
Politecnico di Torino
Master’s Degree in Mechatronics Engineering

A.a 2022/2023
October 2023

Model control and low-level interface
for an autonomous car prototype

Supervisor:
Prof. Tonoli Andrea

Candidate:
Ferrari Leonardo

Abstract
In this work it is proposed the developing and implementation of Simulink
models that enable an autonomous car prototype to communicate be-
tween two different control systems, Autec Remote and ROS (Robot
Operating System), and all the sensors, actuators, and other compo-
nents of the vehicle. All by using two distinct communication protocols:
CAN (Controller Area Network) and UDP (User Datagram Protocol).
The object of this thesis is to study and analyze a previous Simulink
architecture, used in 2018 in the first version of this particularly au-
tonomous car prototype, understanding its working principle and then
improving it.
Through the study of the Simulink model all its sections are explored
and explained, then, by examining its behaviour and the functionality
not present in the model, some improvements are developed in order to
guarantee a more complete and safe functionality.
Finally the developments are uploaded in the MicroAutoBox II, that is
present in the vehicle, and the autonomous car prototype is being tested
to check the proper operation of all the new functionalities.

I

II

TABLE OF CONTENTS

List of Figures V

List of Tables IX

1 Introduction 1
1.1 Roadmap . 2
1.2 General overview . 4
1.3 ADAS and AD . 5

1.3.1 Levels of driving automation 6

2 State of the Art 9
2.1 Autonomous Driving 9
2.2 Sensors . 12

2.2.1 Camera . 12
2.2.2 Radar . 14
2.2.3 Lidar . 15

2.3 Autoware Universe . 16
2.4 MatLab and Simulink 17
2.5 dSPACE . 17

2.5.1 MicroAutoBox II 18
2.5.2 Real-Time Interface 18
2.5.3 RTI CAN MultiMessage Blockset 19
2.5.4 RTI Ethernet UDP 19
2.5.5 ControlDesk . 20
2.5.6 RTMaps Interface Blockset 20
2.5.7 Platform API Package 21

3 Current Simulink Architecture 23
3.1 ROS Commands by UDP 25

3.1.1 Counter . 28

III

TABLE OF CONTENTS

3.1.2 Watchdog timer 28
3.1.3 Data Rewrap . 30

3.2 Remote Control by CAN 32
3.3 Powertrain communication by CAN 33

3.3.1 Powertrain communication 34
3.3.2 Bottom part . 34
3.3.3 Upper part . 37
3.3.4 PowerTrain . 39

3.4 ROS Feedback by UDP 40
3.5 ETH and CAN Configurations 42

3.5.1 ETH communication (UDP) 42
3.5.2 CAN communication 42

4 Simulink improvements 45
4.1 Implementing new signals to be read from the PC . . . 46

4.1.1 Signals to implement 47
4.1.2 Sending more signals with MicroAutoBox II . . . 48
4.1.3 ControlDesk . 49

4.2 Safety improvement . 50
4.3 Simplified counter counter 51
4.4 Implement reverse gear on ROS console 53
4.5 Handbrake command on ROS console 54
4.6 Switch between Host PC and Autec Remote 58
4.7 Improved handbrake control 60

5 Testing 63
5.1 New signals implemented 64

5.1.1 Updated architecture 67
5.1.2 Packets optimization 68

5.2 Safety improvements 69
5.3 Simplified counter . 70
5.4 Reverse gear on ROS console 70
5.5 Handbrake command on ROS console 71
5.6 Switch between Host PC and Autec Remote 72
5.7 Improved handbrake . 72

6 Conclusion and future improvements 74

IV

List of Figures

1.1 Tech Demo . 1
1.2 First autonomous car prototype 4
1.3 ADAS understanding of the surrounding environment . 5
1.4 ADAS features and correspondent sensors used to develop

them . 6
1.5 SAE International’s Levels of Driving Automation for On-

Road Vehicle . 7

2.1 Waymo driverless taxi 10
2.2 Google trends on interest on autonomous driving over time 11
2.3 Camera able to recognize pedestrians 13
2.4 Radar sensing technology 14
2.5 Point cloud created by a velodyne lidar 15
2.6 MicroAutoBox II . 18
2.7 Screenshot of the graphical interface of ControlDesk . . 20

3.1 General overview of the current simulink structure . . . 23
3.2 ROS Commands by UDP 25
3.3 Ethernet UDP Receive 26
3.4 DSDecode . 26
3.5 Array of received data 27
3.6 Counter . 28
3.7 Failsafe procedure . 29
3.8 Enable port . 30
3.9 Data Rewrap . 30
3.10 TPDO2 signal . 31
3.11 Remote control by CAN subsystem 32
3.12 Conjunction between two subsystems 33
3.13 Powertrain communication by CAN subsystem 34
3.14 Bottom section of Powertrain Communication by CAN . 34

V

List of Figures

3.15 Bottom section initialization of the signal 35
3.16 EPS status fix . 35
3.17 Upper section of Powertrain Communication by CAN . . 37
3.18 Mapping subsection . 37
3.19 RTICANMM MainBlock 38
3.20 ROS Feedback by UDP 40
3.21 UDP Tx . 40
3.22 Array of transmitted data 41
3.23 ETH confiiguration . 42
3.24 CAN MultiMessage GeneralSetup 42
3.25 CAN To Wireless . 43
3.26 CAN To Vehicle . 43
3.27 CAN To Steering . 43

4.1 RTICANMM MainBlock interface 46
4.2 RTICANMM MainBlock signals 48
4.3 Kind of possible datatypes 49
4.4 ControlDesk interface 50
4.5 Saturation blocks . 50
4.6 New counter configuration 51
4.7 Failsafe procedure . 52
4.8 Reverse gear . 53
4.9 Reverse gear data rewrap 54
4.10 DSDecode32 with new signals 54
4.11 Demux with new signals 55
4.12 Handbrake signals link 55
4.13 Handbrake in Mapping to RTICANMM block 56
4.14 Handbrake in Mapping to RTICANMM block 56
4.15 Handbrake signal into RTICANMM 57
4.16 Switch block position 58
4.17 Switch block detailed 59
4.18 Signal propagation of handbrake block 60
4.19 Subsystem . 60

5.1 Compare to constant in charger signal 65
5.2 Array containing the new signals 66
5.3 Model architecture with new signals 67
5.4 Optimized packet array 68

VI

List of Figures

5.5 Safety simulink test . 69
5.6 Counter simulink test 70
5.7 Array IN containing the new signals 71
5.8 Propagation simulink test 72

VII

List of Figures

VIII

List of Tables

3.1 EPS logic table . 36

4.1 Possible datatype . 49

5.1 Tabular of all the signals summarized 66
5.2 Packet optimization . 68
5.3 Tabular of all the signals IN summarized 71

IX

List of Tables

X

Chapter 1

Introduction

This thesis born as an effect of the collaboration between Politecnico di
Torino and Italdesign Giugiaro.

This thesis work has as its first objective the study and correct under-
standing of a Simulink model, developed in 2018 by a team in Italdesign
Giugiaro, used for the first version of a project about an autonomous
car prototype, called Tech Demo (figure 1.1). That architecture had no
documentations or explanations left regarding its logic and functioning,
because of that a new document containing all the information has to
be developed, to allow a quicker and clearer presentation of the model
for future updates.

Figure 1.1: Tech Demo

1

Chapter 1. Introduction

Subsequently, an analysis is carried out to understand what improve-
ments can be made to the model to add new features to the autonomous
car prototype. Finally, the new version of the Simulink model with the
new features is being tested on the vehicle itself.
The thesis work is divided into the following chapters explained in the
roadmap below.

1.1 Roadmap

The chapters of this thesis are organized in the following way:

• Chapter 1: Introduction
In the initial chapter, a comprehensive introduction is provided per-
taining to the realm of autonomous driving, with specific emphasis
on Advanced Driver Assistance Systems (ADAS) and Autonomous
Driving (AD).

• Chapter 2: State of the Art
This chapter, on the other hand, delves into the world of au-
tonomous driving with greater specificity. It commences by scru-
tinizing the latest advancements on a global scale concerning au-
tonomous vehicles, subsequently conducting an examination of the
predominant sensors employed in this automotive domain. Fur-
thermore, it provides a comprehensive overview of all the programs
and libraries utilized in the course of this thesis.

• Chapter 3: Current Simulink Architecture
In this chapter the Simulink architecture that was originally devel-
oped for the preceding version of this project at Italdesign Giugiaro
is examined and analyzed. The objective is to gain insight into the
intricate process through which the data packets received from the
MicroAutoBox, along with their contained signals, are meticulously
processed to ensure accurate reception by the vehicle. Due to the
substantial size and complexity of the model, our analysis is struc-
tured by dividing the Simulink architecture into four overarching
macro areas: ROS Commands by UDP, Remote Control by CAN,
Powertrain communication by CAN and ROS Feedback by UDP.

2

Chapter 1. Introduction

Each area has its function and they are all interconnected each
other.

• Chapter 4: Simulink Improvements
Following a comprehensive examination of the structural aspects of
the model employed previously, this chapter endeavors to outline
enhancements that can be implemented to refine the original model.

• Chapter 5: Testing
The testing chapter introduces the testing phase of this thesis work,
incorporating all the enhancements integrated into the model. In
the interest of safety, all modifications are initially subjected to
testing while the vehicle is in a suspended state. Subsequently, once
it has been verified that all components are functioning optimally,
on-road testing is conducted.

• Chapter 6: Conclusion and future improvements
This final chapter provides a comprehensive conclusion to the project,
summarizing its key findings and offering a detailed exploration of
potential areas for future improvement and development.

3

Chapter 1. Introduction

1.2 General overview

The automotive industry has witnessed remarkable advancements over
the years, revolutionizing transportation and reshaping the way we live.
From the invention of the first automobile to the integration of advanced
technologies, such as electric propulsion and connectivity, the automo-
tive landscape has undergone significant transformations. One of the
most groundbreaking developments in recent times is the emergence of
autonomous driving.

Figure 1.2: First
autonomous car
prototype

The first autonomous car prototype, known
as "Electro," was developed in 1977 by Tsukuba
Mechanical Engineering Lab in Japan. This de-
velopment marked a significant milestone in the
history of self-driving vehicles. The project’s ob-
jective was to create a vehicle capable of au-
tonomous navigation through the utilization of
cameras and sensors, enabling it to track white
street markers and attain speeds of up to 30 kilo-
meters per hour. Over the years, numerous autonomous driving projects
have emerged, contributing to the ongoing advancement of this technol-
ogy.

Autonomous vehicles, also commonly referred to as self-driving cars,
possess the potential to revolutionize transportation by facilitating ve-
hicle operation without the need for human intervention. This tech-
nology has garnered substantial attention in recent years due to its ca-
pacity to enhance road safety, improve traffic efficiency, and transform
the driving experience for everyday motorists. The implementation of
autonomous driving in conventional automobiles holds the promise of
mitigating human errors and reducing fuel consumption, thereby en-
hancing transportation accessibility. By eliminating the human factor
from the driving equation, autonomous driving stands to significantly
diminish the number of accidents attributable to driver error. Moreover,
autonomous vehicles have the potential to optimize traffic flow, leading
to reduced fuel consumption and consequently a reduced environmental
impact of automobiles within urban areas.

4

Chapter 1. Introduction

1.3 ADAS and AD

The terms ADAS (Advanced Driver Assistance Systems) and AD (Au-
tonomous Driving) can be easily confused, but they do not refer to the
same concepts. The distinction between the two can be summarized by
considering the degree of human intervention that the system necessi-
tates for driving a car.

Figure 1.3: ADAS understanding of the surrounding environment

The objective of ADAS is to expand the range of scenarios in which
collisions can be prevented. With each distinct ADAS implementation,
it is feasible to assess the potential reduction in incidents that can be at-
tributed to it. As a result, all ADAS features are meticulously researched
and developed to integrate various technologies aimed at eliminating
circumstances in which collisions might occur. There is a multitude
of ADAS functions, all of which are in a state of constant evolution,
and they can be categorized based on their objectives. For instance,
some ADAS functions are designed to prevent forward collisions, such
as Automatic Emergency Braking, Pedestrian/Child Pedestrian/Bicycle
Detection, and Obstacle Detection. Others are geared towards control-
ling the vehicle’s speed, as seen in Adaptive Cruise Control, or managing
the steering wheel angle, exemplified by Lane Keeping Assist or Lane
Centering. Additionally, ADAS encompasses features that, while not
directly focused on accident avoidance, provide valuable assistance to
the driver in their daily routines, such as Intelligent Parking Assistance
and Automotive Night Vision.
As for AD (Autonomous Driving), it entails a scenario in which ei-

5

Chapter 1. Introduction

ther the machine or the vehicle itself assumes responsibility for specific
tasks or the entirety of driving functions, effectively replacing the human
driver.

Figure 1.4: ADAS features and correspondent sensors used to develop them

1.3.1 Levels of driving automation

An AD (Autonomous Driving) system is anticipated to execute the en-
tire spectrum of actions essential for the driving process. To achieve
optimal performance, it relies on the perception of the surrounding en-
vironment through sensors, as depicted in Figure 1.4. The processing of
data gathered by these sensors culminates in control decision-making.
To classify the level of autonomy attained by an AD system, the Society
of Automotive Engineers (SAE) has established a scale comprising six
levels, ranging from "no automation" to "full automation". They are
resumed in the figure 1.5 in the following page.

6

Chapter 1. Introduction

Figure 1.5: SAE International’s Levels of Driving Automation for On-Road Vehicle

• Level 0: vehicles completely lack any driving automation technol-
ogy, it may has automated system issues warnings or alerts, so it
has no sustained vehicle control.

• Level 1 ("hands on"): the automotive system provide assistance
with acceleration, steering and brake, the driver and the automated
system share the control of the vehicle (the driver always has the
decision-making power). The driver must be ready to retake full
control at any time. Example of level 1: Adaptive Cruise Control,
Parking Assistance, Lane Keeping Assistance...

• Level 2 ("hands off"): the automotive system takes full con-
trol of acceleration, steering and brake. The driver must be ready
to intervene and should no literally takes his hands off (contact
between hands and the wheel is mandatory).

• Level 3 ("eyes off"): vehicles autonomously handle all driving
tasks and the driver can safely turn his eyes away from the road.

7

Chapter 1. Introduction

The vehicle his able to handle situation that require immediate re-
sponse as Emergency Brake, but the driver must always be available
to take the wheel if required.

• Level 4 ("mind of"): no driver attention is required for safety,
autonomous vehicle systems are completely responsible for all driv-
ing tasks. Level 4 is limited only in certain spatial areas or under
specified circumstances, outside these areas or conditions it must
be able to safely abort the trip.

• Level 5 ("passenger"): no human intervention is required at
all, the driving automation systems will operate independently and
universally in all weather conditions and roadways.

As of today, none of the automotive companies can offer a fully au-
tonomous system.

8

Chapter 2

State of the Art

In this chapter, various elements pertaining to this project are com-
prehensively described. To begin with, self-autonomous cars and the
associated concepts are briefly elucidated. Following that, Autoware,
recognized as the world’s foremost open-source software project for au-
tonomous driving, is discussed in detail. Subsequently, the software en-
vironment employed for the execution of this project, which comprises
Matlab/Simulink and dSPACE, is expounded upon, with a specific em-
phasis on the MicroAutoBox II.

2.1 Autonomous Driving

A self-driving car is a vehicle capable of operating without human in-
tervention. The concept of creating a system capable of autonomously
driving a car was already envisioned in the previous century. However,
during that era, the available technology did not possess the capability
to tackle such a complex task. In recent years, significant advancements
in the field of computer technology have fundamentally altered the per-
spective on this technology, making the development of self-driving cars
a viable possibility.

9

Chapter 2. State of the Art

Figure 2.1: Waymo
driverless taxi

At the end of the last century, some re-
searchers ventured into the realisation of the first
autonomous driving architectures developing and
testing a few prototypes that were able to drive
on real streets. These tests were performed in de-
limited and protected areas, and the target is to
increase these areas. An example is the Waymo
One taxi service, a driverless taxi that has been
tested in San Francisco in 2021 and it will be tested in the recent future
in the street of Los Angeles.
These experiments demonstrate that the final solution is still far away
because for example the Waymo experiments is still not ready for an
intense traffic, they demonstrated that autonomous driving is getting
better year to year and it is not anymore just a dream in the mind of
futurists.
Before getting a complete self-driving car able to drive in every street it
will still take years but leaps and bounds are made every years. Most of
the pioneers in the autonomous driving industry started testing driver-
less car systems as of 2013, including General Motors, Ford, Mercedes
Benz, Volkswagen, Audi, Nissan, Toyota, BMW, and Volvo.
BMW has been testing driverless systems since around 2005, while in
2010, Audi sent a driverless Audi TTS to the top of Pike’s Peak at
close to race speeds. In 2011, GM created the EN-V (short for Elec-
tric Networked Vehicle), an autonomous electric urban vehicle. In 2012,
Volkswagen began testing a ”Temporary Auto Pilot” (TAP) system that
will allow a car to drive itself at speeds of up to 80 miles per hour
(130km/h) on the highway. Ford has conducted extensive research into
driverless systems and vehicular communication systems. In January
2013, Toyota demonstrated a partially self-driving car with numerous
sensors and communication systems.
Tesla motors released the first version of its Tesla Autopilots in 2014 on
board of Model S. Even if younger than the other companies operating
in automotive, Tesla is leading the today market of self-driving cars,
and is working to demonstrate a self-driving coast to coast drive from
Los Angeles to New York. Waymo started as the Google self-driving car
project in 2009. Today it is an independent company which produces
one of the most advanced self-driving systems existing.

10

Chapter 2. State of the Art

In addition to the big actors of the automotive industry, more and more
startups have ventured into the field of autonomous driving relying on
new technologies and highly qualified staff. Through the most success-
ful and established ones we have Zoox, Roadstar.ai, Pony.ai, Aurora,
TuSimple, Drive.ai.

Having a look at the figure 2.2 get by google trends it is possible to
see an increasing interest in autonomous driving from 2012/2013. This
trend is likely to be related with the rapid progress obtained in the com-
puter industry, sensor industry and new paradigms of data analysis like
machine learning and deep learning.

Figure 2.2: Google trends on interest on autonomous driving over time

11

Chapter 2. State of the Art

2.2 Sensors

Here, a concise overview is provided of the sensors commonly utilized
aboard autonomous cars. The system within self-driving cars primarily
relies on three functional blocks:

• Perception: the process that provides a computer image, divides
the image in objects of interest then identifies such objects and
finally gives a meaning to the recognized objects, so it represent
the environment.

• Decision Making: it analyzes the environment given by perception
block and decides which actions to take.

• Actuation: the block that actually put the actions in place.

All the sensors constitute the perception block, and their primary func-
tion is to provide a highly detailed description of the surrounding envi-
ronment. This level of detail enables the decision-making block to select
the most optimal course of action.
The principal sensors employed in autonomous cars are detailed in the
following subsections:

2.2.1 Camera

Camera sensors are among the most prevalent sensors found in all mod-
els of autonomous cars, and they serve as the foundation for implement-
ing nearly all ADAS features. Depending on their placement within
the vehicle, cameras are employed for monitoring nearby vehicles, lane
markings, speed limit signs, high-beam control, and the presence of ob-
stacles along the vehicle’s path. The most commonly utilized locations
for installing cameras in cars include the front grille, side mirrors, rear
doors, and rear windshield.

This is how a camera for autonomous driving works:

1. Image capture: is the process that provide a computer image, using
an array of pixels to capture incoming light converting it into an
electronic signal. Each pixel correspond to a specific point and the
more pixels a camera has, the higher is the resolution of the image.

12

Chapter 2. State of the Art

2. Pre-processing: deals with noise reduction and detail improvement.

3. Segmentation: divide the image in object of interest.

4. Description: compute characteristic, as dimension and shapes, that
are useful to differentiate one object from another.

5. Recognition: the processed image is analyzed by computer vision
algorithms to identify objects, is the process that identifies objects
such as pedestrians, vehicles and all the relevant elements in the
road environment.

Figure 2.3: Camera able to recognize pedestrians

The primary limitation of cameras is their ability to capture details
in the surrounding environment, but they require distance calculation to
precisely determine the location of objects. This becomes particularly
challenging in adverse weather conditions such as fog and rain.
As a result, relying solely on cameras is insufficient to create a compre-
hensive map of the surroundings and accurately determine the vehicle’s
position within that map. Instead, cameras need to complement their
data with information from multiple sensors like radar and lidar to over-
come these limitations.

13

Chapter 2. State of the Art

2.2.2 Radar

Radar, which stands for "Radio Detection and Ranging," utilizes radio
waves to detect objects and ascertain their range, angle, and/or velocity.
The fundamental operating principle of radar involves emitting radio
waves and subsequently measuring the time it takes for these waves
to bounce back after striking an object. Radars are instrumental in
detecting objects and precisely determining their distance, direction,
and speed.

Figure 2.4: Radar sensing technology

One of radar’s most significant advantages is its capability to operate
effectively in challenging environmental conditions, including nighttime
driving and foggy conditions. Radars can complement cameras by pro-
viding reliable object detection and distance measurement, even when
visibility is reduced. This combination of radar and cameras proves in-
valuable in situations where cameras alone may struggle to provide a
clear and comprehensive perception of the environment.

Radar in self-driving vehicle operates at 24, 74, 77 and 79 GHz, that
correspond to different type of radar, short-range radars, medium-range
radars and long-range radars.
The short-range radars are used for detecting the environment around
the car at low speed, so for example for lane keeping or blind-spot mon-
itor. While the long-range radars cover long distances (≃ 200m) and
they are mostly used for distance control and brake assistance.

14

Chapter 2. State of the Art

2.2.3 Lidar

Lidars (Laser Imaging Detection and Ranging) have the same working
principle of radars, but with pulsed laser light rather than radio waves.
They do not simply detect the objects as radars do, but lidars also de-
scribe them by describe all the environment around the objects, this
operation repeated million times per second gives a 3D view of their en-
vironment, providing shape and depth to surrounding cars, pedestrians
and road geography. Like for radars, lidars, using laser light, they work
well at night but not in adverse weather conditions such as heavy rain,
fog, or snow, the performance of lidar sensor can degrade under such
conditions, reducing its effectiveness in certain driving scenarios.

Figure 2.5: Point cloud created by a velodyne lidar

The lidar in a self-driving vehicle has to be placed on the top of
the vehicle without obstruction, to guarantee a correct 360◦ view. The
position makes it easy to be damaged and also unaesthetic.
The main drawback of lidars is the cost, high-quality LiDAR sensors can
be quite expensive, making them a significant factor contributing to the
overall cost of autonomous vehicles. The cost has been decreasing over
time, but it still remains a barrier for widespread adoption.

15

Chapter 2. State of the Art

2.3 Autoware Universe

Autoware Universe is an open-source software platform specifically de-
signed for autonomous driving systems. The primary objective of this
software is to expedite the development of self-driving technology by of-
fering a versatile and readily accessible platform. It serves as a valuable
resource for researchers, developers, and companies engaged in the field
of autonomous driving, facilitating advancements in this domain.
The key feature of this software are:

• Community and open source software: it contains a community
of developers and researchers that collaborate and contribute to
the advancement of the autonomous driving research. The most
important resource of any software is a community that shares its
knowledge helping each other.

• Modular Architecture: adopting a modular design it allows de-
velopers to choose and integrate the components and algorithms
that best suit the applications they need. This provide flexibility,
reusability and extensibility to the software.

• Sensor integration: to provide the capability of integrate various
sensors such as lidar, radar, cameras, and GPS.

• Perception and Mapping: these task give the possibility to analyze
all the data acquired by the sensors and understand the objects in
the environment generating a detailed map.

• Planning and control: to generate optimal trajectories and control
commands for the autonomous vehicle.

16

Chapter 2. State of the Art

2.4 MatLab and Simulink

MATLAB is a widely utilized programming and numerical computing
platform employed by countless engineers and scientists. It is employed
for tasks such as data analysis, algorithm development, and model build-
ing.
Simulink, on the other hand, is a block diagram environment that finds
application in designing systems with multi-domain models. It enables
the running of simulations before transitioning to hardware implemen-
tation and allows for deployment without the necessity of manual code
writing. The majority of the work conducted for this thesis has been
accomplished using Simulink.

2.5 dSPACE

dSPACE is a prominent global technology leader specializing in simula-
tion and validation solutions. The company serves as a partner through-
out the entire innovation process, from the inception of ideas to sup-
porting series production. dSPACE’s expertise spans various domains,
including the automotive sector, On and Offroad Commercial Vehicles,
Aerospace, and the Energy Industry, where it develops solutions to ad-
vance and enhance technology across these industries.

17

Chapter 2. State of the Art

2.5.1 MicroAutoBox II

Figure 2.6: MicroAutoBox II

The MicroAutoBox II is a real-time system designed for rapid func-
tion prototyping with high-speed capabilities. It operates autonomously,
much like an Electronic Control Unit (ECU).

This versatile platform finds application in a wide range of rapid con-
trol prototyping scenarios, including powertrain, chassis control, body
control, electric drive control, aerospace applications, advanced driver
assistance systems (ADAS), and more. In the context of this project,
the MicroAutoBox serves ADAS purposes.

Specifically, one MicroAutoBox II unit is integrated into this autonomous
car prototype, serving as the system where the Simulink model (in the
form of an sdf file) developed within this thesis is uploaded and executed.

2.5.2 Real-Time Interface

The Real-Time Interface (RTI) is a software implementation that fa-
cilitates the execution of models on dSPACE hardware. It acts as the
bridge between dSPACE hardware and the development software MAT-
LAB/Simulink provided by MathWorks.

RTI offers specialized blocks that incorporate the input and output
capabilities of the dSPACE system directly into the Simulink model.
This preparation of the model is essential for real-time applications.

18

Chapter 2. State of the Art

Furthermore, RTI includes consistency checks to identify and address
any errors or issues during the build process.

Simulink Coder, on the other hand, serves as a C and C++ code
generator. It translates Simulink models into executable code. The
generated code can be applied to both real-time and non-real-time ap-
plications, depending on the specific requirements of the project.

2.5.3 RTI CAN MultiMessage Blockset

This extension, an integral part of the Real-Time Interface, serves the
purpose of seamlessly integrating dSPACE systems with CAN commu-
nication networks and configuring CAN networks. It is fully compatible
with Simulink and supports various dSPACE products, including the
MicroAutoBox.
This extension allows for the direct transfer of messages between two
CAN buses, either in a unidirectional or bidirectional manner, through
the Gateway block, without the need for message or signal manipulation.
With this block-set, it becomes feasible to manage, configure, and ma-
nipulate a large number of CAN messages from within a single Simulink
environment.

In the context of this project, it facilitates communication between the
MicroAutoBox II on the Tech Demo and the remote controller utilized
for vehicle control.

2.5.4 RTI Ethernet UDP

This extension, an extension of the Real-Time Interface, offers a funda-
mental UDP (User Datagram Protocol) communication interface within
a Simulink model. The RTI Ethernet UDP Blockset enables the ex-
change of data between a Simulink model operating on the host com-
puter and a real-time application executing on dSPACE hardware, all
in real-time.

In the context of this project, this extension facilitates communication
between the MicroAutoBox II on the Tech Demo and an external com-
puter.

19

Chapter 2. State of the Art

2.5.5 ControlDesk

ControlDesk is a software tool developed by dSPACE, widely utilized
in the automotive and aerospace industries for purposes such as rapid
prototyping, testing, and validating electronic control units (ECUs) and
other embedded systems. ControlDesk provides a user-friendly graphi-
cal interface that facilitates interaction with control systems throughout
the development and testing stages. It enables users to monitor, cali-
brate, and control a wide range of parameters and functions in real-time,
contributing to efficient and effective development processes.

Figure 2.7: Screenshot of the graphical interface of ControlDesk

2.5.6 RTMaps Interface Blockset

The dSPACE Blockset for Simulink provides a means for bidirectional
and low-latency UDP/IP communication between RTMaps and dSPACE
platforms. This blockset allows Simulink applications to connect to the
relevant communication blocks through signal buses, enabling data con-
nections to be established with multisensor applications in RTMaps.
Moreover, this blockset simplifies the development and testing of percep-
tion and application algorithms for Advanced Driver Assistance Systems
(ADAS) and automated driving. It serves as a crucial tool in bridging
communication between Simulink and RTMaps for efficient algorithm
development and testing in the context of autonomous driving technol-
ogy.

20

Chapter 2. State of the Art

2.5.7 Platform API Package

The dSPACE TargetLink API is a library that enables the downloading
and starting/stopping of models. It also provides high-level access to
model variables for various operations such as reading, writing, stimu-
lating, capturing, and more.
An API, which stands for Application Programming Interface, defines
a set of rules and protocols that enable different software applications
to communicate and interact with one another. In the context of au-
tonomous cars, an API is used to facilitate communication with the
system and integrate data from various sensors such as cameras, radars,
and lidar.
A Platform Package, in this context, refers to a collection of tools and
libraries designed to streamline development by offering standardized
interfaces and simplifying integration between different subsystems. It
aids in creating a cohesive and well-integrated software and hardware
ecosystem for autonomous vehicle development.

21

Chapter 2. State of the Art

22

Chapter 3

Current Simulink Architecture

In this chapter, a detailed description and explanation of the Simulink
architecture that was developed for the previous version of the vehicle
is provided.
The following model, figure 3.1, was present in the MicroAutoBox II
without any explanation on the functionality of the specific blocks and
why this type of architecture and layout was used, for this reason one
of the objectives of this thesis work is the analysis and understanding
of this previously developed model.
Particular focus will be given when analyzing the block regarding dSPACE
libraries, that are different from the common Simulink blocks and allow
the correct functioning of the communication between the Autec Remote
or ROS and the MicroAutoBox II.

Figure 3.1: General overview of the current simulink structure

23

Chapter 3. Current Simulink Architecture

The simulink model is composed by four macro areas, each of them has
its own specific functions and blocks:

1. ROS Commands by UDP: This area is responsible for receiving
UDP packets sent by ROS. Each UDP packet contains multiple
pieces of information that need to be extracted and processed in-
dividually or in groups. The output of this macro block provides
signals structured to match the communication format used via
Remote.

2. Remote Control by CAN; This area has the simplest structure
among all, mainly because the signal received via CAN from the
Autec Remote requires minimal modifications. It possesses a straight-
forward and clear structure, with all signals internally processed by
the remote control.

3. Powertrain communication by CAN; Following the two areas that
receive signals via CAN and UDP, this section’s role is to consoli-
date and organize all received signals. Its purpose is to assemble the
complete signal to transmit instructions to the vehicle comprehen-
sively. Subsequently, it receives a signal from the vehicle containing
all the data regarding its status.

4. ROS Feedback by UDP; This final area is responsible for aggre-
gating all the data received from the vehicle. Its purpose is to
package this information and send it via UDP to ROS, enabling
the computer to monitor the vehicle’s status effectively.

24

Chapter 3. Current Simulink Architecture

3.1 ROS Commands by UDP

Figure 3.2: ROS Commands by UDP

This macro block encompasses the structure responsible for processing
the data received from the computer via UDP. To give a brief description
of his working principle, on the left Ethernet UDP Receive receives the
UDP packets from the PC then they are identified and divided by a
DSDencode and a Demux. This signals are divided into two group:

• ID and Counter give information about the packet received and the
are analyzed to check if the information received are in the correct
order, if not "fail safe" procedure occur or the block is disabled.

• Throttle, Brake and Steering are the commands given by the PC
and are expanded in Data Rewrap to get the two signal TPDO1
and TPDO2 with the correct structure.

In the following pages is beign made a more deep analysis on all the
block used in this subsystem, starting from the left:

25

Chapter 3. Current Simulink Architecture

Figure 3.3: Ethernet UDP Receive

This specific block is part of the packet dSPACE RTI Ethernet UDP
and his function is to receive and read an UDP signal. The outputs of
this block are three: Data, Message Size and Status. For the purposes
of this work only the output Data is relevant.
The signal Data contains all the information given by ROS and to select
and divide all the single data a DSDencode32 is used (visualized in the
figure 3.5).

Figure 3.4: DSDecode

DSDencode32 converts a 32-bit word input data into the specified
datatype on the output port. The data in is then extracted using a
demux block to separate the different signals. The representation of the
packet sent is visualized on the following page (Figure 3.5).

26

Chapter 3. Current Simulink Architecture

Figure 3.5: Array of received data

✄ ID (Unsigned short int (H) - 2B): that’s the unique identifier for
the UDP packet and it must be equal to 3 in order to work.

✄ Counter (Unsigned short int (H) - 2B): it’s the value related to
the packet counter, indicating when the packet was created by the
MicroAutoBox II. It must increase over time to prevent it from
being discarded. Consequently, it must be checked every time to
ensure that the counter of the current packet is greater than that
of the previous one.

✄ Throttle (Double float (d) - 8B): represents the value of the throt-
tle, which should be between 0 and 1. It sets the RPM to the chosen
value.

✄ Brake (Double float (d) - 8B): represents the value of the brake
that should be between 0 and 1. It sets the braking pressure to the
chosen value.

✄ Steering (Double float (d) - 8B): represents the value of the steer-
ing that should be between -1 and 1. It sets the steering angle to
the chosen value.

27

Chapter 3. Current Simulink Architecture

3.1.1 Counter

The counter is positioned right after the detect increase for the counter
data, his function is to increase from time to time if the data received
as input is false (so if the counter is not increasing).

Figure 3.6: Counter

The value entering the counter is a boolean variable:

• If rst = 1, so the counter is increased, the output of the switch_reset
is 0.

• If rst = 0, so the counter is not increased, the output of the
switch_reset depend on different factors, if the two constant const
enb and const dir are both equal to 1 the output is also equal to 1.

3.1.2 Watchdog timer

A watchdog timer is a hardware or software mechanism created to over-
see the operation of a computer system or device. Its main objective is
to identify and recover from malfunctions, crashes, or unforeseen events
that may arise during normal system operation. The watchdog timer
functions by periodically monitoring the system to ensure it is func-
tioning as intended. It necessitates a regular reset to prevent it from
initiating a system reset or executing a predefined action. If the watch-
dog timer isn’t reset within a specified time frame, it assumes that the
system has become unresponsive or malfunctioned and proceeds to take
corrective measures.

28

Chapter 3. Current Simulink Architecture

In this system, the watchdog timer is activated when the counter’s
value reaches a particular threshold, indicating that the counter data
hasn’t increased for an extended period. However, it resets each time
the received counter data is higher than the previous value.

Figure 3.7: Failsafe procedure

The triggering of the watchdog timer will activate a failsafe proce-
dure, this procedure activates the switches that influence the value of
throttle, brake and steering, giving new values: Failsafe Throttle, Fail-
safe Brake and Failsafe Steering. The failsafe values have the purpose
to stop the vehicle and because of that throttle and steering are equal
to zero while brake is equal to 0.5.

The logic function of the watchdog timer is the following:

• If the detect increase stays false for more than x time the counter,
that it is increasing time to time, reaches the watchdog timer and
when it passes it the failsafe procedure is activated.

• If the packages sent via UDP has problems with the counter (it
stays the same or decreases for long period of time) the system
detects that there is a problem and stop the vehicle.

29

Chapter 3. Current Simulink Architecture

3.1.3 Data Rewrap

Data rewrap is an Enabled Subsystem that processes the three values
of Brake, Throttle and Steering and the two outputs of the subsystem
are TPDO1 and TPDO2.

Figure 3.8: Enable
port

Enable subsystem means that an Enable Port is
present, its function is to check the previous signal
and when the conditions are respected and the signal
entering the enable port is True (1) it enables this
subsystem, while if it receives False (0) the subsystem
is not enabled.

Figure 3.9: Data Rewrap

TPDO1 signal contains all the information about torque and direction:

• TPDO1_Pos_Trq_req_H5, if it is required a positive torque is
equal to 1 and if not 0;

• TPDO1_Right_Dir_req_H6, if it is required a right turn (steer-
ing<0) is equal to 1 and if not 0;

• TPDO1_Neg_Trq_req_L5, if it is required a negative torque
(brake) is equal to 1 if not 0;

• TPDO1_Neg_Trq_req_L6, if it is required a left turn (steer-
ing>0) is equal to 1 and if not 0;

• TPDO1_Front_Rear_Dir_D6, it gives the front or rear direc-
tion (always equal to 1 so only allowed front direction).

30

Chapter 3. Current Simulink Architecture

TPDO2 is a contiguous output and it is the concatenation of two data,
the first one regarding throttle and brake and the second one regarding
the steering.

Figure 3.10: TPDO2 signal

The value of brake is reversed and then, after multiplied by a constant
K (equal to 100) to get a value between 0 and 100, summed with the
value of throttle to get as result the torque value that is requested.
It happens the same for the steering that is reversed and multiplied by
K (equal to 65, that is the steering value), to get the steering value.

The gain K used for brake and throttle is different from the one used for
steering. For Brake and Throttle we need to obtain a value from -100
to 100, with -100 maximum brake, 0 no brake no throttle and 100 max-
imum throttle. Otherwise for Steering the value required is between
the value of -65 to 65 that is the maximum angle of steering of both
directions.

31

Chapter 3. Current Simulink Architecture

3.2 Remote Control by CAN

Figure 3.11: Remote control by CAN subsystem

This subsystem receives the data from the remote control via CAN and
gives multiple outputs:

• TPDO1 contains the information about positive/negative torque
and right/left direction.

• Remote Command OnCam is the switch between the remote
control and ROS command.

• TPDO2 contains the value of torque and steering.

• RemoteControl_Steering is the value of steering and it has a
gain K (= −0.01) to invert it and scale it in a range between 0 and
1. It presents also a saturation block that limits input signal to the
upper and lower saturation values (1 and -1).

• Unchanged Data Flow all the data received by the remote con-
troller is used again in other subsystems.

32

Chapter 3. Current Simulink Architecture

3.3 Powertrain communication by CAN

Before entering the subsystems TPDO1 and TPDO2 in both the "Re-
mote Control by CAN" and "ROS Commands by UDP" sections, the
signals must pass through switches. These switches are responsible for
determining which of the two signals will proceed. This is necessary
because the subsystems cannot receive both UDP and CAN packets
simultaneously; only one of them can be considered at a time. The deci-
sion is made by a third signal, Remote Command OnCam, which, based
on its value, changes the orientation of the switches.

Figure 3.12: Conjunction between two subsystems

Only the "Remote Control by CAN" has the authority to determine
which signal to select, while "ROS Commands by UDP" lacks decision-
making capabilities. As a result, ROS Commands cannot be considered
until the Remote Commands OnCam signal provides the opportunity
for the signal to pass through the switches.

33

Chapter 3. Current Simulink Architecture

3.3.1 Powertrain communication

Figure 3.13: Powertrain communication by CAN subsystem

It receives as input the data get from the Remote Control or the ROS
Commands, it sends the data to the vehicle via can and receives as out-
put from the vehicle its data. To be analyzed in a more clear way it can
be divided in two part: the top part contains the TPDO1 and TPDO2
data which contain information about throttle, brake and steering; the
bottom part contains MQB_Steering_Target that it is the pure value
of steering from 0 to 1.

3.3.2 Bottom part

Figure 3.14: Bottom section of Powertrain Communication by CAN

34

Chapter 3. Current Simulink Architecture

In the bottom part of the block, MQB_Steering_Target is processed,
first the data is converted to 13 bits and the rate limited to 90° per CAN
cycle with a rate limiter, that limits rising and falling rates of signal by
850 and -850.

Figure 3.15: Bottom section initialization of the signal

It gives two output: one positive value (absolute value block) and one
boolean data (True (1) if negative and False (0) if positive).

These two data are processed in Mapping to RTICANMM.

EPS status fix

Figure 3.16: EPS status fix

EPS Status Fix gives as output the EPS Status comparing the desired
status and the current status.

35

Chapter 3. Current Simulink Architecture

• EPS Desired Status is given by EPS Status and calculated by the
Angle Feedback.
• EPS Current Status is taken directly from the output of the RTI
CAN.

The EPS Current Status follow a memory block, that holds and de-
lay its input by one major integration step so the output is the previous
input (also the EPS Desired Status present a memory block previously),
then is compared with steering blocked and EPS Init.

Steering Blocked → Steering value reset

The EPS Desired Status is compared with Logic ready.

Logic Ready and EPS Init both True → Steering value reset

EPS Current Status EPS Desired Status EPS Status
== Steering Blocked ̸= Logic Ready Steering value reset̸= EPS Init
== Steering Blocked == Logic Ready Steering value reset̸= EPS Init
̸= Steering Blocked ̸= Logic Ready EPS Desired Status== EPS Init
̸= Steering Blocked == Logic Ready Steering value reset== EPS Init
̸= Steering Blocked ̸= Logic Ready EPS Desired Status̸= EPS Init

Table 3.1: EPS logic table

EPS Status in order to be equal to EPS Desired Status must respect
these conditions:

• EPS current state different from Steering blocked;

• EPS Current State equal to EPS Init and EPS Desired State dif-
ferent to Logic ready, or viceversa, or both different.

36

Chapter 3. Current Simulink Architecture

3.3.3 Upper part

Figure 3.17: Upper section of Powertrain Communication by CAN

In the upper part TPDO1, TPDO2 and Unchanged data flow are
processed.

Mapping to RTICANMM

Figure 3.18: Mapping subsection

The mapping block has the purpose to converge all the data into one
single signal, TPDO1 and TPDO2 are converged with "Unchanged Data
Flow" because there are some signals that are sent only by the remote
and not developed by the PC. The output signal is the Transmit Signal
that will be sent into the vehicle.

37

Chapter 3. Current Simulink Architecture

RTICANMM MainBlock

Figure 3.19: RTICANMM MainBlock

This block, differently from the one used in "Remote Control by UDP",
has both Tx and Rx, it sends all the signals to the vehicle and receives
back the feedback info from it. From this block it is possible to decide
which signals are important to be read from the PC in order to ensure
proper operation of the controls.
The signal chosen are the following:

• PCU_status.PCU_S_Engine_speed, the Current Engine speed [RPM],
that can go from 0 to 5000 (in this case it is limited to 100 for safety
measure);

• BRK_Tx_01.BRK_p_BrkPresFdbk, Current Braking pressure [mBar]
applied, that can go from 0 to 50000;

• BMS_MSG1.BMS_MSG1_SOC, State Of Charge of the battery [0-100%];

• RX_Counter, counter value that with a detect increase is checked if
the input is greater or equal of its previous value or not and gives
as output of the subsystem a boolean data: New data (it will enter
into the Enable Port).

38

Chapter 3. Current Simulink Architecture

3.3.4 PowerTrain

Finally the powertrain converges all the feedbacks obtained from the
vehicle with 5 different data:

• TPDO1_D6 (UINT16), data obtained from the unchanged data
flow that contains the information about which system has the
control (ROS or Remote Control);

• PCU_S_Engine_speed (FLOAT), current engine speed;

• BRK_p_BrkPresFdbk (FLOAT), current brake pressure;

• STRG_Pct_StrngPstnFdbk (FLOAT), current steering feed-
back (obtained from the lower part of this subsystem);

• BMS_MSG1_SOC (FLOAT), State Of Charge of the battery.

39

Chapter 3. Current Simulink Architecture

3.4 ROS Feedback by UDP

Figure 3.20: ROS Feedback by UDP

This subsystem receives from subsystem "Powertrain Communication
by CAN " the data acquired from the vehicle via CAN and has the
purpose of sending them via UDP to the computer used for ROS Com-
munication.

The Pwt Feedback data is multiplexed with other two data, the firt
one is the ID and it a constant and the second one is the counter that
increase each time its value. The data is then encoded with DSEncode32
(opposite function of what it was done at the beginning with the data
get from the UDP receive), it converts an input signal consisting of
datatypes into 32Bit WORD data stream on the output port.

Figure 3.21: UDP Tx

The message size is defined by a constant, which, in this case, is set to
22 bits. This message contains seven different data components, which
are transmitted back to the PC to provide real-time information about
the vehicle’s behavior:

40

Chapter 3. Current Simulink Architecture

Figure 3.22: Array of transmitted data

✄ ID (Unsigned short int (H) - 2B): it is the unique identifier for the
UDP packet.

✄ CHK (Unsigned short int (H) - 2B): it is the packet counter so it
tells the MicroAuto Box II when the packet was created.

✄ TDP01_status_D6 (Unsigned short int (H) - 2B): it is the flag
that tells the vehicle who is in control.
Flag = 0 Remote Command is in control.
Flag = 1 Host PC via UDP is in control.

✄ PCU_S_Engine_speed (Float (f) - 4B): it is the current engine
speed [RPM].

✄ BRK_p_BrkPresFdbk (Float (f) - 4B): it is the current braking
pressure [mBar] applied.

✄ STRG_Pct_StrngPstnFdbk (Float (f) - 4B): current steering
feedback [-1,1].

✄ BMS_MSG1_SOC (Float (f) - 4B): current state of charge [0-
100].

41

Chapter 3. Current Simulink Architecture

3.5 ETH and CAN Configurations

Some blocks are needed to allow a correct communication between the
MicroAutoBox via CAN and UDP.

3.5.1 ETH communication (UDP)

Regards the UDP communication just one block about the general setup
is needed, so the "Ethernet UDP Setup" block has to be present in order
to allow the UDP communication with the PC.

Figure 3.23: ETH confiiguration

3.5.2 CAN communication

In order to allow CAN communication different blocks need to be present,
the first one is the "RTI CAN MultiMessage GeneralSetup" block, that
defines where the generated files for the CAN communications has to
be.

Figure 3.24: CAN MultiMessage GeneralSetup

The other blocks for CAN configurations are the "RTICANMM Con-
trollerSetup" blocks, that they describe the hardware and general set-
tings of the physical layout of the CAN protocol.

42

Chapter 3. Current Simulink Architecture

CAN To Wireless: is the block used to receive the signal from the
Autec Remote, it corresponds to the block present in “Remote Control
by CAN ” and it receives all the data.

Figure 3.25: CAN To Wireless

Can To Vehicle: is the block used to send and receive data to the
MicroAutoBox II regarding the Engine Speed, Brake Pressure (also
Emergency Brake) and State Of Charge. It corresponds to the block
present in the subsystem “Powertrain communication by CAN ” upper
part.

Figure 3.26: CAN To Vehicle

Can To Steering: is the block used to send and receive data to
the MicroAutoBox II regarding the Engine Speed, Brake Pressure and
State Of Charge. It corresponds to the block present in the subsystem
“Powertrain communication by CAN ” lower part.

Figure 3.27: CAN To Steering

43

Chapter 3. Current Simulink Architecture

44

Chapter 4

Simulink improvements

Upon comprehending the structure and functioning of the Simulink
model, an analysis is essential to determine areas where enhancements
can be made and sections requiring modification. The majority of these
improvements should be focused on the section related to ROS com-
mands, as it possesses less functionality compared to commands via the
Autec remote. Therefore, the entire structure needs to be revised to
ensure that a greater number of signals can be transmitted via the com-
puter interface while also accommodating an increased volume of signals
received via UDP to monitor the vehicle’s proper operation and func-
tions.

In this section are explained all the improvements that are been made
to the previous Simulink architecture with the aim of making the model
more functional and with new functions. Here the Simulink improve-
ments are just described and justified, the testing part where all the
upgrades will be checked and where the correct or incorrect functioning
will be verified is presented in the following chapter.

45

Chapter 4. Simulink improvements

4.1 Implementing new signals to be read from the
PC

In the simulink architecture studied above only 5 signals are received by
the PC regarding the vehicle status, and those are:

• TDP01_status_D6 that is the flag that tells who is in control of
the vehicle.

• PCU_S_Engine_speed that is the current engine speed expressed
in rpm.

• BRK_p_BrkPresFdbk that is the current braking pressure applied,
measured in mBar.

• STRG_Pct_StrngPstnFdbk that is the current steering feedback.

• BMS_MSG1_SOC that is the State Of Charge.

The list of signals that can be chosen using the RTICANMM Main-
Block is very wide and because of that new systems concerning the
vehicle can be detected by the pc.

Figure 4.1: RTICANMM MainBlock interface

46

Chapter 4. Simulink improvements

4.1.1 Signals to implement

Those are the systems that should be detected by finding the right signal
to be read:

✷ Handbrake signal, this signal should give information regards
the handbrake, ideally with a flag signal that indicate if the hand-
brake is on with "1" and if the handbrake is off with "0". It is
important the implement of this signal because with this feedback
it is possible to check the handbrake from the pc without check-
ing it visually and, if the task is the autonomous driving, the fact
that the computer know its position is a fundamental step for the
correct operation.

✷ Reverse signal, the reverse signal should give information about
the direction of the throttle, as studied in the previous chapter the
signal regarding throttle is unique for both forward and backward
directions, what is different between the two direction is only the
signal TPDO1_Front_Rear_Dir_D5 that acts as a flat between "0"
front direction and "1" backward direction. The signal so needs to
be able to understand in which configurations the vehicle is on.

✷ Charging state, is already present in the signal the one regarding
the State Of Charge of the battery, what it is wanted is a signal
that can tell if the vehicle is charging when connected. This signal
can help identify some problem that can occur, regards charging
situation of the battery.

✷ Counter, a packet counter signal is already present but in that case
is a counter created by the Simulink model (with a counter free-
running block) and not directly by the vehicle, so in case a better
counter directly from the vehicle is present it can be replaced.

✷ Motor Temperature, a signal that indicates the temperature of
the motors. It is used to check the correct functioning of the vehicle
and to prevent overheating of the motors.

47

Chapter 4. Simulink improvements

4.1.2 Sending more signals with MicroAutoBox II

To let the MicroAutoBox II sends other signals to the pc it has to be
followed a procedure in order to correctly manage and read the signal
with a new modified UDP packet.
First of all the new signal has to be selected in the From RTICANMM
Main block it is possible to visualize all the signals (RX) that are present
in the architecture and so the one of interest can be chosen.

Figure 4.2: RTICANMM MainBlock signals

Then the new signal can be selected from the bus and inserted with the
other data. When a new signal is added also some parameters have to
be updated in the section "ROS Feedback by UDP":

• In DSDEncode32 a new datatype needs to be added in the structure
chosen according to the type of data and its range of values.

• In Ethernet UDP Transmit the message size has to be increased
based on the datatype chosen previously.

48

Chapter 4. Simulink improvements

Figure 4.3: Kind of possible datatypes

When a signal is chosen it is important to select the right datatype
from the one present in the DEDEncode32 (4.3), in the following table
all the datatype are resumed with their range of value:

Datatype full name bits bytes Range of values
BOOL boolean 1 1 ’True’ as 1, ’False’ as 0
INT8 Signed 8-bit Integer 8 1 −128 to 127

UINT8 Unsigned 8-bit Integer 8 1 0 to 255
INT16 Signed 16-bit Integer 16 2 −32, 768 to 32, 767

UINT16 Unsigned 16-bit Integer 16 2 0 to 65, 535
INT32 Signed 32-bit Integer 32 4 −2.1 billion to 2.1 billion

UINT32 Unsigned 32-bit Integer 32 4 0 to 4.3 billion
FLOAT floating-point number 32 4 range of values with decimals

DOUBLE floating-point number 64 8 range of values with decimals

Table 4.1: Possible datatype

4.1.3 ControlDesk

Finally, after entering the new data and loading the new Simulink model
in the MicroAutoBox, in order to verify the values assumed by the signal
two possible path can be followed:

1. Connect the PC with the vehicle and check using the UDP packets
the signal added and his changes during the operation of the vehicle;

2. Use the ControlDesk program, from which also the new simulink
model is uploaded to the MicroAutoBox II. With this program it is
possible to control in real time the variable that are present in the
Simulink model and so all the signal inserted. This way of checking
the variables is simpler and allows for faster checking by not having
to go and modify the C++ code as in the previous point.

49

Chapter 4. Simulink improvements

Figure 4.4: ControlDesk interface

4.2 Safety improvement

This improvement is being made for safety measure, because the signals
received via UDP by the vehicle have no protection about unwanted
values. In case a value outside the range 0− 1 in the throttle or in the
brake is processed in the simulink architecture, it can cause an undesired
behaviour of the vehicle that can may cause, in the worst case scenario,
the vehicle to hit some obstacle.
To prevent this problems some saturation blocks are added in the archi-
tecture before each value. The working principle of a saturate the signal
received between two given values, so for example in case it receive a
value of throttle equal to 10 it can be saturated to 1.

Figure 4.5: Saturation blocks

• Throttle value will be processed by a saturation block from maxi-
mum value of 1 and minimum value of 0;

• Brake value will be processed by a saturation block from maximum
value of 1 and minimum value of 0;

50

Chapter 4. Simulink improvements

• Steering value will be processed by a saturation block from a max-
imum value of 1 and minimum of -1;

4.3 Simplified counter counter

A new counter is being developed in order to simplify the older one that
is unnecessary overcomplicated for the function it needs to accomplish.
The objective of this kind of counter is:

• To be 0 if the input is True (1).

• To increase if the input is False (0).

Figure 4.6: New counter configuration

Working principle:
The operation of this switch is as follows: when the input signal (rst)
is True (1), the switch maintains its current position, and the output
signal (count) remains at 0. However, if the input is False (0), the switch
changes its position. Starting from a step_value of 1, the output value
incrementally increases as long as the input remains False.

This counter is then compared to a constant value, which represents
the watchdog timer. As long as the counter value is less than the con-
stant, no action is taken. However, when the counter value surpasses
the constant, it triggers a "failsafe procedure", shown in the following
page (Figure 4.7).

51

Chapter 4. Simulink improvements

Figure 4.7: Failsafe procedure

52

Chapter 4. Simulink improvements

4.4 Implement reverse gear on ROS console

The implementation of the reverse gear (in ROS Commands by UDP)
should be implemented with a similar procedure to how it is already
working in the remote control (Remote Control by CAN), where a flag
signal (0 or 1) TPDO1_front_Rear_Dir_D5 works as a switch to indi-
cate if the throttle signal is for the reverse or not.

The UDP package needs to be increased by 2 bytes, UINT16 is more
than enough for a flag signal (it could also be changed with a boolean
datatype). This new signal will have only two value:

• 1, the vehicle get a forward acceleration;

• 0, the vehicle get a backward acceleration;

The signal will directly be linked with the Data Rewrap. Therefore it
won’t be affected by the “failsafe procedure”, because that procedure
affects directly on the throttle giving it equal to 0, so it won’t matter
the direction of it.

Figure 4.8: Reverse gear

The throttle signal is used for both forward and backward direc-
tions but it needs to be considered positive for both direction, only
TPDO1_front_Rear_Dir_D5 changes his value to determine if it is a
positive or negative throttle.

The Brake signal and the throttle signal will be summed together
so it is possible that if we have a low brake value and high negative
throttle the vehicle will brake with a value equal to the brake value plus
the throttle. The block “compare to 0” is just a precaution in case the
signal of the reverse is not precisely 1 or 0.

53

Chapter 4. Simulink improvements

Figure 4.9: Reverse gear data rewrap

4.5 Handbrake command on ROS console

It was not possible with the previous simulink scheme send, via UDP, a
command to activate and deactivate the handbrake via ROS console.

To activate the possibility to switch on and off the handbrake the fol-
lowing procedure has to be done:

1. The Ethernet UDP Receive must contains one data more (add
bytes to the message size, 2 should be more than enough);

2. It needs to add a new datatype to be converted in the DSDe-
code32;

Figure 4.10: DSDecode32 with new signals

54

Chapter 4. Simulink improvements

3. The demux will have one signal more;

Figure 4.11: Demux with new signals

4. That signal goes directly out the ROS Commands by UDP sub-
system, that is because it has no utility in the data rewrap but
it is used later, and it will enter as input the Powertrain com-
munication by CAN; also the command signal will be linked to
Powertrain communication by CAN.;

Figure 4.12: Handbrake signals link

55

Chapter 4. Simulink improvements

5. There will be 2 Mapping to RTICANMM blocks, one for the
remote control with TPDO1, TPDO2 and Unchanged Data flow
and the other for ROS control with the same TPDO1 and TPDO2
and with the new signal of the handbrake;

Figure 4.13: Handbrake in Mapping to RTICANMM block

Figure 4.14: Handbrake in Mapping to RTICANMM block

56

Chapter 4. Simulink improvements

6. The new Mapping to RTICANMM will be the same as the other
one with the exception on the TPDO1_D8_Em_Brake, that is
taken from ROS handbrake signal.

Figure 4.15: Handbrake signal into RTICANMM

7. To decide which data to read a switch will be present, using as
condition the data remote Command in CAN.

57

Chapter 4. Simulink improvements

4.6 Switch between Host PC and Autec Remote

The expansion of functionality also includes an extended capability to
switch between the Autec Remote and the Host PC by the Host PC,
because previously this functionality was only present in the Autec Re-
mote.

Firstly, the UDP package sent from the PC needs to be increased by
2 bytes, adding a new signal called "ROS command." This signal will
be a new output of the subsystem "ROS command by UDP."

Figure 4.16: Switch block position

The two command data streams, originating from both the PC and the
Autec Remote, are funneled into a dedicated subsystem. This subsystem
possesses the intelligence to determine the appropriate signal for con-
sideration, making its decision based on the most recent communication
method employed. The output from this subsystem is then connected
to all the switches, providing the precise indication of which data source
should be taken into account for further processing.

58

Chapter 4. Simulink improvements

This subsystem decide which signal will proceed based on the behaviour
of the two inputs:

Figure 4.17: Switch block detailed

Inputs:

• Remote, signal from the Autec Remote representing the choice of
the Remote on who should command;

• ROS, signal from the PC (UDP package) representing the choice of
the PC on who should command;

Output:

• command, the final command that is linked to the control port of
the switches that control the commands;

59

Chapter 4. Simulink improvements

4.7 Improved handbrake control

In the previous simulink architecture in order to activate and deactivate
the handbrake a long press of the button was necessary.

Figure 4.18: Signal propagation of handbrake block

The subsystem below has to be placed in the subsystem Powertrain com-
munication by CAN inside the block Mapping to RTICANMM in the
link TPDO1_D8_Em_Brake to increase his signal propagation.

Command given by PC and by Autec Remote have two different Map-
ping to RTICANMM block and so it is required for both cases.

Figure 4.19: Subsystem

60

Chapter 4. Simulink improvements

Working principle:

1. The input first encounter a compare to constant block that check
if the value of the input is bigger than zero;

2. Afterwards a switch is present (the first one encounter by the sig-
nal); this switch in a rest condition has as output the input signal
and it will change its configuration only when the input change its
value (>0) because the control input of the switch is the output it-
self, when this case happens the output of the switch is maintained
bigger than zero for a chosen time;

3. The output of that switch is also linked to the control input of
another switch that is just an increasing counter so it increases his
output until the value of the control input is bigger than zero;

4. The output of the increasing counter is subtracted from a constant
(tuning this constant will increase or decrease the signal propaga-
tion);

5. When the output of that add block is equal to zero the output of
the first switch is zero and so it changes his configuration in the
“rest configuration” until the input changes again;

6. The final switch is present only to have as output of the subsystem
a constant signal and not a decreasing one;

The value of the constant needs to be checked because the “signal
propagation time” is based also on the sample time and so some tests

are needed in order to understand which is the correct value.

61

Chapter 4. Simulink improvements

62

Chapter 5

Testing

After completing the study of the previously employed model and devel-
oping updates for the new version, this chapter provides a comprehensive
explanation of all tests and their outcomes, assessing their utility for the
vehicle model.

The initial tests were conducted in a workshop with the vehicle ele-
vated using a mechanical lift, primarily for safety considerations. This
precaution was taken to mitigate the potential risk posed by unexpected
vehicle behavior, which could result in damage or pose a danger to in-
dividuals in proximity.

Subsequently, following the verification that the new model, incorpo-
rating the updates, operates correctly and can safely control the vehicle,
further tests were conducted outdoors, allowing the vehicle to move
freely on its four wheels.

In the forthcoming sections, detailed explanations of the results obtained
from individual improvement tests are presented.

63

Chapter 5. Testing

5.1 New signals implemented

Throughout the testing phase, numerous signals are meticulously in-
spected to ensure they align with the intended functions that are to be
visualized:

✄ Handbrake signal:
The following signals were analyzed during the activation and de-
activation of the handbrake:

▷ STRG_Pct_StrngPstnFdbk : the value does not changes dur-
ing the test.

▷ BRK_Tx_01.BRK_b_EPBLock : corresponds to 1 when the
handbrake is on and to 0 when it is off.

▷ BRK_Tx_01.BRK_e_BrkSts : corresponds to different value
based on the position of the handbrake lever:
- 1 handbrake switching on;
- 2 handbrake switched on;
- 3 handbrake switching off;
- 4 handbrake switched off.

Based on the results the signal that is gonna be added in the final
model is the BRK_Tx_01.BRK_e_BrkSts

✄ Reverse signal:
In case of the reverse signal none of the signals inside the RTI-
CANMM MainBlock is being tested, instead the signal from the
Tx data: TPDO1_Front_Rear_Dir_D6 is used. This signal taken
from ’Mapping to RTICANMM’ gives as output the direction of the
throttle given by ROS or Autec Remote (depending on the value
of TPDO1_D6).

✄ Charging State
All these signals were analyzed by checking their value during charg-
ing of the vehicle and subsequent disconnection from the power
socket, and vice versa.

▷ BMS_MSG1.BMS_MSG1_State: it keeps changing his value
not depending on the charging state.

64

Chapter 5. Testing

▷ BMS_Charging_Command.BMS_Control : it stays fixed as 0
in both cases.

▷ Charger.Charger_Status_Comm_Status : It remains fixed at
0 in both cases.

▷ Charger.Charger_Status_StartingState: It remains fixed at 0
in both cases.

▷ BMS_MSG1.BMS_MSG1_Dis_I : his value keep changing not
depending on the charging state.

▷ Charger.Charger_I_Out : when it is not charging it is equal
to 0 and when plugged into the outlet it stars to increase from
1 to 13.

▷ Charger.Charger_V_Out : it stays close to 88 increasing a lit-
tle bit when charging.

Based on the results the signal that is gonna be added in the final
model is the Charger.Charger_I_Out, with a simple architecture
shown in figure 5.1, that with a simple "compare to constant" block
will has as output 1 (’True’) if the value received is from 1 to 13
and so if it is charging, while it will has as output 0 (’False’) if it
is not charging.

Figure 5.1: Compare to constant in charger signal

✄ Counter
All the counter signals tested have a value that remains fixed at
1. Consequently, this signal is no longer added, and the counter
created by the Simulink model is retained.

✄ Motor temperature
In this case only one signal inside the RTICANMM MainBlock can
represents it PCU_Temp_Status.PCU_T_S_Motor_Temp. This
signal is then tested by stressing the motor and when the vehicle is

65

Chapter 5. Testing

moving for a long time his value increase (and otherwise decrease
when not used).

All the signals distribution can be seen more clearly in the figure 5.2
and in the table 5.1 below.

Figure 5.2: Array containing the new signals

Field Type - Size Meaning
ID Unsigned short int (H) - 2B Unique identifier for the UDP

packet.
CHK Unsigned short int (H) - 2B Packet counter.

TPDO1_D6 Unsigned short int (H) - 2B Flag that tells who is in control.
Direction Unsigned short int (H) - 2B indicates the direction of move-

ment of the throttle.
Handbrake Unsigned short int (H) - 2B indicate the position of the hand-

brake lever
Engine speed Float (f) - 4B Current Engine speed [RPM].

Brake pressure Float (f) - 4B Current Braking pressure [mBar]
applied.

Steering Float (f) - 4B Current steering feedback [-1,1].
SOC Float (f) - 4B Current state of charge [0-100]

Charging Unsigned short int (H) - 2B Flag that tells if the vehicle is
charging or not

Motor Temp Unsigned short int (H) - 2B Value that represents the motor
temperature

Table 5.1: Tabular of all the signals summarized

66

Chapter 5. Testing

5.1.1 Updated architecture

After testing all the possible signals, four of them are added in the up-
date version of the model.
their position was chosen for convenience and for the logic of the signal,
placing "Direction" and "Handbrake" signals at the beginning of the
array next to the signal of the system in command, and placing "charg-
ing" at the bottom of the signal next to SOC and "Motor Temp" as the
last signal. The new architecture is shown in the figure 5.3 below.

Figure 5.3: Model architecture with new signals

67

Chapter 5. Testing

5.1.2 Packets optimization

With the addition of the new information tested above the updated
signal will have a dimension of 30 bytes, from the 22 bytes of the original
signal. In order to try to optimize the UDP packets received by ROS
an analysis on all the datatype has being made to select the "lightest"
possible datatype for each signal, checking the table 4.1.
In the table 5.2 the changes are shown from the current datatype (C.
Datatype) to updated datatype (U. Datatype).

Data C. Datatype Bytes Range of values U. Datatype bytes
ID UINT16 2 fixed to 4 UINT8 1

CHK UINT16 2 Increasing value UINT16 2
TPDO1_D6 UINT16 2 0 or 1 UINT8 1

Direction UINT16 2 0 or 1 UINT8 1
Handbrake UINT16 2 0 to 4 UINT8 1

Vehicle speed float 4 Decimals needed float 4
Brake pressure float 4 Decimals needed float 4

Steering float 4 Decimals needed float 4
SOC float 4 0 to 100 UINT8 1

Charging UINT16 2 0 or 1 UINT8 1
Motor Temp UINT16 2 Range of T INT8 1

Current packet size: 30 Updated packet size: 21

Table 5.2: Packet optimization

Figure 5.4: Optimized packet array

The optimized packets have a dimension of 21 bytes, 9 bytes less than
the current packages and also 1 byte less than the packets of the original
model with 4 signal less.

68

Chapter 5. Testing

5.2 Safety improvements

About this improvement unfortunately it cannot be tested directly on
the vehicle the proper operation of the saturation blocks, that is because
the code development for this autonomous car prototype cannot send
wrong signals of throttle brake and steering, for this reason it is tested
only with a Simulink simulation (figure 5.5).
The saturation block, as their working principle, saturate all the input
signals in a range of value predetermined and because of that, in case
values of throttle, brake or/and steering received by UDP are outside
their limit values, the model would not have to deal with them because
they will be converted.

Figure 5.5: Safety simulink test

In the figures above it is possible to see that in case of an unwanted
value (in this test equal to 10) the saturation block saturates the value
to 1, while allowing the other signals inside the range of saturation to
pass unchanged (in this test equal to 0.5).

69

Chapter 5. Testing

5.3 Simplified counter

The new counter in the simulation it works fine, unfortunately it was
not possible to test the failsafe procedure because the packets coming
are set to keep increasing their counter and so it will be activated in
exceptional cases.
For this reason the test was made using simulink simulation and the
results of the simulation is shown in the figures 5.6 below. The counter
when receiving a signal equal to 0 (so when the packet counter is not
increasing) it starts to increase his value until it receives a signal equal
to 1 (that means order restored) that will reset the counter.

Figure 5.6: Counter simulink test

5.4 Reverse gear on ROS console

The reverse signal functions flawlessly as expected, without any issues.
With this signal, it is now possible to activate reverse on the vehicle
from ROS via UDP simply by sending a positive throttle and a reverse
signal equal to 0.
This enhancement is arguably one of the most significant, as it opens up
the opportunity for the autonomous car prototype to commence testing
algorithms for parking maneuvers.

70

Chapter 5. Testing

5.5 Handbrake command on ROS console

The Handbrake command also works as expected, so all the study made
in the previous chapter was correct.
The new structure of the packets received by the MicroAutobox II via
UDP is the following:

Figure 5.7: Array IN containing the new signals

Field Type - Size Meaning
ID Unsigned short int (H) - 2B Unique identifier for the UDP

packet and it must be equal to 3
in order to work

CHK Unsigned short int (H) - 2B It’s the value related to the packet
counter, tells the MicroAuto Box
II when the packet was created.

Handbrake Unsigned short int (H) - 2B Flag signal (0 or 1) that rep-
resents the handbrake command,
when is equal to 1 the handbrake
needs to be inserted or removed.

Reverse Unsigned short int (H) - 2B Flag signal (0 or 1) that indicates
if the reverse gear is on or off.

Throttle Double float (d) - 8B Value of throttle that should be
between 0 and 1; sets the RPM
to che chosen value.

Brake Double float (d) - 8B Value of brake that should be be-
tween 0 and 1; sets the braking
pressure to the chosen value.

Steering Double float (d) - 8B Value of steering that should be
between -1 and 1; sets the steering
angle to the chosen value.

Table 5.3: Tabular of all the signals IN summarized

71

Chapter 5. Testing

5.6 Switch between Host PC and Autec Remote

Regrettably, this improvement needs to be removed due to a critical
issue. When the signal is switched from the Autec Remote to ROS, the
packets sent by the remote continue to be received by the MicroAutoBox
II. However, in the reverse scenario, when the signal is switched from
ROS to the Autec Remote, the MicroAutoBox II no longer receives the
ROS packets. Consequently, it becomes impossible to switch back using
ROS alone, and the continued use of the Remote is necessary.
As a result, this block will not be implemented in the final model, and
the system will maintain the capability to switch between the two modes
of command using the Autec Remote for the autonomous car prototype.

5.7 Improved handbrake

The improved handbrake signal has been implemented in both signals
received from ROS via UDP and from the Autec Remote via CAN.
It functions correctly, with the designated value for enabling and dis-
abling the handbrake set at 1000. This value strikes a balance, ensuring
that it’s not too low to not activate the handbrake and not too high to
trigger a secondary activation immediately.
While it’s not feasible to demonstrate the physical implementation with
the Autec Remote and the vehicle, a simulation conducted in Simulink is
illustrated in Figure 5.8 to provide a visual representation of the process.

Figure 5.8: Propagation simulink test

This addition significantly enhances the ease of using the handbrake,
as it only requires pressing the button on the remote control (or sending

72

Chapter 5. Testing

the signal from the PC), even for just a brief moment. This simplifi-
cation makes activating and deactivating the handbrake an extremely
straightforward and immediate process, contributing to an overall im-
proved vehicle control experience.

73

Chapter 6

Conclusion and future improvements

In conclusion, this thesis project involved a comprehensive analysis of
a previously created Simulink model for an initial version of the proto-
type. This analysis resulted in a detailed documentation of the model’s
structure, which can serve as a valuable reference for any future modi-
fications.
The study enabled the implementation of several enhancements to the
Simulink architecture, facilitating more precise and safe control of the
autonomous car prototype. Among these improvements, the addition of
the reverse signal stands out, allowing for reverse engagement via ROS.
This enhancement initiated the testing and research phase for algorithms
related to parking maneuvers, which were previously inaccessible with
the older model (due to the absence of reverse capability).
The testing phase of these improvements yielded positive results, with
most of them functioning as expected and ready for integration into the
final Simulink model.

As the project is still in its early stages, it is likely that subsequent
versions of this Simulink model will be developed, incorporating new
functions, signals, and possibly alternative communication protocols.

Looking ahead, this project is poised for continuous growth and evo-
lution. It will continue to expand by adding new signals, architectures,
and potentially novel communication modes between the MicroAuto-
Box II and the computer. The future trajectory of the Simulink model
promises to be intriguing and dynamic, as it continues to play a crucial
role in the advancement of autonomous driving technology.

74

Chapter 6. Conclusion and future improvements

75

Bibliography

[1] Review on self-driving cars using neural network architectures,
Srinivas Rao P, Rohan Gudla, Vijay Shankar Telidevulapalli, Jayas-
ree Sarada Kota and Gayathri Mandha. www.researchgate.net

[2] ADAS: Features of advanced driver assistance systems, July 1, 2017
by Sam Francis. roboticsandautomationnews.com

[3] SAE Levels of Driving Automation, May 3, 2021. https://www.
sae.org/blog/sae-j3016-update

[4] SAE levels of automation in cars, June 9, 2022
by Rambus Press. https://www.rambus.com/blogs/
driving-automation-levels/

[5] Waymo https://waymo.com/.

[6] How Does a Self-Driving Car See? April 15, 2019 by
Katie Burke. https://blogs.nvidia.com/blog/2019/04/15/
how-does-a-self-driving-car-see/

[7] Autoware documentation. https://autowarefoundation.
github.io/autoware-documentation/main/

[8] Autoware universe. https://autowarefoundation.github.io/
autoware.universe/main/

[9] MicroAutoBox II. https://www.dspace.com/en/inc/home/
products/hw/micautob/microautobox2.cfm

[10] MicroAutoBox II RTI. https://www.dspace.com/en/inc/home/
products/sw/impsw/real-time-interface.cfm#175_25028

[11] RTI CAN MultiMessage Blockset. https://www.dspace.com/
en/inc/home/products/sw/impsw/rti_can_multimessage_
blockset.cfm#179_25165

76

https://www.researchgate.net/figure/Tsukuba-Mechanical-Engineering-Lab-Japan-1977-computerized-driverless-car-achieved-spe_fig2_365874855
https://roboticsandautomationnews.com/2017/07/01/adas-features-of-advanced-driver-assistance-systems/13194/
https://www.sae.org/blog/sae-j3016-update
https://www.sae.org/blog/sae-j3016-update
https://www.rambus.com/blogs/driving-automation-levels/
https://www.rambus.com/blogs/driving-automation-levels/
https://waymo.com/
https://blogs.nvidia.com/blog/2019/04/15/how-does-a-self-driving-car-see/
https://blogs.nvidia.com/blog/2019/04/15/how-does-a-self-driving-car-see/
https://autowarefoundation.github.io/autoware-documentation/main/
https://autowarefoundation.github.io/autoware-documentation/main/
https://autowarefoundation.github.io/autoware.universe/main/
https://autowarefoundation.github.io/autoware.universe/main/
https://www.dspace.com/en/inc/home/products/hw/micautob/microautobox2.cfm
https://www.dspace.com/en/inc/home/products/hw/micautob/microautobox2.cfm
https://www.dspace.com/en/inc/home/products/sw/impsw/real-time-interface.cfm#175_25028
https://www.dspace.com/en/inc/home/products/sw/impsw/real-time-interface.cfm#175_25028
https://www.dspace.com/en/inc/home/products/sw/impsw/rti_can_multimessage_blockset.cfm#179_25165
https://www.dspace.com/en/inc/home/products/sw/impsw/rti_can_multimessage_blockset.cfm#179_25165
https://www.dspace.com/en/inc/home/products/sw/impsw/rti_can_multimessage_blockset.cfm#179_25165

Bibliography

[12] ControlDesk.https://www.dspace.com/en/inc/home/
products/sw/experimentandvisualization/controldesk.cfm

[13] RTMaps Interface Blockset. https://www.dspace.com/en/pub/
home/products/sw/impsw/rtmaps-interface-bs.cfm

[14] Platform API Package. https://www.dspace.com/en/ltd/home/
products/sw/test_automation_software/platform_api_
package.cfm#179_25420

77

https://www.dspace.com/en/inc/home/products/sw/experimentandvisualization/controldesk.cfm
https://www.dspace.com/en/inc/home/products/sw/experimentandvisualization/controldesk.cfm
https://www.dspace.com/en/pub/home/products/sw/impsw/rtmaps-interface-bs.cfm
https://www.dspace.com/en/pub/home/products/sw/impsw/rtmaps-interface-bs.cfm
https://www.dspace.com/en/ltd/home/products/sw/test_automation_software/platform_api_package.cfm#179_25420
https://www.dspace.com/en/ltd/home/products/sw/test_automation_software/platform_api_package.cfm#179_25420
https://www.dspace.com/en/ltd/home/products/sw/test_automation_software/platform_api_package.cfm#179_25420

	List of Figures
	List of Tables
	Introduction
	Roadmap
	General overview
	ADAS and AD
	Levels of driving automation

	State of the Art
	Autonomous Driving
	Sensors
	Camera
	Radar
	Lidar

	Autoware Universe
	MatLab and Simulink
	dSPACE
	MicroAutoBox II
	Real-Time Interface
	RTI CAN MultiMessage Blockset
	RTI Ethernet UDP
	ControlDesk
	RTMaps Interface Blockset
	Platform API Package

	Current Simulink Architecture
	ROS Commands by UDP
	Counter
	Watchdog timer
	Data Rewrap

	Remote Control by CAN
	Powertrain communication by CAN
	Powertrain communication
	Bottom part
	Upper part
	PowerTrain

	ROS Feedback by UDP
	ETH and CAN Configurations
	ETH communication (UDP)
	CAN communication

	Simulink improvements
	Implementing new signals to be read from the PC
	Signals to implement
	Sending more signals with MicroAutoBox II
	ControlDesk

	Safety improvement
	Simplified counter counter
	Implement reverse gear on ROS console
	Handbrake command on ROS console
	Switch between Host PC and Autec Remote
	Improved handbrake control

	Testing
	New signals implemented
	Updated architecture
	Packets optimization

	Safety improvements
	Simplified counter
	Reverse gear on ROS console
	Handbrake command on ROS console
	Switch between Host PC and Autec Remote
	Improved handbrake

	Conclusion and future improvements

