
POLITECNICO DI TORINO

Master’s Degree Course in Computer Engineering

Master’s Degree Thesis

Automated Data Integration and
Machine Learning for Enhanced
Social Media Marketing Analysis

Supervisor
prof. Daniele Apiletti

Candidate
Matteo Borzi

Company supervisor
dott. Donato Chiarello

October 2023





Abstract

In today’s digital era, the abundance of data generated on social media platforms
presents a valuable resource for extracting marketing insights. This thesis, born
from an internship project at Mediamente Consulting s.r.l., addresses the pressing
need of a customer for efficient data integration and automation in the context of
social media marketing campaign analysis. The primary objective is to develop
a robust Data Integration model to streamline the visualization of social media
marketing campaign performance.
The traditional approach of manually downloading and aggregating standard re-
ports from YouTube and LinkedIn analytics tools is time-consuming and error-
prone. To replicate the company workflow, our thesis outlines a comprehensive
framework comprised of four key stages.
The initial stage, Data Ingestion, involves the extraction of data from various
sources with the utilization of REST APIs provided by the respective social me-
dia platforms. In cases where APIs are not available, a web scraper is employed,
ensuring a comprehensive data collection process. Following the Extract, Trans-
form, Load (ETL) design pattern, the data is prepared for analysis. This phase
involves the integration of data from diverse sources into a unified model, ensur-
ing consistency and coherence for subsequent analyses. Leveraging supervised and
unsupervised Machine Learning techniques, data points are clustered into mean-
ingful groups. Each record is then assigned a label based on the corresponding
marketing campaign, enriching data and facilitating richer insights into campaign
performance. The reconciled and enriched data is stored in a Google BigQuery
dataset, serving as a centralized Data Warehouse. This repository allows for com-
plex querying and facilitates both Data Visualization and further Machine Learning
analyses.
The thesis acknowledges the potential for future enhancements to the developed
system, including the incorporation of additional data sources such as Google Ads
for comprehensive cost and revenue analysis. Moreover, consideration is given to
the prospect of a full migration to a serverless cloud platform solution to enhance
scalability and reliability, ensuring the system’s long-term viability.
In summary, this thesis presents an innovative approach to addressing the automa-
tion of data integration challenges inherent in social media marketing campaign

iii



analysis. By optimizing the collection, preparation, and enrichment of data from
wide-ranging sources and with the advantage of Machine Learning techniques, it
offers a powerful decision-support resource for the customer who is seeking deeper
insights and greater efficiency in their campaigns.

iv



Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Social media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 A brief history of social media platforms . . . . . . . . . . . 1
1.1.2 Social media marketing . . . . . . . . . . . . . . . . . . . . . 2

1.2 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Chapters description . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 State of the art 5
2.1 Data Analytics and Big Data . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Data integration design patterns . . . . . . . . . . . . . . . . 6
2.1.2 Data sources and ingestion . . . . . . . . . . . . . . . . . . . 9
2.1.3 Batch and streaming ETL architectures . . . . . . . . . . . . 10
2.1.4 Data integration and enrichment . . . . . . . . . . . . . . . 11
2.1.5 Data Lakes, Data Marts, Data Warehouses . . . . . . . . . . 13
2.1.6 OLTP and OLAP systems . . . . . . . . . . . . . . . . . . . 14
2.1.7 Cloud Data Warehouse solutions . . . . . . . . . . . . . . . 15

2.2 Machine Learning foundations . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . 18

3 Company Data Integration framework 23
3.1 L0 - Staging Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 L1 - Relational Data Store . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 L2 - Dimensional Data Storage . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Fact tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Dimension tables . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Star schema and snowflake schema . . . . . . . . . . . . . . 29

3.4 Metadata layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



3.4.1 Flow management table . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Table management table . . . . . . . . . . . . . . . . . . . . 32
3.4.3 Additional metadata tables . . . . . . . . . . . . . . . . . . 32

4 Case study 33
4.1 Data Warehouse model . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Employed tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Data ingestion and integration 38
5.1 Data ingestion layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 YouTube data sources . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.1 OAuth Authentication . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 YouTube Analytics and Reporting API . . . . . . . . . . . . 41

5.3 LinkedIn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.1 Automation with Selenium . . . . . . . . . . . . . . . . . . . 44
5.3.2 Ingestion from spreadsheets . . . . . . . . . . . . . . . . . . 46

5.4 Data quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 Data Integration and enrichment . . . . . . . . . . . . . . . . . . . 51
5.6 Loading into Google BigQuery . . . . . . . . . . . . . . . . . . . . . 52

6 Machine Learning and Advanced Analytics 53
6.1 Dataset overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Clustering analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 K-Means clustering . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.2 DBSCAN clustering . . . . . . . . . . . . . . . . . . . . . . 59
6.2.3 Unsupervised model selection . . . . . . . . . . . . . . . . . 61
6.2.4 Cluster labeling . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Conclusion and next steps 65
7.1 Possible future works . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A Data Warehouse tables 69

vi



List of Tables

2.1 Main differences between OLTP and OLAP systems . . . . . . . . . 15
3.1 Main differences between star schema and snowflake schema . . . . 30
3.2 Possible values of the STATUS field in FLOW_MANAGER table. . 31
4.1 List of the designed table for the Data Warehouse proposed model. 34
4.2 Brief table description for FACT_YT_METRICS model. Some

fields have been omitted. . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Brief table description for FACT_LI_METRICS. Technical fields

have been omitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1 List of selected features for FACT_YT_METRICS, with relative

query output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Silhouette Coefficients for K-Means clustering with k = 2, 3, . . . , 28 . 58
6.3 Most notable results for grid search on DBSCAN for Z-Score nor-

malized YouTube data. The noise cluster is excluded from the count. 60
A.1 Full description for DIM_CALENDAR table. . . . . . . . . . . . . 69
A.2 Full description for DIM_DEVICE_TYPE table. . . . . . . . . . . 70
A.3 Full description for DIM_CAMPAIGNtable. . . . . . . . . . . . . . 70
A.4 Full description for DIM_VIDEO table. . . . . . . . . . . . . . . . 71
A.5 Full description for DIM_SUBSCRIBED table. . . . . . . . . . . . 72
A.6 Full description for DIM_DEVICE_TYPE table. . . . . . . . . . . 72
A.7 Full description for FACT_YT_METRICS model. . . . . . . . . . 73
A.8 Full description for DIM_LINKEDIN_PAGE table. . . . . . . . . . 74
A.9 Full description for FACT_LI_METRICS table. . . . . . . . . . . . 75

vii



List of Figures

2.1 Basic ETL process in Data Warehouses. Data is ingested from many
sources into the staging area, then cleansing, integration and enrich-
ment are performed. Finally data is loaded in a Data Warehouse for
subsequent uses such as BI analysis, reports or Machine Learning.
©D. Tobin, 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Types of windowing aggregations . . . . . . . . . . . . . . . . . . . 11
3.1 The company framework is composed of a distinct layer for each data

preparation step: storage, data quality and integration, publishing. 23
3.2 An example of a MINUS operation performed in an Oracle Data

Integrator environment. . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 Load job for each DLT table in Pentaho. Cap date is set first, then

a different script is called depending on the source. Finally, data is
written in the DLT tables and metadata is stored in management
tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Client-Server pattern for YouTube API services . . . . . . . . . . . 42
5.3 Examples of a raw JSON file and the relative parsed version for

YouTube API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 LinkedIn Analytics web page example . . . . . . . . . . . . . . . . . 45
5.5 LinkedIn content data ingestion from spreadsheets in DLT tables. . 46
5.6 API_to_DLT_LI_FOLLOWER_METRICS transformation. The

JSON produced by the first script provides a list of Excel files con-
taining six different sheets, each one being processed separately and
feeding a different DLT table. . . . . . . . . . . . . . . . . . . . . . 47

5.7 DLT to OK table mapping for metrics relative to the device type.
Two further OK tables are obtained with this transformation. . . . 49

5.8 A comprehensive representation of the L1 mappings related to LinkedIn
source tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.9 Full ETL pipeline architecture. Machine Learning is performed after
the Data Warehouse level, before visualization. . . . . . . . . . . . . 51

5.10 Sample code for the script bqload.py. . . . . . . . . . . . . . . . . . 52
6.1 Features distribution for the relevant metrics in YouTube data. . . . 56
6.2 Correlation heatmap for the selected features of YouTube metrics . 56

viii



6.3 Pair-wise distributions and histograms for the selected features. All
the axes use logarithmic scales. . . . . . . . . . . . . . . . . . . . . 57

6.4 Line plot for Silhouette Coefficient values obtained for K-Means hy-
perparameter tuning performed on YouTube data. . . . . . . . . . . 59

6.5 Silhouette plot of DBSCAN grid search on Z-Score normalized YouTube
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.6 Per-class Pearson Correlation heatmap on clustered YouTube data. 62
6.7 Labeled features distribution for K-Means clustering on YouTube

data with K = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.8 Clustered features distribution for DBSCAN on YouTube data with

(ϵ = 7.6, minPts = 2), K = 2. . . . . . . . . . . . . . . . . . . . . . 63
6.9 Labeled features distribution for K-Means clustering on YouTube

data with K = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.10 Clustered features distribution for DBSCAN on YouTube data with

(ϵ = 3.4, minPts = 2), K = 4. . . . . . . . . . . . . . . . . . . . . . 64

ix



Chapter 1

Introduction

1.1 Social media
Social media are dynamic Web applications where users can interact with oth-
ers through personal profiles and user-generated content, thus developing social
networks. These platforms have gained popularity with the wide spread of smart-
phone technologies and they now represent a central tool for both entertainment
and working purposes, especially in marketing, for which data collection and anal-
ysis are crucial.

1.1.1 A brief history of social media platforms
In the late 1990s the World Wide Web was mainly made of static Web pages in which
content generation was meant to be performed beforehand in order to offer the same
information to all the visitors. The first social Web platforms like classmates.com
(launched in 1995) and SixDegrees (born in 1997) allowed users to get in touch
with each other through personal Web pages or email addresses. The concept of
"friendship", to be intended as a connection between two users via their profiles,
was the core feature and the main focus of these services.

A major shift in technologies and development frameworks was brought by the
introduction of new techniques such as asynchronous programming1 and standard-
ized Web protocols and architectures in the early 2000s: this change of paradigm is
called Web 2.0. Such evolution enabled websites content to be dynamically gener-
ated by users, leading to the birth of several social media and networking platforms.
The main difference between the two resides in the purpose of the platforms. Social

1The major advancement with Web 2.0 paradigm can be ascribed to user’s continuous in-
teraction with the Web page on the client while the server processes the requests at its own
pace. AJAX (Asynchronous JavaScript and XML) is one of the most prominent examples of
asynchronous programming techniques.

1



Introduction

media encompass a wide range of digital tools and technologies that facilitate the
creation of content and interaction among users in relation to the produced content.
In contrast, social networks represent specific online platforms where the aim of the
individuals is interconnectivity itself.

Platforms such as Friendster and MySpace laid the foundation for social media,
after which the advent of Facebook in 2004 brought the phenomenon to a wider
public. Following the diffusion of new technologies and approaches, further innova-
tions such as microblogging with the advent of Twitter in 2006 and visual content
sharing through Instagram and Snapchat have been possible. Within this environ-
ment, YouTube has redefined content sharing through its video-centric approach.
Meanwhile, LinkedIn, another pivotal social media platform, has revolutionized
professional networking and engagement.

Inaugurated in 2005, YouTube serves as an example of how content creation
has become accessible to a wide public. Being the world’s largest video-sharing
platform, it has given users the ability to create their content, from educational
tutorials to entertainment.

LinkedIn, established in 2002, occupies a niche in the realm of social media
by focusing on professional networking. LinkedIn is designed to support career
advancement, job search, and business connections by letting users create digital
résumés and cultivate relationships with colleagues and professionals.

1.1.2 Social media marketing
The rise of social media platforms has led to the birth of social media marketing,
a discipline aimed at exploiting these platforms for advertising purposes. Social
media marketing entails the creation of content designed to achieve many market-
ing goals, including brand awareness, user engagement, and lead generation. Its
growing importance is linked to the vast number of users inhabiting these online
environments. Businesses have come to understand that establishing a presence on
social media is not just advantageous but, in fact, necessary for effectively connect-
ing with and engaging their target audience.

1.2 Case study
Mediamente Consulting s.r.l. is a Business Analytics and Big Data company
born as an innovative start-up in 2012 at Politecnico di Torino’s I3P incubator, then
acquired by Var Group (SeSa S.p.A.) under their Data Science unit. It specializes
in Technological Infrastructure, Data Integration and Management, Data Visual-
ization, Business Intelligence, and Corporate Performance Management (CPM),
which are the key Business Units for a comprehensive facilitation of a shift towards
a data-driven approach for customer companies.

2



Introduction

This work is carried out with the collaboration of the Data Integration busi-
ness unit, which is mainly responsible for migrating existing on-premise On-Line
Analytical Process (OLAP) systems to cloud-based solutions and designing data
pipelines, including data ingestion, transformation, and storage into centralized
Data Warehouses and Data Marts to empower Business Intelligence operations.

The practical aim of this thesis originates in the request of a customer who ac-
tively uses their social media platforms, such as YouTube and LinkedIn, to generate
engagement and involve new audiences in their products and services by publishing
platform-specific content. They manually download tabular data about user inter-
action provided by the standard reports of the respective platforms on a daily basis
and collect them in a spreadsheet which supplies the daily metrics to a Business
Intelligence (BI) dashboard for Key Performance Indicators (KPIs) visualization.
The current workflow has many downsides:

• Handmade data ingestion is a mechanical activity and can be entirely
performed and managed by a machine

• Human operations are frequently subject to errors. Updating and
transcribing many records by hand can be a source of data redundancy or
inconsistency

• Multidimensional Analysis requires complex data structures to frame
a model that can coherently describe the underlying data patterns and enable
the extraction of meaningful information.

Hence, the project’s main business focus lies in the entire automation of the data
ingestion process following the ETL (Extract, Transform, Load) pattern and the
integration of the manifold sources into a centralized Data Warehouse.

The academic purpose of the work revolves around the Data Enrichment phase
during ETL. Feeding BI dashboards and Data Visualization tools with reconciled
and integrated data allows significant information for decision processes to be gath-
ered and represented. Nonetheless, we can leverage the most recent advancements
in Machine Learning to implement a solution that yields additional insightful knowl-
edge that is inaccessible otherwise. Unsupervised Learning is a compelling tool for
a preliminary analysis of the marketing campaigns’ effectiveness, e.g., unsuper-
vised techniques like clustering provide a partition of the available data points into
closely related subsets. Supervised Learning techniques, such as binary and multi-
class classification, facilitate both a qualitative and quantitative representation of
performance through the assignment of a label to each data point.

3



Introduction

1.3 Chapters description
A list of the following chapters with a brief outline is presented.

• Chapter 2 portrays the current state of the art in Data Integration patterns and
technologies, with a focus on Data Warehouse models, and Machine Learning
techniques.

• Chapter 3 delves into the Data Integration framework developed at Medi-
amente Consulting. Three layers are defined within the ETL process: the
Staging Area, where data is replicated from the sources; the Relational Data
Storage, which serves as a central reconciled data repository; the Dimensional
Data Storage, where the actual integration operations are performed and data
is prepared to be loaded into the Data Warehouse. An extra layer is added
at the foundation of the framework in order to manage metadata and the
automation process.

• Chapter 4 describes the case study and proposes a Data Warehouse model
for the purpose analysis following the best practices in in preparation for the
implementation of a customized version of the company framework. Here the
employed tools and resources are listed.

• Chapter 5 presents an extensive description of the ingestion and data enrich-
ment steps of the designed ETL process. Two data sources are analyzed:
YouTube APIs and LinkedIn reports, which are provided by a web navigation
automation mechanism such as Selenium. The integration step is illustrated
in all its phases and the Load step on Google BigQuery is described.

• Chapter 6 sets up two Unsupervised Learning models in order to extract un-
derlying patterns from YouTube data. The main purpose is defining clusters
based on interactions with the YouTube platform in order to assign class labels
according to clusters. These labels will be employed for Supervised Learning
tasks on new records in the data enrichment phase.

• Chapter 7 present the conclusion of the thesis and treats possible future im-
plementations to enhance the work.

• Appendix A provides a comprehensive list of the designed tables for the Data
Warehouse model.

4



Chapter 2

State of the art

Business Intelligence and Advanced Analytics play a significant role in the Big Data
scenario and deliver functional tools to gather information for core marketing de-
cisions. On the other hand, a relevant amount of knowledge remains undiscovered
with the traditional BI approach: Machine Learning algorithms are considerable re-
sources for data enrichment and outcome forecasting. In this chapter, we delve into
the current Data Ingestion and Integration patterns, Data Warehousing models,
and the bedrock of the chosen predictive analysis techniques.

2.1 Data Analytics and Big Data
The field of Big Data deals with large datasets originating from many sources,
which can be either structured like in transactional records coming from Relational
Database Management Systems (RDBMSs), Internet-of-Things (IoT) log files, sen-
sors measurements, and industrial automated monitoring systems or unstructured
data and documents from non-relational databases containing users’ interactions
with websites and mobile devices or content from social media platforms (e.g. tex-
tual posts, pictures, videos, audio recordings).

Doug Laney defined the three fundamental concepts of Big Data in 2001 known
as «the Three V’s» (Volume, Velocity, Variety) [1], which later served as a basis for
organizations to appoint several additional qualities that fully describe Big Data
[2].

• Volume. The first characterizing element of Big Data resides in the data size,
which holds an inherent value for statistical analysis: as of April 2023, roughly
328.77 Exabytes of data are generated every day, with videos and social media
interactions being responsible for approximately 66% of the data traffic [3]. An
average-sized dataset can reach the magnitude of terabytes, even petabytes,
and tends to be stored in large distributed data clusters rather than centralized
servers, moving in the direction of scalable cloud-based solutions.

5



State of the art

• Velocity. Data is produced continuously at an increasing pace: in 2022, the
average content upload rate was nearly 500 hours per minute, while around 231
million emails were sent each 60 seconds [4]. For this reason, data processing is
shifting towards a real-time or near real-time approach to supply the constant
demand for information in crucial processes and urgent decision contexts like
anomaly detection.

• Variety. Gathering highly diverse data sources implies the need to recon-
cile and combine strictly structured data, organized in records with a rigid
and coherent schema, with unstructured data such as images, videos, text
files, emails, and non-relational database objects. Albeit RDBMSs perform
thorough management of structured data, they are not suitable for handling
semi-structured and unstructured entities. Data Lakes and Data Warehouses
are more appropriate models for storing all the different kinds of data.

• Veracity. Data quality is essential in a BI scenario, where the business future
relies on the correctness and dependability of processed information [5]. After
collection and integration, data must be coherent and meaningful, such that
the decision process is backed by a trustworthy source in which data is reliable,
does not present inconsistencies or contradictions with its meaning, and it is
robust to noise.

• Value. The derivation of insights from data offers decisive advantages for
business and research fields. Furthermore, data possesses the capacity for ver-
satile utilization across different contexts, transferring its significance from the
data itself to its inherent potential for reuse [6]. This concept also holds in
Machine Learning and other predictive analysis scenarios, where comprehen-
sive modeling, which often requires substantially large datasets, is not always
feasible for quality data scarcity.

The Big Data paradigm firmly reflects in the data pipeline architectures: central-
ized RDBMSs are replaced by Data Lakes, Data Marts, and distributed Enterprise
Data Warehouses. Plenty of sources are concerned in the Data Ingestion (e.g.
records from Enterprise Resource Planning systems or Customer Relations Man-
agement systems, social media REST API responses for user interaction requests,
log files from IoT devices, real-time web crawling results), while the Extract, Trans-
form, and Load (ETL) phase is frequently reinforced with the implementation of
MapReduce and Hadoop frameworks.

2.1.1 Data integration design patterns
Data pipelines prepare the data obtained from various sources to be placed in
definite data storage architectures, enabling eventual reporting, visualization, and
further processing. The increasing importance of Data Integration in the research

6



State of the art

field has brought its role from a marginal task in data warehousing to a crucial
element of Data Warehouse projects, changing the standard approaches in their
development. Currently, Data pipeline design patterns can be grouped depending
on the stages that compose the pipeline and their execution order.

Extract, Transform, Load

ETL is the Data Warehousing process that performs the Extraction, Transform, and
Load stages in order. After the Extraction phase, the Transform step is performed
on data in the same place as the staging area. The advantages of traditional ETL
principally concern the realization workflow overhead:

• A backward approach is usually adopted when implementing an ETL pipeline
by designing the output first, thereby speeding up the realization process [7].

• Limiting implementation to the needed resources and business rules enables
time and complexity savings [7].

• Data collected in the Data Warehouse has already been transformed and does
not require further processing before its visualization [8].

On the other hand, the ETL pattern has many downsides:

• The data transformation step is the most intensive section in terms of com-
putational resources and it can be a potential bottleneck when performing
row-wise data quality checks [7].

• ETL is a monolithic process and requires a re-design whenever the require-
ments change and involve new data or transformations, thus leading to in-
creasing costs and development time [9].

• Data transport is suboptimal since it is performed twice - first from the data
sources to the ETL server and then from the ETL server to the target stor-
age. Furthermore, data processing with an ETL approach requires a dedicated
server, resulting in higher hardware costs [8].

Extract, Load, Transform

The ELT approach derives from ETL by inverting the Transform and Load steps:
records and documents are gathered from the data sources and directly loaded into
the target system, where they undergo validation and enrichment. Among the ELT
pipeline features we can find:

7



State of the art

Figure 2.1: Basic ETL process in Data Warehouses. Data is ingested from many
sources into the staging area, then cleansing, integration and enrichment are per-
formed. Finally data is loaded in a Data Warehouse for subsequent uses such as BI
analysis, reports or Machine Learning. © D. Tobin, 2022

• Improved network management. Data is transferred in a single step before
transformations and business rules are applied, reducing the overall network
traffic [10].

• Performance and scalability. ELT architectures do not require external
technologies, servers, or tools, and process each step with a single query, thus
leading to improved performance and easier scalability management [10].

• Flexible implementation. In ELT implementations, the Data Warehouse
contains all the untreated data as a result of the Extract and Load stages,
hence enhancing the implementation of future requirements [7].

However, ELT is not recommended for lower volumes of data and more complex
data transformation operations are better performed by ETL mappings.

Extract, Load

In the Extract, Load (EL) pattern data is first pulled from the source, then stored
as is, without any further transformation. Although EL is fairly uncommon in data
warehousing, Data Lake architectures exploit this kind of pattern for serving as raw
data repositories [11].

8



State of the art

Other patterns

Under some circumstances, traditional architectures are not viable, and application-
specific data paths are developed. For instance, H. M. N. Dilum Bandara et al.
suggest an inversion of the Extract and Transform steps in the ETL process to over-
come the incompatibility between source and target endpoints in a blockchain mi-
gration scenario [12]. Umeshwar Dayal et al. provide another example by proposing
an ETLT (Extract, Transform, Load, Transform) pipeline in which the transforma-
tion phase is divided in two: the former is executed after the extraction, while the
latter exploits Data Warehouse servers’ scalability and parallelization capabilities
[13].

2.1.2 Data sources and ingestion

The first phase in data processing for visualization and analysis is Data Ingestion.
Unprocessed Data is acquired from a large variety of sources and collected in the
staging area, which serves as the primary source for the subsequent steps in the
Data Integration stage.

In business scenarios, Enterprise Resource Planning (ERP) systems provide tra-
ditional operational databases with structured data organized in tables and records
like sales invoices, inventory snapshots, customer information, medical records, and
bank transactions.

When dealing with websites, more specifically with social media platforms, the
principal data source is a web server database, which is queried through the usage
of Representation State Transfer Application Programming Interfaces (REST or
RESTful APIs). The web server supplies functions that web clients invoke in the
form of HTTP requests, which typically provide a response in standard formats
such as JavaScript Object Notation (JSON) or Extensible Markup Language (XML).
Client applications elaborate API responses for user visualization, interaction, or
further processing.

While APIs are functional instruments for web data collection, several websites
do not offer accessible means for structured data collection, thus requiring external
methods. Web scraping is a data science technique that responds to this need by
deploying scripts for the extraction of structured data from websites [14]. Scrapers
combine an in-depth web page exploration (crawling), which involves capturing
and recursively vising the web pages in a list of websites, to data research in each
gathered resource, followed by a preliminary data preparation before the actual
ingestion in the pipeline.

There exist two ingestion methodologies, with distinct use cases and procedures:
static and incremental ingestion.

9



State of the art

Static ingestion

Static ingestion ("FULL mode") consists in gathering all the available records in
a snapshot from a source and transferring it to the succeeding steps of the ETL
process. Static ingestion is performed during the first iteration of the pipeline
(Initial Load) and it is generally slower than incremental ingestion, since it needs
to read massive amounts of records periodically. Therefore, it is suited for smaller
tables with few records, such as dimensional tables, or when incremental ingestion
is not available.

Incremental ingestion

Incremental ingestion is performed through the Change Data Capture (CDC) mech-
anism: only new, updated or newly deleted records are acquired through each it-
eration, reducing the number of records that need to be processed, speeding up
the capture phase and reducing the quantity of data that needs to be stored and
updated when being subject to changes.

Multiple sources directly provide CDC mechanisms at the top of the ingestion
phase, while others allow an incremental collection of records through source-
dependent timestamp metadata. If CDC operations are not feasible, a similar
solution can be reached by capturing the difference between the current snapshot
and the previous one (delta operation).

2.1.3 Batch and streaming ETL architectures
Data pipeline architectures can be classified as batch or streaming by how data
flows through during each step.

A batch pipeline processes data in groups or chunks, which are periodically
collected and elaborated at scheduled intervals. Each batch flows through the
pipeline independently from others. When dealing with Big Data, batch processing
is the most suitable solution for non-critical periodically scheduled analytics.

Streaming pipelines deal with real-time data or near real-time data, enabling
streams with a low latency: records are picked from the source continuously, then
they are aggregated in a window, depending on the extraction logic and sent through
the subsequent steps of the pipeline as soon as the windows are marked as ready.
There are three principal types of windowing aggregations:

• Fixed time windows, or tumbling windows, are disjoint windows with
a fixed, constant duration T . Given a timestamp ti, data is assigned to its
corresponding window Wk represented by the time interval that encompasses
its value:

ti ∈ [kT, (k + 1)T )⇒ ti ∈ Wk

10



State of the art

• Sliding time windows or hopping windows are overlapping windows with
constant duration T and a period n, which represents the frequency at which
each window Wk starts capturing data:

Wk = [t, t + T ) , Wk+1 = [t + n, t + n + T )

• Session windows define a time gap duration between data after which records
are assigned to the next window. In session windows data keys are relevant,
since each session window is key-dependent, namely session with different keys
can overlap.

(a) Fixed time windows (b) Sliding time windows (c) Sessions time windows

Figure 2.2: Types of windowing aggregations

Due to their nature, streaming pipelines need a watermark to deal with late or
missing data. Moreover, data is not guaranteed to arrive in order. A watermark is
a threshold that represents the moment in which all the data belonging to a window
should have been collected [15]. Each data point is attached with a timestamp and
sent through the pipeline: if the timestamp exceeds the watermark, the relative
record is considered as late and must be handled with a specific policy.

Unlike batch pipelines, where data is sent to the next stage when the entire batch
has been processed, a data stream can adopt more diverse pipelining strategies.
Triggers define the rules that allow data to be forwarded to the next steps. For
instance, in Apache Beam [15] conditions can depend on the timestamp value, the
processing time or the number of elements collected at a given step in a window.

2.1.4 Data integration and enrichment
The Transformation step is the central phase of the data reconciliation process in
which raw data is given more value by combining, enhancing, and reformatting it

11



State of the art

to meet specific business needs. In ETL architectures, this is the step in which
raw data is refined and prepared for storage in a Data Lake, a Data Mart, or a
Data Warehouse; in ELT, data is transformed after being stored in a Data Hub or
another model inside the Data Warehouse.

Data Quality

Data quality is a capital step in the data enrichment process, since it lays the basic
bricks for reliable and valuable insights. Ensuring that the data being enriched is
accurate, complete, and consistent is crucial to avoid making decisions based on
flawed or incorrect information. Data quality checks encompass a range of activities,
such as data validation to identify missing or inaccurate values, data cleansing to
revise inconsistencies and formatting issues, and data standardization to give data
a uniform structure.

For instance, when integrating customer records, data quality checks might in-
volve verifying that all the addresses are in a standardized format, correcting mis-
spellings in names or other textual fields, and ensuring that birth dates are within
coherent ranges. Guaranteeing accurate and consistent data is critical for obtain-
ing trustworthy data assets and maximizing the utility of enriched data for further
analytics, reporting, and decision-making processes.

Data integration

Data integration involves adapting the diverse data into a single, coherent schema or
model. This process encompasses several techniques, including data joins, unions,
and merges, depending on the nature of the data. For example, in a retail context,
data integration might involve combining sales transaction data from point-of-sale
systems with customer data from CRM platforms. By performing data joins based
on unique identifiers, the resulting model can bring in-depth insights into customer
purchasing behavior, product preferences, and revenue trends. Effective data in-
tegration not only provides a comprehensive view of business operations but also
enables cross-functional analysis, aiding decision-makers in optimizing strategies,
improving customer experiences, and identifying new business opportunities.

In addition, data enrichment commonly includes a data augmentation process:
further sources than the ones provided by the customer can be included in the
integration step to supply contextual information and details to enrich data in the
model. For instance, finer details of geographic locations can be joined to geoloca-
tion coordinates in order to enhance spatial analysis of job offering applicants in a
LinkedIn campaign.

12



State of the art

Machine Learning and data enrichment

Data enrichment can be carried out leveraging Machine Learning techniques as
well. In this context, Machine Learning plays a pivotal role by automating the pro-
cess of feature extraction, prediction, and trend analysis. Clustering algorithms,
such as K-means or hierarchical clustering, can be employed to group similar data
points together, thereby revealing hidden patterns within the data. Furthermore,
classification and regression models offer the capability to predict missing values
or forecast future trends based on historical data. For instance, in business ana-
lytics, Machine Learning models can predict the trend of specific point-of-sales or
foresee a product shortage. Similarly, in e-commerce, recommendation systems can
enhance the customer experience by suggesting relevant products based on their
past purchasing behavior.

2.1.5 Data Lakes, Data Marts, Data Warehouses
There are multiple storage technologies for Advanced Analytics which play a sig-
nificant role in the Big Data scenarios. In particular, Data Hub and Data Lake
architectures are employed to store both structured and unstructured data in a
common repository for further processing, while Data Marts and Data Warehouses
serve as a centralized and complete historical data storage for multidimensional
analysis. Hybrid solutions like Data Lakehouses are available.

Data Lakes

The aim of Data Lakes is the storing large amounts of data with their native format
in a flat architecture in order to function as a primary source for all the analytics,
reporting and visualization purposes in a company. The data stored in a Data Lake
does not require to be directly valuable to the organization, since its meaning may
be unrecognized at the time of design. However, Data Lakes reduce the cost of
data ingestion and provide an exhaustive view on company data with a flexible and
scalable solution [16].

Data Lakes exist in four stages:
1. Data Puddle. A moderate sized collection of unstructured and unorganized

data is loaded with an EL pattern in a Data Puddle, which is generally owned
and managed by a single team.

2. Data Pond. Multiple Data Puddles are gathered in Data Ponds, where data
presents a mild data types organization and a raw structure with little analysis
and conditioning [17].

3. Data Lake. The proper Data Lake is stored in a non-relational DBMS (e.g.
NoSQL technology) or a distributed file system such as HDFS (Hadoop Dis-
tributed File System) with an extensive supporting documentation through

13



State of the art

metadata. Business users can access via both classical query languages (SQL)
and data reporting and visualization tools (Microsoft PowerBI, Tableau) [18].

4. Data Ocean. An expanding Data Lake that reaches a remarkable size is
called Data Ocean. While including a wide range of sources and offering a
broad availability, Data Oceans are subject to the risk of degenerating into
Data Swamps, which are unorganized collections with usually obsolete data
due to the difficult elaboration.

Data Marts

In a Data Warehouse scenario, a Data Mart is a model that encompasses a single
aspect of the entire business architecture. For instance, a supermarket Enterprise
Data Warehouse may be formed by smaller Data Marts for each domain of compe-
tence, such as the logistic area or inventory snapshots.

Data Warehouses

The Data Warehouse (DWH) is the main data management system for storing the
reconciled data for supporting downstream analytics, reporting, data visualization
and other Business Intelligence tasks. Data Warehouses house historical data that
has been processed by ETL/ELT pipelines and certified through data quality checks
in order to furnish a reliable support for the knowledge workers [19] and decision-
making processes. The Data Warehouse design can follow a top-down or bottom-up
strategy:

• Top-down. The initial phase of a top-down design process involves planning
the Data Warehouse model with the objective of encompassing all business
data, thereby offering a holistic view on company data. Subsequently, the de-
sign includes the creation of business area-specific Data Marts. This method
complies with the backward methodology for ETL and enables the represen-
tation of diverse perspectives at a later stage.

• Bottom-up. The bottom-up approach consists in planning many Data Marts
to be aggregated in the main DWH. The bottom-up strategy enables a quick
access to specific business area information.

2.1.6 OLTP and OLAP systems
Data Warehouses are a widespread solution for On-Line Analytical Processing
(OLAP), which empowers the analysis of large amounts of data from a large num-
ber of perspectives for decision-making purposes. On the other hand, On-Line
Transactional Processing (OLTP) is the standard operational databases pattern,
which supports frequent data alteration with the optimization of multi-access write

14



State of the art

operations. Table 2.1 provides an overview on the main differences between OLTP
and OLAP systems [20].

OLTP OLAP
Purpose Transactions and opera-

tional support
Support in decision-
making process

Query pattern Simple, repetitive Complex, ad-hoc
Query operations Insert, Update, Delete,

Select (read-write)
Select (read-only)

Amount of records Low (hundreds of records
per query)

High (millions of records
per query)

Time window Limited to current data Historic (coverage of
years)

Refresh rate Immediate, per transac-
tion

Scheduled, mostly daily

Table 2.1: Main differences between OLTP and OLAP systems

2.1.7 Cloud Data Warehouse solutions
Data Warehouses have benefited from the advent of cloud technologies, since the
availability of massive computational and storage resources has empowered their
availability, scalability, and reliability, with a variety of cost-effective solutions.
Unlike on-premise architectures, which require the management of the whole in-
frastructure, cloud platforms provide three possible services depending on the level
of flexibility and responsibility:

• Infrastructure-as-a-Service (IaaS) is the cloud model that provides access
to a set of on-demand storage and computational resources on a remote server,
with basic low-level services such as virtualization and networking tools. IaaS
is the least expensive architecture, due to the fact that the customer is re-
sponsible for the management of the remaining components (e.g. Operating
System, applications, middleware) [21].

• Platform-as-a-Service (PaaS) model offers an higher-level solution than
IaaS, supplying the operating system and further software resources without
the need of building and maintaining the whole infrastructure. The customer’s
responsibilities concern the development, the deployment, and the mainte-
nance of software applications [22].

• Software-as-a-Service (SaaS) solutions furnish on-demand access to an ap-
plication. The entire underlying stack is managed by the service provider,

15



State of the art

entrusting the mere usage of the software to the customer, generally through
a subscription to a web application [23].

Plenty of Data Warehouse and ETL cloud services that leverage the three cloud
architectural patterns are available. Here are some examples of the major ETL
cloud solutions:

• Oracle Data Integrator

• Microsoft Azure Data Factory

• Google Cloud Dataflow

• Pentaho Data Integration

• Apache Spark

• Apache Kafka

The first three are proprietary SaaS solutions and require a subscription, while
Pentaho Data Integration Community Edition, Apache Spark and Apache Kafka
are open-source projects and require a PaaS or a IaaS architecture. Hybrid solutions
for processing and storage are also widely used in order to meet technological and
economic constraints of the projects.

2.2 Machine Learning foundations
In 1997, Tom M. Mitchell presented a functional definition for Machine Learning:

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance at
tasks in T, as measured by P, improves with experience E” [24].

This definition underscores the idea that machines can autonomously extract
patterns, make predictions, and adapt their behavior based on past data. Ma-
chine Learning encompasses diverse techniques and methods, with two fundamen-
tal paradigms being Supervised Learning and Unsupervised Learning, which serve
distinct purposes and present unique characteristics.

2.2.1 Supervised Learning
Supervised learning involves training a model using labeled data. In this setup, the
algorithm generates a function that maps inputs to the desired output [25], enabling
it to make predictions or classifications when presented with unseen data. This form

16



State of the art

of Machine Learning is based on the presence of output values called labels, which
instruct the model to recognize patterns and infer the label of unlabeled new data
points, particularly suited for tasks such as image recognition, spam email detection,
and sentiment analysis, where the algorithm can learn from historical examples and
their associated correct outcomes. Supervised Learning algorithms can be either
classified by the output domain in classification and regression tasks.

The training of a Supervised Learning model is the process of determining the
mapping, also called decision function, from the m-dimensional feature space to a
label space in order to generalize the problem given a set of labeled samples.

The type of decision function determines another categorization of the models
in discriminant models, discriminative models, and generative models.

• Discriminant models shape the decision function by directly mapping the
feature vector to its label [26]

• Discriminative models construct a function that maps the input to a set
of scores and subsequently use that set to assign new samples to one of the
classes [26].

– When the score has a probabilistic interpretation, it is the class-posterior
probability P (Ck | x) which represents the probability of belonging to the
class Ck for the sample x. Logistic Regression classifiers are an example of
discriminative probabilistic classifiers.

– In a non-probabilistic model, like Support Vector Machines (SVMs), the
score is employed to assign labels without having a probabilistic interpre-
tation. In the case of SVMs, the score is related to the distance of the
data points from the decision surface.

• Generative models determine both the joint distribution of the feature vec-
tor and each class label P (x, Ck) = P (x | Ck)P (Ck), then extract the class-
posterior probability by applying the Bayes theorem.

Classification

Classification is the Machine Learning task of finding a mapping from of the input
values, represented by vectors, to the space of labels, which is a discrete set that
constitutes the output values, in order to predict the label of unseen input vectors.

Machine Learning models enable multiple classification tasks:

• Binary classification. The output space is represented by a set of cardinality
2 L = {HT ,HF}. Binary classifiers model a set of problems where, given an
input vector, its label represents a true hypothesis (HT ) or a false one (HF ),
such as in intrusion detection or identity verification scenarios.

17



State of the art

• Multi-class classification. The output set of a multi-class classifier is the
set L = {H1,H2, . . . ,HN} with cardinality N > 2. Multi-class classification
is employed in assignments like object categorization, image recognition, and
speech decoding.

• Closed-set classification. The aim of a closed-set classifier is recognizing a
set of categories that does not change from training to testing [27], meaning
that all the unseen data points will fit one of the available classes. This holds
true for scenarios in which the model is accurate enough to be trained on a
label space that covers all the possible values.

• Open-set classification. The open-set problem assumes that the knowledge
of the world is incomplete at training time and that unknown classes can be
submitted to the model during inference [28]. An open-set classifier is therefore
required to provide an additional label for the data points that do not fit any
of the other classes.

Among the classification models, generative examples are Naïve Bayes classifiers,
Variational Autoencoders (VAEs) [29], Generative Adversarial Networks (GANs)
[30], and Generative Pre-trained Transformers (GPT models) [31].

Support Vector Machines [32], Logistic Regression classifiers [26], and tradi-
tional Neural Networks such as Feed-Forward Neural Networks [33] are examples
of discriminative classifiers.

Regression

Regression tasks require the output domain to be defined as continuous, since each
data vector is assigned to a real value. Some examples are linear and polyno-
mial regression models [26], Autoregressive Integrated Moving Average (ARIMA)
models [34], Support Vector Regression (SVR) [35], Long Short-Term Memory Re-
current Neural Networks (LSTM RNNs) [36]. Their applications include modeling
continuous-valued functions such as in stock market and other time-series forecast-
ing settings, and physical phenomena modeling.

2.2.2 Unsupervised Learning

Unsupervised Learning operates in scenarios where the data lacks explicit labels
or categories: the machine receives feature vectors as inputs without a label as
output, with the aim of identifying inherent structures, patterns, or relationships
within the data itself [37]. Clustering and dimensionality reduction are common
techniques within Unsupervised Learning.

18



State of the art

Clustering

Clustering aims at grouping data points together based on the similarity of their
properties. Its purpose is aiding in the discovery of natural groupings or hidden
insights within the data. Clustering algorithms are subdivided in various categories
depending on their characteristics:

• Exclusiveness. Determines whether a data object can belong to more than
one cluster.

– In Exclusive Clustering, or Hard Clustering, each data point is assigned
exactly to a cluster, resulting in non-overlapping partitions of the starting
dataset.

– Inclusive Clustering, also called Soft or Fuzzy, models the affinity of every
element into each cluster. In particular, the degree of membership to each
cluster is assigned to each item.

• Nesting. It is the clustering algorithms property that describes the possibility
of defining nested clusters.

– Partitional Clustering algorithms extract disjoint partitions of the dataset,
prohibiting nested clusters.

– Hierarchical Clustering group data elements into trees of clusters, either
in an agglomerative (bottom-up) or a divisive (top-down) fashion [38].

• Completeness.

– A Complete Clustering algorithm assigns each data point to at least a
cluster, covering the whole starting dataset.

– Partial Clustering permits to leave data points unassigned, resulting in a
spare partition without common properties.

The main two clustering algorithms are presented for each of the two existing
cluster assignment techniques: K-Means algorithm for distance-based clustering and
DBSCAN for density-based clustering.

K-Means clustering

The K-Means clustering algorithm is a partitional hard clustering technique that
revolves around the concept of centroid (or center) of a cluster, which is defined as
the mean of the distances among all the cluster points.

The algorithm implements an Expectation-Maximization technique in order to
minimize the objective function defined through the sum of the squared error mea-
sure:

J = arg min
C

K∑︂
i=1

∑︂
x∈Ci

∥x− µi∥2, µi = 1
|Ci|

∑︂
x∈Ci

x

19



State of the art

where µ is the cluster Ci centroid, i.e. the center of the cluster. The algorithm
requires the number of clusters K to be provided a priori as a parameter. The
Algorithm 1 illustrates the basic K-Means procedure [39].

Algorithm 1 K-Means clustering algorithm
Elect K points as initial centroids.
repeat

assign each point to the cluster with the closest centroid.
recompute the centroid of each cluster.

until Centroids do not change
Time Complexity: O(n ·K · I · d)

Centroids are calculated on a distance measure, which determines the degree of
closeness of the points. Euclidean distance is the most common measure, however
other measure functions can be employed: Cosine distance, correlation, Manhattan
distance [40]. Centroid initialization is generally performed by electing the points
randomly, thereby producing different clusters for each run.

K-Means complexity is O(n ·K · I · d), where:

• n is the cardinality of the dataset

• K is the number of clusters

• I is the number of iterations

• d is the dimensionality of the feature space

The algorithm usually converges in the first few iterations, followed by an adjust-
ment stage. By relaxing the stopping condition to the variation of the assignment
for a limited number of data points, the effective complexity is reduced.

DBSCAN clustering

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a
partitional clustering algorithm. Its gist is forming one or more clusters in which
the points density is sufficiently higher with respect to the density of other regions.
More specifically, the algorithm defines two parameters: the minimum number
of points minPts required to form a cluster and the distance ϵ that serves as a
proximity upper threshold for the cluster creation [41].

DBSCAN algorithm subdivides the data points into three groups: core points,
border points, noise points.

• Core points are the points that constitute the interior of a cluster. A point
is assigned to the core points if it has at least minPts neighbor points within
the distance ϵ.

20



State of the art

• Border points are neighbor points of a core point that do not meet the
minPts constraint within the distance ϵ.

• Noise points are the remaining points, which do not belong to either of the
other two groups.

The algorithm selects an unlabeled point and expands its neighbor points in the
radius ϵ in order to define the border points and the noise points. If there are at
least minPts within ϵ, a new cluster is defined and expandend subsequently, until
all the points have been reached. The initial point is generally decided randomly.
The complexity of DBSCAN is O(n2) with n being the dataset size, while it can be
lowered to O(n log n) by employing a spatial index when looking for the neighbor
points [38].

Algorithm 2 DBSCAN clustering algorithm
C ← 0
for each unvisited point P ∈ dataset do

mark P as visited
Neighbors← neighbor points of P in range ϵ
if number of Neighbors < minPts then

mark P as noise
else

C ← C + 1
add P to cluster C
for each point P ′ ∈ Neighbors do

if P ′ is not visited then
mark P ′ as visited
Neighbors′ ← neighbor points of P ′ in range ϵ
if number of Neighbors′ > minPts then

Neighbors← Neighbors ∪Neighbors′

end if
end if
if P ′ has no label then

add P ′ to cluster C
end if

end for
end if

end for
Time Complexity: O(n2)

DBSCAN is more robust to noise and allows to handle the outliers. Unlike K-
Means, which performs best with globular-shaped clusters, DBSCAN treats more
complex cluster shapes.

21



State of the art

Dimensionality Reduction

Dimensionality reduction helps in simplifying complex datasets by reducing their
feature space while preserving essential information. High-dimensional feature
spaces introduce the phenomenon known as curse of dimensionality: an increas-
ing number of attributes (i.e. dimensions) flattens the distance between different
data points, making it harder to separate them into categories or clusters depend-
ing on their value [26]. Therefore, Dimensionality Reduction techniques such as
Principal Component Analysis (PCA) contribute to simplify the Machine Learning
models by removing the less informative dimensions while retaining the most useful
information.

22



Chapter 3

Company Data Integration
framework

Mediamente Consulting developed a Data Integration framework for ETL and Data
Warehousing which enables a standardized and easily maintainable data pipeline
through the implementation of metadata tables. The company framework develops
in three layers and an additional management layer. The Staging Area stores
data from the sources without any transformation and feeds the following steps
of the ETL process. The Relational Data Storage serves as a central reconciled
data repository and houses a cleansed and normalized version of original data. The
Dimensional Data Storage is the layer where integration among sources is performed
and data is prepared to be loaded into the Data Warehouse or another dimensional
analysis storage system. The management layer houses metadata and information
about the process [42].

Figure 3.1: The company framework is composed of a distinct layer for each data
preparation step: storage, data quality and integration, publishing.

23



Company Data Integration framework

3.1 L0 - Staging Area
The staging area houses a replica of the raw data from the diverse sources, such
as relational DBMSs and files provided by the customers. Given that records are
replicated without modifications, there exists the potential to store inaccurate or
incomplete data; nevertheless, data cleansing is not required at this stage. Data
Ingestion is performed in batches on a periodical schedule for each table or doc-
ument inside a job identified by a JOBID. Each job is independent and performs
an iteration of the load operations for a single table of a specific source and it is
managed by the metadata tables FLOW_MANAGER and TABLE_MANAGER.
Three kinds of tables are implemented in the ingestion stage: delta tables, staging
tables, error tables.

DLT tables
Delta tables (DLT tables) store the incremental updates from the sources. Each
source table has a corresponding DLT table with the same schema and provides
new records through three mechanisms:

• CDC. A Change Data Capture system allows to intercept only the data vari-
ations (delta) between the current iteration and the previous one. In this
scenario, DLT tables are ready for the next steps. CDC is generally employed
for optimizing the load jobs from tables with abounding records .

• MINUS. When CDC is not available on densely populated tables, changes
can be detected with a MINUS set operation. For this purpose, a staging table
must store temporarily the current snapshot and the one from the previous
loading iteration.

• FULL. The import operation in FULL mode involves a copy of the whole table
or file for each iteration. This pattern suits the ingestion of small-sized sources
and records with low variability, for which frequent updates are not required.
A FULL load is performed when an Initial Load is required for tackling new
sources or populating a Data Warehouse for the first time (refresh).

In order to address possible data losses or a partial loading during the ETL pro-
cess due to errors, a historicized version of the DLT table is required. A straight-
forward approach can be adopted by keeping the history directly on the DLT tables
and partitioning by JOBID. Another solution is the creation of DLT shadow ta-
bles marked by the prefix "DLT_HIS", which are partitioned by JOBID with a
retention policy determined by the amount of ingested data. Since records from
previous iterations are stored in separate tables, DLT tables do not require to retain
the whole history of data, hence loading can be performed with a truncate/insert
pattern, hastening the ingestion phase.

24



Company Data Integration framework

STG tables

Staging tables (STG) contain the records acquired in FULL mode from documents
and tables for the specific purpose of feeding DLT tables with the result of a MINUS
set operation between the current snapshot of the source and the antecedent one.

The MINUS operation is obtained by two distinct steps. First, the positive and
the negative set subtractions are performed on two instances of the same table in
order to extract the new or updated records from the positive MINUS and the
deleted records from the negative MINUS1. Afterwards, the set union gathers the
results of the two operations in a single place and the flow of data is redirected to
the corresponding DLT table.

The output DLT table schema bears an additional field (the flag FLG_NEG)
in order to differentiate the new records from the deleted ones.

Figure 3.2: An example of a MINUS operation performed in an Oracle Data
Integrator environment.

1The set subtraction operation is not commutative, i.e. given two sets A and B, A\B /= B \A

25



Company Data Integration framework

3.2 L1 - Relational Data Store
The L1 section is the effective core of the ETL process, since the most complex and
computationally expensive procedures and transformations are carried out here.
Data is subject to data quality checks and business rules to ensure its integrity,
correctness, and dependability; subsequently, a process of normalization is applied
with the aim of populating a relational storage with the most granular level of data
available. Finally, the effective integration is performed among the various data
sources in order to prepare data for the subsequent visualization and dimensional
analysis.

OK tables
The Data quality process evaluates data freshness, accuracy, completeness, con-
sistency, and trustworthiness in a specific context in order to empower business
decisions along with data governance programs [43]. The aforementioned activities
of data quality and the application of business rules are performed on data coming
from DLT tables and result in the population of new tables with records that are
functional to the business needs in the means of data effectiveness. These tables
are called OK tables. Three classes can be identified in this step:

• Referential integrity checks. For each table that contains at least a foreign
key, a join operation with the corresponding reconciled table (L1) is executed.

• Quality checks. Field-dependent constraints are validated through multiple
steps. For instance:

– empty NOT NULLABLE fields are replaced with default values in order
to avoid potential errors due to missing data

– data types are aligned to the ones specified in the requirements

– length constraints, string encoding, and invalid values are checked to com-
ply to the model: for instance, the date ’2023-02-29’ is inadmissible, since
2023 is not a leap year

• Business rules validation. Raw records can undergo additional checks that
depend on specific requirements, e.g. an integer field is required to be inside
the range [0, 10], therefore a record having the value 11 in that field must be
discarded

Records that are unsuited for reconciliation are treated in expressly defined
tables for error management.

26



Company Data Integration framework

ERR tables
Although error tables (ERR) are included in the L0 layer, their discussion and
relevance are being examined within L1 data quality step. Error tables are geared
to store records that do not meet the data quality rules. Unsuitable data points
are discarded temporarily for the purpose of supplying them to the L1 mappings
during the next iteration. For instance, a record can fail referential integrity checks
as a result of the absence of the records to which it should be joined, hence it is
kept in the error table until the missing reference issue is resolved.

Error management is treated within the ERR tables by extending the original
schema with a description of the error, along with the technical fields inherited
from DLT tables. Moreover, a retention period is defined after which the ERR
table records are permanently discarded in order to avoid potential bottlenecks.

In a production scenario, errors are currently reported to the person in charge
of manually revision, however error correction tools powered by Machine Learning
can be employed to automate this step.

ODS tables
Operational Data Store (ODS), or Relational Data Store tables are the implemen-
tation of the conventional L1 layer. ODS tables provide and establish a centralized
and normalized data model that encompasses all the aspects of the company re-
quirements. L1 tables aim to provide a consolidated and historicized version of
the relational source data ready for integration. Since Relational Data Store needs
to be historicized, ODS tables are populated with MERGE statements in an In-
cremental Update fashion. In order to allow the records update, a primary key
constraint must be defined on the physical key of the table. Moreover, tables are
not subject to compression since frequent updates are performed, especially when
many iterations are carried out in a single load process.

MDM tables
Master Data Management (MDM) tables fulfill two critical roles in the ETL process:
the integration from different sources and data enrichment. Data integration in the
current stage consists in gathering matching data by joining two or more ODSs,
therefore accumulating attributes from many sources in a central table.

Since integration is already performed at a transaction level in RDBMSs in real
use case scenarios, Master Data Management tables integrate only the new sources
in order to avoid redundancy [8]. Moreover, integration can prioritize a source
over another depending on the type of performed join: for instance, when joining
an ERP table with an API responses table, the former can be modeled as more
relevant by being on the left side of a LEFT OUTER JOIN.

27



Company Data Integration framework

MDM tables which contain descriptive attributes (dimension tables) serve the
other purpose of assigning a surrogate key as well. A Surrogate Key (SK) is a
unique identifier assigned to each record of a table with the aim of superseding the
natural key. The SK has no meaning outside its role of record identification and it
is independent from all the other attributes inside the table. The most prominent
gain from the use of a surrogate key is the increase in performance, since querying
tables through surrogate keys is faster than compound or more descriptive keys,
especially in expensive join operations. In addition, SK provide a solution which is
efficient in terms of storage and more robust to changes.

Surrogate keys are generally defined with compact data types, such as integers,
with a growing pattern. For instance, in an Oracle environment, surrogate keys
are defined as sequences, while in a SQL Server scenario the surrogate key field is
declared as an IDENTITY.

Surrogate keys are not assigned to measurement records according to the dimen-
sional model later treated in Section 3.3.

OUT tables
After integration and enrichment, records are prepared for the publishing phase
by collecting the required information for the multidimensional schema and trans-
forming the records in order to fit the Data Warehouse model. OUT tables do
not manage physical keys since data representation is not transactional: they ac-
quire the surrogate keys, preparing records for the visualization layer, especially for
snowflake schemas. By merging various sources into one, multiple representations
of the same value can be met, therefore the general pattern is choosing a common
representation to prevent misalignment errors.

3.3 L2 - Dimensional Data Storage
The visualization layer consists in the Data Warehouse, where the model for mul-
tidimensional analysis is stored. The L2 layer serves both as the central storage
for business data to be queried for decision-making processes and as a source for
smaller Data Marts or subsequent analyses.A Data Warehouse model is composed
by one or more fact tables, which store the measurements of a business applica-
tion, and more dimension tables, which describe the dimensions of interest for the
analysis.

3.3.1 Fact tables
A fact table stores all the measurements of interest in relation to the dimensions
of analysis. Each record is uniquely identified by a compound primary key, which
is composed by all the surrogate keys that link the table to each dimension of

28



Company Data Integration framework

analysis, and a time reference (usually modeled as an extra dimension). Records
can be interpreted as data points in a n-dimensional space where each dimension
is a finite and discrete domain defined by the dimension tables.

Measurements, or metrics, are quantitative descriptions that address specific
business information, empowering dimensional analysis on a variable level of gran-
ularity. Whereas dimensions are always required to define a data point, presence
and granularity of the metrics are determined by the type of the fact table:

• Transaction fact tables store the most fine-grained data (records are stored
with a transaction level granularity)

• Snapshot fact tables store metrics which have been aggregated in time windows

• Factless fact tables model an "attendance" fact, with no need for metrics, since
information is represented by the mere existence of the record

Fact tables are fed with an append pattern, since they are required to ingest large
quantities of records for each iteration, and are generally partitioned by the time
dimension in order to speed up time-based queries, which are the most frequent in
a decision-making application.

3.3.2 Dimension tables
Dimension tables collect descriptive information of each dimension of the analysis.
The records of a dimension table are identified by a simple primary key, which is
the surrogate key assigned in the MDM stage, and contain textual fields that en-
tirely characterize an aspect of the analysis. These tables are usually denormalized,
trading a negligible increase in stored data with a significant improvement in query
time performance.

3.3.3 Star schema and snowflake schema
Two architectural patterns can be adopted in a Data Warehouse model planning:
the star schema or the snowflake schema.

In a star schema, the fact table is the only table to use foreign key constraints on
the surrogate keys in order to be joined with other tables, presenting a denormalized
structure.

The snowflake schema presents a fully normalized structure for dimension tables,
introducing a greater complexity in the DWH model. Querying many lookup tables
requires a JOIN clause for each level introduced in the hierarchy, leading to a
slowdown in visualization, but the trade-off may be relevant for specific Business
Intelligence tools that favor normalization.

29



Company Data Integration framework

Star schema Snowflake schema
Dimension tables One table for each dimen-

sion containing all the in-
formation

Each dimension has a hi-
erarchical structure with
many tables

Normalization Denormalized Highly normalized
Redundancy High Absent
Storage perfor-
mance

High due to redundancy Low due to normalization

Query performance High (few join opera-
tions)

Low (many joins re-
quired)

Table 3.1: Main differences between star schema and snowflake schema

3.4 Metadata layer
In addition to the three standard layers, and additional layer is implemented in
order to describe and manage metadata, which is descriptive information that per-
tains to other data.

Metadata can be classified either on its employment as internal or external
metadata, or depending on its scope as global metadata or process metadata [42]:

• Internal or structural metadata refers to data that portrays the structure
and organization of data, such as table schemas, field data types, transforma-
tion status and outcomes, etc. Internal metadata provides information to the
manager about the architecture of the system.

• External or content metadata is user-scoped data about the context of data.
For instance, content metadata supplies data definitions, measurement units,
and information about the meaning of its content.

• The scope of global metadata is the whole system and involves all the pro-
cesses in order to provide a common reference for the synchronization of the
activities and a shared granularity among data

• Process metadata is determined by the data source or the process to which
it refers, outlining its characteristics and status.

The company framework encloses two metadata tables: FLOW_MANAGER
and TABLE_MANAGER. Moreover, additional technical fields are declared in each
table:

• JOBID, contains the load iteration identifier; it is split into JOBID_INS and
JOBID_UPD for tables populated with MERGE operations with the aim of
tracking both the first insertion and the last update

30



Company Data Integration framework

• INS_TIME is the insertion timestamp in the table. Just as JOBID, the addi-
tional field UPD_TIME is employed for tables that allow updates.

3.4.1 Flow management table

The FLOW_MANAGER table stores information about the history and the un-
folding of ETL iterations, detailing the current state and the outcome of each ETL
layer for every ingestion flow. Its purpose is synchronizing the diverse ETL stages
and processes and monitoring the advancement of the pipeline.

Each record of the FLOW_MANAGER table is uniquely identified by the iter-
ation JOBID, an IDENTITY and a GROUP, and its LEVEL.

• JOBID. Describes an ETL iteration instance with a timestamp in the format
YYYYMMDDHHmmss (YYYYMMDDHH24MISS for Oracle systems).

• IDENTITY. The identity defines and aggregates flows with a common work-
ing area, e.g. the ingestion source, the business area.

• GROUP. The group field (named GRP_NAME) assembles the tables in-
volved in the pipeline into functional entities, which collect objects with func-
tional dependencies, such as all the tables related to the product, or the point-
of-sales description tables.

• LEVEL. Defined by the field NUM_LEVEL, it is a numerical representation of
the ETL stage performed (L0, L1, or L2).

Records gather information about the current STATUS of the process with
a numeric value in the domain defined in Table 3.2 and the advancement of the
LOAD operations in the next stage with a binary value (0 or 1). Furthermore, a
timestamp for the beginning of the process (START_DATE) and one for its termina-
tion (END_DATE) are present.

Value Status meaning
0 The job is complete without errors
1 The job is currently running
2 Job data is ready to be loaded in the next stage
-3 There are errors, job is aborted

Table 3.2: Possible values of the STATUS field in FLOW_MANAGER table.

31



Company Data Integration framework

3.4.2 Table management table
The TABLE_MANAGER table is responsible of tracking information about the
iteration flow with regards to the table. Records are characterized by the following
fields, which constitute the primary key of the table:

• IDENTITY

• GRP_NAME

• NUM_LEVEL

• TABLE_NAME

• JOBID

Four fields are defined in order to supply insights on the ETL processes in relation
to each table:

• CAP_ID is an integer identifier for the timestamp of the most recent data point
in the source table; it shares the same format as JOBID and serves as a
reference for the synchronization of delta operations performed during the
ingestion phase.

• NUM_ROWS is a counter of the number of rows produced as output from the
current stage; a misalignment in the number of rows between two different
stages or an incoherent value among the steps may indicate the presence of
ingestion or integration errors, or the failure of data quality checks for some
records.

• LOAD_DATE stores the timestamp at which the table population has been com-
pleted.

3.4.3 Additional metadata tables
In specific major projects, further metadata tables can be implemented in the model
in order to furnish a more extensive view on data sources, staging tables and Data
Warehouse schemas and execution flow. For instance, data types can be widely
described in documentation tables; an error management table can provide a col-
lection of the errors obtained during the data quality checks.

Metadata tables can be subject to business rules and supplementary checks as
well, thereby playing a fundamental role during the deployment and maintenance
phases of a project. The error management table can be queried in order to retrieve
a subset of errors which have been deemed critical by the customer from a business
perspective, then consequently processed.

32



Chapter 4

Case study

The customer requires the automation of a data pipeline for visualizing and per-
forming Business Intelligence tasks on data acquired from two different social media
platforms: YouTube and LinkedIn. The current infrastructure relies on the manual
intervention of a user, who has access to the social media reporting web pages and
daily downloads the required data to obtain the KPIs which have been determined
in a previous assessment.

Three purposes can be ascribed to this thesis:

• designing an automated ETL pipeline for the task

• improving the existing Data Visualization and reporting activities by leverag-
ing a Data Warehouse architecture

• providing a solution based on Machine Learning for Data Enrichment, enhanc-
ing future analyses and BI reports

The accomplishment of the first two objectives, involving the ETL and Data
Warehouse realization, is reached by observing a top-down approach: the DWH
model is designed beforehand, followed by the ETL process implementation. The
last goal is achieved through the means of Machine Learning Python libraries.

4.1 Data Warehouse model
In order to provide an integrated model to support the business analytics per-
formed by the customer, the Data Warehouse implements a star schema with two
distinct fact tables: FACT_YT_METRICS for YouTube data and FACT_LI_METRICS for
LinkedIn data. An exhaustive fact table has been considered; the two data sources
present relevant differences and cannot be integrated in a single target nevertheless.
In Table 4.1 an exhaustive list of the designed entities is provided.

33



Case study

Table name Type Description
YT_METRICS FACT YouTube insight measurements
LI_METRICS FACT LinkedIn insight measurements
CALENDAR DIMENSION Description of time dimension
VIDEO DIMENSION YouTube video information
DEVICE_TYPE DIMENSION Device that generates the insight
TRAFFIC_SOURCE DIMENSION Source of the YouTube insight
SUBSCRIBED DIMENSION Status of the user’s subscription
LINKEDIN_PAGE DIMENSION Page visited on the LinkedIn profile

Table 4.1: List of the designed table for the Data Warehouse proposed model.

FACT_YT_METRICS

The YouTube fact table is designed to store metrics at a granularity defined by five
dimensions:

• the date of the measurement, retrieved by DIM_CALENDAR

• the video to which the insight is referred, from DIM_VIDEO

• the state of a user’s subscription at the insight time

• the device type from which the measurement is recorded, from DIM_DEVICE_TYPE

• the insight traffic source, which represents the origin of the interaction with
the video

An additional dimension is added for the campaign label which will be the
subject of the subsequent realization of the thesis in Chapter 6.

Metrics can be grouped in three categories:

• Basic metrics such as views, estimated minutes watched, likes, dislikes, shares,
which are available for all the videos.

• Annotation metrics, which refer to the insights related to the annotation
function. Annotations have been discontinued by 2019 and YouTube APIs re-
port annotation data up to 2013 [44]; however, these fields have been included
in the analysis in order to provide a more scalable solution for a further in-
gestion of historical data. CTR, the close rate and the number of impressions
are some examples of the available metrics.

34



Case study

• Card metrics, which supply values for the Info Cards function. Even though
the customer does not make use of info cards at design time, there are plans
to implement the function, therefore the metrics have been kept in the final
model.

Field name Data type Primary key
DATE_SK int Yes
VIDEO_SK int Yes
SUBSCRIBED_STATUS_SK int Yes
DEVICE_TYPE_SK int Yes
TRAFFIC_SOURCE_SK int Yes
CAMPAIGN_LABEL_SK int Yes
VIEWS int No
RED_VIEWS int No
ESTIMATED_MINUTES_WATCHED int No
ESTIMATED_RED_MINUTES_WATCHED int No
LIKES int No
DISLIKES int No
VIDEOS_ADDED_TO_PLAYLIST int No
VIDEOS_REMOVED_FROM_PLAYLIST int No
SHARES int No
AVERAGE_VIEW_DURATION int No
AVERAGE_VIEW_PERCENTAGE numeric(38,10) No
ANNOTATION_CTR numeric(38,10) No
ANNOTATION_CLICKS int No
CARD_CLICK_RATE numeric(38,10) No
CARD_TEASER_CLICK_RATE numeric(38,10) No
CARD_IMPRESSIONS int No
CARD_CLICKS int No

Table 4.2: Brief table description for FACT_YT_METRICS model. Some fields
have been omitted.

FACT_LI_METRICS

The fact table which encloses LinkedIn insights is described by three dimensions:

• the date to which metrics refer, from DIM_CALENDAR

35



Case study

• the type of device used, from DIM_DEVICE_TYPE. It is available exclusively for
the metrics relative to visitors, thus requiring a dummy value when inserting
new followers and content-related metrics

• the page visited by the user. Another pseudo-value used for followers and
content metrics is manually inserted

In a manner analogous to the YouTube fact table, the campaign dimension is
added to the other three.

Time and device type dimensions are shared between the two fact tables, en-
abling joint analyses for a comprehensive view on the evolution of the social media
marketing campaigns towards the business goals.

Field name Data type Primary key
DATE_SK int Yes
DEVICE_TYPE_SK int Yes
LINKEDIN_PAGE_SK int Yes
CAMPAIGN_LABEL_SK int Yes
PAGE_VIEWS int No
PAGE_UNIQUE_VISITORS int No
ORGANIC_FOLLOWERS int No
SPONSORED_FOLLOWERS int No
ORGANIC_IMPRESSIONS int No
ORGANIC_UNIQUE_IMPRESSIONS int No
ORGANIC_CLICKS int No
ORGANIC_REACTIONS int No
ORGANIC_COMMENTS int No
ORGANIC_POST_DIFFUSIONS int No
ORGANIC_INTEREST_PERCENTAGE numeric(38,10) No
SPONSORED_IMPRESSIONS int No
SPONSORED_CLICKS int No
SPONSORED_REACTIONS int No
SPONSORED_COMMENTS int No
SPONSORED_POST_DIFFUSIONS int No
SPONSORED_INTEREST_PERCENTAGE numeric(38,10) No

Table 4.3: Brief table description for FACT_LI_METRICS. Technical fields have
been omitted.

36



Case study

4.2 Employed tools
The model implementation is performed with an hybrid approach in order to comply
with the diverse requirements at design time:

• a solution that can provide an immediate improvement in the automation of
the data ingestion step

• a model that can operate in continuity with the already existing dashboards
and Data Visualization tools (such as Microsoft Power BI)

• the cost-effective choice to employ open-source instruments which are compat-
ible with the chosen cloud platform

Among the open-source options, the most suitable pipeline design software is
Pentaho Data Integration due to its compatibility with the underlying SQL
Server architecture. Pentaho jobs are planned to be scheduled on a daily basis
on the on-premise server of the customer for the ETL section, where a temporary
replica of the Data Warehouse is stored.

The Load operation stores data into a Data Warehouse created on Google Big-
Query as a first step of the full migration to Google Cloud Platform services.

All the code sections are developed in Bash and Python 3.11.6 with the aid of
the modules:

• google-api-python-client for the API calls

• google-auth-oauthlib for Google APIs authorization

• google-cloud-bigquery for loading data into Google BigQuery

• selenium for the WebDriver implementation

• pandas and numpy for data internal representation

• scikit-learn for clustering algorithms

• seaborn and matplotlib for data visualization

37



Chapter 5

Data ingestion and
integration

The first step in the data pipeline planning is the ingestion from the data sources.
In the case study, the customer needs to integrate two sources, which are two differ-
ent social media platforms: YouTube and LinkedIn. The former provides an easy
access to its own APIs, while the latter requires further methods to automate the
extraction process, such as the webdriver Selenium. The ingestion and the inte-
gration layers are encompassed in a Pentaho Data Integration job, which partially
replicates the company framework in order to perform ETL operations. The result-
ing Data Warehouse is loaded on Google BigQuery as a first step for a migration
on Google Cloud Platform.

5.1 Data ingestion layer
The ETL pipeline initially launches the L0 layer, which consists of three distinct
jobs that acquire all the records from the two YouTube channels and from the
LinkedIn profile produced from the parameter CAP_DATE of the last job, which
is the last date present in the records of the most recent incremental update (stored
for each table in the CAP_ID field of TABLE_MANAGER). Since both YouTube
and LinkedIn do not provide data for the current day, the latest data point is dated
one day before the request timestamp. The CAP_DATE parameter is assigned
to the variable START_DATE and the variable END_DATE is calculated; for
the initial load, the default value "2000-01-01" is chosen in order to guarantee a
complete history of the available data.

Each table load process is uniquely identified in the TABLE_MANAGER, so
that the fields IDENTITY and GRP_NAME, passed to the jobs as parameters,
allow them to identify the operation in progress.

The Bash scripts run_youtube_api.sh and run_linkedin_checks.sh are mutually

38



Data ingestion and integration

exclusively called depending on the data source ingested by the current job:

• run_youtube_api.sh, the "YouTube load script", sets up a virtual environ-
ment, acquires the parameters and log options, and finally runs the Python
script youtube_main.py, which is responsible of providing a given DLT table
with the most recent records by calling the YouTube API. For instance, the
command line to execute the script in order to insert the metrics of the chan-
nel "YTA" in a date range between July 2023 and August 2023 into the table
DLT_YT_MAIN_METRICS is

python youtube_main.py -t DLT_YT_MAIN_METRICS -u YTA \
--start_date 2023-07-01 --end_date 2023-08-31

• run_linkedin_checks.sh, the "LinkedIn load script", runs two scripts. First,
the linkedin_main.py Python script is launched to simulate the user inter-
action with LinkedIn website in order to download the current delta of data.
Afterwards, the same operations as the YouTube load scripts are performed
by executing the li_checks.py Python script for each table. Since a single
LinkedIn user is included in the data sources, the user parameter is not present;
in addition, a single date acting as CAP_DATE is passed as parameter to both
scripts.
E.g. The commands executed by the LinkedIn load script for the staging table
DLT_LI_FOLLOWER_METRICS starting from July 2023 is

python linkedin_main.py -d 2023-07-01
python li_checks.py -t DLT_LI_FOLLOWER_METRICS -d 2023-07-01

Both scripts produce one or more JSON files containing input data for the
subsequent step of the pipeline. Each job’s flow is put into a wait state until the
resulting JSON files are ready for elaboration, and calls the DLT table mapping
thereafter. The last operation performed by load jobs is the insertion of the outcome
of the job and additional metadata in the management tables through the execution
of the EndProcessTable transformation. Figure 5.1 illustrates the complete visual
mapping of the load jobs.

5.2 YouTube data sources
The primary requirement for data ingestion from YouTube is the availability of
source data for the objective KPIs, which need metrics such as the number of views
for a certain video, the daily amount of likes, shares and comments for a video de-
pending on the subscription status. YouTube exposes two types of API services for

39



Data ingestion and integration

Figure 5.1: Load job for each DLT table in Pentaho. Cap date is set first, then
a different script is called depending on the source. Finally, data is written in the
DLT tables and metadata is stored in management tables.

the purpose: YouTube Data API and YouTube Analytics and Reporting API. API
requests, which are performed at the L0 layer of the ETL model, employ OAuth
2.0 authorization methods to grant access to private data and provide records con-
taining both metrics and descriptive attributes. The ingestion is designed to follow
an incremental pattern and API responses are stored in temporary JSON files in
the staging area, which are pre-processed before feeding the ETL pipeline.

The YouTube load script is the primary responsible of the ingestion phase by
instantiating one of two possible API flows, depending on the table execution pa-
rameter.

The first flow grants access to the YouTube Data API service in order to retrieve
a comprehensive list of videos from the channel with relative descriptive information
and stores it in the staging JSON file tmp_DLT_YT_VIDEO_parsed.json; a cleansed
version of the obtained video identifiers is memorized as a list in the temporary file
videos.json, which is provided as input for the second flow.

The second kind of flow queries the YouTube Analytics API service for obtaining
the metrics for each video in the temporary file and stores the results in two staging
files:

• tmp_<table-name>.json, which contains the raw API response as a backup
(e.g. tmp_DLT_YT_VIEWS_PER_DEVICE.json)

• tmp_<table-name>_parsed.json, which feeds the next steps of the pipeline
(e.g. tmp_DLT_YT_VIEWS_PER_DEVICE_parsed.json)

Once the temporary files are ready, a table-specific API_to_DLT transformation
loads the records into the respective DLT table.

40



Data ingestion and integration

5.2.1 OAuth Authentication

Since both Data and Analytics API services access private user data on behalf
of its owner, OAuth 2.0 authentication and authorization mechanisms must be
implemented. A pair of strings, the client ID and the client secret, is generated
in advance to identify the application that invokes the APIs and is stored on the
endpoint. Applications query the OAuth server requesting an authorization code,
a unique string that identifies a set of permitted operations for an API service user
for a specific application. Therefore, the user authenticates on its Google login page
and provides consent on the API access scope. The authorization code is thereby
returned to the application, which exchanges it with the authorization server for
another couple of strings, the access token and the refresh token. The access token
is memorized by the application until its expiration and it is attached to each API
call to the YouTube server, which supplies its response without the user’s need to
authenticate again. Since access tokens have a limited validity in time, the refresh
token must be exchanged for a new access token when the previous one expires.

In a server-to-server architecture, the implementation of an automated authen-
tication flow involves the employment of a service account, which is an applica-
tion account that serves as a mediator between user and server, in a two-legged
OAuth flow [45]. Despite service accounts empower a communication pattern with
YouTube services without requiring user’s interaction, their usage is limited to
Google Workspace domains, which must be directly managed by the responsible
organization. The customer aims to fully migrate on Google Cloud Platform, how-
ever they requested to configure their domain at a second time, leading to choose
the standard authorization approach for the current project.

5.2.2 YouTube Analytics and Reporting API

YouTube exposes two kinds of reporting and analyzing views, interactions and
other performance metrics on a given YouTube channel, called YouTube Analytics
API and YouTube Reporting API. The main difference between the two services
resides in the availability of reports related to system-managed ad campaigns [46].
Despite YouTube Reporting API being the most suitable API service, since it
targets data mining applications and tools, it only provides predefined daily reports,
being unsuitable for the planned in-dept analysis. YouTube Analytics API service
has therefore been chosen with the aid of google-api-python-client module.

41



Data ingestion and integration

Figure 5.2: Client-Server pattern for YouTube API services

Every YouTube Analytics API call requires the following parameters:

• ids the channel identifier, set to "channel==MINE" for the channel owned by
the authenticated user

• video the unique video identifier, applied as a filter

• dimensions the comma-separated list of dimensions that define the response
granularity

• metrics the list of measurements of interest, separated by commas

• sort the key of the response sorting, required by all the API reporting queries,
set to "day" (the ascending order is set when not specified)

• startDate defines the time interval lower bound of the incremental update

• endDate represents the last day of the time interval, generally set to one day
before the execution date

42



Data ingestion and integration

The two JSON files that store a YouTube API response have substantially dif-
ferent formats.

The raw version of the response is a JSON object with three key-value pairs: a
list of objects that define the column names and types, an API tag, and a list of
records (Figure 5.3a).

The cleansed version houses a list of objects with the same structure as the
respective DLT table in a key-value pair fashion (Figure 5.3b). Since the quantity
of requested fields is limited, data types are dropped when parsing the raw response
and tackled at a later stage, during data quality checks.

(a) Raw JSON file

(b) Parsed JSON file

Figure 5.3: Examples of a raw JSON file and the relative parsed version for
YouTube API.

43



Data ingestion and integration

5.3 LinkedIn
LinkedIn provides a visualization page on the Analytics section of the website for re-
porting data about visitors, followers and content engagement. At project time, cus-
tomer manually downloaded reports from the export function on the page, thereby
obtaining an Excel spreadsheet for each tab of the LinkedIn Analytics tool with
a filename containing the name of the LinkedIn profile and the download times-
tamp in epochs (e.g. customer-page-name_content_1690808129824.xls for the
content metrics of "Customer Page Name", downloaded on 2023-07-31 at 12:55:29).

Although LinkedIn APIs are available, their usage needs the authorization from
the platform: in order to supply an automated time-saving solution while the appli-
cation is under approval, a demo of the automated LinkedIn ingestion process has
been developed by leveraging the implementation of a browser automation agent
with the Selenium WebDriver framework in Python.

5.3.1 Automation with Selenium
Selenium is a framework that empowers the automation of user interaction with a
web browser by defining an instance of the WebDriver interface [47]. The driver,
which is responsible of the web browser environment initialization, is capable of
accessing and manipulating Document Object Model (DOM) of a HTML web page
and interacting with it, simulating the user behavior during navigation on a website.

The LinkedIn load script is designed to run seamlessly during the migration from
the manual ingestion to the automated procedure, hence a staging folder where all
the spreadsheets are stored is created beforehand and it is accessed during the load
job.

The script creates an instance of a Google Chrome driver and navigates to
the LinkedIn sign in page. The driver interacts with the web page by locating
the HTML elements through the XML Path Language (XPath) and putting the
process into a WAIT status until the target element is available. When the pointed
object has the requested properties, such as a button being clickable or a text box
allowing text input, the corresponding action is carried out and the next iteration
of the navigation flow is processed. A registered profile with viewer permissions
on the company analytics is logged in, resulting in a redirection to the LinkedIn
homepage. Security best practices require user’s credentials not to be hard-coded,
hence the password string is typed in a command line prompt during development.
An enciphered version of the sensitive login information is going to be stored at
a production stage on the on-premise storage, where other security policies have
already been implemented to protect reserved data.

The browser instantiated by the driver redirects to the LinkedIn Analytics page
and queries the user interface by clicking the Export button first, then selecting
the date range between CAP_DATE and the last functional date for analysis (i.e.

44



Data ingestion and integration

Figure 5.4: LinkedIn Analytics web page example

one day before the current timestamp). As soon as the report is ready, the file is
downloaded in the staging directory, which has been defined in the driver options.
A download operation is performed for all the three required files:

• <customer-page-name>_content_<epoch-timestamp>.xls

• <customer-page-name>_followers_<epoch-timestamp>.xls

• <customer-page-name>_visitors_<epoch-timestamp>.xls

45



Data ingestion and integration

The WebDriver script checks the existence of Excel files for the current day, then
it locks a shared resource to ensure files are downloaded exactly once. The script
instances that do not perform the download operations are put on a WAIT state
until the leading process notifies them that files are ready to be read. By keeping
the download and actual ingestion steps decoupled, LinkedIn load processes can
benefit from further parallelization.

Finally, the main instance produces a JSON file listing all the spreadsheets
involved in the current load, which is fed to the next stages of the pipeline.

5.3.2 Ingestion from spreadsheets
Unlike YouTube API calls, which provide targeted queries for the specific purpose
of populating DLT tables, LinkedIn spreadsheets are organized in separate sheets,
each one containing a standard report.

• In the content file two sheets are available: the first presents the overall daily
content engagement metrics with a distinction between organic and sponsored
measurements, while the second lists the descriptive attributes of the content
published during the selected time interval and some aggregated metrics.

• The followers file supplies a main sheet with the daily metrics about organic
and sponsored followers, as well as a sheet for aggregate data on different di-
mensions such as location, job characteristics and the job field of the followers.
Despite each sheet in the file being mapped to a separate DLT table, mappings
are carried out in a single transformation (API_to_DLT_LI_FOLLOWER_METRICS,
illustrated in Figure 5.6).

• The visitors file presents the same sheets structure of the followers file, apart
from the available fields for the daily metrics, which are split according to the
visited page and the device used.

Figure 5.5: LinkedIn content data ingestion from spreadsheets in DLT tables.

46



Data ingestion and integration

Figure 5.6: API_to_DLT_LI_FOLLOWER_METRICS transformation. The
JSON produced by the first script provides a list of Excel files containing six differ-
ent sheets, each one being processed separately and feeding a different DLT table.

5.4 Data quality
The Data quality step is performed both on DLT tables and records stored in the
ERR tables which have been discarded from previous load iterations. The two input
sources undergo referential integrity checks, NULL values for NOT NULLABLE
fields are standardized and data type constraints are applied. Qualified records are
then inserted into OK tables.

Data quality on YouTube tables
For the YouTube branch of L1 layer, every record represents measurements re-
ferred to a video in the respective table: since the referential integrity checks
are carried out on the video dimension, which is managed by the pipeline, a
complete parallelization is not feasible. The most efficient approach consists in
applying data quality rules on the video dimension and performing data vali-
dation on the ODS_VIDEO table before a parallel execution of the L1 opera-
tions on other tables. By these means, a lookup can be performed on videoId
for the tables DLT_YT_MAIN_METRICS, DLT_YT_VIEWS_PER_DEVICE,
and DLT_YT_VIEWS_PER_TRAFFIC_SOURCE, for which the field has a for-
eign key constraint.

Additional dimensions, such as the viewer’s subscription status, the device used
for playing the video and details on the origin of the traffic cannot be retrieved by

47



Data ingestion and integration

ad-hoc API calls and must be obtained from other staging tables.
The following tables are thereby populated during the step from DLTs to OKs:

• OK_YT_SUBSCRIBED describes the available subscription statuses for
all the YouTube data points, and its records derive from the staging table
DLT_YT_VIEWS_PER_DEVICE. A supplementary record for NULL val-
ues is inserted manually during the mapping.

• OK_YT_DEVICE_TYPE bears the principal descriptive attribute for
metrics that depend on the device type. Its ingestion source is the table
DLT_YT_VIEWS_PER_DEVICE and a dummy value for NULL records is
added as well. Despite being scalable, the set of possible values is limited by
YouTube APIs:

– DESKTOP
– GAME_CONSOLE
– MOBILE
– TABLET
– TV
– UNKOWN_PLATFORM

• OK_YT_TRAFFIC_SOURCE stores the descriptive information about
the origin of interactions with the videos. The extraction process from the table
DLT_YT_VIEWS_PER_TRAFFIC_SOURCE follows the same pattern as
the previous ones, with a placeholder value for NULL records. Similar to
device types, the insight traffic sources are determined by YouTube APIs, and
the following are examples of potential values:

– ADVERTISING
– EXT_URL
– NO_LINK_EMBEDDED
– NO_LINK_OTHER
– NOTIFICATION
– PLAYLIST
– SHORTS
– SUBSCRIBER
– RELATED_VIDEO
– YT_CHANNEL
– YT_OTHER_PAGE
– YT_SEARCH

48



Data ingestion and integration

Figure 5.7: DLT to OK table mapping for metrics relative to the device type.
Two further OK tables are obtained with this transformation.

Data quality on LinkedIn tables
DLT tables for LinkedIn data do not require referential integrity checks since dimen-
sion tables are not available at the data quality stage: they are rather derived from
validated records during the Operational Data Store population. Three groups of
staging tables are identified depending on the sequence of transformations applied
from DLT to ODS:

• Tables that enclose metrics with fine granularity that have been extracted
from the principal sheet, which are replicated to the OK level after replacing
NULL values and performing basic data type checks (e.g. integers are positive
and dates exist) and merged into the ODS. Three tables in the L1 layer are
populated in this case:

– ODS_LI_CONTENT_METRICS

– ODS_LI_FOLLOWER_METRICS

– ODS_LI_VISITOR_METRICS

• Tables with aggregated metrics for a single dimension follow a standard pipeline
from DLT to OK tables and from OK tables to ODS, while the dimension is
extracted once the records have been stored in the L1 layer and it is immedi-
ately placed in its respective ODS table. Five dimension tables are populated
in this scenario:

– ODS_LI_COMPANY_SIZE

– ODS_LI_JOB_LEVEL

– ODS_LI_JOB_ROLE

49



Data ingestion and integration

– ODS_LI_JOB_AREA

– ODS_LI_GEOGRAPHY

Since followers and visitor metrics tables share the same structure except for
the metric they store, ODS tables records are either gathered from a single
source, if the dimension descriptive field has a limited set of values, or from
both tables when the set cardinality is high and cannot be anticipated before-
hand. The firs three tables of the aforementioned list belong to the former
scenario, while the others fall into the latter.

• There is a single dimension table at this stage directly obtained from LinkedIn,
DLT_LI_ALL_POSTS, that encompasses content information and aggre-
gated metrics. Since no other level of granularity is available, these metrics
are kept in the dimension ODS table rather than a separate fact table.

Since there are dependencies among LinkedIn data quality mappings, DLT_to_OK
jobs can be fully parallelized, whereas the execution order of OK_to_ODS jobs is
illustrated in Figure 5.8.

Figure 5.8: A comprehensive representation of the L1 mappings related to
LinkedIn source tables.

50



Data ingestion and integration

5.5 Data Integration and enrichment

Data Integration is the ETL step in which information from different sources is
gathered and prepared for the visualization layer. ODS tables provide a reconciled
version of the transactional records which feed the subsequent MDM stage, where
the actual integration is carried out, and the OUT stage, where data is prepared
accordingly to the Data Warehouse model.

The main difference between the company framework and the employed pipeline
is in the presence of MDM tables. Although two sources are ingested by the ETL
application, the metrics they serve are different enough to lean towards a multiple
fact table approach: at the end of the process, all the YouTube metrics will be col-
lected into the table FACT_YT_METRICS, while the LinkedIn branch of the pipeline
will feed the table FACT_LI_METRICS. Due to the branching of the flow into two
separate data streams, MDM tables are not required and surrogate keys are gen-
erated in the ODS tables. Being in a SQL Server environment, surrogate keys are
assigned an IDENTITY constraint, thus leaving their management entirely to the
underlying DBMS.

The absence of MDM tables raises the issue of data enriching: whereas the
framework places Machine Learning operations in the MDM mappings, a different
architecture with Advanced Analytics at the end of the pipeline has been chosen
in order to provide a more comprehensive analysis, following the solution proposed
by the Google Cloud best practices.

All the ODS tables are mapped to the OUT tables according to the model
provided in Chapter 4.

Figure 5.9: Full ETL pipeline architecture. Machine Learning is performed after
the Data Warehouse level, before visualization.

51



Data ingestion and integration

5.6 Loading into Google BigQuery
The last step of the pipeline is replicating the delta of data from the local Data
Warehouse to Google BigQuery. In order to provide the same output to both
targets, the L2 jobs retrieve the delta of data from the OUT tables and fork the
flow in two directions:

• Data is written locally in the L2 tables

• A temporary CSV file is created for each table; then the Python script bqload.py
is run for each of the staging file. The script is responsible of invoking the
Google BigQuery APIs to ingest the cloud Data Warehouse with new data. A
code sample of the script can be found in Figure 5.10.

Figure 5.10: Sample code for the script bqload.py.

52



Chapter 6

Machine Learning and
Advanced Analytics

The first goal of the thesis is automating the ingestion and the integration of social
media reporting data, which is carried out by an ETL pipeline on an hybrid cloud
solution. The second aim of the work resides in a deeper study of the current
state of the collected data with Machine Learning techniques in order to provide
an enhancement in the customer’s analysis.

More specifically, the analysis focus dwells in three key points:

1. visualizing the current dataset for performing a qualitative research on the
relevant characteristics of the dataset

2. looking for characterizing features which are decisive in partitioning the dataset
into classes, leveraging Unsupervised Learning techniques

3. setting up a Supervised Learning model which allows predicting the classes of
unseen data depending on the previous knowledge

In order to preserve sensitive information, noise is added to data elements and
all the measurement units are omitted. Despite not supplying the actual magnitude
of the phenomena may impede a clear dissertation, the patterns will have a central
role in the following analysis.

6.1 Dataset overview
The preliminary step of the analysis is the visualization of the current state of the
dataset in order to determine whether some inference can be provided before apply-
ing computationally expensive and time-consuming techniques, which are sensitive
to noise and redundant data. Reducing a Machine Learning model complexity

53



Machine Learning and Advanced Analytics

makes it less prone to overfitting, moreover a balanced workload is beneficial for its
performance.

The dataset is composed of two subsets, one for each fact table previously pop-
ulated. All the metrics have been modeled as non-negative additive values, while
the dimensions are defined as categorical attributes represented by integers (the
surrogate keys). In the Data Warehouse design phase, some fields have been added
for legacy purposes, although their content is absent: before visualizing the feature
distribution, a targeted query can provide this piece of information. For research
purposes, only YouTube data is reported.

The table FACT_YT_METRICS has 5 categorical features, which are the modeled
dimensions, and 24 numerical attributes. The following SQL query is executed for
retrieving a summary about the usage of the latter:

SELECT
SUM(VIEWS) AS TOT_VIEWS

, SUM(RED_VIEWS) AS TOT_RED_VIEWS
, SUM(ESTIMATED_MINUTES_WATCHED) AS TOT_ESTIMATED_MIN_WATCHED
, SUM(ESTIMATED_RED_MINUTES_WATCHED) AS TOT_ESTIMATED_RED_MIN_WATCHED
, SUM(LIKES) AS TOT_LIKES
, SUM(DISLIKES) AS TOT_DISLIKES
, SUM(VIDEOS_ADDED_TO_PLAYLIST) AS TOT_PLAYLIST_ADD
, SUM(VIDEOS_REMOVED_FROM_PLAYLIST) AS TOT_PLAYLIST_REMOVE
, SUM(SHARES) AS TOT_SHARES
, AVG(AVERAGE_VIEW_DURATION) AS AVG_AVERAGE_VIEW_DURATION
, AVG(AVERAGE_VIEW_PERCENTAGE) AS AVG_AVERAGE_VIEW_PERCENTAGE
, AVG(ANNOTATION_CTR) AS AVG_ANNOT_CTR
, AVG(ANNOTATION_CLOSE_RATE) AS AVG_ANNOT_CR
, SUM(ANNOTATION_IMPRESSIONS) AS TOT_ANNOT_IMPRESSIONS
, SUM(ANNOTATION_CLICKABLE_IMPRESSIONS) AS TOT_ANNOT_CLICK_IMPR
, SUM(ANNOTATION_CLOSABLE_IMPRESSIONS) AS TOT_ANNOT_CLOSE_IMPR
, SUM(ANNOTATION_CLICKS) AS TOT_ANNOT_CLICKS
, SUM(ANNOTATION_CLOSES) AS TOT_ANNOT_CLOSES
, AVG(CARD_CLICK_RATE) AS AVG_CARD_CR
, AVG(CARD_TEASER_CLICK_RATE) AS AVG_CARD_TEASER_CR
, SUM(CARD_IMPRESSIONS) AS TOT_CARD_IMPR
, SUM(CARD_TEASER_IMPRESSIONS) AS TOT_CARD_TEASER_IMPR
, SUM(CARD_CLICKS) AS TOT_CARD_CLICKS
, SUM(CARD_TEASER_CLICKS) AS TOT_CARD_TEASER_CLICKS
FROM VGMARKETING.L2.FACT_YT_METRICS;

As expected, the result of the query shows that all the fields related to the
YouTube annotations and informative cards functions are not used, thereby limiting
the analysis to 11 features, listed in Table 6.1 with the average value for each field
retrieved by the query.

54



Machine Learning and Advanced Analytics

Field name Query output Aggregation
VIEWS 151470 SUM
RED_VIEWS 418 SUM
ESTIMATED_MINUTES_WATCHED 239338 SUM
ESTIMATED_RED_MINUTES_WATCHED 980 SUM
LIKES 790 SUM
DISLIKES 33 SUM
VIDEOS_ADDED_TO_PLAYLIST 341 SUM
VIDEOS_REMOVED_FROM_PLAYLIST 55 SUM
SHARES 1452 SUM
AVERAGE_VIEW_DURATION 49 AVG
AVERAGE_VIEW_PERCENTAGE1 13.65 AVG

Table 6.1: List of selected features for FACT_YT_METRICS, with relative query
output.

Distributions of the selected features are reported in Figure 6.2. For bet-
ter representation, some features like VIEWS, ESTIMATED_MINUTES_WATCHED, and
AVERAGE_VIEW_PERCENTAGE are reported in a logarithmic scale. Here some consid-
erations on the distributions:

• The feature VIEWS resembles a Gaussian distribution, with the presence of
many outliers that extend significantly the range scale. This feature would
benefit from Z-score normalization [48].

• AVERAGE_VIEW_DURATION and AVERAGE_VIEW_PERCENTAGE are shaped like a
mixture of Gaussian distributions in which at least two clusters can be identi-
fied with a qualitative approach. Thereby, their features can supply the most
prominent contribute to the cluster partitioning.

• Considerable outliers can be identified in ESTIMATED_RED_MINUTES_WATCHED
and SHARES, leading to noise during clustering operations.

• Features related to user’s interaction such as LIKES and DISLIKES, and playlist
features (VIDEOS_ADDED_TO_PLAYLIST and VIDEOS_REMOVED_FROM_PLAYLIST)
are fairly evenly distributed in a limited support; further pre-processing may
be required in order to provide more efficient Supervised Learning models for
classification.

1The average view percentage is calculated by YouTube APIs as estimatedMin-
utesWatched/videoDuration. Watch time can be higher than the video duration, since the user
can navigate freely in the video during a single session (its domain is not [0, 100], but rather R+

0 ).

55



Machine Learning and Advanced Analytics

Figure 6.1: Features distribution for the relevant metrics in YouTube data.

As shown in the correlation heatmap in Figure 6.2, features are generally weakly
correlated with the exception of:

• ESTIMATED_MINUTES_WATCHED and AVERAGE_VIEW_DURATION, which are seman-
tically similar

• AVERAGE_VIEW_DURATION and AVERAGE_VIEW_PERCENTAGE, since their mean-
ings are closely related to each other (an increasing average view duration
reflects in an higher view percentage)

Since no relevant correlation between features can be extracted from the correlation
matrix, data is ingested in clustering algorithms without further processing.

Figure 6.2: Correlation heatmap for the selected features of YouTube metrics

56



Machine Learning and Advanced Analytics

Figure 6.3: Pair-wise distributions and histograms for the selected features. All
the axes use logarithmic scales.

6.2 Clustering analysis

Two diverse clustering techniques are applied and compared with different hyperpa-
rameters: K-Means and DBSCAN. From a visual preliminary analysis of Figure 6.3,
the most promising results are expected from density-based algorithms such as the
latter. Moreover, unlike K-Means, DBSCAN does not require to fix the number
of clusters in advance, being more robust to noise and outliers. Conversely, all
the DBSCAN clusters are formed using the same hyperparameters, resulting in an

57



Machine Learning and Advanced Analytics

inefficient partition for clusters with different densities.

6.2.1 K-Means clustering
Recalling the definition of the K-Means clustering algorithm objective function:

J = arg min
C

K∑︂
i=1

∑︂
x∈Ci

∥x− µi∥2, µi = 1
|Ci|

∑︂
x∈Ci

x

where µi is the centroid of the cluster Ci.
Since no ground truth is available through labels on training data, clustering per-

formance is tracked by employing the mean Silhouette Coefficient (SC) evaluation
metric [49, 50]:

SC = max 1
N

N∑︂
i

b(i)− a(i)
max{a(i), b(i)}

where a(i) is the average distance of the i-th point from the other points of the
cluster, while b(i) is the average distance of the same point from the points assigned
to the nearest cluster. In Table 6.2 silhouette values for K-Means are reported in
relation to the hyperparameter of the algorithm, which is the number of clusters.
A visual representation of the SC values is presented in Figure 6.4.

#Clusters SC
2 0.8242
3 0.7675
4 0.7835
5 0.7866
6 0.5441
7 0.5591
8 0.5452
9 0.5447
10 0.4451
11 0.4340
12 0.4354
13 0.4523
14 0.4582
15 0.4503

#Clusters SC
16 0.4632
17 0.4665
18 0.4920
19 0.4823
20 0.4913
21 0.4930
22 0.4540
23 0.4431
24 0.4477
25 0.4501
26 0.4498
27 0.4472
28 0.4440
29 0.4434

Table 6.2: Silhouette Coefficients for K-Means clustering with k = 2, 3, . . . , 28

The three most effective clustering are obtained with the number of clusters
k ∈ {2,4,5}. However, the most suited hyperparameter will be determined after
comparing the results with DBSCAN clustering analysis obtained in Section 6.2.2.

58



Machine Learning and Advanced Analytics

Figure 6.4: Line plot for Silhouette Coefficient values obtained for K-Means hy-
perparameter tuning performed on YouTube data.

6.2.2 DBSCAN clustering
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm
requires the tuning of two hyperparameters:

• minPts, the number of points required to form a core point

• ϵ(eps), the distance in which two points are considered neighbors

The analysis is carried out by performing a grid search on ϵ and minPts on
the Z-normalized dataset made of n samples. Values for ϵ have been selected on
a logarithmic scale between 10−2 and 103 for a first rough search, while minPts
is chosen so that minPts ∈ {2,4,8,16}. A finer tuning is then performed with a
linear scale of ϵ in the most promising interval. The mean Silhouette Coefficient
is chosen as main evaluation metric for a direct comparison with the results of K-
Means clustering. However, the number of resulting clusters K, the number of noise
points Nnp, and the outlier ratio Nnp

n
are taken into account, in order to prevent

the inclusion of too many outliers.
The most notable results for the second tuning phase are reported in Table 6.3

and Figure 6.5, for which ϵ ∈ [1, 10].
An increasing value of ϵ generally results in fewer, larger clusters that include

the majority of the points. Higher minPts settings bring to the same results for
smaller ϵ ranges, converging to a binary partition rather earlier than lower values
of minPts. For minPts = 16 the Silhouette Coefficient can be computed only

59



Machine Learning and Advanced Analytics

minPts ϵ K Nnp SC Outlier ratio (%)
2 3.4 4 27 0.4353 2.0
2 7.6 2 3 0.7317 0.2
4 3.5 2 29 0.5332 2.1
8 2.6 2 74 0.4265 5.5
16 1.3 2 1079 -0.1734 80.0

Table 6.3: Most notable results for grid search on DBSCAN for Z-Score normalized
YouTube data. The noise cluster is excluded from the count.

Figure 6.5: Silhouette plot of DBSCAN grid search on Z-Score normalized
YouTube data.

for a small subset of values of ϵ due to numerical issues, thus being discarded
from the analysis. Furthermore, a noteworthy insight can be provided for this
hyperparameters setting, where the SC drops to negative values with higher ϵ and
presents a noise points ratio of 80.0%. The setting (ϵ = 1.3, minPts = 8) undergoes
a similar inference, where the outlier ratio is considerably lower, but presenting a
SC close to 0 nevertheless.

For minPts = 2 the SC reaches its plateau at ϵ ≈ 6.0, while higher minimum
core points settings converge at ϵ ≈ 2, despite having a lower SC. The outlier ratio
grows accordingly with the value of minPts, meaning that requiring denser clusters

60



Machine Learning and Advanced Analytics

involves more noise points.
Whereas the highest values of SC are reached for ϵ, the inclusion of many noise

points discourages from selecting these settings. Moreover, the only hyperparam-
eters allowing a multi-class partitions are (ϵ = 3.4, minPts = 2), with an under-
performing SC. The most promising hyperparameters for the addressed tasks are
therefore:

• Binary clustering (K = 2). ϵ = 7.6, minPts = 2 with SC = 0.7317 and
0.2% outliers

• Multi-class clustering (K = 4). ϵ = 3.4, minPts = 2 with SC = 0.4353
and 2.0% outliers

6.2.3 Unsupervised model selection

The binary clustered dataset for K-Means and DBSCAN algorithms is respectively
illustrated in Figure 6.7 and Figure 6.8. While the former is a straightforward
partition of the dataset, the latter is, in reality, a partition in three groups, with
the third one being the outliers cluster. While reaching a high value of SC = 0.7317,
DBSCAN is still inferior to K-Means in binary clustering due to its unbalancing in
the cardinality of the two partitions.

In Figure 6.9 and Figure 6.10 a visual representation of the clusters is pro-
vided for multi-class clustering respectively for K-Means and DBSCAN. Unlike the
expectations, DBSCAN has been proved inefficient in providing evenly shaped clus-
ters: the most prominent cluster includes the majority of data points, relegating
the elements forming other clusters to a role similar to outliers. Furthermore, the
DBSCAN evaluation metric indicates a significantly lower performance than its
K-Means counterpart.

In both cases, the final choice is the partition with K-Means.

6.2.4 Cluster labeling

Two kinds of analyses can be performed starting from the results stated in Sec-
tion 6.2.3, which are here reported with more in depth insights.

Users behavior analysis

In this scenario, a label between H0 and H1 is assigned to the data points in order
to discriminate them with a binary classification task. The selected model is the
clustered version of the Z-Score normalized dataset with K = 2.

61



Machine Learning and Advanced Analytics

(a) Label L=H0 (b) Label L=H1

Figure 6.6: Per-class Pearson Correlation heatmap on clustered YouTube data.

By a qualitative visual analysis of the feature plots in Figure 6.8 and the Pearson
correlation heatmaps in Figure 6.6, we can infer:

• The most discriminant feature is ESTIMATED_MINUTES_WATCHED, whose sam-
ples have slightly overlapping per-class distributions that can be modeled as
Gaussian distributions. Since the analysis is binary, it is safe to assume that
the classes refer to the users’ engagement: an higher watch time results in a
more interested viewer.

• Per-class correlation heatmaps confirms the high correlation between the met-
rics AVERAGE_VIEW_DURATION and AVERAGE_VIEW_PERCENTAGE.

• The correlation matrix for the records assigned to cluster H0 illustrates a sig-
nificant correlation among the majority of the features, entailing the potential
need of further processing. The qualitative interpretation of these relation-
ships is that the number of views for short times is strictly related to the
playlist usage. The watch later functionality, which allows users to keep the
interesting videos in a single location for watching them in later times, appears
to be crucial to define “casual users”, who have a low watch time and do not
interact much with the platform.

• By analyzing the correlation between VIEWS and ESTIMATED_MINUTES_WATCHED
in clusterH1, we can assume that the cluster represents a small subset of “loyal
users”, who spend much more time watching videos and tend to complete the
vision more than casual users.

In conclusion, we can state that the two clusters properly approximate the be-
havior of casual users and loyal users, relatively.

62



Machine Learning and Advanced Analytics

Figure 6.7: Labeled features distribution for K-Means clustering on YouTube
data with K = 2.

Figure 6.8: Clustered features distribution for DBSCAN on YouTube data with
(ϵ = 7.6, minPts = 2), K = 2.

63



Machine Learning and Advanced Analytics

Figure 6.9: Labeled features distribution for K-Means clustering on YouTube
data with K = 4.

Figure 6.10: Clustered features distribution for DBSCAN on YouTube data with
(ϵ = 3.4, minPts = 2), K = 4.

64



Chapter 7

Conclusion and next steps

The work supplies an automated ETL pipeline for integrating YouTube and LinkedIn
engagement metrics for a customer of the company Mediamente Consulting, while
performing Data Enrichment tasks with the aid of Unsupervised Learning tech-
niques. The main aim is satisfying the customer requirements to gather the diverse
sources into a centralized architecture for Data Visualization and further Machine
Learning analysis. This thesis covers in depth the ETL pipeline and the design of
the Data Warehouse. Furthermore, preliminary insights for the Data Enrichment
step are provided through the implementation of clustering models.

The ingestion step involves the acquisition of the reporting metrics provided by
two social media platforms, YouTube and LinkedIn. For what concerns the former,
ingestion is carried out by implementing a Python script that leverages YouTube
Data API and YouTube Analytics API services in order to perform a daily incre-
mental ingestion. A temporary solution for the automation of LinkedIn metrics
retrieval is given by the module Selenium WebDriver: a couple of Python scripts is
called along with the first one for downloading the reports from the LinkedIn web-
site and feeding them in a compatible format with the next stages of the pipeline.

The second phase is the proper ETL pipeline, where data is cleansed, integrated
and prepared for storage and visualization on a Data Warehouse with a multidi-
mensional model. The ingested records are stored in temporary tables, where they
undergo the planned transformations, which derive from a custom version of the
company framework. The ETL pipeline is implemented with the open-source tool
Pentaho Data Integration. At the end of the stage, data is ready to be stored
in a Data Warehouse. Google BigQuery has been appointed by the customer as
Data Warehouse solution, thus the Load step is performed at the end of the pipeline
with the execution of a dedicated Python script, leveraging Google BigQuery APIs.

65



Conclusion and next steps

The last step is the dataset analysis performed with Unsupervised Learning tech-
niques. Clustering tasks are designed in order to search for meaningful groups of
data depending on similarities among the available metrics. Two algorithms are
chosen for this operation: K-Means and DBSCAN. Both models are evaluated by
the Silhouette Coefficient metric in various settings, in order to select a binary par-
tition model and a multi-class one. Relevant inference is drawn from the clustered
data and labels are at last assigned to the records, thus performing the Enrichment
step.

The performed work has been carried out by following the principles and best
practices of the company workflow, while exploiting the knowledge of Google Cloud
Platform resources acquired during the internship that preceded the thesis work.

7.1 Possible future works
The designed ETL pipeline is currently fully operational. Nevertheless, further
improvements can be introduced in the ingestion, enrichment, and visualization
steps.

• The ingestion of LinkedIn reports requires to be completely replaced by the
implementation of LinkedIn APIs when their access is provided by the plat-
form. This enhancement will impact positively on the performance of the
application and will be fully compliant to the original requirement.

• Despite the adequate results obtained during the Clustering step, the presence
of an high level of noise and the limited size of the dataset available at design
time have crucially affected the analysis. Some alternative clustering algo-
rithms are Bisecting K-Means, BIRCH (Hierarchical Clustering), OPTICS (a
DBSCAN variant), Gaussian Mixture Models, and Spectral Clustering. Fur-
ther variations can be applied to the distance metric used in DBSCAN. More-
over, further evaluation metrics can be defined in order to perform a better
hyperparameter tuning.

• The actual realization of a Supervised Learning model based on the clustering
labels is the next step in the project. Binary or multi-class classifier models
can be implemented through Logistic Regression models, Gaussian Mixture
Model-based classifiers or Support Vector Machines. Other solutions can be
found in Deep Learning models, such as Multilayer Perceptron (MLP) models
for classification. Recurrent Neural Networks can also be employed for a time
series analysis.

• An actual enrichment step can be implemented by training one of the Super-
vised Learning models discussed above before loading the enhanced records

66



Conclusion and next steps

into the Data Warehouse and formulating inference on newer records, which
lack a label when supplied to the pipeline.

• The company plans to fully migrate the application to Google Cloud Platform.
Other cloud Data Integration tools, such as Apache Spark, Google Dataflow,
or its fully-managed version Apache Beam can be leveraged to lift the ETL
process from the company server and scale up the application.

67





Appendix A

Data Warehouse tables

The following tables describe the Data Warehouse model in its entirety, including
technical fields.

Common tables

Here is a comprehensive list of the tables related to both YouTube and LinkedIn
fact tables.

DIM_CALENDAR

The DIM_CALENDAR table has no technical fields since its records have been
generated statically. The chosen date range goes from 2000-01-01 to 2030-12-31.

Field name Data type Primary key Nullable
DATE_SK int Yes No
ISO_DATE int No No
DAY_OF_WEEK int No No
DAY_OF_MONTH int No No
MONTH int No No
YEAR int No No
WEEK_OF_YEAR int No No

Table A.1: Full description for DIM_CALENDAR table.

69



Data Warehouse tables

DIM_DEVICE_TYPE

Field name Data type Primary key Nullable
DEVICE_TYPE_SK int Yes No
DEVICE_DESC varchar No No
HIERARCHY_DESC varchar No No
INS_TIME datetime No No
UPD_TIME datetime No No
JOBID_INS numeric(14,0) No No
JOBID_UPD numeric(14,0) No No

Table A.2: Full description for DIM_DEVICE_TYPE table.

DIM_CAMPAIGN_LABEL

Field name Data type Primary key Nullable
CAMPAIGN_LABEL_SK int Yes No
CAMPAIGN_LABEL_DESC varchar No No
INS_TIME datetime No No
UPD_TIME datetime No No
JOBID_INS numeric(14,0) No No
JOBID_UPD numeric(14,0) No No

Table A.3: Full description for DIM_CAMPAIGNtable.

70



Data Warehouse tables

YouTube tables

The following tables are specific to the YouTube portion of the Data Warehouse.

DIM_VIDEO

Field name Data type Primary key Nullable
VIDEO_SK int Yes No
VIDEO_ID varchar No No
CHANNEL_ID varchar No No
CHANNEL_TITLE varchar No No
VIDEO_DESCRPTION ntext No No
LIVE_BROADCAST_CONTENT varchar No No
PUBLISH_TIME datetime No No
PUBLISHED_AT datetime No No
VIDEO_TITLE nvarchar No No
THUMBNAIL_URL varchar No No
INS_TIME datetime No No
UPD_TIME datetime No No
JOBID_INS numeric(14,0) No No
JOBID_UPD numeric(14,0) No No

Table A.4: Full description for DIM_VIDEO table.

71



Data Warehouse tables

DIM_SUBSCRIBED

Field name Data type Primary key Nullable
SUBSCRIBED_STATUS_SK int Yes No
SUBSCRIBED_STATUS_DESC varchar No No
INS_TIME datetime No No
UPD_TIME datetime No No
JOBID_INS numeric(14,0) No No
JOBID_UPD numeric(14,0) No No

Table A.5: Full description for DIM_SUBSCRIBED table.

DIM_TRAFFIC_SOURCE

Field name Data type Primary key Nullable
TRAFFIC_SOURCE_SK int Yes No
TRAFFIC_SOURCE_DESC varchar No No
INS_TIME datetime No No
UPD_TIME datetime No No
JOBID_INS numeric(14,0) No No
JOBID_UPD numeric(14,0) No No

Table A.6: Full description for DIM_DEVICE_TYPE table.

72



Data Warehouse tables

FACT_YT_METRICS

Field name Data type Primary key
DATE_SK int Yes
VIDEO_SK int Yes
SUBSCRIBED_STATUS_SK int Yes
DEVICE_TYPE_SK int Yes
TRAFFIC_SOURCE_SK int Yes
CAMPAIGN_LABEL_SK int Yes
VIEWS int No
RED_VIEWS int No
ESTIMATED_MINUTES_WATCHED int No
ESTIMATED_RED_MINUTES_WATCHED int No
LIKES int No
DISLIKES int No
VIDEOS_ADDED_TO_PLAYLIST int No
VIDEOS_REMOVED_FROM_PLAYLIST int No
SHARES int No
AVERAGE_VIEW_DURATION int No
AVERAGE_VIEW_PERCENTAGE numeric(38,10) No
ANNOTATION_CTR numeric(38,10) No
ANNOTATION_CLOSE_RATE numeric(38,10) No
ANNOTATION_IMPRESSIONS int No
ANNOTATION_CLICKABLE_IMPRESSIONS int No
ANNOTATION_CLOSABLE_IMPRESSIONS int No
ANNOTATION_CLICKS int No
ANNOTATION_CLOSES int No
CARD_CLICK_RATE numeric(38,10) No
CARD_TEASER_CLICK_RATE numeric(38,10) No
CARD_IMPRESSIONS int No
CARD_TEASER_IMPRESSIONS int No
CARD_CLICKS int No
CARD_TEASER_CLICKS int No
INS_TIME datetime No
UPD_TIME datetime No
JOBID_INS numeric(14,0) No
JOBID_UPD numeric(14,0) No

Table A.7: Full description for FACT_YT_METRICS model.

73



Data Warehouse tables

LinkedIn tables
Tables that model the LinkedIn metrics and dimensions are listed below.

DIM_LINKEDIN_PAGE
At design time three possible values for LINKEDIN_PAGE_DESC are available, to
which an undefined value "ND" is added:

• ND

• PANORAMICS

• COMPANY_LIFE

• JOB_OFFERING

Since the table is defined at the L2 layer, it is used as lookup during the inte-
gration step of ETL.

Field name Data type Primary key Nullable
LINKEDIN_PAGE_SK int Yes No
LINKEDIN_PAGE_DESC varchar No No
INS_TIME datetime No No
UPD_TIME datetime No No
JOBID_INS numeric(14,0) No No
JOBID_UPD numeric(14,0) No No

Table A.8: Full description for DIM_LINKEDIN_PAGE table.

FACT_LI_METRICS
The fact table which has been designed for LinkedIn metrics has four dimensions:

• DATE_SK from DIM_CALENDAR

• DEVICE_TYPE_SK from DIM_DEVICE_TYPE

• LINKEDIN_PAGE_SK from DIM_LINKEDIN_PAGE

• CAMPAIGN_LABEL_SK from DIM_CAMPAIGN_LABEL

74



Data Warehouse tables

Field name Data type Primary key Nullable
DATE_SK int Yes No
DEVICE_TYPE_SK int Yes No
LINKEDIN_PAGE_SK int Yes No
CAMPAIGN_LABEL_SK int Yes No
PAGE_VIEWS int No No
PAGE_UNIQUE_VISITORS int No No
ORGANIC_FOLLOWERS int No No
SPONSORED_FOLLOWERS int No No
ORGANIC_IMPRESSIONS int No No
ORGANIC_UNIQUE_IMPRESSIONS int No No
ORGANIC_CLICKS int No No
ORGANIC_REACTIONS int No No
ORGANIC_COMMENTS int No No
ORGANIC_POST_DIFFUSIONS int No No
ORGANIC_INTEREST_PERCENTAGE numeric(38,10) No No
SPONSORED_IMPRESSIONS int No No
SPONSORED_CLICKS int No No
SPONSORED_REACTIONS int No No
SPONSORED_COMMENTS int No No
SPONSORED_POST_DIFFUSIONS int No No
SPONSORED_INTEREST_PERCENTAGE numeric(38,10) No No
INS_TIME datetime No No
UPD_TIME datetime No No
JOBID_INS numeric(14,0) No No
JOBID_UPD numeric(14,0) No No

Table A.9: Full description for FACT_LI_METRICS table.

75



Bibliography

[1] Douglas Laney. 3D data Management: controlling data volume, velocity, and
variety. 2001. url: http://blogs.gartner.com/douglaney/files/2012/
01/ad949-3D-data-Management-Controlling-data-Volume-Velocity-
and-Variety.pdf..

[2] Rob Kitchin and Gavin McArdle. «What makes Big Data, Big Data? Ex-
ploring the ontological characteristics of 26 datasets». In: Big Data & So-
ciety (2016). doi: 10 . 1177 / 2053951716631130. eprint: https : / / doi .
org / 10 . 1177 / 2053951716631130. url: https : / / doi . org / 10 . 1177 /
2053951716631130.

[3] Fabio Duarte. Amount of Data Created Daily (2023). Through Statista. Apr.
2023. url: https://explodingtopics.com/blog/data-generated-per-
day.

[4] Stacy Jo Dixon. Media usage in an internet minute as of April 2022. Through
Statista. Sept. 13, 2023. url: https://www.statista.com/statistics/
195140/new-user-generated-content-uploaded-by-users-per-minute/.

[5] Bernard Marr. Big Data: The 5 Vs Everyone Must Know. Mar. 6, 2014. url:
https://www.linkedin.com/pulse/20140306073407- 64875646- big-
data-the-5-vs-everyone-must-know.

[6] James Kobielus. Measuring the Business Value of Big Data. May 9, 2013.
url: https://web.archive.org/web/20210128191754/https://www.
ibmbigdatahub.com/blog/measuring-business-value-big-data.

[7] Vikash Ranjan. «A Comparative Study between ETL ( Extract-Transform-
Load ) and ELT ( Extract-Load-Transform ) approach for loading data into
a Data Warehouse By». In: 2009. url: http://www.ecst.csuchico.edu/
~juliano/csci693/Presentations/2009w/Materials/Ranjan/Ranjan.
pdf.

[8] Antonio Greco. «E-Commerce monitoring solution for product allocation and
marketing planning forecasting.» Master’s Thesis. Politecnico di Torino, Apr.
2018. url: http://webthesis.biblio.polito.it/id/eprint/7431.

76

http://blogs.gartner.com/douglaney/files/2012/01/ad949-3D-data-Management-Controlling-data-Volume-Velocity-and-Variety.pdf.
http://blogs.gartner.com/douglaney/files/2012/01/ad949-3D-data-Management-Controlling-data-Volume-Velocity-and-Variety.pdf.
http://blogs.gartner.com/douglaney/files/2012/01/ad949-3D-data-Management-Controlling-data-Volume-Velocity-and-Variety.pdf.
https://doi.org/10.1177/2053951716631130
https://doi.org/10.1177/2053951716631130
https://doi.org/10.1177/2053951716631130
https://doi.org/10.1177/2053951716631130
https://doi.org/10.1177/2053951716631130
https://explodingtopics.com/blog/data-generated-per-day
https://explodingtopics.com/blog/data-generated-per-day
https://www.statista.com/statistics/195140/new-user-generated-content-uploaded-by-users-per-minute/
https://www.statista.com/statistics/195140/new-user-generated-content-uploaded-by-users-per-minute/
https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know
https://www.linkedin.com/pulse/20140306073407-64875646-big-data-the-5-vs-everyone-must-know
https://web.archive.org/web/20210128191754/https://www.ibmbigdatahub.com/blog/measuring-business-value-big-data
https://web.archive.org/web/20210128191754/https://www.ibmbigdatahub.com/blog/measuring-business-value-big-data
http://www.ecst.csuchico.edu/~juliano/csci693/Presentations/2009w/Materials/Ranjan/Ranjan.pdf
http://www.ecst.csuchico.edu/~juliano/csci693/Presentations/2009w/Materials/Ranjan/Ranjan.pdf
http://www.ecst.csuchico.edu/~juliano/csci693/Presentations/2009w/Materials/Ranjan/Ranjan.pdf
http://webthesis.biblio.polito.it/id/eprint/7431


BIBLIOGRAPHY

[9] R. John Davenport. «Etl Vs Elt. A Subjective View». In: 2009. url: https:
//api.semanticscholar.org/CorpusID:18694321.

[10] Gui-xian Zhou, Qing-sheng Xie, and Yao Hu. «E-LT Integration to Heteroge-
neous Data Information for SMEs Networking Based on E-HUB». In: Fourth
International Conference on Natural Computation, ICNC 2008, Jinan, Shan-
dong, China, 18-20 October 2008, Volume 5. Ed. by Maozu Guo, Liang Zhao,
and Lipo Wang. IEEE Computer Society, 2008, pp. 212–216. doi: 10.1109/
ICNC.2008.77. url: https://doi.org/10.1109/ICNC.2008.77.

[11] Jim Harris. The growing importance of big data quality. Nov. 21, 2016. url:
https://blogs.sas.com/content/datamanagement/2016/11/21/growing-
import-big-data-quality/.

[12] H. M. N. Dilum Bandara, Xiwei Xu, and Ingo Weber. «Patterns for Blockchain
Migration». In: CoRR abs/1906.00239 (2019). arXiv: 1906.00239. url: http:
//arxiv.org/abs/1906.00239.

[13] Umeshwar Dayal et al. «Data Integration Flows for Business Intelligence». In:
Proceedings of the 12th International Conference on Extending Database Tech-
nology: Advances in Database Technology. EDBT ’09. Saint Petersburg, Rus-
sia: Association for Computing Machinery, 2009, pp. 1–11. isbn: 9781605584225.
doi: 10 . 1145 / 1516360 . 1516362. url: https : / / doi . org / 10 . 1145 /
1516360.1516362.

[14] Tsaone Swaabow Thapelo et al. «SASSCAL WebSAPI: A Web Scraping Ap-
plication Programming Interface to Support Access to SASSCAL’s Weather
Data». In: Data Science Journal (July 2021). doi: 10.5334/dsj-2021-024.

[15] Apache. Apache Beam Programming Guide. Sept. 25, 2023. url: https://
cloud.google.com/dataflow/docs/concepts/streaming-pipelines.

[16] Pwint Khine and Zhao Wang. «Data lake: a new ideology in big data era». In:
ITM Web of Conferences 17 (Jan. 2018), p. 03025. doi: 10.1051/itmconf/
20181703025.

[17] Bill Inmon. Data Lake Architecture: Designing the Data Lake and Avoid-
ing the Garbage Dump. Ed. by Technics Publications. 2016. Chap. 4. isbn:
9781634621175.

[18] Pegdwendé N. Sawadogo and Jérôme Darmont. «On data lake architectures
and metadata management». In: CoRR abs/2107.11152 (2021). arXiv: 2107.
11152. url: https://arxiv.org/abs/2107.11152.

[19] Luca Bregata. Development of a data mart to support decisions in fashion
retail store localization. Master’s Thesis. Oct. 2019. url: http://webthesis.
biblio.polito.it/12636/.

[20] Christopher Adamson. Star Schema: The complete reference. Ed. by McGraw-
Hill. 2010. Chap. 1, p. 5. isbn: 9780071744331.

77

https://api.semanticscholar.org/CorpusID:18694321
https://api.semanticscholar.org/CorpusID:18694321
https://doi.org/10.1109/ICNC.2008.77
https://doi.org/10.1109/ICNC.2008.77
https://doi.org/10.1109/ICNC.2008.77
https://blogs.sas.com/content/datamanagement/2016/11/21/growing-import-big-data-quality/
https://blogs.sas.com/content/datamanagement/2016/11/21/growing-import-big-data-quality/
https://arxiv.org/abs/1906.00239
http://arxiv.org/abs/1906.00239
http://arxiv.org/abs/1906.00239
https://doi.org/10.1145/1516360.1516362
https://doi.org/10.1145/1516360.1516362
https://doi.org/10.1145/1516360.1516362
https://doi.org/10.5334/dsj-2021-024
https://cloud.google.com/dataflow/docs/concepts/streaming-pipelines
https://cloud.google.com/dataflow/docs/concepts/streaming-pipelines
https://doi.org/10.1051/itmconf/20181703025
https://doi.org/10.1051/itmconf/20181703025
https://arxiv.org/abs/2107.11152
https://arxiv.org/abs/2107.11152
https://arxiv.org/abs/2107.11152
http://webthesis.biblio.polito.it/12636/
http://webthesis.biblio.polito.it/12636/


BIBLIOGRAPHY

[21] Red Hat. IaaS vs. PaaS vs. SaaS. June 16, 2022. url: https://www.redhat.
com/en/topics/cloud-computing/iaas-vs-paas-vs-saas.

[22] Google LLC. What is Platform as a Service (PaaS)? Apr. 2023. url: https:
//cloud.google.com/learn/what-is-paas.

[23] Gartner Inc. Gartner Glossary - Software as a Service (SaaS). Aug. 4, 2020.
url: https://www.gartner.com/en/information-technology/glossary/
software-as-a-service-saas.

[24] Tom M. Mitchell. Machine Learning. Ed. by MgGraw-Hill. 1997, p. 2. isbn:
9780070428072.

[25] FY Osisanwo et al. «Supervised machine learning algorithms: classification
and comparison». In: International Journal of Computer Trends and Tech-
nology (IJCTT) 48.3 (2017), pp. 128–138.

[26] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. isbn:
0387310738.

[27] Sagar Vaze et al. «Open-Set Recognition: A Good Closed-Set Classifier is
All You Need». In: CoRR abs/2110.06207 (2021). arXiv: 2110.06207. url:
https://arxiv.org/abs/2110.06207.

[28] Abhijit Bendale and Terrance E. Boult. «Towards Open World Recognition».
In: CoRR abs/1412.5687 (2014). arXiv: 1412.5687. url: http://arxiv.
org/abs/1412.5687.

[29] Lucas Pinheiro Cinelli et al. Variational methods for machine learning with
applications to deep networks. Springer, 2021.

[30] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv: 1406.
2661 [stat.ML].

[31] Alec Radford et al. «Improving language understanding by generative pre-
training». In: (2018).

[32] Christopher JC Burges. «A tutorial on support vector machines for pattern
recognition». In: Data mining and knowledge discovery 2.2 (1998), pp. 121–
167.

[33] S. Katagiri, C.-H. Lee, and B.-H. Juang. «Discriminative multi-layer feed-
forward networks». In: Neural Networks for Signal Processing Proceedings of
the 1991 IEEE Workshop. 1991, pp. 11–20. doi: 10.1109/NNSP.1991.239540.

[34] George EP Box et al. Time series analysis: forecasting and control. John Wiley
& Sons, 2015.

[35] Alex J Smola and Bernhard Schölkopf. «A tutorial on support vector regres-
sion». In: Statistics and computing 14 (2004), pp. 199–222.

78

https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas
https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas
https://cloud.google.com/learn/what-is-paas
https://cloud.google.com/learn/what-is-paas
https://www.gartner.com/en/information-technology/glossary/software-as-a-service-saas
https://www.gartner.com/en/information-technology/glossary/software-as-a-service-saas
https://arxiv.org/abs/2110.06207
https://arxiv.org/abs/2110.06207
https://arxiv.org/abs/1412.5687
http://arxiv.org/abs/1412.5687
http://arxiv.org/abs/1412.5687
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.1109/NNSP.1991.239540


BIBLIOGRAPHY

[36] Alex Sherstinsky. «Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network». In: Physica D: Nonlinear Phenomena
404 (2020), p. 132306.

[37] Zoubin Ghahramani. «Unsupervised learning». In: Summer school on machine
learning. Springer, 2003, pp. 72–112.

[38] Jiawei Han, Jian Pei, and Hanghang Tong. Data mining: concepts and tech-
niques. Morgan kaufmann, 2022.

[39] P.N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Pearson
International Edition. Pearson Addison Wesley, 2006. isbn: 9780321420527.

[40] Paul E. Black. Manhattan distance. Feb. 2019. url: https://www.nist.gov/
dads/HTML/manhattanDistance.html.

[41] Martin Ester et al. «A density-based algorithm for discovering clusters in large
spatial databases with noise». In: kdd. Vol. 96. 34. 1996, pp. 226–231.

[42] Donato Chiarello. Realizzazione di un Datawarehouse e sviluppo di metodolo-
gie di Advanced Analytics a supporto delle strategie aziendali = Dataware-
house implementation and development of Advanced Analytics methods to sup-
port business strategies. Master’s Thesis. July 2020. url: http://webthesis.
biblio.polito.it/15244/.

[43] Craig Stedman. What is data management and why is it important? Def-
inition: data quality. Dec. 2022. url: https : / / www . techtarget . com /
searchdatamanagement/definition/data-quality.

[44] Google LLC. YouTube Analytics and Reporting APIs - Metrics. Dec. 15, 2022.
url: https://developers.google.com/youtube/analytics/metrics.

[45] Google. Using OAuth 2.0 for Server to Server Applications. Aug. 10, 2023.
url: https://developers.google.com/identity/protocols/oauth2/
service-account?hl=en.

[46] Google LLC. YouTube Analytics and Reporting API - Overwiew. Sept. 20,
2023. url: https://developers.google.com/youtube/reporting.

[47] Selenium Overview. Sept. 4, 2022. url: https : / / www . selenium . dev /
documentation/overview/.

[48] SGOPAL Patro and Kishore Kumar Sahu. «Normalization: A preprocessing
stage». In: arXiv preprint arXiv:1503.06462 (2015).

[49] Peter J Rousseeuw. «Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis». In: Journal of computational and applied math-
ematics 20 (1987), pp. 53–65.

[50] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an intro-
duction to cluster analysis. John Wiley & Sons, 1990, p. 87. isbn: 9780471878766.
doi: 10.1002/9780470316801.

79

https://www.nist.gov/dads/HTML/manhattanDistance.html
https://www.nist.gov/dads/HTML/manhattanDistance.html
http://webthesis.biblio.polito.it/15244/
http://webthesis.biblio.polito.it/15244/
https://www.techtarget.com/searchdatamanagement/definition/data-quality
https://www.techtarget.com/searchdatamanagement/definition/data-quality
https://developers.google.com/youtube/analytics/metrics
https://developers.google.com/identity/protocols/oauth2/service-account?hl=en
https://developers.google.com/identity/protocols/oauth2/service-account?hl=en
https://developers.google.com/youtube/reporting
https://www.selenium.dev/documentation/overview/
https://www.selenium.dev/documentation/overview/
https://doi.org/10.1002/9780470316801

	List of Tables
	List of Figures
	Introduction
	Social media
	A brief history of social media platforms
	Social media marketing

	Case study
	Chapters description

	State of the art
	Data Analytics and Big Data
	Data integration design patterns
	Data sources and ingestion
	Batch and streaming ETL architectures
	Data integration and enrichment
	Data Lakes, Data Marts, Data Warehouses
	OLTP and OLAP systems
	Cloud Data Warehouse solutions

	Machine Learning foundations
	Supervised Learning
	Unsupervised Learning


	Company Data Integration framework
	L0 - Staging Area
	L1 - Relational Data Store
	L2 - Dimensional Data Storage
	Fact tables
	Dimension tables
	Star schema and snowflake schema

	Metadata layer
	Flow management table
	Table management table
	Additional metadata tables


	Case study
	Data Warehouse model
	Employed tools

	Data ingestion and integration
	Data ingestion layer
	YouTube data sources
	OAuth Authentication
	YouTube Analytics and Reporting API

	LinkedIn
	Automation with Selenium
	Ingestion from spreadsheets

	Data quality
	Data Integration and enrichment
	Loading into Google BigQuery

	Machine Learning and Advanced Analytics
	Dataset overview
	Clustering analysis
	K-Means clustering
	DBSCAN clustering
	Unsupervised model selection
	Cluster labeling


	Conclusion and next steps
	Possible future works

	Data Warehouse tables

