
Politecnico di Torino

College of Computer Engineering, Cinema and Mechatronics

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Study and Development of Advanced Core Communication
and Memory Management Techniques for Hard Real-Time

Battery Electric Vehicle (BEV) Applications

Supervisor: Candidate:
Ph.D. Sarah AZIMI Giuseppe DI CAROLO

Co-supervisor:
Prof. Luca STERPONE

Academic year 2022-2023

Abstract

This thesis focuses on the optimization of electric motor control for battery electric

vehicles (BEVs) by leveraging Direct Memory Access (DMA)-based core communica-

tions. Various procedures were studied, tested, and compared to determine the most

suitable approach to meet the operating specifications of the target study.

The first thesis activity involved a comprehensive examination of state-of-the-art

data transfer techniques found in the scientific literature with the objective of dis-

cerning advantages and disadvantages within the context of hard real-time systems.

Simultaneously, an in-depth exploration of the memory modules and communication

components of the AURIX™ TriBoard TC399 was conducted, complemented by prac-

tical experimentation. The DMA constituted the main focus of the research alongside

its configurations, which not only offer enhanced flexibility but also relieve the cores

from the burden of data copying at the expense of an increased initial programming

overhead.

In the concluding part of this work, the acquired knowledge was translated into

practical application through the development of C-code programs using the ”Aurix

Development Studio” platform. These programs were designed to implement various

strategies. The outcomes of these implementations were compared to identify the

approach that best aligns with the specified requirements.

II

Contents

List of Tables VII

List of Figures IX

1 Introduction 1

1.1 Motivation and goal of the thesis . 1

1.2 Outline of the Thesis . 3

2 Background 4

2.1 Memory . 4

2.1.1 Volatile and non-volatile memory 4

2.1.2 Basic computer architecture 5

2.1.3 CPU memory map . 6

2.1.4 Direct Memory Access (DMA) 7

2.2 Microcontroller (MCU) . 8

2.2.1 General architecture . 8

2.2.2 SOC . 9

2.2.3 AURIXTM TriBoard TC399 10

2.3 DMA in AURIXTM TriBoard TC399 13

2.4 Target memory . 15

2.4.1 Local Memory Unit RAM (LMU) & Data Scratch-Pad RAM

(DSPR) . 15

3 State of the art 17

3.1 Logical Execution Time (LET) paradigm 17

3.1.1 Implementation of LET . 19

IV

Contents

3.1.2 Limits and issues . 19

3.2 DMA LET communications . 19

3.2.1 Intra-Core Communications 20

3.2.2 Inter-Core Communications 21

3.3 DMA Configurations . 21

3.3.1 Timing of DMA . 22

3.4 Final example and considerations . 23

4 Developed Methodologies 26

4.1 Introduction to the final application 26

4.1.1 Electric scheme . 27

4.1.2 Requirements . 27

4.2 Communication between DMA & ADC 28

4.3 Tecniques implemented . 30

4.3.1 Moving average . 31

4.3.2 Double sampling . 35

4.4 Memory selection and organization 37

4.4.1 DMA moves . 37

4.4.2 Circular buffer . 39

4.4.3 Final disposition . 40

4.4.4 Destination memory selection 41

5 Experimental results 43

5.1 Experimental Setup . 43

5.2 DMA settings . 44

5.3 DMA tests . 46

5.3.1 Transfer numbers . 46

5.3.2 Moves per transfer . 50

5.4 Configuration for the final application 53

6 Conclusion 56

6.1 Future steps . 57

Bibliography 59

V

List of Tables

5.1 Transaction time vs Number of transfers 49

5.2 Transaction Times for Different Moves number 52

VII

List of Figures

1.1 Hybrid motor dual cell block diagram 2

2.1 Memory hierarchy . 5

2.2 Basic computer architecture . 6

2.3 Typical architecture of the DMA . 7

2.4 Architecture of a microcontroller . 8

2.5 Architecture of a System on Chip . 9

2.6 AURIXTM TriBoard TC399 [1] . 10

2.7 Block diagram [2] . 12

2.8 Block Diagram of DMA in [2] . 14

2.9 Transaction, Transfer, Move [2] . 15

3.1 Timeline for invocation of task τ . 18

3.2 Intra-Core [4] . 20

3.3 Inter-Core [4] . 21

3.4 Memory layout [4] . 23

3.5 DMA configurations [4] . 24

3.6 Legend [4] . 25

4.1 DC/DC converter . 27

4.2 DMA-EVADC communication [8] . 29

4.3 DMA-EVADC block diagram . 30

4.4 Moving Average . 32

4.5 Implementation on the serial monitor of AURIX development studio . 34

4.6 Double sampling . 36

4.7 Circular Buffer . 39

IX

List of Figures

4.8 Memory organization . 41

5.1 Experimental Setup . 44

5.2 Transaction Time vs Number of Transfers 48

5.3 Transaction Time vs Number of Moves 51

X

Chapter 1

Introduction

1.1 Motivation and goal of the thesis

Nowadays, a gradual but rapid evolution is taking place in the automotive world,

leading to the replacement of internal combustion engines with pure electric or hybrid

engines. The world of research has shifted almost entirely to the latter, specifically

discovering the various possibilities arising from the integration of more specific

control systems allowed by the substantial electronic component.

In this particular study, the final application involves the realization of a two-cell

hybrid electric motor.

The image displayed in Fig. 1.1 shows a simplified block diagram of a hybrid motor.

The hydrogen cell is responsible for generating electricity through a chemical reaction

of electrolysis between hydrogen and oxygen. This current powers the electric motor

and provides traction.

The power source section represents the electric motor system’s dual-cell power source,

which includes both a battery and a fuel cell. These two power sources work together

to provide electrical energy to the system. On the other hand, the electrical control

unit manages and controls the flow of electricity within the system. The inverter in

this unit is responsible for converting the direct current (DC) from the battery, fuel

cell, and generator into alternating current (AC) that the motor can use.

1

Introduction

Figure 1.1: Hybrid motor dual cell block diagram

Regenerative braking occurs when a vehicle brakes or decelerates, converting motion

into electrical energy. The electric battery acts as an energy buffer for the whole

system. The electrical energy generated during regenerative braking is stored in the

battery for later use in situations where the power demand exceeds the capacity of

the hydrogen cell, powering the electric motor. As a result, energy management is a

critical aspect that is essential for coordinating energy distribution and optimizing

vehicle efficiency.

The strategies used to best achieve this goal are becoming increasingly varied, diver-

sified, and specific to the individual end-use application.

Therefore, it is necessary to pay attention to the specific model and instrumentation

in order to properly implement it.

The objective of the work was to investigate the potential of the Infineon TriBoard

TC399 in the automotive field. The primary focus was to experiment and determine

the most effective intra and extra-core communication mechanism, a crucial compo-

nent of the project.

For the initial phase of the project, I researched the architecture and components of

the board. Simultaneously, I also researched scholarly works on fundamental commu-

nication to gain a deeper insight into the latest advancements. Afterward, I moved on

to the programming phase, which involved utilizing the AURIX Development Studio

2

Introduction

to test out various timing and performance strategies. Finally, I drafted an initial

program that would be capable of supporting the end goal of the project.

1.2 Outline of the Thesis

The thesis work has been divided into the following chapters:

1. Introduction: preamble to the research project and to the goals of this thesis.

2. Background: presentation of the main arguments and components that the

thesis focuses on.

3. State of the art: a short overview of the current methods utilized in DMA

communications.

4. Developed Methodologies : presentation and discussion on the final appli-

cation project and the techniques developed to better meet its requirements.

5. Experimental results: test development on the critical components of the

project and presentation of a code to accommodate the final application.

6. Conclusion: Completing the final version of the code application.

3

Chapter 2

Background

Since this thesis primarily addresses memory management and its function in com-

municating and exchanging data between the processor and peripheral modules, it is

essential to provide a brief introduction of the main components under focus.

2.1 Memory

In informatics, the term ”memory” refers to a fundamental component of a computer

system that is used to store and retrieve data and instructions for processing by the

central processing unit (CPU). Memory is crucial for the functioning of computers

and is divided into several types, each with its specific purpose and characteristics.

2.1.1 Volatile and non-volatile memory

Volatile and non-volatile memory are two fundamental types of computer memory.

Volatile memory refers to temporary storage that is lost when the computer is turned

off, such as RAM. Non-volatile memory, on the other hand, retains its data even when

power is lost, such as a hard drive. While volatile memory is faster than non-volatile

memory, it is also more expensive and cannot store as much data. Non-volatile

memory, while slower, is generally more reliable and can store large amounts of data.

These two memory types are used in different ways depending on the specific needs

of a computer system. As a result, nonvolatile memory is necessary for booting up

the operating system, but it is much slower than volatile memory. Therefore, both

4

Background

types of memory are required.

Memory management is critical as performance and capacity are opposing parameters

that require careful consideration. In particular, the hierarchy of memory is shown in

the figure below.

Disks are based on magnetic properties, they can store a lot of information, but they

are slow. On the other hand, all the others are silicon are constructed with silicon

and are volatile memories. Dynamic RAM (DRAM) is built with capacitors, while

cache memories use static RAM, which is ten times faster than DRAM.

Figure 2.1: Memory hierarchy

2.1.2 Basic computer architecture

Software, consisting of data to be processed and instructions for processing the data,

are fed into computers through input devices and are made available to the user

through output devices.

The CPU’s role is to connect to memory input/output devices via control/data/ad-

dress buses. CPU operation always consists of two complementary cycles. A read

cycle is a sequence of operations that the CPU initiates to get bits of data from an

external peripheral, and a write cycle is the operation to be performed to deliver

bits of information. More specifically, the CPU always performs an infinite loop: An

instruction is fetched from memory (read cycle) and its execution may result in a

read cycle, a write cycle, or an update of the internal state of the CPU.

5

Background

Figure 2.2: Basic computer architecture

If the memory elements are physically placed inside the CPU itself, they are called

registers and can be divided into categories according to their role. The general

purpose registers are used as containers for data to be processed, results of operations,

and other specific elements. Special purpose registers are intended for specific tasks

while the Program Counter stores the address of the next instruction to be executed.

The CPU can work directly with the memory or with the memory in the I/O ports.

The main advantage of registers is that the read/write procedure is faster since in

general, the rule applies that the closer, the faster.

2.1.3 CPU memory map

Finally, Let’s discuss how the CPU and peripherals communicate. The processor

generates addresses that depend on the BUS dimension in bits, which can be up to

2N 1. Each peripheral is assigned a range of addresses, such as RAM and ROM. This

association between addresses and peripherals is described in the memory map. Even

something as simple as a keyboard is considered a memory element for the purpose

of clarity and simplicity.

Inserire immagine della memory map.

1N = number of bits of the address bus

6

Background

2.1.4 Direct Memory Access (DMA)

The central processing unit (CPU) is responsible for controlling the address, data,

and control bus. However, the direct memory access (DMA) controller can perform

the same operations simultaneously with other processor activities. In fact, the DMA

can perform memory read/write cycles when instructed by the CPU, but no other

operation. Utilizing DMA, the processor is only involved once to initiate the transfer,

allowing it to perform other tasks simultaneously. However, there is only one bus,

meaning that if DMA is accessing the memory, the CPU cannot do the same. It

can only execute different operations or wait. Therefore, the CPU and DMA cannot

access the memory simultaneously.

Figure 2.3: Typical architecture of the DMA

There are three different ways to program the DMA in order to prevent conflicts with

the processor. The first method is Burst, which involves transferring data in a single

operation. However, if the CPU needs to use the bus during the transfer, it must

pause, which could cause issues if the CPU requires immediate attention. The second

option is Cycle Stealing, where the data is divided into smaller chunks. After each

transfer, the CPU can access memory, so it won’t be stuck for an extended period.

Finally, the DMA only operates when the CPU isn’t using the bus, resulting in the

slowest transfer rate.

7

Background

2.2 Microcontroller (MCU)

2.2.1 General architecture

The term ”microcontroller” refers to a small integrated circuit capable of indepen-

dently performing a set of specific tasks or functions. In the realm of embedded

systems and automotive applications, microcontrollers are widely used for various

purposes, including anti-lock braking systems, infotainment, and airbag systems.

These microcontrollers consist of a processor (CPU) that is solely responsible for

executing instructions and performing calculations. The CPU’s performance varies

based on the application, depending on the architecture.

Furthermore, a microcontroller also has memory components, including read-only

memory (ROM) for firmware storage and random access memory (RAM) for temporary

data during program execution. The microcontroller also has input/output (I/O)

peripherals that allow it to interact with external devices and sensors, such as digital

and analog pins, timers, counters, and serial communication interfaces like UART

and SPI.

Finally, an internal clock generator is essential to synchronize the microcontroller

components’ operation by providing timing signals.

Figure 2.4: Architecture of a microcontroller

8

Background

2.2.2 SOC

For the sake of completeness, let’s discuss the System on Chip architecture.

Figure 2.5: Architecture of a System on Chip

This design includes discrete components, with the CPU only integrating certain

elements (see Fig. 2.5 for reference, namely the I/O and boot flash). While this

architecture is more costly, it is also more adaptable. One example of an SoC in the

automotive industry is an infotainment system, where additional components can

be added based on customer preferences to enhance functionality. Nevertheless, the

foundation remains the same SoC.

9

Background

2.2.3 AURIXTM TriBoard TC399

Figure 2.6: AURIXTM TriBoard TC399 [1]

As extrapolated from [2], the Aurix TC399 microcontroller is part of the Infineon

Aurix family, which is specifically designed for automotive and industrial applications

that require high performance, safety, and reliability. Accordingly, it offers a number

of features and characteristics that make it suitable for demanding real-time systems.

In terms of architecture, the Aurix TC399 is built around a powerful 32-bit TriCore

processor. The TriCore architecture combines the capabilities of a microcontroller, a

microprocessor, and a digital signal processor (DSP). This architecture is optimized

for real-time control tasks, making it well-suited for automotive and industrial applica-

tions. The TC399 is optimized for real-time control applications where deterministic

and predictable task execution is critical. It includes dedicated hardware for handling

interrupts, timers, and event-driven operations. Furthermore, Infineon provides a

comprehensive development ecosystem including software development tools, libraries,

and documentation to support the development of applications for the Aurix TC399

microcontroller.

To conclude this brief overview of Infineon’s TriCore, please take a look at the block

diagram below in Fig. 2.7. It shows the main components of the integrated circuit

10

Background

and how they interact.

11

Background

Figure 2.7: Block diagram [2]

12

Background

2.3 DMA in AURIXTM TriBoard TC399

As introduced before, the DMA shall move data from source locations to destination

locations without the intervention of the CPU or other chip devices.

Moving on to the description of the main components and related characteristics, it

is worth noting that:

• The DMA supports 128 independent and individually programmable channels,

each of which is assigned to a resource partition and stores the context of an

independent DMA operation.

• A DMA channel is activated by a DMA request that can be:

– DMA Software Request initiated by a CPU.

– DMA Hardware Request initiated by the Interrupt Router (IR) Interrupt

Control Unit (ICU).

– DMA Daisy Chain Request initiated by the next higher priority DMA

channel.

13

Background

Figure 2.8: Block Diagram of DMA in [2]

• A DMA transaction, as represented in Fig. 2.9, can be divided into:

– Transfers: whose sum defines a transaction.

– Moves: whose sum defines a transfer.

14

Background

Figure 2.9: Transaction, Transfer, Move [2]

This is noteworthy because it is possible to define the next source and destination

addresses after each DMA move. Such addresses can be selected by choosing their

offset from the previous one (e.g. from 00H to 08H and their direction (addition,

subtraction, or none). Finally, a circular buffer configuration is also possible.

2.4 Target memory

Still referring to [2], this section will provide a brief review of the two main memory

types studied for the final application. Their key features will be presented to enhance

comprehension of the decisions and reasoning in chapter 4.

2.4.1 Local Memory Unit RAM (LMU) & Data Scratch-Pad

RAM (DSPR)

The Local Memory Unit RAM (LMU) provides 256 KiB2 of local memory for general

purpose usage (Fig. 2.7) that can be used for code execution, data storage or overlay

memory. It also can be configured with a Memory Protection Unit (MPU) that allows

fine-grained control over access to memory regions.

On the other hand, Data Scratch-Pad RAM (DSPR) provides 240 kB in CPU0 &

CPU1, 96 kB in the other CPU’s (Fig. 2.7).

2kilo binary byte: 1 KiB = 210 byte

15

Background

One of the main differences between the two configurations is that LMU has intercon-

nection with the CPU core via Shared Resource Interconnection (SRI) while DSPR

can be addressed on each core without using the bus. As a result, accessing the DSPR

is generally faster than accessing the LMU.

16

Chapter 3

State of the art

This chapter aims to provide a comprehensive overview and analysis of the literature

concerning the utilization of Direct Memory Access (DMA) for both Intra and Extra-

core communications. It will also examine the advantages and disadvantages of this

technique in the context of the automotive industry compared to other commonly

used methods.

3.1 Logical Execution Time (LET) paradigm

The concept of Logical Execution Time (LET) is a programming technique that

provides predictable timing and can be easily combined with other programming

tools. This approach has gained popularity in the automotive industry, where it has

been effectively utilized to manage the distribution of software applications across

multiple electronic control units.

The LET paradigm, first introduced in [3], operates on the following principles:

• Periodic tasks, denoted as τi, are tasks that are initiated at regular intervals.

• LET read: Each periodic task updates its input values at the moment it is

released. Defined as a triple W (τi, dx, t), task τp makes available to a consumer

τp the instance of dx produced during its job completed at t.

• LET write: These values are then used to calculate new output values, which

17

State of the art

are available to consumers at the end of the period. Defined as R(dx, τc, t), task

τc acquires the value of dx available at t.

• LET read and LET write are generally known as LET communications.

• Communications are carried out instantaneously, resulting in a deterministic

behavior over time.

In Fig. 3.1, the timeline demonstrates the intended invocation of task τ based on

the principles stated. Note that τstart and τ ′start coincide due to instantaneous

communication.

Figure 3.1: Timeline for invocation of task τ

The key properties can be summarized into three fundamental properties:

1. Property: All LET writes must occur before causally-related LET reads.1

W (τi, da, ti,x) ≺ (db, τi, ti,x)

This condition should apply to all release times ti,x and each variable db.

2. Property: At any point in time, Before starting LET reads of τc, LET writes of

producer task τp for data da must be completed.

W (τp, da, t) ≺ (da, τc, t)
1a ≺ b = a must be completed before starting b.

18

State of the art

3. Property: Communications that are issued at different times must not overlap.

For each pair t1, t2 where t1 < t2, all LET communications assigned to t1 must

be completed before starting those assigned to time t1.

3.1.1 Implementation of LET

The authors of the cited book [3] proposed an order of execution for LET com-

munications to satisfy the aforementioned properties. The sequence to be followed

is:

1. At t, each task instance must complete all of its LET writes.

2. Subsequently, each task instance released at t performs all its LET reads.

3. Finally, all task instances that were released at time t are now set as ready.

3.1.2 Limits and issues

By carefully analyzing the strategy presented, it is possible to discern its limitations

and major issues.

Firstly, when a task is released at a certain time t, it must wait for all LET write and

read operations from other task instances that complete and start at t, regardless of

whether they have any causal dependencies with the task in question. This can cause

unnecessary delays, particularly for tasks that require frequent communication.

Additionally, this approach does not consider that tasks may have varying levels of

priority. Thus, higher-priority tasks may have to wait for lower-priority tasks to finish

communicating, resulting in a priority inversion.

3.2 DMA LET communications

According to [4], using the DMA module with refinements can resolve problems that

make using the LET protocol impossible for hard real-time applications.

After reviewing the benefits of using DMA, the article highlights two main advantages.

Firstly, using DMA allows for limited interference during task execution by offloading

19

State of the art

data transfers. Secondly, it offers the possibility of a more flexible order of LET

communications.

3.2.1 Intra-Core Communications

Let’s consider the scenario of two tasks: a producer (τp) and a consumer (τc) that are

functionally dependent and mapped onto the same core. To handle communication

within the core, a technique called triple buffering can be used, as explained in [5]

and displayed in Fig. 3.2.

Figure 3.2: Intra-Core [4]

Again with reference to Fig. 3.2, P refers to the core, lx1, lx2 and lx3 are the labels

associated to the local memory M , pxp(t) and pxc (t) are the pointer assigned to the

tasks τp and τc respectively.

Initially, pxp(t) and pxc (t) point respectively to lx2 and lx3. As soon as τp is released,

pxp(t) is reassigned to lx1, while lx2 retains its previous value. During the next instance

20

State of the art

of τc, p
x
c (t) will switch to lx2, which is left pending. The process continues cyclically.

3.2.2 Inter-Core Communications

Resuming the work done by [4], let’s consider the case in which the communication

follows the local to global to local pattern, as shown in Fig. 3.3.

Figure 3.3: Inter-Core [4]

When executing two functional dependency tasks, consumer τc and producer τp, on

separate cores, both LET writes and reads are implemented as physical copies of data

between labels in a global memory MG. This means that pointers pxp(t) and pxc (t) will

always point to lx1 and lx3 without switching. Either way, intra-core communications

can also be handled with this design.

It is important to note that the global memory in this platform is typically slower,

which may not make it the ideal choice for hard real-time systems such as the one

being the main focus of this project.

3.3 DMA Configurations

The DMA is responsible for transferring shared data from one source memory Ms to

a different destination memory Md. When programming the DMA, multiple LET

communications can be combined into a single DMA transfer. Each DMA transfer

21

State of the art

involves a continuous portion of memory in both Ms and Md. As specified in the

previous chapter, a DMA transfer requires the definition of the start address of the

label, the start address in the destination, and the size of the data transfer.

Reviewing the possible configurations as reported in [4] referring to [6]:

• SIMPLE: The DMA is programmed for each data transfer and triggers an

interrupt upon completion.

• ”LL-EOT” and ”LL-EOL” modes: The DMA is programmed to perform multiple

transfers. LL-EOL triggers an interrupt at the end of each transfer, while LL-

EOT triggers an interrupt at the end of the list.

3.3.1 Timing of DMA

Let’s now discuss the timing characteristics of the two techniques presented, based

on the results in [7].

When using the SIMPLE mode for transfers, we can divide the time needed into two

parts: σIN , which is the initialization time for the DMA, and σDT , the time it takes

to upload the command for a single transfer. According to [7], this overhead time

σDT is always less than σIN , and it does not depend on the label size. Additionally,

we need to factor in the time σISR needed for the ISR to notify the DMA once the

transfer is complete.

After analyzing the data provided, it can be inferred that the Direct Memory Access

(DMA) process requires a longer time to execute a linked list transfer in LL-EOT

and LL-EOL modes, as opposed to a single transfer performed in SIMPLE mode.

Nonetheless, it is still more efficient than programming each transfer individually [7].2

Given that σDT < σIN and σDT < σ′
DT ;

σDT + σIN < σ′
DT + σ′

IN

N · σDT +N · σIN > N · σ′
DT + σ′

IN

2N = number of DMA transfer.

22

State of the art

3.4 Final example and considerations

To utilize the findings of the preceding sections, this chapter will conclude with

an example summary that draws some conclusions. Firstly, regarding the memory

layout in Fig. 3.4, task τ1 on processor P1 performs write operations on lc and read

operations on la and lb′ , while task τ2 on P2 performs a write operation on ld.

Figure 3.4: Memory layout [4]

In this example, the three studied configurations: SIMPLE, LL-EOT, and LL-EOL,

are represented in Fig. 3.5 and described in the legend shown in Fig. 3.6. The first

line shows how a task τ1 is managed without using DMA, which is the same for all

configurations. However, the second and third lines show the differences in time for

each configuration.

If the timeline for processor P2, which is managed by DMA, is analyzed, it can be

seen that the inequalities in section 3.3.1 are respected. Specifically, the SIMPLE

configuration is the slowest due to the delay time caused by σIN and σDT . In contrast,

LL-EOT and LL-EOL are quicker and can finish task τ2 more rapidly because they

don’t need to constantly recall the DMA. Specifically, LL-EOL is the fastest since it

doesn’t require time to call the interrupt after each transfer completion.

23

State of the art

(a) SIMPLE configuration [4]

(b) LL-EOT configuration [4]

(c) LL-EOL configuration [4]

Figure 3.5: DMA configurations [4]

24

State of the art

Figure 3.6: Legend [4]

To summarize, DMA engines can significantly improve the performance of automotive

systems by efficiently transferring multiple labels with minimal processor intervention.

However, it’s important to note that a single DMA transfer or list may contain data

from various tasks, which can cause delays until the DMA completion ISR.

Therefore, determining the optimal grouping of LET communications in DMA trans-

fers, as well as the order and grouping in linked lists, requires careful analysis on a

case-by-case basis. It cannot be generalized for all scenarios.

25

Chapter 4

Developed Methodologies

4.1 Introduction to the final application

To better understand the methods and techniques developed and tested in this thesis,

let’s delve into a more specific description of the target system and its time-related

aspects.

In particular, the attention in this thesis, as shown in Figure 1.1, is directed towards

the ”Power Source” block. This ”Power Source” block comprises two identical DC/DC

converters, a fuel cell, and a battery.

By manipulating the MOSFET gate signals, which, in turn, regulate the duty cycle

(i.e., the duration they are in the ”on” state), the speed of the motor is controlled.

26

Developed Methodologies

4.1.1 Electric scheme

Figure 4.1: DC/DC converter

In Fig. 4.1, the schematic diagram of a DC/DC converter’s electrical configuration is

depicted. The parameters that require sampling, representing the system’s inputs,

are highlighted in red, while the controlled quantities are denoted in blue.

4.1.2 Requirements

Let’s delve into the time-specific requirements: The selected switching frequency for

the MOSFETs is set at 100 kHz.

There are eight switches, four on the upper leg and four on the lower leg, arranged in

parallel. This configuration resembles a full bridge due to the central node, resulting

in pairs of switches operating together. As a result of the geometry of the system,

the ripple current exhibits a frequency four times higher than that of the inductors.

27

Developed Methodologies

The objective is to formulate a strategy for calculating the mean value of this ripple

frequency.

4.2 Communication between DMA & ADC

The DMA is employed to transfer data from an Analog-to-Digital Converter (ADC)

to a designated memory location. An ADC is a fundamental electronic component

responsible for converting continuous analog signals, typically voltage levels, into

discrete digital values.

The specific ADC module used here is the Enhanced Versatile ADC, which boasts 8

independent analog-to-digital converters (EVADC groups). Each of these converters

is capable of handling up to 16 analog input channels and provides digital output

with a maximum resolution of 12 bits.

Following the completion of each analog-to-digital conversion, an interrupt is triggered.

This interrupt serves as a signal to initiate the transfer of the converted ADC results

to a predefined memory destination. This memory destination can be, for example,

the CPU Data Scratch-Pad RAM (DSPR0).

The system supports multiple request sources that can initiate analog-to-digital

conversions with various configurations. These configurations encompass options

like single or repetitive conversions. Additionally, interrupts can be generated upon

completion of these conversions, and their behavior can be tailored as described in 3.3.

28

Developed Methodologies

Figure 4.2: DMA-EVADC communication [8]

As can be seen in Fig. 4.2, the result of the conversion is taken from the result register

of the EVADC (0xF0020700) and brought to the starting address of the DSPR0

(0x70000000).

29

Developed Methodologies

Figure 4.3: DMA-EVADC block diagram

The block diagram in Fig. 4.3 illustrates the inter-module communication framework

from an electronic perspective. Specifically, the Interrupt Router takes over handling

Service Requests in the ADC and can be commanded either by the CPU or the

DMA based on the chosen settings. Additionally, the ”Bus Peripheral Interface”

(BPI), registers related to the configuration and control of the peripheral interface,

are shared to optimize the communication path between the two components.

4.3 Tecniques implemented

In this section the techniques implemented in trying to best accommodate the final

application presented in 4.1 will be widely discussed.

30

Developed Methodologies

4.3.1 Moving average

The first technique taken into consideration was the ”moving average”. As reported

in [9], it ”is a time series constructed by taking averages of several sequential values

of another time series.”

In the example below is reported the ”one-sided moving average” of yt:

zt =
1

k + 1

kX
j=0

yt−j

t = k + 1, k + 2, ..., n

The term “moving average” is used to describe this procedure because each average is

computed by dropping the oldest observation and including the next observation. The

averaging “moves” through the time series until zt is computed at each observation

for which all elements of the average are available. Note that in the above examples,

the number of data points in each average remains constant.

Implementation

Specifically, it was implemented a ”centered moving average” to ensure that the

average is centered in the middle of the data values being averaged.

The selection of this method was driven by the need to sample the high-frequency

variations in ripple current from the inductors (Fig. 4.4) and calculate their average to

determine the mean value. Additionally, the incorporation of a ”dynamic” averaging

approach was deemed essential to periodically recompute the mean value, thereby

accommodating potential fluctuations.

31

Developed Methodologies

Figure 4.4: Moving Average

The current is sampled through the EVADC module, which triggers an interrupt after

each conversion, notifying the DMA module. The DMA module, as outlined in the

4.2 section, transfers the data to the designated memory and arranges it according to

the specifications in 5.2. Later on, the information is retrieved from the memory and

processed using the subsequent algorithm.

Now, let’s delve into the critical aspects in the provided pseudo-code 1: The code

demonstrates the ability to reconstruct a triangular wave by effectively detecting

changes in the direction of the sampled data. Specifically, when two consecutive

changes in direction are identified, it signifies the completion of a full period of the

triangular wave analysis. Consequently, by computing the average of the values within

this period, the mean value is determined and updated.

Furthermore, in the subsequent period of the triangular wave, this calculated mean

value can be compared with the new incoming samples while adhering to a predefined

tolerance threshold. This approach ensures the algorithm remains synchronized with

the waveform and can accurately identify variations within the specified tolerance

limits.

32

Developed Methodologies

Algorithm 1 Pseudo-code for moving target

Initialize variables:
buffer[N] ▷ N = number of samples saved in memory
value ▷ current value
target ▷ target value
tol ▷ predefined tolerance
i,k ▷ counters
flag = 0

for i from 0 to (N − 1) do
Read ”value” from destination memory
Store ”value” in ”buffer” at position [i]
Calculate ”error” as (”target”− ”value”)

if ”err” is between ”(−tol)” and ”tol” then
Print ”target reached”

else
Print ”target not reached”

end if

if (change of direction condition) then
Increment flag

end if

if flag = 1 then
Add ”buffer” at position [i] to ”sum”
Increment k

end if

if flag = 2 then
Calculate new target as (sum/k)
Set tol to 5% of ”target”
Print the new target value, the number of samples, and the tolerance.

Reset ”flag” to (−1), ”sum” to 0, ”k” to 0
end if

end for

33

Developed Methodologies

Figure 4.5: Implementation on the serial monitor of AURIX development studio

The implementation of the strategy in a test condition is depicted in Figure 4.5. In

this scenario, a triangular waveform ranging from 0 to 2 Volts, corresponding to a

range of 0 to 1600 levels 1, was generated using a wave generator.

Considerations

The described method can accurately determine the mean current of the tested

circuit but turned out to be impractical when compared to the requirements and

specifications of the board being used. In fact, to ensure the technique’s correct

1”1” quantization level = 0,00125V

34

Developed Methodologies

implementation, it’s necessary to collect a sufficient number of measurements during

each cycle. Consequently, the EVADC (Analog-to-Digital Converter) must operate

at a significantly higher frequency. By analyzing and referring the requirements

with the provided datasheet ([10]), it becomes evident that the EVADC can require

tens to hundreds of microseconds to complete a single conversion, depending on the

chosen mode, synchronization, calibration, and post-calibration steps. Considering

the frequency of the ripple triangular wave mentioned in section 4.1, it becomes clear

that the chosen strategy is not always feasible.

4.3.2 Double sampling

The ”double sampling method,” as described in the work by Chattopadhyay et al.

(2017)[11], involves two key steps: current sampling and phase shift updates. These

steps occur at specific points in the triangular carrier wave’s cycle: at the zero point

and at the peak.

To elaborate, the phase angles are calculated during half of the most recent switching

cycle. These calculated phase angles are then updated when the carrier wave reaches

its next peak, which is half a switching cycle later.

Similarly, when sampling currents at the peak of the carrier wave, the reference point

is set to the next peak, and the phase angles are subsequently updated when the

carrier wave reaches its next zero point. In essence, this method synchronizes current

sampling and phase angle updates with the carrier wave’s specific points to ensure

accurate control and measurement.

35

Developed Methodologies

Figure 4.6: Double sampling

Fig. 4.6 represents the sampling timing on a generic triangular wave to mimic the

ripple current of the main project. Sampling two times per period assures finding the

mean value of the current.

Ilow + Ihigh
2

= Imean

This result holds true under the condition that both edges, the rising edge (denoted

as krise) and the falling edge (denoted as kfall), have identical slopes. However, when

these two edges have different slope coefficients,krise ≠ kfall, a more sophisticated

technique called ”weighted double sampling” is required. This approach takes into

account the duty cycle as a weighting factor, as explained in greater detail in the

work by Chen et al. (2018)[12].

In simpler terms, when the slopes of the rising and falling edges are not the same, we

need to use a modified method that considers the duty cycle of the signal to ensure

accurate measurements.

Considerations

The ”double sampling” method represents a technique designed to rectify inaccuracies

arising from signal misalignment. This approach entails acquiring two samples within

each signal cycle and subsequently computing their average. Importantly, this method

possesses the theoretical capability to entirely mitigate errors stemming from signal

36

Developed Methodologies

misalignment.

Furthermore, when considering its application within the context of ?? (as previously

referenced), it becomes evident that this method seamlessly aligns with the specific

frequency requisites of the EVADC module.

4.4 Memory selection and organization

This section will clarify the data organization approach used for storing data acquired

through EVADC conversions in memory. The goal is to enhance data retrieval speed

within the control strategy application.

Additionally, an analysis and discussion will be conducted on the considerations

influencing the choice between the two main target memory options, as outlined in

2.4.1, within the context of the final application.

4.4.1 DMA moves

As briefly mentioned in 2.3, a transaction consists of transfers and moves. During each

move, the option to select memory addresses and destination registers is available,

enabling the organization of data based on factors like quantity, size, characteristics,

and application needs.

37

Developed Methodologies

(a) Programmable Address Generation : example 1 [2]

(b) Programmable Address Generation : example 2 [2]

In the figures provided, Fig. 4.7a and Fig. 4.7b, two examples are presented to

illustrate the concept. In Fig. 4.7a 16-bit half-words are seen to be transferred from

a source memory. The source address offset increments by 10H , while the data is

moved to a destination memory with a decrementing destination address offset of 08H .

Meanwhile, in Fig. 4.7a, another instance demonstrates the transfer of 16-bit half-

words. In this case, they originate from a source memory with an incrementing source

address offset of 02H and are directed to a destination memory with an incrementing

destination address offset of 04H .

38

Developed Methodologies

4.4.2 Circular buffer

The circular buffer configuration needs special care since it is the one implemented

in the final application. It is implemented by specifically placing the source address

and destination address that are updated within the circular buffer wrap-around

limits. Possible buffer sizes of the circular buffer in the Tricore TC399 can be (1, 2,

4, 8, 16, ... up to 64k bytes). Source and destination addresses are incremented or

decremented during a DMA move. It’s crucial to note that if the circular buffer size

is equal to or smaller than the selected address offset, the same circular buffer address

will be repeatedly accessed. For example, if the circular buffer has a dimension able

to accommodate a single value, such a value will be repeatedly rewritten at each

iteration.

Figure 4.7: Circular Buffer

Fig. 4.7 shows a graphical and conceptual representation of a circular buffer. When

the buffer reaches its tail, it starts rewriting its registers starting from the head.

39

Developed Methodologies

4.4.3 Final disposition

As written in 4.4.2, a circular buffer was selected for the accommodation of data in

memory for the final application both for the source and destination addresses.

Reasons

The major reasons that made this strategy preferred among the others possibly fall

in the specific requirements the system needs.

Regarding the source address, it was decided to create a buffer designed to hold a

single conversion result within a single register. It is important to note that the

EVADC (Enhanced Versatile Analog-to-Digital Converter) places its conversion result

in its result register, and this result is periodically updated with each new conversion.

Therefore, the approach taken involves implementing a circular buffer within a single

register. This buffer is configured to point to the address of the EVADC’s results

register. As a result, during each cycle, the DMA (Direct Memory Access) operation

references and retrieves the result from that specific register, which is consistently

overwritten with the latest conversion result.

On the other hand, the choice regarding destination addresses was driven by the

necessity to organize conversion results in a compact manner to maximize retrieval

speed. Furthermore, once the data is utilized, it becomes obsolete. Therefore,

employing a circular buffer that continuously updates the registers by overwriting old

data with new data is considered the most effective strategy.

Implementation

Fig. 4.8 reports an implementation of the strategy described above.

Specifically, the data to be stored in memory and coming from the EVADC had a

dimension of 12-bit, the DMA however can only operate with predefined memory

sizes, of which 16-bit is the closer. Thus, 16-bit was necessary to store a single result

in memory. Both the LMU and DSPR employ 8-bit registers. Consequently, adjacent

registers were paired to store a single conversion result. As mentioned earlier, to

ensure efficient data retrieval, it’s crucial to organize the data in memory without

any wasted space, maintaining contiguous addresses within registers.

40

Developed Methodologies

Figure 4.8: Memory organization

In particular, the registers utilized span from 0x90040000 (the LMU’s starting address)

to 0x90040040, as a circular buffer with a size of 64 bytes2 has been implemented.

This configuration allows concurrently storing 32 samples in memory, with each

sample occupying two adjacent addresses.

4.4.4 Destination memory selection

Let’s delve into the decision-making process between the two viable memory destina-

tions discussed in 2.4.1 - the DSPR (Data Scratch-Pad RAM) and the LMU (Local

Memory Unit).

The LMU represents an attractive option when critical factors such as data security,

safety, or the imperative for isolated memory regions come into play. Its efficiency in

storing data and allocating dedicated memory zones to individual cores helps reduce

resource contention. This proves especially advantageous in scenarios where multiple

cores simultaneously access a common memory space.

Still, the DSPR offers a different set of advantages, principally centered around faster

inter-core communication. This is achieved through its shared memory space, accessi-

ble to all cores without necessitating inter-core communication protocols. In addition

28 bits = 1 byte

41

Developed Methodologies

to facilitating rapid data exchange between cores, it’s noteworthy that DSPR boasts

superior intra-core communication as well. In fact, LMU relies on interconnection

with the CPU core via Shared Resource Interconnection (SRI), while DSPR can be

addressed directly on each core without utilizing the bus.

In summation, the decision between DSPR and LMU shall align with the technical

prerequisites of the system.

Given that the final application under consideration is a hard real-time system, the

DSPR emerges as the optimal choice, thanks to its capacity for rapid data transfer and

superior intra-core communication capabilities to enhance overall system performance

making it a perfect choice in the context of a hard real-time system where timing is

of of prime importance.

42

Chapter 5

Experimental results

In this chapter, the implementation of the techniques outlined in the previous chapter

4 will be presented and discussed. Furthermore, the tests conducted and the results

of the experiments will be reported.

5.1 Experimental Setup

The experimental hardware configuration employed to investigate the methodologies

elucidated in the preceding chapter (4) comprises the following components:

• AURIXTM TriBoard TC399, extensively detailed in chapter (2).

• R&S® RTB2000 Oscilloscope [13], operating in waveform generator mode,

boasting a 14-bit resolution, and a 250 Msample/s sample rate.

In particular, the waveform generator was employed to emulate the triangular ripple

waveform originating from the inductors of the system presented in the chapter (4).

This simulation served as a means to evaluate the performance of the implemented

C-code.

The results were assessed using the debugging features of the ”AURIX TM Development

Studio [14],” a versatile development environment that includes tools like Eclipse IDE,

C-Compiler, Multi-core Debugger, and Infineon low-level driver (iLLD). Importantly,

this environment doesn’t impose any limitations on time or code size. It made tasks

like editing, compiling, and debugging the application code straightforward and

efficient.

43

Experimental results

Figure 5.1: Experimental Setup

5.2 DMA settings

This section will detail the DMA settings and configurations applied in the experiments

described below in the chapter.

DMA channel initialization

IfxDma_Dma_ChannelConfig dmaConfig;

IfxDma_Dma_initChannelConfig (&dmaConfig , &dma);

Code 5.1: DMA channel initialization

A DMA channel configuration structure, denoted as ’dmaConfig’ and of type

IfxDma Dma ChannelConfig’, is employed for configuring a DMA channel. Such

44

Experimental results

structure is initialized by invoking the ’IfxDma Dma initChannelConfig’ function

which accepts two parameters: a pointer to the ’dma’ object and a pointer to the

’dmaConfig’ structure to set default values within the structure.

DMA channel configuration

dmaConfig.requestMode = IfxDma_ChannelRequestMode_oneTransferPerRequest;

dmaConfig.moveSize = IfxDma_ChannelMoveSize_xbit;

dmaConfig.channelInterruptPriority = 1;

dmaConfig.channelId = IfxDma_ChannelId_1;

Code 5.2: DMA channel configuration

The DMA channel configuration consists of the selection of the following parameters:

• ’requestMode’ to specify the modality of the transaction, which can be a single

transfer or a complete transaction.

• ’moveSize’ to specify the chunks of data to be transferred per request. The

available options for this parameter span from 8 to 256 bits.

• ’channelInterruptPriority’ and ’channelId’ determine respectively the pri-

ority level of the DMA channel interrupt and the ID of the DMA channel to be

initialized.

Circular buffer

dmaConfig.sourceAddressIncrementStep = IfxDma_ChannelIncrementStep_1;

dmaConfig.sourceAddressCircularRange = IfxDma_ChannelIncrementCircular_none;

dmaConfig.sourceCircularBufferEnabled = TRUE;

dmaConfig.destinationAddressIncrementStep = IfxDma_ChannelIncrementStep_x;

dmaConfig.destinationAddressIncrementDirection =

IfxDma_ChannelIncrementDirection_positive;

dmaConfig.destinationAddressCircularRange = IfxDma_ChannelIncrementCircular_x

dmaConfig.destinationCircularBufferEnabled = TRUE;

Code 5.3: Circular buffer implementation

The DMA settings for the circular buffer, as outlined in Chapter 4, are detailed below.

The parameters source/destinationAddressIncrementStep are utilized to deter-

mine the increment of source and destination addresses after each transfer. In the

45

Experimental results

context of the current application, the source address remains fixed, with no incre-

ment. Conversely, the destination address can be incremented by up to 128 bits. The

parameter destinationAddressCircularRange is employed to specify the size of

the circular buffer.

5.3 DMA tests

Since the detailed implementation of the DMA is proprietary information of Infineon,

and given the need to find the correct configuration of the module to achieve the best

possible results in terms of timing and reliability, an experimental test was necessary.

5.3.1 Transfer numbers

The following pseudo-code is employed to measure transaction speed using DMA on

the Infineon TriCore. The program tests different transfer numbers within a single

transaction to find the best setup for a particular application. Its main goal is to

determine whether it’s better to have a higher number of smaller transfers or fewer

larger ones in a transaction.

Implementation

The major steps executed in the pseudo-code include:

1. Initialization of the DMA module and the STM (System Timer Module).

2. Definition a transaction of 256 bits of data to be transferred.

// Define an array of data to be transferred (256 bits)

uint32 data [8] = {0xC0CAC01A , 0xBA5EBA11 , 0xDEADBEEF , 0xC0CAC01A ,

0xBA5EBA11 , 0xDEADBEEF , 0xC0CAC01A , 0xBA5EBA11 };

3. Execution of 1000 DMA transfers using the specified transfer number through

the ’.transferCount’ field adjusting the ’.moveSize’ to allow each time the

total data transferred to be the same and stopping the STM timer when each

transfer is complete.

46

Experimental results

dmaConfig.transferCount = x; // from 1 to 32

dmaConfig.moveSize = IfxDma_ChannelMoveSize_xbit; // from 256 to 8 bits

// For loop

Ifx_TickTime startTime = IfxStm_get(stm);

for (int j = 0; j < 1000; j++)

{

IfxDma_Dma_startChannelTransaction (& dmaChn);

while (IfxDma_Dma_isChannelTransactionPending (& dmaChn));

}

Ifx_TickTime stopTime = IfxStm_get(stm);

4. Calculation of the average results to determine the ”Transaction time”.

Ifx_TickTime elapsedTime = stopTime - startTime;

elapsedTime = elapsedTime / 1000;

// Transaction time

float tickDuration = 1.0 / IfxStm_getFrequency(stm); // 100 MHz

float elapsedSeconds_ns = (float)elapsedTime * tickDuration *

1000000000.0;

The STM (System Timer Module), as displayed in the pseudo-code, is utilized

to measure the elapsed time for each DMA transfer through the ’IfxStm get(stm)’

function to retrieve the current time from the STM. By invoking it before and after the

DMA transfers, it permits precise time measurement by calculating the time difference

between the two obtained results: ’elapsedTime = stopTime - startTime’.

47

Experimental results

Results and considerations

Figure 5.2: Transaction Time vs Number of Transfers

48

Experimental results

Transfer bits transferred Time (ns)

Number per Move 1 Move 2 Moves

1 256 420 430
2 128 420 460
4 64 540 660
8 32 780 1140
16 16 1140 1860
32 8 1980 3420

Table 5.1: Transaction time vs Number of transfers

The results presented in Tab. 5.1 and Fig. 5.2 originate from internal measurements

conducted using the STM module, as previously mentioned. It is important to

note that the STM module measures the execution time of the code under analysis,

specifically the ”for loop,” and not the actual transaction time. In this regard, the

introduction of a blank code line results in a time increase of 10ns, corresponding to

an STM clock stroke.

Also, let’s acknowledge that the STM operates at a lower frequency than the DMA,

with clock frequencies of 100 MHz and 300 MHz, respectively. Consequently, this

disparity contributes to intrinsic measurement uncertainties that can extend to ap-

proximately 7ns.

To illustrate these limitations, let’s examine the outcomes in time of the first two rows

of the table. These findings indicate a deviation from the expected downward trend in

execution time as the number of transfers increases. Specifically, the execution time

does not continue to decrease in these initial rows. The 420ns threshold represents a

practical lower limit beyond which obtaining precise measurements becomes unfeasible.

Conclusions

When dealing with variable transfer numbers, it becomes evident that it is highly

advantageous to aim for a single large transfer whenever possible.

In fact, the most significant time savings are achieved by minimizing the total number

of transfers, even if it means increasing the size of individual transfers.

In this context, please refer to Tab. 5.1 and 5.2, where it can be observed how reducing

49

Experimental results

the number of transfers per transaction can enhance the overall transfer time. For

instance, when examining the trend of the two moves represented by the orange bars

in the graph, which more effectively account for the uncertainties previously described,

it is evident that the transaction time decreases from 6300 ns for 32 transfers to 430

ns for a single transfer.

5.3.2 Moves per transfer

Another important aspect to be determined is the optimal number of moves to utilize

when dividing a transfer.

As indicated in chapter 2, a transaction is segmented into transfers and moves. This

analysis investigates whether larger moves when dividing a transfer result in a faster

transaction, thus if the pattern observed in transfers within a transaction is also

applicable in the number of moves within a transfer.

Implementation

The approach employed in this section closely resembles the one presented in the

previous section. The same modules and calculation procedures were utilized.

However, the primary focus of this section is to examine varying numbers of moves

within a fixed number of transfers while ensuring that the total transaction size

remains consistent for the sake of comparability. To achieve this, adjustments were

made to the parameters ’.moveSize’ and ’.blockMode’ during each measurement.

These adjustments ranged from 256 bits and one move to 16 bits and sixteen moves,

respectively.

The measurements were repeated with different numbers of transfers to more effec-

tively identify and explicit any potential trends.

// number of transfers

dmaConfig.transferCount = x;

// size of the move

dmaConfig.moveSize = IfxDma_ChannelMoveSize_xbit;

// number of moves

dmaConfig.blockMode= IfxDma_ChannelMove_x;

50

Experimental results

Results and considerations

Figure 5.3: Transaction Time vs Number of Moves

51

Experimental results

Table 5.2: Transaction Times for Different Moves number

Moves bits transferred
Transfer time (ns)

per Move n=1 n=2 n=4 n=8

1 256 420 420 540 660
2 128 420 540 660 900
4 64 420 660 900 1380
8 32 780 1140 1860 3420
16 16 1140 1860 3300 6300

Five different configurations of numbers of moves and move sizes were tested across

four different transfer packages, ranging from one to eight. The data were organized

systematically to emphasize the time differences arising from variations in the number

of moves.

It’s important to note that the measurements are subject to the same uncertainties

described in the previous section test.

Conclusions

Once again, in order to mitigate the impact of the intrinsic measurement uncertainties,

let’s focus on the values derived from the configuration with eight transfer moves,

represented by the purple bars in Figure 5.3 and detailed in Table 5.2.

The total transaction time presents a declining trend as the number of moves decreases,

mirroring the behavior observed with the number of transfers. Specifically, the total

transaction time decreases from 6300ns in the last row for the 16-bit sixteen-move

configuration to 660ns for the 256-bit one-move configuration.

Additionally, it’s worth noting an interesting observation: the time added to perform

one additional transaction or move appears to be consistent and identical. This can

be observed in the table. For instance, consider the configuration with 2 moves and

2 transfers per 128-bit and the configuration with one move and four transfers per

256-bit; both exhibit the same total transaction time and the same number of steps,

namely four each.

In light of these findings, it appears that organizing the total transaction with the

fewest possible transfers and moves, thereby transferring the largest possible amount

of information in bits in the fewest steps, represents the most effective strategy.

52

Experimental results

5.4 Configuration for the final application

By summarizing and exploiting all the results and considerations made, it is presented

here a pseudo code able to follow the strategy chosen to best meet all the requirements.

The following considerations were made:

DMA settings

Given that the minimum required data resolution for the transfer is 12 bits, and the

’.moveSize’ field of the DMA lacks direct support for this specific value, the decision

was made to utilize the closest available option of 16 bits. This choice aligns with the

principles outlined in the preceding section, emphasizing the optimization of speed

through the selection of a single move and a single transfer per transaction.

The primary time requirement to be met is to ensure that the control strategy executes

within approximately 10 microseconds (10µs).

Upon a thorough examination of the tables presented in the preceding section, it is

evident that the time required for data transfer is nearly negligible. To be precise,

transferring a 16-bit value in a single move and transfer operation takes less than 500

nanoseconds (500ns).

Target memory

The memory selected for allocating the data transferred by DMA, in accordance with

the considerations outlined in Section 4.4.4, is the DSPR (Data Scratch-Pad RAM).

For CPU0, the starting address is designated as 0x70000000.

Given that each register is 8 bits wide, it’s important to note that a single move will

utilize two consecutive registers to store the data.

Memory organization

The organization of data in the destination memory follows a circular buffer logic.

This approach was chosen because it aligns with the requirement of retrieving only

the most recent values from memory for use in the control algorithm. In fact, given

the limited storage capacity of the DSPR and the need to prioritize the latest data,

the circular buffer was the most suitable choice.

53

Experimental results

By carefully selecting the size of the circular buffer, it becomes possible to determine

how much data should reside in memory at any given moment.

Specifically, the source register, which corresponds to the result register of the EVADC

where the last conversion result is stored, remains constant across all transfers. This

is because the EVADC overwrites it with each new conversion.

Moreover, to accommodate more than one conversion result at a time, the destination

register is incremented by 2 widths (16 bits) with each move. The offset in memory

between two consecutive moves is set to zero, a deliberate choice to minimize overhead

and optimize data retrieval speed.

// Channel i

IfxDma_Dma_initChannelConfig (&chn[i], &dma);

chn[i]. transferCount = 1;

chn[i]. requestMode = IfxDma_ChannelRequestMode_completeTransactionPerRequest;

chn[i]. moveSize = IfxDma_ChannelMoveSize_16bit;

chn[i]. operationMode = IfxDma_ChannelOperationMode_continuous;

chn[i]. hardwareRequestEnabled = TRUE;

chn[i]. interruptRaiseThreshold = 0;

chn[i]. sourceAddressIncrementStep = IfxDma_ChannelIncrementStep_1;

chn[i]. sourceAddressCircularRange = IfxDma_ChannelIncrementCircular_none;

chn[i]. sourceCircularBufferEnabled = TRUE;

chn[i]. destinationAddressIncrementStep = IfxDma_ChannelIncrementStep_1;

chn[i]. destinationAddressIncrementDirection = // positive

chn[i]. destinationAddressCircularRange = IfxDma_ChannelIncrementCircular_4;

chn[i]. destinationCircularBufferEnabled = TRUE;

chn[i]. channelInterruptEnabled = FALSE;

chn[i]. channelInterruptTypeOfService = IfxSrc_Tos_dma;

chn[i]. channelInterruptPriority = i;

// Channel specific configuration

chn[i]. channelId = IfxDma_ChannelId_i;

// result register of the EVADC

chn[i]. sourceAddress = MODULE_EVADC.G[y].CHCTR [0].B.RESREG;

chn[i]. destinationAddress = DSPR0;

// initialize the channel

IfxDma_Dma_initChannel (& dmaChn[i], &chn[i]);

Code 5.4: Final application for a channel ’i’

The pseudo-code provided above outlines the selected configuration for a single DMA

’i’ of the DMA.

54

Experimental results

The DMA was selected as the interrupt service provider, as indicated by the

’.channelInterruptTypeOfService’ field, with the aim of minimizing the CPU’s

overhead. It is the CPU that bears the responsibility for executing the control

strategy.

Observing the size of the destination circular buffer, as indicated by the

’.destinationAddressCircularRange’ field, it becomes evident that, in this partic-

ular case, the decision has been made to store data from only the two most recent

transactions in memory. In fact, each channel ’i’ will have a memory destination

between ’0x70000000 + 4i’ and ’0x70000000 + 4(i+ 1)’, a space of 4 bytes or 32 bits.

Another decision to make pertains to the ’.requestMode’ setting. If the application

demands a high-speed data transfer rate with minimal CPU overhead, then utilizing

the DMA to initiate a complete transaction for each request it receives can be the

optimal choice, as it can result in faster and more efficient data transfer.

Conversely, if the application necessitates greater control over the data transfer

process and requires additional data processing or filtering, then initiating a single

transfer for each received request can provide the desired level of control and allow

for additional data processing or filtering.

Nevertheless, considering the frequent emphasis on the need for fast and efficient

transfers, particularly in the context of hard real-time systems, the

’.completeTransactionPerRequest’ mode was ultimately selected as can be seen in

the pseudo-code.

In the complete program, seven DMA channels, labeled from ’0’ to ’6’, were configured

as described above, in accordance with the input quantities to be sampled as indicated

in 4.1.

The ’.channelInterruptPriority’ parameter corresponds to the channel num-

ber, with channel ’0’ having the highest priority and channel ’6’ having the low-

est. However, the DMA channels are triggered by hardware requests, indicated

by ’.hardwareRequestEnabled = TRUE’, which are generated by their respective

EVADC channels when a conversion is completed and the result is available in the

result register. In fact, each DMA channel is specifically associated with a distinct

EVADC channel and is responsible for handling only its own request.

55

Chapter 6

Conclusion

In this thesis, the investigation centered on intra-core communication within hard

real-time systems in the automotive control domain.

The primary focus of this study revolved around the examination of data transfer

configurations using Direct Memory Access (DMA) and the systematic organization

of data within the target memory.

To achieve the objectives of the thesis, the following activities were undertaken:

• A comprehensive study of the memory modules of the TriCore was conducted

to determine the most suitable option for accommodating the final application,

ensuring fast and reliable memory access, and efficient data retrieval.

• An exhaustive analysis of the DMA module was performed, covering all its

functions and settings. Two programs were implemented to assess its working

modes, enabling the precise selection of the best configuration in accordance

with specific requirements.

• Development of a final application program capable of meeting the requirements

of the DC/DC converter and seamlessly integrating with the EVADC module.

The selected memory for data storage was the DSPR (Data Scratch-Pad RAM),

chosen for its superior access speed and efficient data transfer compared to the LMU

(Local Memory Unit).

56

Conclusion

Based on the conducted tests, the optimal DMA configurations involved unifying

the entire transaction into a single move and transfer operation to maximize data

transfer speed.

The final application program established connections between each EVADC channel

responsible for sampling input data (Fig. 4.1) and a distinct DMA channel, ensuring

efficient transfer and organization of conversion results in the designated target

memory.

6.1 Future steps

The future steps of this work will encompass inter-core communications. It is impor-

tant to reiterate that the system being examined consists of two DC/DC converters,

which constitute the fuel cell and the battery, along with an inverter (refer to Fig. 1.1).

Consequently, there is a need to establish connections between three boards: two for

the DC/DC converters and one for the inverter. The communication architecture will

involve a master-slave configuration, where the inverter assumes the role of the master.

In this context, the definition and implementation of a ’communication protocol’,

along with the establishment of data exchange mechanisms to facilitate seamless

interaction between the master and slave boards, will be crucial to the project’s

successful execution.

Furthermore, the undertaking of a ’data synchronization’ mechanism becomes essential.

This mechanism will ensure synchronized data transfer and coordination among the

boards, thereby guaranteeing the proper functioning of the overall system.

57

Bibliography

[1] AURIX TM TriBoard TC399. url: https://www.infineon.com/cms/en/

product / promopages / AURIX - microcontroller - boards / AURIX - TC3xx -

TriBoards/AURIX-TriBoard-TC399-5V-with-socket/.

[2] AURIXTM TC3xx User Manual part1. Infineon, 2021.

[3] C. M. Kirsch T. A. Henzinger B. Horowitz. Giotto: A Time-Triggered Language

for Embedded Programming. Springer, 2001, pp. 166–184.

[4] Paolo Pazzaglia et al. “Optimizing inter-core communications under the let

paradigm using dma engines”. In: IEEE Transactions on Computers 72.1 (2022),

pp. 127–139.

[5] Jorge Martinez, Ignacio Sañudo and Marko Bertogna. “End-to-end latency

characterization of task communication models for automotive systems”. In:

Real-Time Systems 56 (2020), pp. 315–347.

[6] General Purposes Direct Memory Access (GPDMA). url: https : / / www .

infineon . com / dgdl / Infineon - GPDMA - XMC4000 - AP32290 - AN - v01 _ 00 -

EN.pdf?fileId=5546d4624e765da5014ed9145c601e95.

[7] Selma Saıdi. “Optimizing dma data transfers for embedded multi-cores”. In:

PhD disseratation, univercity of Grenovale (2012).

[8] DMA ADC Transfer 1 for KIT AURIX TC375 LK DMA transfer of ADC

conversion results. url: https://www.infineon.com/dgdl/Infineon-DMA_

ADC_Transfer_1_KIT_TC375_LK- Training- v01_00- EN.pdf?fileId=

5546d4627883d7e00178a2b187ce386c.

[9] Rob J Hyndman. Moving Averages. 2011.

[10] AURIXTM TC3xx User Manual part2. Infineon, 2021.

59

https://www.infineon.com/cms/en/product/promopages/AURIX-microcontroller-boards/AURIX-TC3xx-TriBoards/AURIX-TriBoard-TC399-5V-with-socket/
https://www.infineon.com/cms/en/product/promopages/AURIX-microcontroller-boards/AURIX-TC3xx-TriBoards/AURIX-TriBoard-TC399-5V-with-socket/
https://www.infineon.com/cms/en/product/promopages/AURIX-microcontroller-boards/AURIX-TC3xx-TriBoards/AURIX-TriBoard-TC399-5V-with-socket/
https://www.infineon.com/dgdl/Infineon-GPDMA-XMC4000-AP32290-AN-v01_00-EN.pdf?fileId=5546d4624e765da5014ed9145c601e95
https://www.infineon.com/dgdl/Infineon-GPDMA-XMC4000-AP32290-AN-v01_00-EN.pdf?fileId=5546d4624e765da5014ed9145c601e95
https://www.infineon.com/dgdl/Infineon-GPDMA-XMC4000-AP32290-AN-v01_00-EN.pdf?fileId=5546d4624e765da5014ed9145c601e95
https://www.infineon.com/dgdl/Infineon-DMA_ADC_Transfer_1_KIT_TC375_LK-Training-v01_00-EN.pdf?fileId=5546d4627883d7e00178a2b187ce386c
https://www.infineon.com/dgdl/Infineon-DMA_ADC_Transfer_1_KIT_TC375_LK-Training-v01_00-EN.pdf?fileId=5546d4627883d7e00178a2b187ce386c
https://www.infineon.com/dgdl/Infineon-DMA_ADC_Transfer_1_KIT_TC375_LK-Training-v01_00-EN.pdf?fileId=5546d4627883d7e00178a2b187ce386c

[11] Ritwik Chattopadhyay et al. “One switching cycle current control strategy for

triple active bridge phase-shifted DC-DC converter”. In: 2017 IEEE Industry

Applications Society Annual Meeting. IEEE. 2017, pp. 1–8.

[12] Fang Chen. “Weighted double sampling to obtain the average value of triangular

current for accurate droop control in DC power distribution systems”. In: IEEE

Transactions on Industrial Electronics 66.11 (2018), pp. 8733–8740.

[13] R&S® RTB2000 OSCILLOSCOPE. url: https : / / www . farnell . com /

datasheets/3216077.pdf.

[14] AURIX TM Development Studio. url: https://www.infineon.com/cms/en/

product/promopages/aurix-development-studio/.

https://www.farnell.com/datasheets/3216077.pdf
https://www.farnell.com/datasheets/3216077.pdf
https://www.infineon.com/cms/en/product/promopages/aurix-development-studio/
https://www.infineon.com/cms/en/product/promopages/aurix-development-studio/

	List of Tables
	List of Figures
	Introduction
	Motivation and goal of the thesis
	Outline of the Thesis

	Background
	Memory
	Volatile and non-volatile memory
	Basic computer architecture
	CPU memory map
	Direct Memory Access (DMA)

	Microcontroller (MCU)
	General architecture
	SOC
	AURIXTM TriBoard TC399

	DMA in AURIXTM TriBoard TC399
	Target memory
	Local Memory Unit RAM (LMU) & Data Scratch-Pad RAM (DSPR)

	State of the art
	Logical Execution Time (LET) paradigm
	Implementation of LET
	Limits and issues

	DMA LET communications
	Intra-Core Communications
	Inter-Core Communications

	DMA Configurations
	Timing of DMA

	Final example and considerations

	Developed Methodologies
	Introduction to the final application
	Electric scheme
	Requirements

	Communication between DMA & ADC
	Tecniques implemented
	Moving average
	Double sampling

	Memory selection and organization
	DMA moves
	Circular buffer
	Final disposition
	Destination memory selection

	Experimental results
	Experimental Setup
	DMA settings
	DMA tests
	Transfer numbers
	Moves per transfer

	Configuration for the final application

	Conclusion
	Future steps

	Bibliography

