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Chapter 1

General introduction on
Neural Networks

1.1 Summary

This thesis work is organized into five chapters that are briefly described in the
following lines.

General introduction on Neural Networks

This chapter introduces the background of the NNs, starting from the neuron
structure, and shows how this structure can be replicated. This allows also us to
understand the cause of their great exploitation in recent years. Will also explain
some critical points such as the train problem and also some famous models will
be described.

Based work and methodologies

This chapter will introduce the state of the art of NN that will include the different
kinds of structure, the convolution idea, and the data flow. Then will be explained
which is the starting structure that is the base to develop an engine able to manage
sparsity.

SMAC Engine with sparsity managment

Here will be described all the changes applied to the starting structure starting
from the choice of a compression method to exploit sparsity management and
achieve better performances.
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Verification

Here are shown all the verification done to verify that the new engine works correctly,
Also will be shown the synthesis and the performance’s results.

Conclusion and future work

A summary will be provided united to some possible development that can be done
in the future.

1.2 Principles

Technology evolution has brought to the realization of machines that can do tasks
independently and to adapt themselves learning. Some examples are autonomous
driving, object detection, speech and image recognition, and many other once
“human-only” related tasks. All these tasks are central in human life nowadays. In
parallel with the need for machines able to manage these tasks Machine Learning
(ML), one of the fields of Artificial Intelligence (AI), has grown up. An even
narrower area of ML, namely Deep Learning (DL), is attracting many researchers.
This is mainly due to the large application of DL, following there are some examples:

e computer visions

business and finance

healthcare

robotics

e smart energy management

DL is based on the development and adoption of Deep Neural Networks (DNNs).
DNNs are structures that want to be similar as much as possible to the human
brain. They emulate some of his aspects, in a human brain neuron is considered
the base computational element, a DNN consists of several layers (the higher the
number the deeper the network), each containing some neurons contributing to
the computation of the output result. In training the DNN tries to properly tune
the weights and biases parameters based on the so-called hyperparameters, like the
learning rate, the number of hidden layers, the number of neurons, and so on. The
weights and biases parameters are the ones that will ultimately be used during
inference to perform the specific task the DNN has been developed for. Among
the NNs are the Convolutional Neural Networks (CNNs) that had a great exploit
and now are the most popular in terms of applications. Central themes in NNs
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are the training time, which can be in the order of hours or days depending on the
accuracy, and the hardware stress. The first problem is the need for a hardware
platform capable to provide ready-to-use models within a reasonable time. The
second brings to the necessity to have ad-hoc applications with a trade-off between
accuracy and complexity.

1.3 Neuron and Math

Dendrite

Axon Terminal

Node of
Ranvier ©

Cell body

Axon Schwann cell

Myelin sheath
Nucleus

Figure 1.1: Neuron structure [1]

As mentioned before NNs are human brain-based [2] structures, so algorithms
try to emulate the human brain’s ability to learn. Among all the ML solutions,
such as linear regression, NNs can deal with multiple features so are more suitable
for learning complex non-linear hypotheses. The starting point is that the brain
is composed of a neuron network. The neuron shown in figure 1.1 can be seen
as something that receives data through the dendrites, operate some internal
computations, and provide an output through the axon. The NNs are so based,
there are the input features that are elaborated from the hidden layers and the
output layers that are responsible for generating the prediction. Neurons can be
seen as nodes of an oriented graph, if the graph is acyclic we have a feedforward
NN (figure 1.2), on the contrary, if it is cyclic we have a recurrent NN (figure
1.3). Having deeper NN is better than having simply big networks due to that the
network itself can extract more and more complex features during inference. This
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allows the DNNs with multiple hidden layers to be able to have at earlier layers learn
lower-level simple features, the advantage is that later deeper layers put together the
simpler things. While the earlier layers are computing relatively simple functions
of the input, by the time one gets deep into the network it can do surprisingly
complex things. Dealing with DNNs means dealing with hyperparameters. These
parameters are given to the learning algorithm and will affect ultimate parameters
W and b, The following are some of the principal hyperaparameters:

o The learning rate «, because it will determine how our parameters evolve.
o The number of iterations of gradient descent.

e The number of hidden layers L.

o The number of hidden units or neurons for each layer.

o The chosen activation function (ReLU, tanh, sigmoid, etc.).

e The momentum term.

o The mini-batch size.

o Various forms of regularization parameters.

Activations in NN are generated from layer to layer, the first layer generates
activations for the second, the second generates activations for the third, and so
on. This is known as forward propagation. About the way that a machine learns is
possible to distingue between:

 supervised learning

o unsupervised learning
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Figure 1.2: Feedforward [3]

There are different kind of layers:
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Figure 1.3: Recurrent [3]

o Fully Connected
o Convolutional
» Polling

The computation required by a single neuron, in the case the neuron nth, is:

an = f(ZWzn$z+b>

a, is the output for the next layer generated with the non-linear function that uses
x, w, and b which are the activations, the weights, and the bias. This is done by
every neuron but the inputs are the outputs of the previous neuron. Some examples
of these non-linear functions are:

e Sigmoid
e hyperbolic tangent
« ReLU

1.4 How NN Learns

The way a NN learns how to perform a task in the best way is to use the gradient
descent algorithm. How well the algorithm is doing on a single training can be
measured by the loss or error function. Expression of this function is:

L(y,y) = —(ylogy + (1 — y)log(1 — 7))

Here 3 is the prediction provided by the NN in the forward propagation and y is
the “ground truth” that comes from the labeled data. The cost function instead

5
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is useful o know if and how the network is working well compared to an entire
training set. Expression of the cost function is:

JOI i gy — LSS PG o)
m 3

In this cost function we have a training set composed of m examples and the NN
has L layers, while § = al”l. Through gradient descent tries to find W[l and b[l],
with 1 =1, . . . | L that minimizes the cost function J to have the predictions
closer possible to the ground truth. Gradient descent is an iterative algorithm that
starts from a starting point, that can be randomly picked, and for every step, it
tries to move towards the steepest downhill direction until eventually converging
to a global optimum minimizing J.

oJ
M.y _
w.=Ww a@WU]
oJ
0.l _ 27
b :=1b a(%[l]
l=1,....L

Here « is the learning rate controlling the size of the step taken by each gradient
descent iteration and one of the hyperparameters that need to be properly tuned
to obtain optimal results. The derivative terms represent the update applied to the
parameters. After forward propagation is performed the backpropagation algorithm
is introduced to compute the gradients. This algorithm uses the chain rule derived
from calculus and passes the values from the output backward in a way similar to
the forward propagation. Use gradient descent to train a neural network to solve
the symmetry-breaking problem, it randomly initializes the weights rather than
initializes everything to 0. It is also possible to show that initializing weights with
zeros leads to hidden units being symmetrical, meaning they compute the same
function for every iteration, which is not helpful. There are different ways that a
machine can be trained

Supervised learning

In this case, a proper set of data is provided to the machine, and parameters are
tuned based on the difference between the expected output and the actual, so there
is feedback. The exploit of this type of learning is due to the coming of the big-data
era that makes available an impressive amount of datasets. The main tasks of this
learning are classification and regression. For Classification main applications are:

» image classification
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o diagnostics
for regression instead, main applications are:

o Market forecasting

o Weather forecasting

Unsupervised learning

In this case, non-labeled data are available and are searching for common patterns
in them. Opposite of supervised learning there isn’t feedback. The main tasks of
this learning are Clustering and Dimensionality reduction. For clustering main
applications are:

e Recommender system

o Customer segmentation
For dimensionality reduction main applications are:

o Meaningful compression

e Structure discovery

Reinforcement learning

Similar to unsupervised learning doesn’t need labeled data but aims to make
a decision based on the actual environment. The decision is evaluated by an
interpreter in terms of reward and then communicate back. Scope at this point is
trying to maximize reward so future decisions are based on this. This peculiarity
makes it also similar to supervised learning that has feedback. For this type of
learning main applications are:

Real-time decisions

Robot navigation

Skill acquisition

Game Al
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1.5 Layer

There will be explained the different kinds of layers, before doing this some keywords
useful to understand how some layers work have to be explained.

o activations: are the values that layers of the NN are passing on to the
subsequent layers

o weight: parameters associated with both hidden and output layers necessary
for the computation every neuron has to perform

o feature map: 2D structure in which neurons are organized
 receptive fields: sub-portions of the previous layer used from the actual layer

o kernel size: The size of the weights matrix, this size is equal to the receptive
field size

stride: the distance between two adjacent receptive fields

Full Connected

In this layer, every neuron is connected to all the neurons of the previous layer.
Can be seen as a matrix-vector product. Sometimes in FC layers, not all the inputs
must be processed so there is a time saving. The downside of this layer is that the
complexity and number of parameters make them unsuitable for some applications
like detection and recognition.

Convolutional

The base idea of this layer is the local receptive fields and shared weights. Shared
weights allow all neurons of the layer to have the same weight matrix, extracting
a particular feature from the previous layer. To detect multiple features, a Conv
layer is composed of several feature maps called channels and several kernels.

Polling

For a receptive field only a single value is based on a specific characteristic that
could be for example the average or the maximum value. Stride is equal to the
kernel size to have non-overlapping windows. The results of this constriction are
the reduction of the number of activations and the reduction of the feature map
dimensions so neurons have fewer operations to do. In figure 1.4 we have on the
left an example of polling with maximum value and on the right, an example of
polling with average A downside of this layer is that the downsampling makes it
less sensitive to small local translaction.

8
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9| 2
4 |1

Figure 1.4: Maximum value and average polling [3]

1.6 Non-linear function

A non-linear function is always necessary, without it no interesting function would
be computed even going deeply into the NN and thus invalidating the training
process. Instead with a linear function despite a non-linear, the NN will simply
generate an output that is a linear function of the input and this will make hidden
layers useless. Anticipating that depending on the application one function can suit
better than another and it can also be different from layer to layer, among these
solutions, ReLLU has been a great exploit in NN in recent years. This is due mainly
to the simple implementation and also to the faster learning rate of this function.

Rectified Linear Unit

This function forces the output to be greater than 0, the main consequence of this
is a very low computation cost. The mathematical expression is shown in figure
1.5. A problem occurs when x is negative so the outcome is 0, in this case, the
neurons are not trained. To overcome this problem the two variants, Leaky-ReLLU
and Exponential Linear Unit (ELU), of this function have been introduced. These
two variations are also balanced towards zero and so speed up the train.

x otherwise

0 ifx<0
iy

Sigmoid

This function has a computation cost much higher than the ReLLU function. Sigmoid
normalizes the output in the range (0, 1), a mathematical expression is shown in
figure 1.6
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Figure 1.5: ReL.U function
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Figure 1.6: Sigmoid function

Hyperbolic Tangent

The main difference is that this function can assume negative values since it
normalized the output in the range (1, -1). The mathematical expression is shown
in figure 1.7. The negative value overcomes the main problems of the ReLLU but as
the Sigmoid has a higher computational cost and is towards zero or far from zero
the gradient of this function becomes very small.

et —e™”
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Hyperbolic tangent
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Figure 1.7: Hyperbolic tangent function

Softmax

This function performs a prediction over N multiple entries. Input is a vector of N
entries: each entry is normalized in the range (0,1), and the total sum of all vector
elements is equal to 1. Math expression is shown below.
e
= ————fori=01,.... N —1
Yi ;\7:61 oTj fOTZ ) )

1.7 DNN Models

Now some of the fundamental CNNs developed in recent years will be described.
Have been proven that these CNNs effectively work but in many cases are also the
starting point to develop new ones.

LeNet

This CNN [4] is one of the first that was designed for convolutional structures
and also one of the first trained with backpropagation whose aim is to recognize
handwritten digits. An implementation of this network is LeNet-5 which is composed
of five layers that act in this way

« first and second layers are convolutional with a 5x5 kernels

o third, fourth and fifth layers are FC layers, in this case, 2x2 average polling
layers

Is characterized by the hyperbolic tangent as the main non-linear function and also
softmax function for the outputs. This network handled around 60 000 parameters

11
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whereas today it is quite common to see networks using 10 to 100 million parameters.
This CNN has been the first to be successfully applied for commercial use in ATMs
to recognize the handwritten digits of check deposits. This has been trained using
28 x 28 images and overall performs around 340 000 MACs.

AlexNet

This network is famous for being the first in winning the ImageNet [5] challenge and
adopting a ReLLU non-linearity reducing so the training phase that uses 256x256
pixels high-resolution images. This network follows the idea of LeNet and is
composed of eight layers that act in this way

o from first to fifth are Convolutional Layers
 from sixth to eighth are FC Layers

This net use 61 million parameters and operates 724 million MACs, these numbers
are much larger than LeNet. But both structures are very similar and also the
basic building blocks are the same.

VGG16

The starting point of this network is the structure introduced in LeNet and adopted
in AlexNet, so there are 16 layers [6] that act in this way:

o from one to thirteen are Convolutional Layers with 3x3 kernels and a unitary
stride

« from fourteen to sixteen are 2x2 polling layers with stride 2

AlexNet won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
in 2012 while VGG19 (another version of the VGG16 but with 19 layers) won it in
2014

GoogLeNet

This network adopts an inception module [7] that extracts features at various scales
and concatenates them at the output, forwarding them to the next layer. An
example with four scales computed in parallel and then merged in one output is
shown in figure 1.8. The deeper we go into the models, the higher the accuracy
but beyond the deeper level the vanishing gradient becomes relevant. Values of the
gradients in backpropagation are in the range of 0,1 or minus 1,1, the magnitude
of the gradients becomes smaller with the depth of the network. Small gradients in
the first layer can make bad training problems, this can be mitigated by increasing

12
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the magnitude of the gradients and is done by adding two classifiers that take
the activations at the network’s earlier stages. The first version of this network
employed 7 million parameters and performed 1.43 billion MACs on 224x224 input
RGB images.

\ 2 2 v L4
CONV 1X1 R |MAX pool 3x3| |CONV 1X1 R |CONV 1X1 R

CONV 1X1 R |CONV1X1 R |CONV1X1 R

R RelLU @ Concatenate

Figure 1.8: Inception Module in GoogLeNet [3] [7]

ResNet

[8] To make marginal the problem of vanishing gradient this net adopts a connection
that runs in parallel to the Conv layer called skip connection, this allows it exceed
human-level accuracy in the ImageNet competition. Is the first to adopt the batch
normalization layer. Skip connection modules are shown in figure 1.9, for both
solutions, there are three convolutions performed in series, and the results are
summed to a convolution 1x1 done in parallel, on the right is simply summed to
the identified function. This net has several layers that go from 34 to 152. Taking
a ResNetb0 as a reference for 224 x 224 input RGB images, the number of used
parameters is around 25.5 million and the number of performed MACs is 3.9 billion.

13
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CONV 1X1
CONV3X3 BR

CONV 1X1 B R

CONV 1X1

CONV 1X1 B

B Batch Normalization

Figure 1.9: Skip connection module in ResNet [3] [§]

DenseNet

[9]Following the example of ResNet with skip connections this net adopts a more
regular connection pattern based on Dense Block. In a Dense Block, each layer
input is a concatenation of the activations of all the preceding layers. A DenseNet
comprises Dense Blocks of different depths. For dimensionality reduction, two
concatenations are interleaved by the sequence of convolution and a polling layer.
The dense block is shown in figure 1.10, here the series of two convolutions are
concatenated.

> > > >

—»{ CONV 1X1 B R—>»  CONV3X3 B R—»

Figure 1.10: DenseNet Block [3][9]

SENet

[10]Squeeze-and-Excitation Networks model the relationship between the different
channels present in the feature maps reworking classic layers. Figure 1.11 is shown

14
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how the residual model is modified in SENet. Two skip connections are present,
one in parallel to the whole block and one in parallel to the two FC and the polling
layers. SENet-154 is the NN winner of ILSVRC-2017.

[a's o]
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il L

B
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Global AVG pool
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Y
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R—»

CONV 1X1

o Sigmoid

Figure 1.11: SENet modified residual model [3][10]

Capsule Network

[11]The main idea of this net is to use capsules instead neurons, this is done to
reduce some problems of the CNNs such as the data loss due to the downsampling
in the polling layers or the input rotation and shift. Input is a vector whose length
represents a probability while each entry of the vector encodes a parameter such as
rotation. Different from the nets seen before this adopts a squash function, shown
below, and instead of polling layers adopts a dynamic routing algorithm. Structure
of the Capsule model is shown in figure 1.12
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NasNet

NASNet is the first popular NN model designed with neural architecture search.
NasNet was created by searching a simple cell for a dataset in a small search space.
The complexity of the model can be determined by the number of cells stacked
together.
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Figure 1.12: NasNet module[3][11]
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Chapter 2

Based work and
methodologies

2.1 Based work and methodologies

2.1.1 Introduction to based work

In this chapter previous work is explained to understand well what is our starting
point to improve performances. In order will be explained:

o Neural network parallelism types: Spatial and Temporal

» Dataflow processing

Stand-alone vs system on chip

Comvolution remind

Base SMAC engine: how the original engine, that will be our starting point,
was derived

2.1.2 Spatial and Temporal

Is important to clarify that the fundamental operation done by the architecture is
the MAC (Multiply And Accumulation) operation for both CONV and FC layers.
This operation can be done in different ways based on which performance wants to
be achieved so different hardware can be used and different architectures can be
identified. Mainly two types of architectures, that behave in opposite ways, can be
identified:

« Spatial: GPU and CPU are typically fully temporal
17
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o Temporal: ASIC and FPGA based designs are usually fully spatial

Both of these architectures have several numbers of PE (Processing Elements),
an example of the two types of architecture, which will be explained in the next
subsection, is shown in figure 2.1. Despite this classification real architecture adopts
solutions from both architectures to have a final result that is more efficient than
going only in one direction.

Temporal Architecture
(SIMD/SIMT)

Memory Hierarchy

Spatial Architecture
(Dataflow Processing)

Memory Hierarchy

Register File

laLu]| |Aw]| [Aw] [ ALy |

HE- T i T

laLu| |Aw]| [Aw] [ ALy |

o i e il

laLu]| |Aw]| [Aww] |[ALu |

laLu]| |Aw]| [Aww] [ ALu |

Figure 2.1: Temporal and spatial architecture [2]

Temporal Architecture

This kind of architecture can adopt vector processing as SIMD (Single Instruction
Multiple Data) or SIMT (Single Istruction Multiple Threads) There are several
instances of ALU (Arithmetic Logic Unit) that work simultaneously. The scope is
to extremize the performances. The ALUs fetch data from the memory but don’t
communicate between them so this architecture is memory inefficient. To improve
the throughput based on dimensions also an algorithm can be applied to the input
feature maps and weights. In general for large dimensions is convenient applying
FFT (Fast Fourier Transform), instead for small dimensions is convenient to apply
the Winograd algorithm [12].

18
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Spatial Architecture

Opposite of temporal architecture here we want to optimize as much as possible
the dataflow. To obtain this ALUs can communicate and share data, so the data
fetched from memory are kept locally and used for more computation. This allows
having lower energy consumption due to the lower number of memory access since
the computational cost can be several orders of magnitude lower than the memory
access.

2.1.3 Dataflow

As seen before a bottleneck in terms of power consumption is the memory access.
One solution that can be adopted to mitigate this problem is a hierarchical memory
organization. Hierarchical memory has as an aftermath the different approach to
dataflow. Between this approach is possible to distinguish:

o weight stationary
» output stationary
» no local reuse

o Tow stationary

Weight Stationary

This solution, shown in figure 2.2, maximizes the weights reuse keeping them local,
on the other side partial sums are continuously fetched and written back to memory.
This solution is employed in the HWCE (Hardware Convolutional Engine) [13].

Global Buffer
Psum

Weight

Figure 2.2: Weight Stationary Example [2]

19
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Output Stationary

This solution, shown in figure 2.3, keeps local the partial sums, this minimizes the
memory access to read them and write back. Only when the operation is completed
are written back. This solution can be combined with the Wight Stationary solution.
A solution that employs weight and output stationary is ShiDianNao[14]. A second
solution can have input and output stationary, an example is the XNOR Neural
Engine [15].

Global Buffer

Figure 2.3: Output Stationary Example [2]

No Local Reuse

Despite the other this solution, shown in figure 2.4, has the highest power con-
sumption due to the elimination of the storage elements and trying to increase the
global buffer. This solution is employed in the DianNao but also here to mitigate a
minimum the power consumption some registers are employed inside the processing
engines

Global Buffer

Figure 2.4: No Local Reuse Example [2]

Row Stationary

This solution try to extremize the data reuse, so not only weights or partial sums
but also activations. Respect the previous solution this optimizes furthermore

20
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the power consumption. This solution is employed in the Eyeriss [16] where an
intelligent memory hierarchy is adopted.

Reduce precision

To optimize further in terms of power consumption, memory optimization, and
execution time, is possible to make a trade-off between precision and energy. This
need comes from moving our application from the data center to the sensor. Many
applications (ex Internet of Things) have been limited due to the amount of data
that has to be transferred from the sensor to the data center. The higher the data
amount higher is the power consumption. If the operands have a reduced precision
is possible to:

o reduces the overall memory: this allows to have a size and power reduction.

« reduces the cost of MAC operation in terms of cycles (this will be clear later
with the introduction of the serial approach) and also power.

At the beginning the focus was on reducing the precision of the weights due mainly
to the great advantages of reducing memory without affecting significantly the
final result. The quantization should be done to minimize the error between the
quantized data and real data. 8 bits quantized operands have a memory footprint 4
times smaller than one of 32-bit. In terms of power consumption, a MAC operation
with 8 bits consumes 20 times less energy compared to a 32 bits MAC operation.
Some recent researches show up that also reducing the precision of the activations,
despite the initial trial that focused only on weights, can introduce advantages
without affecting strongly the final result. A reduction of the operands between 4
and 9 bits shows up a smooth accuracy on the final results (less than 1%). About
quantization many methods can be applied, the most hardware-friendly are:

o Linear quantization: all the quantization intervals have the same dimen-
sion/length

« Non-linear quantization: quantization intervals have different dimension length,
this is more suitable when weights and activations assume a non-uniform
distribution

Despite the reduced precision of the operands MAC operation is done by the engine
taking into account the worst case model, so the internal parallelism is greater than
the operands but before the write back the result is reduced again.

An important mention should be done at this point due to the fact that there is
also the possibility to reduce the number of operations to improve performance but
this is the starting point of our work so the possible solution and our choice and
application will be explained later.
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2.1.4 Stand-alone vs System on Chip

Some of the hardware mentioned before have been realized to work as stand-alone
components so they perform the same task continuously. In opposition to this
hardware are the HWPEs (Hardware Processing Engines), which are special-purpose
memory-coupled accelerators. These accelerators aim to efficiently perform a specific
task and not the whole job to get better performance and energy efficiency. A
peculiarity of HWPESs, shown in figure 2.5, is the presence of DMA (Direct Memory
Access) so they can operate directly on the memory that is shared among the
elements. This solution allows data to be seamlessly exchanged between accelerators
and cores as it happens in Fulmine [17] and XNOR Neural Engine [15].

B> stream source CONTROL g v

> stream sink g 5

2 tcdm master CTRL UCODE REGISTER | 5 8 E g

> tcdm slave FSM PROCESSOR FILE % g 3

> periph slave m >
or
-

STREAMER / LSUs INTERNAL ENGINE

LO3INNODJHILNI
AHOW3N viva

@31dNOD ATLHOIL
0}
Apigigd
LOINNOOHILNI TYNYILNI

Figure 2.5: Hardware Processing Engine

2.1.5 Convolution Remind
Convolution Approach

Before introducing the architecture is important to clarify which kind of operation
is done. Consider a generic convolutional volume, a 3D structure whose dimensions
are ng ny nc for height, width, and channel; and ng filters with dimension f f
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ne. Cells of the volume represent the activations. As has already been explained
activations are the input for a layer of a NN and are generated from the previous
layer. Applying the rules of convolution, which will be explained better in the next
section, between them, without padding, will produce a volume with dimensions nyg
nw ng. The convolution starts from the upper left angle of the original volume and
finishes at the bottom right. The engine should be able to work with the original
volume and filters to produce the output volume. The three kinds of volume are
shown in Figure 2.6.

nt ™ filters
[1-1] [
M * ﬁ = Ny
f1-1] . 0l
: n
C C
”51/1] ﬁ ”EAI/]
| [1-1]
o ol
1

Figure 2.6: Convolutional volume: original, filters and final [18]

Convolution rules

The basic idea for convolution and the model applied to our structure will be
explained here. Consider a generic convolutional volume, in this case, a 6x6 volume,
and a generic filter, in this case, a 3x3. Looking at figure 2.7, the volume on
the left indicates the starting volume in the middle there is the filter and on the
right the output volume, the red non-continuous line indicated the portion of the
starting volume that we are considering. Starting from the upper left position a
basic multiply and accumulation operation is done. after that, all the accumulation
between multiply has been completed one output is produced, and the dot in
the volume on the right indicates the position of the output produced by the
convolution. Then looking at step 2 the starting position is slid to the right of the
position and the MAC operation is repeated. this will be repeated until the right
end of the volume, step 3. At the right end, it slides down from one position and
slides also to the extreme left position, step 4. This goes on until the bottom right
position, step 5.
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Figure 2.7: Convolution Step
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Before going on a quick reminder to the 3D structure is necessary. As for the
2D structure, the MAC operation is done and then from the starting point (upper
left), we reach the bottom right. A single filter produces a 2D structure, and
applying more filters produces a 3D structure. For example, consider a 6x6x6
volume and a 3x3x6 filter, doing the convolution between them produces a 6x6x1
volume, and repeating it with the other three different filters produces at the end a
6x6x4 volume.

2.1.6 Base SMAC engine

What follow is the description of the derived architecture and explains also the
reasons that brought the necessity of a new one. Starting from the original structure
that employs a parallel approach and step-by-step deriving a structure that employs
a serial one.

Parallel structure

The starting point is an engine able to manage to multiply and accumulate. The
first structure possible is a parallel structure like the DaDinNao [19] where the
operations are performed in parallel. A structure similar to the DaDinNao is shown
in figure 2.8. In this structure, there is one multiplier for each activation and
weight, so if M activations and weights are taken into account for time there are M
multipliers and an adder tree for accumulation. Is clear that this structure is the
fastest possible, in terms of the cycle’s number, and can do M MAC operations for
the cycle, since the multiply between weights and activations is done in one cycle,
but there is also an explosion of the area due to the presence of M multipliers.
Depending on the order of M also clock frequency could be much reduced.

Changes

The first change is in the approach to the bits, is possible to switch from a parallel
approach to a serial approach close to the Loom structure[20]. As in the parallel
approach M activations and weights are considered. The serial structure allows us
to simplify the multipliers in AND ports, this is possible because we consider one
bit for time, so instead of M multipliers there are M AND ports. Starting from
this change the AND port does the operation between LSB of Weight and LSB of
activation, then the weight shift from cycle to cycle from LSB to MSB while the
activation does not shift. When the operation is done with the MSB of the weight
the activation shift of one position and the weight comes back to the LSB. the bits
shift in this way until the MSB of activation. the out of all AND ports are summed
and then shifted and accumulated two times. the first accumulation is in the AC1
when the weight bits shift and the second accumulation is in the AC2 when the
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Figure 2.8: SMAC parallel structure [18]

activation bits shift. Between the AC1 and AC2, there is the negative block that
samples and complements the output of AC1; refers to the figure 2.9 for the serial
structure with AC1 and AC2. After the AC2 there is the AC3 that accumulates
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Figure 2.9: serial structure with AC1 and AC2[18]

the results of successive accumulation between M activations and weights. This
structure requires less hardware but for M activations, with parallelism Pa, and
weights, with parallelism Pw, are necessary Pa X Pw cycles. So to reach the
previous throughput this structure must be replicated Pa X Pw times. In the final
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structure, the activations are shared between the Pa X Pw structure but every
structure works with a different filter. To improve efficiency in activations use AC2
and AC3 have four accumulation registers. The complete single SMAC with AC3
is shown in figure 2.10 while the complete engine is shown in figure 2.11.

Operands number, frequency and area

An important parameter is M, the number of operands that act in parallel. This
parameter influences the frequency and area of both parallel and serial structures.
Is possible to see that for both the lower number of M provides the higher oper-
ating frequency and minimizes the area, it also seems to have a more linear area
incrementation when the operating frequency is raised. The parallel solution has a
higher area with fixed frequency but can operate at the end at a higher one, almost
double. A single SMAC has an area that is one order of magnitude smaller than
the parallel solution, and a serial SMAC that reaches the same throughput as the
parallel solution instead has an area that is around 2.9 times greater. Chose an
M = 16 seems to be a reasonable solution that makes a deal between area and
frequency.

2.1.7 RELU

As explained before the internal parallelism is much larger than the operand
parallelism, based on the worst-case model to avoid the computational error, but
the output is still reduced respect to the internal parallelism. At the full range
output, the RELU function is applied.

o if the result is negative the output is taken to 0

o if the result is positive but cannot be expressed on 8 bits it is saturated to the
maximum value that we can express with 8-bit

o the result is positive and lower then it is simply truncated to 8 bit

As explained also in chapter 1 ReLLU function is fundamental to train the NN.
ReLU cut to zero the negative values and this makes the null activation percentage
in a range that goes from 50 to 70.
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Figure 2.10: serial structure complete [18]
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Chapter 3

SMAC Engine with sparsity
managment

3.1 SMAC Engine with sparsity managment

3.1.1 From sparsity map to SMAC structure

The starting point to improve performance is the choice of a correct compression
method and then adapting the previous structure to the new data format. The
compression method is introduced due to the presence of sparsity. Sparsity is the
presence of zero-value activations in the original volume. Considering that the
engine does MAC operations so the final scope is skipping the operation when
there is a zero-value.

3.1.2 Compression

There is a different kind of compression method but our choice was basically
between the following four that can result more adaptable to our engine.

e CSR: Compressed Sparse RoW
e CSC: Compressed Sparse Column
o RLC: Run Length Coding

e Sparsity Map

Spartisty MAP

After some initial consideration of the various compression methods, the choice
follows on Sparsity Map compression method. This particular compression method
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follows these rules:

e In the convolutional volume, non-zero values become a 1 and the zero value
becomes a 0. This allows us to convert the volume into a 1b volume.

o Non-zero values are stored in an array that follows the row direction, there is
an array for every row.

Refers to figure 3.1 Here we have a clear example of how the volume is after the
rules of the Sparsity map are applied. The volume on the left is the original, after
the compression (the arrows indicate the compression) in the center we have a
volume composed only of 0 and 1 values. On the right, are the arrays with the
effective value in the adjacent position.

The previous example was on a 2-D volume now focusing on our real volume

710101 11010 |1 7 11
ojoj]-1]o0 ofof|1]0 -1

510 11]-3 > 11011 |1 511 1|-3

-21 10 4 | 6 T11T 111 2110 4 | 6

Figure 3.1: Sparisty Map example

which is 3-D. Consider that we analyze the volume in the channel way, so before
going on in the row way we have to analyze the whole channel. The rules applied
in the 2-D structure are the same. The structure becomes a 1-bit structure as
before. Instead, the array stores the non-zero values of the first channel (row 1
column 1), then stores the values of the second channel (row 1 column 2). This
array structure is replicated for every row.

3.1.3 Diffrent approach to the convolutional volume

Considering the new data format of the convolutional volume we have to change
the approach to the data. First of all, consider a different approach to the input
feature map. the original structure considers a 3x3 sliding window that slides to
the right of one position for time. In the end, it goes to the beginning and slides
down one position; and then restarts to slide to the right of one position for time.
The new sliding window is a 4x1 window that slides to the right of 1 position and at
the end slides down of 2 positions as shown in the image below. These new sliding
windows are due to the new idea of elaborating the data that will be explained in
the next section. Figure 3.2 shows the new sliding windows. For example, here
there is a 6x6 volume, from left to right we have:
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« the starting position, so the first portion considered
o the first sliding to the right so the portion considered after the slide
» portion considered after the last sliding right

» portion considered after the first sliding down, now it starts again sliding to
the right till the last column

» portion considered after the last sliding down, as before it will slides again to
right till the last column

coLo
coL1
COL2
coLo
coL1
cOoL2
coLo
coL1
CoL2
coLo
CoL1
CoL2
coLo
coL1
COoL2

ROWO

ROW1

ROW2
ROW3

ROW4

ROWS5

_______

Figure 3.2: New volume approach with sliding window

3.1.4 New SMAC Structure
Reducing SMAC number

The original SMAC structure was composed of a 64 SMAC that shares the acti-
vations. Refers to the figure 3.3 that shows the new SMAC structure composed
of 6 SMAC and 2 AC3. As explained before the new windows consider 4 rows at
times, so as in the original the activation are shared but not between all SMAC,
the activation of row 0 is not shared, row 1 is shared among SMAC 2 and 4, and
row 2 is shared among SMAC 3 and 5, row 3 is not shared. Now consider what
happens when the third column has been computed, at this time our structure can
produce two outputs, and since now every time before the windows slide to the
right till the end minus one it produces 2 outputs, and at the end, it produces 6
outputs.
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Figure 3.3: Full structure with 6 smac and 2 AC3

3.1.5 New SMC structure

A direct consequence of the changes applied in the sliding window and the number
of SMAC is a change in the internal structure of the SMAC.
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AC1 and AC2

first of all, let’s analyze the first and the second accumulator. before the acl the
following block is present

o the AND GATE that operates between the activations and weights bits

o bit adder that doing a bit-a-bit addition with the output of the AND GATE

« bit register, a simple register out of the bit adder

AC1 is the same as the original SMAC. It is composed by

o the acl adder used to accumulate the new output of the bit register with the
previous one

« acl register that samples and shift the output of the bit adder

o a mux out of the acl adder is present to bypass it for a new value for the acl
register

between acl and ac2 is present the negative block that samples and complements
the out of the acl. The AC2 instead is changed. The number of output registers
is reduced from 4 to 1 due to a different approach to the weights. with different
parallelism, the internal block is the same as the AC1 exception is the mux that is
not present. So as in the original, the AC1 accumulates the weights shifting and
the AC2 accumulates the activations shifting. the structure of the AC1 and AC2
with full parallelism and intermediate block (neg block) is shown in figure 3.4.
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3.1.6 SMAC low-level FSM

A low-level FSM that can manage the accumulation in AC1 and AC2 is necessary.
the state evolution is shown in figure 3.5.
Is possible to notice that there are two types of states:

e wait states

o claboration states

Low-level FSM wait states

The low-level wait states are all the states in which the engine is not elaborating.
These states are:

o IDLE: this is the reset state

o WAIT: this is the first state after the idle and after the end elaboration. here
is waiting for the two start signals, the first from ac3 and the second from the
high level that notify that the activation and weights are ready in input ad
the engine can start the elaboration.

o WAITACS: in this state, the engine is waiting for the starting signal from the
AC3

o WAITACT: in this state, the engine is waiting for the starting signal from the
high-level FSM

« ENDACC: is the state that notifies the end of the accumulation.

Low-level FSM elaboration states

these are all the states in which the SMAC is working doing the accumulation.
they are:

o INBITREG: in this state the bit register is sampling the input weights bits.
o ACCI: here we have the accumulation of the ACC1
o« NEGBLOCK: here the neg block is sampling the out of AC1

o AC2: in this state, the AC2 accumulates the out of the negative block.
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Figure 3.5: Low Level FSM
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AC3

The main change is in the AC3. Here we have as in the AC2 a reduction of
the accumulation registers from 4 to 3, the parallelism has also been resized to
be adapted to our structure and accumulation way. The main reason for the
reduced register number is due also to a different approach to weights, in the
original structure every register accumulates results of different weights filters, in
this structure, the weights are from the same filter but every register accumulates
different weights column based also on the position of the sliding windows. In this
state, the engine is waiting for the starting signal from the AC3. The image below
is shown the ac3 with full parallelism. In the second image instead is shown the
full structure is composed of three smac and one ac3.
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Figure 3.6: AC3 structure with parallelism
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SMAC and AC3 FSM

the low-level fsm for acl and ac2 communicates with the AC3 FSM with a handshake
protocol. When a SMAC has finished an accumulation an end accumulation signal
is asserted, now the engine waits that the AC3 has accumulated it. when it is
done the AC3 communicates it to the SMAC with the proper signal asserted so
the engine can begin a new accumulation.

Accumulation scheme

Consider the image below that shows the position of the sliding window and based
on this position, the accumulation scheme. Starting from the first position of the
window the first block of SMAC (1 to 3) work with the channels of the first weights
column (channel 1, 4, 7), results of this first accumulation are accumulated in AC3
register 1. Since there is no padding at the beginning while the first block works
the second does not then the role are inverted so we are still in the first position of
the sliding window but only the second block of SMAC (4 to 6) works, still with
the channels of the first weights column (channel 1, 4, 7) and accumulates the
results in AC3 register 1 of block 2. At this point, the sliding window goes on of
one position, and now we are in the second column of convolutional volume, in this
case, the first block work as before with the weights but the accumulation is done
in register 2 of AC3 but also the second block work at the same time but with the
second weights column, results of the second block are accumulated in the register 1
of AC3. After this, the block starts work with the second weights column (channel
2, 5, 8) and accumulates results in register 1 of AC3 while block 2 does not work,
at last, the second block works with the first weights column and accumulates in
the register 2 of AC3 while the first block does not work. Now the window goes on
further of one position, the first block as previously works at the beginning with the
first weights column weights and accumulates in register 3 of AC3 while the second
block works with the second weights column and accumulates in register 2 of AC3,
then the first block work as previous with the second column and accumulate in
the register 2 of AC3 but at the same time the second block works with the third
weights column (channel 3, 6, 9) and accumulate in the register 1 of AC3. Now
the final step before that the first output is available, at this point the first block
works with the third weights column and accumulates in register 1 of AC3 and
the second block works with the first weights column accumulating the results in
register 3 of AC3. Now register 1 of AC3 of both smac blocks produces the first
output and then is clear. When the sliding window goes on the working scheme
with the weighs is always the same as in the third position the only changes are in
which register is accumulated and which register goes into output, starting from
the fourth position the registers that go into output register 2 then in fifth position
registers 3 and restart from the sixth that are registers 1. At the last position, all
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three registers of both SMAC block goes into output.

3.2 Weights

Memory introduction

Due to the new scheme and weights approach a local memory introduction is
necessary. based on the worst case of the weights parallelism and channel length
the memory adopted is 1x1x8x512. this memory is replicated 9 times in a 3x3
structure that is the dimension of the original sliding windows. for simultaneous
reading of different memory blocks memory is considered in 3 rows and every row
is composed of a 3 channel. every row has also 3 2tol mux that are used for the
correct address and 2 3tol mux that are for the output data.

3.2.1 FSM

One of the main consequences of the new structure is that radical changes in
the high-level FSM are necessary. There are also some secondary FSM that are
subordinated to the main and that manages all the other aspect such as memory
filling, filtering, and data elaboration. These are:

o« MAIN FSM: is the highest level FSM that manages the various fase like
memory fill, map scrolling, data elaboration, column and row updates, data
output, etc...

o Memory fill: this FSM manages the memory fill with the weights.

o Kernel FSM: this FSM generates the correct kernel position.

« Filtering and starting elaboration: is a merging of other FSM that manage
when start filtering, starting elaboration, resume filtering.

going deeper in the smac structure there are also other FSM:

e acl and ac2: the FSM that manages the accumulation in this two accumulator,
this has been described before

e ac3 FSM

o filter: this FSM manage the sparsity map scrolling and filtering
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3.2.2 Main FSM
We can categorize the states of the high-level FSM in three different kinds of states:

o Starting states
o Update states
« Elaboration states

before going deeply into states function the state evolution is shown in figure 3.8.

Starting States

The starting states are all the states in which the engine is ready to start the
elaboration

o IDLE: the reset state

o WAIT: in this state, the engine waits for the starting signal to start filling the
memory

 END:

o FILL: In this state, a continuous stream of weights data is provided and all
the memories are filled with them.

Elaboration States

Here we have the real elaboration that is SCMAP. In this state, the four-channel
row of the sparsity map is provided to the filter from 16 to 16 bits. Bits are filtered
to remove 0 and select the correct weights that are sent to the SMAC that do
the accumulation, this is repeated until the end of the four channels. the second
elaboration state is OUTMAP. In this state, the output is ready so a signal is
provided to the out when the output has been read the FSM goes on. Except
for the last column 2 outputs are provided, and in the last column, 6 outputs are
provided.

UPDATE States

These are all the states where the position of the volume is updated. these states
are:

o KERplusl: Here simply the kernel counter is updated and some counters and
registers are reset
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RESET

Figure 3.8: High Level FSM
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e COLplusl: As in KERplusl here when all the 3 kernels have been computed
for the whole channel of the four rows the column counter is updated. based
on in which column is also a register of the AC3 is clear.

o ROWplusl:Here all the registers of the AC3 and the col counter are clear while
the row counter is updated.

o Wplusl: The row counter is clear and the weights counter is updated, the next
state, if we are not in the last weights group, is FILL so the memory has to
be refilled with the new weights.

3.2.3 Elaboration counters

To help the main FSM manage the filter and elaboration there are three counters:

e M counter: this counter counts up to CH/M-1 and is updated when a new
portion of the sparsity map is available.

o FElbaoration counter: count when an elaboration has terminated

o M filtered Counter: this count is updated when M non-zero value has been
filtered and so ready to be elaborated.

When the elaboration counter and M filtered counter are equal and we have filtered
the last M bits of the channel of the sparsity map it means that we have filtered
and elaborated the whole channel so kernel position and so on can be updated.

3.2.4 Memory filling FSM

This FSM fills the memory with the weights. it only works when the main FSM is
the state FILL.

3.2.5 Filtering FSM and elaboration

The filtering and elaboration are managed by a collage of various FSM.

Startfiltering

The starting point is when a start filtering signals could be generated. first of all,
memory must be filled so we have to be in the state SCMAP of the main FSM.
There could be two types of signals that could be generated, the first is when a new
portion of the sparsity map is available, and the second is when previous filtering
was interrupted, so it has to be resumed and brought to an end.
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Filtering HLFSM

This FSM in a way similar to the filter FSM manages the memory reading when
filtering, so it takes into account the previous situation and based on this manages
the memory signals and the address update.

Start After Wait2

Here we manage when a new filtering operation can start. this FSM takes into
account if the smac elaboration and accumulation are on the run or if it has been
brought to an end.

3.2.6 KERNEL FSM

This FSM takes trace at which point of the accumulation the engine is. For
every column, except for the first and the second, the engine has to compute the
accumulation for the three columns of the memory. This taking trace is important
for the SMAC to know from which column read the weights and for the AC3 to
know in which register it has to accumulate results of the SMAC. The exceptions
of the first and second columns are due to the absence of padding.

3.2.7 FILTER

The introduction of the sparsity map compression method has the main consequence
that a filtering system is necessary. This filter has to:

« verifies that the portion of the sparsity map that is analyzed has non-zero
values

o filter the non-zero values
o corresponding non-zero values to the correct weights

All the blocks, that compose the filter block, will be described in the following
subsections are subordinates to an FSM that manage the filtering.

1 COUNTER

The first block is a 1 counter. When a portion of the sparsity map is available this
block verifies that there is at least one non-zero value that has to be filtered. if
there isn’t there is no need to filter so we can skip this portion and pass to the
next. it is a basic combinational block. Out of this block, there is a simple register
that stores the value
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SHIFT REGISTER

In this shift register we load the portion of the sparsity map. if there is at least
one non-zero value the filter starts to scroll the map one bit for time. the output
of this shift register is the enable for:

o A counter that counts the number of non-zero values until they are equal to
the output of the 1 counter. if they are equal the filtering terminates and we
skip to the next portion of the sparsity map.

e A second counter that counts if we have filtered an M number of non-zero
values through the next portion of the map.

o An external shift register that stores the correct weight corresponding to the
position of the non-zero value.

COUNTER

There are there counters in the filter with three different scopes. the first and the
second have been described in the previous section, the third instead is a counter
that counts if we have scrolled the whole sparsity map portion loaded in the shift
register.

Filter FSM

This FSM manages the filtering of the sparsity map. It has three main counters.
the first count when we have filtered all the non-zero values so we can stop the
filtering of this section of the sparsity map and pass it to the next. The second
count is when we have filtered 16 non-zero values of the sparsity map and so the
register is full and the smac can elaborate. The third count is simply when we have
filtered the whole section of the sparsity map (every section is 16 bits).
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Verification

4.1 Verification

4.1.1 Memory

The first verification done is for the memory. In this case, we verify that the data
are written correctly in the correct position of every memory block. Consider figure
4.1 that shows the filling of row 1 of the memory from the first block. In figure
4.2 is shown the end of the filling of the first row (third block) and the beginning
of the second row. The figure 4.3 show at the end of the third block of the third
row. Here is also verified the FSM that manages this memory filling. A second
verification is done during the filter verification, here is verified that the wanted
memory cell is read correctly.

‘ btuttolAsmz/present state

‘ RbtuttolAsma3/present state

- fb/febliblocklimem row_L/adrl
- fb/febliblocklimem _row_Lidatain
- fb/febliblocklimem row_1idol

- fb/febliblocklimem row_1ido2
“. fbffebliblocklmem_row_1/do3

Ablfebl/block1/mem_row_2/adrl
itb/febl/block1/mem _row_2/datain
Ablfebl/block1/mem_row_2Jdol
Ablfebl/block1/mem_row_2Jdo2
* bffeblblocklimem_row_2/do3
Atb/febl/block1/mem_row_3/adrl
Hbifebl/block1imem_row_3/datain
Abifebliblock1/mem_row_3/dol
Abifebliblock1/mem_row_3/do2
Jfebliblocklimem_tow_3/do3

Figure 4.1: Memory fill verification
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Figure 4.3: Memory fill verification

4.1.2 Filtering
lcounter

First of all, for the filter system, we verify that the 1 counter analyzes correctly
the portion of the sparsity map so that it counts the right number of 1. Mention
the case of no non-zero values, this case has been used to verify also that the FSM
that manages the filtering evolves correctly by skipping the filtering and waiting
directly for the next map portion.

Counters

Once verified the one counter the next step is to verify the correct update of the
counters and so the correct evolution of the FSM.

 the first counter is counter3, this counter counts how many bits of the portion
of the sparsity map we have scrolled. We verified that it was 0 at the beginning
of every map portion analyzed, then that it was updated in parallel to the shift

48



Verification

register. When it reaches the end count we also verify the correct evolution of
the FSM.

e The second counter is the full counter. Here is verified that this count is
updated every time the filter found a non-zero value. when it reaches the end
count it means that we have filtered 16 non-zero values, so the filtering of this
map portion is stopped to be later resumed.

 the last non-zero value of the map portion could not be in the last position,
this register is updated as the previous when we have a non-zero value but is
compared to the out of the 1 counter. when these two numbers are equal is
possible to stop filtering this map portion and pass to the next.

Shift register for weights

A shift register that stores the weights is present. Here we verify that in the
presence of a non-zero value of the map, it samples the correct weights that come
out from the memory. Is possible to see in figure 4.4 that the shift register samples
consecutively the correct weight in the presence of the map "1000000000011101".
Figure 4.5 shows that it is cleared correctly when it is full and the smac weights
register has sampled it. Figure 4.6 also shows what happens when the shift register
is full but the SMAC hasn’t finished the elaboration, the filtering waits until the
end of elaboration to resume/start again.

[ Wave - Default

4 ftbiclk_i
< tbituttolAsmalpre...
[+ 4 fibinm1
B* ibiadr_ontl
B “. /thiiebLiblocklime...
|2 4‘. Jftbifebliblock1/srs... |8'h00 8'h00 &'h..

8'h00
8'h00

Figure 4.4
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B~ ftbffebl/blockl/me... 840
B ftbifebl/blockl/srs... |8'h00 8'h00 Eh...
3.4 [15] 8'hoo
o [14] &'h00
s [13] &h00
s [12] &h00
&h00
&h00
8'h00
&'h00
&'h00
&h00
&h00
&h00
&h00

&h0o
&hoo
&hoo
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[+ 4 Moinm1

B4 fbiadr_cntl

s Kbiflebliblockl/me...

& “. fibffebliblockL/srs... |00 8700 8...
4. [15] g'hoo
4. [14]
4. 13)
4. [12]
4. [11]

Figure 4.6: Wait to reset the register

4.1.3 Memory Block Address

Due to a combination of the position of the volume, column, and row in which
we are, and of the kernel position (memory column) we have to verify first of all
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that we read from the correct memory block. Then we verify the correctness of the
address, in particular:

e The correct update of consecutive address

« stopping the address update when we are at the end of the full counter and
the correct resuming

o the correct updated to the next correct starting address when the out of the
found counter is equal to the 1 counter.

4.1.4 AC3

For the AC3 two verifications are necessary. the first verification is the correct
accumulation in the correct register based on the volume position (row and column)
and kernel signal. this is shown in the figure, is possible to see that in the presence
of a determinate kernel and column signal when a smac end signal is asserted the
register value is updated with the new accumulation between the old value and
smac out. the second verification is the clearing of the correct register after the
updates of the volume position. This is shown in the figure below, after that the
data has been read correctly in output at column updates it is reset.

£ -“a /tbifebl/bloc...

0 (Wave - Default

SC_MAP

Figure 4.8: AC3 register reset verification
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4.1.5 AC1 and AC2

Before talking about the verification of this block is important to clarify that two
starting signals are necessary for the accumulation.

 the first signal comes from the filtering section, it tells that the input data
(weights and activations) are ready to be elaborated

o the second signal comes from the AC3, it tells that the previous result of
accumulation has been accumulated in the ac3 register and is possible to start
with a new one.

In the verification of this block, we verify that it waits correctly for the two signals
before starting an elaboration as shown in the figure below. We also verify the
correct evolution of the FSM that manages the accumulation (also possible to see
in the image).

ISMAC1Aismistart_act
ISMACLAsmistart_ac3
ISMAC1Asmiend_acc

Figure 4.9: AC1 and AC2 verification

4.1.6 Synthesis

After all the verifications have been completed the next step is to extrapolate data
from the synthesis analysis. To reach desired performances in terms of throughput
the whole structure composed of the 6 SMAC, 2 AC3, and memory is replicated 16
times so there is a total of 96 SMAC, 32 AC3, and 144 memory blocks.

Performances

A crucial point is to analyze how the new engine structure impact the throughput
in the presence of different sparsity percentage. As explained before the scope of
sparsity management is to avoid useless operations this can virtually increase the
throughput due to the consequence that skipping useless operations reduces the
number of total cycles per layer. As benchmark has been taken the VGG16 layer 8.
After some analysis of various sparsity percentages and various operand parallelism
is possible to notice that there is a trend that is quite similar for different parallelism
and shows an increase of the throughput for an increasing sparsity percentage.
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Compared to the 0 sparsity the trend goes from a double value of the throughput
for a 50 % sparsity to a triple value of the throughput for a 80 % sparsity. In
figure 4.10 is possible to see the trend mentioned before for operands parallelism
combined, in particular, weight can be of 4, 6, and 8 bits while activations can be
of 4 and 8 bits. The number of operands for times is maintained at 16 while the
sparsity increase by 10 % for times from a base of 50 % to a cap of 80 %.

B PA-1PW=4 B PA-8PW-4 B PA-8PW-6 PA-8 PW=8
125 125 125 100
100 100 100
75
75 75 75
50
50 50 50
25
25 25 | 25
0 0 0 | 0
0 50 60 70 80 0 50 60 70 80 0 50 40 70 80 0 50 40 70 80

Figure 4.10: Throughput MAC/cycle for various sparsity percentage and various
operand parallelism

Area

Firs data is the total area cells for 1.2 V and 1V synthesis. For 1.2V we have a
total of 113700.93 um? and for 1 V a total area of 114050.13 um?. These area
values are for only 6 SMAC with related memory blocks and FSMs, for the whole
structure with 96 SMAC the area is about 1,8 mm?2. Also considering more but
smaller SMAC and shared AC3 there is an increase in the area. The great area
overhead is mainly due to the presence of the 144 memory blocks, every block is
composed of 512 cells of 8 bits each, the area of these blocks alone is about 1,2
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mm? which is the 66 % of the whole system.

54



Chapter 5

Conclusions and Future
Work

This thesis work consisted of the development of a system able to manage sparsity
in a CNN. Among the various possible compression methods that help to manage
sparsity, the choice is the sparsity map. The starting point is the already developed
SMAC engine, this has been modified in the internal structure and a system able to
filter the zero-activation based on the sparsity map has been added. With respect to
the original engine, there is an increase in the total area due to the introduction of
the local memory, which represents 66 % of the total area, but also an increase of the
throughput of three times for the higher sparsity percentage. Main future upgrades
concern the other existing compression methods, for example, the structure is
flexible enough to be modified to work with CSR (Compressed Sparse Row), in
this case, major changes regard the filtering system that should be thought to
work with a different compression. About the CSR, since the CSC (Compressed
Sparse Column) has the same compression idea but in the column way it can be
developed starting from the solution for CSR and modify only the approach, can be
interesting to see if a different approach to the convolutional volume can produce
better results. Another improvement concern the clock frequency limited by the
memory block.
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