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Summary

Space exploration has always fascinated the human race. Since the beginning space
has been an object of speculation and study, with human often attributing to it
spiritual and magical significance. During the XX century, space exploration was one
of the research fields that attracted more funds and resonated best with the general
public. Nowadays the world is entering a new era of space exploration. Launch costs
have reduced significantly and the number of actors launching satellites into orbit
will continue to increase. Major powers have set up space forces and are militarizing
and weaponizing space in support of terrestrial warfighting capabilities. Lower
costs of space travel are opening the door to the establishment of extraterrestrial
footholds. Experts have identified 17,000 asteroids which can be exploited for
resources’ extraction, hinting at incredible profits for those who first will be able to
claim them.

The aerospace industry is constantly on the search for more powerful, more
efficient, and safer electronic components, while maintaining a high degree of
testability, and a low cost. However, all electronic components in space have to
withstand a harsh environment with heavy doses of ionizing radiation. This causes
on the designs faults such as SETs, SEUs, and SEMUs. The occurrence of these
events must not interfere with the ability of an electronic system to carry out its
mission. The high failure rate of components in the space environment means that
the aerospace industry has a great need for electronic components that satisfy the
mission requirements for performance as well as presenting a high reliability. To
fulfill these demands the processor Rempro was introduced, a soft-core for FPGAs
designed by an Italian company to push forwards the limits of survivability for a
computing system. The main goal of the project is to obtain a system capable of
surviving as long as possible in the space environment without any need for human
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intervention.

Starting from the implementation of the Rempro processor, this thesis work starts
with an investigation of the processor architecture and development process. To
increase reliability, two approaches are possible, Radiation Hardening by Process
which involves using components that are more resistant to radiation due to
intrinsical properties of the node technology used; and Radiation Hardening by
Design, which increases tolerance using particular design techniques. To take
advantage of the RHBP, Rempro targets a Flash FPGA for its implementation.
This makes it immune to Single Event Upsets (SEUs), which are bit flips that
affect sequential elements such as Flip-Flops, memories and so on. These faults are
particularly dangerous for FPGAs because if they happen inside the configuration
memory of the device they may modify the function that the Programmable Logic
Blocks of the FPGA perform, drastically changing the behavior of the circuit.
While Flash FPGAs are not affected by these problems, as the tensions necessary
to flip bits are higher than what can be caused by ionized particles, they are still
affected by the total dose of radiation, which damages the transistors over time,
and the Single Event Transients, which are voltage spikes in the device logic, which
can cause wrong values to be sampled in the sequential components of the circuit.
To address radiation-induced faults, one of the most common RHBD techniques
is used Triple Module Redundancy. This approach involves the triplication of
critical modules of a design, using voters to preserve the correct behavior of the
system in case of malfunctions to one of the modules. The processor goes to one
step further implementing not only TMR on the computational cores but also
N-MR on the device. The system is imagined in its entirety as a number of boards
each mounting an FPGA with a TMR version of the processor in it. Each single
system is equipped with a self-checking mechanism able to detect the occurrence of
an unrecoverable fault. When the system cannot recover from the malfunction a
substitution routine activates a new board that is able to autoconfigure itself to
carry out the program first started in the defective board. In this way it is possible
to obtain a system capable of remaining online as long as possible, executing critical
parts of the mission, with a high degree of reliability, without the need for any kind
of servicing.

To this extent if a triplet detects an unrecoverable malfunction in one of its
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processors, it has to be capable to transfer the processor state to a triplet in
another board in order to carry on execution. For this reason a bus was realized to
communicate between two boards, together with a possible communication protocol
and memory transfer routine to transfer the program state to the triplet in the new
board. In order to simplify the testing phase, an UART module was also developed
for the processor.

After the design phase, the new features were tested to validate their behavior.
First test involved verifying the UART module worked correctly, in order to make
sure all the following test could be carried out with no problems. The second one
involved measuring the latency of the wires composing the bus to confirm that it
would not cause problems during communication, and allow for the timely transfer
of data between processors. The last test was to validate the bus and transfer
routine themselves. Confirming the last one was an important step to establish the
feasibility of the project.

In order to place the processor in the design space of other aerospace-oriented soft
cores, it is compared against a RISC-V processor, the NEORV32. After studying
its features and architecture, three benchmark programs have been realized, each
with a different workload and a different stimulus for the processors modules. The
benchmarks, written in assembly, constitute some common computational use cases
for processors.

In order to evaluate and compare the reliability and fault tolerance of both
processors, these programs were used as workload to execute while being subjected
to a fault injection campaign. The designs were evaluated post-implementation to
match as closely as possible the real case. A Python framework was developed to
manage the campaign, generate the Tcl scripts for the ModelSim simulation and
elaborate the results. The transient injections were performed at random times
during the simulation, in random nodes inside the design, 100 times per node to
gather meaningful statistics for the entirety of the design. Using a master Tcl script,
it was possible to automate the injection process and the gathering of data on the
signals and the results of the injection itself. Analyzing the results its possible to
identify the criticalities of the design in order to increase efficiency when adding
fault mitigation.

The general structure of the thesis is as follows. Chapter 1 gives an introduction
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to the problems deriving from operating electronic circuits in space. Chapter 2
details the programs and hardware used in this thesis work. Chapter 3 describes
the architecture of the Rempro system, how it originated and the architectural
considerations that were made during its development. Chapter 4 illustrates the
implementations tests performed to validate the new features added during the
Rempro development. Chapter 5 introduces the RISC-V ISA and the NEORV32
processor, chosen for a comparison with Rempro. Chapter 6 explains how the fault
injection campaign was planned and carried out. Chapter 7 presents the results of
the fault injection and analyzes them with the aid of charts and graphs. Chapter 8
summarizes the conclusions and describes prospects for future research work.
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Chapter 1

Electronics in space

The increase in satellite launches, resulting from improvements in aerospace tech-
nology and miniaturization, has made numerous low-cost Commercial-Off-the-Shelf
(COTS) components available in various fields such as instrumentation, data han-
dling and acquisition, and telecommunications, among others. Furthermore, the
cost of launches has been reduced, and Cubesat designs can now be financed and
built even by academic institutions.

The aerospace industry has witnessed an increasing utilization of COTS compo-
nents, Third Party Intellectual Property Cores (3PIC), and Computer Aided Design
(CAD). Due to the lower production volume of dedicated electronic subsystems
and components for space applications, it is more cost-effective to repurpose legacy
components (i.e., not specifically designed for space) in order to strike a balance
between development costs and computational performance.

The rise of the Reduced Instruction Set Computer V (RISC-V) Instruction
Set Architecture (ISA) (Figure 1.1), along with other open-source Intellectual
Property (IP), enables a better understanding of their vulnerabilities compared to
the black-box characterization typically encountered when dealing with proprietary
COTS processors. The availability of Register Transfer Level (RTL) models is a
major advantage in these processors, enabling a more comprehensive evaluation of
the effects of upsets in the microarchitecture. These IPs are often implemented in
programmable logic, in particular in Field Programmable Gate Arrays (FPGAs)
[1].
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Electronics in space

Figure 1.1: History and perspectives of ISA used in space programs [2].

After analyzing the vulnerability of a system to faults, it can be mitigated
through redundancy at various levels of the design [2]. However, this approach
comes with significant costs in terms of area, power, and performance, necessitating
a compromise. The balance between vulnerability mitigation, increased area and
power consumption, and performance loss depends on the dependability require-
ments (availability, reliability, safety, confidentiality, integrity, and maintainability)
and performance objectives, as well as the target sector.

In space applications, significant attention is devoted to the availability and
reliability of electronic systems. Reliability is defined as the probability, denoted
by R(t), that a system will continue to function correctly until the end of the time
period t0 − t, given that it was working correctly at the instant t0. On the other
hand, availability is defined as the probability, denoted by A(t), that a system will
be functioning correctly at a specific time t. Unlike reliability, which considers a
time interval, availability refers to a single moment [3].

Space missions can endure for up to 15 years, and the entire space system is
expected to provide service for at least 99.9% of the time. Additionally, since
servicing the system is typically impossible, it is crucial that the system has the

3



Electronics in space

capability to recover on its own if a fault occurs. Consequently, availability and
reliability stand as primary requirements for any electronic system employed in a
space mission [4].

1.1 Threats to dependability in space applica-
tions

According to [3] threats are phenomena that can impact a system, resulting in
a decrease in its dependability, and they can be classified as faults, errors, and
failures. A failure occurs when the delivered service deviates from the correct
service. There are various failure modes that describe how a service can deviate
from the correct behavior, but a failure signifies that at least one of the system’s
external states deviates from the correct state. This deviation is referred to as an
error, which is a part of the overall system state that may lead to subsequent failure
in providing the correct service. The cause of an error is known as a fault. Faults
can be internal or external, and the presence of a vulnerability, i.e., an internal
fault that allows an external fault to affect the system, is necessary for the external
fault to cause an error and potentially lead to a failure (Figure 1.2).

Figure 1.2: Typical interactions of threats with a processor providing a service to
an output peripheral [4].

The relationship between faults, errors, and failures can be described as follows:
When a fault is present in a system but has not yet manifested any effect, it is

considered dormant. Once the fault is activated, it leads to a system state that
deviates from the expected one, resulting in an error. The error can propagate
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Electronics in space

within the system until it reaches the service interface, disrupting the delivery of
the correct service and causing a misbehavior or failure. A service failure in a
system can trigger external faults in downstream systems that receive service from
it.

In space processors, the typical faults are external ones caused by changes in
the charge stored in nodes due to particle strikes [5]. These faults are the cause
of soft errors because they can be corrected by simply overwriting them with the
correct value [6]. They are distinct from hard errors, which necessitate identifying
the specific fault causing them in order to accurately replace the faulty unit [7].

1.1.1 Upsets

Figure 1.3: Charge generation and collection in a reverse-biased junction: forma-
tion of a cylindrical track of electron-hole pairs (a), funnel shape extending high
field depletion region deeper into substrate (b), diffusion beginning to dominate
collection process (c), and the resultant current pulse caused by the passage of a
high-energy ion (d) [6].

Ionizing particles striking a sequential circuit (Figure 1.3) can alter the value
stored in one or more sequential elements [8], known as Single Event Upset (SEU)
or Single Bit Upset (SBU) when a single element is affected, and Multiple Bit
Upset (MBU) when multiple elements are affected. The upset rate, λev, depends
on factors such as the level of radiation and shielding in the environment, the
technology employed, and the specific component choices within the technology.
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Electronics in space

The environment experienced by the system also depends on the shielding, which
is beyond the control of the designer. An electronic enclosure can greatly mitigate
the occurrence of upsets in an electronic system. However, there is a limit to the
effectiveness of shielding. It has been demonstrated that Galactic Cosmic Rays are
not affected by shielding depths, leading to a plateau where increasing the shielding
further does not result in a significant reduction in the upset rate [9].

In the same technology, different types of sequential elements, such as Flip-Flops
(FFs) and Static Random Access Memory (SRAM) arrays, can exhibit varying
upset rates. For instance, in the case of the OpenSPARC T2 in 65 nm technology,
a range of sequential elements is employed, including SRAM arrays optimized for
density, less dense yet higher-performance SRAM arrays, and FFs. Comparatively,
the less dense SRAM arrays demonstrate half the susceptibility to upsets when
compared to the density-optimized ones, while the FFs are one third as susceptible
as the density-optimized SRAM arrays [10]. However, it is important to note that
the situation may be reversed in different technologies [11].

This differentiation between SRAM and FFs can be attributed to the presence
of temporal masking in FFs, which is absent in SRAM. In the case of an upstream
sequential element connected to a downstream combinational logic path, an upset
occurring in the sequential element between t = tsamp − Tprop and t = tsamp (where
tsamp is the sampling instant and Tprop is the propagation time required for a
signal to be sampled after propagating through the combinational path) will not
propagate to the next sequential element. As the frequency increases, more faults
are masked due to this temporal masking effect [12].

1.1.2 Single Event Transients

As Radiation Hardening By Design (RHBD) methodologies offer solutions to
decrease the sensitivity of sequential elements to upsets, it is expected that effects
on combinational logic will dominate in future technologies [13]. This effects, are
known as Single Event Transients (SETs). When a particle strikes a combinational
node, it can generate a voltage transient. This transient pulse may be sampled
by downstream sequential elements, leading to single or multiple errors in those
elements. While users may not always be able to distinguish between SETs and
upsets, it is important to note that SETs are generated differently and require
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distinct mitigation techniques compared to SEUs. Additionally, SETs are also
influenced by electrical and logical masking and exhibit a different type of temporal
masking mechanism. If the pulse reaches the sequential element outside of the
sampling window, it is not sampled, and an error does not occur. As the frequency
increases, the sampling windows occupy a larger proportion of the total period,
resulting in SETs occurring more frequently at higher frequencies.

In larger technology nodes (greater than 90 nm), SETs are not predominant
due to the electrical masking provided by the large capacitance and the temporal
masking facilitated by lower frequencies [14]. However, in more recent technology
nodes characterized by smaller capacitances and higher frequencies, there is an
increased possibility that a spike will be latched. A study presented in [15]
demonstrates that higher frequency does not necessarily translate to a higher
error rate. However, it does alter the relative vulnerability of sequential and
combinational logic in the circuit, necessitating different mitigation and redundancy
solutions at different frequencies.

1.2 Fault mitigation techniques

The necessity for fault tolerance arises from the inevitability of faults. Despite
designers’ efforts to eliminate hardware defects and software bugs, it is practically
impossible to eradicate them entirely. Additionally, if a system consists of 100
components, each with 99.99% reliability, the overall reliability of the system
would only be 99.01%. As the number of non-redundant components increases, the
overall reliability of the system decreases [16]. Moreover, considering the increased
probability of component failures due to aging and environmental stress factors
such as radiation, it becomes evident that a system must be capable of functioning
correctly even in the presence of faults.

There are two primary methods for achieving fault tolerance: Radiation Hard-
ening By Process (RHBP) and RHBD. In RHBP, a custom technology process
is employed that is more effective in preventing faults compared to commercial
processes. This can involve using insulating substrates for building gates, employing
logic gates based on Bipolar Junction Transistors (BJTs), utilizing wide band-gap
substrates, and implementing gate shielding. While this approach significantly

7



Electronics in space

enhances system reliability, it comes at the expense of performance, power, and
area, as these technologies are based on older production processes that result in
larger node sizes. Furthermore, due to the more complex fabrication processes
required, the development costs are higher, and the production volumes tend to be
lower, making these technologies more expensive to deploy.

In cases where the cost of RHBP techniques is prohibitively high, RHBD is often
employed as an alternative to achieve a similar level of reliability while leveraging
the lower costs and higher performance of commercial components. This is typically
accomplished through the use of space redundancy (that is redundancy either in
hardware, software or information), or by employing time redundancy.

• Hardware redundancy is performed replicating N times the modules of a system.
It can be passive or active. In passive hardware redundancy a majority voter
is used to receive the output of the replicated modules and select one. In case
of Triple Modular Redundancy (TMR), for example, if one of the modules
presents an erroneous output, the voter will mask it and still produce a correct
result. However, if two modules are defective, the wrong output will be
selected. Moreover, if the gate driving the voter input, or the voter itself
manifests a fault, it can cause the generation of errors even if the modules
connected to it are properly working. In active hardware redundancy the voter
is a comparator driving a latch. When the voter detects an output mismatch,
the output is not sampled and a system recovery routine is enabled, to locate,
and remove the fault from the system.

• In the same way hardware redundancy replicates hardware modules in order
to achieve higher reliability, software redundancy replicates software features
in order to increase reliability [17]. Software redundancy can be either single
version or multi version. In single version redundancy, mechanisms for fault
detection, containment and recovery are added to a software component. Multi
version uses redundant software components developed following design diver-
sity rules, such as using different development teams, languages, algorithms
to increase the diversity of the redundant components.

• Information redundancy involves the addition of redundant data during the
storage of information in memory. The purpose is to enable error detection
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and recovery in case the data becomes corrupted. This redundancy plays
a crucial role in maintaining system functionality, as seen in the continued
operation of CD-ROMs and DVDs even when they present physical defects.
To achieve this, check bits are commonly used such as pairing codes, Hamming
codes, or other sophisticated algorithms.

• When the disadvantages in terms of cost, size, weight, area, and power con-
sumption associated with hardware redundancy are not feasible, an alternative
approach known as time redundancy is often preferred. Time redundancy
involves the repetition of tasks performed by a system multiple times, with
the aim of increasing fault tolerance. In time redundancy, the results of these
repeated tasks are compared against each other to ensure their correctness and
identify potential errors. Similar to hardware redundancy, voter techniques
can be employed to determine the correct outcome by selecting the most
common or consistent result among the repeated tasks.

1.2.1 Fault tolerance evaluation

After applying one or more mitigation schemes to the design and conducting tests
to verify that the requirements regarding area, performance, and power have been
met, it becomes necessary to demonstrate that the mitigated design achieves the
desired failure rate when exposed to a challenging environment. To assess its fault
tolerance, specific tools and platforms are used for testing. A common practice is
fault injection, which involves using a setup capable of generating faults within
a design to emulate the fault models of interest (Figure 1.4). This allows for the
evaluation of the system’s dependability.

Over the years, numerous techniques for injecting faults in system prototypes
and models have been developed, categorizing them into five main categories [19]:

• Hardware-based fault injection: This method induces faults at the physical
level by introducing stressing parameters into the environment. Examples
include subjecting the hardware to heavy ion radiation or electromagnetic
interference, injecting voltage spikes on the power rails of the device, or using
lasers to modify the values of circuit pins.
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Figure 1.4: Basic components of a fault injection environment [18]

• Software-based fault injection: These techniques aim to emulate the effects of
hardware faults using software. They simulate the errors that occur at the
hardware level.

• Simulation-based fault injection: This approach involves injecting faults into
a Hardware Description Language (HDL) model of the target system, often
implemented in VHDL or Verilog. It allows for early fault tolerance evaluation
when only a model is available and enables continuous reevaluation of results
at each abstraction level.

• Emulation-based fault injection: This technique utilizes FPGA-based emu-
lation to simulate the target circuit, assuming the HDL description is fully
synthesizable. It enables evaluation of circuit behavior within its environment
and facilitates real-time fault injections.

• Hybrid fault injection: This approach combines techniques from different
categories, such as combining software and hardware fault injections.

Fault injection techniques enable the assessment of whether the system’s response
aligns with its specifications when subjected to a specific range of faults. Typically,
faults are injected at selected system nodes and during specific system states,
identified through preliminary system analysis. Fault injection serves two purposes:
fault removal and fault forecasting. Fault removal involves identifying and rectifying
deficiencies in the fault mitigation solutions implemented in the system. This allows
for the correction of any weaknesses in the system’s ability to handle faults. On
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the other hand, fault forecasting involves evaluating the existing faults in the
system, anticipating their potential future occurrences, and assessing the associated
consequences. By employing fault injection, engineers can fine-tune fault mitigation
strategies, enhance system robustness, and gain valuable insights into fault behavior
and its impact on the system.
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Chapter 2

Technology overview

The work of this thesis is focused of soft cores, implemented in an FPGA. Due
to their ease of use, the Microchip’s ProASIC3 FPGAs were chosen. An FPGA,
which stands for Field Programmable Gate Array, is a type of Integrated Circuit
(IC) that offers programmable logic functionality along with configurable intercon-
nects. Unlike traditional Application Specific Integrated Circuits (ASICs) that are
designed for specific tasks, FPGAs are highly flexible and can be reprogrammed
or reconfigured to perform various digital logic functions. This reconfiguration
process is similar to loading a program into a microcontroller, but instead of passing
machine-code instructions, the bit stream controls the configuration of hardware
blocks that implement different logic functions. All kinds of combinational and se-
quential circuits can be implemented, making FPGAs an ideal tool for prototyping.
While performance is lower than what is obtainable with ASICs, modern FPGAs
have frequencies of more than 600 MHz.

2.1 The ProASIC3 family of Flash-based FPGAs

The ProASIC3 is a Flash-based FPGA, composed of an array of programmable
logic elements, called VersaTiles, and a configurable interconnection network called
VersaNe (Figure 2.1). Each VersaTile is capable of being configured as a three input,
logic function, a D-flip-flop or a latch, both with an optional enable. This allows
a really high core utilization rate compared to SRAM-based cells. In addition,
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Figure 2.1: ProASIC3/E Architecture

VersaTile inputs can all be inverted and outputs can both be connected to ultra-fast
local and efficient very-long line routing resources, simplifying technology mapping
and netlist optimization. In addition to that, ProASIC3 also feature a series of
SRAM blocks, which can either be configured as Random Access Memory (RAM)
or as First In First Out (FIFO), a block of Flash Non Volatile Memory (NVM), an
In System Programming (ISP) Advanced Encryption Standard (AES) Decryption
block and a Joint Test Action Group (JTAG) ISP.

The ProASIC3 uses a Flash-based Low Voltage Complementary Metal Oxide
Semiconductor (LVCMOS) process with seven metal layers. Using standard Comple-
mentary Metal Oxide Semiconductor (CMOS) techniques, it features a combination
of fine granularity and flexible routing, allowing for high logic utilization without
compromising device routability and performance. The Flash programming element
the FPGA is based on uses only two transistors. Thanks to the lower area occupied,
it allows for a higher density compared to the traditional six transistors in SRAM
based cells. The Flash switches are distributed throughout the device, giving non
volatile configurable interconnection programming[20].

Another advantage to Flash compared to SRAM, is the immunity to hard errors,
due to radiation [21][22]. This is fundamental in space applications as it guarantees
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that the configuration memory of the FPGA won’t be affected, changing the logic
configuration of the circuit, and possibily disrupting the device mission. SRAM-
based FPGAs are vulnerable to radiation that may result in hard errors. If the
I/O in an SRAM-based FPGA suffers a firm error, its output could be turned on,
causing significant board damage, and its input could be turned off, resulting in
critical signal loss (Figure 6 and Figure 7). By eliminating this danger, using Flash
memory means that no other fault mitigation technique has to be implemented to
protect the configuration memory.

2.2 The ProASIC3/E Evaluation Board

Figure 2.2: The ProASIC3/E Proto Kit Evaluation Board

The ProASIC3 Evaluation Board (Figure 2.2) is a board mounting the ProASIC3
A3P250PQ208 chip. The ProASIC3 A3P250 is one of the smaller ProASIC3 FPGAs,
having less features compared to its bigger brothers. It contains 6144 VersaTiles,
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8 4608-bit RAM blocks, for a total of 36 Kbits of RAM, and 1 Kbit of Flash
ROM[23]. It is equipped with four I/O banks, for a total of 157 I/O available to the
user. The board allows to implement a large number of I/O standards, in a range
of different voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). In addition, the registers
available in the I/O tile can be used to support high-performance register inputs
and outputs. The registers can also be used to support the JESD-79C Double Data
Rate (DDR) standard within the I/O structure. The I/Os provide programmable
slew rates, drive strengths, weak pull-up and weak pull-down circuits, and many
devices are capable of hot insertion and multi-voltage input and output tolerance.
These features simplify communication with the FPGA device, and in the process,
reduce the number of system components, saves board space, and minimizes power
consumption. A 40 MHz oscillator for system clock and a manual clock option is
also provided. The board finally comes with a variety of Light Emitting Diodes
(LEDs), buttons, switches, and jumpers as it is expected in a prototyping board,
a large Liquid Crystal Display (LCD) alphanumeric display, two RJ45 CAT5E
connectors for Low-Voltage Differential Signaling (LVDS) communication and
10-pin programming connector for the FlashPro4 programmer[24].

2.3 Microsemi VHDL ProASIC3 design flow

The ProASIC3 Evaluation Board is meant to be used toghether with Libero System-
on-a-Chip (SoC) Design Suite, a software suite created to manage projects on the
Microsemi FPGA families. The suite offers a collection of programs to manage
HDL designs, simulate and analyze designs at every stage of the design flow (Figure
2.3). The project can include both traditional RTL designs and IP cores that are
generated by the program, based on libraries provided by Microsemi.

At each step of the design flow the program allows the user to:

• Perform a logical simulation of the design

• Define constraints, I/O and clock planning,

• Perform Design Rule Checks (DRCs)

• Modify implementation results
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Figure 2.3: VHDL-Based Libero SoC 11.9 Design Flow

The project can be managed directly using the Graphical User Interface (GUI)
in the Libero Integrated Design Environment (IDE), as well as by means of Tcl
scripts lauched from the Command Line Interface (CLI). Each approach has its own
advantages, with the GUI allowing to easily view the design through it evolution
during the design steps, and the CLI allowing to automate most of the design steps
for large batch processing. The Tcl script can be run either when launching Libero
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from the console, using the command libero SCRIPT:<path to the script> or
in the IDE. The Libero SoC Design Suite has support for:

• Tcl

• Synopsys Design Constraints (SDC)

• Verilog, VHDL, VHDL-2008, SystemVerilog

• SystemC, C, C++
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Part II

Development of the Rempro
system
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Chapter 3

Rempro, a new challenger

Despite the fact that designing a processor for space applications is a daunting
challenge, there is no shortage of competition in the field. The potential rewards
for those who succeed are undeniably enticing, offering the opportunity to be at
the forefront of an expanding industry, which is invaluable for both large and small
companies. One such company is IES S.r.l., an Italian company based in Anzio
(RM) that specializes in civil and military telecommunication systems.

Building upon one of their existing products, the HElabor, they are working
to adapt it to meet the rigorous requirements of the aerospace industry. The new
system, named Rempro, will be implemented in a RHBP FPGA and incorporate
TMR to ensure reliability for long-term space missions. In this chapter, a brief
description of the HElabor and the Rempro systems ISA and internal architecture
will be provided, along with an explanation of the design choices made to incorporate
fault mitigation techniques in the core. Additionally, implementation tests will be
presented to verify the functionality of certain aspects.

3.1 HElabor

HElabor is a homogeneous Symmetric MultiProcessor (SMP) with private and
shared memory in the same address space. It is designed for Uniform Memory
Access (UMA) for each processor, with each processor accessing shared memory
in the same way, and in parallel with each other. The memory access scheme is
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Concurrent Read Concurrent Write (CRCW), that is both writing and reading can
happen simultaneously.

The system is designed to be implemented on an FPGA and can be easily
scaled up or down according to the application requirements. The number of
cores, dimensions of memory blocks, addition of specific functions, the number
of I/O ports, and even data and address dimensions can be controlled prior to
implementation, allowing for a high degree of customization.

HElabor is made with parallel computation in mind. The interconnected system
structure is intrinsically parallel making it easier to develop parallel applications.
When implementing a system, the blocks composing the system can be each
implemented in a different processor, as load balancing is not required and it’s
possible to have processors that only execute a few instructions when activated while
others work constantly. Moreover, the shared memory and dedicated deterministic
channels between processor make extremely straightforward the definitions of
synchronization signals and checks.

The internal architecture of HElabor is unconventional, to say the least. It
deviates from current electronic design paradigms by employing a small pipeline
consisting only of fetch and execute cycles. The datapath is also simplified,
lacking a register file. Instead, memory locations are utilized in place of registers.
Each processor has its own directly accessible RAM block. Additionally, the
highest memory addresses are allocated for special locations that possess additional
properties. These properties include the ability to be incremented during another
instruction, function as an accumulator register, support indirect addressing, and
more.

HElabor consists in a variable number of 16 bit processors, with 16 bit addresses
for a maximum of 65.536 locations both for data and instructions. Each processor
has a two stages pipeline, meaning that all the instructions are fetched, decoded,
and executed in two clock cycles. There are no stalls and conditional branches are
executed in a single clock cycle, independently from the fact that the branch is
taken or not. This allows developers to know for certain how many clock cycles
each section of a program will take, helping considerably when synchronizing two
processors.

The first stage of the processor deals with fetching instructions and incrementing
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the Program Counter (PC) by one each clock cycle. In case of procedure calls, the
PC can be saved to the stack. A multiplexer select whether to access the program
memory using the PC, the value in the stack or a value received from the execution
stage in case of jumps. At each rising edge of the clock, the stage accesses memory
and saves the instruction in the Instruction Register (IR). The instruction has a
width of 39 bits, with a 7 bit opcode field and two 16 bit operator fields. The
operator bits can contain memory addresses, immediates, or jump addresses with
branch conditions.

The execution stage is tasked with decoding instructions, reading from memory,
performing arithmetic operations, evaluating branches, and writing black results.
While the memory is the only component where data can be stored, the processor
still has dedicated register to perform special operations. They are still placed
in memory but have their own dedicated output ports. Instructions have only
two operator fields, one for sources and one for destinations. that means that in
case of two operand instructions, if an immediate is used, the other operand will
be either the destination register, or the accumulator register A. If no immediate
is used the source register will be the first operand and A the second as only a
single location in memory can be read per instruction, beside A. There is only one
addressing mode, and can be performed only using the three INDEX registers to
store the effective memory address we need to access. INDEX0 in particular has
the ability to be increased by one after a memory access, allowing faster access to
data arrays. The Arithmetic Logic Unit (ALU) is capable of performing 16 bit
additions, subtractions and shifts; an 8 bit multiplier is also present to complete
the functionality.

3.2 From HElabor to Rempro

The HElabor multiprocessor is not ready for space applications yet. A proper
reliability evaluation needs to be conducted, and proper fault mitigation techniques
need to be implemented, before even starting to suggest to use it in a space mission.
The purpose of this thesis is to start these preliminary studies so that they can be
used as a basis for further investigations on its space capabilities.

Since the HElabor is a multiprocessor, it seems reasonable to use a single
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processor as a building block to realize a hardened architecture. The main idea
is to implement TMR, with cold standby sparing. In this way if any of the three
processors manifests a permanent fault, it can be switched with a spare one. The
program in the meantime would be paused, the new processor would recover the
program state copying the memory from one of the working processors, and then
the program would continue. Using a number of different boards, each with an
FPGA containing multiple copies of the processors, would greatly increase the
lifespan of the device, along with its reliability. Each of the boards would have its
clock signal synchronized with the others, using Phase-Locked Loops (PLLs).

This new architecture, called Rempro, has still to face some challenges before
it is ready. How to detect a fault? How would this recovery process be executed?
How to transfer memory? How to guarantee synchronization between processors?
Two main strategies emerged in the study: one that uses a watchdog, and one
without.

3.2.1 Active monitoring with a watchdog

The first solution proposed to use a monitoring system to detect anomalies such as
frequency degradation, data and memory addresses out of the expected ranges, or
timeout expiration. Each watchdog would act as a Master for the processor RAM,
and would be able to access it together with the program counter value. While the
voters would mask temporary faults, the watchdog would be detecting permanent
ones, allowing the system to be available in both cases.

When the watchdog detects a fault in its processor, it should turn it off and
turn on a replacement. It would also send messages to the watchdogs in the other
processors to start the memory transfer for the new processor. The RAM content,
the Stack and the program counter would need to be transferred from a working
processor, and the new processor would need to be connected to the voter. Each
watchdog would supervise the system synchronization and would be able to tell if a
recovery process is being executed. When the recovery is completed, the watchdog
for the new processor would send a synchronization signal in order to continue the
execution of the program.

While this idea is appealing, as it allows to concentrate, fault detection, recovery
and synchronization in a single device, the supervisor itself is susceptible to faults.
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That means that any fault happening inside it needs to be detected and handled
by the supervisor, starting the recovery process. Another issue to take into account
is the fact that since the supervisor is able to access the RAM, the stack and
the PC, connecting the supervisor to the processor would need a great number
of signals, increasing the possible failure points. Moreover, the supervisors need
to communicate with a bus, meaning that a communication protocol has to be
defined, taking into consideration the possibility that a supervisor could fail.

The added complexity needed to solve this issues is incompatible with the
project objective of simplicity, low power consumption and low area use so a
simpler solution is needed.

3.2.2 Resistive voter

In order to forego the use of a watchdog, a possible solution would involve using
only voters and make them take part in the sostitution and recovery process. One
of the architectures considered places a single processor in each FPGA, with its
data and program memory, and more FPGAs placed in the same board. Two
voters would be necessary: one to compare the processors output lines for a total
of 96 connections in input to the voter (since each processor has a total of 2×16 bit
outputs), the other to compare the data read line between processor and memory,
requiring 48 connections. To simplify the voter logic, an analog voter based on
resistive voltage dividers could be used. As an added benefit it would be impervious
to faults due to radiation. The voter, acting as a voltage divider, outputs a voltage
that is lower than half that of the voltage supply in case at least two of the processor
outputs have a low value, or a voltage higher than half the voltage supply in case
at least two of the outputs have a high value. The inactive processors would still
be connected to the voter but their outputs need to be in high impedance to avoid
affecting the result. The output of the voter would then need to be converted
back to a digital value using a comparator such as the ones available as the FPGA
inputs.

The voter output is compared inside each FPGA to the output of each processor
using a series of XOR gates and feeding the result of the comparison to a series of
ORs. This signal is shared with the other processors, both active and inactive, and
saved in RAM as an N bit signal called FAIL, where N is the number of processor.
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Each processor is represented with a bit and each processor can only set its own
bit. A second register, called PROACT, is used to control the replacement of faulty
processors. The PROACT register contains a N bit signal similar to that of FAIL,
where each bit represents a processor and setting it will turn on the corresponding
processor. The output of PROACT does not turn on the board directly however. The
value coming from the three different processors is fed to a voter in order to mask
discrepancies due to faults.

During the recovery process, the RAM, the stack, and the PC need to be
tranferred from a working processor. to simplify the procedure, the PC and the
stack are moved to special locations in RAM so that a complete transfer of memory
would include this data as well. The preliminary idea is to implement in software a
periodic check to see whether the FAIL register has registered a failure. If this is the
case, the bit corresponding to a new processor in the PROACT register is set and the
one corresponding to the failing processor is cleared to turn it off. When the new
processor is active, the memory transfer routine is started and a working processor
transfer its memory content to the new one, along with PC and stack. The FAIL
bit is then cleared and the program is resumed. The power controls for the boards
are daisy-chained together so each board can turn on the following board and turn
off the previous one. This scheme simplifies the power connections but forces each
board to be controlled by the previous one. If after a full round where each board
failed and was replaced once, the first board to fail did not recover from the fault
yet, the whole system is not able to carry on and it is unable to start the following
processor.

3.2.3 Internal voter

In order to simplify even more the realization a possibility would be to use internal
logic to compare signals from different processors and to turn on and off boards.
Different solutions are proposed, differing on the number of processors in each
FPGA and the control logic used to check the outputs and perform fault recovery.
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Three processors in a FPGA

Each FPGA would feature three processors, with a voter before their output and
one between memory and processor, on the read line. A single FPGA is placed in a
board, and the boards are stacked on top of each other, economizing on space. Only
one is active at any time, so in case a fault causes a failure inside the FPGA, one
of the voters will signal the problem, and the two working processors will turn on
the new board and start a memory transfer. Once that is completed, the defective
board is turned off and the program resumes. To perform the memory transfer the
three memory outputs are passed to the new processor passing through a voter to
ensure the data coming from the defective board is not corrupted. Since a single
board is active most of the time, the others do not draw power making this design
extremely power efficient.

Two processors in a FPGA

In each FPGA two processors are implemented. The second one is used to compare
the outputs and with a series of XORs and ORs, a mismatch can be detected either
in the RAM read line to the processor or in the output. The signals. coming from
each processor couple, are grouped together and fed back to each FPGA, so that
every processor is aware that a board is having issues and can take measures to
replace it. THe voter for the outputs and the RAM are again the analog resistive
voltage dividers, but the RAM voter is only used during the memory transfer routine
to ensure data integrity. This architecture has a problem: since the comparison
results are fed back to each FPGA if the output or the input pins of the FPGA are
faulty, it might be difficult to notice and would create issues in the replacement
procedure.

One processor in a FPGA

The last solution was using a single processor in each FPGA. In order to check for
malfunctions, a check-word is computed to represent the system state. Sending this
check word to the other FPGAs the processors can check whether each processor is
in the same program state and start a substitution routine in case of a mismatch.
The check word can be computed XORing together either the RAM or the ALU
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output. While its possible that the same words could code for different states,
the following clock cycles would most certainly result in different check words, so
ambiguity has a very low probability of masking problems.

3.3 Final modifications to the architecture

While each solutions has its pros and cons, the one with the most promise is the
first one, using three processors in a single FPGA. The Rempro system will then be
composed of multiple HEprot processors, that is TMR versions of the HEpro single
processor. Having a lower power consumption and having to take into account a
single board at a time make it an ideal candidate for further development. The
possibility to include an entire TMR system would also help with development,
since the entire system can be tested without the need to monitor multiple boards.
It is also worth noting that a future evolution of this architecture could involve the
realization of ASICs containing the system, allowing the composition of multiple
TMR systems connecting toghether the IC,

Another issue to take into account is the hardening of the power control circuit
for each board. If the circuit fails, the board cannot activate and the system is not
able to replace it with the next board, meaning that the entire system comes to
a halt. To protect it from faults, electromechanic devices such as relays can be
used to connect the board to the power supply. The circuit needs to be turned on
by the previous board in the daisy-chain and turned off by the following one. For
this either a normal relay or a bistable relay. Using 2 PNPs and a normal relay, a
circuit presenting a bistable behaviour can be realized. A low pulse on the SET
signal would activate the relay, which would then stay on. A second negative pulse
on RESET would deactivate the relay. A different circuit could be realized using
instead 2 NPNs and a relay. The relay, however, when activated in both examples
would consume power. This does not happen using a bistable relay. Using two
PNPs and two NPNs, it is possible to invert the verse of the current in the spool.
Another possibility is using a dual coil relay, in a circuit that would only need two
transistors. It is important to further make sure that the transistors employed are
big enough to be insensitive to radiation.

In order for the recovery process to work, signals coming from all three memory
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modules in a processor, need to exit from each FPGA and connect to every other
one. Each single FPGA would need 48 inputs and 48 outputs to connect to it, one
or two 16 bit output ports and one or two 16 bit input ports for a total of 192 pins
necessary. While the maximum number of pins in FPGAs such as the ProASIC3
A3P1000 by Microchip, allows for up to 300 I/O user pins, the number is certainly
high. In order to reduce the number of lines a 48 bit bus could be used to connect
each FPGA. In each RAM module, a special location is added to receive and send
data on this bus. One processor will write on the location sending the data on
the bus, while all the others keep the line in high impedance to avoid conflicts.
Attention must be paid while writing because no arbitration is present in the bus,
so two processors writing at the same time will result in data being corrupted.

The final architecture used for the implementation tests includes:

• The 48 bit bus, divided in 3 16 bit sections, each connected to a different
processor by means of a special RAM location, BUSC. When a triplet of
processors writes to BUSC the content of the location is immediatly transfered
to the bus and, on the following rising edge of the clock, all the BUSC locations
in the other triplets assume the value written by the first processor. Every
processor can then read that location as another register. The line is not
arbitrated so to avoid conflicts only one triplet can write on the bus at all
times, the other triplets must keep the value in the register to high impedence
(Z). One clock cycle after the triplet has written to the location, if there are
no other write commands, the line is brought back to high impedance so that
other triplets can use the bus.

• Five voters are present in each FPGA, 3 for RAM locations and one for each
of the two outputs. A location warning is placed in each processor’s RAM
and each voter controls 3 bits in it, for every processor. Each voter has three
inputs and one output. When it detects a mismatch between one of its inputs
and its output, it set the corresponding bit in every warning location, signaling
that the processor connected to that input is misbehaving.

• Two signals, PWCON and PWCOFF to turn on the following board and turn off
the previous one. These are connected to each processor through the location
PWC and through voters, connected to the two output signals. The bit 0 of the
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location PWC is connected to the signal PWCOFF, while bit 1 is connected to the
signal PWCON

• the Stack has been moved to the RAM, it is made of a STACKPOINTER location
followed by 8 locations for storing return addresses of procedure calls.

• A location CKCYCLE is added to the RAM in place of the location LAST, allowing
to use it for comparisons and speeding up the execution of loops. The location
is a 16 bit counter with a starts counting up from the moment the processor
is reset, incrementing once for every clock rising edge, and allowing to count
the number of clock cycles passed from the last reset.

PWCON and PWCOFF act on the power supply of each board by means of a relay.
In order to simulate successfully this behavior in the development board, the two
signals control a SR latch that acts on the reset signal of the entire board, stopping
the execution when the PWCOFF signal is sent by activating the system RESET signal
and restarting the board when the PWCON signal is sent, deactivating the RESET
signal.

The substitution and recovery process is described as follows:

• One of the voters of the triplet of processors detects a mismatch between its
inputs and therefore sets the corresponding bit in the location WARNING inside
the RAM of each processor.

• When the program in each processor hits a checkpoint determined by the
program, it checks whether there is any failure bit set in the location WARNING.

• If a failure has been detected, the program calls the subroutine that substitutes
the FPGA and transfers the memory content to the new one.

• The subroutine sets the bit one of the location PWC to 1 for one clock cycle to
turn on the next board.

• The triplet then tries to gain control of the bus writing a code to it for a
specific number of clock cycles to wait for the second FPGA to start.

• As soon as the second triplet awakes, it reads the bus and, since data is present,
it calls the memory transfer procedure. It then waits for the first triplet to
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finish transmitting, afterwards, it sends an acknowledgment code in the bus
for the first triplet to receive.

• The old triplet starts then transmitting the entire memory content to the new
one, copying each location in series to the register BUSC.

• When the transfer is complete the triplet waits to be turned off by the new
one.

• The second triplet sets the first bit of PWC to 1 to turn off the old board.

The recovery process relies heavily on the fact that both the processors have
the same clock so it is of the utmost importance that measures are taken to make
sure the clock generator is able to send the same clock, with the same phase, duty
cycle, and frequency, to both FPGAs.
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Chapter 4

Implementation tests for the
Rempro system

In order to realize the multiprocessor system, a few preliminary investigations on
the capabilities of the ProASIC3 FPGA and the Rempro need to be conducted.
The ability of two processors to communicate through a bus needs to be explored
further and the delay introduced by the wires used to realize the bus needs to
be measured and taken into account. Moreover, the processor lacks the features
needed to communicate serially with a PC which is a fundamental function in
order to conduct any kind of test. In this chapter a Universal Asynchronous
Receiver-Transmitter (UART) is introduced to the system and tested. This module
is then used to communicate with an host PC while measuring the wire delay and
verifying the processor ability to communicate with another instance of itself using
an external bus.

4.1 The UART module for the Rempro system

One of the fundamental parts of running a test, is being able to communicate with
the Device Under Test (DUT). To allow the Rempro system to send data to a
host PC a UART interface has been designed, starting from an open-source RTL
module.

UART is a widely used serial communication protocol. It allows two electronic
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devices to communicate bidirectionally in an easy way, as its implementation is
cheap, and simple. Its main characteristics are:

• Serial: the UART protocol uses a single signal to transmit all the bits
composing some piece of data, one after the other.

• Asynchronous: UART is an asynchronous protocol, which means it does
not rely on a clock signal to synchronize the data transmission. Instead, it
uses start and stop bits to frame each data byte.

• Data Format: UART transmits data in the form of individual bytes (usually
8 bits) along with optional parity and stop bits. The start bit is a low value
that lasts a clock cycle indicates the beginning of a data byte, followed by the
data bits, optional parity bit (for error checking), and stop bit(s) that are one
or two high values in the line to mark the end of the byte.

The UART module is a Finite State Machine (FSM), activated by a start bit. After
receiving the signal the module reads the byte that is to be transmitted and then
sets the signals necessary to implement the protocol. The baud rate, that is the
number of symbols transmitted per second, is a user constraint, set up by changing
a GENERIC value in the instancing of the unit. This value is equal to the number
of clock cycles the FSM needs to count before transmitting another symbol.

While the module allows both for transmission and reception of data, only the
transmission function was implemented for the purpose of the tests. The UART is
capable of transmitting up to 9 bits of data per single transmission. Since memory
locations in Rempro contain 16 bits each, it is not possible to transmit them all at
once. The solution is to send the data contained in the registers in two bouts of 8
bits each. A Multiplexer (MUX) with two 8 bit inputs is then used to split each
value into two byte sized blocks.

The UART is controlled by a few different signals that need to be set in order to
work properly. In particular, the signal TX_DV is used to start the UART, TX_BYTE
is an 8 bit signal used to present to the module the data that is to be sent. There are
three output signals, TX_DONE is used to signal to the processor, or any controller
module, that data has been sent, TX_SERIAL is used to actually transmit the data
using the UART protocol, and TX_ACTIVE is used to signal the controller that the
UART module has been activated.
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Figure 4.1: The Silicon Labs CP210x USB to UART Bridge used to connect the
output pins of the UART transmitter to the host PC.

A Universal Serial Bus (USB) to UART bridge (Silicon Labs CP210x USB to
UART Bridge, in figure 4.1) is used to connect to the host PC. Three wires are used
to connect the bridge to the board, two for the connection to 3.3 V and Ground
(GND), and one to connect the transmission output of the UART to the receiver
input of the bridge. A General Purpose Input/Output (GPIO) is used to present
the output of the module to one of the FPGA external pins.

4.2 Measurement of the latency of a wire used to
connect two GPIO pins of the A3P250 FPGA

The Rempro system requires that multiple boards, mounting ProASIC3 A3P1000
FPGAs are connected toghether. Each FPGA will implement a TMR triplet of
processors. Only one triplet will be active at all time, and when it detects a failure
on one of its processors, it will substitute the FPGA with a new one and turn
itself off. The substitution process requires the entire program state, including, PC,
Stack and RAM content. This means that a considerable amount of data needs to
be transferred from one board to another, and that the reading and writing times
for the GPIO pins need to be respected. A preliminary test is therefore required in
order to measure the latency of GPIO connections.

To test the latency, we realized a setup on a single board that uses two GPIO pins
to transmit and receive a single bit. A FSM, implemented in hardware, manages
the transmission and reception of the signal, and the latency is measured by a 16
bit counter implemented in hardware as well. The start and stop signals of the

32



Implementation tests for the Rempro system

counter are managed by the FSM.
Multiple measures were taken with different lengths of wire connecting the two

pins. The reception of the pulse from one GPIO to the other was monitored both
by the serial transmission of the counter value after it was stopped and using a
digital oscilloscope.

Figure 4.2: Block diagram showing the signals and ports involved in FSM
communication with the UART interface.

4.2.1 The FSM

An hardware-implemented FSM was used to control the generation of the pulse
and to check the actual reception of the signal. The FSM is composed of 7 states.
The first one is the reset, where the system waits for the start signal to be input
by the user. The signal called go is controlled by the user and assigned to a button
on the board in the implementation phase. When the user pushes the button, the
signal go is set to one, and it triggers the transition to the next state hold.

In hold the output signal is set to 1 and the counter is enabled to start the
count. The system maintains this state until the signal emitted is received at the
input port.

When the value at the input port is high, the system transitions to the state
send_one, where the counter is stopped and the UART module is enabled. At
the same time the first byte of the counter value is transmitted to the host PC.

The system transitions to the next state only when it receives an end transmission
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signal from the UART. When this happens, it transitions to the state send_two
and the final byte of the counter value is transmitted to the host PC. When that is
completed the system goes to the stop state, where it waits for the reset signal to
start again.

The value measured by the counter represents the latency of the transmission
between two GPIOs as it registers the cycles that pass between the sending of a
signal on one GPIO and its reception on another connected with an external wire.

Figure 4.3: State diagram of the FSM

4.2.2 Simulation

In order to highlight the transmission process in simulation, the amount of clock
cycles waited by the UART to transmit each symbol was changed from 4167,
representing a Baud rate of 9600, to 1, so that the UART signal transitions every
clock cycle. In figure 4.4 the simulated waveforms of different signals can be seen.
The data transmission is shown in blue, the enable signal for the state machine is
in yellow. The output pulse coming from the measurement system is in orange,
while the return signal is shown in pink.

4.2.3 Implementation

After verifying that the system worked properly in simulation, the whole setup
was implemented through the Microsemi design flow. The target device is the
ProASIC3 A3P250.

Using the Libero SoC 11.9 software suite, the input and output ports were
assigned to the GPIO pins of the board as shown in figure 4.5. The 40 MHz
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Figure 4.4: RTL simulation of the measure setup functionality, including the
FSM and UART module

oscillator on the board was used to generate the clock signal, connected to pin 26
(in red). One of the buttons on the board was assigned to the reset signal, while
the next one was assigned to the FSM go signal, shown in green in the image.

The output of the UART was connected to a GPIO (in yellow), configured in
pull-up and connected with a jumper to the input of the USB to UART bridge as
in figure 4.6. The input and output ports for the measuring pulse were assigned to
pins 134 and 45, so that the signal comes out and is received by two different I/O
banks. The pins were configured in pull down and shown in blue in the diagram.
Moreover, to visually confirm the successful transmission, the counter value was
split in two equal parts, given in input to a MUX, and its output was connected to
the eight LEDs in the board. To show the two different halves, one of the buttons
of the board was connected to the selection signal of the MUX.

A python script, was used to read inputs coming in from the COM port associated
to the UART bridge, waiting to receive data from the system. When data is received,
the script prints the value to the terminal (figure 4.7).

The received value means that between the emission and reception of the signal,
less than a clock cycle passes. This is strongly dependent on the frequency of the
logic circuit, that can only be set at 40 MHz and doesn’t allow to measure the time
interval with better precision.

4.2.4 Oscilloscope measurements

Another measurement was conducted using a digital oscilloscope that allows a
higher resolution compared to the counter based measure. Since the FSM holds to
1 the output signal for a single clock cycle, the time required to reach the input pin
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Figure 4.5: Map of the GPIO pin assignments of the design

is clearly lower than that. Using the oscilloscope to observe the shape of the signal
on the monitor (figure 4.8), it’s possible to estimate the interval length that passes
between the rising and falling edges of the pulse, using the cursors to measure it.
Subtracting from it the clock period of 25 ns, latency can be obtained. Placing the
cursors at 50% of the rising and falling edge of the pulse, it is possible to measure a
width of 31.15 ns. Subtracting from this value, the clock period, we obtain 6.15 ns.
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Figure 4.6: Photo of the testing setup showing the external connections to the
board

Figure 4.7: Correct execution of the measure procedure received from the host
PC through the serial interface

4.2.5 Conclusions

The wire latency was measured to be 6.15 ns, considering a working frequency of
15 MHz it is sufficiently small not to cause synchronization problems between two
processors in different boards and can therefore be neglected.

4.3 Test on the UART communication capabili-
ties of the single Hepro processor

The next thing to be verified was that the correct working of a single processor
and its ability to communicate effectively with a host PC using the UART module.
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Figure 4.8: Measure of the width of the pulse emitted by the system by means of
an oscilloscope

The UART interface is implemented in programmable logic and allows serial
transmission of data towards the host PC.

In the host PC a serial interface, developed in python, waits to receive data. As
a benchmark, a simple program was used to print as output of the processor the
character codes for "Hello World".

The processor connects to the UART module using the output ports OUTPUTA,
OUTPUTB, and INPUTB. The memory saves values on 16 bits while the UART
protocols allows to trasmit only up to 9 bits at a time. To get around this
limitation, a MUX, controlled by the processor, is used to split data into two
halves of 1 byte each. Particularly, OUTPUTA transmits the 16 bit value, OUTPUTB
is used to send the UART activation signal and to control the MUX that selects
which half of the data to send, and INPUTB receives from the UART the signal for
the transmission end. All the signals are controlled by the processor by means of
writing and reading memory locations.

4.3.1 Firmware

The firmware was written using the specific assembly language for the Hepro
processor. There are no high level functions so to create a program capable of
sending to the host PC the American Standard Code for Information Interchange
(ASCII) characters for "HELLO WORLD", the resources and ISA available needs
to be used. The processor has two global input and output ports, INPUTA, INPUTB,
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Figure 4.9: Block diagram showing the signals and ports involved in the commu-
nication between the processor and the UART interface.

OUTPUTA, OUTPUTB, associated to special memory addresses. These are the only
communication ports we have access to exchange information with the processor.
In this example bit 0 of INPUTA is connected to an input of the test setup that will
be assigned in the implementation phase to a pin connected to a button in the
board. This allows the user to start the program when the button is pressed. The
first bit of the second port, INPUTB, receives the end transmission signal from the
UART module. The port OUTPUTA passes the value to be transmitter to the MUX
selecting which half is to be sent to the UART module. Bit 0 of OUTPUTB is used to
control TX_DV and start the UART module, while bit 1 is connected to the MUX
selection port.

The first block of instructions loads in consecutive memory locations the hex-
adecimal values of the character codes for the sting "HELLO WORLD " (with a
whitespace at the end: since the program is set up to perform two 8 bit transmis-
sions at a time, the number of characters will be always even). The processor then
reads a location at a time writing the value to the special location corresponding
to port OUTPUTA. It then writes to the location corresponding to OUTPUTB to select
the byte to transmit and start the UART module. The only used bits are the two
least significant ones: bit 0 start the transmission when its value is 1, and bit 1
selects which of the bytes is transmitted. To avoid conflicts in transmission, the
TX_DV signal must be mantained high only for a clock cycle. The program therefore
writes values 1 and 3 to OUTPUTB to start transmission for the first and second byte
respectively and 0 and 2 after a clock cycle to disable TX_DV without changing the
MUX selection. The processor then waits for the TX_DONE signal before sending
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the next byte.✞ ☎
#DEF STOR 100 ; posizione in memoria

; dei valori salvati

; ---------------------- CARICAMENTO IN MEMORIA ----------------

MVR STOR INDEX0
MVR 4845H INDIR0I
MVR 4C4CH INDIR0I
MVR 4F20H INDIR0I
MVR 574 FH INDIR0I
MVR 524 CH INDIR0I
MVR 4420H INDIR0

; ---------------------- TRASMISSIONE --------------------------

CLR COMP
START JMP START INPUTA EQU 1 ; il programma attende

; la pressione di un
; pulsante sulla board ,
; collegato all
; INPUTA del processore

CLR A
CLR OUTPUTB
MVR STOR INDEX0

LOOP CLR COMP
MRR INDIR0I OUTPUTA
MVR 1 OUTPUTB ; invio del primo byte

; del dato impostando
; a 1 il primo bit di
; OUTPUTB

CLR OUTPUTB ; il primo bit di
; OUTPUTB viene
; riportato a 0

WAIT1 JMP WAIT1 INPUTB EQU 1 ; viene attesa la fine
; della trasmissione

MVR 3 OUTPUTB ; viene inviato il
; secondo byte del
; dato impostando
; a 1 il primo e
; il secondo bit di
; OUTPUTB

MVR 2 OUTPUTB ; il primo bit di
; OUTPUTB viene
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; riportato a 0

WAIT2 JMP WAIT2 INPUTB EQU 1 ; viene attesa la fine
; della trasmissione

CLR OUTPUTB
MVR 5 COMP ; si inserisce in comp

; il numero di dati N-1

JINC LOOP A INF 1 ; l operazione viene
; ripetuta per il
; numero di dati
; da trasmettere

STOP JMP STOP✝ ✆
4.3.2 Simulation

To highlight data transmission during simulation, the number of clock cycles that
the UART module counts to respect the Baud rate was changed from 4167 to 1. In
this way a transition every clock cycle can be observed. In figure 4.10 the waveform
window of the simulation can be seen. In it the data transmission is shown in blue,
the TX_ACTIVE signal is shown in yellow, in orange the activation signal TX_DV and
in pink the end transmission signal TX_DONE.

Figure 4.10: RTL simulation of the hardware setup functionality, including the
processor and UART module

4.3.3 Implementation

After verifying that the system worked properly in simulation, the whole setup
was implemented through the Microsemi design flow. The target device is the
ProASIC3 A3P250.
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Using the Libero SoC 11.9 software suite, the input and output ports were
assigned to the GPIO pins of the board. The 40 MHz oscillator on the board
was used to generate the clock signal, connected to pin 26 (in red). One of the
buttons on the board corresponding to pin 67 was assigned to the start signal for
the program. The reset signal was assigned to pin 129 and connected to a jumper.
To perform a system reset, the other connector of the jumper was plugged to a
3.3 V supply pin on the board.

The signal at the output of the UART module was assigned to pin 133 and
connected to the RX input of the USB to UART bridge with a wire. The UART
activity signal was assigned to pin 132 but left unconnected as it was not necessary
for our purposes. Moreover, to visually confirm the successful transmission, the
byte sent to the UART module was sent as output of the FPGA and connected to
the eight LEDs in the board.

In table 4.1, the resources used by the processor alone and by the entire system
are shown. It can be seen that the overhead introduced by the UART module is
negligible at the area level and does not contribute to performance degradation.

Cores Cores RAM Frequency
(Combinational) (Sequential) Blocks

Processor 1264 373 2 16.035 MHz
Processor and UART 1295 406 2 16.865 MHz

Table 4.1: Resource usage and implementation frequency comparison between
processor only implementation and processor and UART implementation.

A python script, was used to read inputs coming in from the COM port associated
to the UART bridge, waiting to receive data from the system. When data is received,
the script prints the characters to the terminal using ASCII encoding (figure 4.11).

4.3.4 Conclusions

The correct behaviour of the processor was validated in an hardware implementation.
The results align with the HDL simulation executed until now. The processor
executes reading and writing instuction to and from memory, and it is capable
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Figure 4.11: Correct execution of the benchmark program received by the host
PC through the serial interface

of external transmission of data, allowing its implementation in more complex
systems.

4.4 Tests on the implementation of a bidirec-
tional bus for memory transfer

After tests have verified the correct behavior of the system when communicating
with an host PC and after measuring the latency due to the connection between
two pins in the board, it is now necessary to test the ability of two processors to
communicate with each other.

The requirements of the Rempro system include a routine to substitute a board
in case a failure is detected. This substitution routine has to allow the system
to resume execution where the old triplet was interrupted. To achieve this, the
routine has to transfer the processor state, including the memory locations, the
Program Counter, and the stack, from the defective triplet to the new one. This
data is relayed through a bidirectional parallel bus.

To verify this behavior, a test system was realized, including two Hepro processors
connected externally through GPIO pins connected by 16 jumpers, an UART
interface implemented in the same FPGA, and an host PC. The two processors
execute the same firmware, which includes a test program, that uses the UART to
send to the host PC the character codes for the string "HELLO WORLD". In the
host PC a serial interface developed in python waits to receive data.
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Figure 4.12: Diagram showing the internal and external connections of the test
system.

4.4.1 The test setup

While the final version of the Rempro system is composed by multiple triplets
in TMR configuration, to test bus communication and the recovery routine, a
simpler architecture was adopted, with two Hepro processors in a single FPGA,
comunicating via an external bus. With this solution, implementation is simplified
preserving however the conditions to observe. Specifically, in Rempro, every
processor in a triplet, communicates only with a single processor of the other
triplets. In order to reproduce as closely as possible the real conditions in our
test, two independent I/O banks were used to connect the two processors with
the external bus. In this way the objects of the study, such as the communication
between two processors and the recovery routine are isolated from the external
conditions, removing complexity from the test structure.

Both processors should have the ability to turn off and on the other. For this
reason, the PWC memory location in each processor, is used to control the reset
signal of the next processor, simulating an inactive condition. Moreover the system
can also be reset by pressing a button on the board, while a second button allows
to start the execution of the program.
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To enable communication with the host PC, a UART module was implemented
alongside the processors couple and connected to them through the ports OUTPUTA,
OUTPUTB, and INPUTA as shown in figure 4.12. Due to the fact that during trans-
mission, only one processor is active at all times, excluding during substitution, no
conflicts are expected to occur in the control of the UART interface, so the outputs
are connected together to the UART inputs using an OR gate. Data locations are
16 bits in length each while the protocol allows to transmit 9 bits at a time at most.
To overcome such a limitation, a MUX controlled by the processors, is used to split
the 16 bit words into two 8 bit halves. Specifically, OUTPUTA transmits the 16 bit
word to be sent, OUTPUTB is used to drive the UART activation signal and to select
which of the two byte to send., while INPUTB is used to receive the end trasmission
signal from the UART. Each of the signals is controlled by the firmware by means
of memory reads and writes.

To connect to the host pc a USB to UART bridge (Silicon Labs CP210x USB
to UART Bridge shown in figure 4.1) was used. The board was connected to the
bridge using three jumpers: two connecting the GND and 3.3 V and one to connect
the RX pin of the bridge to the output of the UART module. To implement this
output, a GPIO pin on the board is assigned during the implementation design
flow.

4.4.2 The substitution routine

The firmware was written in the assembly language specific for the processor. There
are no available high level functions so the resources and the ISA must be used to
their full extent to write a program according to the requirements. The firmware
must pause execution to substitute the active processor, then resume and trasmit to
the host PC the ASCII character for the string "HELLO WORLD". The processors
have two global input ports and two global output ports,INPUTA, INPUTB, OUTPUTA,
and OUTPUTB, associated to special memory addresses. The same input ports in
both processors receive the same signals while the same output ports are connected
toghether to the same inputs using OR gates. In addition to this, the special
locations BUSC and PWC are used respectively to exchange data and to turn on and
off the processors. These are the only communication ports accessible to pass data
to and from the processors.
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In this setup, bit 0 of INPUTA is connected to one input of the test system,
connected to the implementation phase to the GPIO pin associated to a button on
the board. This will let the user start the program when the button is pushed. The
first bit of INPUTB receives the end transmission signal from the UART module.
Port OUTPUTA is connected to the MUX tasked with selecting which of the two
bytes, composing each word in memory, is sent to the UART. Bit 0 of the OUTPUTB
is connected to UART port TX_DV to control the start of the transmission, while
bit 2 is connected to the selection port of the MUX.

The firmware for both processors is the same. When the program starts the
processor reads the memory location associated with the bus, BUSC, and if it doesn’t
detect data on the bus, it starts the normal execution of the program. If data on
the bus is detected, it calls the procedure to receive the memory state from the
other processor.

During execution the program reaches a checkpoint and calls the procedure
to substitute the processor, writes to the memory location PWC to activate the
second processor, then it writes some data to the bus to keep control over it. The
second processor, detects that the bus is busy and calls the procedure to recover
the memory state. It then waits for the first to stop writing on the bus and sends
a signal to confirm synchronization. From that moment, the first sends down the
bus the data contained in every memory location while the second reads the bus
and saves the data in the corresponding location. After the transfer is over, the
first processor waits to be turned off and the second writes on PWC to turn off the
first. Since calling a procedure results in the PC being saved to the stack, and the
stack is transferred alongside the rest of the memory during the process, returning
from the procedure will result in the second processor resuming the execution of
the program where the first was interrupted.

The program executed before and after the substitution routine loads in con-
secutive memory locations the hexadecimal values of the character codes for the
string "HELLO WORLD " (the blankspace is used to transmit an even number of
characters). Once the writing procedure is completed, the substitution routine is
called. When the new processor resumes execution, it reads one location at a time
writing its value to the special memory address associated to the global output
port OUTPUTA. Writing in the memory location connected to port OUTPUTB, the
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processor selects which byte is sent and starts transmission. The only two used
bits are the two least significant ones, with bit 0 starting the transmission when its
value is 1, and bit 1 selecting which byte is transmitted. To avoid misbehaviour
during transmission the start signal must be kept high only for a single clock cycle.
In OUTPUTB the values 1 and 3 are written to start the transmission of the first and
second byte, respectively, and values 0 and 2 after a single clock cycle to disable
the start signal without changing the selected byte. The processor then waits for
the TX_End signal from the UART to arrive at INPUTB to signal the end of the
transmission before sending the next byte.

4.4.3 Simulation

An RTL simulation of the design was performed to verify the behaviour of the
system. In figure 4.13, the waveform window of the simulation can be seen. In it
the two ends of the bus can be seen, transmitting the memory content, from the
first to the second.

Figure 4.13: RTL simulation of the memory transfer functionality, including the
two processors and the bus.

4.4.4 Implementation

After the simulations showed positive results, the entire hardware setup comprising
the two processors and UART module was implemented through the Microsemi
Design Flow. The target device is the ProASIC3 A3P250. During the design flow
the inputs and outputs of the design were assigned to the GPIO pins of the board.
An external signal generator was used to obtain a clock signal with a frequency of
10 MHz. The clock signal was assigned to pin 26. One of the buttons in the board,
corresponding to pin 6, was assigned to the program start signal. The reset signal
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was assigned to another one of the buttons, to pin 64. The signal at the output of
the UART module, was connected to pin 135 and connected to the RX input of the
UART to USB bridge by means of a wire. The activity signal for the UART was
assigned to pin 133 but in was left disconnected, as not used in our system. To
realize the bus, 16 jumpers were used to connect together 16 pin from the East
I/O bank to the West I/O bank (Figure 4.14).

(a) Top view (b) Side view

Figure 4.14: Photo of the test setup showing the external board connections and
the physical bus implementation

A python script, connected to the COM port associated to the USB to UART
bridge, read continuously from the port, waiting to receive data from the processor.
When data is received, it is printed to the terminal using ASCII encoding (Figure
4.15.

Figure 4.15: Correct execution of the benchmark program received from the host
PC through the serial interface.
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4.4.5 Conclusions

The results of this test allowed to validate two important components of the Rempro
system. Both the bus transmission and the recovery procedure behaved as expected.
The processors couple was able to pause execution, substitute the active processor
and transfer the program state to the new processor while deactivating the first one.
The second processor then reprised the execution where the first one had stopped,
and completed the task correctly. The processors remained synchronized and no
data was lost. This demonstrates the validity of the initial idea and encourages
further development of the system.
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Fault tolerance evaluation
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Chapter 5

The RISC-V processor
NEORV32

Designing the electronic system of a spacecraft is an exercise in balancing the
different constraints of size, weight, power and cost that are imposed on each
module while still hitting the performance target required to carry out the mission
adequately. Spacecraft designers traditionally rely on legacy processors such
as the RAD750 or the GR712RC. While these are well established and mature
architectures, innovation has stagnated for them as the industry move towards the
new trend of open source IP cores such as the RISC-V ISA. Cores implementing
this architecture offer greater performance and a wide range of hardware supported
instructions enabling more efficient software. Due to the open-source nature of the
RISC-V project, cores and development tools are widely and cheaply available for
any kind of endeavor [25].

5.1 The RISC-V ISA

Development on the RISC-V ISA started in May 2010 [26], with the aim of realizing
an open source computer system that would be of aid to both academic and
industrial users. While it is not the first open source ISA to ever be published (the
DLX, for example, was introduced in the 1990s), it is certainly the more popular
at the present time [27].
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The term Reduced Instruction Set Computer (RISC) refers to a classification
of ISAs into RISCs and Complex Instruction Set Computers (CISCs). The CISC
approach to design proposed extensively large ISAs, providing instructions for any
possible use case of the machine, RISC ISAs were very limited, containing only a
limited set of instructions, requiring therefore more instructions to perform the
same tasks [28].

The RISC-V design team set to create a RISC ISA that would be able to support
the widest variety of pratical use cases in order to build a large community of users,
researchers and companies around the project.

RISC-V International is the non-profit business association based in Switzerland
that owns, mantains, and spearheads the development of the RISC-V ISA. Its
members have access to and participate in the development of the RISC-V ISA
specification and extensions as well as related hardware and software.

5.2 Overview of the NEORV32 processor

The NEORV32 is one such cores implementing the RISC-V ISA. The project
is intended as a ready-to-go auxiliary processor or stand-alone microcontroller
[29]. The purpose is to provide an easy to use platform including the core and
development tools that allow an effortless implementation with a high level of
modularity and flexibility. The project is intended to be implemented as a soft-core
in FPGA. This allows the user to configure the core with the exact hardware
features required to run the programs.

The project documentation details every phase of the implementation process
guiding users to all necessary steps to go from the netlist to the fully implemented
core on the FPGA

NEORV32 is not based on another core, it is built from the ground up following
the RISC-V ISA specs. The goal is to provide another option in the RISC-V /
soft-core space embracing concepts such as documentation, platform-independence
and portability, RISC-V compatibility, extensibility, customization, and ease of use.
Special attention is furthermore payed to execution safety using Full Virtualization.
The Central Processing Unit (CPU) aims to provide fall-backs for everything that
could go wrong. This includes malformed instruction words, privilege escalations
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and even memory accesses that are checked for address space holes and deterministic
response times of memory-mapped devices. Precise exceptions allow a defined and
fully-synchronized state of the CPU at every time an in every situation.

5.3 The NEORV32 CPU

Figure 5.1: Diagram of the NEORV32 CPU

5.3.1 Multicycle architecture

While most mainstream CPUs feature a pipelined architecture, NEORV32 is based
on a multicycle architecture where every instruction is executed in multiple clock
cycles. Compared with pipelined architectures, this allows for a simpler, more
compact design, as pipeline hazard detection is not necessary, maintaining however
an higher throughput and frequency with respect to single cycle architectures.

Compared to single cycle and fully pipelined architectures, multi cycle archi-
tectures have higher throughput and clock speed than single cycle ones and less
hardware complexity, area, and power consumption with respect to fully pipelined
designs. In particular the main advantages are:

• The lower area requirements come from the lack of pipeline hazard detection
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and resolution logic, as well as the ability to use core modules to perform
multiple tasks.

• As opposed to single cycle architectures, it does not require a memory that can
be read asynchronously, which would not be feasible to implement in FPGAs.
Furthermore, such design usually have a very long critical path tremendously
reducing maximal operating frequency.

• Compared to pipelined design, it executes only one instruction at a time. When
multiple instructions are in a pipeline, if an exception is raised at the end of
the pipeline, all instructions in the earlier stages have to be invalidated. That
requires additional logic which is not necessary in multicycle architectures.

• In addition to the last point, executing a single instruction at a time, besides
reducing costs, it simplifies simulation, verification and debugging, state
preservation and restoration during exceptions.

To reduce the loss of performance that characterizes a pure multi-cycle architec-
ture, the NEORV32 CPU uses a hybrid approach: instruction fetch and execution
are decoupled and operate independently. Data is exchanged through a queue
composing a simple 2 stage pipeline. Each stage is implemented as a multicycle
architecture.

5.3.2 CPU architecture

The CPU is designed as a pipelined multicycle architecture in which each instruction
is executed as multiple micro operations. To improve performance the front-end,
that is the instruction fetch is separated from the back-end, the execution stage, by
means of a FIFO queue, called Instruction Prefetch Buffer (IPB). In this way the
fetch stage can fetch new instructions even if the execution stage is still processing
the previous ones.

The architecture is halfway between a traditional pipelined architecture, in
which each stage takes one cycle to complete when not stalled, and a multicycle
one, in which every instruction is executed in a series of micro operations including
the fetch. Combining toghether the two paradigms allows for a better throughput
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compared to multicycle architectures and a lower hardware cost compared to
pipelined architectures.

The CPU is designed as a Von Neumann machine, providing two independent
interfaces for instruction fetch and data access. The two interfaces however, are
merged into a single internal bus via a prioritizing bus switch where data accesses
have higher priority. In this way all memory addresses are mapped to a single
32-bit address space.

Register File

The register file contains the architecture registers. For rv32i architecture there
are 32 32-bit registers, while in rv32e architecture there are 16 32-bit registers.
Register zero or x0, always reads as 0 and cannot be written to.

The register file is implemented as a synchronous memory with synchronous
read and write. Register zero is also mapped to a physical location in order to
avoid adding logic that returns zero when reading the register and shortening the
critical path.

The register file uses two access ports. One is read-only and is used to access the
second source register in instructions, the other is a read/write port for accessing
the first source register or for writing data to the destination register in instructions.
A single dual port RAM can therefore be used and the register file can be fully
mapped to the FPGA block RAM. Moreover, since reading and writing never occur
on the same clock cycle, there is no need for bypass logic.

ALU

The ALU processes data from the register files but is also used in memory and branch
address computation. All the I ISA Extension [30] operations are implemented and
take a single clock cycle to complete. More sophisticated operations are performed
by the ALU co-processors.

The co-processors are iterative units that take several cycles to process data.
Besides the base ISA’s shift operation all processing based ISA extensions are
implemented as co-processors.

All co-processors are required to complete processing within a time bound,
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defined by the user as a constant in the VHDL. If the unit takes more time to
complete, the operations is terminated and an illegal instruction exception is raised.

Bus Unit

The bus unit handles data memory access via load and store operations. It is able
to perform data adjustment when accessing sub-words and performs sign extension
in signed load operations. The PMP ISA extension [30] is also included to perform
permission checks on all data and memory accesses. All bus interface signals are
driven by registers so even complex bus networks will not affect the maximum
frequency.

The CPU does not support hardware based handling of unaligned memory so
any unaligned access will result in a bus load/store unaligned access exception.
The exception handler can however be used to emulate unaligned memory access.

Control Unit

The control unit generates all the signals required by the different CPU modules.
It is composed of a front-end and a back-end.

• The front-end controls the fetching of instructions in chunks of 32 bits as
either a single 32-bits instruction, two 16-bits instructions, or some mixture
of those. The instructions, along with control and exception information is
stored in a FIFO, the IPB. The depth of the FIFO can be configured by the
user.

Using the FIFO the front-end can do speculative instruction fetches, fetching
the following consecutive instructions continuously at all times. In this way
front-end and back-end can be decoupled so that each operates in parallel,
improving performance. All potential hazards caused by the speculative in-
struction fetch are already handled by the CPU front-end ensuring a defined
execution stage while preventing security side attacks. The front-end imple-
ments a very simple branch prediction that stops fetching further instruction
while a branch/jump/call operation is in progress.

• In the back-end instruction data from the IPB is decompressed (if the C ISA
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extension [30] is enabled) and sent to the CPU back-end for actual execution.
Execution is conducted by a FSM that controls all of the CPU modules. The
back-end also includes the Control and Status Registers (CSRs) as well as the
trap controller.

5.3.3 Other features

Sleep Mode

The NEORV32 features a sleep mode that can be entered to power down the
core and reduce dynamic power consumption. In sleep mode all the internal CPU
operations are suspended. The peripherals and the I/O ports, like timers and
interfaces.

Full Virtualization

The NEORV32 shares with the RISC-V ISA the goal of providing maximum
virtualization capabilities at the CPU and SoC level to enforce a high standard of
execution safety. All the traps detailed in the RISC-V specifications are supported
providing defined hardware fall-backs for any expected and unexpected situations
that may arise during operation. For each trap the core maintains a defined and
fully synchronized state in the whole system, that is there are no out-of-order
operations that may need to be rolled back. In this way the execution behavior is
always well defined and predictable, improving the execution safety.

57



Chapter 6

Analysis of the reliability of
the Rempro and NEORV32
processors via fault injection

After finalizing a working prototipe of the Rempro processor, the next step is
evaluating its reliability and comparing it to the NEORV32 running the same
program. The reliability is the probability, R(t), that a component is working
correctly in a time interval t − t0, provided it was working correctly at time t0.

6.1 Fault injection

The Rempro system must tollerate the harsh space environment and has to be able
to maintain its operation under the exposure to heavy doses of ionizing radiation.
In order to simulate the voltage pulses induced by radiation into the system, a
fault injection campaign was carried out on both processors and its results were
compared for both processors in order to evaluate their ability to tolerate faults.
Another objective of the fault injection is also to identify the most vulnerable
modules of the design in order to focus the efforts on those when implementing
fault mitigation techniques on the design.
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Fault injection can be carried out in hardware, software, emulation, and sim-
ulation. In this initial evaluation phase, a simulation approach was used to test
our devices using the simulation software ModelSim. The technique allows tto
simulate faults and malfunctions inside the processor, analysing the response of
the system and identifying possible vulnerabilities. During the campaign, voltage
pulses of variable length are introduced in specific points of the design in order to
evaluate the ability of the processor to tolerate the faults and keep working correctly.
The results of this campaign will provide us with important indications on how
to improve the reliability of the system and implement better fault mitigation
measures in a more effective way.

The simulation in ModelSim allows to carry out the campaign in a controlled
and repeatable way, allowing the detailed analysis of the results. Using custom
scripts, we can automate the fault injection process and the data gathering, insuring
an efficient evaluation of the processor’s fault tolerance.

6.2 The post implementation netlist

The purpose of the fault injection campaign is to simulate the voltage pulses on
the circuit nodes, testing that is, the vulnerability to SETs. This technique allows
to evaluate the reliability of the system when subjected tu sudden perturbations
and transients due to environmental ionizing radiation.

In order to replicate as closely as possible the real conditions, the target for
the simulation campains will be the post-layout netlist. This netlist, which also
includes information on delays in Standard Delay Format (SDF), offers a more
accurate representation of the final circuit with respect to the RTL description.
During the layout process, information on the module hierarchy is not preserved,
and only the cells are represented, that is the logic functions and FFs implemented
using the configurable blocks of the FPGA described in the specific library for the
ProASIC chip.

To identify all the instances of the cells constituting the system, the ModelSim
command find -r ./DUT/* -file <file path> was used [31]. This command
exports a list of these cells to a file located in the specified path. Each line of the
file represents an instance of a specific cell and contains information on its path,
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its name and the type of cell. Subsequently, some preliminary simulations were
conducted, using such information to better understand the characteristics of the
post-implementation netlist.

During these preliminary simulations some interesting characteristics emerged.
In particular, some significant differences were observed between the amplitude of
the pulse at the input port of the FF and the amplitude inside it. In some cases
such difference was more than ten times the amplitude itself. Moreover, a delay in
the order of the nanoseconds was measured at the inputs of some FFs.

6.3 Post-implementation model of FF delay

The post-layout netlist describes the design as implemented using the programmable
blocks of the FPGA, positioned in the FPGA itself. The delays, included the
internal ones of the programmable block, and those derived from the placing, and
routing of the signals, are computed and saved in the SDF file to be used during
simulations.

The FFs present in the design are modeled including the delays computed in the
place and route process. In the SDF file, for each FF instance, this data is listed:✞ ☎
(CELL

( CELLTYPE " DFN1E1C0 ")
( INSTANCE \\ dmem \/ registro_19 \/ counter \[8\]\\)
(DELAY

( ABSOLUTE
(PORT D (15.33:19.00:20.75) (14.28:17.71:19.33) )
(PORT CLK (5.79:7.18:7.84) (5.83:7.23:7.90) )
( IOPATH CLK Q (4.09:5.14:5.81) (5.20:6.53:7.37) )
(PORT CLR (5.68:7.04:7.69) (5.73:7.10:7.76) )
( IOPATH CLR Q () (3.76:4.73:5.34) )
(PORT E (5.95:7.38:8.06) (5.34:6.63:7.24) )

)
)
( TIMINGCHECK

(SETUP ( posedge D) ( posedge CLK) (3.80:4.77:5.39) )
(SETUP ( negedge D) ( posedge CLK) (3.56:4.47:5.04) )
(HOLD ( posedge D) ( posedge CLK) (0.00:0.00:0.00) )
(HOLD ( negedge D) ( posedge CLK) (0.00:0.00:0.00) )
(WIDTH ( posedge CLK) (4.06:4.77:4.77) )
(WIDTH ( negedge CLK) (3.67:4.31:4.31) )
( RECOVERY ( posedge CLR) ( posedge CLK) (2.10:2.63:2.97) )
(HOLD ( posedge CLR) ( posedge CLK) (0.00:0.00:0.00) )
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(WIDTH ( negedge CLR) (2.52:2.96:2.96) )
(SETUP ( posedge E) ( posedge CLK) (3.07:3.85:4.35) )
(SETUP ( negedge E) ( posedge CLK) (4.29:5.39:6.08) )
(HOLD ( posedge E) ( posedge CLK) (0.00:0.00:0.00) )
(HOLD ( negedge E) ( posedge CLK) (0.00:0.00:0.00) )

)
)✝ ✆

From the cell description it is possible to deduce the absolute delays, between
the arrival of the signal at the input port and the arrival inside the FF, as well as
the setup and hold times for every signal. In the simulation every FF will present a
input signal and a corresponding internal signal, that includes the delays listed in
the SDF file. For every signal, there are two delay groups, one for the rising edge
and one for the falling edge, while in every group there are three types of delay,
for the best, worst and typical case. In our fault injection campaigns the typical
delays are used.

6.4 SET pulse injection methodology and ob-
served effects

In order to inject a pulse in the design, three pieces of data are required: the node,
that is the location in the circuit that is to be disturbed, the injection instant, and
the pulse duration.

• The node can be the input or output of a component, a junction between
more connections, or an internal signal of a component. The node selection is
described in Section 6.5.

• The injection instant is the moment in which the pulse is introduced in the
node. This is fundamental to determine the effects of an injection, as depending
on the chosen instant, the FF could already have at its input an high value,
or could even be inactive.

• The pulse duration determines for how long the signal associated with a given
node is kept high. The literature suggests a common series of values for the
pulses caused by ionizing radiation. To select the amplitude the sample and
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hold times of the logic and the working frequency of the system must be taken
into account.

The effects of an SET on the logic of the system may vary depending on these
three parameters. Observing what happens when this pulses reach a sequential
element (such as a FF, as shown in figures 6.1-6.5) the most common events are:

• FF enabled but incorrect timing: the signal arrives on an enabled FF, with an
high enable signal, but the pulse stays outside the FF sampling window so
the glitch does not affect the output (figure 6.2).

• Correct timing but inactive FF: the signal arrives to the FF during the sampling
interval but the FF is inactive. There are not any observed effects on the
output signal (figure 6.3).

• Sampled signal: the pulse arrives during the sampling window and is observed
by the enabled FF. The output of the FF changes following the pulse and the
error is propagated (figure 6.4).

• Unperturbed node: the signal at the input of the FF is already high in the
instant the pulse is injected. The glitch will not have any effect on the FF
(figure 6.5).

6.5 Generation of the fault injection scripts

A Python script was developed in order to simplify the fault injection process. The
script makes use of the instances list file obtained previously, and is capable to
generate an arbitrary number of ModelSim Tcl scripts. Using these scripts, it is
possible to perform fault injection on different nodes, in different time instants on
the the circuit. This approach offers the necessary flexibility to test the system in
a variety of realistic scenarios, and evaluaate it’s tolerance to perturbations.

To set up the Python script, it is necessary to specify the start and end times of
the program, the name of the file containing all of the cell instances with which
the system is physically implemented, the number and type of instances to select,
the duration of the impulse, and the number of injections to perform for each
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node. The nodes are the positions in which the pulses will be injected; for this
fault injection campaign the chosen nodes were the inputs of the standard cells
constituting the physical netlist of the design.

Once started, the script reads the file containing the instances list and selects
from it a random subset with a number of elements chosen by the user. It is
also possible to make a selection based on the type of cells or the name. Since
cells of the same type present the same name for input and output signals, the
script is capable of detecting the input and outputs for every instance. Using this
information. the script creates a number of Tcl scripts for ModelSim that inject
the pulse in a random time instant inside the simulation interval. Such interval
is dependent on the benchmark application used as a stimulus during the fault
injection campaigns.

Using ModelSim, we can observe the effects that faults cause, monitoring the
two output ports of Rempro. The script reads then the values that arrive on the
two output ports, OUTPUTA and OUTPUTB, saving them in a list. In order to verify
whether the faults have caused a deviation from the correct behavior of the program,
this list of values is compared against a golden reference, that is a list of values
acquired in a similar way from a simulation where no injection was performed.

Inside the scripts some commands are included to measure some important data.
For example:

• Pulse measure: from the analysis of the SDF file and the preliminary
verifications, it is possible to determine that the signal arriving on the input
port experiences a delay entering the cell. This has two components, the
interconnection delau and the port delay. The interconnection delay represents
the time taken by the signals to flow through the interconnections between
the system components. The port delay is due to the glue logic and the
characteristics of the component: when a signal is applied to a port, the
component takes some time to switch and affect the corresponding output
signal. These delays are summed up and associated to the inputs of the logic
components. For this reason the scripts compute the effective duration of the
pulse inside the cell, measuring the actual starting and ending instants.

• Clock measure: the delay of the clock signal at the input port of the ’FF is
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measured. This delay is due to the routing path of the clock.

• Injection statistics: since the basis of the campaign is the injection of pulses
at random instants inside the entire simulation interval, it is possible that, due
to the nature of the sequential circuits, there are some conditions for which
the fault is masked or does not cause any observable effect on the target node.
In the first case, this is because the signal driving the node is already in a
high logical state at the instant of application of the transitory pulse. In the
second case the pulse, while arriving during the target FF sampling window,
it is not sampled due to the FF being in an inactive state (i.e. enable signal
low).

Finally a master Tcl script was developed to monitor the entire experiment,
taking care of everything from the injection of the faults, to the analysis and
comparison of the results against the golden reference. Moreover, the master script
is also tasked with gathering all the data and measures explained previously (pulse
length variation, clock delays, pulse masking) and registering statistics for each
node. The results are saved in two different files: one to gather the results of every
single script and one for the total results for each instance.

During the execution of the injection scripts, different statistics are gathered to
evaluate the effectiveness of the mitigation techniques implemented. For example,
it is possible to compute the percentage of injections that caused failures over the
total, or the number of times in which the injection caused or not a failure, and
other metrics of interest. All this information is gathered and saved in the apposed
files for a detailed analysis at a later time.

The combined use of the Python script and the Tcl master script, allows to
automate the fault injection process and analyze a large amount of scenarios. The
injection parameters can be altered, changing the number of injections per node,
or the duration of the pulse, in order to evaluate the behavior of the system under
stress conditions. Moreover, the random approach in the selection of the instances
allows to cover a large portion of the circuit and identify the most critical areas.

The analysis of the results obtained from the fault injection simulations gives
an important knowledge base to address the system vulnerabilities and improve
the fault tolerance of the system. The weak points of the project can be identified
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and the effectiveness of the adopted mitigation techniques can be evaluated. This
data is fundamental to optimize the design and guarantee an high reliability and
safety of the electronic components employed in space missions.

6.6 Planning the fault injection campaign

The fault injection campaign was performed focusing on the input signals of the
FFs. The transient caused by the radiation was therefore modeled as a glitch on
the input signal on D port. Such choice was motivated by the fact that performing
the simulation in post-layout, the input ports are already associated with the
propagation delay of the combinatory path. That means that even injecting in
proximity of the FF, it is possible to take into account the broadening effect. That
is to say that depending on the associated delay, toghether with the injection
instant, and the sampling time, the pulse can be filtered (that is, disappear and
not affect the logic at all) or widen.

The total number of FFs in Rempro was 371, while the NEORV32, being a
larger design, contained NUMBER FFs. Due to the high number, only 500 FFs
were selected from the set of NEORV32 instances, while the entire set of Rempro
instances was used as a target for the campaign. The working frequency for Rempro
is 12.5 MHz, while the setup time, different for each type of FF is between 400 ps
and 550 ps. On the other end the NEORV32 runs at a faster frequency of 40 MHz.
For this reason, the pulse duration was set to 600 ps, sufficiently big to be sampled
but still realistic enough as a model of the effects induced by ionizing particles.

In order to increase statistics gathering and having a more exhaustive set of
results, for each node 100 injections were performed in different time instants,
selected randomly from the simulation interval. This allows to evaluate the compo-
nent sensitivity to faults in specific moments, and to gather a wide range of data
for future analysis.

The entire campaign entails that both processors be tested during the execution
of three different benchmark programs. In this way it is possible to stimulate
different datapath resources in a different way, observing how the same transients,
applied on the same nodes, have consequences varying in severity depending on the
application workload. The three benchmark were written in the assembly language
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of the two processors, since Rempro lacks a compilator for high level languages. In
particular:

• The first program, Arithmetic test, executes a series of arithmetic operations,
jumps and branches in order to represent the execution of a generic program,
stimulating a condition of balanced workload for the processor.

• The second, Matrix Multiplication, is a function to compute the product of
two matrices. Having a large number of computation instructions, it focuses
the workload on the ALU.

• The third, Quicksort, is an implementation of the Quick Sort sorting algo-
rithm. It was chosen as it contains a large number of loops and jumps, recursive
calls and reads and writes to memory, allowing to stress the conditional jumps
module, memory, and the stack.

Using these three programs this fault injection campaign provides information
on a good amount of use cases and working conditions of the processor, allowing to
highlight which workloads make the system more susceptible to faults. Moreover,
it will allow to observe the response of both systems to SETs and identify the most
sensitive FFs. These results will be fundamental to implement effectively the fault
mitigation techniques on the project. Moreover they will constitute a solid basis
for future analysis of the reliability and for the optimization of the fault tolerant
strategies in space missions.
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Figure 6.1: Signals of a FF before a SET injection.
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Figure 6.2: Example of a SET injection outside the sampling window of the FF.
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Figure 6.3: Example of SET injection in a instant when the FF is inactive (low
value of enable).
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Figure 6.4: Example of injected pulse that was correctly sampled by the FF.
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Figure 6.5: Example of injection in which the perturbed signal was already high.67
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Chapter 7

Analysis of the results of the
fault injection

7.1 Total results of the fault injection campaigns

Processor Work Fail Not Masked Wrong Enable Total
load Inj. Timing Inact.

Rempro Arith 107 6594 2137 25606 2751 37195
MatMul 120 5326 2137 23612 5614 36809
Qsort 40 11286 2979 23698 1325 39328

NEORV32 Arith 75 6073 2627 40467 788 50030
MatMul 86 5153 4942 39243 643 50067
Qsort 120 5489 3594 40132 715 50050

Table 7.1: Table summarizing the results of the fault injection campaigns.

After carrying out the fault injection campaign to completion, the results are
summed up in table 7.1. The same data can also be consulted in the form of a pie
chart in figure 7.1. From the graph and the table it is clear that Rempro has still
some way to go before it can match and surpass the base reliability of NEORV32.
It must be however noted, that no fault mitigation measures are yet in place in the
project. Due to the lower complexity of the processor, adding such feature would
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Figure 7.1: Comparison between the fault injection campaigns on the NEORV32
and Rempro processors.

be easier compared to the bigger NEORV32, and it will involve a lower overhead
in terms of area, power consumption, etc. The results of the fault injection were
divided into five categories:

• Failures: When the pulse is sampled by the sequential logic, and it causes a
wrong computation in the processor, it is registered as a failure.

• Not injected: When the positive pulse is injected on a node already presenting
a high value, the pulse will not cause a glitch in the line and the circuit will
behave as expected. This is registered as "Not injected".

• Masked: When the pulse is sampled but the output of the computations
remains the same, that means that the error was not propagated and it is
logged in the results as "Masked".

• Wrong timing: When the pulse is inject in an instant which is outside
the sampling window of the FF, it will not be sampled and will not cause a
misbehavior. It is logged as "Wrong timing",

• Enable inactive: When the pulse is correctly injected but the sequential
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element it feeds into is inactive, the pulse will not be sampled. This is registered
as "Enable inactive".

As it is shown in results, the percentage of failures in Rempro is double that of
NEORV32 in almost all cases, except when running the Quicksort program. Since
very little computation instructions are executed in it, this may signify that the
ALU module is more sensitive to faults in this design. The opposite is true for
the NEORV32 architecture, which is more sensitive when executing branch-heavy
tasks. Moreover, most of the injections were not sampled by the FFs because they
were not injected during the sampling window. This is expected since sequential
circuits only sample signals in a small timeframe compared to the clock frequency.
Comparing the results from Rempro and NEORV32, it appears that injections
performed at the wrong instant were more frequent in the RISC-V architecture.
This is probably due to the higher working frequency achieved by the NEORV32
processor. In Rempro it is also shown that a significant percentage of injections
were performed on disabled sequential elements, while this was less frequent on the
NEORV32. This is due to a clear difference in the architecture and management
of the resources (table 7.3), and it is also mirrored by a significant difference in
the switching power found between the two (table 7.2), as explained in section 7.2.
Since in Rempro the switching power is noticeably lower than in NEORV32 it is
reasonable to assume that a larger percentage of sequential circuits are disabled
when a certain module is not in use, resulting in an higher number of pulses injected
in inactive parts of the logic. The percentage of "Masked" injection, is more or less
similar, while Rempro present a larger number of "Not injected" instructions.

7.2 Power and area analysis

The results of the implementation process for both processors are summed up in
the tables 7.2 and 7.3. The Rempro processor is significantly less demanding both
in terms of power and resource usage. The design presents a drastically lower
switching activity compared to the RISC-V processor. The power consumption
values are all close to each other for every type of load, so there is not a strong
dependency on the stimulated modules of the CPU. The resource usage for Rempro
is lower, requiring less than half the resources of the NEORV32. The lower power
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NEORV32 Rempro
Arithmetic test

Best Typ. Worst Best Typ. Worst
Total 28.38 mW 31.29 mW 57.78 mW 6.98 mW 7.42 mW 31.55 mW
Stat. 4.91 mW 5.22 mW 28.97 mW 4.91 mW 5.22 mW 28.97 mW
Dyn. 23.48 mW 26.07 mW 28.81 mW 2.08 mW 2.32 mW 2.58 mW

Matrix Multiplication
Best Typ. Worst Best Typ. Worst

Total 28.41 mW 31.33 mW 57.82 mW 7.23 mW 7.82 mW 31.85 mW
Stat. 4.91 mW 5.22 mW 28.97 mW 4.91 mW 5.22 mW 28.97 mW
Dyn. 23.51 mW 26.11 mW 28.85 mW 2.33 mW 2.60 mW 2.88 mW

Quicksort
Best Typ. Worst Best Typ. Worst

Total 28.29 mW 31.19 mW 57.66 mW 7.15 mW 7.72 mW 31.75 mW
Stat. 4.91 mW 5.22 mW 28.97 mW 4.91 mW 5.22 mW 28.97 mW
Dyn. 23.38 mW 25.97 mW 28.69 mW 2.24 mW 2.50 mW 2.78 mW

Table 7.2: Comparison between the two processors in terms of power consumption
when executing the benchmark programs

consumption and resource usage are clear advantages of a simpler architecture.
This also means that once TMR is implemented, there will be a lower overhead in
both power and area usage.

7.3 Timing analysis

Among the data gathered during the fault injection campaign, there was also
information on the delays of the FFs on which the pulses were injected. Such data
is presented as boxplots in figure 7.2. In box plots, the colored box is delimited by
the first and third quartile of the distribution, while the internal line represent the
median. The whiskers are drawn from the first and third quartile to the smallest
and largest values that fall within 1.5 times the Interquartile Range (IQR) value.
The graph compares the distributions of the following values measured in both
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NEORV32 Rempro Total
CORE 5873 (95.59%) 2637 (42.92%) 6144
IO 34 (22.52%) 35 (23.18%) 151
Diff. IO 0 (0%) 0 (0%) 34
GLOBAL (Chip+Quadrant) 6 (33.33%) 4 (22.22%) 18
PLL 0 (0%) 0 (0%) 1
RAM/FIFO 8 (100%) 2 (25%) 8
Low Static ICC 0 (0%) 0 (0%) 1
FlashROM 0 (0%) 0 (0%) 1
User JTAG 0 (0%) 0 (0%) 1

Table 7.3: Comparison between the two processors in terms of resources utilization
after the placement.

processors while running the three different workloads:

• Real Width: While all the injected pulses have the same width of 600 ns, inside
a sequential circuit, due to the different rise and fall delay of the signal, it
can be broadened or narrowed. This can influence whether the pulse will be
sampled or not, as a broadened pulse is more likely to fall within the sampling
window. From the graph it can be seen that in Arithmetic test and Matrix
Multiplication the pulse width distribution is skewed towards values higher
than 600 ns meaning that the pulse is usually broadened when it is inside a
sequential circuit.

• D Rise Delay: The delay associated to the input signal D of the FF when it
transitions from a low to a high value.

• D Fall Delay: The delay associated to the input signal D of the FF when it
transitions from a high to a low value.

• CK Internal Delay: Internal delay of the rising edge of the CK signal.

It can be seen that the values measured from the RISC-V processor present
a significantly lower variance. The different values measured in Rempro, are
distributed in a larger span. The longer whiskers in the boxplots for the Rempro
mean also that the values that fall outside the first and third quartile are much
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Figure 7.2: Comparison between the internal flip-flop delays between the NE-
ORV32 and Rempro processors.
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more sparsely distributed compared to NEORV32 where even the values that fall
outside of the box remain generally closer to its edges.

7.4 Injection campaign with negative pulses

The first campaign was carried out using only positive pulses, injected forcing a
high value on a node for 600 ns. In order to verify that the polarity of the pulse
does not affect the results, a small campaign of injections using negative pulses
was also conducted.

Figure 7.3: Comparison between the fault injection campaigns on the NEORV32
and Rempro processors.

As it can be seen from figure 7.3, the results are very different from those
obtained using positive pulses. This is due to the difference in the internal fall and
rise delays for input signals inside FFs. Due to the fall delay being longer than the
rise delay, negative pulses, composed, that is, by a fall transition followed by a rise
transition, can easily disappear inside the FF as the rise happens before the fall.
For this reason most of the pulses were not injected, and the number of failures
was significantly lower as fewer pulses were able to make it inside the sequential
circuit and even less were able to be sampled.

Looking at the timing analysis on the other end, it can be seen that both the
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Figure 7.4: Comparison between the internal flip-flop delays between the NE-
ORV32 and Rempro processors.

processors show an increased spread of their datapoints, with Rempro being more
evident. This is certainly due to the fact that a large number of injections resulted
in no pulse being injected, meaning that no data could be gathered on the timing
of rise and fall, resulting in fewer datapoints representing only a subset of injection
cases where the rise and fall delay allowed the pulse to be propagated inside the
sequential logic.

While these results differ from the one with positive pulses, it is clear that due
to the characteristics of the technology employed, both designs are much more
resistant to negative pulses, and therefore focusing only on the positive pulses
did not introduce a bias in the study, since the effect of the negative pulses was
negligible.

76



Chapter 8

Conclusions

In the presented research work a new soft-core to be implemented on an FPGA
for space use was presented and tested. Its architecture was studied and an
implementation of a fault mitigation technique was proposed to make the design
more resistant to radiation. This technique, known as TMR, was implemented
both at the core and device level.

A new architecture was proposed in which the system is imagined in its entirety
as a number of boards each mounting an FPGA with a TMR version of the
processor in it. Each single system is equipped with a self-checking mechanism
able to detect the occurrence of an unrecoverable fault. When the system cannot
recover from the malfunction a substitution routine activates a new board that is
able to autoconfigure itself to carry out the program first started in the defective
board. In this way it is possible to obtain a system capable of remaining online
as long as possible, executing critical parts of the mission, with a high degree of
reliability, without the need for any kind of servicing.

A physical bus and a memory recovery routine was developed to allow the
processors in different boards to communicate and transfer the program state. The
features were tested and the results confirm the feasibility of the design. A UART
module was realized to communicate with a host PC for the test.

Once it was confirmed that the system would behave correctly, a fault injection
campaign was planned and executed to obtain a baseline for the fault tolerance of
the base processor before the introduction of the fault mitigation improvements.
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The same stimuli were applied to an equivalent RISC-V processor, the NEORV32
in order to have a comparison with a system using the popular ISA. The results
of these campaigns were analyzed and presented showing that while the Rempro
processor has a lower power consumption and area utilization compared to the
NEORV32, its fault tolerance is slightly worse in its base version. However, the
lower complexity means that the overhead added when implementing the fault
mitigation techniques will be lower and more efficient.

8.1 Future Work

Realizing a processor for use in space is a complex task that requires many different
steps to be conducted. The development of the Rempro processor is still in
embryonal phase. A lot of work still has to be performed to prepare Rempro to
the challenges of the space environment and to adhere the standard set by the
space agencies. So far the processor was subjected to a preliminary evaluation in
terms of fault tolerance and compared to an equivalent RISC-V processor. Fault
mitigation in the form of TMR needs to be implemented and tested in a board
and be subjected to fault injection campaigns to evaluate the improvements in the
fault coverage and radiation tolerance. Future work should focus on studying and
implementing such changes, analyzing the benefits and drawbacks and verifying
it meets the requirements set by the aerospace industry for adoption in space
missions.
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