
Politecnico di Torino

Computer Engineering
A.y. 2023/2024

Graduation session October 2023

Development of a Web Application
for Project Management using

Amazon Web Services and
Microfrontends

Supervisor Candidate
Luigi De Russis Alberto Baroso
Company Supervisor
Massimo Pacileo

Abstract

Project management involves monitoring a wide range of company assets: resources
must be efficiently assigned to projects, which in turn must be completed in time to
meet customer release deadlines. This thesis presents the comprehensive analysis,
design, implementation, testing, and deployment of a web application aimed at
replacing old project management processes based on Excel spreadsheets and
email communications. The application’s purpose is to streamline managers’ and
project managers’ workflows by automating tasks, validating inputs, and allowing
faster communication. The requirements were initially gathered by observing the
existing solution and assessing the concerns of its users. The resulting design and
implementation leveraged a serverless backend powered by Amazon Web Services.
The front end was initially entirely developed in Flutter and later evolved into
a microfrontends architecture. Finally, this thesis presents code quality metrics
such as static analysis and coverage from automated tests, and it compares the
performance of monolithic and microfrontend applications using Web Vitals.

Table of Contents

List of Tables iii

List of Figures iv

Glossary vi

1 Introduction 1
1.1 Context . 1
1.2 Goals . 2
1.3 Thesis structure . 2

2 Analysis 4
2.1 Existing solution . 4
2.2 Microfrontends . 5
2.3 Requirements . 6

2.3.1 Application users . 6
2.3.2 Functional requirements . 6

3 Technologies and services 9
3.1 Employed technologies . 9
3.2 Comparison of technological alternatives 13

3.2.1 Database . 13
3.2.2 RESTful VS GraphQL APIs 19

4 Design 20
4.1 Project structure . 20
4.2 System architecture . 21
4.3 Back end . 22

4.3.1 Business logic . 22
4.3.2 Lambda layers . 23
4.3.3 Dead-letter queue . 23
4.3.4 DynamoDB streams . 24

4.4 Front end . 24
4.4.1 Monolith . 24
4.4.2 Microfrontends . 24

i

4.5 Database . 25

5 Implementation 28
5.1 Project management . 28
5.2 Project setup . 29

5.2.1 Git branches and Amplify environments 29
5.2.2 Amplify CI/CD . 30
5.2.3 Application build . 31
5.2.4 Application deployment . 33

5.3 User Interface . 35
5.4 Authentication . 41

5.4.1 Custom user sign-up and sign-in forms 42
5.4.2 Corporate Single Sign-On with OAuth flow 42

5.5 Authorization . 45
5.5.1 Pre-signup lambda trigger 45
5.5.2 Post confirmation lambda trigger 45
5.5.3 Manual user group assignment 47

5.6 CRUD operations . 49
5.6.1 Resources . 50
5.6.2 Business units and cities . 52
5.6.3 Work planning and finalization 52

5.7 Microfrontends . 55

6 Evaluation 57
6.1 Testing . 57

6.1.1 Unit test . 57
6.1.2 End-to-end test . 58
6.1.3 Chaos test . 59
6.1.4 Static code analysis . 60

6.2 Monolith and Microfrontends performance 60
6.2.1 Web Vitals . 60
6.2.2 Lighthouse reports . 61

7 Conclusions 64
7.1 Results . 64
7.2 Future Developments . 65

Sitography 69

ii

List of Tables

2.1 Resource management user stories 7
2.2 Customer management user stories 7
2.3 Contact person management user stories 7
2.4 Release management user stories 7
2.5 Project management user stories . 8
2.6 Project planning user Stories . 8

3.1 DynamoDB and Amazon RDS comparison 14
3.2 Estimated size of entities . 15
3.3 Cost comparison of DynamoDB and RDS 16
3.4 REST and GraphQL comparison 19

5.1 Roles and permissions . 46

6.1 BluePlan line coverage and technical debt metrics 57
6.2 Monolith and microfrontend homepage Web Vitals comparison . . . 62
6.3 Monolith and microfrontend customer list Web Vitals comparison . 62
6.4 Monolith and microfrontend resource form Web Vitals comparison . 62

iii

List of Figures

1.1 Blue Reply logo . 1

4.1 Overall system architecture . 21
4.2 GraphQL queries and mutations sequence diagram 22
4.3 Lambda invocation with GraphQL resolver sequence diagram 23
4.4 Database schema . 26

5.1 Amplify environemnts relation with Git branches in Monolithic app 29
5.2 Amplify environments relation with Git branches in microfrontends 30
5.3 Amplify CI/CD pipeline steps . 30
5.4 Application build architecture . 31
5.5 Deployment of microfrontends . 33
5.6 Retrieval of microfrontends . 34
5.7 Home page UI . 35
5.8 Customer list UI . 36
5.9 Customer form UI . 37
5.10 Release form UI . 37
5.11 Contact person form UI . 37
5.12 Project list UI . 38
5.13 Project form UI . 38
5.14 Resource list UI . 39
5.15 Resource form UI . 39
5.16 Project selection UI . 40
5.17 Business unit list UI . 40
5.18 Business unit form UI . 41
5.19 Authentication flow with OAuth Code Grant 44
5.20 Pre-signup and Post confirmation lambda triggers 47
5.21 User group propagation from DynamoDB to Cognito 48
5.22 AssignUserToGroup sequence diagram 49
5.23 Creation of Resource with Projects 50
5.24 Update of Resource with Projects 51
5.25 Holidays retrieval and store . 53
5.26 Microfrontends schema . 55

6.1 Test Users Manager . 59

iv

Glossary

AOT Ahead-Of-Time
API Application Programming Interface
AWS Amazon Web Services

CD Continuous Delivery
CDN Content Delivery Network
CI Continuous Integration
CLS Cumulative Layout Shift
CSS Cascading Style Sheets

DBMS Database Management System
DLQ Dead-Letter Queue
DOM Document Object Model

FCP First Contentful Paint
FID First Input Delay
FK Foreign Key

HTTP HyperText Transfer Protocol

IaC Infrastructure as Code

JIT Just-In-Time

LCP Largest Contentful Paint

PK Partition Key

REST REpresentational State Transfer
RTT Round Trip Time

SDK Software Development Kit
SK Sort Key
SPA Single Page Application
SSO Single Sign-On

TBT Total Blocking Time
TCP Transmission Control Protocol

UI User Interface
UX User Experience

vi

Chapter 1

Introduction

1.1 Context

Project management is a crucial process for businesses, its goal is to efficiently
allocate resources to deliver results to customers within deadlines. It requires appro-
priate supporting tools to provide managers and project managers with a complete
overview of all company assets. Blue Reply [1] decided to develop an internal web
application, BluePlan, to upgrade the old project management process based on
Excel files and email communications.

Blue Reply is one of the main technology consulting companies of the Reply
group. They collaborate with their customers to help them intercept the main
technological trends, design and implement innovative solutions that differentiate
themselves on the market.

Figure 1.1: Blue Reply logo

Blue Reply has worked with the biggest Italian and international companies
belonging to the Finance (Banking, Credit, and Insurance), Manufacturing, Telco
& Media, and Retail sectors thanks to which they have built their twenty-year
expertise in the fields of Artificial Intelligence, Low Code, Cloud Computing, Mi-
croservices & DevOps, Internet Of Things, Big Data & Analytics, Cloud Native
Architectures and eCommerce.

Project management is made challenging by projects having their unique his-
torical context: some follow an agile methodology while others use the waterfall
approach, the size of the teams vary greatly, and customers have different needs

1

Introduction

from the accounting and reporting point of view. A custom-made web application
can help provide a standard vision of all these heterogeneous projects.

1.2 Goals
The project has three main objectives:

■ Develop a user-friendly web application to centrally and efficiently manage
company resources and projects. This will improve efficiency by automating
tasks and it will provide managers with a standardized view of various project
metrics across clients.

■ Design and set up a flexible architecture to support future functionalities,
allowing the application to become a multi-purpose dashboard that can be
used to manage other aspects of the business.

■ Explore the possible usage of microfrontends to implement the user interface.

The development of a custom web application provides two major advantages
over using existing solutions: it can be tailored to the specific business process
inside Blue Reply and it also avoids big expenses for third-party management
software licenses.

1.3 Thesis structure
The realization of the BluePlan application is described in chapters following
the phases of the software development lifecycle. It is important to acknowledge
that although they are described separately, these phases frequently overlap due to
the iterative and agile nature of the work. The full division of chapters and their
content is reported in the following list:

■ Chapter 2, Analysis: The problems arising from the usage of Excel spread-
sheets are explored in deeper detail. Users’ concerns and requests are formalized
into functional requirements. An overview of the current state of the art of
microfrontends architecture is provided.

■ Chapter 3, Technologies: The main technologies employed throughout the
project are briefly described, then the rationale behind the choice of DBMS,
database schema, and API type are explained.

2

Introduction

■ Chapter 4, Design: The overall architecture is laid out defining the major
system components. The cooperation of services on the AWS back end is then
explained as well as the definition of the UI using Flutter and microfrontends.
Finally, the data model to support the use cases is delineated.

■ Chapter 5, Implementation: Explores how the project itself was managed,
how authentication and authorization are enforced, and the implementation
of CRUD operations for the main database entities.

■ Chapter 6, Evaluation: Results obtained from static code analysis and various
types of automated tests are displayed and commented on. A performance
comparison is then performed between the monolithic and the microfrontends
implementations.

■ Chapter 7, Conclusions: A summary of the overall development results is
presented, explaining the findings and future works.

3

Chapter 2

Analysis

The analysis phase is essential for identifying the problems that the web app must
address and the goals to be achieved. In this step, user and technical requirements
are evaluated to define the scope and limitations of the project.

2.1 Existing solution
Currently, planning and finalizing work hours is performed with the support of
Excel files. At the end of each week, managers and project managers need to send
a message to all employees to remind them to compile a spreadsheet with all the
hours they worked on every activity. Each month, these files are combined into a
summary. This manual work is highly error-prone. Additional complexity arises
from the lack of standard project names across all Excel files, this increases the
probability of misunderstandings.

A web application to support this workflow would help mitigate human errors,
automate tasks, and result in significant time savings. The app would also provide
a better user experience to all workers and help management roles by giving
them a more centralized view of everything happening in the business units. An
initial implementation would mainly focus on project management, but defining a
microfrontends architecture, described in section 2.2, will allow for a wide range of
further developments:

■ Collection of data about projects and work to perform analysis and optimize
resource management.

■ Recommendation system to help management roles easily identify the available
and most suitable resources for a given project.

■ Moving additional company processes to the app to automate them.

■ Dashboard with graphs and automatic report generation.

4

Analysis

2.2 Microfrontends
Microfrontend [2] is an architectural style representing an evolution of microservices
architecture where the typical front-end monolith is split into smaller, more manage-
able components. Each application has its own continuous delivery pipeline. This
modular approach not only simplifies the development process but also improves
the maintainability and deployability of the individual codebases.

Central to this architectural pattern is the presence of a container application
that addresses cross-cutting concerns like authentication and defines the page layout
by composing front ends together. The various front ends can be assembled at
different steps of the deployment flow:

■ Build-time integration: Each application is published as a separate package
. The container is responsible for composing the applications into a single one.
This solution requires redeploying every time a new change occurs.

■ Run-time integration: Microfrontends are assembled during application
execution. It can be performed at various points in the client-server communi-
cation flow:

• Server-side rendering: The server retrieves and organizes the front
ends into a view later served to the client.

• Edge-side rendering: The view is put together at the CDN level.
• Client-side rendering: Microfrontends are assembled directly on the

browser using iframes, web components, or embedding <script> tags.

Microfrontends offer numerous advantages, among them:

■ Autonomous teams: Teams own full-stack applications, this results in faster
feature delivery and improved maintainability.

■ Isolation: Developments and deployments are independent of other applica-
tions.

■ Technology diversity: Each team can choose the most suitable technology
stack to support their requirements.

The microfrontends architecture increases the overall system complexity and
poses various challenges. Visual consistency must be enforced among the various
applications and CSS conflicts may arise. Shared libraries can act as styleguides
that harmonize the appearance of the different components but special care must
be taken to avoid multiple downloads of the shared dependencies.

5

Analysis

2.3 Requirements
An initial set of core requirements has been drafted after inspecting the structure of
the Excel files and after gathering insights from the managers and project managers
using them. Due to the agile nature of the work, many requirements have been
further refined throughout the weekly sprints.

A few technical requirements have been defined by the product owner itself: the
use of Amazon Web Services as the cloud computing platform, and particularly
the use of AWS Amplify to manage the cloud resources. For the front end side,
no constraints were imposed other than having a couple of pages already designed
using Flutter. The choice would be to either continue using this technology or find
a solution to integrate it with other frameworks.

2.3.1 Application users
The application is intended to be utilized by three main user categories:

■ Managers: can manage all aspects of the application.

■ Project Managers: Assign Resources to projects, plan and approve Resources
work.

■ Resources: functional and technical analysts who can view the planned effort
and report their finalized work.

Access to the platform must be limited to the business unit employees. A mecha-
nism for user registration, authentication, and authorization must be devised.

2.3.2 Functional requirements
The following tables formalize all the actions that users of the application will
perform. User actions have been grouped based on which database entity they are
associated with. For each action, it’s reported its intended actors and the estimated
number of monthly read or write operations.

Tables 2.1, 2.2, 2.3, and 2.4 show that the Manager is the only role with full
control over the company base assets. They have permission to perform all CRUD
operations on Resources, Customers, Contact persons, and Releases, while Project
Managers can only read these entities but not modify them.

6

Analysis

Actors User Story Operations
Manager Add a new resource Write ∼ 10/Month
Manager, PM View all resources Read ∼ 1000/Month
Manager Modify resource information Write ∼ 1/Month
Manager Delete a resource Write ∼ 1/Month

Table 2.1: Resource management user stories

Actors User Story Operations
Manager Create a new customer Write ∼ 10/Month
Manager, PM View all customers Read ∼ 1000/Month
Manager Modify customer information Write ∼ 1/Month
Manager Delete a customer Write ∼ 10/Month

Table 2.2: Customer management user stories

Actors User Story Operations
Manager Create a contact person for a customer Write ∼ 10/Month
Manager, PM List all customer contact persons Read ∼ 100/Month
Manager Modify contact person information Write ∼ 1/Month
Manager Delete a contact person of a customer Write ∼ 10/Month

Table 2.3: Contact person management user stories

Actors User Story Operations
Manager, PM Create a release for a customer Write ∼ 10/Month
Manager List all customer releases Read ∼ 100/Month
Manager Modify information of a release Write ∼ 1/Month
Manager Delete a release of a customer Write ∼ 10/Month

Table 2.4: Release management user stories

Table 2.5 shows that both Managers and project managers are the allowed to
perform all CRUD operations related to projects. To allow easier retrieval, projects
can also be filtered by values of the entities they are associated with.

7

Analysis

Actors User Story Operations

Manager, PM Create a new project associated to a cus-
tomer’s release Write ∼ 100/Month

Manager, PM List all projects Read ∼ 1000/Month

Manager, PM Filter projects by: customer, release,
project manager, and contact person Read ∼ 100/Month

Manager, PM Modify project information Write ∼ 10/Month
Manager, PM Delete a project Write ∼ 10/Month

Table 2.5: Project management user stories

Table 2.6 describes the system operations necessary to support two main actions:

■ Allowing Managers and PMs to define the Planned Work of a Resource for a
Project in a given month.

■ Allowing the consequent finalization of the time a Resource has spent working
on a given Project and month.

Actors User Story Operations
Manager, PM View all projects to plan Read ∼ 100/Month

Manager, PM Define planned hours for a resource in a
month Write ∼ 100/Month

Manager, PM View all resources assigned to a project
to plan Read ∼ 1000/Month

Manager, PM View summary of project allocation for
each month Read ∼ 1000/Month

Manager, PM View the finalized hours of each resource
for each month Read ∼ 1000/Month

Manager, PM Modify the finalized hours of a resource
for a month Write ∼ 100/Month

Resource View assigned projects Read ∼ 100/Month
Resource View finalized work for previous months Read ∼ 100/Month

Resource Report finalized hours for a project in a
month Write ∼ 100/Month

Table 2.6: Project planning user Stories

8

Chapter 3

Technologies and services

3.1 Employed technologies

This section briefly showcases the frameworks, languages, tools, and services used
while developing the application, defining a few key features for each of them.

Flutter

Flutter [3] is an open-source user interface (UI) software devel-
opment kit (SDK) created by Google. It’s designed for creating
high-performance cross-platform applications, such as mobile,
web, and desktop, using a single codebase. Flutter utilizes a
widget-based development style, where the entire UI is com-
posed of small, self-contained, and reusable building blocks called
widgets.

Flutter logo

Dart

Dart [4] is a programming language developed by Google,
designed to build scalable applications. It’s the primary language
for developing applications using the Flutter framework. Dart
utilizes a strong typing system and it includes a just-in-time
(JIT) compiler which enables fast iterative development and hot
reloading. In addition, Dart can be compiled into native machine
code using ahead-of-time (AOT) compilation, resulting in highly
optimized performance for production-ready applications.

Dart logo

9

Technologies and services

JavaScript

JavaScript is an interpreted programming language widely used
in web development. JavaScript can be employed for both front
end and back end logic, in the context of this project, JavaScript
was utilized for implementing the back end Lambda functions
and in the front end to create dynamic and interactive content. JavaScript logo

Angular

Angular [5] is a TypeScript-based framework used for building
scalable web applications. It allows defining reusable components
and it exploits the principles of dependency injection. Finally,
Angular two-way data binding ensures efficient synchronization
between data and the UI. Angular logo

React

React [6] is a JavaScript library geared towards building user in-
terfaces focused on rendering efficiency. It employs a component-
based architecture that encourages the creation of encapsulated,
reusable UI elements. React introduces a virtual Document Ob-
ject Model (DOM), which optimizes rendering performance by
minimizing direct manipulation of the actual DOM.

React logo

Vue

Vue [7] is a progressive JavaScript framework designed to build
user interfaces. Vue employs a declarative syntax and component-
based architecture. Vue’s reactivity system efficiently tracks
changes in data and automatically updates the UI. Vue logo

Node.js

Node.js [8] is a cross-platform asynchronous JavaScript runtime
environment built on top of the Chrome V8 Engine [9]. It allows
the execution of JavaScript outside of traditional web browsers,
in particular in this project it has been used to run Lambda
functions on AWS. Node.js logo

10

Technologies and services

GraphQL

GraphQL [10] is a query language and runtime for APIs that
was developed by Facebook. It provides a flexible and efficient
approach to data fetching and manipulation, offering a powerful
alternative to traditional RESTful APIs. Furthermore, GraphQL
offers a strongly typed schema system that serves as a contract
between the client and the server. GraphQL logo

The schema defines the available types and operations, providing a standardized
way for clients to interact with the API. In the context of the project, GraphQL was
utilized to enhance the efficiency and flexibility of data retrieval and manipulation.
GraphQL offers several operations:

■ Query: Operations with no side effects, used for reading and fetching data.

■ Mutation: Operations with side effects, handle creation, update, and deletion
of data.

■ Subscription: Long-lasting operation where the server pushes real-time
updates to the client.

Webpack

Webpack [11] is a static module bundler that provides opti-
mization features and helps manage dependencies in JavaScript
applications. It can bundle files, reduce their size, and apply
optimizations like tree shaking and code splitting. A bundle is
a set of static assets that can be served to clients. Webpack
works by building a dependency graph from one or more software
modules and then combining them into one or more bundles.

Webpack logo

Single SPA

Single SPA [12] is a JavaScript framework to manage multiple
microfrontends. It acts as a top-level router that renders
applications based on the URL. It also allows defining the
graphical structure of the various frontends. Single SPA logo

11

Technologies and services

Amazon Web Services

Amazon Web Services [13] constitute the architectural backbone
of the application and provide essential functionalities. The list
of all Amazon Web Services employed during the development
of the application is shown below. Each service is characterized
by an icon and a short description of the features it provides.

Amazon Web
Services logo

Lambda
Serverless computing ser-
vice that allows executing
functions on the cloud.

Amplify
Libraries, UI components,
and a CLI for full-stack ap-
plication development.

Elastic Container Reg-
istry
Store, manage, and deploy
container images.

Identity and Access
Management
Access control for services
and resources.

S3
Cloud object storage for
storing and retrieving any
amount of data.

Cognito
Application users’ identity
and access management.

CodeCommit
Source control service for
hosting private Git reposi-
tories.

CloudFormation
Provisioning and manage-
ment of collections of AWS
resources.

CodeBuild
CI service for compiling,
running tests, and produc-
ing deployment packages.

AppSync
Serverless APIs for access-
ing and manipulating data
using GraphQL.

DynamoDB
Flexible Key-value and doc-
ument NoSQL database.

CloudWatch
Monitoring service for track-
ing metrics and saving logs
about AWS resources.

API Gateway
Allows creating, publishing,
monitoring, securing, and
maintaining APIs.

CloudFront
Content Delivery Network
(CDN) for fast web content
distribution.

12

Technologies and services

Jira

Jira [14] is a project management tool for agile software devel-
opment. The primary feature utilized was its Kanban board,
which enabled the visualization and tracking of task progress.
Through the utilization of Jira’s Kanban board, the team cre-
ated distinct columns representing various stages of the project
development cycle. These columns encompassed “To Do”, “n
Progress”, “Done”, and “Blocked”.

Jira logo

Confluence

Confluence [15] is a comprehensive documentation tool that
provides a centralized space where team members can create,
edit, and collaborate on project-related documentation, including
requirements, environment setup, project specifications, design
documents, and implementation details. Confluence logo

SonarQube

SonarQube [16] is a tool designed to support continuous code
quality management and static code analysis. It automatically
inspects programs helping developers identify issues early in the
development lifecycle. SonarQube provides a range of static
analysis rules and metrics that assess the presence of code smells
and vulnerabilities. SonarQube logo

3.2 Comparison of technological alternatives
The main technological choices are outlined in this chapter, highlighting their
strengths and weaknesses and comparing them to their counterpart. Finally, for
each major decision, it is explained the rationale behind the chosen tools.

3.2.1 Database

Relational VS Non-relational

When it comes to Database Management Systems (DBMSs) AWS offers a wide
range of alternatives. The main Relational DBMS (RDBMS) solution is Ama-
zon Relational Database Services (RDS), while for NoSQL the main option is

13

Technologies and services

DynamoDB. To determine the most suitable type of DBMS, the services were
compared, evaluating them based on multiple non-functional requirements.

DynamoDB Amazon RDS
Database type Non-relational, key-value Relational
Scalability Highly scalable with automatic

horizontal scalability
Vertically scalable, horizontal
scalability with read replicas

Availability Automatic data replication
over three physical nodes

Optional, database replicas at
additional cost

Performance Single-digit millisecond latency Higher latency compared to
DynamoDB

Join Application-level joins per-
formed with AppSync and
GraphQL

Full support for join operations

Transaction Read or Write transactions
with conditional checks

Full support for complex trans-
actions

Data Model Flexible schema Fixed schema
Maintenance Updates to the data model are

transparent to the end user
when using schema versioning

Requires downtime for up-
dating production database
schema

Cost 1 UP* per GB
9.96 × 10−7 UP* per RRU
4.98 × 10−6 UP* per WRU

0.89 UP* per GB
0.13 UP* per hour of database
instance uptime

Table 3.1: DynamoDB and Amazon RDS comparison

The cost requirement requires a deeper examination. When comparing the two
services, the following terminology is used:

Read Request Unit (RRU): a single read request (up to 4 KB)
Write Request Unit (WRU): a single write request (up to 1 KB)
Write Capacity Unit (WCU): one read request per second (up to 4 KB)
Read Capacity Unit (RCU): one write request per second (up to 1 KB)
*Unit Price (UP): used to perform a currency-independent comparison. 1 UP is
equivalent to the cost of 1 GB of storage for DynamoDB. The database instance
price for RDS corresponds to the least-performant AWS EC2 instance available
for the Postgres DBMS. All costs have been computed using the AWS Pricing
Calculator [17].

14

Technologies and services

DynamoDB offers a Free Tier of type Always Free that includes: 25 WCU, 25
RCU (enough to handle 200 million requests per month), and 25 GB of indexed
data storage. Even though RDS also provides a Free Tier, it has a temporal limit
of one year. Therefore, the following calculations do not take it into account.

The following application insights have been computed using the number of
monthly user actions estimated in subsection 2.3.2:
Monthly read requests: ∼ 6000
Monthly write requests: ∼ 700

To know the size of the data that the application should handle, an estimate
of the amount of data stored in a 10-year range is computed as the sum for all
entities of their average record size multiplied by the number of entities of that
kind. A very high-level approximation of the record size is obtained as the sum of
the length in bytes of potential field names and values.

Entity Amount Approximate
Record Size

Total Size

Resource 200 ∼ 128 B ∼ 25.60 KB
Customer 20 ∼ 64 B ∼ 1.28 KB
Contact Person 20 ∼ 16 B ∼ 0.32 KB
Business Unit 10 ∼ 32 B ∼ 0.64 KB
Project 20 / Month ∼ 256 B ∼ 5.12 KB / Month
Release 20 / Month ∼ 32 B ∼ 0.64 KB / Month
Planned work 30 * 200 / Month ∼ 32 B ∼ 192.00 KB / Month
Finalized Work 30 * 200 / Month ∼ 32 B ∼ 192.00 KB / Month

Table 3.2: Estimated size of entities

Estimated yearly database size (without considering indexes):
Constant data items: ∼ 27.84KB
Time-dependent data items: ∼ 389.76 ∗ 12KB
Total ≈ 4.70MB

The limited size of the storage required to run the application can be completely
covered by the DynamoDB free tier, while it represents a rather small cost for
RDS.

15

Technologies and services

DBMS Yearly
Space cost

Monthly
Uptime cost

Operations
cost

Yearly cost

DynamoDB 0 UP - 0 UP 0 UP
RDS 0.004 UP 62.4 UP

(16h/day, 30
days/month)

- 748.80 UP

Table 3.3: Cost comparison of DynamoDB and RDS

DynamoDB offers limited support for transactions and join operations when
compared to RDS, but this is a rather negligible drawback that can be accounted for
with a suitable database schema definition. On the other hand, DynamoDB comes
with a considerable cost advantage and future updates to the application schema
and use cases will most likely remain within its free tier. Moreover, DynamoDB
built-in data replication ensures high availability, whereas RDS would require
the setup of multiple availability zones at additional cost (not considered in the
above comparison). These non-functional requirements drive the decision to opt
for DynamoDB as the chosen BDMS.

Single-table VS multi-table schema

DynamoDB design principles recommend minimizing the number of tables used.
Possibly using as little as a single table. This clashes with Amplify’s support for
multi-table design. Amplify in fact automatically provides table-level authorization
and other useful features that would need to be implemented by scratch if using
a single-table design. An analysis of the pros and cons of each solution has been
performed to identify the best alternative:

Single table

The single-table design requires the definition of a unique table that can host all
entities. A careful analysis must be performed to determine the most suitable way
of organizing the entities and where to use embeddings (copies of the same data in
multiple locations).

16

Technologies and services

Advantages

+ Best performances as reading data
doesn’t require join operations

+ Retrieve and update data with a sin-
gle read or write operation

+ Limited use of transactions as
updates on a single document are
atomic by default.

Disadvantages

- Higher implementation complexity,
as each entity composing the table
must be manually managed with cus-
tom lambda functions.

- Uses a denormalized schema, leading
to data duplication and possibly to
multiple updates to the document
when an entity changes.

- Complex to maintain, as adding, re-
moving, or updating an entity to the
schema can affect all other entities.

- No default support from Amplify for
CRUD operations and authorization

One table for each entity

This strategy follows the traditional relational schema design, where each entity
becomes a separate table. This leads to the creation of many tables and many
relationships between them.

Advantages

+ Simple to comprehend, as it uses a
normalized schema.

+ Easily maintainable: adding new en-
tities to the schema doesn’t affect
the existing tables.

+ As each entity corresponds to a
document, the maximum size of
400KB per document enforced by
DynamoDB is never exceeded.

+ Simple to set up: Amplify automat-
ically implements CRUD operations
and provides support for authoriza-
tion.

Disadvantages

- Lower performances due to the pres-
ence of joins.

- The number of read and write oper-
ations is higher than in the single-
table design.

- Necessitates transactions for op-
erations working on multiple entities.

17

Technologies and services

Multiple Tables

As it’s usually the case, the best solution lies in the middle. In this scenario multiple
entity tables are combined into a single one, thus resulting in fewer tables being
used. This allows exploiting the advantages of both previous solutions. The rule
used to merge entities is “Items that are accessed together should be stored together”.

Advantages

+ Easily maintainable: adding new en-
tities to the schema doesn’t affect
the existing tables.

+ The number of read and write oper-
ations is lower than in the previous
solution.

+ As records are still relatively small,
the maximum size of 400KB per doc-
ument is never exceeded.

+ Simple to set up: Amplify automat-
ically implements CRUD operations
and provides support for authorizing
users.

Disadvantages

- The number of read and write oper-
ations is higher than in the single-
table design.

- Lower performances due to the pres-
ence of joins, but with a limited num-
ber of joins with respect to the pre-
vious solution.

- Uses a denormalized schema, leading
to data duplication, but only where
data won’t need to be updated if the
main entity changes.

- Necessitates transactions for opera-
tions working on multiple tables.

To decide which solution is the best fit, a few considerations must be taken
into account: the application will be mainly used in the context of business units,
thus the number of employees will be relatively small. Due to the limited amount
of data this application must handle, the high performances achievable with the
single-table approach do not compensate for the increased implementation and
maintenance complexity. The comparison between using one table for each entity
and the multi-table option reveals that the former offers limited advantages. On
the other hand, the multi-table solution provides better performance, although
it does introduce a minor development overhead. Despite this small additional
difficulty, the multi-table approach has been chosen due to having the best overall
efficiency-complexity trade-off.

18

Technologies and services

3.2.2 RESTful VS GraphQL APIs
AWS Amplify offers two approaches to enable communication between the front
end and the back end: REST and GraphQL. They both are API architectural
styles that enable the exchange of data between services and applications in a
client-server model. GraphQL is also a query language and a runtime for ful-
filling those queries. Numerous similarities exist between REST and GraphQL,
including their underlying use of the HTTP protocol, statelessness, language and
database neutrality, and adherence to a resource-based design. An analysis of their
differences has been conducted to determine the most suitable option for the project.

REST GraphQL
Data access Multiple endpoints Single endpoint
Actions HTTP verbs Queries, mutations, and sub-

scriptions
Data structure Data has a fixed structure de-

fined by the server. This can
lead to the N+1 problem, un-
derfetching, and overfetching

Returns data in a flexible struc-
ture defined by the client, al-
lowing it to request only nec-
essary data

Data type Weakly typed. The client must
interpret the returned data

Strongly typed, types are de-
fined in a contract between
client and server

AWS Services API Gateway and Lambda AppSync, optionally Lambda

Table 3.4: REST and GraphQL comparison

GraphQL’s ability to provide a flexible data structure defined by the client
allows a precise and efficient retrieval of the required data with fewer network round
trips when compared to REST. As a result of improved performance and simpler
communication between the front end and back end, GraphQL is considered the
best solution for the project requirements.

19

Chapter 4

Design

This chapter showcases the process of translating the requirements into a com-
prehensive plan for the web application, acting as a bridge between the analysis
and implementation phases. It explores the architectural decisions, user interface
design choices, database schema definition, and overall system design, laying the
foundation upon which the application is built.

4.1 Project structure

The project repository has been structured following the monorepo approach.
Monorepo is a software development strategy in which the code for multiple
projects is stored within the same repository. Each project is represented as a
directory within the monorepo, encompassing its source code, dependencies, and
configuration files. Initially, only two sub-folders had been defined: one contained
the Flutter application and the other stored the dockerfile for building the image
necessary to compile the app in the cloud. In the second phase, a directory for
each microfrontend has been added.

Monolith

build_image

project_management

Microfrontends

build_image

home

navbar

project_management

root

styleguide

20

Design

4.2 System architecture
The overall system architecture is represented in Figure 4.1. On the back end, a
few services offer solutions to cross-cutting concerns: CloudWatch is used to log
and observe all events happening on the cloud services, Simple Queue Service is
used to send unprocessable messages to a Dead-letter queue, and CloudFormation
provides Infrastructure as Code (IaC), which involves converting source code into
cloud resources. User authentication is handled by one Amazon Cognito user pool
and one identity pool. Cognito interacts with the Azure Active Directory to obtain
user information.

Figure 4.1: Overall system architecture

Communication between the UI and cloud resources happens by means of
GraphQL queries and mutations.

Each microfrontend has its own presentation layer, while the same back end is
shared among all the front ends. Each application follows a layered architecture in
which three main tiers can be identified:

■ Presentation: Static content (HTML, CSS, JavaScript, and other assets)
hosted on S3 and downloaded to the browser when the app is run.

■ Logic: built using Lambda functions and AppSync triggered by GraphQL
queries and mutations. DynamoDB streams and CloudWatch rules are also
used to trigger functionalities whenever specific events occur.

21

Design

■ Data: The application itself is hosted in an S3 bucket, while the data is stored
in DynamoDB tables.

4.3 Back end

The application leverages a Serverless architecture, a way to run applications using
cloud services without having to manage the underlying infrastructure. Lambda
functions are employed whenever a user action requires custom validation rules or
it involves multiple entities. In the latter case, DynamoDB transactions are used
to enforce an atomic behavior.

4.3.1 Business logic
The application logic is mainly stored within Lambda functions. Some of them
are triggered by events such as user registration, or updates in database tables,
but most are directly invoked as a result of user interactions on the front end.
Time-based invocation is also used for the generation of new holiday instances
every year.

Simple CRUD operations are automatically implemented by Amplify and App-
Sync as GraphQL queries and mutations, as shown in Figure 4.2.

Figure 4.2: GraphQL queries and mutations sequence diagram

A Lambda function can be used to implement advanced functionalities that
operate on multiple database entities or require transactional behavior. To preserve

22

Design

continuity with the previous solution, GraphQL mutations are still employed. Muta-
tions act as AWS Lambda resolvers, invoking the functions. A visual representation
of this scenario is portrayed in Figure 4.3.

Figure 4.3: Lambda invocation with GraphQL resolver sequence diagram

4.3.2 Lambda layers
A Lambda Layer is a collection of scripts and libraries that can be shared between
Lambda functions. They provide advantages such as code reuse and separation of
core function logic from dependencies.

Two main groups of functionalities that can benefit multiple Lambdas have been
identified and aggregated into Layers:

■ Database utils: Provide common logic for interacting with DynamoDB, like
the retrieval of one or more items by their IDs or by a secondary index.

■ User utils: Provide shared utility functions for interacting with Cognito
services, such as: retrieving/creating/deleting users and listing/assigning/re-
moving user groups.

4.3.3 Dead-letter queue
A Dead-Letter Queue (DLQ) is a type of message queue with the responsibility
of temporarily storing messages that the system cannot process due to errors. A
global DLQ has been set up for the entire project. Messages are sent to this queue
after failures in Lambda executions.

23

Design

The advantages of using a dead-letter queue include the possibility to per-
form analysis on the errors, debugging and troubleshooting, and issuing alerts to
administrators when issues arise.

4.3.4 DynamoDB streams
DynamoDB streams are a Change Data Capture (CDC) mechanism that detects
changes (inserts, updates, deletes) made to items within a DynamoDB table and
makes them available to other AWS services as an ordered sequence for further
processing in real-time. In the context of this project, a DynamoDB stream has
been utilized for synchronizing data between a DynamoDB table and the Cognito
User pool.

4.4 Front end
An initial plan for the UI encompassed the use of Flutter to develop a monolithic
front end. Later in the project, the UI was re-designed into microfrontends.

4.4.1 Monolith
The Flutter application is composed of a navigation bar, a homepage with all
the links grouped by functionality, and all the screens needed to support CRUD
operations. Specifically, each of the Resource, Project, Business Unit, Customer,
Contact Person, and Release entities have:

■ A creation and an update form.

■ A delete button with a confirmation popup.

■ A list of all existing instances in the database.

4.4.2 Microfrontends
A new user interface has been designed as the composition of many single-page
applications (SPAs). The original Flutter application has been stripped of its
navigation bar and homepage, which became independent applications of their
own. To demonstrate the ability of microfrontends to be technology-independent,
each application has been developed using a different library or framework. In
particular, the overall UI is composed of the following microfrontends:

■ Container / Root: Plain HTML and JS, uses the Single-SPA library to
define the routing and layout of the various front ends.

24

Design

■ Navbar: Vue application showing the current page name, and information
about the authenticated user.

■ Home: Implemented in React, shows all the menu categories and their links.

■ Project management: The original Flutter application.

■ Styleguide: Shared CSS and JavaScript components available to all other
microfrontends.

Routing

The container is responsible for rendering the individual components whenever the
URL matches the ones defined by the applications themselves. Each application
would perform individual routing as if they were running standalone.

Shared libraries

The same libraries might be used by more than one microfrontend. If their size is
considerable, it is better to explicitly mark these dependencies as shared. Doing
this allows the reuse of the same dependency, avoiding multiple downloads, thus
resulting in better performance.

A way to achieve this is through Import Maps [18], a browser specification that
allows the use of an alias instead of the full URL when importing a dependency in
a JavaScript file on browsers.

4.5 Database
Following the approach decided in Table 3.2.1 of combining multiple models into a
single database table whenever possible, the composite entities have been defined:

■ Customer: contains a list of Contact Persons and one of the Releases. The
target release date and the email of the internal and external contact persons
are replicated in the Project entity.

■ Resources: contains employee’s personal information and an array of all the
vacations and working hours of the Resource.

■ Monthly work: aggregates all daily work for a given month, employee, and
project in a single table record.

25

Design

The database schema is depicted in Figure 4.4. The primary key of each table
is composed of a Partition Key (PK) and optionally a Sort Key (SK).

Partition key: Attribute on which a hashing function is applied, the results
determine the bucket in which the record is placed. All records with the same
partition key will end up in the same bucket.

Sort Key: Optional set of arguments used to sort items within the same partition.

Figure 4.4: Database schema

As theory clashes with reality, the need to minimize the number of tables en-
counters the limitations enforced by the Amplify framework. In particular, the
Monthly Work entity has been split into Monthly Planned and Monthly Final-
ized as this allows for simpler fine-grained authorization controls: Resources are
allowed to visualize both of them but they they are only allowed to update the latter.

26

Design

DynamoDB allows querying data only by their primary key by default. A
secondary index must be defined to access data using fields not part of the primary
key. A secondary index has been defined on the email attribute of the Resource
entity to allow efficiently querying employees when knowing only their email
address.

27

Chapter 5

Implementation

This chapter explores the implementation choices that turned the project design into
a fully functional web application. It delves into how the source code was managed,
how the CI/CD pipeline was set up, how authentication and authorization were
enforced, and it explores the implementation details for project management and
work planning business logic.

5.1 Project management
The project was managed with an agile-like approach similar to what the Scrum
framework proposes. The team consisted of:

■ A manager acting as the product owner who provided requirements and
feedback, ensuring that the result was aligned with the project goals.

■ A project manager who defined tasks, established timeframes, and developed
the application mockups.

■ Four developers (including myself). One of them focused on front end devel-
opment in the initial part of the project, while the other two handled minor
UI-related tasks at first and then contributed to the implementation of the
work-planning interface.

■ An AWS expert who provided implementation tips and insights about working
with Amazon Web Services.

The time frame dedicated to this project was 6 months. This time was split into
one-week sprints. At the end of each sprint, a one-hour meeting was held to review
completed work, provide a demo of the newly added features to the product owner,
and plan tasks for the next week. The short sprints and weekly meetings ensured
that plans could be quickly adjusted based on feedback and evolving needs.

The work was organized using a Kanban board on Jira. Tasks were divided into
four columns: “To-Do”, “In Progress”, “Done”, and “Blocked”.

28

Implementation

5.2 Project setup

5.2.1 Git branches and Amplify environments
The source code is stored in a Git repository hosted on AWS CodeCommit. The
repository has been organized into the following Git branches:

■ main: Production-ready code, the final application accessed by the end-user.

■ test: Used to evaluate the application quality before moving the code to the
production environment.

■ dev: Main development branch, used to merge all individual development
branches.

■ developers’: Feature-specific or individual branches for local development.

An Amplify hosting environment is a service that hosts the front end of the
application by serving the static assets to the users.

An Amplify back end environment is a container for all of the cloud capa-
bilities of the application, such as API, auth, and lambda functions.

Figure 5.1: Amplify environemnts relation with Git branches in Monolithic app

In the monolithic scenario, there is a single Amplify application. Each hosting
environment has a corresponding back end environment and the application is built
and deployed every time a commit is pushed on the corresponding branch. A visual
representation of the relation between git branches and Amplify environments is

29

Implementation

provided in Figure 5.1.

In the context of multiple applications, each microfronted has its own Amplify
application. In each of these, there is a hosting environment and optionally a back
end environment for every Git branch (the back end is optional as some UI may not
need to use server-side features). Following the monorepo paradigm, Git branches
are shared among all microfrontend applications.

Figure 5.2: Amplify environments relation with Git branches in microfrontends

5.2.2 Amplify CI/CD
Amplify backend environments are set up to automatically trigger the Amplify
Continuous Integration / Continuous Delivery (CI/CD) process whenever a new
commit is pushed to the branch associated with the environment.

Figure 5.3: Amplify CI/CD pipeline steps

Figure 5.3 shows the different phases composing the Amplify CI/CD pipeline:

■ Provision: A Docker image is hosted on an isolated instance with 4 vCPU
and 7GB of memory.

30

Implementation

■ Build: The Git repository is cloned from CodeCommit and the commands
defined in the build phases of the amplify.yml file are executed. A more
detailed description of this phase is provided in subsection 5.2.3.

■ Test: Automatic unit and end-to-end tests are run using the newly built
application, the pipeline fails if one or more tests are unsuccessful.

■ Deploy: The artifacts generated by the previous steps are uploaded to the S3
bucket of their Amplify application.

5.2.3 Application build
The build process goal is to obtain an executable version of an application that can
be deployed. The sequence illustrated in Figure 5.4 outlines the steps to obtain a
working application starting from its source code.

Figure 5.4: Application build architecture

1. The Dockerfile and the Buildspec.yml file are retrieved from the CodeCommit
Git repository.

2. The CodeBuild pipeline is responsible for generating a new Docker image and
uploading it to the Elastic Container Registry.

3. When a new commit triggers an application build, Amplify retrieves the project
source code from CodeCommit.

31

Implementation

4. Amplify uses the previously built Docker image to build the application.

Build image

A suitable Docker image containing all the necessary dependencies for building an
application is required to compile the front end.

AWS provides some predefined Docker images to be used but none of the
available ones had the necessary dependencies to compile the Flutter applica-
tion. To overcome this issue, a custom Docker image has been constructed and
hosted on the Elastic Container Registry (ECR). The Docker image is built only
once and is re-used by Amplify every time the Flutter application must be compiled.

To generate the Docker image and upload it to the Elastic Container Registry a
build process must be manually triggered from the Build Project on AWS Code-
Build. The Build Project takes care of fetching the source files from the main
branch of the repository on CodeCommit, in particular the Dockerfile and the
buildspec.yml, and using them to obtain a Docker image.

Dockerfile

The Dockerfile contains the sequence of commands needed to create a Docker image
possessing all the necessary dependencies to build an application within the AWS
Amplify CI/CD flow. One of the predefined Dockerfiles provided by Amplify has
been updated to install additional dependencies.

Buildspec.yml

The buildspec.yml file contains the commands that CodeBuild runs to build a
Docker image from the Dockerfile. The commands are executed in three different
phases:

■ pre_build: Obtain the credentials and log in to the Registry.

■ build: The Dockerfile is used to build an image, to which a tag is added.

■ post_build: The built Docker image is uploaded to the public Elastic Con-
tainer Registry.

The Amplify workflow is then modified to use the newly published image during
the build phase.

32

Implementation

The build steps for each application are defined in the Amplify.yml file. They
are split into frontend and backend sections. Each section is further partitioned
into preBuild, build, and postBuild. These phases are responsible respectively
for installing the project dependencies, building the application, and deploying the
output of the build process.

The output is a bundle, a JavaScript file containing all the necessary code to exe-
cute the application. The filename of the bundle follows the format app.[HASH].js,
where [HASH] is the result of a hashing function applied to the content of the file.
Hashing is useful for caching the file, as the hash changes only when the bundle
content is updated.

5.2.4 Application deployment

For the initial standalone Flutter application, the deployment meant uploading the
output of the build phase to an S3 bucket and serving its content to the clients
requesting it.

Figure 5.5: Deployment of microfrontends

33

Implementation

In the microfrontends approach, instead, the build output of each application is
still uploaded to an S3 bucket, but only the root microfrontend content is directly
served to the client. All other applications contained in the various S3 buckets are
lazy-loaded from the root, which has to know where the microfrontends are located.
The latest version of each application is saved in a file called importmap.json,
stored in the S3 bucket of the root microfrontend.

The graph reported in Figure 5.5 shows the steps automatically performed each
time a microfrontend is updated:

1. The front end and back end are built as described in the previous section.

2. The bundle obtained from the build process, located in the /dist folder, is
uploaded to the S3 bucket associated with the microfrontend being deployed.

3. An HTTP PATCH request is sent, along with the microfrontend symbolic
name and the hash value computed in step 1, to an API Gateway endpoint
hosted on the root microfrontend back end. Requests to this endpoint trigger
the MicrofrontendVersionManager Lambda function, which is responsible
for retrieving the importmap.json from the S3 bucket, updating the entry
corresponding to the invoking microfrontend with the latest hash value (or
creating a new importmap.json if this file is not present yet), and save the
updated file to the S3 bucket.

Figure 5.6: Retrieval of microfrontends

34

Implementation

The users access the application functionalities by navigating to the URL on
which the root application is hosted. As described in Figure 5.6, the client first
requests the importmap.json file, which is never cached.

The content of the importmap.json file follows this structure:

1 {
2 " imports ": {
3 " @blueplan /home": "[HOME - CLOUDFRONT]/ main .[HASH].js",
4 " @blueplan / navbar ": "[NAVBAR - CLOUDFRONT]/js/app .[HASH].js",
5 " @blueplan /root": "[ROOT - CLOUDFRONT]/ main .[HASH].js",
6 " @blueplan /project - management ": "[PROJECT -MANAGEMENT -

CLOUDFRONT]/ main .[HASH].js"
7 }
8 }

[HASH] is a sequence of alphanumeric characters, and [CLOUDFRONT] is the
CloudFront Distribution URI where the S3 Bucket contents of each microfrontend
are cached.

Once the client receives the import map, it fetches each application by issuing
a corresponding request to CloudFront. Microfrontend bundles are cached by
CloudFront, if the application is already in the cache it is returned immediately,
otherwise, it is first retrieved from its S3 bucket.

5.3 User Interface

Home page UI

Figure 5.7: Home page UI

35

Implementation

The landing page presented to the user after the login is the home page, visible
in Figure 5.7.

In the uppermost part of the home, the navbar displays the logo, the application
name, and the title of the current page on its left side, while on the right the user
can see their username and a log-out button. In the lower part of the home page,
a series of links are grouped in sections based on their functionalities.

The active links on the homepage redirect to the Project lists [Figure 5.12],
list of Resources [Figure 5.14], Customer list [Figure 5.8], and Business Unit [Fig-
ure 5.17] list. All other buttons are currently not enabled but will be used for
future functionalities.

Customers, releases, and contact persons UI

Figure 5.8: Customer list UI

Figure 5.8 shows the list of all the clients, each described by a name and a color.
Clicking on an entity from a list will direct the user to the corresponding update
form, pre-populated with the entity’s values. Additionally, each update form page
includes a “Remove” button to delete the selected instance.

36

Implementation

Figure 5.9: Customer form UI

The Customer update page [Figure 5.9] presents the Customer information and
an editable list of Releases and Contact persons. Clicking on the list items redirects
respectively to the Release form [Figure 5.10] and to the Contact Person form
[Figure 5.11].

Figure 5.10: Release form UI
Figure 5.11: Contact person form UI

Projects UI

The list of Projects, reported in Figure 5.12, displays information and statistics
about the activities and it can be filtered specifying any combination of Customer,
Release date, Project manager, or Contact Person. Selecting a Customer automat-
ically restricts the options of the other dropdown fields to the values associated
with the chosen Customer. An average of the metrics of all the activities is shown
right below the filters.

37

Implementation

Figure 5.12: Project list UI

The Project form is reported in Figure 5.13. Creating or updating a Project
requires selecting a Customer, Release date, Project Manager, and Contact Person
among those available from their respective dropdowns. The form also allows to
define a name and initial values for the estimate, finalized, and ETC attributes.

Figure 5.13: Project form UI

38

Implementation

Resources UI

Figure 5.14: Resource list UI

The Resource list [Figure 5.14] displays all Managers, Project Managers, Tech-
nical analysts, and Functional Analysts of the company. For each employee, its
role, work email, and full name are shown.

Figure 5.15: Resource form UI

The Resource form, shown in Figure 5.15, not only allows the definition of
the employee’s personal and business details, but also provides the possibility of
assigning the Resource to an existing project.

39

Implementation

Figure 5.16: Project selection UI

The assignation of Projects is performed by the form reported in Figure 5.16. An
auto-completion dropdown allows to search for Projects by their name or customer
name. Completed activities (those with a Release date in the past) can be filtered
out by selecting a checkbox. Clicking on a Project includes it in the “Assigned
Projects” section, where it’s possible to define from which date to which other date
the activity is considered assigned to the employee.

Business units UI

Figure 5.17: Business unit list UI

Each item in a list presents a red trash can icon that when clicked shows a
pop-up prompting the user to confirm or cancel the deletion of the entity.

40

Implementation

A floating action button is located in the bottom right corner of each list. It
enables the user to navigate to the creation form for the entity. The creation form
is identical to the update one, except its inputs start from a blank state.

The Business unit list, reported in Figure 5.17, simply shows the name of each
BU. The form to create or update a Business Unit, visible in Figure 5.18, con-
tains a field to specify the BU name, and a list of all the cities where it has its offices.

Figure 5.18: Business unit form UI

5.4 Authentication
The application’s target users are managers, project managers, and analysts of a
business unit. A solution must be devised to allow only company employees to sign
up and access the service. The authentication process has been implemented using
a couple of functionalities from the Amazon Cognito identity platform:

■ Cognito User Pool: Collection of application users that supports user reg-
istration and sign-in, as well as provisioning identity tokens for signed-in
users.

41

Implementation

■ Cognito Identity Pool: Store of user identity data that provides temporary
AWS credentials for users who are unauthenticated and for authenticated
users possessing a token.

An important aspect to take into account while devising a suitable implementa-
tion is that within the organization, each employee owns unique user credentials.
User account data is stored within an instance of Azure Active Directory (Azure
AD) [19]. A dedicated instance of Azure AD, referred to as a tenant, serves as an
entity representing the company inside the Azure environment.

As a result of an initial analysis, two solutions have been identified to implement
the authentication process.

5.4.1 Custom user sign-up and sign-in forms
A custom registration flow would require users to fill out a sign-up form with their
personal information, verify the provided email address, and log in by submitting
a sign-in form.

The constraint of allowing only company employees to register could be enforced
by requiring the use of their work email while registering to the platform. An
additional whitelist would be required to permit the usage of the application only
to a selected group of workers.

AWS Amplify facilitates the development of a user interface to support this
scenario by providing and managing ready-made components for sign-up and sign-in
forms. The back end would make use of an Amazon Cognito user pool for storing
user identities and managing access privileges.

Although effective, this authentication strategy provides poor User Experience
(UX) and results in a duplication of the corporate user database that can lead to
inconsistencies between the two data sources.

5.4.2 Corporate Single Sign-On with OAuth flow
An alternative approach would rely on the existing set of corporate users by inte-
grating a Single Sign-On (SSO) strategy with the user Azure Active Directory.
This solution leverages the Azure AD and both the Cognito user pool and identity
pool. An application is required within the Azure AD Reply’s tenant to handle
the user authentication process. The OAuth 2.0 [20] protocol is fundamental for
allowing communication between all these components.

42

Implementation

OAuth 2.0 is an industry-standard authorization framework that enables third-
party applications to obtain limited access to users’ resources without accessing
their credentials. The OAuth protocol specifies several grant types: secure and
standardized sequence of steps for implementing SSO across different systems.
Among the possible grant types, the OAuth Authorization Code Grant [21]
flow was used.

This scenario, although more complex, has been selected as the preferred one as
users benefit from a better UX since they are not required to explicitly register to
the application and manage new credentials. If a corporate auth session is already
active in the browser, the login process becomes completely transparent to the user.
A further benefit of this approach is the automatic exploitation of the two-factor
authentication already set up with Azure AD. However, as this solution would
allow every employee with valid credentials to automatically have access to the
application, an additional mechanism to grant access only to manually selected
users must be put in place.

43

Implementation

OAuth Code Grant flow with Amplify

Figure 5.19: Authentication flow with OAuth Code Grant

1. The client initiates the auth flow by requesting a Cross-Site Request Forgery
token from the Cognito Authorization Server as a security measure.

2. The user is redirected to the Identity Provider (Microsoft Azure AD) au-
thentication page where they are requested to enter their credentials. Upon
successful log-in the user is redirected to the Cognito Authorization Server,
which will verify the Authorization token returned by Azure AD and will
consequently return an Authorization token to the application.

3. The application exchanges the Authorization token for the Id, Access, and
Refresh tokens.

4. Amplify automatically refreshes tokens if they expire while using AWS services.

The Auth Code Grant flow makes use of different tokens and endpoints, this is
their meaning:

44

Implementation

Tokens

Access token
String that the client can use to make
requests to the resource server.

ID token
Contains information about what oc-
curred when the user authenticated,
and optionally information about the
user itself.

Refresh token
String that allows the client to ob-
tain a new Access token without user
involvement.

Endpoints

/oauth2/authorize
Redirects users to the login page for
their Identity Provider (IdP).

/oauth2/token
Exchanges the authorization code for
the Access, Identity, and Refresh to-
kens.

5.5 Authorization
Cognito allows the invocation of Lambda functions in response to actions such as
user sign-up, confirmation, and sign-in. These functions, called Lambda triggers,
can be executed before or after one of these actions. To fulfill the requirement of
allowing only whitelisted users to access the application and to provide a better
user experience, pre-signup and post confirmation lambda triggers have been set
up.

5.5.1 Pre-signup lambda trigger
The pre-signup trigger receives user information before it is added to the user
pool and can veto the user creation. This function was employed to automatically
confirm users whose email address ends in @reply.*. The acceptance of the user
is necessary to activate the post-confirmation lambda.

5.5.2 Post confirmation lambda trigger
This trigger receives the attributes describing the user, such as their email and
username, after it has been confirmed. The purpose of this function is to link the
Cognito user with the application Resource entity. The connection is established
using the employee email address as it’s the only information the two user repre-
sentations have in common.

45

Implementation

New resources are created by Managers through the application and each re-
source has a role associated with them. This characteristic affects the operations
they will be able to perform and the UI that will be presented to them. Roles have
been managed by exploiting Cognito Groups, which represent collections of users
with common permissions.

Table 5.1 presents an overview of the roles defined within the application,
showing the corresponding read (R) or write (W) permissions for each table in the
database.

Role Reso
urc

e

Cust
om

er

Rele
ase

Con
tac

t Pers
on

Busi
nes

s Unit

Plan
ned

Work

Fina
lize

d Work

Proj
ect

Holi
da

y

City

Admin W W W W W W W W W W
Manager W W W W W W W W R R
Project Manager W R W W R W W W R R
Technical Analyst R R R R R R W R R R
Functional Analyst R R R R R R W R R R
Unauthorized - - - - - - - - - -

Table 5.1: Roles and permissions

Permissions for each database table are defined in the GraphQL schema and
are automatically handled by Amplify and AppSync. Unauthorized users will be
shown a message prompting them to ask their manager to authorize their access.
Managers can enable new users by creating a Resource entity with their work email
address.

A challenge that arose while implementing this solution was that Managers might
try to create a Resource for an account that has never logged in to the application,
and therefore their user might not yet exist in the Cognito user pool. To avoid
responding to the Manager with an error message, a delayed group assignment
has been devised within the post-confirmation trigger. Additionally, the lambda
function must handle the case in which the registering user has no corresponding
record in the Resource table and as a consequence, they will be assigned to the
Unauthorized role. Figure 5.20 summarizes the operations performed by the two
Lambda triggers.

46

Implementation

Figure 5.20: Pre-signup and Post confirmation lambda triggers

5.5.3 Manual user group assignment

After the initial user group assignment, that can happen either when the user
first logs in or when the Resource entity is created, the group to which a resource
belongs can be manually updated or set to Unauthorized as a consequence of the
deletion of the resource.

Updating the role of the Resource and the group to which they are assigned
are two separate operations that can independently fail and must be atomically
executed. A DynamoDB stream [4.3.4] has been employed as a trigger for the
UserGroupAssigner to replicate updates from the DynamoDB Resource table to
the Cognito user pool to avoid inconsistencies. These changes are performed in an
eventually consistent way.

As shown in Figure 5.21 the Managers can perform write operations of Resources
using GraphQL API calls, which AppSync forwards to DynamoDB. The stream
then triggers the Lambda and depending on the type of operation (Create, Delete,
Update) it passes to the function respectively the new record, the old one, or both
of them. The Resource representations contained in the records are called Images.
The flow pictured below shows that if the resource email has been updated, then
the group of the user associated with the old email is set to Unauthorized. In case
of creation and updates, the group is updated to the one contained in the new

47

Implementation

Figure 5.21: User group propagation from DynamoDB to Cognito

image, while for deletion the group is once again set to Unauthorized.

Upon failure the Lambda is automatically retried up to 10 times, if this limit is ex-
ceeded, a message is sent to the global Dead Letter Queue [4.3.3] for debug purposes.

The actual group assignment is delegated to the function shown in Figure 5.22.
It is responsible for retrieving the username of the Resource when this is not already
present in the image it receives, and optionally saving it in the DynamoDB table
for easier access during future operations. The username is necessary for retrieving
all currently assigned groups to a user, removing them, and associating the new
group that was provided as a parameter.

48

Implementation

Figure 5.22: AssignUserToGroup sequence diagram

5.6 CRUD operations
All CRUD operations regarding individual models, such as Customer, Release,
Contact Person, and Project entities, are handled with standard GraphQL queries
and mutations, as illustrated in Figure 4.2. Some actions involve multiple entities,
such as the case of Business units with Cities and Resources with Projects. The
transactional support required by these operations is provided by a Lambda func-
tion as described in Figure 4.3 sequence diagram.

The CRUD operations for each of the previously mentioned database entitieis
are supported by a respective front end page. Each entity has: one page where
all instances are listed, a form to create a new instance, a form to modify the
information of an existing one, and an action button to remove it. The functions
developed to handle the more sophisticated CRUD scenarios are described in the
following sections.

49

Implementation

5.6.1 Resources
Resources represent all company employees. They are associated with a Business
Unit and a City. While inserting and updating Resources with the Project Manager,
Technical analyst, or Functional analyst roles, it’s possible to add and assign projects
to them. Due to the necessity of updating multiple entities when working with
Resources, a transaction is employed to ensure data consistency.

Figure 5.23: Creation of Resource with Projects

Figure 5.23 describes the process of inserting a new Resource with assigned
Projects. First, a check on the existing entities is performed to ensure a Resource
with the specified email doesn’t exist yet, then the Projects are mapped into bridge-
table entries, finally, these entries, as well as the Resource itself, are marshaled
into DynamoDB PUT TransactWriteItems [22] which are later committed to the
database inside a transaction.

50

Implementation

Figure 5.24: Update of Resource with Projects

51

Implementation

As Figure 5.24 shows, a single Lambda function is responsible for changing a
Resource’s personal information as well as updating the Projects assigned to them.
The parameters required by the Lambda include the set of all Projects, called
NewProjects, on which the employee must be actively working. The function
retrieves the set of all Projects previously assigned to the Resource and stores them
in a list called OldProjects, The projects belonging to these two groups are then
divided into three categories:

■ Projects to activate: Present in NewProjects but not in OldProjects, a
new record must be inserted in the Assignment table.

■ Projects to deactivate: Present in OldProjects but not in NewProjects,
their Active flag is set to false. This approach ensures data is never removed
from the Assignment table so that it can be used for analysis in the future.

■ Projects to reactivate: Present in both OldProjects and NewProjects, their
Active flag must be set to true, as they could have been previously deactivated.

5.6.2 Business units and cities
Italian cities are statically stored in their homonym DynamoDB table. Each city
can house zero or more Business Unit headquarters, and each Business Unit can
have offices in many different cities. This many-to-many relationship is addressed
with the second strategy explained in subsection 4.3.1: a custom Lambda function
is responsible for performing CRUD operations inside a transaction.

5.6.3 Work planning and finalization
Resources can work and report their finalized work only on days that are not
weekends, local holidays (such as their city patronal feast), or national holidays. In
addition, worker-specific paid leave and vacations must be taken into account.

National holidays

Even though generating all Italian holidays, including Easter, using an algorithm
would be feasible, this method would require human intervention in the event
holiday dates were to change. The use of publicly available APIs to retrieve the
list of holidays, such as Nager Date [23], has shown to be a more robust solution
as changes to holidays are delegated to the maintainers of the open-source API.
The latter technique is also more flexible if the application has to handle different
countries in the future.

52

Implementation

A Lambda function is responsible for invoking the holidays API and caching the
results in the database Holiday table. A Custom resource has been added to the
lambda’s CloudFormation stack to invoke the function on every new deployment.
This ensures the Holiday table is automatically initialized on all new environments
with holidays from the current and next year.

Figure 5.25: Holidays retrieval and store

As shown in the function sequence diagram in Figure 5.25 a CloudWatch rule
has been set up to recurrently invoke the function every year. The function is set
to be called every January, after the first execution it will only fetch the holiday
dates for the next year. AWS automatically handles possible failures by re-trying
the execution up to 3 times. If the retry limit is exceeded, an error message is sent
to the global Dead-letter queue.

53

Implementation

Patronal feasts

Resources cannot finalize or have work planned on the day on which their office
patronal feast is held. Analysts collaborating on the same project might be working
from different headquarters, and thus have different patronal feasts. The patronal
feast of each resource is easily retrieved with GraphQL in the same query used to
fetch their details.

Paid leave and vacations

Workers can independently request paid leave and vacation days. This information
is saved in the Resource DynamoDB object as an array and it’s retrieved in the
same query as when fetching the resource details.

Future functionalities

Although the data model has been set up to handle work planning and finalization,
CRUD operations on PlannedWork and FinalizedWork are currently lacking UI
support and essential backend checks to ensure everything is consistent. To imple-
ment these checks, it will be necessary to define a Lambda function responsible for
retrieving all Holidays, Patronal feasts, and Paid leave/vacations to ensure no work
is scheduled or performed in these timeframes. Additional checks are required to
ensure a daily maximum of 8 hours is assigned to each Resource across all Projects
they are working on.

54

Implementation

5.7 Microfrontends

Figure 5.26: Microfrontends schema

The microfrontends architecture has been embraced in this application mainly
to explore its usability for future projects. To showcase the feasibility of integrating
different frameworks, the navbar and the homepage of the monolithic UI in Flutter
have been replaced respectively by a Vue and a React implementation. As shown
in Figure 5.26, in the future new functionalities could be easily implemented as
separate microfrontends, such as an Angular one.

The various applications have been integrated into a unique front end following
The Recommended Setup [24] of the Single-SPA [12] framework. Single-SPA is
responsible for lazy-loading the individual UI fragments based on the current URL
of the page and structuring them according to a user-defined layout.

Composition

The root microfrontend establishes for which URLs and in which part of the DOM
each application is rendered. BluePlan has been set up to load:

■ The Navbar at the top of the page for all paths.

■ The Home page below the navbar, only when the path is /.

55

Implementation

■ The wrapped Flutter app is loaded underneath the navbar for all URLs except
the one for the Home page.

Authentication

The root microfrontend is responsible for providing solutions to cross-cutting
concerns to all other applications, such as performing user authentication. It
interacts with Cognito resources and the Azure Active Directory as described in
subsection 5.4.2. The authentication tokens are automatically saved by Amplify in
the browser’s local storage, every JS-based microfrontend can access them directly.
For the Flutter app, the tokens are retrieved by a Dart method which invokes a
JavaScript function that directly accesses the local storage. This cooperation is
possible due to Flutter’s JavaScript interoperability [25].

Performance

CloudFront cache policy ensures microfrontend bundles are efficiently served to
the clients requesting them. Application load time can be further improved by
configuring WebPack to consider large libraries as external [26]. This results in
dependencies not being directly included in the output bundles, thus reducing their
overall size and improving download time. Libraries used by multiple microfron-
tends are set as external, this way the browser downloads them only once and
reuses them whenever needed.

The bundler expects the libraries marked as external to exist as an in-browser
module. To use dependencies as in-browser modules they must be defined in an
import map in the root frontend. This import map links bare import specifiers to
libraries hosted on the unpkg [27] and jsDelivr [28] Content Delivery Networks.

To ensure the correct behavior on browsers not yet supporting import maps,
SystemJS [29] has been used to provide polyfill-like behavior for import maps and
in-browser modules.

56

Chapter 6

Evaluation

6.1 Testing
Automated software testing is essential to ensure the reliability of applications. It
allows detecting issues during development and facilitates identifying regressions
by verifying that new code changes do not break existing functionalities.

A comprehensive testing approach has been used throughout the development
of the BluePlan application, ranging from the simple evaluation of a small portion
of code with unit tests to integrating multiple aspects of the application through
end-to-end tests. Lambda functions have also been tested by means of Chaos tests.

As a result of running tests, a coverage report in the LCOV format is generated.
The obtained line coverage, the number of code smells, and vulnerabilities are
reported in Table 6.1 for all applications. The microfrontend styleguide app is not
included in the assessment as it is currently empty.

Application Covered
lines

Line
coverage

Code
smells

Vulnerabilities

Monolith 2891/3339 86.6% 0 0
Microfronted Root 105/147 71.4% 0 0
Microfronted Home 127/130 97.7% 0 0
Microfronted Navbar 100/123 81.3% 0 0

Table 6.1: BluePlan line coverage and technical debt metrics

6.1.1 Unit test
Unit tests are assessments of small isolated components or functions to verify their
correctness. They may require the use of mocks to simulate external dependencies
of the components being tested. Mocks are custom objects used to simulate the

57

Evaluation

behavior of real dependencies. Unit tests have been performed on all microfrontend
applications and have been added to the Test phase of the CI/CD pipeline.

Flutter provides native support for unit testing, while the Jest [30] framework
was employed to perform unit tests on JavaScript-based applications.

6.1.2 End-to-end test
End-to-end (E2E) tests simulate real user interactions to make sure that the soft-
ware behaves as expected in a production-like environment. They make use of
real-world dependencies, such as AWS services, without mocking them. End-to-
end tests have also been added to the Test phase of the CI/CD pipeline of each
application.

In Flutter, E2E tests have been implemented using the Patrol framework [31].
Patrol builds on top of Flutter’s test tools to provide a simpler interface for
retrieving and interacting with the widgets inside the page.

Test users

A Lambda function called TestUsersManager has been developed to enable the
creation and deletion of users to perform authenticated actions during tests. As
shown in Figure 6.1, the function takes an action (“CREATE” or “DELETE”) and
an array of users as its parameters, each user is described by an email, a password,
and a group. The Lambda creates a test user in the Cognito user pool and assigns
it to the indicated user group, then it inserts a corresponding record in the Resource
DynamoDB table.

58

Evaluation

Figure 6.1: Test Users Manager

The Lambda can be executed in all non-production environments and it can be
invoked only by the Amplify CI/CD process and by the developers who have been
granted with the necessary permissions.

At the beginning of the end-to-end tests the Lambda is called to create the
necessary test users, they are then deleted whenever the test suite is completed.

6.1.3 Chaos test
Chaos testing is the process of simulating failures in a given environment to
assess if the system is capable of handling them correctly. Although the concept
of chaos testing is usually mainly applied to microservices, in the context of this
application it has been adapted to allow testing Lambda functions depending on
other AWS services.

Due to the lack of an official AWS tool to simulate failures in a Lambda, a new
version of the function has been created, where each call to an AWS service has been

59

Evaluation

wrapped into a method that has a 0.2 random probability of triggering an exception.

The expected outcome is that the Lambda is automatically re-tried until its
retry limit is reached, and if that happens, then an error message is sent to the
global Dead Letter Queue.

The Lambdas have been launched until all possible scenarios were covered, that
is until all exceptions were launched and until the Lambda completed successfully
due to it being retried after a failure.

6.1.4 Static code analysis
Static code analysis is an automated debugging technique that allows the detection
of code smells and vulnerabilities in the source code of an application without the
need to execute it.

The analysis of the source code has been performed using Flutter analyze [32]
for Flutter and SonarQube [16] for JavaScript applications. The total amount of
code smells and vulnerabilities has been consistently kept at 0, by inserting the
code analysis as a mandatory step in the CI/CD pipeline.

6.2 Monolith and Microfrontends performance
The performance of the monolithic application entirely written in Flutter, and the
one using microfrontends, have been compared using Web Vitals [33].

6.2.1 Web Vitals
Web Vitals are metrics ideated by Google to provide a quantitative assessment
of web pages performance, interactivity, and visual stability. These aspects are
evaluated by the following metrics:

■ Largest Contentful Paint (LCP) [34]: the point in time when the page’s
main content has likely loaded. LCP helps evaluate the perceived load speed
of the web page. To achieve a good user experience, LCP must occur within
2.5 seconds since the web page starts loading.

■ First Contentful Paint (FCP) [35]: the time elapsed between the initial
loading of the page and the moment when the browser renders the first DOM
element. FCP also measures the perceived load speed. An FCP of less than 1.8
seconds is necessary to provide a good UX.

60

Evaluation

■ Time To Interactive (TTI) [36]: It’s the earliest moment after First Content-
ful Paint when the page is reliably ready for user interactivity. TTI measures
load responsiveness and it’s useful for identifying when a page looks interactive
but in reality, it is not. TTI should be below 5 seconds.

■ Total Blocking Time (TBT) [37]: measures the amount of time between
First Contentful Paint and Time to Interactive where the main thread was
blocked enough to cause a delay in input response. TBT helps measure a page
load responsiveness. To provide a good user experience Total Blocking Time
should be less than 200 milliseconds.

■ Cumulative Layout Shift (CLS) [38]: Google defines CLS as a measure
of the largest burst of layout shift scores for every unexpected layout shift
occurring during the entire time the web page is loaded. CLS is used to
evaluate the website’s visual stability. A CLS value of 0.1 or less is needed to
maintain a good user experience.
A layout shift is a change in the position of a visible element from one rendered
frame to the next.
A burst of layout shifts is the occurrence of one or more individual layout
shifts with less than 1 second in between them and within a time frame of a
maximum of 5 seconds.
The largest burst is the one with the highest cumulative of all layout shifts
within the time frame.

6.2.2 Lighthouse reports
Lighthouse [39] is a tool developed by Google for inspecting and improving web
performance. It has been used to collect the previously mentioned Web Vitals
metrics for the monolithic and microfrontends approaches.

The information collected by Lighthouse is defined as Lab data, meaning that it
has been generated by loading a page on a single device subject to specific network
constraints. The tests have been performed with a network throttling of 40ms TCP
Round Trip Time (RTT) and a simulated throughput of 10,240 kb/s.

Web Vitals have been collected for three representative pages of each application:
the home, the Customers list, and the Resource creation form. Table 6.2, Table 6.3,
and Table 6.4 showcase the obtained results color-coded according to the convention
adopted by Lighthouse [40]: 0 to 49 (red): Poor, 50 to 89 (orange): Needs
Improvement, 90 to 100 (green): Good. The value of each metric is scored on a
range from 0 to 100 by looking at where the value falls on a distribution derived

61

Evaluation

from the performance metrics of real websites in the HTTP Archive [41]. The
overall score is then computed as a weighted average of the metric scores.

Monolith Microfrontends

Home

LCP 0.6 s 1.4 s
FCP 0.3 s 0.8 s
TTI 0.8 s 0.8 s
TBT 205 ms 0 ms
CLS 0.000 0.246

Table 6.2: Monolith and microfrontend homepage Web Vitals comparison

Monolith Microfrontends

Customer list

LCP 0.9 s 1.7 s
FCP 0.3 s 0.9 s
TTI 0.8 s 1.2 s
TBT 303 ms 140 ms
CLS 0.000 0.001

Table 6.3: Monolith and microfrontend customer list Web Vitals comparison

Monolith Microfrontends

Resource form

LCP 0.7 s 1.6 s
FCP 0.3 s 0.8 s
TTI 0.8 s 2.7 s
TBT 260 ms 144 ms
CLS 0.000 0.001

Table 6.4: Monolith and microfrontend resource form Web Vitals comparison
62

Evaluation

In terms of the Largest Contentful Paint and First Contentful Paint, the mono-
lithic Flutter app consistently outperforms the microfrontends version across all
pages, thus resulting in a better loading speed perceived by the users. Time to
Interactive remains constant for the monolithic application while it varies signifi-
cantly for the microfrontends implementation. This suggests that the former may
provide more predictable and responsive interactions. The stability of content is
equally good across applications, with the notable exception of the microfrontends
Home page, where further improvements are needed to provide a more stable page
load. The microfrontends-based app obtains lower TBT values, resulting in fewer
delays due to main thread activities. Its counterpart has higher TBT on all pages,
resulting in higher latency for the end user.

In summary, the monolithic approach demonstrates slightly superior perfor-
mance compared to the microfrontends-based application. It delivers faster loading
times and better interactivity. On the other hand, the microfronted application
is better at providing lower Total Blocking Time and the two approaches obtain
comparable results for the CLS metric.

The observed behavior can be explained by recognizing that the Flutter applica-
tion is fully incorporated into the microfrontends app, which, in turn, necessitates
downloading additional frameworks such as Vue and React. Optimal performance
could have been achieved by adopting the same framework across all microfrontend
applications.

However, the difference between the overall performance of the two approaches
is marginal. The microfrontends architecture proved to be a valid option, worth
adopting if the development teams can benefit from the advantages it offers.

63

Chapter 7

Conclusions

7.1 Results
This thesis has provided a comprehensive description of the software development
lifecycle of the BluePlan web application, covering each phase from initial analy-
sis to design, implementation, and evaluation. BluePlan empowers managers to
efficiently keep track of the company’s business units, employees, customers, and
projects and provides project managers with a comprehensive overview of project
deadlines and how resources are assigned to projects.

The back end infrastructure has been developed exploiting many AWS function-
alities while the UI was written initially entirely using Flutter and later it has been
transformed into a microfrontends architecture. The performance and accessibility
of the two front-end implementations have been evaluated and compared by means
of Lighthouse reports using Web Vitals as metrics. These assessments have revealed
that both monolithic and microfrontend approaches are not only accessible but
also efficient, although there is still room for improvement.

Requirements have been only partially completed because although the back end
has already been designed to handle working hours finalization, the user interface is
not ready to support this functionality. All other requirements have been fulfilled
as planned.

The development process followed standards and practices to achieve high code
quality, including technical debt management and comprehensive testing that led
to extensive code coverage. This ensured that no code smells or vulnerabilities were
introduced, ultimately guaranteeing the robustness and reliability of the BluePlan
web application.

BluePlan will play a significant role in streamlining project management op-
erations and improving productivity within the organization. Due to its flexible
architecture, the application lays a solid foundation for future functionalities.

64

Conclusions

7.2 Future Developments
As the application starts replacing the old project management process, the work-
flow can be further optimized by adjusting it based on user feedback.

The web application also has a large potential in terms of future functionalities.
The microfrontend architecture provides flexibility to the developer teams allowing
them to work on idependent features at their own pace, and without interfering
with others work.

New functionalities could include:

■ Recommendation: Assisting Managers and PMs in the decision of which
Resources should be assigned to a Project by prompting the most suitable
candidates based on their availability and skills.

■ Improved Logging: Add advanced logging of events with Amplify analytics
to collect data about application usage to improve its monitorability.

■ Analytics: Examine completed projects data to gather insights about what
could have been improved to achieve higher efficiency in future activities.

■ Reporting: Improved dashboard with charts for a better panoramic view on
company resources and automatic PDF reports generation.

65

Acknowledgements

I would like to thank my family and friends for accompanying me during this
journey and for always supporting me.

Thanks to all the professors that I have had the opportunity to meet during
these years of university and in particular to my supervisor, Professor Luigi De
Russis, for the support and advice he provided me during the writing of this thesis.

A big thank you to all the colleagues I had the pleasure of meeting throughout
my internship at Blue Reply.

Last but not least, I would like to give a big shoutout to all the amazing people
at the Mu Nu Chapter of IEEE-HKN.

Thank you.

67

Sitography

[1] Blue Reply. url: https://reply.com/blue-reply (cit. on p. 1).
[2] Microfrontends. url: https://martinfowler.com/articles/micro-front

ends.html (cit. on p. 5).
[3] Flutter. url: https://flutter.dev (cit. on p. 9).
[4] Dart. url: https://dart.dev (cit. on p. 9).
[5] Angular. url: https://angular.io (cit. on p. 10).
[6] React. url: https://react.dev (cit. on p. 10).
[7] Vue. url: https://vuejs.org (cit. on p. 10).
[8] NodeJS. url: https://nodejs.org (cit. on p. 10).
[9] V8 JavaScript Engine. url: https://v8.dev (cit. on p. 10).

[10] GraphQL. url: https://graphql.org (cit. on p. 11).
[11] Webpack. url: https://webpack.js.org (cit. on p. 11).
[12] Single SPA. url: https://single-spa.js.org (cit. on pp. 11, 55).
[13] Amazon Web Services. url: https://aws.amazon.com (cit. on p. 12).
[14] Jira. url: https://atlassian.com/software/jira (cit. on p. 13).
[15] Confluence. url: https://atlassian.com/software/confluence (cit. on

p. 13).
[16] SonarQube. url: https://www.sonarsource.com/products/sonarqube

(cit. on pp. 13, 60).
[17] AWS Pricing calculator. url: https://calculator.aws (cit. on p. 14).
[18] Import Maps. url: https://github.com/WICG/import-maps (cit. on p. 25).
[19] Azure Active Directory. url: https://azure.microsoft.com/en- us/

products/active-directory (cit. on p. 42).
[20] OAuth 2.0. url: https://oauth.net/2 (cit. on p. 42).
[21] OAuth 2.0 Authorization Code Grant. url: https://oauth.net/2/grant-

types/authorization-code (cit. on p. 43).

69

https://reply.com/blue-reply
https://martinfowler.com/articles/micro-frontends.html
https://martinfowler.com/articles/micro-frontends.html
https://flutter.dev
https://dart.dev
https://angular.io
https://react.dev
https://vuejs.org
https://nodejs.org
https://v8.dev
https://graphql.org
https://webpack.js.org
https://single-spa.js.org
https://aws.amazon.com
https://atlassian.com/software/jira
https://atlassian.com/software/confluence
https://www.sonarsource.com/products/sonarqube
https://calculator.aws
https://github.com/WICG/import-maps
https://azure.microsoft.com/en-us/products/active-directory
https://azure.microsoft.com/en-us/products/active-directory
https://oauth.net/2
https://oauth.net/2/grant-types/authorization-code
https://oauth.net/2/grant-types/authorization-code

SITOGRAPHY

[22] DynamoDB TransactWriteItems. url: https://docs.aws.amazon.com/
amazondynamodb/latest/APIReference/API_TransactWriteItems.html
(cit. on p. 50).

[23] Nager Date public holidays API. url: https://github.com/nager/Nager.
Date (cit. on p. 52).

[24] Single SPA Recommended Setup. url: https://single-spa.js.org/docs/
recommended-setup (cit. on p. 55).

[25] Flutter-JavaScript interoperability. url: https://dart.dev/web/js-inter
op (cit. on p. 56).

[26] Webpack Externals. url: https://webpack.js.org/configuration/exter
nals (cit. on p. 56).

[27] Unpkg CDN. url: https://www.unpkg.com (cit. on p. 56).
[28] jsDelivr CDN. url: https://www.jsdelivr.com (cit. on p. 56).
[29] SystemJS module loader. url: https://github.com/systemjs/systemjs

(cit. on p. 56).
[30] Jest. url: https://jestjs.io/ (cit. on p. 58).
[31] Patrol testing framework. url: https://patrol.leancode.co (cit. on p. 58).
[32] Flutter analyze. url: https://dart.dev/tools/analysis (cit. on p. 60).
[33] Web Vitals. url: https://web.dev/vitals (cit. on p. 60).
[34] Largest Contentful Paint. url: https://web.dev/lcp (cit. on p. 60).
[35] First Contentful Paint. url: https://web.dev/fcp (cit. on p. 60).
[36] Time to Interactive. url: https://web.dev/tti (cit. on p. 61).
[37] Total Blocking Time. url: https://web.dev/tbt (cit. on p. 61).
[38] Cumulative Layout Shift. url: https://web.dev/cls (cit. on p. 61).
[39] Lighthouse. url: https://developer.chrome.com/docs/lighthouse (cit.

on p. 61).
[40] Lighthouse performance scoring. url: https://developer.chrome.com/en/

docs/lighthouse/performance/performance-scoring (cit. on p. 61).
[41] HTTP Archive. url: https://httparchive.org/ (cit. on p. 62).

70

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://github.com/nager/Nager.Date
https://github.com/nager/Nager.Date
https://single-spa.js.org/docs/recommended-setup
https://single-spa.js.org/docs/recommended-setup
https://dart.dev/web/js-interop
https://dart.dev/web/js-interop
https://webpack.js.org/configuration/externals
https://webpack.js.org/configuration/externals
https://www.unpkg.com
https://www.jsdelivr.com
https://github.com/systemjs/systemjs
https://jestjs.io/
https://patrol.leancode.co
https://dart.dev/tools/analysis
https://web.dev/vitals
https://web.dev/lcp
https://web.dev/fcp
https://web.dev/tti
https://web.dev/tbt
https://web.dev/cls
https://developer.chrome.com/docs/lighthouse
https://developer.chrome.com/en/docs/lighthouse/performance/performance-scoring
https://developer.chrome.com/en/docs/lighthouse/performance/performance-scoring
https://httparchive.org/

	List of Tables
	List of Figures
	Glossary
	Introduction
	Context
	Goals
	Thesis structure

	Analysis
	Existing solution
	Microfrontends
	Requirements
	Application users
	Functional requirements

	Technologies and services
	Employed technologies
	Comparison of technological alternatives
	Database
	RESTful VS GraphQL APIs

	Design
	Project structure
	System architecture
	Back end
	Business logic
	Lambda layers
	Dead-letter queue
	DynamoDB streams

	Front end
	Monolith
	Microfrontends

	Database

	Implementation
	Project management
	Project setup
	Git branches and Amplify environments
	Amplify CI/CD
	Application build
	Application deployment

	User Interface
	Authentication
	Custom user sign-up and sign-in forms
	Corporate Single Sign-On with OAuth flow

	Authorization
	Pre-signup lambda trigger
	Post confirmation lambda trigger
	Manual user group assignment

	CRUD operations
	Resources
	Business units and cities
	Work planning and finalization

	Microfrontends

	Evaluation
	Testing
	Unit test
	End-to-end test
	Chaos test
	Static code analysis

	Monolith and Microfrontends performance
	Web Vitals
	Lighthouse reports

	Conclusions
	Results
	Future Developments

	Sitography

