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Summary

As the field of robotics continues to evolve, there is a growing emphasis on achieving
seamless collaboration between humans and robots. This thesis delves into the
intricate dynamics of human-robot interaction. It lays the foundation for a more
natural and fluid collaboration paradigm, inspired by human-to-human interactions.
This approach replaces the traditional reactive model with a predictive one, where
the robot does not merely react to human stimuli but anticipates human intentions
and responds accordingly.

The purpose of this thesis is to harness the power of Transformer Neural
Networks to forecast human forces and motions. In order to train our Neural
Network we collected data from brief interactions between a human and a robotic
arm, specifically a Panda arm developed by Franka Emika.

In our approach, we implemented an impedance controller on the robotic arm to
establish a secure and harmonious collaboration. The manipulator not only ensures
the safety of the interaction but also allows us to estimate the force exerted by the
human operator on the end effector.

We captured kinematic information from the human using the Xsens motion
capture suit. This tool enables the precise tracking of human movements, thereby
furnishing our network with additional contextual information. This contextual
data is pivotal in ensuring the accurate identification of both the direction and the
intensity of the force signal.

The data collected was accurately filtered to remove external noise and given
as input to a Transformer architecture. The chosen network is based on GPT-2
Transformer with appropriate modification to make it suitable for time series
forecasting.

In conclusion, the approach proposed in this study can predict contact forces and
human motions. These estimations can, in the future, be used as a foundational tool
to allow robots to have deeper insights on human intentions and as a consequence
improve the interaction between humans and robots.
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Chapter 1

Introduction

1.1 Thesis Description

As robots increasingly become part of our daily lives, the domain of Human-Robot
interaction takes on greater significance, particularly in the context of ensuring
safe and secure interactions with humans.

Various strategies have been devised for this purpose. Initially, the focus was
on safe co-existence, ensuring that robots could avoid or halt their actions in
human presence to prevent any potential harm. However, with the continuous
advancements in robotics, a paradigm shift occurred, leading to the emergence of
the safe cooperation approach. In this paradigm, robots actively assist humans in
tasks without requiring physical contact.

An unsolved challenge in this domain is the facilitation of direct physical
interaction between agents, a concept known as "safe physical interaction" [1]. This
would allow human operators to guide robots in tasks while the robots estimate
human intentions to adapt assistance. To achieve collaborative dynamics resembling
human-human interaction, robots must tackle the intricate task of predicting human
movements and forecasting force dynamics. This capability would allow robots to
have an insight into human intentions so that they could pre-emptively foresee and
manage risks. Robots could also estimate the skill level or fatigue of the human
performing the task ahead, this information can also allow the robot to regulate
the level of assistance that it should have on the task based on the need required by
the human. This is a new paradigm that is known as shared autonomy [1], where
a robot can autonomously regulate the level of interaction based on the estimated
human intentions and environmental conditions.

Moreover, force and motion predictions can be used to estimate the human’s
emotions, for example, if the human performs uneven motions, it could be an
indicator of fear and could prompt the robot to adopt slower movement and reduce
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Introduction

close interaction, while a more confident person could work at a faster pace in a
more efficient manner.

In the field of human motion forecasting, a multitude of studies address this
complex challenge. For instance, Ackermann et al. [2] propose a model-based
approach, employing a dynamical system to predict human behavior. Nevertheless,
the predominant focus in research has leaned toward model-free techniques. For
example, a study applies Hidden Markov Models (HMMs) to predict motion [3].
More recently, there has been a shift towards the utilization of Neural Networks
(NNs) for this purpose, Kratzer et al. [4] employ a Recurrent Neural Network to
forecast short-term human dynamics.

Historically, when it comes to estimating contact forces, the field has been
heavily influenced by model-based techniques, particularly those rooted in residual
estimation methods [5]. These methodologies heavily rely on dynamical models
to deduce forces. However, one of the key challenges with such approaches lies
in their limited adaptability to different individuals. While model-free techniques
for force estimation have begun to surface [6], the field of predicting forces during
physical contact remains relatively uncharted territory.

The inherent complexity associated with the estimation and prediction of forces
exchanged in human-robot interactions emphasized the pressing need for innovative
methodologies that can not only enhance safety but also boost the efficiency of
such interactions.

In this thesis, we introduce a novel framework designed to forecast both the
forces exchanged between a human operator and a robot and the accompanying
human movements. To achieve this, we gathered data from interactions involving
a human operator wearing a haptic suit and interacting with the end effector of a
robotic manipulator. During these interactions, the human operator led the end
effector in a pre-determined direction. The data collected from the haptic suit
formed the basis for our Neural Network dataset, while the robotic arm recorded
the true force values during the interactions. These recorded data served as a
means to assess the accuracy of our model.

Our model can predict contact forces solely by analyzing kinematic information
from the human arm, including joint angles, velocity, and acceleration data collected
using a motion capture suit. We then compared these predicted forces with the
ground truth forces measured by the manipulator with which the human is in
contact.

One notable advantage of our model lies in its independence from explicit force
measurements for force prediction in the inference phase. In numerous applications,
obtaining a direct force measurement is often impractical, primarily because the
introduction of Force/Torque sensors might be unfeasible due to their susceptibility
to noise and environmental disturbances.

Given the absence of input force data, our model comprises two distinct networks.
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The first network is a multi-layer perceptron designed for regression tasks. It
takes, as input, the kinematic data at a specific time instant and estimates the
corresponding contact force for that same instant.

The second component in our model takes charge of the prediction task and
employs a Transformer network [7]. These networks were originally designed for
natural language processing (NLP) as they adopt the innovative technique of
attention to solve the vanishing gradient problem that affects both traditional
Recurrent Neural Network models and Long Short Term Memory networks (LSTM)
as comprehensively examined in [8].

Transformers also have been effectively adapted to time series prediction, espe-
cially in the analysis of long-term time-series predictions, and have proven to be
effective when applied to long series.

In our setup, the Transformer takes as input both the contact forces estimated
by the first element and the kinematic data over a window of adjustable length. It
has the capacity to generate predictions up to 800 milliseconds into the future and
can identify multiple movements in various directions.

In this thesis, we present the following key contributions:

• We introduce a predictive model capable of foreseeing both human movements
and the contact forces that arise during interactions between humans and
robots, anticipating events in a future time frame. This predictive capability
holds the potential for enhancing the performance of robots in understanding
and adapting to human intentions. It is worth noting that the exploration of
the controller aspect, such as a model predictive controller [9], is beyond the
scope of this thesis.

• During our testing phase, our network demonstrates the ability to estimate
contact forces exclusively based on kinematic data related to the human. This
feature significantly enhances the versatility of our framework, especially in
situations where dedicated Force/Torque sensors might not be accessible.

This thesis is structured as follows: In section 1.2, we provide an introduction to
the LAAS laboratory in Toulouse, where this research was conducted. In Chapter
2, we delve into the essential theoretical foundations required for a comprehensive
understanding of this thesis. Following that, Chapter 3 presents the framework
employed for data collection, and offers a detailed description of the architecture
and the training strategies employed. Lastly, in Chapter 4, we discuss the results
obtained.
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Introduction

1.2 Research Laboratory
The National Center for Scientific Research, better known by its acronym CNRS,
is the largest public French organization for scientific research. It conducts its
activities in all fields of knowledge. Founded in 1939, with the aim to "coordinate the
activity of laboratories in order to achieve a higher yield from scientific research,".
Its scientific activities are divided among ten national institutes specialized in
various fields of knowledge.

These institutes oversee approximately a thousand units or "laboratories" and
labeled services, most of which are managed in collaboration with other entities
such as universities, other research establishments, higher education institutions,
industries, and more.

According to the Scimago Institutions Rankings, CNRS ranks third globally as
a research center. Webometrics confirms this third-place global ranking and adds
that it also holds the first position in Europe.

The Laboratory of Analysis and Architecture of Systems (LAAS) is one of the
independent research units (UPR) of the CNRS. Established in 1968, in association
with the University of Toulouse, LAAS conducts research in the fields of computer
science, robotics, automation, and micro and nanosystems. Additionally, LAAS
promotes interdisciplinary research through 4 strategic axes: Ambient Intelligence,
Living (biology, environment, medicine), Space, and Energy.
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Chapter 2

State of the Art

In this chapter, we introduce the theoretical concepts that underlie the research
presented in this thesis.

Then in section 2.1 we delve into the theory of Shared Control and Autonomy,
which serves to justify the rationale behind our work.

The subsequent section, 2.2 begins by providing an overview of Neural Networks.
In Section 2.3, we delve into the specifics of Transformers, while Section 2.4

offers a concise recap of the challenges associated with time series prediction and
how Transformers have been applied to address them.

The following section, 2.5, shifts to the field of Force measurements. To be
more precise, we scrutinize the Residual method, which serves as a means to
establish a ground truth for our model. Following this, we provide a short overview
of Impedance control, in 2.6, a strategic approach we have implemented on the
selected manipulator to ensure a secure and efficient collaboration with humans.

Finally, in Section 2.7, we introduce related works that have explored the issue
of Force prediction in the field of Human/Robot Interaction.

2.1 Shared Control
In the field of Human-Robot interaction, the level of autonomy in robots can
vary significantly across different applications. To address this variability, several
control architectures have been designed to allow humans to interact with partially
autonomous robots.

One of these design methodologies is Shared Control (SC) [1], which aims to strike
a balance between human intervention and autonomous decision-making. In SC, the
human and autonomous controller inputs are combined through a predetermined
function, which determines the robot’s behavior and level of autonomy. However,
over the last decade, significant progress in sensing, inference, modeling, and
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learning methods has paved the way for an evolution beyond Shared Control. This
advancement has led to the emergence of Shared Autonomy (SA) approaches, where
robots exhibit the capability to adapt their autonomy levels seamlessly based on
their understanding of human actions, intentions, and the surrounding environment.
The key aspect of SA is its adaptability, which becomes especially desirable in
dynamic and ever-changing environments and in situations where human behavior
evolves over time. Unlike SC, where the robot’s behavior is fixed according to
the human’s design, SA incorporates a higher level of intelligence that enables the
robot to continuously adjust its autonomy, offering a more intuitive and human-like
interaction.

The dynamics of a robotic system can be described through the equation
ẋ(t) = f(x(t), u(t)) (2.1)
u(t) = hθ(uh(t), ua(t); θ(t)) (2.2)

where x represents the robot environment state, u denotes the control input,
and θ models the robot’s understanding of the human and/or the environment.
The arbitration function hθ plays a pivotal role in combining and modulating the
autonomous control input ua and the human input uh. In SC approaches this
function is often designed as a linear combination of the two inputs.

h(uh, ua) = αuh + (1 − α)ua (2.3)
where α ∈ [0,1] is a weight that distributes the control authority between the
human and the controller.

In Shared Autonomy, the concept of autonomy classification becomes more
nuanced. In the past, some research papers attempted to propose discrete classifica-
tions of autonomy levels for SC applications in specific domains, such as telerobotics,
autonomous vehicles, and surgical robotics. However, these classifications were
domain-specific and often challenging to generalize.

In contrast, for SA approaches, a continuous spectrum of autonomy levels appears
to be more appropriate, as it accommodates the robot’s ability to continuously
adjust its autonomy level based on real-time signals and feedback from the human,
the task at hand, and the surrounding environment. This adaptability ensures that
the robot can effectively respond to ever-changing conditions and deliver optimal
performance.

Originally, Shared Control was introduced primarily as a control architecture for
remotely operated robots. The incorporation of some degree of autonomy in the
robot was necessary to overcome communication delays between local and remote
sites. Traditionally, architectures corresponding to different human interaction
modalities were categorized into three classes:

1. direct control, where the robot’s degrees-of-freedom were controlled directly
by the user through local interfaces;
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2. supervisory control, where user commands and feedback occurred at a higher
level, with the robot relying on stronger local autonomy to refine and execute
tasks;

3. shared control, which encompassed all the intermediate levels where the robot
was controlled through a combination of direct user commands and autonomy.

While SC was an important step in enhancing human-robot interactions, it still
lacked the finesse of mutual adaptation and seamless cooperation found in human-
human interactions.

SA architecture revolutionized the landscape of human-robot interactions by
enabling a level of interaction much closer to human-human interaction. In a SA
system, the robot can infer, in a probabilistic sense, the action that the human is
performing. Based on this information, the robot can compute the appropriate
action it must undertake, regulating its autonomy level and providing assistance as
needed. This adaptability is crucial in achieving a human-like interaction experience
and ensuring a harmonious collaboration between humans and robots.

To enhance the interaction experience further, this project will leverage machine-
learning techniques, such as transformers, to predict the expected interaction
force. By analyzing information from past interactions, the system can infer the
current force and predict it within a time horizon. This anticipatory capability is
reminiscent of how two humans collaborate during tasks like object transportation.
Humans instinctively anticipate each other’s future behavior, adapt accordingly, and
work harmoniously. Similarly, robots equipped with SA capabilities should estimate
humans’ future intentions and actions to offer intuitive and natural assistance.

2.2 Neural Networks
In the field of machine learning, Neural Networks have emerged as a key technology,
fundamentally altering the way we approach complex computational problems.
These mathematical constructs, inspired by the biological Neural Networks of the
human brain, have revolutionized various domains, ranging from image analysis
and natural language understanding to robotics and autonomous systems [10].

Neural Networks are composed of interconnected nodes, also known as artificial
neurons, organized into layers. Each connection between nodes is associated with a
weight, which is adjusted during training to optimize the network’s performance.

The output produced by each neuron is obtained as the result of a non-linear
function named activation function. The choice of activation function is a key
problem in the architecture of a Neural Network, some of the most common choices
can be:

• Rectified Linear Unit (ReLU): f(z) = max(0, z)
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Figure 2.1: Neuron structure

• Leaky ReLU: f(z) =
z if z > 0

αz otherwise

• Exponential Linear Unit (ELU): f(z) =
z, if z > 0

α(ez − 1), otherwise

2.2.1 Layer classifications
In a Neural Network, layers are fundamental building blocks that organize and
process data as it flows through the network. Each layer is composed of a collection
of artificial neurons and plays a specific role in transforming input data into
meaningful output. We can classify the layers in a Neural Network based on their
position in:

1. The Input Layer, it is the first layer of the Neural Network, and its primary
function is to receive the raw input data.

2. Hidden Layers, which are intermediary layers between the input and output
layers. These layers are responsible for extracting and learning relevant
patterns and features from the input data. Each neuron in a hidden layer
takes input from all neurons in the previous layer and applies a weighted
sum of these inputs, followed by an activation function, to produce an output.
Hidden layers enable the Neural Network to capture complex relationships
and representations in the data.

3. Output Layer, this is the final layer of the Neural Network, responsible for
producing the network’s predictions or outputs. The number of neurons in the
output layer depends on the specific task the Neural Network is designed for.
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However, multiple naming systems can be employed to categorize the layers within
Neural Networks. For instance, they can be categorized according to the activation
function executed by the neurons or according to the connections established
between the neurons within the current layer and those in other layers. Some
common examples include:

1. Fully Connected Layers where each neuron in the layer is connected to
every neuron in the next layer. They can become computationally expensive
as their input grows. As such, they are commonly used for specific purposes
within Neural Networks such as classifying image data.

2. Convolutional layer applies a convolution operation to the input, passing
the result to the next layer. They are very used in the processing of images
because they convert all the pixels in their receptive field into a single value.

3. Recurrent Layers where both input and prior states are fed into the neurons
in order to create a sort of memory, they are used in recurrent and LSTM
Neural Networks.

The transformation implemented by each layer is parameterized, based on the
weights and bias of each neuron, the number of parameters is also known as the
number of features of layer l. The value of these parameters is assigned during
training to achieve optimal performance.

2.2.2 Neural Network Fine-tuning
The weights and biases of a Neural Network are continuously updated until the
minimum error is reached. The error, in a supervised problem, is defined as the
mismatch between the output produced by the Neural Network and its actual value.
To quantify and systematically minimize this error during the training process, a
mathematical function known as the loss function is employed. The loss function
measures the extent of this error and guides the optimization algorithms to adjust
the Neural Network’s parameters for improved performance.

In the initial stage of training, each weight and bias is initialized to a random
value near zero. To enhance the network’s performance, a widely adopted approach
is the utilization of the backpropagation algorithms. These optimization algorithms
involve the systematic propagation of errors from the output layer backward through
the network, taking into careful consideration the chain rule. Consequently, weight
adjustments are made based on the gradient of the loss function concerning each of
its parameters. This methodology, named gradient descent, is employed iteratively
to determine the optimal parameters that lead to a local minimum within the loss
function. The rate of parameter updates during the gradient descent process is
finely controlled by a critical hyper-parameter termed the "learning rate."

9



State of the Art

Figure 2.2: Neural Network structure

The learning rate plays a crucial role in the convergence and stability of the
optimization process. If the learning rate is too small, the model’s parameter
updates will be tiny, and the optimization process will be slow, requiring many
iterations to converge to a good solution. On the other hand, if the learning rate
is too large, the parameter updates may overshoot the optimal values, leading to
instability and failure to converge.

One particularly widespread optimization algorithm is known as Adam, based
on backpropagation, short for Adaptive Moment Optimization. Adam employs the
following equations for each parameter ωi to minimize error rates.

vt = β1vt−1 − (1 − β1)gt (2.4)
st = β2st−1 − (1 − β1)g2

t (2.5)

∆ωt = −η
vt√

st + ϵ
gt (2.6)

ωt+1 = ωt + ∆ωt (2.7)

with η initial learning rate, gt gradient of the loss function at time t with respect to
ωi, vt exponential average of gradients along ωi, st exponential average of squares
of gradients along ωi β1 and β2 are the adjustable hyper-parameters.

The data sets also play a crucial role in ensuring the success of a Neural
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Network. Since the weight update is determined by the derivative of the activation
function, there is a possibility of an asymmetrical update process, particularly
in heterogeneous data sets like the one we used in our project. This can result
in certain weights being updated at a faster rate than others, to mitigate this
phenomenon, we apply a process of input data normalization to standardize features.
Furthermore, a data set that is not adequate for the problem under analysis can
cause ulterior problems such as underfitting or overfitting.

Underfitting, also known as "type I error," occurs when a model cannot effectively
capture the patterns in the training data. It often results from overly simple models,
such as those with too few layers or neurons. A typical sign of underfitting is poor
performance on both the training and testing data, indicated by high bias in the
model’s output.

Overfitting is a more common problem of Neural Networks and it occurs when
a model learns the intricacies and noise in the training data so precisely that it
adversely affects its performance on new, unseen data. This happens because the
model mistakenly treats the noise in the training data as meaningful patterns or
concepts. The challenge here is that these learned concepts may not be applicable
to new data, hampering the model’s ability to generalize effectively.

Overfitting often arises in scenarios with a small data set that contains a high
level of noise. To mitigate overfitting, potential solutions include simplifying the
model’s complexity or, where feasible, increasing the size of the data set. One
common indicator of overfitting is a high level of variance during the testing phase.

An alternative approach to counteract overfitting is to employ regularization
algorithms, which are effective tools for reducing the model’s tendency to fit noise
in the training data and promote better generalization.

These algorithms introduce additional constraints to the learning process, dis-
couraging the model from becoming too complex and fitting the noise in the training
data. Among the most common techniques, we can cite:

• L1 Regularization (Lasso): it adds a penalty term proportional to the absolute
value of the weights to the loss function. It encourages the model to shrink less
important features’ coefficients to zero, effectively performing feature selection.

• L2 Regularization (Ridge Regression): it adds a penalty term proportional to
the square of the weights to the loss function. It forces the model to spread
the influence of each feature across all output units, making the model more
stable and less sensitive to individual data points.

• Dropout: this technique was specifically designed for Neural Networks. During
training, a subset of neurons in a layer are randomly deactivated (set to zero).
This encourages the network to learn redundant representations and reduces
co-adaptation among neurons. At test time, all neurons are used, but their
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weights are scaled by the dropout probability to ensure that the expected
output remains the same.

• Batch Normalization: it normalizes the output of each neuron in a layer to
have zero mean and unit variance over a mini-batch of training samples. This
helps in avoiding the vanishing/exploding gradient problem during training.
Batch normalization acts as a form of regularization by reducing internal
co-variate shifts, and it can improve the training speed and generalization
performance.

• Data Augmentation: it is a technique used to artificially increase the size of
the training data set by applying random transformations to the original data.
For example, in image data, this could involve random rotations, translations,
flips, or brightness adjustments. Data augmentation helps the model generalize
better by exposing it to different variations of the same data.

• Early Stopping: it is a regularization technique that monitors the model’s
performance on a validation data set during training. When the validation
performance stops improving, training is halted before overfitting occurs.
This prevents the model from overtraining on the training data and helps it
generalize better to unseen data.

These regularization techniques can be used individually or in combination to
prevent overfitting and improve the performance of Neural Networks.

In order to accurately test the data set cross-validation is the most common
approach. This is a statistical method used to estimate the performance of machine
learning (ML) models where the data set is randomly divided into two categories:
the training and the test set. The model is trained using a training set. At the end
of this phase, the data that was removed can be used to test the performance of
the learned model on new data. The technique just described can present slight
variation in its application, hence the techniques applied can be classified as follows:

• The holdout cross-validation consists of dividing the data set into two subsets:
training set and test set sometimes called validation set.

• K-fold cross-validation where the data set is divided into “k” subsets, and the
holdout method is, then, repeated k times. During each test, one of the k
subsets is used as the test set while the remaining k-1 subsets are combined
to form a training set. In the end, the average error across all k trials is
computed. The advantage of this method is that the result is not affected by
the way training and test sets are chosen. However, the downside is that the
training algorithm has to be rerun from scratch k times.

12



State of the Art

• Leave-one-out cross-validation is similar to the method previously analyzed,
but it is taken to its logical extremes. In this case, the number of subsets
chosen equals the number of elements in the data set minus one. That means
that the function is trained on all the data except for one point and a prediction
is made for that point.

Neural Networks encompass a wide array of structures, each tailored to specific
tasks and challenges. These networks exhibit different architectures, catering
to a wide spectrum of applications. Some networks, like Feedforward Neural
Networks (FNNs), are designed for straightforward tasks such as pattern recognition.
Recurrent Neural Networks (RNNs) excel in sequential data analysis, making them
ideal for tasks like natural language processing. Convolutional Neural Networks
(CNNs), on the other hand, are optimized for image and spatial data. Lastly,
transformer-based models, like BERT and GPT, have revolutionized language
understanding and generation tasks. The diversity of Neural Network architectures
allows us to leverage the right tool for the right job, unlocking the potential of
artificial intelligence (AI) across various domains. In the next section, we will delve
deeper into Transformer Neural Networks, a critical component of our project.

2.3 Transformer Neural Network
Transformers represent a category of Neural Networks first introduced in 2017
through the paper "Attention is All You Need" by Vaswani et al. [7]. These networks
have experienced a significant rise in popularity, notably gaining prominence with
the launch of ChatGPT by OpenAI.

These models were originally designed to address the challenges of sequence
transduction, including tasks like neural machine translation. Consequently, their
most common applications revolve around language models, especially in scenarios
involving lengthy sequences.

Before the advent of transformers, Recurrent Neural Networks (RNNs), Long
Short-Term Memory (LSTM) networks, and Convolutional Neural Networks (CNNs)
were the predominant choices. However, they exhibited limitations, particularly
when dealing with lengthy sequences.

Recurrent Neural Networks (RNNs) can retain past information by maintaining
a hidden state that captures and stores information from previous time steps,
allowing it to influence future predictions. This feature empowers the network
to not only process new data but also retain and utilize context from the past.
While RNNs excel at handling shorter sequences, their efficiency diminishes as
the time gap between relevant information and its application grows larger. The
reason behind this inefficiency lies in the sequential nature of information flow. As
sequences get longer, there is a heightened risk of losing vital information along
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the way due to the sequential processing.
LSTM Networks are a type of recurrent Neural Networks designed to address

some of the challenges associated with modeling long sequences. They introduce
modifications to the way information is processed within the network, primarily
through multiplicative and additive operations. LSTMs incorporate a mechanism
known as cell states to facilitate selective retention and forgetting of information,
distinguishing between what is important and less relevant. Nevertheless, due to
the sequential nature of input data processing, the network faces an increasing risk
of processing delays or potentially losing critical information as the input sequence
lengthens.

To mitigate these challenges, RNNs, including LSTMs, have adopted attention
mechanisms. Instead of encoding the entire sentence into a single hidden state,
each word in the sequence has its corresponding hidden state, which is retained
throughout the decoding stage.

However, the sequential nature of processing remains a limitation. To address
this, CNNs have proven to be useful. These networks can process elements in parallel
and are well-suited for capturing both short-range and long-range dependencies
within sequences, making them a valuable tool for handling long input sequences
efficiently. Moreover, the "distance" between the output word and any input
word for a CNN is approximately logarithmic in nature (log(N)), which represents
a substantial improvement compared to the distance between the output of a
Recurrent Neural Network and an input, which typically scales linearly with the
input sequence length (N). This attribute of CNNs contributes to their efficiency
in handling sequential data and makes them particularly suitable for tasks like
machine translation.

The challenge with Convolutional Neural Networks lies in their limitation in
effectively capturing dependencies when translating sentences. This limitation
prompted the development of Transformers, which integrate the capabilities of
CNNs with attention mechanisms.

Transformers tackle this challenge by employing a combination of encoders and
decoders enhanced with attention mechanisms.

Attention mechanisms play a crucial role in significantly accelerating the model’s
ability to perform efficient sequence translation. The key to this accelerated
processing lies in the utilization of self-attention.

Self-attention, also known as scaled dot-product attention, is a mechanism used
to weigh and capture the relationships between elements in a sequence, such as
words in a sentence or tokens in a document. It is a key component for modeling
contextual information and dependencies within sequences. The main steps of
self-attention can be summarized as follows:

1. Each input vector is multiplied by three weight matrices, that are defined
during the training phase, often referred to as Query, Key and Value.
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2. Self-attention is responsible for computing similarity scores, often referred to
as attention scores, between each query vector and all key vectors within the
sequence. This computation is typically achieved by taking the dot product
of the query vector and each key vector. These scores essentially indicate the
degree of attention that each element should allocate to the others.

3. The scores are then divided by the square root of the dimension of the key
vector, in order to normalize the output.

4. A softmax function is applied to the self-attention scores.

5. The value vector is multiplied by the score computed in the last step.

6. The weighted value vectors obtained are summed to produce the self-attention
value for a given element of the input.

The structure of the Transformer is composed of two main blocks: encoders
and decoders as we can see in Fig 2.3. The encoder processes input sequences.
It uses an embedding layer to convert elements into vectors and employs self-
attention to capture relationships between elements. The elements are then sent to
a feedforward layer that applies a linear transformation and a non-linear activation
function to each position independently, further enhancing the representation of
each token. Multiple layers of the encoder stack allow the model to understand
complex patterns in the sequence, producing rich contextual representations. These
representations are then used for various tasks, including sequence translation and
understanding. The Transformer decoder is responsible for generating sequences of
output based on input information from the encoder. It has a similar structure to
the encoder but in addition, it contains a self-attention mechanism that focuses
only on relevant parts of the input, known as masked self-attention. It uses multiple
stacked layers for complex pattern capture and incorporates positional encodings
for word order awareness. The decoder generates output sequences step by step,
producing probabilities for each output element, typically using autoregressive
generation.

A fundamental characteristic of the Transformer is that each element traverses
its dedicated path within the encoder. While dependencies exist between these
paths in the self-attention layer, the feed-forward layer manages each element
independently, allowing multiple paths to be executed in parallel as they pass
through it.

The resulting output from self-attention is used to enrich the representations of
the input elements, incorporating context and relationships between them. Self-
attention has proven highly effective in various natural language processing tasks,
enabling models like Transformers to understand complex dependencies within
sequences and excel in tasks such as translation and text summarization.
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However, certain challenges may surface when Transformers are applied to time
series prediction, as we will explore in the following section.

Figure 2.3: Transformer structure

2.4 Time Series Prediction
Time series forecasting is a methodology employed to predict future events by
analyzing historical trends, operating under the premise that future patterns will
resemble those observed in the past. Traditionally, statistical techniques like
autoregressive models and exponential smoothing methods have dominated the
field. However, in recent times, the adoption of Machine Learning models has
surged in popularity, often outperforming traditional methods. These approaches,
encompassing decision trees, random forests, and Neural Networks, have proven
to be highly effective in capturing intricate patterns and unraveling non-linear
relationships within time series data. Furthermore, deep learning architectures
such as RNNs and LSTM networks have showcased their adeptness in capturing
sequential dependencies and deciphering long-term trends present in time series
data [11].

In this project, we have utilized time series analysis through Machine Learning.
However, before delving into the aspects related to Machine Learning, it is crucial
to gain a thorough understanding of the inherent challenges associated with time
series analysis.

One of the primary obstacles is dealing with temporal dependencies and patterns,
which can be intricate and require sophisticated modeling techniques. Handling
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irregularities and outliers in the data is crucial to ensure accurate predictions, the
choice of appropriate features, and the determination of suitable time windows for
analysis demand careful consideration.

Several standard metrics are commonly used to evaluate the performance of
the prediction model depending on the specific goals and characteristics of the
forecasting problem. The Mean Absolute Error (MAE) is often favored when
outliers or extreme values in the data need to be treated with less sensitivity. Mean
Square Error (MSE) and Root Mean Square Error (RMSE), on the other hand,
are sensitive to outliers and can penalize large errors more heavily, making them
suitable for scenarios where extreme errors are of concern.

An additional significant challenge pertains to the choice of the method employed
for forecasting time series data. Statistical methods require a priori knowledge about
the data distribution to build a predictive model. We can divide statistical methods
in two groups according to their mathematical complexity: exponential smoothing
models and AutoRegressive Integrated Moving Average (ARIMA) models.

In exponential smoothing models, the time series are decomposed into com-
ponents, their values are smoothed by weights over time. ARIMA models are
usually of three types: autoregression based on establishing the correlation between
observations, integration based on the differences required to guarantee stationarity
and moving averages.

The moving average is a widely used statistical method that relies on calculating
the arithmetic average of the most recent ’r’ values to predict the next value. The
choice of ’r’ determines the level of smoothing in the prediction, with larger values
of ’r’ resulting in a more uniform prediction.

Machine Learning prediction methods do not require prior knowledge of the
distribution, these methods show reliable information even in complex and nonlinear
series. They can be divided into two approaches: global and local. In global
approaches, all observations of the training series are considered, global approach’s
main limitation is to assume all pairs of inputs and outputs to be independent
and identically distributed. In local approaches, Machine Learning algorithms
have been adapted to include temporal information. Such methods partition the
time series into subsequences based on the closeness and importance of the current
prediction.

In recent years the Transformers, originally designed for Natural Language
Processing, have undergone subtle architectural modifications to make them suit-
able for time series forecasting. There is no unanimous agreement regarding the
application of traditional Transformers for time series forecasting. As explained
in [12], this architecture may encounter challenges when it comes to capturing
intricate temporal relationships within time series data.

The self-attention mechanism that makes the network so accurate in natural
language processing causes, to some extent, a loss of temporal information, this
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is not a concern in NLP as the semantic meaning is usually preserved even if the
words are reordered.

Furthermore, the decoder design can contribute to poor performance of trans-
formers because the high level of complexity required to perform long-term time
series forecasting tends to generate an error accumulation and cause the divergence
of the predicted with reference to the expected result.

An interesting modification has been presented in the paper [13] where a sparse
self-attention mechanism is proposed to solve the complexity problem of the
Transformer, and the encoder is modified so that it trims the input’s time dimension,
the decoder structure remains unchanged but in the self-attention computation we
apply masked multi-head attention. This method has proved to outperform similar
networks in univariate and multivariate series prediction.

An alternative approach is presented in the paper [14] which served as the basis
for our project. This paper introduces a Transformer Neural Network designed
for predicting humidity levels. In the study, a comparison is drawn between the
predictions generated by the Transformer and those produced by an LSTM network
trained on the same data set. The results indicate that the Transformer excels
in preserving historical trends, outperforming the LSTM network. In this paper,
the problem of losing temporal information is solved by encoding a timestamp as
additional information for each input token, in doing so, the self-attention block
will have the context of the relative distance between a given timestamp and the
current one.

2.5 Residual method
In this thesis, we compared the force predictions generated by our network with the
forces estimated by the manipulator. The estimation of actual forces was conducted
using a residual-based approach, as outlined in the work by Magrini et al. [15].

This method, based on the framework introduced by De Luca et al. [5], defines
a vector of residuals. This residual vector represents a filtered version of the
vector of equivalent joint torques resulting from the external forces applied to the
robot. Once the residuals are estimated, calculating the applied forces becomes a
straightforward process.

The dynamic model of a robot is typically formulated using the Euler-Lagrange
formalism, which is a well-established framework in robotics and mechanics for
describing the dynamics of a mechanical system [16].

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τext (2.8)

Where M(q) > 0 is the symmetric inertia matrix, C(q, q̇) collects the Coriolis
and centrifugal contributions, g(q) is the gravitational vector, τ is the vector of
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commanded joint torques and τext is the vector of equivalent joint torques due to
the applied external force Fext:

τext = JTCFext (2.9)

Where JC is the geometrical Jacobian of the manipulator at the contact point. The
matrix C(q, q̇) is defined with the following property:

xT (Ṁ(q) − 2C(q, q̇))x = 0 ∀x ∈ RN (2.10)

The residual vector is defined as follows

r(t) = GI

5
p(t) −

Ú t

0
(τ + CT (q, q̇)q̇ − g(q) + r))ds

6
(2.11)

Where GI>0 is a gain diagonal matrix and p(t) = Ṁ(q)q̈ is the generalized
momentum of the manipulator. We can notice now that, making the derivative with
respect of time of the generalized momentum, we obtain the following expression:

ṗ = M(q)q̈ + Ṁ(q)q̇ = M(q)q̈ + C(q, q̇)q̇ + CT (q, q̇)q̇ (2.12)

It follows that
ṗ = τ − τext − g(q) + C(q, q̇)q̇ (2.13)

Assuming the robot is at rest at time t=0 and r(0)=0, namely no external force is
applied at the beginning, the evolution of the residual r is

ṙ = GI(τext − r) (2.14)

and for every component of the residual we can write a transfer function:

ri(s)
τext(s) = gii

s + gii
(2.15)

Where gii is the ith element of the diagonal of the matrix GI . For sufficiently high
gain the dynamics of every component of the residual will reproduce the dynamics
of the external torque, therefore r ≈ τext. Once the residual vector is estimated,
then the vector of corresponding external forces can be found as:

Fext = (JTC))−1τext ≈ (JTC))−1r (2.16)

In our case, since we assume that the contact is always at the robot end-effector,
J(q) is the geometric Jacobian of the robot JC(q).
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2.6 Impedance Control
Impedance control is a widely used control strategy in robotics that focuses on reg-
ulating the interaction between a robot and its environment. The term "impedance"
comes from the field of electrical engineering, where it represents the opposition
that a circuit offers to the flow of alternating current. In robotics, impedance
control serves a similar purpose, but instead of current, it deals with forces and
motions.

In the context of collaborative robotics, impedance control enables robots to
be more sensitive to human interactions, making them safer and more efficient
when working alongside humans. By modulating the robot’s stiffness, it can offer
appropriate resistance to external forces, preventing accidents and damage while
maintaining smooth and coordinated movements.

The impedance control calculates the control force required to maintain the
gripper’s position in alignment with the desired position. This solution proves
effective, particularly when the contact forces are relatively small, and high accuracy
is not a critical requirement. The robot’s performance is generalized as a spring-
damper system in each direction of the Cartesian space.

This process begins with the development of the dynamic model of a robot in
contact, leveraging the linearized Lagrangian equations expressed in the cartesian
space:

Mx(q)q̈ + Cx(q, q̇)q̇ + gx(q) = JTa (q)u + Fa (2.17)
In the equation q, q̇, q̈ represent the angular position, angular velocity, and

angular acceleration of each joint in joint space, respectively. The term Mx

corresponds to the Cartesian Mass matrix, while Cx stands for the Cartesian
and Coriolis matrix in the cartesian space, g(q) is the gravitational vector and
u represents the generalized control forces produced by the actuators, Ja is the
analytical jacobian. Additionally, Fa signifies the interaction forces exerted on the
robot by its environment in the cartesian space.

The implementation of the impedance controller encompasses two pivotal steps:
feedback linearization control and the imposition of a dynamic impedance model.
This process begins with the development of the dynamic model of a robot in
contact, leveraging the linearized Lagrangian equations expressed in Cartesian
coordinates:

Let’s delve into these steps and their significance:

• In the first step we choose accordingly the value of u so that the cartesian
gravity vector, Coriolis matrix, and the measured forces are canceled, also a
new signal is added the acceleration a. The control input appears as follows

u = JT (q)[Mx(q)a + Sx(q, q̇)ẋ + gx(q) − Fa] (2.18)
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• In the second step in order to impose the desired dynamic behavior, we
consider the equation

Mm(ẍ − ẍd) + Dm(ẋ − ẋd) + Km(x − xd) = Fa (2.19)

where Km and Dm denote the stiffness and damping of the closed-loop system,
respectively while Mm is the desired apparent inertia. The signal a is chosen
as

a = ẍd + M−1
m [Dm(ẋ − ẋd) + Km(x − xd) + Fa] (2.20)

By substituting the equations into each other, we can derive the control law of
an impedance control:

u =M(q)J−1(q){ẍd − J̇a(q)q̇
+ M−1

m [Dm(ẋd − ẋ) + Km(xd − x)]}
+ S(q, q̇)q̇ + g(q) + JTa (q)[Mx(q)M−1

m − I]Fa

(2.21)

where M is the inertia matrix in the joint space. A simplification that can
be applied is to set the apparent inertia equal to the natural Cartesian inertia.
However, to accurately represent a real mechanical system, it is necessary to include
Coriolis and centrifugal terms in the dynamical model:

M(q)(ẍ − ẍd) + (C(q, q̇) + Dm)(ẋ − ẋd) + Km(x − xd) = Fa (2.22)

Notably, this option eliminates the need for a force/torque sensor, making the
control process a pure motion control. This approach proves effective as long as
the contact forces at the end effector remain limited. So the control law appears:

u = M(q)J−1
a (q){ẍd − J̇a(q)J−1

a (q)ẋd}
+S(q, q̇)J−1

a (q)ẋd + g(q)
+JTa [Dm(ẋd − ẋ) + Km(xd − x)]

(2.23)

This model ensures the asymptotic convergence of errors to zero when contact
forces are equal to zero. Moreover, when the desired position is constant, and the
desired velocities and accelerations are zero, we obtain the following control law:

u = g(q) + JTa (q)[Km(xd − x) − Dmẋ] (2.24)

This form of control represents a Cartesian PD control with gravity cancellation.
To analyze the convergence of this system when contact forces are nonzero, we
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can assume Fa = Ke(xe − x), where Ke is the contact stiffness and xe is the rest
position. The control law exhibits a unique solution under these conditions:

x = (Km + Ke)−1(Kmxd + Kexe) = xE (2.25)

where xE is the position of the equilibrium point.
In conclusion, the implementation of impedance control and the various control

laws discussed above play a crucial role in facilitating safe and efficient collab-
oration between humans and robots in diverse applications and scenarios. By
carefully considering the dynamics of the system and imposing desired behaviors,
we can optimize the performance and responsiveness of robots while ensuring their
adaptability to varying force interactions with their human counterparts [17].

2.7 Related works
The field of research concerning the prediction of safe human-robot physical in-
teractions is extensive. Within this domain, studies can be broadly categorized
into three main groups: (i) studies concentrating only on motion prediction; (ii)
research focusing on the prediction of interaction forces; (iii) hybrid approaches
that forecast motions and forces.

A substantial portion of research belongs to the first group, with a primary
focus on deriving models for human motion. For instance, in the work by Luber et
al. [18], a model is proposed based on social forces and environmental constraints.
Antonucci et al. [19] present a deep Neural Network rooted in the social force
model, while Zhang et al. [20] introduce a physics-based network. Liu et al. [3]
employ Hidden Markov Models (HMM) for motion sequence modeling, and Lasota
et al. [21] propose a multiple predictor for human motion, learned directly from
the task being performed.

Building upon human motion models, some works delve into control strategies.
For instance, Balan et al. [22] propose a collision-avoidance algorithm based on
human intention, while Huo et al. [23] introduce a variable impedance controller
that models human intention through an adaptive Neural Network. Kim et al. [24]
present a technique for real-time estimation of joint torque for humans, treating
them as humanoid robots.

Finally, several approaches in the field explore shared autonomy, which adjusts
the level of autonomy in a robot based on estimated human actions and intentions.
Nikolaidis et al. [25] propose an adaptive human-robot collaboration scheme, and
Li et al. [26] formulate a game-theoretical approach integrated within an impedance
controller. Milliken et al. [27] employ a partially observable Markov decision
process to determine the expertise level of a human operator and provide assistance
accordingly. Peternel et al. [28] use wearable electromyography sensors to measure
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human fatigue and employ a variable impedance controller to minimize human
effort.

A recent survey by Selvaggio [1] provides an overview of shared autonomy. Our
work builds upon these existing studies by extending the estimation of human
motion to include the prediction of contact forces.

It’s noteworthy that most existing literature focuses on estimating current
contact forces, whereas our model distinguishes itself by predicting future contact
forces

An observer combining environmental forces and robot velocities is presented in
Hacksel et al.’s work [29].

In Ko et al.’s study [6], a vision-based deep-learning method is proposed for
estimating interaction forces during grasping tasks. Su et al. [30] introduce a deep
learning-based algorithm to map electromyography sensor data to one-step-ahead
force magnitude exchanged with the environment. An exception to contact force
prediction is presented in Noohi et al.’s work [31], where a constant force model is
utilized for dyadic cooperative object manipulation tasks.

Recent research efforts aim to jointly predict human movements and contact
forces, enhancing prediction accuracy in human-robot interaction scenarios. For
example, Maithani et al. [32] use a Recurrent Neural Network with Long Short-Term
Memory units to predict human position, velocity, and force. These predictions are
used to estimate parameters for an impedance controller. Yu et al. [33] propose a
Bayesian-based method to estimate human stiffness and motion intention, which is
combined with an impedance controller utilizing a Neural Network to compensate for
uncertainties in robotic dynamics. However, neither of these approaches considers
the prediction of future human behavior.

Lastly, Ghadirzadeh et al. [34] employ a reinforcement learning (RL) approach,
where the human is not explicitly modeled but is treated as an environmental
uncertainty in the RL problem formulation. In contrast, our framework explicitly
models human motion.
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Method

Our system consists of two primary components: a human and a robot, as depicted
in Figure 3.1. The human participant is equipped with a motion capture suit that
enables the recording and streaming of kinematic data, including position, velocity,
and acceleration, for each joint and link of the human body.

The robotic manipulator is controlled through a Cartesian impedance controller,
as detailed in section 2.6. This controller ensures a safe interaction between the
human and the robot as the system is reduced to a mass-spring-damper system and
the robot is instructed to maintain its initial configuration for the duration of the
experiment. On the manipulator, a residual-based technique is also implemented
for estimating contact forces at its end-effector.

3.1 Framework setup
We collected data from an interaction involving a human operator equipped with
a motion capture (mocap) suit interacting with the end effector of a robotic
manipulator. The operator guided the end effector towards one of eight planar
directions, as depicted in Figure 3.1. The mocap suit was utilized to capture
kinematic data pertaining to the motion of the human arm, while the manipulator
recorded the force applied by the human on the end effector.

In this section, we provide a brief overview of the two primary data sources
used to train our Transformer-based network: (i) the mocap suit data and (ii) the
contact forces from the manipulator

3.1.1 Xsens suit
We employed the Xsens MVN motion capture suit [35] to build our data set, this
is a portable full-body inertial measurement system.
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Figure 3.1: Experimental setup

The suit integrates 17 MTx sensors, each equipped with continuous updates
designed to emulate the biomechanical attributes of the human body. These
sensors are interconnected in a daisy-chain configuration, connected to the Xbus
Master—a portable device responsible for data management. As a result, each limb
requires only a single cable connection. The Xbus Master assumes a crucial role in
synchronizing the sampled values from each sensor, providing power to the sensors,
and overseeing wireless communication with the PC.

For the purpose of our experiments, we selected only the data from the four
sensors positioned on the right arm and upper back. They provided us with joint
angles, Cartesian velocity, and Cartesian acceleration.

When attaching sensors to the body, the initial alignment between the sensors
and body segments is unknown. Therefore, a calibration procedure, composed of
three steps, is necessary to establish the correct alignment and determine body
dimensions.

In the first step, the subject is instructed to assume a predefined pose, such as
the T-pose or N-pose, shown in Fig 3.2. The rotation from the sensor to the body
segments qBS is determined by aligning the sensor’s orientation in the global frame
qGS with the known orientation of each segment in the chosen pose qGB in the
global frame. This relationship can be represented as follows.

qGB = qGS ⊗ q∗
BS (3.1)

where ⊗ denotes a quaternion multiplication and * the complex conjugate of the
quaternion.
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Figure 3.2: Calibration positions for Xsens [36]

In the second step, the subject is asked to perform a series of movements aligned
with predefined axes. The measured orientation and angular velocity data are then
utilized to deduce the sensor’s orientation with respect to the segment’s functional
axes.

In the final step, the sensor-to-segment alignment and segment length are further
adjusted by leveraging prior knowledge of the distances between two points in a
kinematic chain.

Once the calibration is complete, the collected data is translated into kinematic
information for individual body segments, each of these components is intercon-
nected by joints. The origin of each joint depends on the anatomical frame of the
human body, with their respective X, Y, and Z axes corresponding to the functional
movements of these joints.

However, the precision of joint position measurements, which are extensively
used in our model, can be susceptible to various factors, including sensor noise and
the influence of soft tissues surrounding the joints. To address this variability, a
Kalman filter is employed by the Xbus Master, to refine the measurements.

To rectify orientation errors stemming from gyro integration issues, we utilize
accelerometer data to define the gravity vector, which provides inclination stability.
Additionally, a magnetic sensor is employed to correct these errors. It is important
to note that the Earth’s magnetic field can be locally disrupted by metallic objects,
and this disturbance is continually estimated at each time step as part of the
correction process. This robust approach ensures a high degree of immunity against
distortions in the measurements.

3.1.2 Franka Emika Panda manipulator
The manipulator used is a Panda robot [37] developed by the German company
Franka Emika. It is an advanced collaborative robot with seven degrees of freedom
and an interchangeable end-effector. Designed to work seamlessly alongside humans,
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Figure 3.3: Denavit Hartenber parameter of the Panda manipulator

the Panda robot boasts a maximum payload capacity of three kilograms, making it
ideal for a wide range of applications.

The Panda manipulator’s kinematics are well-defined by the Denavit-Hartenberg
model, which accurately describes the robot’s configuration and movement, as
shown in Figure 3.3. In this model, the parameters are as follows: a4 = 0.0825,
a5 = −0.0825, a7 = 0.0880, d1 = 0.330 m, d3 = 0.3160, d5 = 0.3840, and the flange
offset df = 0.1070.

Libfranka, a C++ implementation of the client side of the FCI (Franka Control
Interface), simplifies control and communication with the Panda robot. Libfranka
efficiently manages network communication with the control system and provides a
range of interfaces to achieve various objectives:

• Execution of non-realtime commands for Hand control and Arm parameter
configuration.

• A library for computing desired kinematic and dynamic parameters, enhancing
motion planning precision and efficiency.

Within the libfranka repository, multiple examples can be found to illustrate the
diverse functionalities offered by the Panda robot. Among these examples, we will
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analyze the cartesian impedance file that was a key element in our data-collection
protocol.

This code shows an implementation of an impedance controller without the
inclusion of inertia, where the equilibrium point is the initial configuration. It
enables the robot to interact gently with the environment, especially when handling
delicate or fragile objects, preventing potential damage. Similar to the flexibility
of a human arm, the Panda can adjust its rigidity by modulating its impedance,
ensuring robustness while executing various tasks.

In the context of collaborative robotics, impedance control enables robots to
be more sensitive to human interactions, making them safer and more efficient
when working alongside humans. By modulating the robot’s stiffness, it can offer
appropriate resistance to external forces, preventing accidents and damage while
maintaining smooth and coordinated movements.

The initial modifications focused on the integration of a framework for the
computation of the Mass and Coriolis Matrices. These dynamic parameters were
derived using data and methodologies outlined in the research paper titled "Dy-
namic Identification of the Franka Emika Panda Robot With Retrieval of Feasible
Parameters Using Penalty-Based Optimization" by Gaz et al. [37].

This paper provides a feasible set of parameters that characterize the dynamics
of the robot. Typically, such a problem falls within the realm of nonlinear problems,
often characterized by an infinite set of potential solutions. Nevertheless, these
solutions can be effectively constrained by implementing upper and lower boundaries
to eliminate any infeasible options.

The first step is to derive a symbolic dynamic model of the robot, because the
FCI controller of the Panda can return the estimation of the link side torques
elasticity can be neglected so the equation Eulero Lagrange can be used.

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (3.2)

where q, q̇, q̈ ∈ Rn are, respectively, the joint positions, velocities, and accelerations.
The dynamic model represented in Equation 3.2 typically incorporates nonlinear
functions involving the variables q, q̇, q̈ along with the dynamic parameters, which
will be elaborated on in more detail later. For each link li, i=1,...,n, let mi be the
mass and let

ri,ci =

 rix
riy
ri1z

 (3.3)

and

Jli =

Jixx Jixy Jixz
Jiyx Jiyy Jiyz
Jizx Jizy Jizz

 (3.4)
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be the position of the center of mass and the symmetric inertia tensor with respect
to the i-th link frame, respectively. At this stage, the dynamic parameters of all
the robot links can be gathered in the three vectors:

p1 = (m1 . . . mn)T ,

p2 = (c1xm1 c1ym1 c1zm1 . . . cnxmn cnymn cnzmn),
p3 = (ßT1 . . . ßTn )

(3.5)

where p1 ∈ Rn, p2 ∈ R3n, p3 ∈ R6n, and

Ii = (Jixx Jixy Jixz Jiyy Jiyz Jizz) (3.6)

It is possible to rearrange (3.2) as

Y(q, q̇, q̈)π(p1, p2, p3) = τ (3.7)

where π(p1, p2, p3) =

pT
1

pT
2

pT
3

 ∈ Rp

Because Y can be pruned to obtain a matrix with full column rank the coefficient
of π can be identified.

π̂R = Y+
R(q, q̇, q̈)τ̄ (3.8)

This estimation might lead to physically inconsistent parameters,in order to avoid
these solutions the following constraints must be applied.

mi > 0 (3.9)

tr(Il)
2 − λmax(Il) > 0 (3.10)

Despite the reliability of the solution, the parameters that have been computed
cannot be directly introduced into the code provided by libfranka as it would cause
a violation of the real-time constraint. For this reason, parallel computation of the
parameters has been introduced through the use of threads.

In the following paragraph, we will provide a brief description of threads, as a
comprehensive exploration of this topic falls outside the scope of this thesis.

A thread in C++ refers to a fundamental unit of execution within a program,
allowing for concurrent and parallel execution of tasks. They enable a program to
perform multiple operations simultaneously, enhancing efficiency and responsiveness.
Each thread represents an independent sequence of instructions that can execute
concurrently with other threads within the same process.

Threads are crucial for multitasking and handling tasks that can be performed
independently. They can be thought of as separate paths of execution, with their
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own program counters, registers, and stacks. They can be created and managed
using various C++ standard library functions and classes, such as std::thread.
Threads can execute different functions or methods, and their execution can
be controlled using synchronization mechanisms like mutexes, semaphores, and
condition variables. Multi-threading is particularly useful in applications that need
to handle tasks simultaneously, like graphical user interfaces, server applications,
data processing, and real-time systems.

In this code, there are three separate threads, the first one computes the correct
values of torques in order to obtain an elastic response of the Franka to the human
contact. The second and the third ones are respectively used to compute the
values of the mass matrix and Coriolis matrix given the current configuration of
the Franka.

An additional enhancement has been incorporated into the original code, with
the introduction of an equilibrium point that is different from the starting one.
Upon compilation and execution of the code, the Franka manipulator initiates its
motion towards the specified target position, all the while exhibiting a responsive
and spring-like behavior. This feature allows the human operator to introduce
modifications to the robot’s trajectory, as needed, in real-time. This adaptability
can prove exceptionally valuable in collaborative environments where safety takes
precedence, mitigating potential risks associated with contact between the human
operator and the robotic arm.

Additionally, the newly imposed trajectory by the human is automatically stored.
When the robot encounters familiar initial and final conditions, it will autonomously
adopt the learned trajectory to reach the target point.

In the pursuit of enhancing the arm’s capabilities, we introduced an additional
feature into the system. In the modified code, when a subtle force is applied to
the end effector while it is in its equilibrium position, the end effector does not
display the expected spring-like behavior. Instead, the position to which it is
guided becomes the new equilibrium point, while the manipulator still maintains
a spring-like response if greater forces are applied. However, after a thorough
evaluation, we made the deliberate choice to exclude this specific addition. We
reasoned that this feature had the potential to unintentionally compromise the
objective of our project, as it could interfere with the force estimation.

To acquire the essential data required for training our Neural Network, we
leverage the Panda’s capability to estimate external forces utilizing the residual
approach, as detailed in Section 2.5. These force values, accompanied by their
corresponding timestamps, are periodically recorded in a text file. They serve as
the ground truth data to compute the loss function for our network.

In Figure 3.4, an illustration of our data set’s sample forces can be observed.
The first line contains the timestamp in the Linux format, while the subsequent six
values represent the estimated forces and torques acting on the end effector. These
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values are sampled at a frequency of 125 Hz.

Figure 3.4: Force sample

3.2 Data set description
Different experiments were collected in order to compose the training data set.
They comprise variable intensities and directions of the contact force. For each
experiment, the positions, velocities and accelerations of all the joints from the
haptic suit were recorded, together with the Cartesian velocity and acceleration
of the human arm interacting with the robot. Concurrently, the intensity and
direction of the contact forces were collected from the robot.

The data set contains comprehensive information about the kinematics of the
human’s right arm. This encompassed a comprehensive array of metrics, including
joint angles, Cartesian velocities, and accelerations across the arm’s forearm, upper
arm, and shoulder.

This data set was compiled to encapsulate the diverse range of human-induced
forces that the robot could potentially experience. The values were collected by
the Franka at a frequency of 125 Hz, a good balance of this parameter was crucial,
on one side choosing a too-high value could cause of infraction of the real-time
constraint applied on the Franka and also generate a data set too homogeneous
that would risk overfitting when used on a Neural Network, on the other side a
value too small might prevent us from learning significative insights on the human
intentions.

On the Xsens, the data were sampled at a frequency of 250 Hz through the
MVN Analyze software tool, as shown in Fig 3.5. The data extracted from the
Xsens suit is stored in the MVN Open XML format, denoted by the file extension
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".mvnx". These files can be conveniently opened and processed in various software
applications, including Microsoft Excel, Access, MATLAB, and C-Motion Visual
3D. The parsing of these values is facilitated by a lightweight Python parser, which
effectively extracts the relevant data.

An illustrative example of this file extension can be observed in Figure 3.6.
Notably, this file comprehensively encapsulates a full description of body motion,
offering a vector of 69 entries for each of the analyzed elements. These entries
represent the 23 segments of the Xsens biomechanical model, providing a rich and
detailed account of motion kinematics.

Figure 3.5: MVN xsens suit

The two sets of data were gathered from two distinct machines due to the specific
requirements of each tool; libfranka necessitates a real-time Linux kernel, while
Xsens is limited to operating on a Windows environment. Synchronizing these two
data sources posed a challenge, but it was successfully achieved using Network
Time Protocol (NTP).

An NTP is a widely used networking protocol designed to synchronize the clocks
of computers and devices within a computer network or across the internet. The
primary purpose of NTP is to ensure that various systems maintain accurate and
synchronized time, even when they are distributed across different geographical
locations and interconnected through various network paths.

NTP achieves its synchronization goal by employing a hierarchical architecture
consisting of different tiers of timekeeping sources, called NTP servers. It operates
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using a client-server model.
The client devices, also known as NTP clients, periodically send time synchro-

nization requests to one or more NTP servers. The server responds with its own
timestamp, allowing the client to calculate the time difference, or offset, between
its local clock and the server’s clock. By exchanging multiple such messages with
different servers, the client can calculate a more accurate time offset and adjust its
local clock accordingly.

The implementation of Network Time Protocol (NTP) has demonstrated a
significant reduction in clock drift between two devices. In the absence of NTP
synchronization, the clocks of these two machines could potentially drift apart by
several seconds. However, with the introduction of NTP synchronization, this drift
has been reduced to an average of 20 milliseconds. The timestamps of the collected
values are now synchronized and can be correctly associated [38].

Figure 3.6: Kinematic values

Before saving the data in an appropriate format, some preprocessing is required
in order to cancel some of the noise that might reduce the performance of the
Neural Network.

The data obtained from the suit appears relatively homogeneous except for the
presence of some abrupt spikes. In response to this, we implemented an algorithm
designed to mitigate the impact of these high-amplitude spikes, effectively addressing
the requirements of our experiments.

In contrast, the data associated with the interaction forces exhibited a con-
siderably higher level of noise. To enhance the signal quality and reduce noise
interference, we employed a Moving Average filter, resulting in a smoother and
more reliable signal for analysis.

The moving average filter is a valuable tool for noise reduction due to its inherent
ability to smooth out fluctuations in a data set. By calculating the average of a
window of adjacent data points, the filter effectively suppresses random noise that
may be present in individual measurements. This process minimizes the impact
of sudden, short-term variations, resulting in a clearer and more consistent signal
representation. The moving average filter’s simple yet effective approach helps
reveal underlying trends or patterns in the data while attenuating high-frequency
noise components. The data collected and cleaned from any residual noise is then
saved into two separate CSV files, one for training and one for testing.
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For the Neural Network’s data preparation, a careful partitioning strategy is
adopted. Specifically, we have chosen to allocate 80% of the data set to the training
set, reserving the remaining 20% for the testing set. This partitioning ratio adheres
to one of the most commonly used approaches in the hold out method, a popular
technique for data set splitting in machine learning explained in section 2.2.2.
This division ensures that the network is trained on a substantial portion of the
data while retaining a separate subset for unbiased evaluation during testing. By
maintaining this ratio, we strike a balance between training and testing that helps
in building a robust and effective Neural Network model.

Each entry in the time series is indexed, enabling the differentiation of individual
recorded actions. To prepare the input for the model, a specific sub-portion of the
collected time series is selected based on its index. However, prior to being fed
into the model, it is essential to normalize each element within the series. This
normalization step ensures that the data is on a consistent scale, preventing any
disproportionate influences on the model’s learning process.

For this purpose, the chosen normalization technique is the MinMax scaler.
This technique scales the data to a fixed range, from 0 to 1. This approach
is commonly favored because it typically leads to a smaller standard deviation,
effectively mitigating the impact of outliers. This stands in contrast to other
popular normalization methods like Z-score normalization. The MinMax scaling is
performed using the following equation:

Xscaled = X − Xmin

Xmax − Xmin
(3.11)

Where: Xscaled is the scaled value, X is the original value, Xmin is the minimum
value in the data set, Xmax is the maximum value.

This equation ensures that the data is transformed to fit within the desired
range while preserving the original relationships between the values. It is important
to note that we exclusively applied normalization to the input series, leaving the
target series untouched. This approach was chosen to prevent any inadvertent
leakage of information regarding future events to the model.

The inclusion of timestamps in the inputs is crucial for the proper functioning
of the transformer architecture. While transformers are widely recognized for their
effectiveness in natural language analysis—outperforming previous solutions—these
architectures have also showcased their adaptability across various tasks. However,
a challenge arises when deploying transformers for time series forecasting. The issue
pertains to potential loss of temporal information due to simultaneous processing
of multiple data batches. This concern is not as pronounced in the realm of natural
language processing (NLP) where semantic meaning often remains intact even
with reordering of words. Therefore, to ensure accurate time series forecasting, it
becomes imperative to provide the model with the temporal information that could
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otherwise be lost during parallel processing of data batches. A summary of all the
data forming the data set for training our model is given in table 3.1.

Data type Description Symbol Units Device Input/Target

Joints

shoulder roll
shoulder pitch
shoulder yaw

elbow roll
elbow pitch
elbow yaw

qhsϕ
qhsθ
qhsψ
qheϕ
qheθ
qheψ

rad mocap suit Input&Target

Cartesian vel.
shoulder

upper arm
forearm

ṗhs
ṗhu
ṗhf

m/s mocap suit Input&Target

Cartesian acc.
shoulder

upper arm
forearm

p̈hs
p̈hu
p̈hf

m/s2 mocap suit Input&Target

Contact force fext N robot+eq. (??) Target

Table 3.1: Training Input Data

3.3 Architecture

Figure 3.7: The complete Architecture.

As depicted in Fig. 3.7, our Neural Network is composed of two main parts:
a Transducer and a Transformer. The former is a fully-connected Multi-Layer
Perceptron (MLP) [39], the latter is a Transformer that takes a multivariate time
series as input at time ti. Both networks were implemented using the PyTorch
library for training and testing functions.

3.3.1 Transducer Architecture
As our model does not rely on a Torque/Force sensor, we employ two networks to
provide a force prediction. The first network, the Transducer, provides a reliable
estimation of the contact forces through the analysis of kinematic data.

The Transducer takes as input the kinematic data k(ti) from the suit at the
current time instant ti, and estimates the force fext(ti) exerted at ti. The Neural
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Network architecture is defined using PyTorch’s nn.Sequential module. The archi-
tecture consists of several fully connected (linear) layers interspersed with Rectified
Linear Unit (ReLU) activation functions as shown in Fig 3.8. The input layer has
36 neurons, corresponding to the 36 features in the data set listed in Table 3.1.
The architecture is designed in a feedforward manner, where the output of each
layer is passed as input to the next layer. The ReLU activation functions introduce
non-linearity into the model, allowing it to capture complex relationships in the
data. Adam optimizer is used to update the network’s weights during training with
a learning rate of 0.0001.

Figure 3.8: Transducer Architecture.

3.3.2 Transformer Architecture
The architecture we have implemented for the Transformer is based on an adapted
version of GPT-2 [40] specifically designed for time series applications. Unlike other
Transformers like BERT [41], which are bidirectional, GPT-2 is a generative model.
This architecture incorporates the autoregression concept from RNNs, generating
one output at a time and feeding it into the next sequence’s input. This mechanism
enhances the network’s suitability for time series prediction.

In the traditional setup, a transformer model comprises two main components:
an encoder and a decoder. Within the encoder, two fundamental elements exist
a self-attention mechanism and a Feedforward Neural Network, as shown in 2.3.
The self-attention mechanism enables each element within the input to establish
connections with various segments of the entire sequence, based on the information
encapsulated in three matrices known as Queries, Keys, and Values. On the other
hand, the decoder incorporates an additional layer called Masked Self-Attention
before the Feedforward Neural Network. The term masking indicates that an
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element at a specific position in the sequence can only attend to past input data,
preserving the autoregressive nature of the decoder.

A significant difference from the original Transformer architecture is that GPT-2
relies solely on a decoder structure. Unlike the conventional Transformer, which was
initially designed for sequence-to-sequence tasks like language translation, GPT-2
is more versatile and can be applied to time series forecasting due to its generative
capabilities.

Therefore, our architecture exclusively utilizes decoder layers. Specifically, we
employ six consecutive decoder blocks, a value chosen empirically to strike a balance
between mitigating the risks of both underfitting and overfitting.

3.4 Neural Network Training
In this section, we analyze the training procedures for our dual-network archi-
tecture, encompassing the Transducer and the Transformer. We delineate the
training process for each network independently. Initially, the Transducer network
undergoes standalone training. Following this, during the subsequent training of
the Transformer, the Transducer is integrated into the architecture, as illustrated
in Fig. 3.7, with its weight parameters held constant.

3.4.1 Transducer Training
The transducer is trained on a multivariate input consisting exclusively of kinematic
parameters denoted as k from the mocap suit. The training data set comprises
86,000 data points. Before feeding into the model, the data is shuffled and nor-
malized using a MinMax scaler. To evaluate the model’s performance during the
training phase, we employ the Mean Square Error criterion, comparing its predicted
outputs with the values estimated by the Franka Emika manipulator.

loss = 1
nt

ntØ
i=1

·(yi − ŷi)2 (3.12)

In the equation, nt represents the number of data in the training set, yi represents
the actual value of the i-th data point, and ŷi represents the predicted value of the
i-th data point.

The training process is organized into epochs and mini-batches. Here are the
key components of the training loop:

• Epochs: The training process iterates over a fixed number of epochs. An
epoch represents one complete pass through the entire training data set.
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• Mini-Batches: To efficiently train the model, the data set is divided into
mini-batches. Each mini-batch consists of 10 data points, which helps in
parallelizing computations and avoiding memory issues

• Forward Pass: For each mini-batch, a forward pass is performed through the
Neural Network. This means that the input data is propagated through the
layers to compute the predicted values.

• Model Evaluation: After each epoch, the model’s performance is evaluated on
the test data set using the MSE loss. The best model weights are stored if
the current MSE is lower than the previously recorded best MSE.

In this network, the raytune open-source library was used for the tuning of the
hyperparameters dropout, learning rate and number of epochs [42].

3.4.2 Transformer Training
The Transformer takes as input a multivariate time series composed of the kinematic
data coming from the suit and the forces estimated by the Transducer over the
time sequence [ti − tw, ti] and produces in output a prediction of the kinematic
and dynamic data over the time window [ti, ti + tp], where tp is the length of the
prediction window that in our project is set to 800 ms .

The primary challenge that affects Neural Networks during training is the dis-
crepancy between the training and inference phases. A common training technique,
for time series prediction, is known as "teacher-forcing." In teacher-forcing, during
each new time step of a multi-step prediction, the model is provided with access
to all the true preceding values to infer the new element. This strategy serves to
prevent the training sequence from diverging; however, it can introduce a higher
error during inference, where the model can no longer rely on continuous correction
during multi-step prediction. To address this challenge and enhance Transformer
performance, we adopted a technique known as scheduled sampling [43].

This approach enables the Transformer to initially use the ground-truth (i.e.,
true) data during the early stages of training. However, as training progresses,
the Transformer gradually incorporates more of its own predicted outputs into
its input sequence, reducing its reliance on true values over time. This transition
begins with a high probability of using true values as inputs and gradually shifts
towards greater reliance on the model’s predictions. This strategy strikes a balance
between providing the model with valuable training information and preparing
it for real-world scenarios where actual values may not be readily available. The
transition function we employed follows a sigmoid pattern with inverse decay:

v = l

l + exp
1
nep

l

2 (3.13)
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Figure 3.9: Recursive Transformer Architecture

where v is the probability of selecting the ground-truth data, nep is the epoch
number in the training set, l ≥ 1 is a user-defined parameter for the speed of
convergence. Since our training data set includes both kinematic and dynamic
(i.e., forces) values, we have chosen to employ a weighted mean square error as
our loss function. This choice is guided by the network’s continuous access to the
accurately measured kinematic values, making them relatively easier to predict.
Moreover, recognizing the heightened significance of accurate force prediction in
the context of physical human-robot interaction, we have placed greater emphasis
on minimizing errors in force predictions.

loss = 1
nt

ntØ
i=1

wi · (yi − ŷi)2 (3.14)

In the last equation, nt represents the number of data in the training set, wi

represents the user-defined weight assigned to the i-th data point, yi represents the
actual value of the i-th data point, and ŷi represents the predicted value of the i-th
data point.

Overfitting was one of the main challenges we encountered during the fine-tuning
process. Different strategies were adopted to provide the best testing results.
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1. Early Stopping was adopted and provided a significant improvement in re-
ducing the loss in the testing phase. It helps prevent excessive training and
overfitting to the training data.

2. Dropout, multiple experiments were required to fine-tune the parameters. A
small dropout rate had little impact on the final results, while a high rate
hindered the network’s ability to learn the series features.

3. L1 Regularization was introduced to further improve the results. In this
technique a penalty term is added to the loss function based on the absolute
values of the model’s weights, encouraging sparsity and mitigating overfitting.

4. Batch Size, experimentation with increasing the batch size was performed.
However, it was found to be ineffective in our specific experiment.

5. Learning Rate and Weight Decay, adjustments were made to reduce the
learning rate and weight decay. These hyperparameter adjustments aimed to
fine-tune the model’s training process and improve generalization.

By implementing these strategies, we aimed to strike a balance between model
complexity and generalization, ultimately addressing the challenge of overfitting
and achieving better testing results.

To ensure the precision of predictions, each input sequence is segmented into two
distinct sections: the Training sequence and the Forecast sequence. The Training
sequence represents the minimum number of samples that the network must analyze
to generate dependable predictions. At each new step of this section, the input is
updated with the last prediction as can be seen in Fig 3.9

In Fig. 3.10b, we can observe the distinction between the two sections, where
the input sequence corresponds to the Training sequence. In this section, the
predictions appear less stable, exhibiting a tendency for fluctuations. In contrast,
the values in the second part of the sequence are notably smoother and devoid of
spikes.

In our project we chose a different Training Length in the training phase than
in the testing phase, in particular, we chose a longer forecast window than in the
testing. We can see in the figures the results of training and testing.
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(a) An example of training

(b) An example of testing

Figure 3.10: Example of force prediction in our model
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Experimental Results

In this section, we will delve into the data collection process, encompassing both
training and testing phases. Subsequently, we will showcase the outcomes of our
experiments conducted within the context of predicting contact forces and human
motions using our specialized framework.

To underscore the predictive prowess of our architecture and the efficacy of
the Transducer component, we will conduct a comparative analysis against a pure
Transformer-based architecture.

4.1 Data Collection Protocol
Our data set comprises 320 samples, each containing detailed information about
the motion executed by a human operator during interactions with a robotic arm.
The human operator wore an Xsens motion capture suit and was positioned in
close proximity to the robotic arm. In this controlled environment, the human
operator intentionally applied forces to the end-effector of the robotic arm using
their right hand.

As previously mentioned, the robot was controlled using an impedance controller,
with the stiffness, inertial, and damping matrices held constant throughout the
data collection phase. The robot is tasked to maintain its initial configuration and
to respond when a human operator applies force to its end-effector.

During these interactions, once a force is detected, both the kinematic human
information described in Section 3.1.1 and the estimated contact forces from Section
3.1.2 are captured with a frequency rate of 125 Hz. This high sampling frequency
allows for the precise recording of rapid movements.

Each movement in the training data set corresponds to one of eight equally
spaced planar directions, as illustrated in Fig. 4.1. In each sample the robot starts
from its resting configuration and moves along one of the directions denoted with
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[H]

Figure 4.1: Visualization of the 8 directions of motions

α = {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}.
We collected 40 samples for each direction of motion, covering a broad spectrum

of force intensities ranging from 0 N to ±40 N. Consequently, the robot’s end-
effector exhibited displacements spanning from 0 cm to ±25 cm. The duration of
each individual sample averages 2.5 seconds.

Following the data collection phase, we synchronized and filtered the data. This
process was employed to enhance the overall data quality and to mitigate the
impact of noise interference.

It is crucial to emphasize that we assume the active participation of the human
operator in generating motion during each experiment, with the intent of following
one of the previously mentioned directions. This intentional motion is essential to
establish a meaningful correlation between the kinematic and force data within our
training data set.

4.2 Comparison description
We compared the proposed model with a similar architecture that lacks a Transducer
network, making it a pure transformer-based model. In this alternative network,
no estimation of contact forces is provided. The input consists solely of timestamps
and kinematic data, while the output remains consistent with the model that
includes the Transducer.
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The pure transformer-based network shares an identical structure with the one
utilized in our framework, which is a GPT-2-based model comprising 6 decoder
layers. We train this network using the same data set, as described in Section 4.1.
For performance analysis, we employ a weighted mean square error metric with
the same weights as previously employed. Specifically, in both cases, we assign
four times more weight to the error on the force values compared to the error on
the kinematic components, this value was chosen empirically as it provided the
minimum loss.

Both networks utilize a prediction window of 1.6 seconds during the training
phase. To mitigate overfitting, we employ Early Stopping and apply a dropout
rate of 0.35.

During the testing phase, we optimize performance by reducing the prediction
window to 800 ms.

Both networks are trained on the same computer, which is equipped with 64
GB of RAM and an Intel(R) i7 Core processor running at 3.20 GHz.

4.3 Results and discussion
For testing purposes, we evaluate the performance of these two networks on two
data sets. The first data set contains directions already present in the training set,
while the second data set comprises planar motions that have not been explored
during training.

Both architectures demonstrated the ability to make precise predictions when
evaluated on the first data set. The results for both networks can be found in
Tables 4.1a and 4.1b, which include the average errors calculated for joint angles,
cartesian velocity, cartesian acceleration, and contact forces.

However, our model exhibited superior generalization capabilities when tested
in new directions. The second data set is composed of 7 distinct motions that
were not part of the training set. In each sample, the robot starts from its
resting configuration and moves along one of the new directions denoted with
α = {4π/3, π/3, 5π/3, 8π/9, 10π/9, π/6, 11π/6}.

These testing motions were acquired through the procedure outlined in Sec-
tion 4.1, with the sole difference being that we gathered only one motion for each
testing direction The prediction errors for these new directions are presented in
Tables 4.1, 4.2, and 4.3. A detailed description of the tables is provided below:

• In Tables 4.1c and 4.1d, the columns labeled qhsr, qhsp, qhsy, qher, qhep and qhey
represent the errors for the shoulder and elbow joints across roll, pitch and
yaw angles.

• In Tables 4.2a and 4.2b, the columns ṗhsx, ṗhsy, ṗhsz, ṗhux, ṗhuy, ṗhuz, ṗhfx, ṗhfy, and
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ṗhfz represent the errors computed along the spatial components (x, y, z) of
velocity for the human’s shoulder, upper arm, and forearm.

• In the tables 4.2c and 4.2d, the columns p̈hsx, p̈hsy, p̈hsz, p̈hux, p̈huy, p̈huz, p̈hfx, p̈hfy,
and p̈hfz represent the errors computed along the spatial components (x, y, z)
of acceleration for the human’s shoulder, upper arm, and forearm.

• In the tables 4.3a and 4.3b, the columns fext,x, fext,y and fext,z represent the
error regarding the contact forces over the axis x, y and z

In each table, the final row represents the average of the values presented in the
preceding rows. Notably, within the tables illustrating the results of the Transducer
architecture, values that exhibit a lower average loss compared to their counterparts
in the pure Transformer architecture are highlighted in bold.

When comparing the tables, it becomes evident that our model exhibits a modest
reduction in error when predicting the kinematic components compared to the
model without Transducer, although this improvement is not highly significant. In
contrast, a substantial enhancement is observed in the prediction of contact forces
when a transducer is incorporated into the architecture.

An illustrative example of the output generated by our network, after the
training period, is presented in Figures 4.2a, 4.2b, and 4.2c. Notably, this sample
is associated with a direction that is not present in the training data set: a motion
executed at an angle of 7π

6 , as per the reference frame illustrated in Figure 4.1.
In these images, we notice that the prediction for the x-directional force accu-

rately follows the expected trend. Furthermore, the prediction for the y-directional
force is not only highly accurate in terms of the trend but also in terms of absolute
values. In the z-direction, where no external force is applied, our model predicts a
relatively constant trend, which aligns with the absence of significant variations.

The movements were confined to the x-y plane, and as a result, the force
values measured along the z-axis often reflect measurement errors or human errors,
typically averaging around 3 N. This accounts for the smaller error observed on the
z-axis in both Table 4.3a and Table 4.3b. However, a substantial disparity between
the two models emerges when we compare the errors in force measurements along
the other two axes. Specifically, on the x-axis, the error is 9 N smaller on average,
and on the y-axis, it is 6 N smaller.

It is noteworthy that our framework achieves high accuracy in predicting contact
forces thanks to the constant robot stiffness which facilitates the creation of a
unique mapping between human kinematics and contact forces.
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Experimental Results

(a) Force on x axis in Newton

(b) Force on y axis in Newton

(c) Force on z axis in Newton

Figure 4.2: Prediction example of our model
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Experimental Results

α qh [deg] ṗh
s [m/s] p̈h

s [m/s2] fext,x [N] fext,y [N] fext,z [N]

0 6.366 0.029 0.19 0.63 2.56 1.72
−π/4 2.0768 0.014 0.14 1.19 1.90 1.46
−π/2 3.177 0.011 0.067 0.99 1.92 4.3
3π/4 3.633 0.015 0.074 0.52 1.80 4.86

π 8.29 0.018 0.065 0.15 0.94 3.73
5π/4 3.45 0.020 0.15 1.68 3.15 1.53
π/2 3.45 0.020 0.19 1.68 3.15 1.53
π/4 5.26 0.019 0.18 1.38 1.32 4.11

(a) Prediction error on training directions with Transducer

α qh [deg] ṗh
s [m/s] p̈h

s [m/s2] fext,x [N] fext,y [N] fext,z [N]

0 3.70 0.02 0.018 0.51 3.51 0.66
−π/4 0.013 0.074 0.016 1.95 1.91 2.50
−π/2 2.76 0.01 0.06 0.72 1.58 5.15
3π/4 3.40 0.014 0.07 0.86 1.67 5.06

π 12.49 0.023 0.016 2.18 5.69 2.20
5π/4 4.17 0.021 0.19 3.97 4.20 3.56
π/2 2.61 0.013 0.11 1.37 0.65 3.92
π/4 3.2 0.01 0.13 1.25 1.32 3.04

(b) Prediction error on training directions without Transducer

α qh
sr [deg] qh

sp [deg] qh
sy [deg] qh

er [deg] qh
ep [deg] qh

ey [deg]

4/3π 22.90 19.10 7.19 9.88 5.00 1.51
π/3 1.36 1.26 1.89 0.013 7.38 0.60
5/3π 15.80 13.46 16.69 13.63 18.39 2.63
8/9π 22.84 12.27 2.32 7.86 4.68 3.18
10/9π 16.19 14.15 3.16 3.88 17.09 3.92
π/6 4.65 12.12 1.90 2.87 21.90 12.12

11/6π 1.18 1.04 0.68 1.72 9.85 3.81
avg 12.02 10.49 4.83 5.84 12.04 3.99

(c) Prediction error on joint angles with Transducer in degrees

α qh
sr [deg] qh

sp [deg] qh
sy [deg] qh

er [deg] qh
ep [deg] qh

ey [deg]

4/3π 20.30 20.43 6.11 6.07 11.39 1.83
5/3π 12.51 13.10 6.55 0.97 22.41 2.89
8/9π 2.31 4.09 1.42 5.17 21.98 7.59
10/9π 25.23 21.26 17.93 3.55 21.63 0.59
π/6 15.38 18.59 4.67 3.99 20.90 12.12

11/6π 1.47 2.36 2.20 5.67 14.20 7.07
avg 12.87 13.31 6.65 4.24 18.75 5.35

(d) NN prediction error on joint angles without Transducer in degrees

Table 4.1: Prediction error comparison on average values and on joint angles
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Experimental Results

α ṗh
sx [m/s] ṗh

sy [m/s] ṗh
sz [m/s] ṗh

ux [m/s] ṗh
uy [m/s] ṗh

uz [m/s] ṗh
fx [m/s] ṗh

fy [m/s] ṗh
fz [m/s]

4/3π 0.0141 0.0168 0.0068 0.0269 0.0147 0.0202 0.0939 0.0189 0.077
5/3π 0.0145 0.013 0.0026 0.0239 0.00692 0.00693 0.0306 0.0104 0.0098
8/9π 0.0123 0.039 0.00690 0.01769 0.0155 0.0243 0.0831 0.1643 0.0636
10/9π 0.01516 0.0608 0.0268 0.03108 0.0241 0.075 0.0746 0.0179 0.1391
π/6 0.0297 0.0191 0.00329 0.0401 0.01446 0.0077 0.094 0.0276 0.0327

11/6π 0.0195 0.0188 0.00239 0.0381 0.00876 0.00873 0.0647 0.083 0.01663
avg 0.0314 0.00826 0.0313 0.01707 0.01665 0.0612 0.0414 0.0492 0.0582

(a) NN prediction error on cartesian velocities with Transducer in m/s

α ṗh
sx [m/s] ṗh

sy [m/s] ṗh
sz [m/s] ṗh

ux [m/s] ṗh
uy [m/s] ṗh

uz [m/s] ṗh
fx [m/s] ṗh

fy [m/s] ṗh
fz [m/s]

4/3π 0.014 0.019 0.064 0.02 0.0145 0.022 0.076 0.018 0.08
5/3π 0.019 0.012 0.0028 0.047 0.012 0.032 0.102 0.074 0.15
8/9π 0.025 0.024 0.007 0.04 0.016 0.009 0.079 0.032 0.033
10/9π 0.01878 0.020 0.0033 0.027 0.008 0.002 0.096 0.04 0.041
π/6 0.025 0.024 0.007 0.04 0.016 0.0097 0.079 0.032 0.033

11/6π 0.018 0.015 0.0024 0.0209 0.015 0.0119 0.043 0.012 0.014
avg 0.01846 0.00511 0.035 0.01334 0.01167 0.076 0.0345 0.0624 0.06128

(b) Prediction error on cartesian velocities without Transducer in m/s

α p̈h
sx [m/s] p̈h

sy [m/s] p̈h
sz [m/s] p̈h

ux [m/s] p̈h
uy [m/s] p̈h

uz [m/s] p̈h
fx [m/s] p̈h

fy [m/s] p̈h
fz [m/s]

4/3π 0.2 0.24 0.13 0.11 0.059 0.066 0.27 0.12 0.27
5/3π 0.052 0.052 0.021 0.097 0.08 0.12 0.08 0.14 0.74
8/9π 0.149 0.24 0.269 0.255 0.064 0.094 0.479 0.257 0.33
10/9π 0.256 0.408 0.344 0.142 0.133 0.132 0.293 0.142 0.663
π/6 0.27 0.20 0.058 0.105 0.061 0.042 0.219 0.548 0.099

11/6π 0.157 0.017 0.042 0.185 0.096 0.061 0.227 0.302 0.311
avg 0.164 0.2021 0.0127 0.0141 0.0838 0.087 0.2618 0.2285 0.3658

(c) Prediction error on cartesian accelerations with Transducer in m/s2

α p̈h
sx [m/s] p̈h

sy [m/s] p̈h
sz [m/s] p̈h

ux [m/s] p̈h
uy [m/s] p̈h

uz [m/s] p̈h
fx [m/s] p̈h

fy [m/s] p̈h
fz [m/s]

4/3π 0.162 0.271 0.128 0.099 0.053 0.092 0.233 0.124 0.226
5/3π 0.054 0.074 0.042 0.089 0.071 0.796 0.385 0.632 0.678
8/9π 0.115 0.037 0.024 0.0104 0.094 0.061 0.206 0.362 0.470
10/9π 0.178 0.299 0.247 0.382 0.118 0.114 0.128 0.258 0.528
π/6 0.226 0.2 0.046 0.115 0.047 0.052 0.215 0.392 0.076

11/6π 0.166 0.022 0.035 0.125 0.078 0.036 0.177 0.168 0.233
avg 0.1386 0.0753 0.137 0.0778 0.1668 0.219 0.314 0.371 0.314

(d) NN prediction error on cartesian accelerations with Transducer in m/s2

Table 4.2: Prediction errors on velocity and acceleration
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Experimental Results

α fext,x [N] fext,y [N] fext,z [N]

4/3π 0.225 0.421 0.016
5/3π 1.918 2.502 1.959
8/9π 0.843 1.104 0.875
10/9π 0.328 0.229 0.019
π/6 0.833 1.098 0.142

11/6π 0.570 2.150 0.227
avg 0.705 1.237 0.5411

(a) Prediction error on Force with Transducer in
Newton

α fext,x [N] fext,y [N] fext,z [N]

4/3π 1.091 11.230 4.402
5/3π 9.851 10.728 5.038
8/9π 6.860 15.795 5.484
10/9π 12.634 3.925 7.154
π/6 14.166 3.813 1.484

11/6π 5.995 1.470 1.006
avg 9.962 7.764 3.676

(b) Prediction error on Force without Transducer
in Newton

Table 4.3: Prediction errors on contact forces
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Chapter 5

Conclusions

In this thesis, we have introduced a transformed-based architecture designed to
predict kinematic human data and interaction forces within the context of physical
human-robot interactions.

Our approach consists of two primary components: an MLP Transducer respon-
sible for estimating contact forces based on kinematic data obtained from a mocap
suit, and a Transformer that forecasts both kinematic and force parameters over a
future time horizon.

In order to train our network we collected 320 samples of interaction between a
human operator and a robotic manipulator. The kinematic data from the humans
were collected through the Xsens motion capture suit. On the manipulator, an
impedance controller was implemented to ensure safe collaboration between the
parties.

When we compared our model to a purely Transformer-based network, our
approach exhibited similar performance in predicting kinematic data and a notable
improvement in the accuracy of contact force predictions.

Future research directions will focus on the following aspects:

1. Incorporating variable stiffness into the robot to enhance adaptability. In fact,
the impedance-controlled model we presented maintained constant values of
stiffness throughout the interaction. However, to achieve more effective results
in human-robot interaction, a model with variable stiffness would be more
appropriate for various tasks, allowing for a closer emulation of human-human
interaction behavior.

2. Exploring additional directions of motion, including out-of-plane motions, to
broaden the applicability of our approach. Currently, our model has only been
tested on movements confined to the x-y plane. In the future, we aim to train
our network on a more comprehensive dataset to encompass a complete range
of possible human motions.

50



Conclusions

3. Testing the network on another robotic arm in conditions where a Force/Torque
sensor or residual methods are not applicable. This technique could be
integrated using the technique of Transfer Learning.

4. Integrating our proposed method with control strategies that account for
future human behavior in robot motion planning. This would enable the
design of a controller that allows the robot to react and assist a human in
a meaningful way based on the computed predictions, as prescribed in the
Shared Autonomy paradigm.
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