are saved.
As can be seen from this code in the final part, a new Setter is defined for
each branch. Subsequently, in the Part, there will be STMT-type Setters to save
the various statements to be added later. Below are the fields of the Setter class.

1 pub l i c c l a s s S e t t e r {
2 enum Type{
3 FOR,
4 IF_THEN_ELSE,
5 WHILE,
6 DO_WHILE,
7 STMT,
8 IF_CLAUSE,
9 ELSE_CLAUSE,

10 ELSE_IF_CLAUSE,
11 ROOT,
12 WRAPPER
13 }
14 pr i va t e Part part ;
15 pr i va t e Se t t e r parent = n u l l ;
16 pr i va t e Statement block ;
17 pr i va t e Type type ;
18 pr i va t e NodeList<Express ion> cond i t i on ;
19 pr i va t e Lis t <Variable> v a r i a b l e s ;
20 pr i va t e Lis t <Replacement> replacements ;
21 pr i va t e LinkedList<Sette r > c h i l d s ;
22 pr i va t e S t r ing varType ;
23 pr i va t e Lis t <ExpressionStmt> e x p r e s s i o n s = new LinkedList <>() ;
24 pr i va t e Map<Node , Set te r > setterMap ;
25 pr i va t e Node o r i g i n a l ;
26

27 . . .
28

29 }

List of Codes 5.30: Setter fields.

62

5.3 – Development, core logic

At this point it is convenient to show a picture showing a possible tree of the setters:

Figure 5.2: Example of a tree of setters.

One of the main functions of this class is prepareSetter(), which allows adding a
Statement.

1 pub l i c ExpressionStmt prepa r eSe t t e r (Express ion current , NameExpr stmt
, S t r ing index) {

2 ResolvedType rType = current . ca lcu lateReso lvedType () ;
3 St r ing type ;
4 i f (rType i n s t a n c e o f ResolvedArrayType) {
5 type = rType . asArrayType () . getComponentType () . asReferenceType

() . getTypeDeclarat ion () . get () . getName () +" [] " ;
6 }
7 e l s e i f (! rType . i s P r i m i t i v e ()) {
8 type = rType . asReferenceType () . getTypeDeclarat ion () . get () .

getName () ;
9 } e l s e {

10 type = rType . a sPr im i t i v e () . d e s c r i b e () ;
11 type = type . sub s t r i ng (0 , 1) . toUpperCase () + type . sub s t r i ng (1)

;
12 }
13 ExpressionStmt expr = new ExpressionStmt () ;
14 MethodCallExpr mce = new MethodCallExpr () ;
15 mce . setScope (stmt) ;
16 mce . setName (" s e t "+type) ;

63

Development of the tool

17 mce . addArgument (index+"++") ;
18 mce . addArgument (cur rent) ;
19

20 expr . s e tExpre s s i on (mce) ;
21

22 t h i s . e x p r e s s i o n s . add (expr) ;
23 re turn expr ;
24 }

List of Codes 5.31: prepareSetter method.

First, the type is converted to a string, and then all the steps are taken to recreate
the statement. It is noticeable how access to the SQLInjection variable is required
to know how to call the index.

Another fundamental function is reconstructSetter, which starts from the
root and explores the tree by descending from the leftmost children. Once the
STMT-type leaves are reached, the statements are recreated and passed to the
parent. This process is executed throughout the tree.

1 pub l i c S t r ing r e c o n s t r u c t S e t t e r s () {
2 St r ing r e s u l t= " " ;
3 St r ing p a r t i a l = " " ;
4 i f (t h i s . type == Type .STMT) {
5 f o r (ExpressionStmt expr : t h i s . e x p r e s s i o n s) r e s u l t += expr +" \

n" ;
6 re turn r e s u l t ;
7 }
8 i f (t h i s . type == Type .IF_THEN_ELSE) {
9 St r ing tmp = " " ;

10 List <Setter > u s e l e s s = new ArrayList <>() ;
11 List <Str ing > statements = new ArrayList <>() ;
12 f o r (S e t t e r s : c h i l d s) {
13 tmp = s . r e c o n s t r u c t S e t t e r s () ;
14 i f (tmp . equa l s (" ")) u s e l e s s . add (s) ;
15 e l s e statements . add (tmp) ;
16 }
17 re turn manageIfThenElseChild (statements , u s e l e s s) ;
18 }
19 f o r (S e t t e r s : c h i l d s) {
20 p a r t i a l += s . r e c o n s t r u c t S e t t e r s () ;
21 }
22 i f (p a r t i a l . isEmpty ()) re turn " " ;
23 i f (t h i s . type == Type .FOR) {
24 r e s u l t += " f o r ("+formatt ingCondi t ion (t h i s . c ond i t i on) +") {\n " ;
25 r e s u l t += p a r t i a l ;
26 r e s u l t += " }\n " ;
27

28 } e l s e i f (t h i s . type == Type .DO_WHILE) {
29 r e s u l t += " do{\n" ;

64

5.4 – Input

30 r e s u l t += p a r t i a l ;
31 r e s u l t += " } whi l e ("+formatt ingCondi t ion (t h i s . c ond i t i on)+") \n ;

" ;
32 } e l s e i f (t h i s . type == Type .WHILE) {
33 r e s u l t += " whi le ("+formatt ingCondi t ion (t h i s . c ond i t i on) +") {\n

" ;
34 r e s u l t += p a r t i a l ;
35 r e s u l t += " }\n " ;
36 } e l s e re turn p a r t i a l ;
37 re turn r e s u l t ;
38 }

List of Codes 5.32: reconstructSetter() method.

In the SQLInjection constructor (here) whenever the type is “PARTIAL”, we
search again for the setters, this is done because whenever we have this type of
SQLInjection, if there is a clearParameters(), we have no other choice then
reanalyze the code and see what is needed to set.

5.3.12 Applying fixes
In order to apply all the fixes (replace in the replacement, adding new imports,
adding and deleting variables in method), the class VulnerabilityFixer has the
method fix() that will apply all the needed patches.

5.4 Input
As input, the tool accepts a report produced by SonarQube in CSV form. It
doesn’t mean that another SAST can not be used, but the header must be renamed
accordingly to the values expected by the program. Here there are the name of the
title accepted:

• rule. It is the name of the vulnerability according to FindSecBugs, it must
contain the char sequence “SQL” and “injection” (it is not case sensitive).
Furthermore, it can also contain the words “nonconstant” and “partial”.

• component. It indicates the location in the project. The various component
must be splitted using “:”, that is the special character used by sonarQube,
the last part must be the one indicating the name of the Java files, e.g.,
“it.reply.test:test:src/main/java/util/DBUtil.java”.

• textRange, it contains information regarding the position of the vulner-
ability inside the file. Again, it was choosen to use an approach like the
one used by SonarQube, so with the starting line and ending line. e.g.,
“{endLine:173,endOffset:85,startOffset:0,startLine:173}”

65

Development of the tool

Other columns are not required, but their presence will no alter the behaviour of the
tool, indeed the tool will copy the entire entries in the report and will produce as
result all the entries with an additional column, the one telling rather the operation
was completed successfully or not.

5.5 Integration with Git
In this section, we will address the integration with Git that we mentioned in the
dependencies section. To do this, it was used JGit. First, the user is asked for
their username and password. Subsequently, the equivalent of the “git status”
command is executed to check if there are any files to commit. If any, the user is
asked if they want to commit the current state. Once this step is completed, a new
branch is created in which the new CompilationUnits that have been fixed are
saved. Finally, a commit is made, followed by a push.

After completing this operation, we differentiate between GitHub and GitLab.
For the former, we use the GitHub API library to create a pull request, for the
latter, we use HttpClient. GitLab assigns an ID to identify the project. So, if we
only have the project’s name, we first need to retrieve the ID. Once we have the
ID, we can create the merge request. The above description is what happens in
the following code.

1 t ry {
2 Status s t a tu s = g i t . s t a tu s () . c a l l () ;
3

4 i f (s t a tu s . hasUncommittedChanges () | | ! s t a tu s . getUntracked () .
isEmpty ()) {

5 i f (! handleUncommitted (g i t)) {
6 System . out . p r i n t l n (" Ex i t ing ") ;
7 re turn ;
8 } e l s e {
9 BufferedReader reader = new BufferedReader (new

InputStreamReader (System . in)) ;
10 System . out . p r i n t l n ("Commit comment : ") ;
11 St r ing comment = reader . readLine () . s t r i p () ;
12 g i t . add () . addFi l epat te rn (" . ") . c a l l () ;
13 g i t . commit () . setMessage (" V u l n e r a b i l i t y F i x e r : " + comment)

. c a l l () ;
14 }
15 }
16 refName = repo . r e s o l v e (Constants .HEAD) . getName () ;
17

18 // Ret r i ev ing user in fo rmat ion
19

20 Credent i a l sProv ide r cp = new UsernamePasswordCredentialsProvider (
username , pwd) ;

66

5.5 – Integration with Git

21 //Try i f push i s working
22 g i t . push () . s e t C r e d e n t i a l s P r o v i d e r (cp) . c a l l () ;
23

24 opening = true ;
25 boolean branchSuccess = true ;
26 t ry {
27 g i t . checkout () . setCreateBranch (t rue) . setName ("

V u l n e r a b i l i t y F i x e r ") . c a l l () ;
28 } catch (RefAlreadyExistsExcept ion r e f) {
29 branchSuccess = f a l s e ;
30 }
31 f o r (i n t i = 1 ; ! branchSuccess ; i++) {
32 name = baseName + "_" + i ;
33 branchSuccess = true ;
34 t ry {
35 g i t . checkout () . setCreateBranch (t rue) . setName (name) . c a l l ()

;
36 } catch (RefAlreadyExistsExcept ion r e f) {
37 branchSuccess = f a l s e ;
38 }
39 }
40 branchCreat ion = true ;
41 exportGit () ;
42 g i t . add () . addFi l epat te rn (" . ") . c a l l () ;
43 g i t . commit () . setMessage (" V u l n e r a b i l i t y F i x e r : f i x e d Java f i l e s

pushed ") . c a l l () ;
44 g i t . push () . s e t C r e d e n t i a l s P r o v i d e r (cp) . c a l l () ;
45 i f (typeRepo . equa l s ("HUB")) {
46 GitHub gitHubBui lder = new GitHubBuilder () . withPassword (

username , pwd) . bu i ld () ;
47 // Repos i tory in fo rmat ion
48 GHRepository repos i toryGitHub = gitHubBui lder . ge tRepos i to ry (

owner + " / " + repoName) ;
49

50 // Create a p u l l r eque s t
51 GHPullRequest pr = repos i toryGitHub . c reatePu l lReques t ("

Automat i c_ f i x ing_vu lne rab i l i t i e s : p u l l r eque s t " , name ,
actualBranchName , " Automat ic_Fix ing_Vulnerabi l i t i e s : merging new
branch with o r i g i n a l one ") ;

52

53 System . out . p r i n t l n (" Pul l r eque s t c r ea ted : " + pr . getHtmlUrl ()
) ;

54

55 } e l s e {
56 HttpCl ient c l i e n t = HttpCl i ents . c r e a t eDe f au l t () ;
57 St r ing gitLabApiUrl = " https : // g i t l a b . com/ api /v4 " ;
58 HttpGet r eque s t = new HttpGet (gitLabApiUrl+ " / us e r s / " + owner

+ " / p r o j e c t s ") ;
59 r eque s t . addHeader ("PRIVATE−TOKEN" , pwd) ;

67

Development of the tool

60 i n t p r o j e c t I d = −1;
61 HttpResponse response = c l i e n t . execute (r eques t) ;
62 St r ing jsonResponse = E n t i t y U t i l s . t oS t r i ng (re sponse . ge tEnt i ty

()) ;
63 System . out . p r i n t l n ("JSON: "+ jsonResponse) ;
64 JSONArray p r o j e c t s = new JSONArray(jsonResponse) ;
65 System . out . p r i n t l n (p r o j e c t s . l ength ()) ;
66 f o r (i n t i = 0 ; i < p r o j e c t s . l ength () ; i++) {
67 JSONObject p r o j e c t = p r o j e c t s . getJSONObject (i) ;
68 St r ing projectName = p r o j e c t . g e tS t r i ng ("name") ;
69 System . out . p r i n t l n (projectName) ;
70 i f (projectName . toLowerCase () . equa l s (repoName)) {
71 p r o j e c t I d = p r o j e c t . g e t In t (" id ") ;
72 break ; // Exit loop once the p r o j e c t i s found
73 }
74 }
75 i f (p r o j e c t I d == −1) throw new NotFoundException (" Pro j e c t with

name : ’ "+ repoName +" ’ not found ") ;
76

77 St r ing mergeUrl = gitLabApiUrl + " / p r o j e c t s / " + p r o j e c t I d + "
/ merge_requests " ;

78 HttpPost httpPost = new HttpPost (mergeUrl) ;
79 httpPost . addHeader ("PRIVATE−TOKEN" , pwd) ;
80

81 St r ing jsonBody = " {\" source_branch \ " : \" "+name+" \" , \"
target_branch \ " : \" "+actualBranchName+" \" , \" t i t l e \ " : \"
Automat i c_ f i x ing_vu lne rab i l i t i e s : merge r eques t \"} " ;

82

83 St r ingEnt i ty e n t i t y = new Str ingEnt i ty (jsonBody) ;
84 e n t i t y . setContentType (" a p p l i c a t i o n / j son ") ;
85 httpPost . s e tEnt i ty (e n t i t y) ;
86

87 re sponse = c l i e n t . execute (httpPost) ;
88

89 i f (r e sponse . ge tStatusL ine () . getStatusCode () == 201) {
90 System . out . p r i n t l n (" Pul l r eque s t c r ea ted s u c c e s s f u l l y . ") ;
91 } e l s e {
92 System . e r r . p r i n t l n (" Fa i l ed to c r e a t e p u l l r eque s t . HTTP

s ta tu s code : " + response . ge tStatusL ine () . getStatusCode ()) ;
93 }
94

95 // Ensure to c l o s e the re sponse
96 HttpEntity re sponseEnt i ty = response . ge tEnt i ty () ;
97 i f (r e sponseEnt i ty != n u l l) {
98 r e sponseEnt i ty . getContent () . c l o s e () ;
99 }

100 }

List of Codes 5.33: Git integration.

68

5.5 – Integration with Git

At the end of the process a file called “Fixed_vulnerability.csv” is stored.
If something fails for some reason, everything will be saved in a folder called
“fixedFiles”.

69

70

Chapter 6

Testing

In this chapter, it will be presented the various tested projects and highlighted the
results achieved. Firstly, it will be explained how the tests were conducted, and
then the testing projects will be analyzed, which will be examined both individually
and in the context of other projects.

6.1 Method of testing
To conduct the tests, an initial attempt was made to use an automatic approach
leveraging JUnit. Unfortunately, searching online, none of the found projects had
these tests already implemented. For this reason, a manual approach was chosen,
and the following steps were taken:

1. Obtaining the initial report from SonarQube.

2. Running the tool to fix vulnerabilities.

3. Manual code review, to check if the new code seems correct.

4. Building the fixed project, to be sure that syntactically everything was pre-
served.

5. Getting and comparing the new SonarQube report.

6. Performing manual tests on the launched project, to ensure that the vulnerable
was fixed and that the code is semantically correct.

For each project these steps were executed. This approach was adopted to ensure
that after having solved each vulnerability, the code is no longer vulnerable but
also its behaviour is the same as before the fixing.

71

Testing

6.2 Projects
The tool was tested on a total of 9 profoundly different projects. This was done to
ensure that the resolution of various vulnerabilities did not occur due to similarities
between different vulnerabilities, but that everything worked on even dissimilar
cases. To achieve this, projects were used from various sources, all from different
authors. Some are real applications intentionally designed to be vulnerable, not
only to SQL injection (although the program can only correct that); others are
smaller applications that only have few vulnerabilities. In some cases, both the
vulnerable and corrected versions were available, which clearly facilitated their
testing. The various projects used are listed here with a brief description:

• easybuggy [69]: A Maven project intentionally made vulnerable and also
containing SQL injections (Lines of code: 8.1k).

• java-sec-code [70]: Another Maven project with many vulnerabilities, includ-
ing a corrected version of SQL (Lines of code: 7.4k).

• javaSec-SQLInject-Demo [71]: A small Maven application with some SQL
injections, chosen for the presence of vulnerable PreparedStatements, thus
testing the “PARTIAL” SQL tool (Lines of code: 2.8k).

• JavaVulnerableLab [72]: Also Maven-based, with several vulnerabilities
including SQL (Lines of code: 4.1k).

• NotSecureBank [68]: A Gradle project used for the secure coding course,
filled with vulnerabilities, including SQL injections (Lines of code: 9.1k).

• SQLInjection Test [73]: A small Maven project with a single SQL injection
(Lines of code: 316).

• tarpit-java [74]: A few vulnerabilities in a deliberately vulnerable Maven
project (Lines of code: 2.1k).

• vulnado [75]: Another Maven application with some vulnerabilities, including
SQL (Lines of code: 1.9k).

• WebGoat [76]: A deliberately vulnerable Maven application maintained by
OWASP, containing many vulnerabilities, especially those in the top 10 (Lines
of code: 216.8k).

Totally, SonarQube identified 62 SQL Injection across these 9 projects. Not all of
them were actually exploitable, so the following chart is provided for clarification:

72

6.2 – Projects

Figure 6.1: Total SQL Injection for each project

As it can be seen in the chart, there are some projects with more SQL Injections.
It is fundamental to remark that inside each report produced by Sonar, there were
much more vulnerabilities, but the tool is capable of filtering the SQL Injections.
Considering that we have used 9 projects, having 62 vulnerabilities is a good result
and all of them let us understand the capabilities of this tool. As it can be seen in
here, among the 62 vulnerabilities, 44 are true positives, while 18 are actually not
exploitable, in the next sections this results will be explained.

Figure 6.2: Distribution of the 62 vulnerabilities

73

Testing

6.3 True positive
True positives are all the cases where SQL Injection is actually exploitable, so it
means that having them inside the code might lead to attacks. For this reason,
they are for sure the most dangerous ones. Usually, in those projects it can be
found a true positive whenever it is present a Statement that contains the keyword
“SELECT”. Having other keywords doesn’t mean that the code is 100% secure, of
course there are cases of insertion (i.e., “INSERT”) that were vulnerable to SQL
Injection and the tool was capable of solving also them. The tool was also tested
on PreparedStatement, this was done in order to be sure that it was actually
working on those cases. Below there is a chart that describes the total amount of
solved vulnerabilities among the 44 true positives:

Figure 6.3: Pie chart of True positives

It is important that the tool is capable of fixing correctly, but it is more important
that the fix doesn’t alter the behaviour of the program, for this reason whenever
strange cases are encountered, the tool throws an exception explaining the reason,
such as the two cases that were not fixed (these two cases will be explained below).
This means that for 42 times, the corrections ensure that the code will be no longer
vulnerable. Considering what was said before, this is a wonderful result, because it
highlights that in most cases the tool is sure that applying the fixes, not only the
code will no longer be vulnerable, but also that its semantic will remain unaltered.

Talking about the two cases that were not fixed, it must be analysed the
background of this tool. Those projects were developed in order to be vulnerable
and so to remain vulnerable. In other words: the best practice of developing are
not respected. Now let’s analyse the details of each one:

• In one case of WebGoat we have the various “.java” files not well organized. As

74

6.3 – True positive

it was explained in the part regarding the accepted parameters, one of those
(src) is useful to let the tool understand where are the code files inside the
project directory, unfortunately if the directory is not ordered in this sense,
there is a small possibility that the tool is not capable of inferring the type
of some variables (because of the missing jar). This process is fundamental
in Java, indeed to understand the call hierarchy of a method, all the other
methods must be analysed. To be sure that the method under analysis is
actually that one, it is not enough comparing the name, also the parameters
must be of the same time. This because Java allows multiple methods with
the same name, but different arguments.

• In the section where it was told the mechanism of exploring caller methods, it
was stated that the tool is not capable of changing prototypes. In WebGoat
there is a case that is not fixable because it needs the adding of some parameters
to the method and for this reason the tool rises an exception. The code is
reported below (List of Codes 6.1):

1 protec ted AttackResult i n j e c t a b l e Q u e r y C o n f i d e n t i a l i t y (S t r ing name
, S t r ing auth_tan) {

2 i n t index ;
3 . . .
4 St r ing query = "SELECT ∗ FROM employees WHERE last_name = ?

AND auth_tan = ? " ;
5 t ry (Connection connect ion = dataSource . getConnect ion ()) {
6 t ry {
7 l og (connect ion , query) ;
8 PreparedStatement statement = connect ion .

prepareStatement (query , Resu l tSet .TYPE_SCROLL_INSENSITIVE,
Resu l tSet .CONCUR_UPDATABLE) ;

9 index = 1 ;
10 statement . s e t S t r i n g (index++, name) ;
11 statement . s e t S t r i n g (index++, auth_tan) ;
12 Resu l tSet r e s u l t s = statement . executeQuery () ;
13

14 . . .
15 }
16 }
17

18 pub l i c s t a t i c void l og (Connection connect ion , S t r ing ac t i on) {
19 . . .
20 St r ing logQuery = "INSERT INTO access_log (time , ac t i on)

VALUES (’ " + time + " ’ , ’ " + ac t i on + " ’) " ;
21 t ry {
22 statement . executeUpdate (logQuery , TYPE_SCROLL_SENSITIVE,

CONCUR_UPDATABLE) ;
23 }
24 }

75

Testing

List of Codes 6.1: Example of not fixable query.

As it can be observed in the method log(), we need to pass also some
arguments to replace the placeholder inside action (name and auth_tan), but
the tool is not capable of doing so.

6.4 Strange cases
It is crucial to mention some strange cases found in various projects. Indeed, since
these are intentionally vulnerable applications, unconventional methods can be
found in the code. In products of this kind, there are functions that cannot be
corrected even manually. As an example, consider database queries where, in real
cases, users can pass parameters that will later be inserted into the final query.
However, in some method in WebGoat, the following is found:

1 @PostMapping (" / S q l I n j e c t i o n / attack4 ")
2 @ResponseBody
3 pub l i c AttackResult completed (@RequestParam Str ing query) {
4 re turn in j e c tab l eQuery (query) ;
5 }
6

7 protec ted AttackResult in j e c tab l eQuery (S t r ing query) {
8 . . .
9 statement . executeUpdate (query) ;

10 . . .
11 }

List of Codes 6.2: Example of WebGoat not fixable.

As you can see, in this case, fixing it is impossible because the user is free to
construct the query as they please. This means that this type of interaction cannot
be addressed in any way. However, it is also important to consider that what we
have seen will never be encountered in real cases where the interaction with the
database follows predefined paths set by the programmer, so the user won’t have
this level of freedom. Below is the solution proposed by the tool:

1 protec ted AttackResult in j e c tab l eQuery (S t r ing query) {
2 . . .
3 PreparedStatement statement_1 = connect ion . prepareStatement (" ? " ,

TYPE_SCROLL_INSENSITIVE, CONCUR_READ_ONLY) ;
4 index = 1 ;
5 statement_1 . s e t S t r i n g (index++, query) ;
6 statement_1 . executeUpdate () ;
7 . . .
8 }

76

6.5 – Not exploitable vulnerabilities

List of Codes 6.3: Proposed fix.

If we try to imagine that this is a normal case, it becomes evident that what
is passed to the program is a String; therefore, the tool, in fixing this type of
query, replaces the concatenated content with a placeholder “?”. In general, this
case can be used to study the type of process being performed: the parameter is
searched for in the code, its source is identified (in this example, it’s user input),
and for this reason, it cannot be inserted directly but must be handled with a
PreparedStatement.

In conclusion, it becomes evident that the proposed fix cannot be considered
incorrect because it deals with an unusual case that the tool handles in a conven-
tional manner. If this were indeed a typical case, then the proposed solution would
be correct. This confirms the validity of the results just obtained and the resolution
capability.

6.5 Not exploitable vulnerabilities
Some vulnerabilities found by SonarQube turned out to be non-exploitable.
In fact, the input report theoretically should be filtered to remove this type of
vulnerability. However, for testing purposes, these cases were also studied to
verify their behavior. Before proceeding, it is necessary to distinguish between two
scenarios:

1. The vulnerability is not exploitable, but if the code were to change in the
future and this vulnerability were exposed to the user, it would become a true
positive.

2. The vulnerability is a false positive from every perspective. This means that
Sonar flagged it, but in reality, it is not exploitable and not even a vulnerability.

It is clear that among the two scenarios, the first one is more concerning, and
it would be better if the tool were capable of correcting these cases as well. As
mentioned in the previous sections, there are 18 vulnerabilities that belong to
these two categories: 10 can be attributed to the first case, while the remaining
8 fall into the second case. Analyzing the results obtained, the tool performs
flawlessly. It successfully corrects all 10 cases of the first type, while it encounters
an error in fixing the other 8 of the second type. In reality, the fact that an
exception is thrown for those 8 cases is not problematic because it means the
tool has detected an anomaly and thus interrupts without modifying the code.
Clearly, it cannot understand that the query is not vulnerable, but when the user
reviews the code, this will be evident. Furthermore, the thrown exception is of

77

Testing

type IllegalStateException so it will be easier to identify these cases. Below is
a pie chart showing the corrections made:

Figure 6.4: Pie chart of not exploitable vulnerabilities.

To avoid any misunderstandings and provide clarity, an example is provided for
both types, and in the first case, the solution proposed by the tool will also be
included.

1 stmt . executeUpdate ("CREATE DATABASE "+dbname) ;

List of Codes 6.4: Example of first type.

1 stmt_1 = con . prepareStatement ("CREATE DATABASE ? ") ;
2 index = 1 ;
3 stmt_1 . s e t S t r i n g (index++, dbname) ;

List of Codes 6.5: Example of fix first type.

1 pr i va t e s t a t i c boolean i sVa l idLog in (S t r ing query , S t r ing username ,
S t r ing password) {

2 . . .
3 Connection connect ion = getConnect ion () ;
4 PreparedStatement preparedStatement = connect ion .

prepareStatement (query) ;
5 preparedStatement . s e t S t r i n g (1 , username) ;
6 preparedStatement . s e t S t r i n g (2 , password) ;
7 Resu l tSet r e s u l t S e t = preparedStatement . executeQuery () ;
8 . . .
9 }

10

11 pub l i c s t a t i c boolean i sVa l idUse r (S t r ing username , S t r ing password) {

78

6.6 – Example of testing

12 St r ing query = "SELECT COUNT(∗) FROM PEOPLE WHERE ROLE = ’ user ’
AND USER_ID = ? AND PASSWORD = ? " ;

13 re turn i sVa l idLog in (query , username , password) ;
14 }
15

16 pub l i c s t a t i c boolean isValidAdmin (St r ing adminUsername , S t r ing
adminPassword) {

17 St r ing query = "SELECT COUNT(∗) FROM PEOPLE WHERE ROLE = ’ admin ’
AND USER_ID = ? AND PASSWORD = ? " ;

18 re turn i sVa l idLog in (query , adminUsername , adminPassword) ;
19 }
20

21 pub l i c s t a t i c boolean i sVal idApiUser (S t r ing username , S t r ing password
) {

22 St r ing query = "SELECT COUNT(∗) FROM PEOPLE WHERE USER_ID = ? AND
PASSWORD = ? " ;

23 re turn i sVa l idLog in (query , username , password) ;
24 }

List of Codes 6.6: Example of second type.

As it can be seen from the example above, the code is already secure and not
vulnerable, but SonarQube reported it as a SQL Injection. In this case the tool will
throw an exception leaving the code untouched and in the final report, as result,
there will be an explanation of the error, as mentioned before: “Illegal State”.

6.6 Example of testing
In this section, we will analyze an example of testing on the easybuggy project.
Everything happens after configuring SonarQube with the FindBugs plugin and
generating an auth_token.

Initially, the project was built so that SonarQube could analyze it. To do this,
the following commands were executed:

• mvn clean install: this command is used to clean and rebuild the project
from scratch;

• mvn sonar:sonar -D“sonar.login=auth_token”: this command triggers
the analysis by SonarQube.

Once this phase is completed, the report is downloaded, and when running the
project, various payloads are tested to exploit vulnerabilities. In the case of
easybuggy, by going to the following url “http://localhost:8080/sqlijc” it is
possible to insert username and password in order to get a personal secret of that
specific user.

79

http://localhost:8080/sqlijc

Testing

Figure 6.5: EasyBuggy SQLInjection Home page.

Entering anything as the username and “’ OR ’1’=’1” as the password, all the
secrets of all users can be obtained. This is, of course, a critical issue that needs to
be resolved.

Figure 6.6: EasyBuggy SQLInjection exploit.

After testing all the results from SonarQube, the report is inputted into the tool.
Once various fixes have been applied (either locally or online), the code is rebuilt,
and SonarQube is rerun using the same commands as before. By downloading the
new report, it is verified that all vulnerabilities are no longer present. Therefore,
the application is relaunched, and the same payload is sent to the same url. This
time, since the fixed version is in use, the data of other users is no longer displayed,
so the vulnerability is fixed.

80

6.7 – Example results

6.7 Example results
In summary, the results obtained have been truly excellent. In fact, the corrected
code is not only no longer vulnerable but also maintains the original logic. Further-
more, it’s noticeable how the proposed solution tries to emulate the developer’s
programming style. This way, it will be more readable for the original developer.

6.7.1 Default statement simple cases
In this paragraph, some examples of completely vulnerable queries taken from
various projects, such as easybuggy, SQLInjectionTest and NotSecureBank, will
be inserted. The first one is the most simple case:

1 stmt = conn . createStatement () ;
2 r s = stmt . executeQuery ("SELECT name , s e c r e t FROM use r s WHERE i s p u b l i c

= ’ t rue ’ AND name=’ " + name + " ’ AND password=’ " + password + " ’ "
) ;

List of Codes 6.7: Default query, simple case from easybuggy.

The proposed solution is the following one:
1 PreparedStatement stmt = conn . prepareStatement ("SELECT name , s e c r e t

FROM use r s WHERE i s p u b l i c = ’ t rue ’ AND name=? AND password=?") ;
2 index = 1 ;
3 stmt . s e t S t r i n g (index++, name) ;
4 stmt . s e t S t r i n g (index++, password) ;
5 r s = stmt . executeQuery () ;

List of Codes 6.8: Default query, fix simple case from easybuggy.

Now let’s move into something a little more complex, instead of concatenating each
parameters using “’”, it is used “\’”:

1 St r ing s q l = "SELECT ∗ FROM s q l i n j e c t i o n t e s t where name = " + " \ ’ " +
name + " \ ’ " ;

2 Resu l tSet r s = stmt . executeQuery (s q l) ;

List of Codes 6.9: Default query, case with “\’” from SQLInjectionTest.

In this case the tool is capable of solving the issue without any trouble:
1 St r ing s q l = "SELECT ∗ FROM s q l i n j e c t i o n t e s t where name = ? " ;
2 PreparedStatement stmt = conn . prepareStatement (s q l) ;
3 index = 1 ;
4 stmt . s e t S t r i n g (index++, name) ;
5 Resu l tSet r s = stmt . executeQuery () ;

List of Codes 6.10: Default query, fix case with “\’” from SQLInjectionTest.

81

Testing

It is clear that in simpler cases like the ones seen previously, the tool is perfectly
capable of generating a solution. It can be noticed that, regardless of complexity,
the index parameter is always added because incrementing it each time makes the
configuration of each parameter simpler and safer.

6.7.2 Default statement complex cases
Now we will study progressively more complex cases. But before proceeding, let’s
define what the difficulties can be:

1. Parameters to add to initialization.

2. Bringing parts into the Setting phase.

3. Presence of multiple branches, e.g., if-then-else, for, while, etc.

These cases are clearly not mutually exclusive, which means that in the code, these
difficulties could be combined. For example, you might have additional parameters
to put in the initialization phase and also multiple branches (loops) where various
variables are concatenated. In reality, all three cases could be present.

Starting with the first type, the following example is provided from NotSecureBank.
1 Statement statement = connect ion . createStatement () ;
2 statement . execute ("INSERT INTO FEEDBACK (NAME,EMAIL,SUBJECT,COMMENTS)

VALUES (’ " + name + " ’ , ’ " + emai l + " ’ , ’ " + sub j e c t + " ’ , ’ " +
comments + " ’) " , Statement .RETURN_GENERATED_KEYS) ;

3 Resu l tSet r s = statement . getGeneratedKeys () ;

List of Codes 6.11: Default query, multi parameteres initialization case from
NotSecureBank.

As it can be seen, here the generated ID of the feedback is what is wanted, for this
reason inside the initialization of statement it is present the field: Statement-
.RETURN_GENERATED_KEYS. Whenever using a PreparedStatement this part must
be brought inside the creation, so where it is involved the connection variable.
Here it is reported the generated solution:

1 PreparedStatement statement = connect ion . prepareStatement ("INSERT
INTO FEEDBACK (NAME,EMAIL,SUBJECT,COMMENTS) VALUES (? , ? , ? , ?) " ,
Statement .RETURN_GENERATED_KEYS) ;

2 index = 1 ;
3 statement . s e t S t r i n g (index++, name) ;
4 statement . s e t S t r i n g (index++, emai l) ;
5 statement . s e t S t r i n g (index++, sub j e c t) ;
6 statement . s e t S t r i n g (index++, comments) ;
7 statement . execute () ;
8 Resu l tSet r s = statement . getGeneratedKeys () ;

82

6.7 – Example results

List of Codes 6.12: Default query, fix multi parameteres initialization case from
NotSecureBank.

As for the second case, it can be thought of the SQL keyword “LIKE”. Often, it is
accompanied by the “%” symbol before or after the desired word. This is used for
partial word matching, making the database search more powerful. Below is an
example:

1 St r ing query = "SELECT ∗ FROM access_log WHERE act i on LIKE ’%" +
act i on + "%’ " ;

2 Statement statement = connect ion . createStatement (Resu l tSet .
TYPE_SCROLL_INSENSITIVE, Resu l tSet .CONCUR_READ_ONLY) ;

3 Resu l tSet r e s u l t s = statement . executeQuery (query) ;

List of Codes 6.13: Default query, parts into setting phase case from WebGoat.

Actually, this case involves both type 1 and 2. Anyway, the tool generates a solution
in which the logic is preserved and the vulnerability is no longer present in the
code:

1 St r ing query = "SELECT ∗ FROM access_log WHERE act i on LIKE ? " ;
2 PreparedStatement statement = connect ion . prepareStatement (query ,

Resu l tSet .TYPE_SCROLL_INSENSITIVE, Resu l tSet .CONCUR_READ_ONLY) ;
3 index = 1 ;
4 statement . s e t S t r i n g (index++, "%" + act i on + "%") ;
5 Resu l tSet r e s u l t s = statement . executeQuery () ;

List of Codes 6.14: Default query, fix parts into setting phase case from WebGoat.

Finally, to understand the third case, an example from NotSecureBank is provided,
which is actually a mix of types 2 and 3. A parameter is concatenated using a “for”
loop, while the date is initialized using an “if-then-else”:

1 ac c t Id s . append ("ACCOUNTID = " + accounts [0] . getAccountId ()) ;
2 f o r (i n t i = 1 ; i < accounts . l ength ; i++) {
3 ac c t Id s . append (" OR ACCOUNTID = " + accounts [i] . getAccountId ()) ;
4 }
5 St r ing dateSt r ing = n u l l ;
6 i f (s tar tDate != n u l l && star tDate . l ength () > 0 && endDate != n u l l &&

endDate . l ength () > 0) {
7 dateSt r ing = "DATE BETWEEN ’ " + star tDate + " 0 0 : 0 0 : 0 0 ’ AND ’ " +

endDate + " 2 3 : 5 9 : 5 9 ’ " ;
8 } e l s e i f (s tar tDate != n u l l && star tDate . l ength () > 0) {
9 dateSt r ing = "DATE > ’ " + star tDate + " 0 0 : 0 0 : 0 0 ’ " ;

10 } e l s e i f (endDate != n u l l && endDate . l ength () > 0) {
11 dateSt r ing = "DATE < ’ " + endDate + " 2 3 : 5 9 : 5 9 ’ " ;
12 }

83

Testing

13 St r ing query = "SELECT ∗ FROM TRANSACTIONS WHERE (" + acc t Id s .
t oS t r i ng () + ") " + ((dateSt r ing == n u l l) ? " " : "AND (" +
dateSt r ing + ") ") + "ORDER BY DATE DESC" ;

14 r e s u l t S e t = statement . executeQuery (query) ;

List of Codes 6.15: Default query, multi branch case from WebGoat.

The tool analyzes the given code and tries to generate a solution that maintains
the programmer’s style. Therefore, all the branches present are also copied to the
Setting phase. The solution is shown below:

1 ac c t Id s . append ("ACCOUNTID = ? ") ;
2 f o r (i n t i = 1 ; i < accounts . l ength ; i++) {
3 ac c t Id s . append (" OR ACCOUNTID = ? ") ;
4 }
5 St r ing dateSt r ing = n u l l ;
6 i f (s tar tDate != n u l l && star tDate . l ength () > 0 && endDate != n u l l &&

endDate . l ength () > 0) {
7 dateSt r ing = "DATE BETWEEN ? AND ? " ;
8 } e l s e i f (s tar tDate != n u l l && startDate . l ength () > 0) {
9 dateSt r ing = "DATE > ? " ;

10 } e l s e i f (endDate != n u l l && endDate . l ength () > 0) {
11 dateSt r ing = "DATE < ? " ;
12 }
13 St r ing query = "SELECT ∗ FROM TRANSACTIONS WHERE (" + acc t Id s .

t oS t r i ng () + ") " + ((dateSt r ing == n u l l) ? " " : "AND (" +
dateSt r ing + ") ") + "ORDER BY DATE DESC" ;

14 Resu l tSet r e s u l t S e t = n u l l ;
15 PreparedStatement statement = connect ion . prepareStatement (query) ;
16 i f (rowCount > 0)
17 statement . setMaxRows (rowCount) ;
18 index = 1 ;
19 statement . setLong (index++, accounts [0] . getAccountId ()) ;
20 f o r (i n t i = 1 ; i < accounts . l ength ; i++) {
21 statement . setLong (index++, accounts [i] . getAccountId ()) ;
22 }
23 i f (! ((da teSt r ing == n u l l))) {
24 i f (s tar tDate != n u l l && star tDate . l ength () > 0 && endDate !=

n u l l && endDate . l ength () > 0) {
25 statement . s e t S t r i n g (index++, star tDate + " 00 : 00 : 00 ") ;
26 statement . s e t S t r i n g (index++, endDate + " 23 : 59 : 59 ") ;
27 } e l s e i f (s tar tDate != n u l l && startDate . l ength () > 0) {
28 statement . s e t S t r i n g (index++, star tDate + " 00 : 00 : 00 ") ;
29 } e l s e i f (endDate != n u l l && endDate . l ength () > 0) {
30 statement . s e t S t r i n g (index++, endDate + " 23 : 59 : 59 ") ;
31 }
32 }
33 r e s u l t S e t = statement . executeQuery () ;

List of Codes 6.16: Default query, fix multi branch case from WebGoat.

84

6.7 – Example results

6.7.3 Partial statement
Before concluding, it is also needed to analyze partially vulnerable statements,
meaning cases where there is a PreparedStatement with some parameters already
inserted while others still need to be added. To do this, the tool must reconstruct
the parameters that have already been inserted to understand where to insert the
new ones. Below is a case from WebGoat and its corresponding solution.

1 St r ing queryStr ing = "SELECT ∗ From user_data WHERE Login_Count = ?
and us e r i d= " + accountName ;

2 PreparedStatement query = connect ion . prepareStatement (queryStr ing ,
Resu l tSet .TYPE_SCROLL_INSENSITIVE, Resu l tSet .CONCUR_READ_ONLY)

3 query . s e t I n t (1 , count) ;
4 Resu l tSet r e s u l t s = query . executeQuery () ;

List of Codes 6.17: partial query from WebGoat.

In this case, the count is correctly concatenated but the userid is not concatenated
using a placeholder. Looking inside the code, it is clear that the former must be
replaced with a “?” and then it must be inserted in second position. The tool is
capable of doing so by analysing where are all the original placeholders. So at the
end, the obtained fix is the following one:

1 St r ing queryStr ing = "SELECT ∗ From user_data WHERE Login_Count = ?
and us e r i d= ? " ;

2 PreparedStatement query = connect ion . prepareStatement (queryStr ing ,
Resu l tSet .TYPE_SCROLL_INSENSITIVE, Resu l tSet .CONCUR_READ_ONLY) ;

3 index = 1 ;
4 query . s e t I n t (index++, count) ;
5 query . s e t S t r i n g (index++, accountName) ;
6 Resu l tSet r e s u l t s = query . executeQuery () ;

List of Codes 6.18: partial query fix from WebGoat.

85

86

Chapter 7

Conclusion

After analyzing the state of the art, it became evident that there was no existing
product capable of automatically fixing code vulnerabilities. Clearly, the developed
tool should not be considered a complete and production-ready solution; however,
it serves as a starting point that marks a shift from the traditional approach where
human intervention is indispensable. In fact, the tool could be integrated into the
git workflow, making the analysis and resolution of vulnerabilities even simpler.

7.1 Pros of the tool
Compared to what already exists, this solution is deterministic, which means
that if the input remains unchanged, the output will always be the same. This type
of behavior is much harder to replicate when working with AI, which, by definition,
generates results that are only probabilistically correct.

Furthermore, the tool reduces human interaction. In enterprise solutions, if
there were vulnerabilities, they would traditionally need to be manually corrected.
For instance, if there were 100 SQL Injections, a human operator would have to
resolve each one manually. During the correction process, they might introduce
new errors due to fatigue and/or distractions. By using the tool, all of this becomes
impossible because human work is limited to reviewing the proposed solutions.

Moreover, since it’s Java code, the entire project remains local without the need
to upload files online. This means there is no reason to upload files to OpenAI
or other companies. Integration with git will, of course, upload the code online;
however, it is a tool for managing project versioning. If the developer deems it
necessary, they can still perform the analysis locally. This is better for reason
related to privacy and GDPR.

In addition to this, the use of the solution developed in this thesis is more
efficient compared to using AI, for the same reason mentioned earlier; there is no

87

Conclusion

need to upload any final information (except for the output on git).
All of these features allow a developer to save time on vulnerability assessment,

allowing them to focus on other tasks that require greater attention. Consequently,
the company will also become more productive.

As seen from the tests conducted, there are cases where the tool cannot resolve
the vulnerability, but these are a small percentage. Therefore, the code review
(which is still necessary) can be further expedited.

7.2 Cons of the tool
On the other hand, by only addressing SQL Injection in Java, the tool cannot
be considered complete. Therefore, it currently needs to be supplemented with
other solutions to achieve comprehensive coverage (such as making requests to
ChatGPT via a web browser).

Furthermore, all the project on which the tool was tested were voluntary
vulnerable, this means that they cannot be compared with a real application,
as it was explained in the previous chapter (Section 6.4).

7.3 Future works
Firstly, it must be highlighted, that in the future the tool can be tested on real-world
applications, this to achieve more reliability and credibility. Indeed, this step is
fundamental before being adopted in enterprise solutions.

Furthermore, in the future, the project can be extended. In fact, the code has
been designed in a modular way, as explained earlier; the Vulnerability class
can be implemented and extended by many other classes in the future. This work
will allow for the management of many more vulnerabilities. Additionally, the
“JavaParserUtil” Java file is already present, with many useful methods for code
parsing, to expedite further development.

Certainly, among the first ideas is the addition of various vulnerabilities
to fix, but there is also a desire to work on multiple languages. Starting with
the most interesting vulnerabilities, there are various Injections, such as XSS and
Command Injection, but other categories in the OWASP top 10 should not be
excluded.

As for the languages to address, JavaScript undoubtedly takes the top spot,
being one of the most widely used languages in the web domain, followed by Python
and PHP. Of course, the aim is to follow market trends, trying to modernize and
make the tool more complete, in the hope that one day it will be capable of fixing
vulnerabilities in every programming language.

88

Bibliography

[1] “OWASP A01 Broken Access Control”, [Online] Available: https://owasp.
org/Top10/A01_2021-Broken_Access_Control/

[2] “A02:2021 – Cryptographic Failures”, [Online] Available: https://owasp.
org/Top10/A02_2021-Cryptographic_Failures/

[3] “A03:2021 – Injection”, [Online] Available: https://owasp.org/Top10/A03_
2021-Injection/

[4] “A04:2021 – Insecure Design”, [Online] Available: https://owasp.org/
Top10/A04_2021-Insecure_Design/

[5] “A05:2021 – Security Misconfiguration”, [Online] Available: https://owasp.
org/Top10/A05_2021-Security_Misconfiguration/

[6] “A06:2021 – Vulnerable and Outdated Components”, [Online] Avail-
able: https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_
Components/

[7] “A07:2021 – Identification and Authentication Failures”, [Online]
Available: https://owasp.org/Top10/A07_2021-Identification_and_
Authentication_Failures/

[8] “A08:2021 – Software and Data Integrity Failures”, [Online] Available:
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_
Failures/

[9] “A09:2021 – Security Logging and Monitoring Failures”, [Online]
Available: https://owasp.org/Top10/A09_2021-Security_Logging_and_
Monitoring_Failures/

[10] “A10:2021 – Server-Side Request Forgery (SSRF)”, [Online] Available:
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_
%28SSRF%29/

[11] “OWASP Top 10:2021”, [Online] Available: https://owasp.org/
Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/ “OWASP
Top 10:2021”, [Online] Available: https://owasp.org/Top10/A10_
2021-Server-Side_Request_Forgery_%28SSRF%29/

[12] A. Sadeghian, M. Zamani and A. A. Manaf, “A Taxonomy of SQL Injection
Detection and Prevention Techniques”, 2013 International Conference on

89

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/

Bibliography

Informatics and Creative Multimedia, Kuala Lumpur, Malaysia, 2013,pp.
53-56, DOI: 10.1109/ICICM.2013.18.

[13] W. G. J. Halfond. A Classification of SQL Injection Attacks and Counter-
measures. N.p., 2006. Print.

[14] Y. Pan, “Interactive Application Security Testing”, 2019 International Confer-
ence on Smart Grid and Electrical Automation (ICSGEA), Xiangtan, China,
2019, pp. 558-561, DOI: 10.1109/ICSGEA.2019.00131.

[15] “SonarQube 10.2 Documentation”, [Online] Available: https://docs.
sonarsource.com/sonarqube/latest/

[16] “Quality profiles”, [Online] Available: https://docs.sonarsource.com/
sonarqube/latest/instance-administration/quality-profiles/

[17] “Find Security Bugs”, [Online] Available: https://find-sec-bugs.github.
io/

[18] “Potential SQL Injection”, [Online] Available: https://find-sec-bugs.
github.io/bugs.htm#SQL_INJECTION

[19] “Application Security Testing Reviews and Ratings”, [On-
line] Available: https://www.gartner.com/reviews/market/
application-security-testing

[20] “Mend SAST”, [Online] Available: https://www.mend.io/sast/
[21] “Peerspot, Mend.io Reviews”, Jeffrey Harker, 2022, [Online] Available: https:

//www.peerspot.com/products/mend-io-reviews#review_2284212
[22] “Gartner Mend.io Reviews”, 2022, [Online] Available: https:

//www.gartner.com/reviews/market/application-security-testing/
vendor/mend-io/product/mend/review/view/4533780

[23] “Gartner Mend.io Reviews”, 2022, [Online] Available: https:
//www.gartner.com/reviews/market/application-security-testing/
vendor/mend-io/product/mend/review/view/4534128

[24] “Veracode Fix”, [Online] Available: https://www.veracode.com/fix
[25] “CheckMarx SAST”, [Online] Available: https://checkmarx.com/

cxsast-source-code-scanning/
[26] “CheckMarx SAST”, [Online] Available: https://about.gitlab.com/

topics/devops/
[27] “Snyk Code”, [Online] Available: https://snyk.io/product/snyk-code/
[28] “Sourcegraph”, [Online] Available: https://sourcegraph.com/search
[29] “Is ChatGPT the Ultimate Programming Assistant – How far is it?”, Haoye

Tian and Weiqi Lu and Tsz On Li and Xunzhu Tang and Shing-Chi Che-
ung and Jacques Klein and Tegawendé F. Bissyandé, 2023, [Online] DOI:
10.48550/arXiv.2304.11938

[30] “gpt3_security_vulnerability_scanner”, chris-koch-penn, [Online] https://
github.com/chris-koch-penn/gpt3_security_vulnerability_scanner

90

https://doi.org/10.1109/ICICM.2013.18
https://doi.org/10.1109/ICSGEA.2019.00131
https://docs.sonarsource.com/sonarqube/latest/
https://docs.sonarsource.com/sonarqube/latest/
https://docs.sonarsource.com/sonarqube/latest/instance-administration/quality-profiles/
https://docs.sonarsource.com/sonarqube/latest/instance-administration/quality-profiles/
https://find-sec-bugs.github.io/
https://find-sec-bugs.github.io/
https://find-sec-bugs.github.io/bugs.htm#SQL_INJECTION
https://find-sec-bugs.github.io/bugs.htm#SQL_INJECTION
https://www.gartner.com/reviews/market/application-security-testing
https://www.gartner.com/reviews/market/application-security-testing
https://www.mend.io/sast/
https://www.peerspot.com/products/mend-io-reviews#review_2284212
https://www.peerspot.com/products/mend-io-reviews#review_2284212
https://www.gartner.com/reviews/market/application-security-testing/vendor/mend-io/product/mend/review/view/4533780
https://www.gartner.com/reviews/market/application-security-testing/vendor/mend-io/product/mend/review/view/4533780
https://www.gartner.com/reviews/market/application-security-testing/vendor/mend-io/product/mend/review/view/4533780
https://www.gartner.com/reviews/market/application-security-testing/vendor/mend-io/product/mend/review/view/4534128
https://www.gartner.com/reviews/market/application-security-testing/vendor/mend-io/product/mend/review/view/4534128
https://www.gartner.com/reviews/market/application-security-testing/vendor/mend-io/product/mend/review/view/4534128
https://www.veracode.com/fix
https://checkmarx.com/cxsast-source-code-scanning/
https://checkmarx.com/cxsast-source-code-scanning/
https://about.gitlab.com/topics/devops/
https://about.gitlab.com/topics/devops/
https://snyk.io/product/snyk-code/
https://sourcegraph.com/search
https://doi.org/10.48550/arXiv.2304.11938
https://github.com/chris-koch-penn/gpt3_security_vulnerability_scanner
https://github.com/chris-koch-penn/gpt3_security_vulnerability_scanner

Bibliography

[31] “I Used GPT-3 to Find 213 Security Vulnerabilities in a Single Code-
base”, Chris Koch, 2023 [Online] https://betterprogramming.pub/
i-used-gpt-3-to-find-213-security-vulnerabilities-in-a-single-codebase-cc3870ba9411

[32] “CodeGPT”, [Online] https://plugins.jetbrains.com/plugin/
21056-codegpt

[33] “GPTCoder”, [Online] https://marketplace.visualstudio.com/items?
itemName=codista.vscodewriter

[34] “JavaParser”, [Online] https://javaparser.org/
[35] “JavaParser About”, [Online] https://javaparser.org/about.html
[36] “JavaParser Documentation: class CompilationUnit”, [Online] https:

//javadoc.io/static/com.github.javaparser/javaparser-core/3.2.
8/com/github/javaparser/ast/CompilationUnit.html

[37] “JavaParser Documentation: class Node”, [Online] https://www.javadoc.
io/static/com.github.javaparser/javaparser-core/3.25.5/com/
github/javaparser/ast/Node.html

[38] “JavaParser Documentation: class Range”, [Online] https://www.javadoc.
io/static/com.github.javaparser/javaparser-core/3.25.5/com/
github/javaparser/Range.html

[39] “JavaParser Documentation: class MethodDeclaration”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/ast/body/MethodDeclaration.html

[40] “JavaParser Documentation: class Statement”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/ast/body/MethodDeclaration.html

[41] “JavaParser Documentation: class BlockStmt”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/ast/stmt/BlockStmt.html

[42] “JavaParser Documentation: class IfStmt”, [Online] https://www.javadoc.
io/static/com.github.javaparser/javaparser-core/3.25.5/com/
github/javaparser/ast/stmt/IfStmt.html

[43] “JavaParser Documentation: class WhileStmt”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/ast/stmt/WhileStmt.html

[44] “JavaParser Documentation: class DoStmt”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/ast/stmt/DoStmt.html

[45] “JavaParser Documentation: class ForStmt”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/ast/stmt/ForStmt.html

[46] “JavaParser Documentation: class TryStmt”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/

91

https://betterprogramming.pub/i-used-gpt-3-to-find-213-security-vulnerabilities-in-a-single-codebase-cc3870ba9411
https://betterprogramming.pub/i-used-gpt-3-to-find-213-security-vulnerabilities-in-a-single-codebase-cc3870ba9411
https://plugins.jetbrains.com/plugin/21056-codegpt
https://plugins.jetbrains.com/plugin/21056-codegpt
https://marketplace.visualstudio.com/items?itemName=codista.vscodewriter
https://marketplace.visualstudio.com/items?itemName=codista.vscodewriter
https://javaparser.org/
https://javaparser.org/about.html
https://javadoc.io/static/com.github.javaparser/javaparser-core/3.2.8/com/github/javaparser/ast/CompilationUnit.html
https://javadoc.io/static/com.github.javaparser/javaparser-core/3.2.8/com/github/javaparser/ast/CompilationUnit.html
https://javadoc.io/static/com.github.javaparser/javaparser-core/3.2.8/com/github/javaparser/ast/CompilationUnit.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/Node.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/Node.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/Node.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/Range.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/Range.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/Range.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/body/MethodDeclaration.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/body/MethodDeclaration.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/body/MethodDeclaration.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/body/MethodDeclaration.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/body/MethodDeclaration.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/body/MethodDeclaration.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/BlockStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/BlockStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/BlockStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/IfStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/IfStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/IfStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/WhileStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/WhileStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/WhileStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/DoStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/DoStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/DoStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/ForStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/ForStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/ForStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/TryStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/TryStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/TryStmt.html

Bibliography

3.25.5/com/github/javaparser/ast/stmt/TryStmt.html
[47] “JavaParser Documentation: class ExpressionStmt”, [Online] https:

//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/ast/stmt/ExpressionStmt.html

[48] “JavaParser Documentation: class Expression”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/ast/expr/Expression.html

[49] “JavaParser Documentation: class AssignExpr”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/ast/expr/AssignExpr.html

[50] “JavaParser Documentation: class NameExpr”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/ast/expr/NameExpr.html

[51] “JavaParser Documentation: class VariableDeclarationExpr”, [On-
line] https://www.javadoc.io/static/com.github.javaparser/
javaparser-core/3.25.5/com/github/javaparser/ast/expr/
VariableDeclarationExpr.html

[52] “JavaParser Documentation: class MethodCallExpr”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/ast/expr/MethodCallExpr.html

[53] “JavaParser Documentation: class ConditionalExpr”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/ast/expr/ConditionalExpr.html

[54] “JavaParser Documentation: class StringLiteralExpr”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/ast/expr/StringLiteralExpr.html

[55] “JavaParser Documentation: interface TypeSolver”, [Online] https:
//www.javadoc.io/static/com.github.javaparser/javaparser-core/
3.25.5/com/github/javaparser/resolution/TypeSolver.html

[56] “JavaParser Documentation: class CombinedTypeSolver”, [On-
line] https://www.javadoc.io/static/com.github.javaparser/
javaparser-symbol-solver-core/3.23.1/com/github/javaparser/
symbolsolver/resolution/typesolvers/CombinedTypeSolver.html

[57] “JavaParser Documentation: class JavaSymbolSolver”, [On-
line] https://www.javadoc.io/static/com.github.javaparser/
java-symbol-solver-core/0.6.3/com/github/javaparser/
symbolsolver/JavaSymbolSolver.html

[58] “JavaParser Documentation: class ReflectionTypeSolver”, [On-
line] https://www.javadoc.io/static/com.github.javaparser/
java-symbol-solver-core/0.6.3/com/github/javaparser/
symbolsolver/resolution/typesolvers/ReflectionTypeSolver.html

92

https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/TryStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/TryStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/TryStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/ExpressionStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/ExpressionStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/stmt/ExpressionStmt.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/Expression.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/Expression.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/Expression.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/AssignExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/AssignExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/AssignExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/NameExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/NameExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/NameExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/VariableDeclarationExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/VariableDeclarationExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/VariableDeclarationExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/MethodCallExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/MethodCallExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/MethodCallExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/ConditionalExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/ConditionalExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/ConditionalExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/StringLiteralExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/StringLiteralExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/ast/expr/StringLiteralExpr.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/resolution/TypeSolver.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/resolution/TypeSolver.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-core/3.25.5/com/github/javaparser/resolution/TypeSolver.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-symbol-solver-core/3.23.1/com/github/javaparser/symbolsolver/resolution/typesolvers/CombinedTypeSolver.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-symbol-solver-core/3.23.1/com/github/javaparser/symbolsolver/resolution/typesolvers/CombinedTypeSolver.html
https://www.javadoc.io/static/com.github.javaparser/javaparser-symbol-solver-core/3.23.1/com/github/javaparser/symbolsolver/resolution/typesolvers/CombinedTypeSolver.html
https://www.javadoc.io/static/com.github.javaparser/java-symbol-solver-core/0.6.3/com/github/javaparser/symbolsolver/JavaSymbolSolver.html
https://www.javadoc.io/static/com.github.javaparser/java-symbol-solver-core/0.6.3/com/github/javaparser/symbolsolver/JavaSymbolSolver.html
https://www.javadoc.io/static/com.github.javaparser/java-symbol-solver-core/0.6.3/com/github/javaparser/symbolsolver/JavaSymbolSolver.html
https://www.javadoc.io/static/com.github.javaparser/java-symbol-solver-core/0.6.3/com/github/javaparser/symbolsolver/resolution/typesolvers/ReflectionTypeSolver.html
https://www.javadoc.io/static/com.github.javaparser/java-symbol-solver-core/0.6.3/com/github/javaparser/symbolsolver/resolution/typesolvers/ReflectionTypeSolver.html
https://www.javadoc.io/static/com.github.javaparser/java-symbol-solver-core/0.6.3/com/github/javaparser/symbolsolver/resolution/typesolvers/ReflectionTypeSolver.html

Bibliography

[59] “Package one.util.streamex”, [Online] http://amaembo.github.io/
streamex/javadoc/one/util/streamex/package-summary.html

[60] “Stream methods: distinct”, [Online] https://docs.oracle.com/javase/
8/docs/api/java/util/stream/Stream.html#distinct--

[61] “package org.json”, [Online] https://javadoc.io/doc/org.json/json/
latest/index.html

[62] “Maven Invoker Plugin”, [Online] https://maven.apache.org/plugins/
maven-invoker-plugin

[63] “Package org.gradle.tooling”, [Online] https://docs.gradle.org/current/
javadoc/org/gradle/tooling/package-summary.html

[64] “Apache Commons CLI”, [Online] https://commons.apache.org/proper/
commons-cli

[65] “Eclipse JGit™”, [Online] https://www.eclipse.org/jgit/
[66] “GitHub API for Java”, [Online] https://github-api.kohsuke.org/
[67] “HttpClient Overview”, [Online] https://hc.apache.org/

httpcomponents-client-5.1.x/index.html
[68] “NotSecureBank”, [Online] https://github.com/enzopalmisano/

NotSecureBank
[69] “easybuggy”, [Online] https://github.com/k-tamura/easybuggy
[70] “java-sec-code”, [Online] https://github.com/JoyChou93/java-sec-code
[71] “JavaSec-SQLInject-Demo”, [Online] https://github.com/UzJu/

JavaSec-SQLInject-Demo
[72] “JavaVulnerableLab”, [Online] https://github.com/CSPF-Founder/

JavaVulnerableLab
[73] “SQLInjectionTest”, [Online] https://github.com/AchillesCap/

SQLInjectionTest
[74] “tarpit-java”, [Online] https://github.com/ShiftLeftSecurity/

tarpit-java
[75] “vulnado”, [Online] https://github.com/ScaleSec/vulnado
[76] “WebGoat”, [Online] https://github.com/WebGoat/WebGoat

93

http://amaembo.github.io/streamex/javadoc/one/util/streamex/package-summary.html
http://amaembo.github.io/streamex/javadoc/one/util/streamex/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#distinct--
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#distinct--
https://javadoc.io/doc/org.json/json/latest/index.html
https://javadoc.io/doc/org.json/json/latest/index.html
https://maven.apache.org/plugins/maven-invoker-plugin
https://maven.apache.org/plugins/maven-invoker-plugin
https://docs.gradle.org/current/javadoc/org/gradle/tooling/package-summary.html
https://docs.gradle.org/current/javadoc/org/gradle/tooling/package-summary.html
https://commons.apache.org/proper/commons-cli
https://commons.apache.org/proper/commons-cli
https://www.eclipse.org/jgit/
https://github-api.kohsuke.org/
https://hc.apache.org/httpcomponents-client-5.1.x/index.html
https://hc.apache.org/httpcomponents-client-5.1.x/index.html
https://github.com/enzopalmisano/NotSecureBank
https://github.com/enzopalmisano/NotSecureBank
https://github.com/k-tamura/easybuggy
https://github.com/JoyChou93/java-sec-code
https://github.com/UzJu/JavaSec-SQLInject-Demo
https://github.com/UzJu/JavaSec-SQLInject-Demo
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/CSPF-Founder/JavaVulnerableLab
https://github.com/AchillesCap/SQLInjectionTest
https://github.com/AchillesCap/SQLInjectionTest
https://github.com/ShiftLeftSecurity/tarpit-java
https://github.com/ShiftLeftSecurity/tarpit-java
https://github.com/ScaleSec/vulnado
https://github.com/WebGoat/WebGoat

	List of Tables
	List of Figures
	List of Codes
	Acronyms
	Introduction
	Objective
	Structure of the thesis

	Vulnerabilities and how to detect them
	Cybersecurity key concept
	Vulnerabilities
	Vulnerabilities and time
	SQL Injection
	Vulnerability detection
	SonarQube

	State of art
	SAST tool, automatic fixing
	Mend.io (formerly WhiteSource)
	Veracode fix
	CheckMarx SAST
	Rapid7 InsideAppSec
	Snyk Code and Sourcegraph

	ChatGPT
	ChatGPT and coding
	ChatGPT IDE integrations

	Taken choices
	ChatGPT integration
	ChatGPT from the browser
	OpenAI API
	Results

	Standard code
	Choosen vulnerability
	Choosen language

	Development of the tool
	The idea
	Dependencies
	JavaParser
	StreamEx
	json
	Maven Invoker Plugin
	Gradle Tooling API
	Commons CLI
	Jgit
	GitHub API
	Http Client

	Development, core logic
	VulnerabilityFixer
	Modules, Module and Method
	Vulnerability and SQLInjection
	Core logic
	Parameters class
	Replacement first constructor
	Replacement second constructor
	Replacement recursive
	Part
	Variable
	Setter
	Applying fixes

	Input
	Integration with Git

	Testing
	Method of testing
	Projects
	True positive
	Strange cases
	Not exploitable vulnerabilities
	Example of testing
	Example results
	Default statement simple cases
	Default statement complex cases
	Partial statement

	Conclusion
	Pros of the tool
	Cons of the tool
	Future works

	Bibliography

