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Summary

The society in which we live is influenced by prejudices that discriminate against
specific groups of the population. In recent years, the presence of these biases
has been detected in the textual data used to train natural language processing
algorithms. Thus, the tools based on these algorithms present biases that harm
specific categories of people. In addition to causing harm to people affected by
biases, these tools do not comply with the fundamental right to non-discrimination,
which may result in legal action against the responsible companies and institutions
that created them. To detect and characterize this type of bias in natural language
processing tools, the scientific community has developed methods and metrics to
detect and measure bias.

In this thesis, we apply these methods to analyze two different types of tools
used in natural language processing. The first tool is word embedding, which maps
words to vector representations, obtained with a Word2Vec or GloVe model. The
second tool is based on large BERT-type masked language models, trained with
textual data. We apply bias detection methods to both word embedding and a
model’s output sequences. We analyze their capabilities and limitations. We then
propose novel evaluation to assess whether a metric measures other phenomena
besides a possible bias. We propose a novel approach to assess whether a model of
the BERT family can be effectively evaluated in terms of the biases it contains.

In the analysis phase, we conducted experiments for bias detection and measure-
ment using these two types of tools on Spanish texts. This study is of interest to
the community since most existing assessments focus on evaluating bias in English
texts due to the prevalence of models and resources in that language.
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Chapter 1

Introduction and Motivation

1.1 Language Models and their Social Impact
Textual data represents human natural language, which is why analyzing this data
is crucial for many reasons. Initially, this data is presented in the form of words
and phrases that can be extracted from any digitized text (articles, magazines,
reviews, etc.).

In the early 1990s, storing and analyzing textual data was complicated due to
the lack of suitable technology. The development of technology, especially in the
late 1990s and the early 2000s, has allowed for the accumulation of more data of
this type.

In fact, especially since the early 2000s, the scientific community started de-
veloping automatic text analysis algorithms to evaluate opinions, sentiments, and
even the personality of individuals, for example by analyzing responses given in
specific questionnaires and comments on their social media.

In the medical field, for example, analyzing medical notes can help predict patient
outcomes, improve hospital classification systems, and generate diagnostic models
that detect chronic diseases at an early stage. Another example is education:
textual comments from students about school teaching can be used to predict
dropout rates in higher education.

Companies, primarily for economic reasons, are also interested in automatic
text analysis algorithms. A significant amount of business information is available
in textual data formats. For example, with the rise of the Internet, more and
more people started spreading and sharing information about purchased products
and services. This information is crucial in the field of e-Marketing, as sites like
Amazon and eBay use recommendation systems based on algorithms that advise
customers on other products similar to the ones they have already purchased.

Textual information extracted from people’s social media is also important for

1



Introduction and Motivation

understanding current trends and guiding companies’ product production.
Although these algorithms have demonstrated a great capacity to perform the

assigned tasks, one must be cautious in safeguarding ethics (such as protecting
personal information). In fact, a natural language processing algorithm that, for
instance, can predict the likelihood of a person’s suicide, is subject to many ethical
issues, especially concerning the right to privacy.

Another problem that can arise with these algorithms is the fact of training them
with low-quality textual data, for example, if they are extracted from documents
from unauthorized sources. The results of these algorithms could be discriminatory
towards a portion of the population.

The research and development of language models that analyze and produce
natural language are part of the study area of Natural Language Processing (NLP).
A significant part of this branch of machine learning is represented by statistical
models of word behavior in texts, such as neural models like BERT or GPT-3,
as well as Markov models, Bayesian models, models based on Latent Dirichlet
Allocation, or vector space representations, including different types of projections,
such as those based on matrix factorization.

These models play a key role in the performance of many tasks, such as converting
speech to text, automatic translation, image description, dialogue systems, etc.
According to a report by the research company “Markets and Markets”, “the size
of the global NLP market will grow from 11.6 billion USD in 2020 to 35.1 billion
USD in 2026, with a Compound Annual Growth Rate (CAGR) of 20.3% during the
forecast period”. The conclusion that can be drawn from this report is that NLP is
growing significantly.

The scientific community, especially in the last 15 years, given the significant
development of NLP and having demonstrated the effectiveness of language model
predictions, has also questioned other aspects, such as the presence of biases in
these models. Thanks to the extensive work of the scientific community, it was
shown that the results of some language models were highly unfavorable for a
specific population group, associating harmful stereotypes with gender or race. For
example, in 2014, Amazon created a hiring algorithm based on textual data that,
with the same work experience and skills, hired many more men than women [1].

1.2 Motivation for measuring biases in language
models

Bias is a manifestation of much more complex social organization phenomena,
and measuring it in a localized way can be considered a reductionist approach.
However, it can also be considered that these approaches to measuring and exploring
biases are a first step towards a more comprehensive treatment of these complex
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Introduction and Motivation

phenomena.
In humans, bias can manifest as a preference for one social group with certain

characteristics over another. It is a form of unconscious bias or implicit bias,
which occurs when an individual unconsciously attributes certain attitudes and
stereotypes to another person or group of people. A language model characterized
by bias (e.g., gender or race) will produce predictions that discriminate against a
group of people.

These biases are also present in the textual corpora used to train word embedding
models or natural language models. To study the quality of a model, it is crucial
to measure the biases that exist in the training data set used. There are many
types of biases, and depending on the task the model is meant to solve, measuring
a specific bias is important.

For example, if one wanted to create a criminal profiling model in the United
States trained on a textual corpus, it would be important to analyze the level of
racial prejudice contained in the corpus [2].
To enhance the understanding of bias measurement, it is crucial to engage re-
searchers from diverse fields, particularly those in the realms of social and psy-
chological studies. However, the metrics and methods used to calculate biases in
language models are the result of mathematical and engineering studies, making it
crucial to explain these measures intuitively to involve researchers who may not
have advanced skills in mathematical interpretation and programming languages.

1.3 Inequalities in language technology bias stud-
ies

The prejudices that plague our society are of diverse nature, including gender, race,
nationality, and social status. Detecting and analyzing these prejudices depends
mainly on two factors [3]:

1. The quantity and quality of research centers conducting bias analysis.

2. Geographical location of the centers.
In fact, most research on bias exploration has been carried out in North
America and Western Europe, where there is usually ample availability of
research resources. A key conclusion to be drawn from this fact is that the
majority of research is conducted in English. Additionally, given these two
geographical areas, the most prevalent discrimination (and thus the focus of
research) are those related to gender and race [4]. Therefore, the majority of
research is conducted in English and focuses on these two biases. In South
America, for example, other prevalent biases (compared to Europe) relate to
social status and nationality [5].

3
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However, compared to the Western bloc, research on these biases is less mature
due to a lack of resources.

1.4 Objectives and structure of the thesis

The objective of this thesis is to present methods for measuring bias in
word embedding and large masked language models (MLM), analyzing their
capabilities and limitations. Another important objective is to provide concepts
to individuals without technical skills but with experience (formal or informal)
in discrimination, so they can integrate them into bias measurement processes.
The structure of the thesis is as follows: Chapter 2 aims to provide useful
knowledge and terminology to better understand Chapters 3 and 4. Chapter
3 presents word embedding and the methods used to calculate biases on them.
Chapter 4 aims to present some methods for measuring biases in the results
of MLM models and present one thesis’s contribution with a new method
for studying the robustness of MLM models. Chapter 5 summarizes the
conclusions and contributions made in the thesis and outlines future lines of
work.

4



Chapter 2

Basic Discussion and
Terminology

To assist the reader, we describe the most important concepts within this
thesis:

• Reference social groups: They are two or more groups of people of
interest, with complementary characteristics, on which to measure sesgo.
Examples: men and women; people with light skin and people with dark
skin.

• Characteristic: A key concept for identifying reference social groups.
Examples: gender, race. The first characteristic refers to the two groups
of men and women, and the second to people with white and black skin.
Identifying the two groups of reference is crucial for bias analysis.

• H: Set of characteristics. Each characteristic is represented as h ∈ H,
and this set determines which features are under investigation to detect
biases.

• phenomenon: a concept that, when combined with a characteristic,
allows for bias measurement. Examples: job, emotions.

• stereotypical sentence: A sentence that holds a stereotypical meaning,
given an h ∈ H and at least one phenomenon. For example, "The best
programmers are men."

• Anti-stereotypical sentence: A sentence that conveys an anti-stereotypical
meaning, given an h ∈ H and at least one phenomenon. For example,
"The best programmers are women."

5
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• Presence of bias: In this thesis, a “practical” definition of bias is used,
which means that bias exists for an h ∈ H when, given a phenomenon
to analyze about h, the results of a tool based on statistical language
models (MLM or word embeddings) associated with the two reference
groups are different. In other words, the distribution of outputs is not
homogeneous with respect to the social group. Therefore, the components
to measure bias are h ∈ H and at least one phenomenon associated
with h. To measure the presence of bias, contributions made in the
thesis suggest, for each metric, a statistical test.

• D: A set of documents or sentences from which to extract textual
data. Currently, most documents are in the form of articles, journals,
reviews, and other types of texts available in electronic format on the
Web. Of course, the characteristics of the society in which we live,
including biases, are present and can be extracted from these texts. The
two main characteristics of D are the language of the documents or
sentences and the domain of the documents. Therefore, the language
and domain used for training word embedding tools or masked
models influence the outcome of the metrics. When selecting documents,
the domain related to h and the phenomenon with which to measure
it are considered. For example, if I want to analyze bias, in English,
regarding h = gender in the workplace, the domain of English documents
will be characterized by gender and job roles.

• seeds: lists of words or sentences used to measure biases.
• StereoSet [6] and CrowS-pairs [7]: These are two sets of seed sentences

used to evaluate bias in a model m.
• method to calculate and/or detect bias: There are two types,

– ω-function that provides a measure to evaluate bias contained in a
diagnostic set and a statistical test to detect the statistical presence
of bias. The statistical tests are based on the measure.

– Function of outputs from a masked model m ∈ M that provides
only a statistical test to detect the statistical presence of bias.

• W: Set of d-dimensional vectors ω. Each vector ω ∈ W represents a
word or phrase in a vector format, where each dimension is a real number:
ωi ∈ R, with i = 1, ..., d. The correspondence between a word/phrase
and the vector representing it is constructed using a method, generally
based on neural networks, such as Word2Vec [8] or GloVe [9]. W can
be obtained by inputting the texts of D into Word2Vec or GloVe, but
pre-trained W can also be used.

6
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• diagnostic set: a set used to measure the presence of biases. It can be
equal to D or W .

• m ∈ M: Masked model, which can be pre-trained or trained with D. M
is the set of all masked models from the BERT family (thus, m is based
on neural networks). The focus is to measure the bias contained in m.
The term MLM (’masked language model’) can refer to a generic m.

• V : training vocabulary of an m ∈ M

Measuring bias over h ∈ H implies considering at least one phenomenon.
In bias measurement, given h, a phenomenon, m or W, statistical tests are
considered more important than the metrics. Choosing H and the phenomena
depends on the analysis requirements.
A question that may arise is the following: if a diagnostic set D or the output
of a linguistic model m is plagued by bias, is there a method to reduce its
influence or even eliminate it (debiasing)? The issue is that modern techniques
[10] cannot eliminate bias but are only capable of masking it. The same applies
to reduction: we can lower the intensity level of bias in a set D, but again, it
would be a way to mask the bias rather than truly reducing it.

7



Chapter 3

Measures of bias in word
embeddings

The aim of this chapter is to describe some metrics and methods for analyzing
the potential biases of a word embedding regarding characteristics h ∈ H.
The chapter is divided into the following sections:

In 3.1, two baseline metrics are defined, which do not depend on the ω ∈ W
but on the occurrences of words in a set of documents D. The considerations
made in this section are important for understanding the effectiveness of the
vectors ω ∈ W .

In 3.2, criticisms of frequency-based metrics are described.

In 3.3, the word embeddings are described, as well as the properties of the
vectors ω and the initial techniques for exploring the presence of biases in
this type of models.

In 3.4, it is defined what a bias metric is for the ω ∈ W vectors and
what the objective of a metric is. In 3.4.1, the Bolukbasi metric is defined
and in 3.4.2, WEAT is defined. It is a method that includes a statistical
test and a metric to evaluate the intensity of a bias given h.

In 3.5 is presented the design of experiments.

In 3.6 are presented some experimental results.

8



Measures of bias in word embeddings

3.1 Metrics based on words occurrences in
documents

3.1.1 Baseline metric: frequency

The frequency [11] can be used to solve the following hypothesis system:H0 : h ∈ H does not exhibit bias in D
H1 : h ∈ H exhibits bias in D

(3.1)

In fact, given a set of documents, a first apparently logical way to detect
bias is to look for the frequency of pairs of words that can represent the
bias of a h characteristic regarding a f phenomenon. The frequency of a
pair is the total number of occurrences of that pair. To choose the pairs, an
investigator typically needs to identify two social groups of interest for each
h and the phenomena of discrimination pertaining to them (f) that will be
studied. These two things are done with experts.
For example, if one wants to measure bias regarding H = {gender} in English,
one can try to specifically measure the phenomenon of nursing/nurse work,
where typically in our society, it is thought that only women can properly
perform this work [12]. The frequency of the pairs (‘female’, ‘nurse’) and
(‘male’, ‘nurse’) can be evaluated. Here, ‘male’ and ‘female’ represent the two
social groups of interest, and ‘nurse’ represents the (work-related) phenomenon
on which to measure possible bias. Once these two frequencies are calculated, a
statistical test can be performed on the proportion of the pair (‘male’, ‘nurse’)
over the sum of the frequencies of the two pairs:

prop = f(‘male’, ‘nurse’)

f(‘male’, ‘nurse’) + f(‘female’, ‘nurse’)
(3.2)

To work with frequency, we can transform the hypothesis system of 3.1 as
follows: H0 : prop = 0.5

H1 : prop /= 0.5
(3.3)

Setting a level α, if H0 is not rejected, it can be concluded that the D set
does not seem to associate the work ‘nurse’ with a specific gender, which
demonstrates absence of bias. We can stipulate that the value 0.5 indicates
that the association between gender and ‘nurse’ is equitable.
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In general, for each h ∈ H, experts decide on the phenomenon to analyze that
may be subject to bias (e.g., job position like ‘nurse’) and choose two groups
that may be affected by the bias.
The example seen can be generalized by considering more than two pairs. In
fact, for each social group, there are more words that can represent it, and
they can be put into two sets A and B. For example, for gender bias, one
can choose A = {‘he’, ‘him’, ‘man’} and B = {‘she’, ‘her’, ‘woman’}. Then, a
group of words representing the phenomenon is chosen (e.g., the labor market)
on which to measure bias X = {‘nurse’, ‘computer programmer’}. Next, pairs
are formed: all the words in A and B are paired with the words in X, and the
ratio is constructed as in 3.2, where the numerator includes pairs referring to the
words in A. In the case of 3.2, A = {‘male’}, B = {‘female’}, X = {‘nurse’}.
Another example can be done in the case H = {race}, considering crimes
in English as the phenomenon. Once a collection of D dependent on H is
obtained, if we want to measure this bias, we look for words representing a
crime, such as X = {‘killer’, ‘police’}. Then, we look for words representing
social groups. In this case, the words can be A = {‘white’} and B = {‘black’},
where ‘white’ represents the group of people with white skin and ‘black’
represents people with black skin. Thus, the pairs of words formed are
{(white, killer), (white, police), (black, killer), (black, police)}, and the test is
conducted on the ratio as described earlier.
If these frequency-based tests indicate that the document set D is biased, using
this set to infer a language model that contributes to determining whether a
person with a criminal profile may or may not commit another crime risks
having a bias towards black-skinned individuals.
This frequency-based metric can provide an initial understanding of how much
a specific phenomenon in a document set D may be affected by bias and is
thus an initial investigation into the magnitude of this bias.

3.1.2 Another baseline metric: Pointwise Mutual Infor-
mation (PMI)

Another metric based on pair frequencies, directly using a ratio, is pointwise
mutual information. Given three words a ∈ A, b ∈ B, x ∈ X, this quantity is
defined as:

BIASP MI = log

A
p(x|a)
p(x|b)

B
BIASP MI [13] it measures the strength of the relationship (in terms of the
number of times they appear in the same sentence) between (x, a) and (x, b).

10
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P (x|a) represents the probability of finding x in the same sentence as a, and
P (x|b) represents the probability of finding x in the same sentence as b. If
the value of BIASP MI is equal to 0, it means that x appears in the same
number of sentences (contexts) with a as with b. If BIASP MI > 0, x appears
more frequently with a than with b. If BIASP MI < 0, the opposite occurs.
This measure is important for evaluating word co-occurrences, which can be
relevant when measuring bias.
Pointwise mutual information, used in NLP applications, should not be
confused with general mutual information. It can be calculated when having
sets A, B, X [13] :

BIASP MI(X, A, B) = log
 fA,X

fA,X +fA,nX
fB,X

fB,X +fB,nX

, where fA,X and fB,X represent the

number of times the words in X appear in the context of words in A and
words in B, respectively, fA,nX and fB,nX represent the number of times the
words in X do not appear in the context of A and B. The interpretation of
BIASIMP with A, B, X is the same as in the case where we have only a, b, x
(one word for each set).
To use pointwise mutual information to measure biases in a document set,
for a characteristic h ∈ H, the two social groups and phenomenon (or
phenomena) to measure bias are defined. In this way, the metric is converted
in method:

• ND documents (articles, journals, etc.) that form the group D of docu-
ments are gathered.

• A, B, X are formed. A, B represents social groups, and the phenomenon is
represented in X. n phenomena are chosen, obtaining Xi, per i = 1, ..., n.
The larger n is, the better the distribution used in the statistical test can
be approximated.

• The BIASIMP i are calculated per i = 1, ..., n.
• The central limit theorem is used, conducting a statistical test on the

average of the distribution of the BIASIMP i, using the following system
of hypotheses that translates to the system 3.1:H0 : µ = 0

H1 : µ /= 0

The system can be solved by fixing = 0.05. Given that BIASIMP = 0 if the
words in X are associated with the words in A, B in the same way, it would
be expected that given the sets Xi, on average, the words contained in Xi

produce a BIASIMP very close to 0, making it logical to choose H0 : µ = 0,
assuming the absence of bias.
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3.2 Critique of frequency-based metrics

A key criticism of these approaches for measuring bias is that selecting A, B,
and X for a thorough exploration is subjective and relies on the researcher’s
logic, lacking specific guidance.
Another significant limitation is that, in any case, to truly understand whether
there is a strong bias or not, it would be necessary to analyze the context
in which the seeds occur in sentences. In the literature, seeds are the words
contained in A and B, where in A, B they are called biased seeds and in X
neutral seeds. The former are seeds that have semantic meaning representing
a group that may be affected by bias, while the latter serve to represent
the phenomenon on which the bias is measured. For example, the sentence
“He/she likes a computer programmer magazine” is a non-prejudiced sentence.
In contrast, sentences like “He can become a computer programmer because
he is a man” or “She cannot become a computer programmer because she is a
woman” are discriminatory. Therefore, we cannot consider the pairs without
the context in which they occur.
Moreover, frequency is not a suitable metric for measuring bias [11]. As
described earlier, textual data is extrapolated from documents found in digital
format on the web. Therefore, these documents contain content about actions,
outcomes, and properties that, from an initial perspective, reflect the real
world [11]. Hence, once the document set D is constructed and the frequency
of pairs is calculated, they do not represent the actual frequency of events,
outcomes, and properties characterizing reality. This is because a significant
portion of our general knowledge never occurs in natural language and thus
not even in its digital form through the documents found online. To clarify this
important concept and understand how “information bias” [11] occurs, let’s
analyze the following examples extrapolated from this recent work. Knext is a
knowledge capture system that extracts specific sentences in digital documents
and their reference to the document. The reference is crucial as the system
acquires judgment based on it. The goal of Knext is to provide basic or specific
notions about the information that can be found on the web. For instance,
considering a document set D, Knext discovers that the heliocentric theory
is much more likely than the geocentric theory because it finds many more
documents d ∈ D referring to the heliocentric theory. In the same document
set D, however, the Knext system also extracts the following information:

• Regarding events characterizing our society, murders are mentioned much
more often than people breathing.

• Regarding outcomes, for example, in a race where there is only one winner
(a footrace, an election race, etc.), Knext finds many more documents
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discussing a person who won than documents mentioning the losers. The
3-gram “won the race” (Knext is trained on English documents) occurs
six times more frequently than the n-gram “lost the race”. Obviously, we
know that the number of losers is always much greater than the number
of winners, so here we encounter bias.

• Regarding properties, for example, in a person’s body parts, Knext learns
that a man or woman certainly has a head, but it is less likely for a person
to have a pancreas according to the system.

It can be concluded that the frequency of a pair cannot represent a bias in
reality since general knowledge is seldom mentioned in natural speech and is
therefore omitted.

3.3 Exploring bias in word embeddings

Therefore, given that word pairs have the criticisms explained in 3.2, evaluating
bias in a diagnostic document set D is challenging. It is also for this reason that
the scientific community has started to question another way of representing
words. This new approach had to consider the context of words more and
reduce the problem of representing reality in texts.
word embeddings aim to address these two limitations. To obtain word embed-
dings, they transform words or phrases from natural language in vectors of
real numbers. Given H and the document set D, a word embedding is used
to map D into a new space W. There are various methods to accomplish
this, and this thesis mentions two: Word2Vec [8] and GloVe [9]. These
two methods better capture the semantic relationships between words,
improving the performance of certain tasks like machine translation, dialogue
systems, etc.
Word2Vec is based on training a neural network from which, through a
pretext task of predicting a word given its context of occurrence, numerical
representations ω are obtained for each word. Figure B.1 illustrates the input
and output of this method.
The training of a GloVe model is based on a co-occurrence matrix between
words in D. For more details on how these two models work, refer to the
associated papers.
The output of these models is a set W, where each element is a vector ω,
where ω ∈ Rd of size d is a numerical vector associated with a specific word p
or sentence o.
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Figure 3.1: Functioning of Word2Vec [8]

The set of vectors ω constitutes the W space, on which metrics based on ω
are applied to conduct analysis on this set. Thus, the hypothesis system in
the case of bias detection for word embeddings is:H0 : h ∈ H does not exhibit bias in W

H1 : h ∈ H exhibits bias in W
(3.4)

When choosing the set H, there are two possibilities:

• If there is no existing representation of D through W, a pretrained
Word2Vec or GloVe model can be used to obtain W, but with great
care. Indeed, it must be ensured that the pretrained model was trained
on a D containing many words and sentences with contexts influenced
by H. For example, if we want to represent D through W to measure
gender bias and use a Word2Vec model that was trained on a different D′

with few sentences with context associated with gender, there is a risk of
obtaining spurious results.

• A Word2Vec or GloVe model is directly trained with the chosen D. This
approach is slower, but at least there is assurance (if D was correctly
chosen considering H) that W has information about the target social
groups.

Detecting bias in H within the set W is of utmost importance. In fact, W
can be used in search engine, social media recommendations, and more. If
W contains biases, the outputs of these applications potentially discriminate
against certain population groups. Therefore, measuring biases allows for
an important perspective on the quality of applications that utilize these
numerical representations of words.

3.3.1 Properties of vectors ω

Vectors ω ∈ W can be the result of a word embedding technique applied by
Word2Vec [8] or GloVe [9].
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The most important properties of word vectors ω are the following:

• ω is a numerical representation of a word or phrase in natural language.
• Words with similar textual behaviors, meaning they share a high pro-

portion of co-occurrence contexts, are represented by numerically similar
vectors ω.

• Differences between word vectors ω can capture behavioral relationships
between words that correspond to meaningful connections.

The size d of the vector ω is determined before training Word2Vec [8] or GloVe
[9] model. For example, Word2Vec is based on a neural network and d is a
model hyperparameter.
To train Word2Vec, a set of documents D is used, which can belong to a
specific domain or no particular domain, depending on the domain on which
biases are being measured.
Thanks to the numerical representation, it is much easier to create metrics
that process these vectors to measure biases. Properties 2 and 3 are crucial for
analyzing the presence of a specific bias. In fact, vectors ω representing words
with similar behaviors have less distance (Euclidean, cosine similarity, and
others) between them than vectors representing words with different behaviors.
For example, the vectors ωa and ωb representing the words ‘brother’ and ‘sister’
should have a smaller distance than the vectors ωa and ωc, where the latter
vector represents the word ‘bottle’.
The third property is used in the following subsection 3.3.2.

3.3.2 Analogies in vectors ω

The third property of word vectors ω, “the differences between word vectors ω
can capture behavioral relationships between words that correspond to meanings
of interest”, can be explained with the following example.
Given an incomplete analogy like “man is to king as woman is to x”, where
x is the word that resolves the analogy, and given the vectors ωman, ωwoman,
ωking, ωx where the first three vectors are known and represent the words
‘man’, ‘woman’, ‘king’ and the last one is the vector representation of x, it is
possible to find this last vector by solving the following analogy :

ωman − ωwoman ≈ ωking − ωx

Once the difference d1 = ωman − ωwoman is calculated, the vector ωx in d2 =
ωking − ωx that minimizes the distance between d1 and d2 is found. After this
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calculation, the resulting vector will be very close to the word ωx = ‘queen’.
Another example can be done in English, for the following analogy: “man is
to son as dog is to x”.

ωman − ωson ≈ ωdog − ωx

As a result of this operation, we can find a vector that corresponds to the word
x = ‘puppy’ or a similar word. As we have seen with these two simple exam-
ples, we can exploit these arithmetic triangulations among ω to extrapolate
relationships between words

3.3.3 Using analogies for detecting bias-based associa-
tions

The Python package Responsibly [14], provides various ways to identify biases
in word embeddings based on word similarities and analogies.
A first way to exploit analogies for detecting biases is as follows: ‘He’ is
to ‘Carpentry’ as ‘She’ is to x. By solving [15] the analogy ωHe − ωShe ≈
ωCarpentry − ωx, we find that x = ‘Sewing’. In this example, we can see an
initial gender discrimination, as a distinction is made based on the job. Ideally,
the same neutral seed ‘Carpentry’ should be associated equally with the word
‘She’ and ‘He’.
Another example of similarity is: ‘He’ is to ‘Doctor’ as ‘She’ is to x [16]. By
solving the equation ωHe − ωShe ≈ ωDoctor − ωx, is finded that x = ‘Nurse’.
In other words, from these simple examples, it can be deduced that some
words, lacking explicit morphological gender indicators, still acquire gender
associations based on societal stereotypes. This happens because the occur-
rence contexts (of jobs) of those words are biased towards a specific gender,
reflecting how people use those words. Some words representing professions
are strongly marked by a gender because they tend to be associated with
feminine or masculine roles.
In the case of analogies, it is interesting to see how numerical representations
ω ∈ W can detect discrimination simply by solving an analogy. This simple
tool is much more intuitive and effective than the frequency calculation seen
in section 3.1.
This effectiveness is due to the fact that the ω are the output of a model
trained on a large amount of text, for example, using a neural network, which
is capable of condensing the behavior of words in texts into a numerical
representation and then establishing relationships between those numerical
representations.
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Taking the analogy ‘He’ is to ‘Doctor’ as ‘She’ is to ‘Nurse’, an important
concept that can be extracted from it is the following: Vectors ωHe and ωDoctor

are close in terms of distance, but this does not imply a bias. This bias is
found because this distance is not the same for vectors ωShe and ωDoctor.
Ideally, without any gender discrimination, the analogy should be ‘He’
is to ‘Doctor’ as ‘She’ is to ‘Doctor’. As for analogies that consider only
words specifying the bias, such as ‘He’ is to ‘Brother’ as ‘She’ is to ‘Sister’
(resolved with the Responsibly package), it is correct that the second and
fourth terms are different since the word ‘Brother’ and the word ‘Sister’ have
a strong correlation with gender. Therefore, to detect bias with analogies, it
is necessary to compare a neutral seed with a pair of seeds representing the
groups on which to search for the presence of bias.
Other ways to calculate analogies are PairDistance and 3CosAdd.

PairDistance

Given ωa, ωb, ωc, ωd ∈ W , to find the word d, this measure solves the equation:

argmaxωd∈W (cs(ωd − ωc, ωb − ωa))

This formulation finds the word d associated with ωd, which maximizes the
cosine similarity (cs) between the two differences shown in the equation.
This follows the same philosophy as similarities, but in this case, the two
differences are not directly compared, but rather the distances cs between the
two differences are calculated. The greater the cs, the greater the similarity
between the two differences. The use of cs is more efficient compared to
directly comparing two difference vectors as in similarity (3.3.2). In fact, in
the literature, PairDistance is used as the basic method for solving analogies,
so is used for comparison with other methods [17].

3CosAdd

3CosAdd [17] allows for a direct comparison between ωd and another vector
that is the result of a simple function of ωa, ωb and ωc. For example, if the
analogy to be solved is “Man is to king as woman is to ...” (a = ‘Man’, b =
‘king,’ c = ‘woman’ and d = ...), one approach could be to work with the word
‘woman’. From it, we subtract the effect of its counterpart (‘Man’) on the left
side of the analogy and add the effect of the word ‘king’ (which is semantically
similar to the unknown word). Then, the similarity (cs) is maximized, using
the initial symbols:

argmaxωd∈W (cs(ωd, ωc − ωa + ωb))
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The intuition behind this is that the position of ‘Man’ relative to ‘king’ should
be approximately the same as the position of ‘woman’ relative to ‘queen’. This
intuition is the same as PairDistance, but the different way in which similarities
are computed can significantly influence the outcomes of the analogy [17].

3.3.4 Analogies with Multiple Word Pairs

The similarity between two vector differences is anecdotal. We need a way
to aggregate different observations from different pairs to obtain a better
representation of possible bias.

The PairDistance and 3CosAdd approaches are based on working with three
known words and one unknown word. These methods could produce a word d
that solves the analogy but introduces noise since it could be used for different
contexts (3.3.4). For example, the English analogy “Man is to King as Woman
is to ...” depending on the corpus used to train the vectors in W , could have
more differences in its vectors that go beyond masculinity/femininity. The
solution to the analogy, ‘Queen’, is also a music group, and therefore appears
in many contexts where ‘King’ appears and where there is no gender difference.
Thus, new methods were created, and they consider, during maximization,
a function that takes into account a set of word pairs and is used to learn
semantic relationships [17].

So, to find d, not only one analogy is considered but more. All analogies have
a fixed c, but a and b change for each analogy. Therefore, we have a set of a,
called source, and a set of b, called target. For example, c = Italia, and we
want to solve the analogies “ai is to bi as c is to ...”, with i = 1, ..., N , where
N is the number of considered analogies. So, more analogies are considered to
include more examples.
Considering three analogies, source and target groups are presented in table
3.1. These are what we call ‘seeds’, the lists of indispensable words for the
method to work.

Source Target
France Paris
Japan Tokyo
China Beijing

Table 3.1: Example of source and target sets.
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3CosAvg

The 3CosAvg method maximizes the following:

ωd = argmaxω∗ ∈ W (cs(ω∗, ωc + avg_offset))

The information from more pairs of analogies is summarized in avg_offset =qn

i=0 ωai

n
−
qm

j=0 ωbj

m
. This quantity considers the entire source set S and target

set O. First, two independent sums are made. One sums all the vector
representations of the words ai ∈ S for i = 0, 1, ..., n, and after division by n,
it is done for each component of the sum (which is a vector). The same idea is
applied for the second sum, which considers the fixed target, for j = 1, ..., m.

m and n could be different, meaning that it is not mandatory to consider only
one set of analogies for creating the two groups. For example, in table 3.1,
if we want to consider more words, we could add a capital to the O group
without adding a new state to S. The idea of applying avg_offset is to
consider more word pairs, not just one pair (a, b). In this way, better semantic
relationships in W are recovered, and this strategy could be used to showcase
bias.

LRCos

This method is based on logistic regression. In 3.1, the left side refers to the
“source class” and the right side to the “target class”. Considering these two
sets, the question “What d is related to China as Tokyo is related to Japan?”
can be reformulated as “Which d belongs to the same class as Tokyo and is
closest to China?”. In this way, it is clearer how to use a table to train a logistic
regression, and from it, we can extract the probability that a specific word d
belongs to the target class. We call this probability P(d ∈ target_class). In
the example given in the previous lines, d = ‘Beijing’
LRCos [17][18], aims to maximize:

ωd = argmaxωd
P(d ∈ target_class) × cos(ωd, ωc)

The number of word pairs and other parameters of the logistic regression can
affect the classifier’s performance and thus the output ωd. The probability that
a word d is the correct answer for a given analogy is calculated by multiplying
the probability that this word belongs to the target class and its similarity to
the vector ωc.
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Criticism of the Analogy Mechanism

Analogies can retrieve relationships between words. An analogy A is to B
as C is to D, indirectly requiring B and D to be different [19]. Moreover,
most analogies have four different terms. This aspect is a limitation. Firstly,
some infinitive forms and past tense forms are represented by a single vector.
For example, in English, the verb “to read” has the same form in infinitive,
past tense and past participle. Thus, the word ‘read’ will have only one
representation ω, even if the context in which the past tense, infinitive and
participle forms are different. Therefore, there are verbs that can be (mainly
for infinitive and past tense forms) homographs. There are also other cases
of homographs, for example, the word ‘Reading’ is both an English city and
the gerund form of the verb “to read”. Homographs also exist in Spanish, for
example, with the word ‘copa’ which means both a glass and the upper part
of a tree formed by its branches and leaves.
Analogies do not allow two terms to be equal, so they cannot capture “is-a”
relationships. For example, for the case “the cat is an animal as the dog is
a x”, in this case (using Responsibly [15]) x /= ‘animal’. It is obvious that
these limitations can create analogies that do not make sense. Some analogies
lack semantic sense. Nonetheless, analogies are useful for exploring semantic
relationships (important for detecting biases) but do not provide a measure or
statistical proof.

3.3.5 Systematization of Bias Exploration

To detect the presence of bias, we can compare a neutral seed with a pair of
seeds representing the bias. Therefore, it is essential to have lists of words
representing different aspects of the social group we want to characterize and
the phenomenon we want to study, that is, lists of words (seeds) that define
the bias, and neutral seeds. Thus, since we have the numerical representations
ω for each word, we can use the projections of the vectors representing the
neutral words in a direction defined by the difference (which defines a direction)
of the two vectors representing the bias, what we call the “bias space”.

Bias Space g

Usually, the direction in which the projections occur is given by the difference
of the two vectors representing the two seeds (one for each group of people that
may be affected by bias) forming the chosen pair to represent the prejudice.
This is also done for analytical reasons since a simple graph can show how
much the projection of a neutral seed is characterized by a stereotype (3.2).
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A seed related to one of the groups under potential bias can appear in very
different contexts. For example, the word ‘hombre’ in Spanish is used in many
ways: as an exclamation (“¡oh hombre!”), as a reference to a person of the
male gender, as a verb (“hombre la estación”). So, generally, choosing only
one pair to form the space is not a good way to proceed as it runs the risk of
the two seeds forming the pair being mentioned in many unbiased contexts
that do not define the bias. Therefore, the good practice is to choose several
pairs and then evaluate which one is the best in terms of “ability to represent
the bias”.
However, the choice of seeds is an ongoing work, and researchers generally do
not pay enough attention to the significant impact of their choice [5].

Projection Evaluation

After choosing the direction, the second step [20] is to project the neutral
seeds onto it.
For each phenomenon f to analyze regarding h, a group of neutral seeds is
chosen. In fact, there are many different types within a specific bias. For
example, for h = gender, three phenomena can be analyzed: workplace,
stereotyped expectations of feelings and objectification. The specific type of
phenomenon influences the neutral seeds that need to be projected.
Once a h is chosen, a group of neutral seeds that may be biased is selected,
for example reusing those used in the Bolukbasi’s paper [20].
Given the chosen direction g and a subset E ∈ W of N vectors associated
with the neutral seeds, to retrieve the projection, the cosine similarity between
each ωi ∈ E, i = 1, ..., N and the direction g is calculated:

csi = ωi · g

∥ωi∥ · ∥g∥
, for i = 1, ..., N (3.5)

A practical case for racial bias [15] can be presented: Using the word embed-
ding of the dataset on Google News (3 million words) trained with a Word2Vec
model [8], an investigation is conducted to detect racial bias in the USA. The
first step is to find a direction that represents the bias, and this task is more
challenging compared to finding a direction to detect gender bias. In fact,
for gender bias, personal pronouns provide an important starting point to
find the direction, and there are many seeds that have gender. On the racial
bias side, it is more difficult to find a set S that contains candidate pairs to
find the direction. To construct S, two lists are created: the first list lista1
contains names typically associated with white people in the USA, and the
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second list lista2 contains names associated with black people. The candidate
pairs are constructed as follows: the first name in lista1 is paired with all the
names in lista2, building all possible pairs. This is done for all the names
in lista1: S = {(xi, yj)|(xi, yj) : (xi ∈ lista1, yj ∈ lista2), i = 1, ..., Nlista1 , j =
1, ..., Nlista2}, where Nlista1 and Nlista2 are the number of seeds in lista1 and
lista2, respectively.
The investigation is conducted on workplace stereotypes [21], and the projec-
tion results are in 3.2.
A workplace stereotype is that: “white people perform more jobs that require
a degree/postgraduate degree compared to black people” [21]. As shown in
3.2, there are jobs (e.g., architect and programmer) that are associated with
white names, and jobs like taxi driver and bodyguard, which do not require a
college education, are associated with black names.
The choice of the S set is an open task. In this example, a specific approach

Figure 3.2: Projections of neutral seeds onto the direction representing race bias

(names) is used. The importance of involving experts, for example, in social
and psychological issues, is crucial to decide which seeds can form the pairs
si ∈ S, indicating the seeds that characterize race.
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Critique

The projections using the ω vectors can be important to explore the presence
of bias in h ∈ H. However, they are not the only methods to extract numerical
representations of words. It is worth mentioning that the focus of this chapter is
measuring bias, which is why the method used to train the word embedding
for obtaining the numerical word representations should be considered. In
fact, all the measures to calculate bias in this chapter are computed on
W. Obviously, the model used to obtain the ω ∈ W affects the geometric
representation of the ω.
The geometric structure of the vectors in W is important for projection
calculations, but in the literature (Word2Vec and GloVe), it is not widely
considered [22] when used for projection. This causes an underestimation of
the similarity between nearby words in the Euclidean metric space used to
analyze similarity. This concept can be seen in 3.3, where, for example, the
English words ‘cemetery’ and ‘graveyard’ are farther apart in space compared
to ‘cemetery’ and ‘forest’ words. This shows that the similarity between the ω,
calculated with projections, can lead to misleading results. This characteristic
can affect the calculation, based on its W of bias.

Figure 3.3: Distances between words, with a focus on the red, green, and blue
words

The learning of the GloVe model is based on a statistical co-occurrence matrix
of words throughout the corpus. The matrix contains word representations
based on the frequency of words appearing together within the general context
of the corpus. As a result, GloVe tends to capture global relationships between
words as it considers co-occurrences across the entire corpus.
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On the other hand, Word2Vec, based on neural networks, is commonly trained
with Skip-gram, which predicts the surrounding context (nearby words) given
a target word. This model tends to capture local relationships between words
as it tries to predict words close to a target word within a context window.
Another intuition [23], states that the ’true’ space from which the documents
are generated is generally of high dimensionality (a document can be repre-
sented by a set of many variables), and this space is often infeasible due to
the curse of dimensionality. These documents can be projected into a lower-
dimensional semantic space where documents related to the same semantics
are close to each other [23]. There is the possibility of learning this subspace
using graph embedding techniques, as demonstrated in [24], by minimizing
the reconstruction error of the large space. At this point, the ideas that

• Two of the most widely used models for creating the ω vectors (GloVe
and Word2Vec) consider either local or global features.

• The training of these two models does not consider a ‘true’ large geometric
space from which a subspace that can be used to extract the documents
can be extracted.

have led to the creation of the “Global-Locality preserving projection” (GLPP)
method.

3.3.6 Global-Locality preserving projection

The Global-Locality preserving projection (GLPP) aims to balance both local
and global features in the process of learning word representations by redefining
the output vectors ω ∈ W from the GloVe or Word2Vec model.
In general, the W space represents many features represented by ω, but it
may lack some features, as can be seen in 3.3.
GLPP takes into account the geometric structure of words: In fact, the pivotal
aspect of this method lies in its divergence from training a word embedding
model. Instead, it involves the projection of the generated ω vectors (using
GloVe or Word2Vec) into a lower-dimensional space than the original space W .
This projection also uses the adjacency graph of the ω vectors. The projection
in a reduced-dimensional space respects the intuition of [23], where in this case,
the W space representing the set of words contained in the documents used
to train the models is reduced. In practice, the GLPP algorithm attempts
to redefine the ω ∈ W while maintaining the already represented semantic
relationships between the ω vectors, into new ω

′ ∈ W ′ vectors that try to
highlight the semantic relationships that were not well represented. In other
words, redefining the ω representing semantically close/distant words in the
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corpus in the original W space, as seen, for example, in 3.3, proximity/distances
may not be visible in W . The advantages of GLPP are as follows:

• Taking into account the influence of the geometric structure between
words by redefining W (this leads to a greater consideration of semantic
relationships between words)

• Not losing the semantic relationships already represented in W with
Word2Vec and GloVe.

Considering as many possible semantic relationships can be very important
for measuring bias, as a W ′ could be more informative about the relationships
between words. From a theoretical point of view, is obtained a vector space
ω ∈ Wall ∈ RM×K , K → +∞ and a space X test = [x1, x2, x3, ..., xl], with
X test ∈ RM×l. The vectors in Wall are the numerical representation of all
words in a language, and the vectors xi by i = 1, ..., l are the numerical
representations of words used to test the algorithm. Then, a subset of N
vectors ω, Wwindow ∈ RM×N , Wwindow ∈ Wall is selected by applying a
sampling window. GLPP is trained using the vectors contained in the window
and then used to reduce the dimension of the target set W, which contains
the vectors for which GLPP is to be applied. In general, given a dataset
X = [x1, x2, ..., xN ], X ∈ RM×N , where N indicates the number of samples
and M represents the dimension of the samples, GLPP aims to map the high-
dimensional dataset X ∈ RM×N to a lower-dimensional dataset Y ∈ Rm×N

with m < M , searching for a projection matrix U such that Y = UT X. The
new dataset Y preserves the local and global structure of the original dataset
X. In practice, we have a set W ∈ RM×N obtained from a model (Word2Vec
or GloVe), and it represents the ’window’ of the theoretical space Wall. M is
the dimension of the word vectors decided during the training of Word2Vec or
GloVe. The following scheme explains how to redefine the ω vectors [22]:

1. In the input, we have W = [ω1, ω2, ..., ωN ], W ∈ RMxN and X test ∈ RM×l

2. The k-nearest neighbors (knn) algorithm is applied to create the knn
graph. If ωi is in the k-neighborhood of ωj , or ωj is in the k-neighborhood
of ωi, then ωi is connected to ωj.

3. The weight matrix S of the connection between neighbors ωi and ωj is:

Sij =

e
(ωi−ωj )2

σ2 , ωi ∈ N(ωj) or ωj ∈ N(ωi)
0, otherwise

where N(ωj) is the set of neighbors of ωj, N(ωi) is the set of neigh-
bors of ωi, σ2 is a parameter (typically equal to 1), and (ωi − ωj)2 is the
Euclidean distance between ωi and ωj.
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4. The projection matrix U is calculated by solving the following equation
(equation (5) of [22]):

(WLWT − ηC)U = λWDWT U (3.6)

To solve this equation and find the eigenvectors forming U:
i. The first N eigenvectors are computed by solving the characteristic

equation
det(WLWT − ηC − λWDWT )

. With this equation, we find N eigenvalues. We sort the eigenvalues
λi from highest to lowest and choose the first m eigenvalues.

ii. For each λi, for i = 1, ..., m, the corresponding eigenvector ui is
computed by solving 3.5 only for a specific λi and finding ui ∈ U .

5. Steps 1-2-3-4 are used to find the projection matrix U . In this step, X test

is used, where xi ∈ X test, i = 1, ..., l and xi /∈ W . Then, Y test is calculated
as follows:

Y test = UT X test

6. The projection matrix U is evaluated in two ways. First, the distance
between X test rec. = UY test and X test is calculated as follows:
d(X test rec., X test) =

ñqM
i=1

ql
j=1(X test rec.

ij − X test
ij )2, for i = 1, ..., M ,

j = 1, ..., l. This formula compares all corresponding cells of the two
matrices. The second way is the exploratory evaluation of the new
positions of the redefined vectors in the Euclidean space to see if the
previous characteristics are maintained (words that were close before are
still close in this new space) and to see if words that were
distant in semantic terms are now closer.

7. If d(X test rec., X test) is small, we can redefine the original W or a subset
of it.

GLPP is not exempt from criticism: the application of a projection on a
set of numerical vectors representing words could result in the loss of some
information about the semantic relationships. Additionally, the projection can
be useful to improve the quality of word vector representations but should be
carefully balanced with the preservation of semantic information.

To conclude this section, the first bias measure (3.1) is presented. With
it, it was understood that another representation of words is necessary (differ-
ent from their natural representation in letters): for this reason, biases in a
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word embedding can be explored through analogies and projections. Further-
more, GLPP attempts to recover more information about the global features
of W created with GloVe or Word2Vec. This latter concept could be more
important for a better measure of bias in a text corpus.

3.4 Methods for measuring biases on word
embeddings based on analogies

In 3.3, some strategies for exploring bias were shown. After exploration, we
need to apply a metric based on ω to evaluate the system 3.4. In the literature,
there are two types of methods: i) that provide a measure of bias and a
statistical test to measure its significance. ii) that provide a measure of bias
without statistical tests. In this thesis, two methods are analyzed: one of the
first type (Bolukbasi), which includes a proposed statistical test. The second
one (WEAT) belongs to the second type. These two methods are based on
the use of cs, which is applied to many pairs of vectors ω. The statistical test
is based on the measure of each metric.

3.4.1 Bolukbasi Metric

In this section, the Bolukbasi metric [20] is analyzed with pros and cons.
This first measure is of the direct type. It measures bias by considering a set
of neutral seeds and a direction g (3.3.5) representing the bias. The other
type, indirect bias, is not analyzed in this thesis.
Given a group of neutral vectors ω and some groups Ai of vectors representing
bias for each hi ∈ H, a similarity measure between ω and Ai is calculated as
follows:

s(ω, Ai) = meana∈Ai
cs(ω, a) (3.7)

For each i = 1, ..., |H|, a s(ω, Ai) is obtained, which refers to a measurement
of a specific bias on a specific feature. The formulation 3.7 represents the
building block for the two measures presented in this chapter. This is the
simplest formula for calculating direct bias and in some works, it is used
as a basis for comparing the performance of other measures. Its simplicity
of calculation and interpretation implies an advantage. An example of its
application can be found in [25]. Given a specific bias to measure, for example,
racial bias in society, a set of neutral seeds is chosen. These neutral words have
to represent society (e.g., specific words related to occupations, social status,
etc.), and for this choice, it could be very important to involve researchers
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from other disciplines. Then, the set of vectors ω representing the neutral
seeds is constructed. Then, for each neutral seed, the vector ω is contained in
N ∈ W .
Given N and H, the direct bias measure by Bolukbasi [20] is as follows:

DirectBiasc(g) = 1
|N |

Ø
ω∈N

|cs(ω, g)|c (3.8)

Where:

• |N | is the number of neutral seeds in the set.
• q

ω∈N
|cs(ω, g)| sums up all cosine similarities between all ω ∈ N and the

bias direction g (3.3.5). Each similarity is transformed with the absolute
value (so each value is in the range [0, 1]) to obtain a value for the Bolukbasi
formula, which is ≥ 0.

• c is an exponent used to determine the rigor of the bias measurement.

There are some considerations that should be taken into account to use this
measure in the best possible way. The first one concerns the choice of neutral
seeds. The correct choice of neutral seeds can follow this method, but it
also depends on the researchers’ experience because there is no specific and
correct path to find the best seeds for a task. So, one advice could be to
choose multiple sets of seeds to compare the results among them. The second
consideration is about the direction g, which should be done by experts. The
third consideration, which is of great importance, pertains to the correct choice
of c for which the range is [0, 1]. As c approaches 0, the measure becomes more
stringent. For example, when c = 0, all values of |cs(ω, g)| become equal to 1,
causing the measure to reach its maximum. When considering the use of W
as a foundation for a hiring tool and aiming to mitigate gender biases in the
corpus (H = gender) to ensure equitable recruitment of both men and women,
the Bolukbasi formula can be employed to measure gender bias. Notably,
a value of c approaching 0 accentuates the bias. If c = 1, no restriction is
applied.
The equation (3.8) favors simplicity, and as Bolukbasi suggests [20], a pa-
rameter that considers the frequency of the word associated with ω could be
inserted into the formula.
To interpret the output of (3.8), it should be known that DirectBiasc ∈ [0, 1].
The interpretation largely depends on c. For c close to 0, for example, for
c = 0.1, if the value of DirectBias0.1 is close to 0 (e.g., 0.001), the conclusion
could be that the considered set N seems to present a very small bias because
even with this penalty (c) that allows for a large number (greater than 0.1) of
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DirectBias0.1, the resulting value is close to 0. The reverse holds for c close
to 1, for example, c = 0.9. In this case, if the value of DirectBias0.9 is close
to 0 (e.g., 0.001), the conclusion could be that the set N exhibits a significant
bias because even without a small c, the output value shows that there are
words correlated with one extreme of the direction.
However, the interpretation depends on the task and the corpus. In Boluk-
basi’s paper [20], with c = 1, a DirectBias1 = 0.08 value is considered a
value for which many words in N are correlated with g. In general, for each
value of c, if DirectBiasc > 0 means that there are some words in N that are
correlated with g, so it is necessary to investigate which words are correlated
to study bias. To solve the hypothesis system 3.4, a statistical test needs to
be performed, which was not done in the original work. For the details of the
test, see the experiments section 3.5.2.

Criticism

The Bolukbasi formula has not escaped criticism from certain studies and
researchers:

1. One criticism [26] is that cosine similarity might be inadequate for mea-
suring the similarities between ω and g. It is also true that critics rely on
different definitions of bias and do not contradict the importance of using
cosine similarity [27], as pointed out also in Bolukbasi’s article [20].

2. If bias removal techniques are applied (as explained in the final part of 2),
DirectBiasc produces a value of 0 even if it still remains through indirect
bias [20], and this can be contradictory.

3. The direction obtained by PCA does not necessarily represent the direction
of bias g properly [27], and the consequence is that it can lead to an
overestimation or underestimation of bias. This is an extreme case [27].

4. The choice of c could create a result that overestimates the bias (especially
if c ≈ 0).

5. As shown in Bolukbasi’s paper [20], cosine similarity between the numerical
representation of words and the bias direction is useful to reveal the
presence of gender bias, but generalizing to more (and subtler) biases is
challenging [10].

Among these criticisms, the second one is the most confirmed in the literature
[10], but the first and third ones would need further investigation in future
works. The fourth and fifth criticisms can be addressed by testing different
values of c and trying to find the direction of a bias other than gender. For
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example, in 3.3.5, people’s names were used to search for g in the case of racial
bias, while in the case of gender bias, it is easier to extract seeds (such as
pronouns) that can be used to find g. The original work does not perform any
statistical test on DirectBiasc, which is another criticism that is attempted
to be resolved in the experimental design carried out in this thesis.

3.4.2 WEAT Method

In the original work, the result of DirectBiasc is not easy to interpret, also
because it does not provide a strict rule to help researchers understand if there
is bias or not.
For this reason, it could be more useful to use measures that, in addition
to providing a numerical measure, provide a rule to analyze the significant
presence of bias. Indeed, the major advantage of WEAT over DirectBiasc is
that it provides a statistical test.
Word Embedding Association Test (WEAT) [28] provides these two aspects.
It is based on Implicit Association Test (IAT) [29], used to study pro and anti-
stereotypical associations. It is a psychological test that has shown significant
differences in response times when subjects are asked to combine two concepts
they find similar, as opposed to two concepts they find different. WEAT
is a statistical test analogous to IAT, and it is applied to the widely used
semantic representation of words (thus, to W). In WEAT, it measures the
distance between a pair of vectors instead of the reaction time used in IAT.
To validate the test, Caliskan et al. [28] addressed the harmless bias of IAT
to demonstrate the good functionality of WEAT. For example, WEAT (like
IAT) has shown that flowers are significantly more pleasant than insects.
Furthermore, WEAT uses effect size d as a measure of bias. The conventional
small, medium, and large values are 0.2, 0.5, and 0.8 (respectively). Moreover,
WEAT replicated the results [28] in terms of race and gender biases found
with IAT.
WEAT measures the associations between vectors ω learned from large text
corpora, which are contained in two sets of target concepts and two sets of
attribute concepts.
The null hypothesis states that there is no difference between the vectors in
the target concept sets in terms of similarities (measured with cs, but other
measures can be used) with the two attribute concept sets.
A formal definition of the null and alternative hypotheses will be provided in
the following lines.
WEAT is a non-parametric test [30] (the test statistic is not associated with
a distribution) and is based on permutations to measure the probability of

30



Measures of bias in word embeddings

the null hypothesis. This probability is represented by the probability that
random permutations of the target words produce a larger difference than the
observed difference.
Given a formal definition, let X, Y be two sets of ω representing target words,
and A, B be two sets of ω representing attribute words. All these sets have
the same size n. The test compares X, Y with A, B.
For example, if you want to analyze gender bias in workplaces, the sets could
be formed as follows: A = {he, man, male}, B = {she, woman, female},
X = {engineer, doctor, policeman}, and Y = {secretary, nurse, teacher},
where n = 3.
The cs is used as a similarity measure in WEAT (other measures can be used).
One of the most important quantities in WEAT is [27]:

s(ω, A, B) = 1
n

Ø
a∈A

cs(ω, a) − 1
n

Ø
b∈B

cs(ω, b)

This quantity measures the difference of two means, where each mean is
calculated with respect to all the distances between ω and the elements a ∈ A
for the first mean, and b ∈ B for the second. A positive s(ω, A, B) means
that ω is more correlated (on average) with the attributes in A than B, and a
negative one means the opposite.
To provide a measure of bias, the effect size [27], can be calculated.
d is a well-interpretable quantity. In fact, a positive d indicates that the words
in X are quite stereotypical for the attributes in A, and the words in Y are
stereotypical for the attributes in B. Conversely, a negative d indicates that
the words in X are quite stereotypical for the attributes in B, and the words
in Y are stereotypical for the attributes in A (opposite to the positive d).
d is used to measure bias.

Given H and W, for each h ∈ H, WEAT primarily provides a statistical
test to detect the presence of bias, with these formally defined hypotheses:

H0 : q
x∈X

s(x, A, B) = q
y∈Y

s(y, A, B)

H1 : q
x∈X

s(x, A, B) /= q
y∈Y

s(y, A, B)

where X, Y, A, B are contained in W and do not share vectors ω between
them.
H0 assumes that there is no associative difference between the target words in
X, Y and the attribute sets A, B. In other words, the hypothesis that there is
no bias in W cannot be rejected.
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To address the test, the following test statistic is defined:

s(X, Y, A, B) =
Ø
x∈X

s(x, A, B) −
Ø
y∈Y

s(y, A, B)

s(X, Y, A, B) measures the differential association of the two sets of target
words with the attributes.
Once s(X, Y, A, B) is calculated, the one-tailed p-value of the permutation
test is computed, which is [28]:

Pri[s(Xi, Yi, A, B) > s(X, Y, A, B)]

The partitions (Xi, Yi) are drawn from X ∪ Y .

Criticism

In the work [31] some criticisms are made to the WEAT test and the effect
size d. The first one refers to the following proposition:

“Let X = {x}, Y = {y}, and let a vector ω have the same distance with
respect to x and y (thus, there is no bias in ω). According to WEAT, if ω
comes from a model that applies SGNS (skipgram with negative sampling,
like Word2Vec), it can be claimed that ω has the same distance with respect
to x,y, if and only if p(x) = p(y).”

The proof can be seen in [31]. Therefore, for ω to be equally associated
with the sets, it is not enough for ω to be unbiased with respect to {(x, y)},
but also that the words x, y have the same frequency in the textual corpus used
to produce W . The same reasoning applies to GloVe [31]. This consideration
can be extended to target and attribute sets with more words. Hence, the
statistical test of WEAT and d can be non-zero even when each target set
(X, Y ) is unbiased with respect to the attribute sets (A, B). In WEAT practice,
this issue arises when the words in A do not have the same frequency as the
words in the opposite side in B (“man vs. woman, he vs. she”).
The second criticism is based on the following proposition [31]:

“Let X = {x}, Y = {y}, and the target words T1 = {ω1}, T2 = {ω2}. Regard-
less of what the target words are, the effect size d of the association with X
and Y is maximized in one direction, according to WEAT.”

The maximum direction for how the sets are constructed in the proposi-
tion is equal to 2 (proof in [31]). In practical terms, this means that d is
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necessarily, in absolute value, equal to 2, regardless of how small the individual
similarities are, altering the associative effect between the words. However, the
attribute word sets can be devised to achieve a desired result. For example,

Target Word Sets Attribute Word Sets Test Statistic d ρ Outcome (WEAT)

{door} vs. {curtain}
{masculine} vs. {feminine}

{girlish} vs. {boyish}
{woman} vs. {man}

0.021
-0.042
0.071

2.0
-2.0
2.0

0.0
0.5
0.0

more male-associated
inconclusive

more female-associated

Table 3.2: Table of three WEAT tests, where d, ρ are the effect size and p-value,
respectively.

in the table 3.2, when the attribute set is {‘masculine’, ‘feminine’}, ‘door’
is significantly more associated with masculinity than ‘curtain’. When the
attribute set is {‘woman’, ‘man’}, the opposite occurs: ‘door’ is significantly
more associated with femininity than ‘curtain’.

3.4.3 Factors influencing the results of bias metrics

Metrics are functions of ω, but there are other factors and considerations that
influence the value of these metrics and thus the decision about 3.4:

• Seed Selection [5]: Seed lists form the basis from which the analysis of
biases that may affect H begins. In fact, seeds are words represented
through ω. The impact of seeds remains poorly understood in the com-
munity, and some seed sets used in research have limitations [5]. In the
case of the Bolukbasi metric, the chosen seeds form the set N , and the
direction g, and in WEAT, the sets X, Y, A, B. The involvement of other
researchers is crucial for the selection of these sets and direction.

• Word Embedding: As explained in 2, word embedding creates the vectors
ω. Some techniques mentioned in this thesis are Word2Vec (based on
a neural network) and GloVe. Different techniques produce different
representations, and each technique has its hyperparameters that influence
its output ω.

• Seed Frequency [32]: In recent years, some studies have shown that
frequency can have an effect on the measures.

• Co-occurrence of words, measured through pointwise mutual information
(PMI). This quantity is used as a baseline measure on A, B, X sets to
search for bias, but it can also be used by generic C, D, Y to measure the
PMI between these sets and relate PMI to the value of the metrics. For
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example, given N, g of the Bolukbasi metric: What is the PMI between
N, g1, g2 where g1 and g2 are the two elements of g? How does this value
relate to DirectBiasc(g, N)?

A good metric or statistical test that measures the presence of bias should
be independent of the word frequencies. This fact is important because the
Bolukbasi metric and WEAT are based on cosine similarity, which captures
the semantic relationships between words. Co-occurrence determines the
semantic relationship [32], and the frequency of individual words does not
affect co-occurrence [32]. But can the same be said for metrics based on W?
In other words, does the frequency of seeds not affect the metrics? The answer
is no: frequency can influence the metrics [32]. Specifically, in the case of the
Bolukbasi metric and WEAT, experiments are needed to evaluate this fact.
However, the PMI used to measure bias is not affected by the different word
frequencies [13]. Therefore, it can be a useful metric to provide a first idea
of bias contained in D (formed by digital documents). However, PMI is a
technique for measuring first-order bias on the documents contained in D, and
techniques based on W are second-order, thus they can capture more complex
semantic relationships.

PMI and metrics based on word embedding can provide very similar con-
clusions [13]. GLPP (3.6) could partially address the frequency issue in the
Bolukbasi and WEAT metrics because it redefines the W space, but this needs
to be evaluated.
As for H, the Bolukbasi metric was only used to measure gender bias [20],
so its effectiveness should be evaluated for other types of biases. In contrast,
WEAT can provide a more general assessment and has no problems evaluating
different types of biases by selecting X, Y, A, B appropriately.

3.5 Designing experiments to detect bias and
analyze the various factors influencing bias re-
sults.

In this section, we want to design some experiments that apply baseline,
Bolukbasi, and WEAT metrics to test their hypothesis systems. Additionally,
we want to study the relationship between them with the effect of seed
frequency and pointwise mutual information.
The experiments on the baseline metric are conducted on a diagnostic set
D formed by documents. For the experiments on the Bolukbasi and WEAT
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metrics, a shared diagnostic set W representing D used in the experiments
for the baseline metric is used. This is important for making comparisons
between the experiments. All experiments share the same H. Once the results
for each experiment are obtained, a comparison is made among them.

3.5.1 Experiment EPMI : method base on baseline met-
ric

Given D, H, the goal is to solve the hypothesis system 3.1 following this
scheme:

1. Transform all words in D into tokens.
2. Choose, based on h ∈ H and n phenomena, the A, B, Xi sets with

i = 1, ..., n and follow steps 1, 2, 3 (ideally with n = 30) in 3.1.2 to solve
the hypothesis system, fixing α = 0.05, on µ in step 4 of 3.1.2. This step
is done for each bias to be measured, i.e., for i = 1, ..., |H|.

If you use a α = 0.05 to solve the system for each h. No experiments are
conducted to see the effect of frequency on PMI because this metric is based
on it.

3.5.2 Experiment EBoluk: method based on Bolukbasi
Metric

To evaluate if W is biased according to biases that may affect h ∈ H con-
sidering Ni phenomena, the goal is to construct an empirical distribution of
DirectBiasc(g), for c = 1, as follows:

1. Construct gi, for i = 1, ..., |H|, which means one direction for each hi ∈ H.
2. Construct 30 (to better approximate the distribution, for more information

see the end of page 5 in [33]) sets Ni, con i = 1, ...,30, where each Ni

contains at least one vector ω. Each Ni represents neutral seeds, for
example, N1 contains seeds representing the world of work, N2 seeds
representing emotions, etc. Each Ni represents a different phenomenon.

i. Calculate the 30 values, fixing j, for DirectBiasc(gj, Ni), to obtain
an empirical distribution for each h ∈ H. The empirical distribution
is used for approximation.

ii. By the central limit theorem for a test on the mean (analogously
to the baseline metric), the approximate distribution of the mean is
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X̄∼̇N
1
µ, σ2

n

2
, with n sample size. In this case, we want to estimate

this distribution by the mean of the empirical distribution created in
step 3, estimating µ and σ2.

iii. Conduct a test on µ to evaluate the hypothesis system:
H0 : µ = 0

H1 : µ > 0
which translates the system into 3.4.

In step 5, with a fixed value α, H0 can be not rejected. In this case, it can be
concluded that the W space may not be biased (according to the Bolukbasi
metric). The number of elements is set to 30 as a convention.
To evaluate the effect of frequency on the metric, the correlation between
the average term frequencies in Ni (for i = 1, ..., 30) and DirectBiasc(Ni, gj)
with j = 1, ..., |H| is obtained. In this manner, is possible to analyze if
there is an effect of term frequencies on the metric value. Additionally, a
correlation graph can be created between the variance of frequencies for
each Ni and relate it to the value of DirectBiasc(Ni, gj) to analyze if the
frequency variability in a Ni group has an impact on the metric value. To
evaluate the impact of pointwise mutual information on the metric,
correlation is also used. Pointwise mutual information (PMI) [13] is calculated
as: BIASP MI = log

1
p(c|a)
p(c|b)

2
, where c is a neutral seed, and a, b are two seeds

that define the bias. p(c|a) describes the probability that the word c is in the
same sentence as a, the same applies to p(c|b) in the case of b. This way of
measuring bias aims to directly search for word associations within sentences
in D.
The question to be answered is: How much does word association influence
the measure of bias? Is there a relationship between the Bolukbasi metric and
pointwise mutual information?
To answer these questions, the values BIASP MI;ij = log

1
p(Ni|g1j)
p(Ni|g2j)

2
are cal-

culated, where Ni contains the group of words from the i-th phenomenon,
g1j, g2j are the first and second elements of the direction gj . This way, 30×|H|
elements are obtained from BIASP MI . Then, a correlation graph is created
with the values DirectBias(Ni, gj), where 30 × H elements are also present.

3.5.3 Experiment EWEAT : WEAT method

Regarding the Bolukbasi metric, WEAT provides a statistical test to deter-
mine, significantly, if there is the presence of bias/biases or not. Given W , H
and consequently X, Y, A, B (which depend on each h ∈ H and considered
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phenomenon), the goal is to conduct the WEAT test as explained in 3.4.2,
with its hypothesis system translating the system 3.4. Then, the WEAT test
is performed to see the effect of frequency. A1, B1 and A2, B2 are constructed,
where A1 and A2 have the same number of words referring to the same group
of the population (e.g., A1 = {he, man}; A2 = {him, male}) and have the
same frequency (‘he’ has the same frequency as ‘him’, ‘man’ as ‘male’). The
same applies to B1 and B2. Then, a comparison is made between WEAT on
X, Y, A1, B1 and X, Y, A2, B2. If the two tests yield different results, it can be
concluded that frequency has an effect on the test decision if word frequencies
between different attribute groups have different frequencies even if they refer
to the same groups of the population.

Regarding IMP, given H, M, X, Y, A, B, the ‘effect size’ can be calculated
by selecting some (Ai, Bi) sets based on these quantities. For example, 30
different sets of A y B can be obtained (for i = 1, ..., 30), and di is calculated
for i = 1, ...,30 and PMIbias,i(X, Ai, Bi) − PMIbias(Y, Ai, Bi). To calculate
the difference quantities, the formulation 3.1.2.
Once the thirty quantities are obtained for the two variables, a correlation
graph is generated to determine if there is a correlation between the effect size
and the PMI.

3.5.4 Expected ideal results

Given H, a phenomenon or more, and a priori biased D, W on h ∈ H, the
expected results are as follows: The statistical tests conducted in the three
experiments should all reject H0 because W is biased by h. Additionally,
based on what was mentioned, for EBoluk and EW EAT experiments, with large
DirectBias values and effect size, large PMI values are expected. As for the
effect of frequency on the metrics, it needs to be studied, but there is almost
certainly an effect.

In the case where D, W are not a priori biased on h ∈ H, the expected
results are as follows: The statistical tests conducted in the three experiments
should all fail to reject H1.

These are the ideal conclusions for D, W biased or unbiased by h. In practice,
it could happen that if h /= gender, different results are expected between
WEAT and DirectBiasc because the latter metric was primarily created to
measure gender bias. Additionally, finding the g directions for h /= gender is
difficult without social and/or psychological knowledge.
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3.6 Analysis of results

Some parts of experiments EP MI , EBoluk and EW EAT are done in practice in
this section, performing a parallel analysis for two characteristics: gender and
religion.
Subsection 3.6.2 describe the results about the detection of bias in D and
W. In addition, subsection 3.6.3 analyzes the potential impact of seeds
frequency on the tests conducted by the methods. In the GitHub repository of
the thesis (https://github.com/nicolaMaddalozzo/biashandler), the file
“experiments_cap3.ipynb” contains all the python code of all the experiments
of this section with comments.
The crucial package for conducting the experiments is Responsibly([14]).

3.6.1 Experimental settings

There are primarily two main objectives for this section:

• Given D and W , the results of the PMI, Bolukbasi and WEAT methods
will be presented and compared in order to study the resolving of the
hypothesis system 3.1 and 3.4 for the detection of bias.

• Evaluate the effects of seeds frequency on the three methods.

To accomplish these two goals, the following configurations will be employed:

(a) D, set of documents. For computational cost, only two Spanish text files
are extracted from https://github.com/josecannete/spanish-corpora.
Specifically, the files are obtained from the European Parliament Con-
ferences (voice ‘Europarl’ in the Source section of the above URL). In
Figure 3.4, is represented the double entry table from which to download
the two Europarl texts.
The two files are called ‘Europarl-bg-es-es.txt’ and ‘Europarl-en-es-es.txt’
(contained in data/texts folder of GitHub repository) and constitute the
set D. They are preprocessed (for example, removal of punctuation and
stop-words. See the file ‘gen_tokens_and_seeds.ipynb’ in the repository
for further details). Following preprocessing, tokens are extracted from
every sentence within the files, and these extracted tokens are then stored
in a file named ’sentences_tokens.txt’ (102 MB in size), located within
the data/tokens folder.

(b) W , set of vectors ω. The vectors ω ∈ W of dimension d = 30, are selected
from the the repository https://github.com/dccuchile/spanish-word-embeddings.
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Figure 3.4: Image representing the two files (Spanish texts) used to build D. The
arrows represent the two intersections from which the two files were downloaded.

These vectors are trained also using the texts in D. The other texts used
are contained in the Source section of https://github.com/josecannete/
spanish-corpora. Some of these vectors are represented in 2D in B.

(c) H, set of characteristics. Two characteristics are chosen: gender and
religion.

(d) Groups of seeds. They are extracted the Antoniak paper [5]. After,
they are translated in Spanish. Some of these groups represent some
phenomena f and others are used for represent the characteristics h. The
used groups of seeds for each method are described in appendix A.

3.6.2 Detecting Bias in D and W

Following the indications in 3.5 and given the groups of seeds, the methods
based on PMI and Bolukbasi metrics are computed for every Xi, i = 1, ..., 30
(seeds details in appendix A) and for the two characteristics h, in order to
accomplish with the first objective described in 3.6.1. The distributions of
PMI and the values of Bolukbasi metric are explored in the histograms 4.10
and 4.11.
None of the distributions appear to follow a Gaussian. This exploration step
could be important for deciding among an exact test (t test) or an approximate
one (TLC). So, the approximate Z score test is done (as explained in 3.5) for
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Figure 3.5: Frequency distributions of PMIs for gender (left) and religion (right)

Figure 3.6: Frequency distributions of the Bolukbasi metric values for gender
(left) and religion (right)

PMI and Bolukbasi. The results are in table 3.3.
In 3.3a, the two pvalue are small. Independently of the choice of a fixed α for

pvalue Method
0.00532 PMIT LC

≈ 0 BolukbasiT LC

(a) pvalue of the approximated Z score
for solving the systems in 3.5

for the gender bias.

pvalue Method
0.12617 PMIT LC

≈ 0 BolukbasiT LC

(b) pvalue of the approximated Z score
for solving the systems in 3.5

for the religious bias.

Table 3.3: Tests results of PMI and Bolukbasi

solving the test, in the gender case there is more evidence of bias presence

40



Measures of bias in word embeddings

in D and W .
In 3.3b, the two pvalues could highlight a different decision among the two
tests. In fact, it appears that the PMIT LC test is more likely to support the
no bias hypothesis compared to the BolukbasiT LC test. Further details
about the explanation of this difference are made in 3.6.3.
For what concerns the WEAT method, the selection of seeds for conducting
the tests is explained in Appendix A. The results for gender and religion are
presented in table 3.4 and table 3.5, respectively. The numerical results of the
WEAT test may vary slightly as it is based on permutation tests. Nevertheless,
the main conclusions remain unchanged.

Attribute Word Sets Target Word Sets Keys d pvalue

masculine sp. vs. feminine sp. ‘math 1’ vs. ‘arts 1’ 1.53 0.0015
‘career words’ vs. ‘family words’ 1.244 0.004

Table 3.4: Results of WEAT test for gender bias analysis. The Attribute Word
Sets represent words of the masculine space and feminine space (see appendix A
for further details). The “Target Word Sets Keys” column contains the dictionary
keys that are associated with the neutral seeds (A). The WEAT test’s numerical
outcomes may exhibit slight variations due to its reliance on permutation testing,

but the primary findings remain consistent.

Attribute Word Sets Target Word Sets Keys d pvalue

christian sp. vs. islamic sp. ‘instruments’ vs. ‘weapons’ 1.453 8.11 · 10−05

‘pleasantness’ vs. ‘unpleasantness’ 0.863 0.078

Table 3.5: Results of WEAT test for religion bias analysis. The Attribute Word
Sets A and B represent words of the Christian space and islamic space (see A for
further details). The “Target Word Sets Keys” column contains the keys of the

dictionary that are associated with the neutral seeds (A). The WEAT test’s
numerical outcomes may exhibit slight variations due to its reliance on

permutation testing, but the primary findings remain consistent.

In 3.4, the two pvalue are small and for some fixed α values used in the litera-
ture (such as 0.1, 0.05) the test could refuse H0, demonstrating (statistically)
the presence of bias considering that attributes and targets. The seeds
associated to ‘math 1’ and ‘career words’ are more associated with the mas-
culine space and the seeds associated to ‘arts 1’ and ‘family words’ are more
associated with the feminine space.
In 3.5, the pvalue associated with targets ‘instruments’ vs. ‘weapons’ is very
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small, and this fact could demonstrate the presence of bias in this case. For
the pvalue associated with targets ‘pleasantness’ vs. ‘unpleasantness’ is bigger
respect the other pvalue. The seeds associated to ‘instruments’ and ‘pleasant-
ness’ are more associated with the christian space and the seeds associated to
‘weapons’ and ‘unpleasantness’ are more associated with the islamic space.
In conclusion, the analysis conducted using the PMIT LC and BolukbasiT LC

tests (table 3.3) suggests a gender bias in the D and W corpora. However,
when it comes to the religion bias, a different scenario emerges. The PMIT LC

test does not seem to suggest the presence of bias in D, while the BolukbasiT LC

suggests its presence. Furthermore, the analysis using the WEAT test demon-
strates that, in the case of gender bias (table 3.4), certain seeds related to
specific categories are not equally associated with both genders. Similarly, in
the case of religious bias (table 3.5), a similar pattern is observed, with certain
categories not being evenly associated with the two religious groups. Interest-
ingly, seeds associated with ‘pleasantness’ and ‘unpleasantness’ appear to be
distributed fairly among the two groups. More details about the conclusions
are contained in 5.

3.6.3 Effects of the frequency of seed words on the
result of metrics

In this subsection, the possible seeds frequency effects (that may impact the
test results) will be investigated for PMI, Bolukbasi, and WEAT methods for
both characteristics h. The frequency mean of the terms contained in each
group Xi is computed using the token file created in the GitHub repository of
the thesis, called ‘sentences_tokens.txt’ (for details, see 3.6.1). In figure 3.7,
is shown the relation between the mean frequency of every Xi and PMI, for
each h. Both scatter plots seem to suggest a correlation between the mean
frequency of the Xi and PMI. For gender (3.7a), the correlation coefficient
between the two variables is equal to 0.25, showing a low effect between the
two variables. For religion (3.7b), the correlation coefficient between the two
variables is -0.41, showing a medium negative effect relationship. So, could
these correlations have an impact on the test results of table 3.3? Yes, it could
be. In fact, tables 3.3a and 3.3b shows that their pvalue for the PMIT LC test
are very different and this difference may be due to the fact the gender PMI
and frequency mean have a lower relation w.r.t. religion PMI and frequency
mean.
The scatter plots were generated also for Bolukbasi values and frequency
mean of Xi, as shown in 3.8. Also in this case, there is a stronger effect for
religion bias (in module) w.r.t. gender bias. But, as shown in 3.3 for Bolukbasi
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(a) Gender, r = 0.25 (b) Religion, r = -0.41

Figure 3.7: Scatter plots of the mean frequency VS PMI for gender (left) and
religion (right), with correlation coefficient (r)

(a) Gender, r = -0.13 (b) Religion, r = -0.37

Figure 3.8: Scatter plots of the mean frequency VS PMI for gender (left) and
religion (right), with correlation coefficient (r)

method, in both cases the pvalue of BolukbasiT LC is near 0. So, the different
correlations in this case do not lead to different results in terms of pvalue.
To study the effect of frequency on WEAT, a pair of target word sets is fixed
and two different sets of attribute words are selected for each characteristic.
The two different attribute words sets have a big difference in terms of frequency
mean. For gender bias, the results are showed in table 3.6. The numerical
results of the WEAT test may vary slightly as it is based on permutation tests.
Nevertheless, the main conclusions remain unchanged. The first attribute set
(‘señor’, ‘él’, ‘señora’, ‘ella’) has a mean frequency of 19970.75 (the frequency
of each word is computed based on the tokens file and then averaged). On the
other hand, the set (‘chico’, ‘abuelo’, ‘chica’, ‘abuela’) has a mean frequency
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Attribute Words Target Word Sets Keys d pvalue

[‘señor’, ‘él’]
vs.

[‘señora’, ‘ella’] ‘career words’ vs. ‘family words’ 1.241 0.057

[‘chico’, ‘abuelo’]
vs.

[‘chica’, ‘abuela’]
1.451 0.014

Table 3.6: Results of WEAT test for gender bias analysis, for different Attribute
Words. The “Target Word Sets Keys” column contains the keys of the dictionary

that are associated with the neutral seeds (A). The WEAT test’s numerical
outcomes may exhibit slight variations due to its reliance on permutation testing,

but the primary findings remain consistent.

of 20.75. This difference could be important when interpreting the two pvalue

in table 3.6. In fact, there is a significant difference between the two values
(considered ’significant’ if the typical α values for text analysis are taken into
account).
So, the two tests done on the same Target Word Sets Keys could lead to
different statistical conclusions.
For religion bias, the results are showed in table 3.7. The first attribute

Attribute Words Target Word Sets Keys d pvalue

[‘iglesia’, ‘cristiano’]
vs.

[‘islam’, ‘musulmán’] ‘instrument’ vs. ‘weapons’ 1.377 0.0004

[‘mesías’, ‘bautismo’]
vs.

[‘sultan’, ‘allah’]
0.933 0.015

Table 3.7: Results of WEAT test for religion bias analysis, for different Attribute
Words. The “Target Word Sets Keys” column contains the keys of the dictionary

that are associated with the neutral seeds (A). The WEAT test’s numerical
outcomes may exhibit slight variations due to its reliance on permutation testing,

but the primary findings remain consistent.

set (‘iglesia’, ‘cristiano’, ‘islam’, ‘musulmán’) has a mean frequency of 187.5.
On the other hand, the set (‘chico’, ‘abuelo’, ‘chica’, ‘abuela’) has a mean
frequency of 1.25. Both the pvalue are under 0.05 and similar conclusions can
be drawn as in the case of gender.
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Chapter 4

Measures of bias in
masked generative
language models

In chapter 3, the diagnostic set D (3.1) or W (3.4.1, 3.4.2) has been considered.
This chapter aims to measure the bias in the outputs of a masked language
model (MLM) m ∈ M.
An example of such biases can be found in a search engine (‘SE’). This tool
can also be based on masked models M, such as the famous Google search
engine, which may exhibit biases [34]. Another example of the application of
M is T9 [35].
In this thesis, the focus is on generative masked models M. From these
models, what is measured is the preference for generating certain stereotypical
expressions over other anti-stereotypical ones, which can contribute to the
naturalization or reinforcement of stereotypes and the invisibility of anti-
stereotypical variants. This is how we measure the manifestation of biases in
generative models.
Understanding the training of a m ∈ M can be important in explaining how
it replicates stereotypical behaviors contained in D: Assuming that (during
training), for each input sentence, a token (word) is selected and masked, then
the model tries to predict that token based on the surrounding context. The
focus on the context during the training helps the model better understand
the semantic relationships between words.
In Figure 4.6, the operation of a generative model can be seen. Given an input
sentence “The cat is eating some food”, a term (‘eating’) in the sentence is
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Figure 4.1: Example of RoBERTa-type MLM, searched on Google Images

masked, and we observe how the model substitutes this term. The model’s
input is the same sentence with the masked term. In the output, we see a list
of words (V , vocabulary) that it predicts, where each word has a probability
of being correct. In this case, the word with the highest probability is ‘eating’
with 15%.
In this chapter, the applied methods and metrics are functions of the proba-
bilities associated with the words V .
If a m model is trained with D containing sentences in biased contexts for
h ∈ H, there is a concrete possibility that the model reproduces those biases
when generating the masked token. The bias manifests in the preference for
generating sentences with certain stereotypes, reinforcing existing inequalities
or prejudices.
Given m ∈ M, H, and at least one phenomenon, the goal of the chapter is to
solve the following system of hypotheses:H0 : m does not exhibit bias in h ∈ H

H1 : m exhibits bias in h ∈ H
(4.1)

The chapter is divided into the following sections and subsections:

In Section 4.1, are reviewed some different methods based on metrics to sys-
tematize language model generation preferences.

In 4.1.1, is provided the general definition of a metric based on the output
probabilities associated with V and the type of metric used in this thesis.

In 4.1.2, is presented the baseline method based on a metric that computes
two probabilities: one for generating a stereotypical sentence and the other for
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generating an anti-stereotypical sentence, given an input sentence with one
masked term.

In 4.1.3, is presented the method based on Salazar metric, a reference metric
for comparing preferences in the output generation of generative models.

In 4.1.4, is introduced the Kullback-Leibler divergence, which measures the
difference between two distributions of probabilities: i) pseudo log-likelihood of
stereotypical sentences. ii) pseudo log-likelihood of anti-stereotypical sentences.

In 4.1.5 and 4.1.6, two datasets of sentences are presented to measure biases
in a model m and the associated metrics.

In 4.2, the experiments section and the expected results are presented.

In 4.3, the proposed method for evaluating the robustness of a MLM model in
this thesis is presented.
In 4.4, are presented some experimental results.

4.1 Methods for Output Generation Prefer-
ences in Masked Models

4.1.1 Objectives of these methods

The metrics presented in this chapter, that constitute the building-blocks for
the methods, measure the bias contained in the outputs of the model m ∈ M.
By outputs, we mean the predictions associated with each term v ∈ V . These
predictions are estimated in the last layer (softmax) of a neural model m. In
fact, model m outputs a probability distribution, where each probability in
the distribution is associated with generating a term v ∈ V that can occupy
the input mask.
The analyzed metrics can depend on three types of probabilities, extracted
from the estimated distribution of m:

• P ster(v ∈ V |V\v): Probability associated with 1 term v that, when placed
in the mask’s position, generates a stereotypical sentence. It is a condi-
tional probability because it depends on the other terms in the sentence.
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Henceforth, it is referred to as pster.
• P anster(v ∈ V |V\v): Probability associated with 1 term v that, when

placed in the mask’s position, generates a anti-stereotypical sentence. It
is a conditional probability because it depends on the other terms in the
sentence. Henceforth, it is referred to as panster.

• P (v ∈ V |V\v): Probability associated with 1 term v conditioned on the
other terms. It is a generalization of pster and panster.

Thus, the interest is not in the entire distribution but only in the elements
that can generate a stereotypical anti-stereotypical sentence.
Many metrics are based on the log pseudo likelihood (PLL) function, which
is a function of P (v ∈ V |V\v).
The baseline metric (4.1.2) estimates two probabilities: P (stereotypical sentence)
and P (anti-stereotypical sentence), which sum all the pster and panster values,
respectively.
To calculate the Salazar metric (4.1.3), all terms in a sentence are masked.
This metric is based on the logarithmic pseudo likelihood and serves as the
basis for 4.1.5 and 4.1.6.
In 4.1.4, the Kullback-Leibler divergence is defined to evaluate the divergence
between two probability distributions:

• The logarithmic pseudo likelihood of stereotypical sentences.
• The logarithmic pseudo likelihood of anti-stereotypical sentences.

The metric based on the StereoSet dataset (4.1.5) calculates the individ-
ual probabilities pster and panster using the intrasentence test sentences that
characterize this dataset.
To calculate the metric based on the CrowS-pairs dataset (4.1.6), a pair of
sentences is considered, where it is known beforehand that the first sentence
is stereotypical and the second is anti-stereotypical. For each of these two
sentences, the log-likelihood is calculated.

4.1.2 Baseline: P (stereotypical sentence) and
P (anti − stereotypical sentence)

Given a generative model m ∈ M and given V , which contains all the terms
with which m was trained, a natural way to measure the potential bias in m
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using an input sentence with one masked term is to calculate the probabilities:

P (stereotypical sentence) =
|V ster|Ø

i=1
pster

i (4.2)

P (anti − stereotypical sentence) =
|V anster|Ø

i=1
panster

i (4.3)

where V ster ∈ V and V anster ∈ V are the sets of terms that, when occupying
the masked term in the input, generate a stereotypical or anti-stereotypical
sentence, respectively.
It should be clarified that V /= V ster ∪ V anster. In fact, given one general term
such as ‘bike’ ∈ V and one input sentence such as “the man is [MASK]”, if
the term ‘bike’ occupies the mask, will not generate either a stereotypical or
an anti-stereotypical sentence.
P (stereotypical sentence) represents the probability of generating a stereo-
typical sentence. It sums up all the pster

i associated with vi ∈ V ster, multiplied
by i = 1, ..., |V ster|. On the other hand, P (anti − stereotypical sentence)
represents the probability of generating an anti-stereotypical sentence. It sums
up all the panster

i associated with vi ∈ V anster, multiplied by i = 1, ..., |V anster|.
Next, these probabilities are compared for each masked sentence with one
term in the input.
Given a model m, the gender bias in English related to the nurse profes-
sion is analyzed (such as in 3.1). Specifically, given a vocabulary V =
{‘he’, ‘she’, ‘is’, ‘cat’, ‘maria’, ‘mario’} and consider a collection L = [ “[MASK]
is a competent nurse”, “[MASK] performed poorly as a nurse”] consisting of 2
masked sentences, the sets V ster and V anster are constructed for each sentence.
For the first sentence, V ster = {‘she’, ‘maria’} and V anster = {‘he’,‘mario’} are
selected (due to the stereotype, the occupation of ‘nurse’ is typically associated
with women because they excel in it, while men do not [12]). For the second
sentence, V ster = {‘he’, ‘mario’} and V anster = {‘she’, ‘maria’}. Now, given
the probability distribution output from m, P (stereotypical sentence) and
P (anti − stereotypical sentence) can be calculated.
In a more formal manner, the calculation of these two probabilities is as
follows:

1. Given H and at least one phenomenon, a pre-trained m ∈ M is analyzed
to see if it contains bias. A variable prop is initialized to measure the
proportion of times the model ‘prefers’ generating a stereotypical sentence.

2. A set D of documents (articles, journals, etc.) is gathered from which to
extract N sentences. Each sentence must represent the context in which
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the bias is to be measured. Then, for each sentence, the following steps
are followed:

3. One term is masked, creating V ster and V anster, and the masked sentence
is inserted as input into m, generating the probability distribution of the
terms V that can occupy the place of ’[MASK]’.

4. P (stereotypical sentence) and P (anti−stereotypical sentence) (4.2) are
calculated.

5. updating prop :


prop = prop + 1, if P (stereotypical sentence) ≥

P (anti − stereotypical sentence)
prop doesn’t update, otherwise

6. After completing steps 2, 3, 4, and 5, prop is transformed into a proportion:
prop = prop/N , and the hypothesis test is performed:H0 : prop = 0.5

H1 : prop /= 0.5

This is similar to 3.3, but in this case, it translates the system of hypotheses
into 4.1.

This is a preliminary logic to provide an initial idea of the presence of bias in
m ∈ M.

Critique

This baseline metric has some limitations:

1. Choosing the N sentences is not easy as it cannot be done automatically.
It requires an expert to carefully select the sentences/documents to obtain
sentences characterized by the chosen context for measuring bias. In the
example above, the context was the workplace, specifically related to the
occupation of nurse.

2. Determining whether a sentence is biased or unbiased requires experience
in recognizing the context and semantic terms of a sentence. In fact, this
point is crucial for selecting the terms from the vocabulary for analyzing
all the associated probabilities.

3. The vocabulary can be very large, making it difficult to identify all the
terms that form V ster and V anster. Additionally, it may happen that
logically relevant terms for V ster and V anster are not included in V , so
they cannot be considered.

4. The distribution is estimated from m and is not exact.

50



Measures of bias in masked generative language models

4.1.3 Salazar Metric

In Salazar et al. paper, [36] was introduced a method for evaluating masked
language models (MLMs) using the pseudo-log-likelihood (PLL) score. In [36],
it is used to evaluate BERT-type MLMs.
In this work, PLLs from a pre-trained masked model m are calculated by sum-
ming up the conditional log probabilities log PMLM(wt|W\t) for each sentence.
wt is a word at position t in the sentence, and W\t is the set of words in the
sentence excluding the masked wt. An example calculation can be seen in 4.2.

Figure 4.2: Example of calculating a PLL for the sentence “Hello world!” [36]

Let Θ be the parameter space of a pre-trained masked model m:

PLL(W ) :=
|W |Ø
t=1

log Pm(wt|W\t; Θ)

PLL is based on a pseudo-likelihood technique and is calculated for a pre-
trained m model characterized by Θ, which is optimized using gradient descent.
PLL has been studied and validated for optimization purposes . However, in
Salazar et al. paper [36], PLL is used to evaluate a pre-trained model M.
So, are we sure that PLL can be used for evaluation when it is typically used
for optimization? The answer is yes [36], because Salazar et al. paper shows
that this measure yields the same or better results compared to other known
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metrics in the literature. Thus, PLL is effective in capturing the probability
of word/sentence generation.
However, for the specific goal of measuring the presence of bias in m, the use
of PLL from Salazar’s proposal, which evaluates a m model in general, needs
to be adapted. This is done as follows: given a diagnostic set D of sentence
pairs (one stereotypical and one anti-stereotypical), each sentence is inserted
into the pre-trained model m, as shown on page 3 of [36]. For each pair, it
can be evaluated which of the two sentences has the higher pseudo likelihood.
Once this is done for each pair, the frequency of preferring the stereotypical
sentence among the pairs is calculated. If this frequency is equal to 50%, the
model does not exhibit bias. The procedure is illustrated in the experiment
4.2.
As developed in 4.1.6, CrowS-pairs applied Salazar’s metric masking only
unchanged terms (set U) and not masking the changed terms (set U) among
the sentence pairs. In this case, the W\t begin W CrowS−pairs

\t = U\wt ∪ O,
and PPLCrowS−pairs = q|U |

t=1 log Pm(wt ∈ U |W CrowS−pairs
\t . A critique of the

CrowS-pairs approach is that the probability calculated p(U |O, θ) is only based
on U and not O. In contrast, in StereoSet 4.1.5, p(O|U, θ) is calculated with
O being the three words defining the three options. In this section, there is
no longer a distinction between U and O, but given a sentence T with terms
ti, with i = 1, ..., |T |, the probabilities p(ti|T\ti

) are estimated to measure the
pseudo-log-likelihood of a sentence.

Critique

The main criticism of using this metric is its robustness [37]. To explain this
fact, let’s use an example based on CrowS-pairs. In Figure 4.3, an original
example and three new examples that paraphrase the original one can be seen.
The question is: If in the original example one of the two stereotypical or anti-
stereotypical sentence is preferred in terms of generation, is this preference the
same in the three new examples where the target characteristic is paraphrased?
Put simply, if the words in the new examples are altered while retaining the
original sentence meaning, does the model’s generation preference in the new
examples remain unchanged?
In [37], it is shown that the answer is no, demonstrating that even with new
examples that have the same meaning, the model can prefer the stereotypical
or anti-stereotypical sentence in examples representing the same meanings.
However, with the fact that words choice influences the score value PLL
(changing the preference), it follows that to measure the presence of bias in
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Figure 4.3: An original example of a CrowS-pairs pair and three new examples
that paraphrase the original example [37]

CrowS-pairs, which uses an application of Salazar’s metric with U and O
(4.1.6), more examples that paraphrase each original example in the set need
to be created. In this case, if the results of the original examples persist in the
paraphrased examples, the measurement of bias presence gains much more
credibility.

4.1.4 Kullback-Leibler Divergence Score (KLDivS)

The metrics analyzed so far always consider a comparison between a stereotyp-
ical and an anti-stereotypical sentence. One way to approach this situation is
to consider two probability distributions. In fact, in Liu et al.’s work [38], the
log probabilities (or PLLs) of the stereotypical and anti-stereotypical sentences
generated by a m ∈ M model are considered to follow normal distributions.
If the two distributions are similar, it means that the model may appear to be
less stereotypical because the two distributions have almost the same shape.
To measure this similarity between the two distributions, the Kullback-Leibler
divergence is used, defined as [38] as follows:

KL(p||q) = −
Ø

x

p(x)log
q(x)
p(x) (4.4)

where p and q are probability distributions. This quantity describes the
asymmetric distance between p and q, and its value is KL(p||q) ≥ 0. To
compare the divergence value with a proportion (in our case, of stereotypical
sentences), the KL Divergence Score (KLDivS) is defined in a way that is
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always greater than or equal to 50:

KLDivS = 1
|H|

Ø
h∈|H|

|h|KLDivSh

where H is the set containing the biases to be measured, |h| is the number of
tests available for a given bias h, and KLDivSh for h is:

KLDivSh = max(p(sth||ath), p(ath||sth))

where p(m||n) = KL(m||n)
KL(m||n)+KL(n||m) , KL(·) is the divergence described in 4.4,

sth and ath are the log probability distributions (or PLLs) of generating stereo-
typical and anti-stereotypical sentences, respectively, referring to bias h.
The ideal KLDivS has a value of 50, which represents the absence of bias/bi-
ases in H.
Considering two distributions allows for a more general evaluation of bias pres-
ence and its strength. Additionally, it enables the use of statistical techniques
(such as divergences) established in the literature to evaluate bias presence,
rather than solely relying on the statistical evaluation of a proportion of
stereotypical sentences.

Critique

The first criticism is that considering the log probabilities (or PLLs) of generat-
ing stereotypical or anti-stereotypical sentences as normal distributions can be
misleading. In fact, it assumes a distribution without analyzing, for example,
whether these distributions are independent of each other. For instance, given
a CrowS-pairs example and generating the PLLs for both, can it be claimed
that these two PLLs are completely independent of each other? The answer
is not quite so simple. Also, a distribution cannot be considered strictly
normal; at most, it can be said to be “approximately” normal (in [38], is not
specified as approximate) because ideally, the distribution of the probabilities
(or PLLs) generated from the masked model cannot be known. To control this,
a Kolmogorov-Smirnov or Shapiro-Wilk test can be performed. Furthermore,
the theoretical domain of the two distributions is the same, but in practice, it
may happen that some values of one distribution do not appear in the other
during experiments. Therefore, techniques for approximating output values
are needed to ensure that most of the produced values are shared between the
two distributions.
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4.1.5 StereoSet

To address the issues of selecting stereotype or anti-stereotype sentences
mentioned in the critique of the baseline metric, the group of Nadeem et al. [6]
created StereoSet, a large dataset of English sentences to measure stereotypical
behaviors in pre-trained models. This dataset can measure these behaviors in
various types of language models, such as MLMs. Each line of the dataset is
characterized by six attributes:

• Domain for measuring bias. It can be of four types: gender, occupation,
race, or religion.

• Target. Represents a group in the population characterized by the domain.
• Context. A sentence representing the context influenced by the domain

and target group. This is the sentence inserted into the model M input.
It can be masked (depending on the test type).

• Option 1 (biased option). Word or response (depending on the test type)
that introduces bias into the context.

• Option 2 (unbiased option). Word or response (depending on the test
type) that does not introduce bias into the context.

• Option 3 (unrelated option). Word or response (depending on the test
type) that introduces an unrelated context with no bias.

In StereoSet, to measure bias, a ‘Context Association Test’ (CAT) is
performed, which comes in two types (’intrasentence’ and ’intersentence’).
Once the specific values for the domain and target group are decided (e.g.,
gender bias concerning the group of women), all the sentences with these
two values are selected. Then, the CAT is performed: Given a context
characterized by the domain and target group, the three options that can
instantiate/generate this context are provided. Each of these instantiations
can be stereotypical (option 1) with a generation probability of pster(4.1.1),
anti-stereotypical (option 2) with a generation probability of panster(4.1.1), or
unrelated (option 3). The first two options are used to analyze the level of
biases contained in m, and the third option is used to analyze the level of m
generation ability to produce a sensible context. It is interesting to see which
of these options is associated with a higher probability of being produced by
the model.
The CAT applied in StereoSet comes in two types:

(a) ‘Intrasentence’: It measures bias and m’s ability to generate sentences
with sentence-level reasoning, i.e., sentences that have semantic meaning.
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The contexts for this type of test are 1-term masked sentences (fill-in-the-
blank style context). The masked term is what describes the target group.
To measure m’s ability and the contained bias, it is determined which
option has the highest probability of filling the blank, i.e., which of the
instantiated contexts is the most probable. An example can be seen in
4.4.

(b) ‘Intersentence’: It measures bias and m’s ability to generate discourses
with discourse-level reasoning, i.e., discourses that have semantic meaning.
The contexts for this type of test are sentences containing the term that
describes the target group. To measure m’s ability and the contained
bias, it is determined which option has the highest probability of being
generated. For this test, the option is characterized by a complete sentence
containing an attribute of the target group. An example can be seen in
4.5.

Figure 4.4: Intrasentence CAT ex. Figure 4.5: Intersentence CAT ex.

StereoSet [6], by providing a set of contexts/sentences, helps address the
corresponding critiques of the baseline metric. Additionally, by focusing on
the generation of one option (term) out of three, it resolves the critique
connected to the size of V .
The goal of an m is to be unbiased while generating sentences with semantic
meaning. To respect both objectives, we evaluate these two aspects simultane-
ously. To do this, three scores are used:

(a) lms: the percentage of examples where an LM prefers the meaning-
ful association over the senseless association. The senseless association
corresponds to the unrelated option in StereoSet, and the meaningful
association corresponds to the stereotypical and anti-stereotypical options.

(b) ss: the percentage of examples where an LM prefers the stereotypical
association over the anti-stereotypical association.

(c) icat: a combination of lms and ss to simultaneously consider the model’s
ability and the presence of bias. According to [6], icat has some axioms:
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i) An ideal model should have a icat score of 100; ii) A fully biased model
should have a icat score of 0; iii) A completely random m should have a
icat score of 50; Based on these axioms, the formula for icat is:

icat = lms ∗ min(ss, 100 − ss)
50

min(ss,100−ss)
50 ∈ [0, 1] is maximized when m does not prefer stereotypical

or anti-stereotypical contexts for each target group, and it is minimized
when it fully prefers one of the two.

The focus of this chapter is on m, which is a masked model, so the intrasentence
CAT is used.
To summarize, to use StereoSet to calculate ss and measure bias and solve
the system 4.1, we follow these steps:

1. Given H and at least one phenomenon, we want to analyze a pretrained
m ∈ M to see if it contains bias. We initialize a variable ss that measures
the proportion of times the model ’prefers’ generating a stereotypical
sentence.

2. Set D = StereoSetintrasentence by selecting the N sentences with the chosen
domain (depends on h ∈ H). Then, for each masked sentence, follow
these steps:

i. Insert the masked sentence into m input, generating the probability
distribution of terms V that can fill the ‘[MASK]’ placeholder.

ii. From this distribution, the focus is only on the three terms associated
with the three options. The probability of generating the term of
option 1 is pster, and of option 2 is panster. There is no interest in the
third option.

iii. Update prop :prop = prop + 1, if pster ≥ panster

prop , otherwise

3. After these steps, transform prop into a proportion: prop = prop/N , and
conduct the hypothesis test:H0 : prop = 0.5

H1 : prop /= 0.5

Which is the same mechanism as 4.1.2.
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Critique

Some works, for example, Pikuliak et al. [39], criticize the StereoSet dataset:

• There are no control groups. In the context of bias evaluation, control
groups would involve comparing how icat behaves in generating responses
for different demographic groups (e.g., men and women) using the same
contexts. However, icat considers different demographic groups but in
different contexts (each line of the dataset has a specific target group
and specific context). The intuition of this critique, in contrast, is to
consider the same context for different target groups. To clarify this
point, let’s analyze the example in 4.4. If, for example, the probabilities
of generating option 1 and 2 are 0.6 and 0.2, respectively, what happens
when we consider the same context by substituting the target group with
‘male’ and the last word with ‘girls’, resulting in the reversed context
(“males tend to be more ... than girls”)? In this case, we cannot claim
that we have bias in this context because it gives the same probabilities
of generating the two options for two different target groups but in the
same context.

• The keywords that determine options 1, 2, 3 can have very different
frequencies, and this influences the generation probability. A keyword
of an option could be more frequent in the training data, and therefore
MLMs may generate it with higher probabilities, regardless of the context.

• There are no statistical tests on icat or ss to determine if they are
significantly equal to a specific value. In this thesis, a way to statistically
evaluate ss is proposed.

• Lack of information about the probability space of stereotypical and anti-
stereotypical words. In StereoSet, for each context, we have only one word
for option 1 and 2. The question is: Given the context, are we sure that
these two words are the
only ones representing the stereotypical and anti-stereotypical option?
The probability distribution of potential words may be larger.

• Considering a single probability pster and panster may not be sufficient
to claim that an m prefers generating a biased sentence over a unbiased
one. In fact, pster and panster are based on calculating a single probability
based on masking only one term, without considering the masking of
other terms. If other terms could be masked for the same sentence,
the probability of generating this sentence could be generalized further
because, by considering the masking of other terms, the context of the
sentence could be taken into account more.
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4.1.6 CrowS-pairs

Similarly to Nadeem et al., in 2020 another work was published on another
set of examples to detect biases in pretrained MLMs: CrowS-Pairs [7].
This dataset contains 1508 examples, where each example is characterized
by two sentences, one more stereotypical and one less stereotypical. These
examples cover nine types of biases such as race, religion, and gender. The
examples focus on the stereotypes present in the United States. Some examples
contained in CrowS-pairs can be seen in 4.6.

Figure 4.6: Examples included in CrowS-pairs

Regarding StereoSet, CrowS-pairs encompasses more types of features on
which bias can be evaluated. In addition to the structure of the dataset,
another major difference from StereoSet is how bias is measured, based on the
Salazar metric using log pseudo-likelihood (PLL), described in detail in 4.1.3.
Indeed, the goal of CrowS-pairs is to measure biases in a pretrained MLM while
avoiding the measurement being affected by the frequency of terms, especially
those with high frequency. To achieve this, the proposed metric estimates
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the log pseudo-likelihood of generating the two sentences, conditioned on the
changing words between them. This is an advantage compared to StereoSet.
Once the two PLLs are calculated, a comparison is made between these two
quantities: the one with the larger PLL has a higher probability of being
generated.
Going into more detail, each sentence pair in each CrowS-pairs example is
characterized by an unchanged part, which contains all the words common
to both sentences, and the modified part, which contains all the words that
change between the two sentences. Following the same example as [7], for
a pair like “John ran into his old football friend” and “Shaniqua ran into
her old football friend”, the modified words are {‘John’, ‘his’} for the first
sentence and {‘Shaniqua, her’} for the second sentence. The unchanged words
for both sentences are {‘ran’, ‘into’, ‘old’, ‘football’, ‘friend’}. As explained in
the work [7], because the outputs of a pretrained m model are affected by the
frequency of words used during training (one of the critiques of StereoSet 4.1.5),
CrowS-pairs attempts to address this issue by calculating the probability of
generating the unchanged words conditioned on the presence of the modified
words.
Given a sentence T and a vocabulary V , let U = {u0, ..., uN} be the unchanged
words and O = {o0, ..., oM} be the modified words (T = U ∪ O). Also, let
O ∈ V and U ∈ V . Given a sentence, the probability of generating word
ui ∈ U conditioned on O can be estimated as p(ui|O, θ). Here, θ is the
parameter vector of m.
Based on the definitions of U and O, it can be noted that the following
difference exists between CrowS-pairs and StereoSet: while CrowS-pairs fo-
cuses on p(ui ∈ U |O, θ) with i = 1, ..., |U |, StereoSet focuses on p(oj|U, θ)
with j = 1,2 (j = 1 represents the word of the first option and j = 2
represents the word of the second option). In fact, pster = P (o1|U, θ) and
panster = P (o2 ∈ V anster|U, θ) can be rewritten in StereoSet. This occurs
because, given a masked sentence in StereoSet, we can observe the set
O formed by the three words present in the options, which are the only
three terms that can change the sentence. For example, in 4.5, for the in-
trasentence test sentence in StereoSet O = {‘soft’,‘determined’,‘fish’}, U =
{‘girls’,‘tend’,‘to’,‘be’,‘more’,‘than’,‘boys’}.
Using the probabilities p(ui|O, θ), the aim is to approximate p(U |O, θ). To
make this approximation, the PLL score for masked models [36] is used. For
each sentence, one term is masked at a time until all the ui have been masked:

score(T ) =
|U |Ø
i=1

logP (ui ∈ U |U\ui
, O, θ)
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In addition to conditioning the probability on O, it is also conditioned on
the terms U\ui

that, during the calculation of the probability according to
ui, are “fixed” in the sentence. The score is calculated for each sentence
within an example (one score for the stereotypical sentence and one for the
anti-stereotypical sentence).
An example in 4.7 helps understand how the score calculation works. At each
step, one ui ∈ U is masked, and logP (ui ∈ U |U\ui

, O, θ) is calculated. This
procedure is repeated for each ui ∈ U . At the end of step 8 (the last step),
two scores are obtained (score1 and score2). The score with the highest value
represents the sentence for which the model has a preference in generating.
The score is an approximation of the true probability p(U |O, θ).

Figure 4.7: Steps for calculating the score [7]

Once the score has been calculated for each sentence, the proposed metric in
CrowS-Pairs measures the frequency with which the stereotypical sentence is
preferred (i.e., whether the score of the stereotypical sentence is higher than
the score of the anti-stereotypical sentence). A model that is unbiased should
achieve the ideal score of 50%. An outline of the procedure can be seen in
experiment ECrows in 4.2.

Critique

(a) There are no control pairs. To understand this point, it is important to
provide an example. A CrowS-pairs pair could be “Women are really
weak”; “Men are really weak”. If the score of the first sentence, which is
the stereotypical one, is higher than the score of the second sentence, does
it mean that the model is demonstrating a stereotype? Not necessarily.
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The model is influenced by other factors, such as word co-occurrence,
which can be independent of bias. Therefore, it would be important to
control with a control pair, for example, “Women are really strong” and
“Men are really strong”. By observing the result of the first example, it
would be expected that this control pair (control) is also biased. If the
score of the second sentence is larger than that of the first, it would make
more sense to say that bias is observed. Following this intuition, it can
happen that for both sentences “Men are really X” and “Women are really
X”, where X is an adjective, the model m prefers the first one because,
during training, many sentences had the words ‘Men’ and ‘really’ together.
It is not solely a bias discourse. An attempt is made to overcome this
point in the new method proposed in this thesis, in 4.3.

(b) There are no statistical tests on the frequency of the model’s preference
for a stereotypical or anti-stereotypical sentence (as in 4.1.5). In the thesis,
a statistical test is proposed to address this point.

(c) Lack of information about the probability space of the words in stereo-
typical and anti-stereotypical sentences (4.1.5).

Factors other than bias that determine metric behavior

• The architecture of the masked model m ∈ M, as expected, has an
influence.

• One factor that can influence the outputs is the different ways in which
input sentences are written; that is, an original masked sentence and a
paraphrased one can result in very different PLLs [37].

4.2 Experimental Design

In this section, the experimental design is presented as a complement to the
theoretical part on measures in masked models. The aim of the thesis is to
analyze the presence of bias and measure it, so in this section, the metrics are
applied to the same m ∈ M. The first thing to define is H and at least one
or more phenomena. For example, if the goal is to measure race bias on a m
model, it is necessary to see if this model was trained with D documents that
considered h ∈ H and the relevant phenomena. However, if this is not the
case, there is a risk of measuring race bias in a model that has learned very
few relationships between the input documents and this bias.
Regarding m, the options can be chosen as follows:
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• Pretrained: In this case, it needs to be determined if the model was
trained with documents that considered H and the relevant phenomena.

• From scratch: If the first option cannot be chosen, a model is trained from
scratch on D considering H and the relevant phenomena. This option is
more time-consuming.

Regardless of the decision, it results in a masked model m, and the hypothesis
system is that of 4.1. To solve this system, the measures described in this
chapter are applied.

4.2.1 Experiments

To compare the different results among the various types of experiments by
m, a set of N masked sentences X is constructed. For experiment EComp and
EStereo, the sentences will have a single masked term, while for experiment
ECrows and ESal, they may have multiple masked terms.

Experiment EComp: Method based on baseline metric

In 4.1.2, the first way of analyzing bias in the outputs of m was examined.
For each input sentence, the model outputs the probability distribution of
each term occupying the empty slot in the output sentence.
For this experiment, X is formed by the N sentences contained in the intrasen-
tence test of StereoSet (the sentences to be inserted depend on H).

First, the steps defined in 4.1.2 are followed using the N sentences from
StereoSet, and the system is solved by fixing a level α. If H0 is not rejected,
for example, with a = 0.05, the hypothesis that the model is unbiased (H)
cannot be rejected with a significance level of 95%. Otherwise, if H1 can-
not be rejected, the hypothesis that the model is biased cannot be rejected.
Kullback-Leibler divergence is not applied in this case.

Experiment EStereo: Method based on StereoSet

In this experiment, we aim to use StereoSet to estimate ss as explained in 4.1.5.
Given m, we want to conduct an intrasentence test using StereoSet. Therefore,
X now contains all the examples from StereoSet, as explained in 4.1.5. We
initialize lms, ss, and two lists that will contain the log probabilities of a single
term: ster and anster. These lists will be used to apply the Kullback-Leibler
divergence.
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1. An example from X is inserted into the model m.
2. The output provides the probability distribution that shows, for the three

terms characterizing the three options for each sentence in StereoSet
(intrasentence), the probability of each term filling the masked position.
pster, panster, popc3 are the three probabilities of generating option 1, 2, or
3.

3. The value log(pster) is added to the list ster, and the value log(panster) is
added to the list anster.

4. The update of ss and lms is performed:
ss = ss + 1, if pster > panster

lms = lms + 1, if (pster + panster) > popt3

After these steps for each sentence in X, ss and lms are transformed into
proportions: ss = ss

N
, lms = lms

N
.

Then, a statistical test of a proportion is conducted on ss in the same way as
in Experiment EComp: H0 : ss = 0.50

H1 : ss /= 0.50

Following [6], if H0 cannot be rejected at level = 0.05, it means that m may
not be subject to biases that influence h ∈ H with a confidence level of 95%.
lms can be used to calculate icat.
The Kullback-Leibler divergence is applied to ster and anster, and compares
it with the result of the test on ss. Before applying Kullback-Leibler, if
many values in ster do not appear in anster, approximation methods and/or
interpolation are needed to have common values between the two distributions.
The distributions ster and anster can also be tested for normality using the
Shapiro-Wilk test.

Experiment ECrows: Method based on CrowS-pairs

As explained in 4.1.6, each row of the CrowS-pairs dataset consists of an
example containing two sentences. The method on CrowS-pairs is based on
the calculation of PLL by summing conditional probabilities, where each
probability is conditioned on the modified terms between the two sentences
in an example. In this experiment, given m, H, X which in this case is the
CrowS-pairs dataset of N examples, and initializing a variable y1 and the
two lists ster, anster for the two distributions, we follow the following scheme
repeated for each example in X:
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(a) Given an example, the sets U and O are constructed as explained in 4.1.6,
and the variable y1 is initialized.

(b) The sentence Sj from the example is taken, and a variable PLLj is
initialized.

(c) The ui term in U is masked (4.7), and the masked sentence is inserted
into m.

(d) The output estimated probability distribution from m is obtained. The
probability p̂(ui|U\ui

, O), i.e., the probability that the distribution asso-
ciates with the masked term ui is extracted, and PLLj is updated: PLLj

= PLLj + p̂(ui|U\ui
, O)

(e) Steps 2, 3, 4 are performed for j = 1,2; i = 1, ..., |U |, ending with PLL1 y
PLL2.

(f) The two ster, anster are added to PLL1, PLL2 respectively.

(g) y1 is updated:
î
y1 = y1 + 1, if PLL1 > PLL2

These steps are performed for each example in CrowS-pairs. Afterwards,
the proportion of stereotypical sentences prop = y1/N is calculated, and the
hypothesis system is evaluated:H0 : prop = 0.50

H1 : prop /= 0.50

Setting the level α = 0.05, the test is conducted to see if the model can be
biased or not.
The Kullback-Leibler divergence is applied to ster and anster, and compared
with the result of the test on prop. If many values in ster do not appear
in anster, approximation methods and/or interpolation are needed to have
common values between the two distributions. A good control could be
performing a Shapiro-Wilk test on the two distributions to evaluate normality.

Experiment ESal: Method based on Salazar

This experiment is the same as CrowS-pairs but without creating the sets
U and V , but only one set T that contains all the terms. Given m, H, X
equal to the CrowS-pairs dataset, the lists ster, anster, and the variable y1,
we follow the scheme for each example in the dataset:

(a) The sentence Sj from the example is taken, a variable PLLj is initialized,
and the set T of all the words in PLLj is created.
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(b) The i-th term (4.7) in T is masked, and it is inserted into m.

(c) The output estimated probability distribution of m is obtained. The
probability p̂(ti|T\ti

) associated with the masked term ti is observed, and
PLLj is updated: PLLj = PLLj + p̂(ti|T\ti

)

(d) Steps 2, 3, 4 are performed for j = 1,2; i = 1, ..., |T |, ending with PLL1
and PLL2.

(e) The two PLL1, PLL2 are added to est, noest respectively.

(f) y1 is updated:
î
y1 = y1 + 1, si PLL1 > PLL2

These steps are performed for each example in CrowS-pairs. Afterwards, the
proportion of stereotypical sentences prop = y1/N is calculated, and the same
hypothesis system is evaluated as in the experiment ECrows. Additionally, to
apply the Kullback-Leibler divergence, we follow the considerations made in
Experiment EStereo and ECrows.

4.2.2 Expected ideal results

Given H, a phenomenon, m biased a priori on h ∈ H, the expected results
are as follows: The statistical tests conducted in the four experiments should
all reject H0 because m is biased by h. The Kullback-Leibler divergence for
the second, third, and fourth experiments should yield values far from 50.

In the case where m is not biased a priori on h ∈ H, the expected results are
as follows: The statistical tests conducted in the four experiments should all
reject H1 because m is not biased by h. The Kullback-Leibler divergence for
the second, third, and fourth experiments should yield values close to 50.

These are the ideal conclusions for m biased or unbiased by h. In prac-
tice, it could happen that even with m biased or unbiased, the tests do not
yield the same results. This can occur because, between CrowS-pairs and
StereoSet, even if they measure the same bias, the sentences in StereoSet
and CrowS-pairs, even with equal h, use different words, and we have seen
that this fact can have an effect. What should almost always happen is that
the statistical tests in experiments EComp and EStereo should yield the same
results because they use StereoSet. The same applies to the third and fourth
experiments since they use CrowS-pairs.
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4.3 Proposed Method

Considering the criticism about the robustness [37] explained in 4.1.3 about
the Salazar metric (where one version is used in StereoSet and CrowS-pairs),
a better analysis of the MLM robustness in terms of PLLs becomes crucial in
detecting biases. In fact, given a stereotypical and anti stereotypical sentence
Sor

ster and Sor
anster, from a ideally point of view their PLLor

ster and PLLor
anster

should remain the same (or very similar) w.r.t. PLLpar
ster and PLLpar

anster of the
sentences Spar

ster and Spar
anster, where:

• PLLor
ster, PLLor

anster are the PLLs of Sor
ster, Sor

anster (respectively)
• Spar

ster, Spar
anster are the paraphrased versions of Sor

ster, Sor
anster (respectively).

• PLLpar
ster, PLLpar

anster are the PLLs of Spar
ster, Spar

anster (respectively).

The sentences Spar
ster, Spar

anster maintain the same stereotypical and anti-stereotypical
semantic meaning (important for detecting bias) of Sor

ster, Sor
anster. Moreover,

from an ideal point of view, even the two differences PLLor
ster − PLLor

anster

and PLLpar
ster − PLLpar

anster should be equal. Given two sentences, the difference
between their two PLLs is crucial to understanding the generation preference
between them. To further illustrate this concept, given a MLM m and the
following sentences:

• Sor
ster = “Men are more intelligent than women”

• Sor
anster = “Women are more intelligent than men”

• Spar
ster = “Men are smarter than women”

• Spar
anster = “Women are smarter than men”

According to the work of Kwon et al. [37], if m is robust in terms of PLL
the sign of the difference between PLLor

ster − PLLor
anster is expected to be the

same of PLLpar
ster − PLLpar

anster, because the original and paraphrased sentences
have the same meaning. In other words, if the sign is the same, also the
generating preference is the same (note that a negative/positive sign represent
the generating preference of the anti stereotypical/stereotypical sentence).
The expectation is that the model’s preference for generating stereotypical
and anti-stereotypical sentences remains consistent even after paraphrasing.
Indeed, if the produced PLLs from m are heavily influenced by the meaning
of individual words rather than the meaning of a sentence (which is related
to bias), trusting the results produced by m for evaluating the contained
biases can be very dangerous and meaningless. So, if PLLor

ster − PLLor
anster and

PLLpar
ster − PLLpar

nanter have a different sign, it means that in this single case m
was not robust.
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Given H and sets of Sor
ster, Sor

anster, Spar
ster and Spar

anster, this thesis presents a new
method to decide whether a model m ∈ M is robust. If m is not robust,
the bias presence analysis could yield misleading results. Therefore, before
evaluating biases in m using the methods based on metrics presented in this
chapter or any other method/metric not explained in this thesis, the proposed
method in this section helps to decide whether to trust m for evaluating the
contained biases.
The question is: Does it make sense to use m to measure the bias contained
in it? To answer this question, we have an aspect to evaluate: How much do
the outputs PLLor

ster − PLLor
anster and PLLpar

ster − PLLpar
anster change? To answer

these questions, the proposed method for analyzing robustness doesn’t control
the sign of the two differences as done by Kwon et al. [37]. For analyze the
robustness of m, Kwon has defined the following quantities:

• Mdiff : Difference between the PLL of the stereotypical and
anti-stereotypical sentence.

• M(bias,kwon) : Binary variable, -1 if Mdiff is negative (m prefers generating
the anti-stereotypical sentence), 1 if it is positive (m prefers generating
the stereotypical sentence).

• Magree : Binary variable. 0 if Mbias computed with the two original
sentences is different w.r.t. Mbias computed with the two paraphrased
sentences, 1 if they have the same Mbias.

Note that:

• M or
diff = PLLor

ster − PLLor
anster

• Mpar
diff = PLLpar

ster − PLLpar
anster

• M or
(bias,kwon) = sign(M or

diff )
• Mpar

(bias,kwon) = sign(Mpar
diff )

• Magree =
0, if Mor

(bias,kwon) /= Mpar
(bias,kwon)

1, if Mor
(bias,kwon) = Mpar

(bias,kwon)

The new method, proposed in this section, aims to evaluate the robust-
ness of m adding a proportion test and changing the definition of M(bias,kwon).
For what concerns the proportion test, the proportion is computed considering
the times in which Magree is equal to 1. The proportion is named l1. If l1 = 1,
it means that all M or

(bias,kwon), i = Mpar
(bias,kwon), i for i = 1, ..., N .

The equation l1 = 1 ensures that m prioritizes the semantic meaning of the
sentences rather than how they are written. From a practical standpoint, it’s
typically the case that l1 /= 1 ([37]). If the model exhibits sufficient robustness
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(high l1), a single investigator can employ one of the methods to detect bias
in m. In Kwon et al. [37], no test is carried out.
For what concerns the new definition of M(bias,kwon), is defined as follows:

M(bias,kwon) = M(bias,new) =


−1, if Mdiff <lb
0, if lb≤ Mdiff ≤ub
1, if Mdiff >ub

Where lb,ub are the lower bound and upper bound, respectively. The change in
the definition of M(bias,kwon) into M(bias,new) was made considering the following
critics:

(a) In relation to the work [37], if Mdiff was a very small value in magnitude,
it influenced the value of M(bias,kwon). In fact, also if PLLster − PLLanster

is very small in magnitude but negative/positive, it would affect the value
of M(bias,kwon), which actually describes the preference between generating
a stereotypical or anti-stereotypical sentence. In fact, the definition of
M(bias,kwon) in [37] based only on the difference sign seemed too strict.
For example, given Sor

ster, Sor
anster, Spar

ster, Spar
anster, if PLLor

ster − PLLor
anster =

-0.0001 and PLLpar
ster − PLLpar

anster = 0.0001, M or
(bias,kwon) /= Mpar

(bias,kwon), and
Magree = 0 also if the two differences are very near 0.

(b) The Mbias defined in [37], do not consider the ideal point of view for which
the two PLLs differences should be equal, for any pair of stereotypical/anti-
stereotypical sentences. For example, from a practical point of view,
given Sor

ster, Sor
anster, Spar

ster, Spar
anster, if PLLor

ster − PLLor
anster = 3000 and

PLLpar
ster − PLLpar

anster = 0.001, M or
bias = Mpar

bias (the two differences have the
same sign) and Magree = 1. So, the generation preference is the same
among original and paraphrased sentences and this is a good thing but
the two differences are very different and this is not good. So, as well
as verifying that the preference in terms of generation is the same, it is
necessary to verify whether the differences are as close as possible.

The new definition M(bias,new) want to solve the two critics as following, con-
sidering a small range of values (for example lb = -0.1 and ub = 0.1):

• For what concerns the first critic, given Sor
ster, Sor

anster, Spar
ster, Spar

anster if M or
diff

and Mpar
diff are contained in [lb, ub] means that, independently by the sign,

the two differences are very near 0. So, for small values (in module) of
the two differences, M(bias,new) will be equal to 0. For example, if M or

diff

= -0.0001 and Mpar
diff = 0.0001, M or

(bias,new) = Mpar
(bias,new), and Magree = 1

also if the two differences are very near 0.
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• For what concerns the second critic, given Sor
ster, Sor

anster, Spar
ster, Spar

anster if
M or

diff in module is very distant from 0 and Mpar
diff is contained in [lb,

ub] means that, also with same difference sign, M or
(bias,new) /= Mpar

(bias,new)
(the same conclusion can be done for the opposite case). For example, if
M or

diff = 3000 and Mpar
diff = 0.001, M or

(bias,new) /= Mpar
(bias,new) (also the two

differences have the same sign) and Magree = 0.

Note that, if Mdiff is contained in [lb, ub], it means that m doesn’t make a
strong discrimination between the generation of one sentence compared to the
other. If this happens for a couple or original stereotypical/anti-stereotypical
sentences, it could held for the paraphrased ones. In [37], the majority of the
values Mdiff fall between -0.25 and 0.25.

By setting X equal to the CrowS-pairs dataset, each original example (each
row of X) is attached with the a paraphrased one. In this way, each line of X
now has four sentences: the first two (stereotypical and anti-stereotypical) are
considered as original, and the third and fourth are paraphrases of the first
and second, respectively. There are N examples, where each example now has
these four sentences. The following outline summarizes the proposed method
process for each line of X, and a variable y1 is initialized:

(a) Given a line from X, we have two examples: the original example with
sentences Sor

ster and Sor
anster, and the paraphrased example with Spar

ster and
Spar

anster

(b) PLLor
ster and PLLor

anster from Sor
ster and Sor

anster are calculated, as explained
in points 1, 2, 3, 4 of the Salazar experiment.

(c) M or
diff is calculated, and consequently M or

(bias,new).
(d) Mpar

(bias,new) is calculated, considering PLLpar
ster of Spar

ster and PLLpar
anster of

Spar
anster as explained in points 2, 3.

(e) Magree is computed:


0, if M or

(bias,new) /= Mpar
(bias,new)

1, if M or
(bias,new) = Mpar

(bias,new)

and the update

is performed: y1 = y1 + Magree

After these steps for each line of X, the proportion l1 = y1
N

is calculated, and
the hypothesis system is evaluated:H0 : l1 = prrob

H1 : l1 < prrob

(4.5)
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prrob has to be an high value (for example, contained in [0.8,1) ). For example,
if prrob = 0.9, in the case where H0 is not rejected, it can be concluded that,
statistically, for at least 90% of the examples in CrowS-pairs, it seems that
the model gives more importance to the meaning of the sentences rather than
the meaning of individual words, so m is (statistically) robust and this fact
allows the evaluation of biases in m.

To measure the effectiveness of this proposed method, a new dataset X
where each line contains an original example from CrowS-pairs, a paraphrased
example of the original, and another new example that ‘paraphrases’ each
example from the original set with two random sentences. An example can
be seen in 4.1. It can be seen that the random stereotypical and random

Type of sentence Original Ex. Paraphrased Ex. Random Ex.
Ster. Cheryll was bad in saving money Cheryll was bad at pinching pennies Europe is big
anti-ster. John was bad in saving money John was bad at pinching pennies Red car won

Table 4.1: Example of a line from this new X set, where each line contains three examples

anti-stereotypical sentences (random example) have nothing to do with the
sentences in the other two examples. They are also unbiased. Therefore, now
in X, for each example from CrowS-pairs, there is a paraphrased example and
a Random Example. The idea is to calculate Magree between:

• The original and paraphrased examples (done previously), resulting in l1.
• The original and random examples, obtaining the quantity previously

referred to as l1 and now denoted as l
′
1.

Two proportions as computed:

• l1 (as explained above in 4.3 outline)
• l

′
1, following the 4.3 outline, with a difference: the quantities PLLpar

ster from
Spar

ster and PLLpar
anster from Spar

anster are replaced by PLLran
ster from Sran

ster and
PLLran

anster from Sran
anster.

Once obtained l1 and l
′
1, one wants to see if are similar or not. This fact is

important because if the two proportions are equal, it means that Magree does
not depend on the semantic meaning of the paraphrased example, i.e., the
differences in terms of PLL between the stereotypical and anti-stereotypical
sentences do not depend on the semantic meaning of the sentences. This would
means that the proposed new method may not work well because regardless of
the two paraphrased sentences, l1 do not depend on the semantic meaning of
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the two input sentences, and as written many times in this thesis, the semantic
meaning plays a key role in identifying bias in h.
To evaluate whether l1 and l

′
1 are equal, a statistical test can be conducted on

two proportions: H0 : l1 = l
′
1

H1 : l1 /= l
′
1

(4.6)

Setting a significance level α = 0.05, if H0 is not rejected, it could be concluded
that the model m cannot discriminate, in terms of PLL differences, between
stereotypical and an anti-stereotypical sentences and between stereotypical
and random sentences. Therefore, m is not be evaluated, and the proposed
new method may not work.

4.3.1 Experiment ERob: Robustness of m

To test the proposed new method, given m ∈ M, the first thing is to construct
a X where each line contains an original example from CrowS-pairs, a para-
phrased example of the original, and a random example. Using this dataset,
the considerations on calculating the two proportions l1 and l

′
1 using m are

applied, and the hypothesis system 4.6 is solved. If H0 is rejected, one can
move on to the next step and apply the proposed method in 4.5 (test on l1). If
H0 is not rejected, it means that m seems to be robust and can be evaluated
in terms of biases contained in H and given at least one phenomenon.

4.4 Analysis of results

After analyzing the design of the experiments, some parts of the ECrows, ESal

and ERob experiments are done in practice and the results are described in this
section. Other techniques not described will be applied, but briefly recalled in
this section (for example, the test of Kolmogorov-Smirnov). The subsections
4.4.2 and 4.4.3 describe the results about the detection of bias in m and
robustness, respectively. The code used for making the experiments is in the
GitHub repository of the thesis (https://github.com/nicolaMaddalozzo/
biashandler), and takes inspiration from the following repositories:

• https://github.com/nyu-mll/crows-pairs: Official code of
Crows-Pairs paper [7]
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• https://github.com/nlply/evaluate_bias_by_gaussian/tree/main:
Official code of Kullback-Leibler divergence Score [38]

• https://github.com/awslabs/mlm-scoring: Official code of
Salazar paper [36]

4.4.1 Experimental settings

The objectives of this section are mainly two:

• Given m, the results of the methods based on Salazar metric and its variant
(described in 4.2.1) will be compared in order to study the resolution of
the hypothesis system 4.1 for the detection of bias.

• Evaluate the robustness of m, also using the proposed method in 4.3.

In order to achieve these two objectives, the following settings will be used:

(a) The pre-trained model m under analysis will be BETO [40], a BERT
model trained on a big set of documents in Spanish.

(b) The experiments for detecting bias and robustness are done using a Spanish
version of the CrowS-Pairs dataset (1503 examples). The translation
considers two important aspects:
• The English language have more words that are gender independent

in confront of Spanish. For example, the word ‘nurse’ has not gender
in English, but in Spanish there are two different words for men and
women (‘enfermero’ and ‘enfermera’)

• In the English language, the subjects are more important than in
Spanish. In fact, the English sentence “he has learning problems”
could be translated as “tiene problemas de aprendizaje”. The subjects
are important in order to assign a stereotypical or no-stereotypical
behavior.

This Spanish version of CrowS-pairs in the repository is called ‘es_en.csv’
(in data/crowspairs folder) has 7 columns:

i. “sent_more” : Represents the stereotypical sentences translated from
CrowS-Pairs. Each sentence is represented as str.

ii. “sent_less” : Represents the anti-stereotypical sentences translated
from CrowS-Pairs. Each sentence is represented as str.

iii. “sent_more_par” : Represents the paraphrased stereotypical sentences.
Each sentence is represented as str.

iv. “sent_less_par” : Represents the paraphrased anti-stereotypical sen-
tences. Each sentence is represented as str.
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v. “sent_more_ran” : Represents the random ‘stereotypical sentences’.
Each sentence is represented as str and has not a stereotypical meaning.
Is a random sentence.

vi. “sent_less_ran” : Represents the random ‘anti-stereotypical sentences’.
Each sentence is represented as str and has not a anti stereotypical
meaning. Is a random sentence.

vii. “bias_type” : Represents the characteristic h manifested in the stereo-
typical sentence (for example, ‘gender’, ‘race’, etc. etc.).

One example for helping in understand the form of the dataset, could be
see in 4.1. For each row of this dataset, the PLLs of the stereotypical and
anti stereotypical sentences are computed using the Salazar metric and its
variant (about masking only unmodified words). For studying the robustness,
only the first 170 original Spanish examples of CrowS-Pairs were paraphrased
(‘sent_more_par’ and ‘sent_less_par’). So, for this analysis, only the first
170 original examples are used for comparing. Also, 170 random example
are added (‘sent_more_ran’ and ‘sent_less_ran’). The ideal proportion of
examples in agreement will be considered to be 80%. Also, only the PLLs
computed with the variant Salazar metric (cp, described in 4.2.1) are used in
this part.
For studying the presence of bias, all the 1503 original examples (‘sent_more’
and ‘sent_less’) in Spanish will be used, regardless of the type of bias.

All the experiments will be done using Python and the principal python
package will be inserted in the requirements.txt file of the GitHub thesis’s
repository.

4.4.2 Detecting Bias in m

Following the indications in 4.2.1, using PLLs, the proportion (prop) that rep-
resents the number of times the model m prefers to generate the stereotypical
sentence instead of the anti-stereotypical is computed for both the metrics
(cp 4.2.1 and sz 4.2.1). Remember that the cp metric is a variation of the
Salazar sz metric. Table 4.2 shows the results of the proportion test for both
the metrics:

74



Measures of bias in masked generative language models

prop isBiased pvalue Metric
0.53 True 0.016 cp
0.60 True ≈0 sz

Table 4.2: Summary of proportion test on prop of the methods based on the
metrics Salazar (sz) and its variant (cp).

The pvalue is used to reject or not the null hypothesis of 4.1, that is,
for example, they do not reject the hypothesis of the presence of bias
in the model m if α = 0.05 (as isBiased column of 4.2 shows). This table
helps a researcher that might want to test with an α /= 0.05.

KL divergence score

In this part, the Kullback-Leibler divergence score is applied on ster and anster,
that are the distributions of the PLLs of stereotypical and anti stereotypical
sentences, respectively. There are two PLL distributions for each metric. In
fact, stercp is the PLLs (computed with cp) distribution of the stereotypical
sentences, anstercp is the PLLs (computed with cp) distribution of the anti-
stereotypical sentences, stersz is the PLLs (computed with sz) distribution
of the stereotypical sentences and anstersz is the PLLs (computed with sz)
distribution of the anti-stereotypical sentences. stercp and anstercp are used
in experiment ECrows, stersz and anstersz are used in experiment ESal. The
KL divergence score is computed between steri and ansteri, where i = sz, cp.
Before applying the divergence, the form of distributions is investigated. So,
the Shapiro Wilk test is made on the 4 distributions:

stercp anstercp stersz anstersz

pvalue ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 4.3: pvalue of Shapiro-Wilk test on the four distributions.

Table 4.3 shows the results of the Shapiro Wilk tests in terms of pvalue. In fact,
all the pvalue are very near to 0, so the hypothesis of normality is refused for
every typical value of α for all the four distributions. A further investigation
is made on the four distributions, printing the histograms related to the
distributions (4.10 and 4.11).
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Figure 4.8: Comparison between the distributions of pseudo log likelihood values
(PLLs) of stereotypical sentences (ster) and anti-steoreotypical ones (anster) with

PLLs computed via cp

Figure 4.9: Comparison between the distributions of pseudo log likelihood values
(PLLs) of stereotypical sentences (ster) and anti-steoreotypical ones (anster) with

PLLs computed via sz

From an exploratory analysis of these graphs, is shown that the two distri-
butions are very similar, for both cases. Additionally, it seems that these
distributions are not normal. After this first analysis of the graphs, a further
investigation is carried out to adapt a theoretical distribution using the python
package Fitter (https://github.com/cokelaer/fitter). In graphs 4.10 and
4.11 are shown the results of the fitting, for each distribution. A theoretical
distribution that seems to adapt well to the four distributions, seems to be the
GEV (Generalized extreme value) distribution [41]. To further investigate this
adaptation, a Kolmogorov-Smirnov test is made among the four distributions
and GEV distribution. The results are reported in terms of pvalue: Analyzing
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(a) Fitting distribution for stercp (b) Fitting distribution for anstercp

Figure 4.10: distribution fitting for the distributions of pseudo log likelihood
values (PLLs) of stereotypical sentences (ster) and anti-steoreotypical ones

(anster) with PLLs computed via cp. Each graph has the PLL values in x axis
and the relative frequency in y axis.

(a) Fitting distribution for stersz (b) Fitting distribution for anstersz

Figure 4.11: distribution fitting for the distributions of pseudo log likelihood
values (PLLs) of stereotypical sentences (ster) and anti-steoreotypical ones

(anster) with PLLs computed via sz. Each graph has the PLL values in x axis
and the relative frequency in y axis.

4.4, regardless of the fixed α to make a decision on adaptability, it seems that
for distributions anstercp, stersz, anstersz the adaptability is very high, while
for stercp less. Other theoretical distributions have been tested in KS test, but
in terms of pvalue, the GEV seems to be the best distribution (even for stercp).
In light of the fact that distributions are not normal, and that they seem to
follow a GEV distribution, a Kolmogorov-Smirnov test is made to see if the
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stercp anstercp stersz anstersz

pvalue 0.037 0.283 0.731 0.473

Table 4.4: pvalue of Kolmogorov-Smirnov (KS) test between the four PLLd
distributions and the GEV distribution

distributions ansteri, steri are similar for i = cp, sz. The results are reported
in the following table: The pvalue are very high, so this test suggests that the

anstercp VS stercp anstersz VS stersz

pvalue 0.995 0.402

Table 4.5: pvalue of Kolmogorov-Smirnov (KS) test between the ster distribution
(PLLs of stereotypical sentences) and anster (PLLs of anti-stereotypical sentences)

distribution, for cp and sz metrics

distributions are very similar for both metrics. This could suggest that there
is not bias in m. Also the Kullback-Leibler score divergence, using the code
(https://github.com/nlply/evaluate_bias_by_gaussian/tree/main) of
paper [38] was used for viewing how far the distributions are. The results are
reported in table 4.6.

anstercp VS stercp anstersz VS stersz

KLscore 50.012 50.011

Table 4.6: KLscore between the ster distribution (PLLs of stereotypical
sentences) and anster distribution (PLLs of anti-stereotypical sentences), for cp

and sz metrics.

Also por KLscore, the distributions are very simlar among them.
As shown, the results obtained from the proportion test (table 4.2) differed
from those derived from the KL divergence and KS test. In fact, both KL and
KS could lead to the same decision (m does not contain bias) which, however,
significantly differed from the proportion test result (m contains bias). The
ultimate investigation for detecting bias, is made on a new distribution that is
the difference between the distributions. These two distribution (one for each
metric), to which outliers have been removed, are printed: Although visually
they may look like normal distributions, the Shapiro Wilk tests strongly
suggest that they are not normal (both pvalue are very close to 0). It could
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(a) Distribution of diffcp = stercp − anstercp (b) Distribution of diffsz = stersz − anstersz

Figure 4.12: Distributions of the PLLs differences. On the left, is represented
the distribution of the PLLs differences among PLLs of stereotypical sentences and

anti-stereotypical sentences, with PLLs computed via cp. On the right, is
represented the distribution of the PLLs differences among PLLs of stereotypical

sentences and anti-stereotypical sentences, with PLLs computed via sz.

be logical to think that, by doing an approximate Z-test of the mean for
diffcp and diffsz, could be see if this mean µ is equal to 0 (H0 : µ = 0)
which represents the hypothesis of absence of bias or its presence (H1 : µ /= 0)
inside m. The results of Z-test are in table 4.7. These pvalue are smaller when

diffcp diffsz

pvalue 0.009 ≈ 0

Table 4.7: pvalue of the approximate Z score test done on the mean of the two
distributions of PLLs differences. The distributions are printed in Figure 4.12.

compared with the normal α levels used in the literature. In the case of the
approximate Z test on diffcp, it can be seen that the pvalue is very near to
0.01, a typical value in the literature. This suggests to increment the number
of example for calculating a more precise pvalue, for viewing if this value could
be significantly greater or smaller than the typical values in the literature.
In conclusion, the analysis conducted using the proportion tests (Table 4.2)
suggests that m contains bias for both methods based on the two metrics. On
the other hand, KL divergence score (table 4.6)and KS test (table 4.5) suggest
the opposite. The approximate Z scores tests applied to the means of the
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distributions that represents the difference between the PLL of stereotypical
sentences and anti stereotypical sentences (table 4.7) suggest the presence of
bias (for both the metrics). More details about the conclusions are contained
in 5.

4.4.3 Robustness of m (ERob)

Given the dataset described in the experimental setting subsection (4.4.1),
the first experiment aims to determine whether the proportion test yields
different results among the original examples, paraphrased examples, and
random examples. The test results are presented in Table 4.8.

propcp isBiasedcp pvalue

Or. ex. 0.58 True 0.044
Par. ex. 0.59 True 0.019

(a) Results of proportion test using the
Original and paraphrased examples with PLLs
computed with cp. The test suggests the same

conclusion for the original and paraphrased
examples.

propsz isBiasedsz pvalue

Or. ex. 0.56 False 0.12
Par. ex. 0.53 False 0.44

(b) Results of proportion test using the
Original and paraphrased examples with PLLs
computed with sz. The test suggests the same
conclusion for the original and paraphrased

examples.

Table 4.8: Results for proportion test using cp and sz metrics

The results for the original examples showed in Table 4.2 differ from those
in Table 4.8 due to the fact that only the first 170 original examples are
considered in the results in table 4.8. An important conclusion to draw from
the table is that, for both the original and paraphrased examples, the test
decision remains the same for typical α values of {0.05, 0.01}. This conclusion
holds true for both methods based on cp, sz metrics.
Now, the experiments contained in ERob are applied using only the PLLs
computed with cp. First, as write in [37], the robustness is studied analyzing
the agreement (in terms of signs) between the distributions of M or

diff and
Mpar

diff (see 4.3 where is explained how to calculate them and how to do the
test). The results are in table 4.9 and the considered proportion under H0
is fixed to prrob = 0.8 and not to 0.9 as said in 4.3, because the value 0.9
(90% of examples in agreement) is very high. It shows that the pvalue of the
comparison between the original and paraphrased examples is low, suggesting
that there are many discordant examples among the 170 examples considered.
For what concern the comparison between original and random examples,
is normal that the pvalue is very low because they are random examples, in
semantic terms they are very different from the original examples.
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l1 pvalue

Or. ex. VS Par. ex. 0.682 0.00049
Or. ex. VS Ran. ex. 0.5 ≈ 0

Table 4.9: Proportion (l1) of examples that agree in terms of sign between
original and paraphrased examples and between original and random examples.

On l1 is made the proportion test.

In order to applying the new method described in 4.3, the range [lb,ub]
must be set. In [37] is reported that the majorities of the differences fall
in the range [-0.25,0.25]. But, in this case, only 10% of M or

diff and Mpar
diff

are contained in the range [-0.25, 0.25]. This could be due to the fact
that, probably by switching to the Spanish language, the PLLs of
stereotypical sentences and anti stereotypical sentences vary more
than the English language. So, a more large interval is chosen. The results
of the test, that consider a interval [-3.5, 3.5], are showed in table 4.10. It
demonstrates that a lot of M or

diff and Mpar
diff values are contained in the interval

[-3.5, 3.5]. So, the model m could result robust if the interval can represent
well a difference considered ‘null’ between a PLL of the stereotypical and anti
stereotypical sentence.
A two-sample Z test can be done for testing if m cannot or can discriminate,

l1 range pvalue

Or. ex. VS Par. ex. 0.782 [-3.5, 3.5] 0.289
Or. ex. VS Ran. ex. 0.576 [-3.5, 3.5] ≈ 0

Table 4.10: Proportion (l1) of examples that agree in terms of interval (as
described in the new method in 4.3) between original and paraphrased examples
and between original and random examples. On l1 is made the proportion test.

in terms of PLL differences, between the proportions l1 = 0.782 of examples
in agreement between original and paraphrased examples and l

′
1 = 0.576

(called for notation) between original and random examples. The pvalue of the
two-sample Z test turns out to be 0.00004, so it seems to confirm that m is
able to recognize well if the differences in terms of PLLs are calculated from
stereotypical and anti stereotypical sentences, in comparison to a difference
between stereotypical and random sentences. A final experiment is carried
out to investigate the robustness of the m model, using the Z test to see if
the mean of the distribution that represents the difference between the two
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distributions Mdiff of the original examples and paraphrased examples is 0.
The resulting pvalue of the test results 0.5352, that is an high value that could
confirm that the two PLLs difference distributions of original and paraphrased
examples are very similar, so that the model m seems to be robust. Also a
Kolmogorov-Smirnov test between these 2 distributions confirm that are very
similar (pvalue = 0.704). In conclusion, the proportion tests on the original and
paraphrased PLLs in Table 4.8, for each metric, suggest the same conclusion
regarding the presence (cp case) or absence (sz case) of bias. So, from the
perspective of the proportion tests, it appears that m is robust. On the other
hand, m does not seem to be robust in terms of agreement among original
and paraphrased PLLs values signs (Table 4.9). As for the agreement in terms
of intervals among original and paraphrased PLLs values (Table 4.10) between
the original and paraphrased examples, m appears to be robust.
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Chapter 5

Conclusions and Future
Work

5.1 Conclusions from Chapter 3: Word em-
beddings

In Section 3.6, some results about detecting bias in word embeddings are
presented, and the following are some conclusions:

(a) The tests of PMI and Bolukbasi methods could lead to different decisions
about the presence of bias.

(b) With the considered attributes and targets sets, three times out of four
WEAT suggests the presence of bias.

PMI and Bolukbasi values seems to not have a normal distribution, so the
using of approximated Z score test is logical.
Some conclusions about the frequency mean of the neutral seeds are:

(a) PMI and Bolukbasi methods could lead to different decisions about the
presence of bias. This difference could be caused by the relationship
between PMI values and frequency mean of the neutral seeds. In fact,
both pvalue (for gender and religion bias) of Bolukbasi test are very near
to 0, in the other side the two pvalue (for gender and religion bias) of
PMI test could be more bigger.

(b) WEAT tests with equal target sets and different attribute sets (that differ
by frequency mean) could lead to different decisions about the presence
of bias.
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So, the methods that seem to be more sensible to the effect of the seeds
frequency are PMI method and WEAT. So, the frequency have to be considered
when the seeds are chosen for these methods. For Bolukbasi method, seems
that the frequency has not a impact.

5.2 Conclusions from Chapter 4: Masked mod-
els

In the section 4.4, some results were presented. Some conclusions about
detecting bias in BETO are as follows:

(a) The proportion test suggests that m may contain bias for PLLs computed
with both metrics.

(b) Both the Kolmogorov-Smirnov test and Kullback-Leibler divergence score
indicate a consistent conclusion: the stereotypical and anti stereotypical
PLL distributions (computed with both metrics) are very close, suggesting
a potential absence of bias in BETO.

(c) The Z test made on the mean of the difference between the stereotypical
and anti stereotypical PLLs (computed with both metrics) could suggest
that the mean is not 0, so that there is difference between the two
distributions.

(d) GEV distribution could represents in a good manner the stereotypical
and anti stereotypical PLL distributions.

These points demonstrate that it is not easy to take a decision about the
presence of bias in BETO (these conclusions may also be valid for other MLM),
so they suggest to not only compare directly the PLLs of stereotypical and
anti stereotypical sentences (which is the basic process used in literature),
but also is important to make comparisons between the distributions because
these can lead to different conclusions. It could be very important to consider
more the underlying distribution of the PLLs, that could be a GEV. In this
way, if this is confirmed also with other papers/thesis, this distribution could
be used for Monte Carlo simulations to enhance studies on bias detection in
BERT masked models.
Some conclusions about the robustness of BETO, that may also be valid for
other MLM, are:

(a) The proportion test used for original and paraphrased examples lead to
the same results, so demonstrating robustness, but for a more in-depth
study the number of paraphrased examples should be increased.
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(b) The sign-based method [37] for assessing whether examples are agreements
can be very restrictive and lead to biased robustness assessments.

(c) The method proposed in the thesis may be less restrictive than the sign-
based method.

(d) The KS test and Z score test made on the distribution of difference,
suggest that the model is robust.

Respect the part of detecting bias, in the part of analyzing the robustness,
in general, there is this suggestion that the model under analysis is robust,
since the proportion test gives the same conclusions between original and
paraphrased examples, the method proposed lead suggest that the model is
robust (given the small range [-3.5, 3.5]) and the Z score suggest that the
model is robust. Obviously, the goal of this analysis is not so much to make a
decision (robust or not robust) but is to demonstrate the results, which in this
section seem to be closer to the decision “the model is robust to paraphrases”.

5.3 Contributions

In this thesis, for what concern word embeddings, two metrics (PMI and
Bolukbasi) and one method (WEAT) for exploring bias were analyzed from
literature, along with the capabilities and limitations concerning the measure
of bias presence in word embeddings. The first contribution was transform the
two metrics PMI and Bolukbasi to methods, which provide a statistical test
based on the metric. In fact, in the literature, there was a lack of statistical
testing to validate the measures of these metrics for testing the bias presence.
In addition to provide a test for detecting the bias presence, different settings
could be used for doing these tests and so studying possible other effects (such
as seeds frequency) that can lead to different test decisions.
For what concern masked language models, the contribution of this thesis
focuses on providing statistical tests (as done in the word embedding chapter)
to assess bias presence, using metrics from the literature. The analyzed
metrics are Salazar and two variants of Salazar that are used in StereoSet
and CrowS-pairs. Also the Kullback-Leibler divergence score was considered
and a contribution w.r.t. [38] is that: The PLLs distributions appear to be
non-Gaussian and exhibit a closer resemblance to GEV distributions. Another
contribution is about the new proposed method for testing the robustness of
a MLM.

Specifically, more details about contributions are described in the following:
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• An approximate Z-score mean test has been introduced, utilizing Bolukbasi
metric values [20] for bias detection in vector sets and PMI metric values
[13] for bias detection in document sets. These tests can also be applied
to investigate other factors, such as frequency. These tests are done for
Spanish language.

• A statistical proportion test has been introduced, utilizing Salazar metric
on data from StereoSet [6] or CrowS-pairs [7], to assess a masked lan-
guage model’s preference in generating stereotypical sentences based on
specific characteristics. This facilitates the detection of bias within the
model. These tests should also be employed to investigate the presence of
unintended effects, such as analyzing the mean frequency of terms within
sentences. A Spanish version of CrowS-pairs was analyzed and used for
applied the tests.

• A new method has been introduced to assess whether a masked model is
robust or not. The new method can help determine whether the presence
of bias can be analyzed or not. The robustness of a model trained on
Spanish texts was analyzed.

• Another contribution is the creation of this thesis as a guide for applying
the presented methods. For each methods, advantages and disadvantages
have been discussed, along with an analysis of factors influencing metric
values.

Implications of Contributions

The contributions made in this research hold significant implications for
the research field. By emphasizing the evaluation of metric results through
statistical tests, a crucial aspect often overlooked in current literature, the
reliability and validity of metrics for detecting bias in word embeddings and
masked language models can be enhanced. In addition, tests can be used to
study the influence of factors other than bias.

5.4 Limitations and Future Directions

In terms of future research directions, greater effort is needed to identify
additional statistical tests for each method. For instance, deeper investigation
into the distributions characterizing the preferences of generating stereotypical
and non-stereotypical sentences by language models would be necessary. The
GEV distribution could be a good solution, but additional datasets (such as
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CrowS-pairs and StereoSet) are needed for fitting the distributions to confirm
the suitability of this solution.
Furthermore, it is anticipated that researchers from non-technical fields but
with expertise in studying discrimination in society will become more in-
volved in future work. Their participation could enrich the development of
improved techniques for detecting seed words that define social groups and
the phenomena in which discrimination might occur.
Additionally, future work could involve developing enhanced versions of Stere-
oSet and CrowS-pairs, incorporating control groups, and extending this work
to other languages than English and Spanish.

5.5 Future Work

In general, for future work, a larger effort is required to explore additional
statistical tests for each method. For instance, further research is needed on the
distributions that can characterize the preferences of generating stereotypical
and anti-stereotypical sentences.
Furthermore, we anticipate greater involvement of researchers from non-
technical scientific fields experienced in studying discrimination in society in
future work. They could participate, for example, in developing improved
techniques for detecting seed words to define social groups and the phenomena
in which discrimination might occur.
Moreover, in the future, enhanced versions of StereoSet and CrowS-pairs
could be developed by adding control groups and extending this work to other
languages than English and Spanish.
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Appendix A

Seeds

In order to analyze the gender and religious bias, a json file with seeds, called
“dict_PMI_WE.json” is created (contained in data/seeds folder of the GitHub
repository). This json file contains a python dictionary, where a key represents
a concept and the associated value is a list of Spanish seeds. The English keys
are associated with Spanish seeds that are translated from [5] and the Span-
ish keys and their seeds are extracted from https://github.com/PLN-FaMAF/
Bias-in-word-embeddings/blob/main/main_tutorial_bias_word_embedding.
ipynb. The json file contains both biased (that define the ‘direction’) and neu-
tral seeds. The keys are the following: ‘pleasant’, ‘unpleasant’, ‘instruments’,
‘weapons’, ‘pleasantness’, ‘unpleasantness’, ‘career’, ‘family’, ‘math 1’, ‘arts
1’, ‘science 1’, ‘arts 2’, ‘physically ill’, ‘temporary’, ‘permanent’, ‘pleasant 6’,
‘unpleasant 6’, ‘christianity’, ‘islam’, ‘terrorism’, ‘clothing’, ‘sports’, ‘family
words’, ‘career words’, ‘violence’, ‘domestic_work’, ‘positive_emotion’, ‘nega-
tive_emotion’, ‘christianity words’, ‘islam words’, ‘profesiones_neutras’, ‘ver-
bos’, ‘profesiones_colectivos’, ‘sustantivos_abstractos’, ‘adjetivos_neutros’,
‘profesiones_female’, ‘profesiones_male’, ‘espacio_f’, ‘espacio_m’. For exam-
ple, to ‘pleasantness’ and ‘unpleasantness’ keys, are associated the following
seeds: {‘pleasantness’: [‘alegría’, ‘amor’, ‘feliz’, ‘paz’, ‘risa’, ‘placer’], ‘unpleas-
antness’: [‘desagradable’, ‘horrible’, ‘agonía’, ‘terrible’, ‘fracaso’, ‘guerra’]}.
In the case of computing PMI in 3.6, every Xi with i = 1, ..., 30, is asso-
ciated with one of the 30 groups of seeds associated to the following keys:
‘pleasant’, ‘unpleasant’, ‘instruments’, ‘weapons‘, ‘pleasantness’, ‘unpleasant-
ness’, ‘career’, ‘family’, ‘math 1’, ‘arts 1’, ‘science 1’, ‘arts 2’, ‘physically
ill’, ‘temporary’, ‘permanent’, ‘christianity’, ‘terrorism’, ‘clothing’, ‘sports’,
‘family words’, ‘career words’, ‘violence’, ‘domestic_work’, ‘positive_emotion’,
‘negative_emotion’, ‘profesiones_neutras’, ‘verbos’, ‘profesiones_colectivos’,
‘sustantivos_abstractos’, ‘adjetivos_neutros’. These 30 groups are used as
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Seeds

neutral seeds groups also for computing the Bolukbasi metric for gender and
religious bias.
For PMI, the groups Ai, Bi, with i = 1,2, are different among the two char-
acteristics. For gender bias, A1 and B1 are formed with the seeds associated
to the keys ‘espacio_m’ and ‘espacio_f’, respectively. For religious bias, A2
and B2 are formed with the seeds associated to the keys ‘christianity words’
and ‘islam words’, respectively. The computing of Bolukbasi metric, considers
the directions gj with j = 1,2. g1 (gender) is computed considering the A1, B1
groups used for PMI and g2 (religion) is computed considering the groups
A2, B2 groups used for PMI.
For what concert the WEAT methods, the attribute sets are the same
({(A1, B1),(A2, B2)}). In 3.4, A1 is called “masculine space” and B1 is called
“feminine space”. In 3.5, A2 is called “christian space” and B2 is called “islamic
space”.
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Appendix B

Spanish ω-vectors

Warning: This appendix includes values projected onto the bias direction that
may be considered offensive.

Figure B.1: 2D representation of the ω vectors used in 3.6
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Here are some exploratory plots for investigating bias: B.2 and B.3.

Figure B.2: Projections of some words on the gender bias direction
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Figure B.3: Projections of some words on the religion bias direction
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