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Abstract

In recent years, the size of Deep Learning models has increased. This trend has
been allowed by the advancements in this research area and the development of
the hardware targeted for its use. It has led to better results overall. Bigger
models, having more parameters, can adapt better to the given task than their
smaller counterparts. However, small models are helpful in many real-life scenarios,
if not mandatory. They are needed for energy consumption constraints, speed
requirements, and hardware limitations.

The lottery ticket hypothesis states that a trained model may contain a sub-
network whose performance would be similar to the one of the whole model. In this
work, we try to find this sub-network through pruning, a technique for removing
parameters, starting from a pre-trained model. This work proposes a method
for applying structured pruning on Deep Learning models in Computer Vision
settings, specifically in image classification. The intent is to keep the original
model’s performance unchanged while reducing the number of parameters, and thus
the model size, in a structured way: it does not remove single parameters but whole
channels, avoiding making the network sparse and hard to optimise on hardware.
Usually, pruning methods base their decision upon a chosen criterion; the technique
introduced in this work is instead trained to select which parameters to prune and
which to keep, thus not introducing a bias in the selection. This is done by the
OutputAnalyser class that wraps the model, substitutes the 2D convolutional layers
with a PruningConv2D module, and, at the end of the pruning phase, reinserts
the now pruned convolutional layers. Each PruningConv2D contains one of the
original convolutional layers and a model, which we will call the pruning-model.
At training time, the pruning-models’ predictions will select which of the original
layer parameters to keep and discard. We use their last prediction at test time
to decide which channels to keep. Moreover, we avoid using other external and
hard-to-balance losses to do this.

The accuracy score obtained on the CIFAR-10 dataset is 92.84 %: removing
33.23 % of the parameters and reducing the FLOPs by 38.23 %, the error increased
to 7.16 %, starting from 6.47 % of the original ResNet-110 model on this dataset.
We used a specific set of pruning-models for this method. Still, this approach opens
up new possibilities since it allows the user to change their structure: they can be
deepened and enlarged with no additional computational cost for the final pruned
model. This methodology could also be extended to different kinds of layers and
other Deep Learning tasks.
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Chapter 1

Introduction

Deep Learning is a fascinating field. We can find its roots in mathematical modelling
and informatics. It attempts to induce intelligent behaviour into machines by
imitating how natural neural networks work. In recent years, it has gained more
and more relevance concerning other Artificial Intelligence algorithms and the
general public, thanks to its successes.

1.1 Thesis Objective
This Thesis aims to reduce the size of a Deep Learning model for the image
classification task.

Many use cases need and involve the use of edge devices to have the processing of
the data closer to the data source. There may be many reasons to do this: reducing
privacy and security issues and avoiding the need for an internet connection, jointly
cutting down power consumption. However, the model must match the hardware
constraints. These devices are smartphones, IoT devices or, more generally, those
with stricter resource constraints than a typical Deep-Learning-ready setup. The
one we focused on in this Thesis belongs to the family of pruning algorithms.
Specifically, we introduce a new method for doing structured pruning through an
all-differentiable approach, thus letting us use Deep Learning from top to bottom.

1.2 An Introduction To Deep Learning
An Artificial Neural Network is composed of neurons, the basic unit of the network.
A neuron is composed of parameters and connections. The connections determine
its position in the network concerning the others and make computation possible:
they connect it to its previous and following neurons. The parameters are usually
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Introduction

multiplied by the inputs. Adding all these elements reduces the resulting output
vector to a scalar number. The result is then passed to the following neuron.

Neurons are grouped in layers. Each layer extracts features from its inputs and
passes them to the following. The features extracted are, at first, very simple and
local. Still, later in the network, one layer after another, they can become more
abstract and complex and capture the general meaning of what is being analysed,
whether a picture or a text.

Layers are connected: more layers make a network deeper; more neurons inside
layers make a network wider. Usually, features are normalised between layers to
keep the extracted values in a normal range and passed through an activation
function to induce non-linearity in the network. The deeper and wider the model,
the more it can fit the given task, as it can adapt better to the function it has to
mimic.

It is trained on data to learn this function: during the learning phase, it aims to
reduce the error between its output and the ground truth.

Much data representing the target function is required to fit a model properly.
Otherwise, it could over-fit the task by adapting too much to the examples seen,
thus losing generality, by exploiting its capacity to learn.

In mathematics, the gradient of a function in a given point is directed toward
the steepest increase of that function. By taking the opposite direction, we can
move down toward a minimum. In Deep Learning, we want to minimise the error.
Thus, we can change the parameters according to the negative value of the gradient.

The updates of the parameters are scaled down by a value called "learning
rate" and other parameters according to the optimisation function chosen. This
is necessary because it is impossible to analyse the whole data together, but it
has to be split into batches: a subset of the training data. Each time the network
processes a batch, we update the parameters. When the whole training data has
been analysed once, an epoch has been done. The training process is composed of
many epochs.

The learning process needs smooth updates: the gradient must have neither big
nor small values. Otherwise, it would incur the so-called exploding or vanishing
gradient problems.

Also, the network’s architecture can be modified to avoid these problems, espe-
cially when going deeper. The most famous example of such a change in architecture
is the residual connection introduced by He et al. [1]. In this architecture, layers
are grouped into blocks. The input of each block is added to the output of the
whole block. The residual connection thus helps the gradient flow through the
shortcut path, called "skipped connections". It also helps the network itself: the
relevant features extracted by the previous block will pass to the following one,
and those that are not will be put to zero and, likely, be overridden by the features
extracted inside the block or vice versa.
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Thanks to this and other techniques, networks have thus become wider and
deeper in recent years, making it possible to achieve better results and tackle new
challenges. More extensive networks were also made possible by the advances in
the hardware that specifically support these kinds of operations, like Graphics
Processing Units (GPUs) and Tensor Processing Units (TPUs), making this kind
of calculation feasible in a reasonable amount of time.

1.3 Deep Learning On Edge Devices
Deep Learning on edge devices, like smartphones and sensors, means moving the
processing of the data from remote servers to where data is generated or acquired.
Getting the processing closer to the data source helps reduce latency, improve
privacy and increase security, eliminate the need for an internet connection, and
decrease power consumption. The price we must pay to obtain these benefits is
subject to device constraints. There are different ways to fulfil these requirements:
knowledge distillation, pruning, and quantisation are some of those.

1.3.1 Knowledge Distillation
Knowledge Distillation is a technique that reduces the model’s size, requiring two
models: a pre-trained teacher and a student.

The teacher and student model usually have similar architecture, but the teacher
is wider and deeper. The main idea is to teach the student to make predictions as
similar to the ones of the teacher as possible. To this end, many techniques have
been proposed, some of which require a specific loss that reduces the difference
between the distribution of the predictions: The Kullback-Leibler divergence loss
[2].

1.3.2 Pruning
Pruning algorithms aim to reduce the parameters in a pre-trained model while
preserving the original model’s metric results, like classification accuracy.

There are different ways to implement it. The first distinction must be stated
between structured and unstructured pruning. The former aims to remove entire
neurons from the layers. The latter removes single parameters from each neuron.
The main difference resides in the fact that structured pruning while modifying
the cardinality of the feature dimension of the output of each layer keeps its
representation dense: some features extracted by the previous layer may be ignored
or, after an optimisation phase, wholly removed, but both input, parameters
and output are still dense tensors. On the other hand, unstructured pruning
removes single parameters. Thus, the model’s parameters will become sparse. This
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sparsity implies that if not provided with specific hardware optimised for this kind
of computation, the pruning operation will have no practical benefits as many
accelerators will cast the sparse tensor representation to a dense one.

1.3.3 Quantisation
Quantisation is another technique to reduce the size of the pre-trained model. The
main idea is to compress numbers from 32 to 16 bits, 8 or less. Cutting down
the number of bits used will reduce the size of the parameters on the memory to
half, a quarter, or less of the original 32-bit model’s size. It is crucial to remember
that even in this case, specific hardware is required. If the hardware does not
support any particular optimisation for these data types, they will be automatically
converted back to floating point of 32 bits. On the other hand, if the hardware
supports it, the inference speed may drastically increase. Unless we only need to
save memory on the device, this approach requires quantising all the tensors that
pass through the model: inputs, outputs and the ones created at intermediate
steps.

1.4 Computer Vision
Computer Vision is a predominant field in machine learning that empowers image
and video analysis. It is a very active research branch with applications often used
in the industry. The most famous example is its use to enable autonomous driving
vehicles. Many tasks can be done in this field. Some of these are:

• Image Classification, whose aim is to classify the element caught in a picture;

• Object Detection, which consists of identifying and locating objects in a picture
through bounding boxes;

• Semantic Segmentation, where the objective is to classify each element in a
picture, doing it pixel by pixel.

We have used our pruning algorithm for the classification task. The layer
pruned in this work is the PyTorch [3] implementation of the Conv2d [4]. This
layer is based on the sliding window mechanism: a kernel, or filter, of parameters
slides on a picture, analysing a set of pixels at a time. The result is a new
picture made by "pixels" with channels with varying cardinality. The cardinality
of the channel dimension depends on the number of kernels in the Convolutional
layer. For example, we can have three input channels at the first convolution
in a network if we analyse RGB (Red, Green and Blue) images, various output
channels and a five-by-five kernel. This setting will lead to a tensor-parameter
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with shape: (3, output channels, 5, 5). It is crucial to focus on the size of this
tensor-parameter. We could get many values in this tensor using even a small
number of output channels. Most of all, later in the network, we usually have a
more significant number of input channels, which may quickly increase the total
number of parameters in the network. For example, with 16 input and output
channels and a 3 × 3 kernel, we are getting 2304 values. This, generally, would not
even be considered a wide layer.
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Chapter 2

Literature Overview

Pruning, in neural networks, is a technique that aims to reduce the model’s size.
Its roots rely on the lottery ticket hypothesis [5], which states that a model has
inside a sub-network whose performance would be similar to the one of the original.
Models might be redundant by construction, for example, when using dropout [6].
Dropout is a regularisation technique that randomly sets some feature values to
zero to increase the network’s robustness and reduce over-fitting. Networks may
also be over-parameterised, meaning there are more parameters and neurons than
the number of features useful to extract to fit the task. Pruning may improve the
model generalisation since fewer parameters will make it harder for the network to
over-fit the task. As mentioned in the introduction, pruning can be structured and
unstructured. The main difference resides in the granularity at which pruning acts:
at the level of the parameters if unstructured, at the filter, channel, or layer level if
structured. The common trait between all these techniques is their reliance on a
criterion.

Since this thesis focuses on structured pruning, the following briefly discusses
some of these algorithms. Following the structure of a recent survey [7] on this
topic, the methods that are more relevant for this work are summarised according
to this survey’s schema:

2.1 Weight-Dependent;
2.2 Activation-Based;
2.3 Regularization;
2.4 Dynamic Pruning.

This work combines ideas from both the Activation-Based 2.2 and Dynamic Pruning
2.4 methods.

13
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2.1 Weight-Dependent
Criterion depending on parameters, also referred to as weights, do not depend on
the input data. These, generally, are less computationally expensive. There are
two main kinds: filter norm and filter correlation algorithms.

2.1.1 Filter Norm
In filter norm algorithms, the l1-norm or the l2-norm is computed on the layer’s
filter values. Filters with low-norm values are pruned since they are supposed to
contribute less to the network’s final output.

Pruning Filters for Efficient ConvNets

In Pruning Filters For Efficient ConvNets (PFEC) [8], the l1-norm is applied.
Here is the formula of the l1-norm:

∥x∥1 = |x1| + |x2| + ... + |xn| (2.1)

Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks

In Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks (SFP)
[9], the l2-norm is applied.
Here is the formula of the l2-norm:

∥x∥2 =
ñ

x2
1 + x2

2 + ... + x2
n (2.2)

2.1.2 Filter Correlation
Filter Pruning via Geometric Median for Deep Convolutional Neural
Networks Acceleration

Filter Pruning via Geometric Median for Deep Convolutional Neural Networks
Acceleration (FPGM) [10] specifically aims to prune redundant ones, not those
that contribute less. The geometric median is used to obtain this information.
The formula of the geometric mean is the following:

G = n
√

x1x2...xn (2.3)

COP: Customized Deep Model Compression via Regularized Correlation-
based Filter-Level Pruning

COP: Customized Deep Model Compression via Regularized Correlation-based
Filter-Level Pruning (COP) [11] analyses cross-layer filter importance using the
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Pearson correlation coefficient. To normalise the layer’s values, max-normalization
is used to scale. This paper calculates this coefficient between layers to remove
redundant filters. The less relevant ones are pruned after ranking the filters upon
the computed metric.
The formula of the Pearson correlation coefficient [12] is the following:

r =
qn

i=1(xi − x̄)(yi − ȳ)ñqn
i=1(xi − x̄)2

ñqn
i=1(yi − ȳ)2

(2.4)

Here, x and y are two variables; their signed counterparts are their means.

2.2 Activation-Based
Activation-based, or activation channel pruning, removes filters based on the acti-
vation maps: the result of the convolutional layer. They can be divided into three
classes:

2.2.1 The Current Layer;
2.2.2 The Adjacent Layer;
2.2.3 All Layers.

2.2.1 The Current Layer
Channel Pruning for Accelerating Very Deep Neural Networks

In Channel Pruning for Accelerating Very Deep Neural Networks [13], pruning is
reduced to a minimisation problem:

arg(β, W ) min 1
2N

--------Y −
cØ

i=1
βiXiW

⊤
i

--------2
F

+ λ||β||1 (2.5)

subject to ||β||0 ≤ c′, ∀i||Wi||F = 1 (2.6)

Where ||...||F is the Frobenius norm:

∥A∥F =
öõõô mØ

i=1

nØ
j=1

|aij|2 (2.7)

Here X is the input, Y the layer’s output, and W the weights. λ is a coefficient
positively bound to the number of zeros, and β is the coefficient vector for channel
selection composed of scalar masks.
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HRank: Filter pruning using high-rank feature map

HRank: Filter pruning using high-rank feature map [14] proposes an approach
where the Singular Value Decomposition (SVD) of each layer’s output is first
computed. The SVD formula is the following:

A = UΣV ⊤, (2.8)

where U is a matrix containing the orthonormal eigenvectors of AA⊤, V is a matrix
containing the orthonormal eigenvectors of A⊤A, and Σ is the diagonal matrix
containing the root of the non-negative eigenvalues of AA⊤. This operation is done
on a sub-sample of the dataset. Then, the filters are ranked by their importance.
Finally, only the top-k filters are kept in the network.

2.2.2 The Adjacent Layer
ThiNet: A Filter Level Pruning Method for Deep Neural Network
Compression

ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression [15],
analyses the following layer’s activation map to prune the current layers. This is
done with a greedy algorithm that minimises the reconstruction error and satisfies
the sparsity needed.

Runtime Neural Pruning

Runtime Neural Pruning (RNP) [16] dynamically prunes, at runtime, the filters
in the layers. This is not to use the same weights for simple and hard-to-infer
images. By analysing the complexity of the previous layer feature map through
global pooling followed by a shared Recurrent Neural Network [17], they exploit
a reward function for pruning filters, together with the original loss, to make the
model prune filters.

2.2.3 All Layers
NISP: Pruning Networks using Neuron Importance Score Propagation

In NISP: Pruning Networks using Neuron Importance Score Propagation [18]
proposed a metric based on the Final Response Layer (FRL). This determines the
importance of the neurons preceding the last layer. These relevance scores are
computed by propagating through the network weights initialised to one, starting
from the last layer, based on the NISP algorithm. Once this metric is obtained,
neurons with low importance are pruned based on a ranking algorithm.
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2.3 Regularization
2.3.1 Regularization on BatchNorm Parameters
Learning efficient convolutional networks through network slimming

Learning efficient convolutional networks through network slimming [19] introduced
a scaling factor γ for each channel. These parameters are multiplied by the output
of the corresponding channel. Then, the network and these parameters are trained
while sparsity regularisation is imposed on these γs. Pruning is done on those
channels whose corresponding scaling factors have a low value. Then, the network
is fine-tuned.
The minimisation problem becomes the following:

L =
Ø
(x,y)

l(f(x, W ), y) + λ
Ø
γ∈Γ

g(γ) (2.9)

Here x is the input, y the target, and W the weights. While the first part of the
equation is the standard loss function, the second part is the sparsity-induced
penalty, balanced by the parameter λ.

2.3.2 Regularization on Extra Parameter
Data-driven sparse structure selection for deep neural networks

Data-driven sparse structure selection for deep neural networks [20] introduced the
scaling factors θ, which are gates: if the value is below a certain threshold, it will
be set to 0, else 1. The reported formula is the following:

g(θ) =
0 if θ < Threshold

1 otherwise
(2.10)

These parameters are applied to all the inner structures of the network. To optimise
this function, they also introduced the Accelerated Proximal Gradient optimiser.

2.3.3 Regularization on Filters
Learning structured sparsity in deep neural networks

Learning structured sparsity in deep neural networks [21], based on the fact that
removing channels implies the removal of the corresponding filters and following
layer’s inputs, used two separate regularisation terms for filter-wise and channel-wise
pruning. The formulas are the following:

NlØ
nl=1

||W (l)
nl,:,:,:|| (2.11)
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ClØ
cl=1

||W (l)
:,cl,:,:|| (2.12)

here W ∈ RNl+1×Nl×Kl×Kl

2.4 Dynamic Pruning
2.4.1 Filter-level dynamic
Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks

Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks (SFP)
[22] introduced the idea that instead of directly removing the channels, or filters,
from the network, we can reduce them to zero, allowing them to be modified in
subsequent iterations. The masks are generated based on the l2-norm.

Feature Map Analysis-Based Dynamic CNN Pruning and the Accelera-
tion on FPGAs

The following article was not taken from the survey [7].
In Feature Map Analysis-Based Dynamic CNN Pruning and the Acceleration

on FPGAs (FMA) [23], filters are removed from convolutional layers based on a
redundancy analysis on the features maps, which aims to find, layer by layer, which
filters can be removed without impacting on the accuracy metric.
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Chapter 3

Materials

For this work, the CIFAR-10 and CIFAR-100 datasets are used [24]. These
datasets are a subset of a broader collection of images made by researchers at the
Massachusetts Institute of Technology (MIT) and New York University (NYU)
in six months. They collected around 3 000 images for each non-abstract noun
in the English dictionary by taking them from search engines like Google, Flick,
and Altavista. They cleaned the data by removing perfect duplicates and those
with many white pixels since they tend to be synthetic. This original dataset
contained 80 million images, scaled to a 32 × 32 pixels resolution. The CIFAR-10
and CIFAR-100 are a subset of this dataset. Its images were collected by Alex
Krizhevsky, Vinod Nair, and Geoffrey Hinton.

Figure 3.1: Image from the CIFAR-10 dataset, a cat.
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Figure 3.2: Image from the CIFAR-10 dataset, a dog.

Figure 3.3: Image from the CIFAR-10 dataset, an aeroplane.

3.1 CIFAR-10
The CIFAR-10 dataset contains 60 000 images. These are divided into 10 classes
with 6 000 images each. 50 000 for training, 10 000 for testing. The classes are:
aeroplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck.

The authors specify that the classes are mutually exclusive and that there is no
overlap between categories. This is also true for automobiles and trucks: pickups
are removed from this dataset.
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Figure 3.4: Image from the CIFAR-10 dataset, a ship.

3.2 CIFAR-100
The CIFAR-100 dataset is similar to the previous dataset but it has 100 classes.
Each class has 600 images: 500 for training and 100 for test. These categories are
grouped into 20 super-classes divided as in table 3.1.

3.3 PyTorch
PyTorch [3] is a Deep Learning framework that focuses on both usability and speed.
It is consistent with other scientific libraries and simple to debug while supporting
GPU acceleration. Given this framework, we decided to use for the pre-trained
model the ResNet-110 from [25] for the CIFAR-10 dataset and the ResNet-56[26]
for CIFAR-100. These models have respectively 93.53 % and 72.63 % accuracy on
their dataset.

3.4 ResNet
The ResNet [1] architecture is designed to solve the vanishing gradient problem
when training deep neural networks. They introduced the "skipped connections" or
"shortcut connections" to make the model learn the residual function: instead of
learning

y = f(x), (3.1)
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Superclass Classes
aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates
fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
household electrical devices clock, computer keyboard, lamp, telephone, television
household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor things bridge, castle, house, road, skyscraper
large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm
people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle
small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow
vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Table 3.1: Table of the CIFAR-100 dataset classes

it learns
y = f(x) + x. (3.2)

Hence, f(x) will yield the difference y − x. This name comes from fields
like numerical analysis, where the term residual can refer to the error in an
approximation of a solution.

These "skipped connections" make it easier for the model to learn identity
mapping since it will be sufficient for the network to predict low values inside the
residual block. They will be irrelevant once added to the input of the whole block,
making it an identity map. These "shortcut connections" will help the gradient
flow back to the network’s top.

The ResNet-110 and ResNet-56 are models of 110 and 56 layers, respectively.
These are variants of the general ResNet architecture proposed in the same paper.
These are targeted for the CIFAR-10 and CIFAR-100 datasets.

The ResNet-110 has 54 Residual Blocks or Building Blocks; the ResNet-56
has 27. These are connected to the next one through a skipped and a standard
connection. These blocks contain two convolutional layers in sequence.
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Methodology

Figure 4.1: In this picture, we can see how our pruning-model, inside the
PruningConv2D module, is structured.

This section is structured as follows:
4.1 The setting
4.2 The classes

4.2.1 The OutputAnalyser class
4.2.2 The PruningConv2D module
4.2.3 The Continuous-Mask Mechanism

4.3 Training Phases
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4.3.1 Pruning Phase
4.3.2 Fine-Tuning

4.4 Interactive Pruning
4.5 Obtaining the Pruned Model

4.1 The setting
As previously described, the ResNet-110 is the primary model, and the optimiser
classically used on the CIFAR-10 and CIFAR-100 datasets is Stochastic Gradient
Descent (SGD) [27]:

θt+1 = θt − η∇J(L(θt, xi, yi)), (4.1)

where θ are the parameters, η is the learning rate, and ∇J is the gradient of the
cost function L evaluated in θt for the i-th element of the dataset (xi, yi). In this
work, we used its variant with the parameter weight decay set to 10−4 using the
PyTorch implementation [28].

The batch size used is 128 and trained for 100 epochs; each epoch has 391
iterations for the training set and 79 for the validation set. In this work, we pruned
in the first 4 000 iterations; the rest were left for fine-tuning. The learning rate
starts at 1e − 3 for the ResNet-110 and 1e − 2 for the ResNet-56. Then, it decreases
as follows: if the epoch is above 25 and the epoch is multiple of 10, then we multiply
the original learning rate by (0.941)(epoch−25), so to reduce the final learning rate to
approximately 1% of the initial learning rate.

We want to remark that we used only one loss for training both models involved.
We will show how training both models was possible with the standard cross-entropy
loss [29]:

L(y, ŷ) = − 1
N

NØ
i=1

CØ
j=1

yi,j log(ŷi,j) (4.2)

where L(y, ŷ) is the cross-entropy loss, N is the number of elements in the batch
analysed, C the number of classes, y is the label, and ŷ the predicted probability
belonging to that class.

4.2 The classes

4.2.1 The OutputAnalyser class
The OutputAnalyser is a class that will be used to wrap the model. It is used to:

• replace the standard Conv2D layer with PruningConv2D module;
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• train the new model;

• set the rules that determine the different pruning phases;

• keep the count of how many parameters have been pruned
We replace the Conv2D layers with the PruningConv2D module, which inherits

from the PyTorch nn.Module. We iterate over the model layers to find those that
are Conv2D. Once found, we replace them with the PruningConv2D module.

It is also used to train the model, which can be trained using the same "forward"
method of the original object.

Through it, we can set the rules determining when the pruning phase will be
alternated.

It also counts how many parameters have been pruned. The pruning is done
inside the PruningConv2D module. We have to append the number of those still
used to a list to keep track of all the pruned parameters. This list is an attribute of
the OutputAnalyser class whose elements will be summed and saved in a temporary
variable. This temporary variable will be printed to the terminal every 50 iteration.

4.2.2 The PruningConv2D module
At initialisation, the PruningConv2D class, whose mechanisms we see in figure 4.1,
receives a model and the Conv2D module it will replace. The original weights of
the convolutional layer will be stored inside this object as a PyTorch nn.Parameter
[30] attribute. When pruning, the input of this layer is passed to the model’s layer
received when initialised.

The model we have chosen is composed of a resizing layer with a fixed input
size: this to have height and width with the same cardinally through all the layers,
thus avoiding discriminating the layers based on their input size. The size chosen is
16 × 16 pixels. Next, there is an input depth-wise convolutional [4] layer with input
features equal to the ones of the module replaced. This layer’s output size will be 2
times the one of the input. This is to have 2 features for each original characteristic
extracted by the previous layer. Then, four blocks keep the number of features
fixed. These blocks contain a convolutional layer whose number of groups equals
the original input features dimension, a BatchNormlaisation [31] and a ReLU layer,
and a MaxPooling layer [32] with kernel size equal to 2. Doing this will reduce
the image to a single pixel with twice the initial number of channels. Finally, this
output will be squeezed along the width and height dimensions since it is now
reduced to a single pixel. Thus, only the batch and the feature dimensions are left.
Then, this tensor is passed through a linear layer [33] with an output dimension
equal to the original number of features.

Each layer has a different instance of this model, and the ensemble of these
models will be referred to as the pruning-models in the following.
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4.2.3 The Continuous-Mask Mechanism
The continuous-mask mechanism aims to get the current continuous-mask cmt.
We calculate the mean along the batch dimension - the BM(·) function - of the
pruning model’s output y. To this quantity, its mean along the batch and feature
dimensions - the M(·) function - is subtracted. The resulting value will be divided
by the square root of the variance of y; the V (·) function gets the variance of a
tensor. The previous continuous-mask cmt−1 and this quantity are then halved to
weight them equally and added. To this result, we add an offset variable, equal
to 1.15 in our setting, and subtract the sum of the current iteration - iter - with
the interacting variable, which consists of a value that the user can change while
the pruning is being executed and that will be better explained later, divided by
the maximal number of pruning iteration, max_iter. The result of all of these
operations is passed through a ReLU activation function to let the negative values
be zeros. The resulting formula is the following:

cmt = ReLU

cmt−1

2 + BM(y) − M(y)
2 ∗

ñ
V (y)

+
A

offset −
3 iter + interacting

max_iter

4B (4.3)

Containing only zeros or positive real numbers, cmt values belong to R+.

4.3 Training Phases
The training of this model requires, or at least supports, two different training
phases.

4.3.1 Pruning Phase
The pruning phase lasts for 4 000 iterations. In this phase, both the model and
the pruning-models are trained.

4.3.2 Fine-Tuning
After the pruning, we can start the fine-tuning phase. During this, the layers will
not be able to prune anymore. This step is necessary to reduce network error and
to bring the model back to convergence.

4.4 Interactive Pruning
As a plus of this approach, since we are subtracting a scalar in equation 4.3, we
can interact with this scalar variable by increasing or decreasing it, thus pruning
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more or fewer parameters, respectively. This is useful to obtain a target pruning
percentage without finding the right balance before starting the program.

4.5 Obtaining the Pruned Model
To prune the ResNet model, the following accoutrements must be considered.

Figure 4.2: A model made of a residual connection before pruning.

First of all, since we are pruning the input channel of the following layer based
on the prediction of the previous one, we also must prune the previous layer’s
output accordingly. For example, if we are removing the 2nd and the 4th input
channels from the 2nd layer, we must also remove them from the first’s output
channels.

Secondly, we have to take into account the presence of residual connections. In
this model, there is a residual connection every two layers. That connection sums
the first’s input with the second’s output. Hence, the same channels have to be
pruned for both these tensors: if we are removing the 3rd and the 4th from the
input of the 1st layer, we must also remove them from the output of the 2nd and
the input of the 3rd, which is the one that receives the residual input.

Since there are no layers between two subsequent residual connections, this
schema must be applied along all the 54 residual blocks of the ResNet-110 and the
27 of the ResNet-56. This introduces more complexity in how the pruning choices
must be done. To choose a shared continuous-mask for these layers, we averaged
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Figure 4.3: A model made of a residual connection after pruning.

them and subtracted a value to reintroduce zeros in the final mask: we subtracted
the 70 % of the mean of all the continuous masks generated by these layers and
then replaced them with this new one.

Another step in pruning this model’s architecture is considering the presence
of layers that change the number of output channels while keeping the residual
structure. For example, we have a layer that doubles the number of features
from 32 to 64. This layer’s output passes through another layer and is added to
the original input with 32 channels. In the non-pruned model, it was done by
zero-padding: 16 channels with zero values were concatenated before and after
the original input, thus obtaining 64 channels. Since the number of dimensions
is variable, we can neither double it nor rely on the assumption that they are
contiguous since some may have been pruned. To solve this problem, we filled a
tensor with the initial input shape of 32 channels with zeros. We replace the zeros
of this tensor with the pruned input by applying the corresponding mask. We
then do the zero-padding step to double the number of channels. Now, we mask
this tensor with the following layer’s input pruning-mask. This way, we can safely
add it to its residual counterpart without mixing the channel’s features of the two
branches of the skipped connection.

Lastly, the batch normalisation layers following the convolutional layers must
be pruned according to the previous layer’s output.

Once all of this has been done, we can replace the PruningConv2D modules
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Figure 4.4: From left to right, we can see the pruning process when different
channel sizes are involved.

with the now pruned Conv2D.
Figures 4.2, 4.3 and 4.4 show these steps.
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Results

Figure 5.1: Number of pruned parameters before and after the pruning phase on
the CIFAR-10 dataset.

We report the number of active parameters in figure 5.1, the FLOPs in figure
5.2, the trend of the pruned paramters during training in figure 5.3, the accuracy
trend in figure 5.5, the loss trend in figure 5.4, and the learning rate in figure 5.6
along the training on the CIFAR-10 dataset. In picture 5.5, 5.4 and 5.3, we can
see the alternating of the pruning phases: we first have a decrease in accuracy and
a peak in the loss when pruning more and more parameters. Then, a recovery in
accuracy, decreased loss and stagnation in pruning during the fine-tuning phase.
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Figure 5.2: Number of FLOPS before and after the pruning phase on the CIFAR-
10 dataset.

Figure 5.3: The pruned parameters trend during training on the CIFAR-10
dataset, every step equals 50 iterations.
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Figure 5.4: The loss trend during training on the CIFAR-10 dataset, every step
equals 50 iterations.

In table 5.1, we report the results. Here, we can see that this may be a promising
technique. The missing Pruned Parameters values marked as not available (NA)
were not reported in the original papers.

Experiment Error % Pruned Parameters % Pruned FLOPs %
Original 6.47 0.0 0.0
PFEC [8] 6.70 32.4 38.6

FPGM [10] 6.26 NA 52.3
SFP [9] 6.14 NA 40.8

HRank [14] 6.64 59.2 58.2
NISP [18] 6.65 43.25 43.78

Ours 7.16 33.23 38.23

Table 5.1: Results comparison on CIFAR-10 of the pruning of the ResNet-110
with 1.72 × 106 initial parameters. Among the papers cited in section 2, only those
with the results on the CIFAR-10 dataset concerning the ResNet-110 are reported.

We can see in 5.2 that, although the error increased from 27.37 % to 29.13 %,
we removed 26 % of the floating point operations per second (FLOPs) and 10 % of
the parameters of the ResNet-56, on a hundred classes dataset.
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Figure 5.5: The accuracy trend during training on the CIFAR-10 dataset, we
calculate and report the accuracy score on the validation set after each training
epoch.

Experiment Error % Pruned Parameters % Pruned FLOPs %
Original 27.37 0.0 0.0

FMA [23] 29.20 43.02 35.25
Ours 29.13 10.76 26.1

Table 5.2: Result on CIFAR-100 of the pruning of the ResNet-56 with 0.86 × 106

initial parameters.
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Figure 5.6: The learning rate trend during training on the CIFAR-10 dataset,
every step equals 50 iterations.
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Discussion

The main focus of this work is to apply structured pruning, not relying on a fixed
criterion but on external Deep Learning models. Moreover, this method could be
extended to frameworks different from PyTorch, other tasks and kinds of layers.

We have used pruning-models: one for each convolutional layer. These models’
predictions are exploited to do the pruning. They analyse the previous layer’s
output feature map to prune the previous layer’s output dimension and the following
layer’s input dimension. Given that the ResNet model’s architecture is based on
the residual connection, we must consider them and prune them according to the
rules explained in the Methodology. These rules are specific to the architecture
but must be considered: the predictions of these layers are average and shared.
Moreover, by looking at the formula of the continuous-mask mechanism 4.3, we can
see that they are weighted with new predictions. The way we have implemented
the continuous-mask mechanism allows the gradient to flow through the model
with no need for approximations. In this way, we do not need an external and
hard-to-balance loss, and we have a method that is agnostic to the task since we
can use the original loss.

Once pruning is done, we can merge the last prediction of the pruning-models
to do the pruning: the predictions are first multiplied by the layer’s parameters;
then, the channels with zero values are removed from the network. Finally, the
PruningConv2D are replaced with the now pruned Conv2D. This way, the model
will not have extra computations: neither the pruning-models nor the masks are
kept. Given that the channels are removed, we can see an increase in the inference
speed by looking at the FLOPs count percentage decrease. Deploying it does not
require other optimisation steps: the network’s tensors and parameters are dense.
In an unstructured pruning setting, they would have been sparse, thus requiring
specific hardware capable of handling this type of data.
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6.1 About methods
We started from the piggyback [34] method, which uses parameters as gates to
turn on and off parameters. Although not meant for pruning, we thought this idea
could be useful in our use case. A problem with this method was that the gradient
needed to be approximated: the gates, on or off, are not differentiable. Thus, we
decided to replace them with a ReLU activation function. The ReLU activation
function is often used to create non-linearity in the model. In our case, it selects
which parameters to keep and discard.

The idea of using a model to do the pruning came from an attempt we made
to do a sort of knowledge distillation with a meta-model: the aim was to predict
the parameter’s value of a student model by training a meta-model to fill them
starting from the ones of trained teacher model. This approach required a lot of
resources since the meta-model should be, we thought, bigger than the teacher and
the student model. We reformulated the problem from the knowledge distillation
to pruning settings, not to have the model predict the parameters’ value directly,
but which to keep and discard. This approach led to significantly better results
than those we first obtained with the meta-model method, for which we do not
report the scores obtained.

6.2 About results
This method seems promising since the results obtained are close to the state-of-
the-art. Further studies may exploit the residual connections to build blocks of
layers in a ResNet-like style for the pruning-models, thus making them deeper and
able to extract more abstract features.

36



Chapter 7

Conclusion

This work proposes an approach to prune Convolutional layers on the ResNet
model through external Deep Learning models. Specifically:

• this method does not choose in advance the criterion, but the pruning-models
themselves select the channels which are less relevant for the predictions;

• the gradient flows to the models without needing another hard-to-balance loss
function;

• we have chosen the classification task, but given that our method is not
task-specific, it may be used in other settings;

• we have applied our pruning algorithm to the Conv2D layer implementation
made by PyTorch, but our method could be extended to other layers and
frameworks;

• the number of pruned parameters can be influenced before and during training,
allowing one to reach a target model compression ratio;

• we implemented an architecture for the pruning-models: further studies may
explore different configurations and find a better-suiting one by widening,
deepening or changing this model’s structure;

• some masks, such as the ones between residual layers, must be shared to apply
the pruning. Finding an architecture that minimises the number of shared
masks may help further increase the model compression ratio and performance.

With this methodology, we got close to the state-of-the-art on the CIFAR-10
dataset, where we removed 33.23 % of parameters and reduced the FLOPs by
38.23 %, making the error increase by 0.69 %. On the CIFAR-100 dataset, we
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removed the 10.76 % of the parameters and reduced the FLOPs by 26.1 %; the
error increased by 1.76 %.
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