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Abstract

This essay aims to simulate a NOMA downlink system in the power domain and
evaluate its performance in terms of information rate. Non-Orthogonal Multiple
Access (NOMA) systems have attracted significant interest in the context of next-
generation networks for their potential to accommodate a large number of users and
theoretically offer superior spectral efficiency compared to traditional Orthogonal
Multiple Access (OMA) systems.

Our primary goal is to evaluate the simulated system’s performance in relation to
the Shannon capacity region, which represents the theoretical upper limit of reliable
information transmission. Specifically, throughout this work, we demonstrate how
closely we can approach the Shannon theoretical limit by implementing M-QAM
and turbo codes MODCODs, while maintaining a target frame error rate of 10−3.

The entire analysis is conducted under the assumption of a discrete memoryless
static channel approximation. It includes not only a comparison with the system’s
capacity region but also a comparison with the theoretical sum-rate bound and the
corresponding theoretical rate limit of an OMA system, along with an analysis of
the max-min operating points.

Finally, a discussion on the reliability of the results is also included, taking into
account the implemented algorithms and their assumptions.
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Chapter 1

Introduction

With the increasing demand for mobile communication and the Internet of Things,
the future of advanced wireless networks relies on achieving better spectrum
efficiency, handling more connected devices, and reducing latency [1]. In this
evolving scenario, adopting Non-Orthogonal Multiple Access (NOMA) systems can
play an important role in achieving the objectives of next-generation networks.
NOMA allows multiple users to efficiently share the channel resources, offering the
potential for massive connectivity and high spectral efficiency.

In the following sections of this work, we are going to discuss a possible implemen-
tation of a downlink Non-Orthogonal Multiple Access (NOMA) system in the power
domain. This implementation will incorporate M-QAM modulation and turbo code
MODCODs. Our primary objective is to compare MODCODs information rate
performance with the theoretical limits determined by the capacity region of the
Gaussian Broadcast channel. As a matter of fact, it should be noted that NOMA
systems are generally studied from an information-theoretical perspective, which
assumes the use of infinite-length codes capable of achieving capacity. However,
the implementation of MODCODs with finite-length codes unavoidably degrades
performance. In this work, we examine and quantify how the use of finite-length
codes affects performance, fixed a target frame error rate.

The content of the thesis consists of the following chapters:

• Chapter 2 presents the notion of non-orthogonal multiple access (NOMA),
with particular attention on the two-user downlink scenario.

• Chapter 3 concerns the simulation of a two-user downlink NOMA in static
channel condition: we start from the mathematical model description, then
we move on the FER vs. SNRs analysis; finally we study the rates of the
implemented MODCODs and compare them with the Capacity region and
orthogonal multiple access (OMA) performances.
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Introduction

• Chapter 4 delves into potential future directions for the thesis. Specifically, we
are considering moving from a static channel model to one that incorporates a
time-varying channel, including fast-fading and block-fading approximations.
Additionally, we discuss other possible ways to enhance the quality of the
results.

• Appendixes A and B summarize all the Information Theory notions necessary
to deeply understand the meaning of the results achieved in the thesis, with a
particular focus on the multi-user theory.
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Chapter 2

Non-Orthogonal Multiple
Access: overview

2.1 Introduction
In this chapter we briefly introduce the theoretical aspects of a NOMA system.
In general, a NOMA system is a multiple access scheme in which radio resources
(time, frequency, codes) are shared non-orthogonally between different users; that
is multiple users signals are superimposed and the receiver should separate them in
order to perform decoding.

There are different types of NOMA schemes from different classification prospec-
tives, some of them include:

• Downlink NOMA and uplink NOMA.

• Power domain NOMA and Code domain NOMA.

• Single-carrier NOMA and multi-carrier NOMA.

• SISO-NOMA, SIMO-NOMA and MIMO-NOMA.

• Cooperative NOMA: involving cooperation among NOMA users or by means
of dedicated relays.

A detailed theoretical review of NOMA is not the purpose of this thesis, therefore
we will only focus on the two-user downlink power domain scenario, which is the
object of our subsequent analysis; to learn more about NOMA theoretical aspects
refer to [2] and [3].
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Non-Orthogonal Multiple Access: overview

2.2 Downlink NOMA in power domain
We consider a base station transmitting a superimposed signal to multiple users in
the same channel resource block. In the case of a two-user NOMA scheme, the user
close to the base station is named “Near user”, instead, the user far from the base
station is the “Far user”. The notions of “near” and “far” do not strictly depend
on the distance between users and base station, but actually they depend on the
users’ channel gains (the one who has the lower attenuation is the near user, the
other is the far user).

Figure 2.1 summarizes this scenario. It can be noticed that more power is
allocated to the far user signal.

Figure 2.1: Two-user downlink NOMA in power domain (mentioned on p. 6)

In order to separate the signals:

• The Far user directly decodes its own signal (considering the near user signal

6



Non-Orthogonal Multiple Access: overview

as interference noise).

• The Near user implements a successive interference cancellation (SIC) pro-
cedure: as a first step he decodes the far user signal, subtracts it from the
superimposed signal and finally decodes its own signal.

It is useful to note that both the near user and the far user as a first step decode
the far user signal, i.e. the one having the most power allocated. More theoretical
details concerning SIC are discussed in Section 3.2. In Section 3.5.4, we show how
SIC is implemented in our simulation setup.

Figure 2.2 shows the decoding block scheme at both users’ receivers. In Section
3.2 we describe a mathematical model of the communication scheme.

Figure 2.2: Decoding scheme (mentioned on p. 7)

7





Chapter 3

Simulated information rate
of a downlink NOMA in
Static channel
approximation

3.1 Introduction

In this chapter we study the information rate performances of a two-user NOMA
downlink system over AWGN channel in static conditions. Different MODCODs
are implemented and their achieved rates for a fixed target FER are compared
against the information theoretical limits, i.e. against the capacity region of the
Gaussian broadcast channel (B.3).

• In Section 3.2 we describe the communication mathematical model.

• In Section 3.3 we show some results concerning the FER Vs. SNRs perfor-
mances of the system.

• In Section 3.4 the MODCODs performances are analyzed and compared
with the capacity region for different power allocation factors. A sum-rate
and a MAX-MIN analysis are also performed and a comparison with OMA
performances is included.

9



Simulated information rate of a downlink NOMA in Static channel approximation

3.2 Mathematical model description
A discrete memory-less AWGN channel is considered in this model. The entire
analysis involves only two users, which can be considered the simplest model
describing a broadcast channel with m > 1 users. User-1 is the “Near user”,
instead, User-2 is the “Far user”. According to the previous assumption, we have
|h1| > |h2|, where h1 and h2 are the channel coefficients of User-1 and User-2,
respectively. We define the frame size parameters:

• fsize−U1 ≡ “Frame length of User-1” [information bits/frame]

• fsize−U2 ≡ “Frame length of User-2” [information bits/frame]

The simulated MODCODs are realized by means of M-QAM modulation and
Turbo Code. The M-QAM modulation scheme presents different cardinality M1 =
2m1 and M2 = 2m2 for User-1 and User-2 respectively; where mi represents the
modulation efficiency [bits/symbol] for User-i. The UMTS Turbo encoding system
[4] has the following tunable parameters:

• RC−U1 ≡ “Code rate of User-1” (tunable by puncturing)

• RC−U2 ≡ “Code rate of User-2” (tunable by puncturing)

• Niter ≡ “Number of decoding iterations”

• PU1 ≡ “Puncturing pattern for User-1”

• PU2 ≡ “Puncturing pattern for User-2”

Where the puncturing pattern matrices are exploited to adjust the users’ rates.
The modulated signals X1 and X2, for User-1 and for User-2, respectively,

have zero average. The power assigned to each signal is determined by the power
allocation factor:

• E[X1] = 0, E[|X1|2] = P1 = α1P = αP

• E[X2] = 0, E[|X2|2] = P2 = α2P = (1− α)P

Where P is the total transmitted power and α ∈ (0,1) is the power allocation
factor.

The transmitted superimposed signal is:

X = X1 + X2 (3.1)

User-1 and User-2 receive:Y1 = h1X + Z1 = h1X1 + h1X2 + Z1

Y2 = h2X + Z2 = h2X1 + h2X2 + Z2
(3.2)

10



Simulated information rate of a downlink NOMA in Static channel approximation

Where Zi ∼ CN (0, N) is the noise signal at User-i receiver; i ∈ {1,2}.
In a generic m-user NOMA system, each receiver employs the Successive Inter-

ference Cancellation (SIC) [5] technique, decoding and subtracting the strongest
signal first. Then, the receiver continues to decode and subtract all the other user
signals, from the strongest to the weakest, in an iterative fashion until it decodes its
own signal. In the following steps, we are going to explain and justify the decoding
strategy adopted by the two users. We denote by SINR(i,r) the SINR experienced
by User-r when decoding signal of User-i. Suppose User-2 directly demodulates its
own signal by considering User-1 signal as interference noise; therefore, starting
from Equation (3.2), we can write the corresponding SINR as:

SINR(1,2) = E[|h2X2|2]
E[|h2X1 + Z2|2]

= |h2|2E[|X2|2]
|h2|2E[|X1|2] + h∗

2E[X∗
1 Z2] + h2E[X1Z∗

2 ] + E[|Z2|2]

= |h2|2(1− α)P
|h2|2E[|X1|2] + h∗

2E[X∗
1 ]E[Z2] + h2E[X1]E[Z∗

2 ] + E[|Z2|2]

= |h2|2(1− α)P
|h2|2E[|X1|2] + E[|Z2|2]

= |h2|2(1− α)P
|h2|2αP + N

= |h2|2P2

|h2|2P1 + N

(3.3)

Where user signals (X1, X2) and noise signals (Z1, Z2) are statistically independent
and have zero expected values, justifying the intermediate steps in the previous
derivation.

Equation (3.3) can be extended to the generic m-user scenario. Suppose User-r
is performing its n-th SIC iteration. We define:

Definition 3.2.1. Ir(n) ≡ “Set of indices corresponding to users whose signal has
not been decoded yet by User-r at iteration n”.

The following holds: Ir(n) ⊆ {1, ..., m}. We denote by SINR(i,r;n) the SINR
experienced by User-r when decoding signal of User-i at iteration n. Assuming all
previous SIC iterations have been executed without any residual uncertainty (ideal
SIC), the result derived in Equation (3.3) can be generalized as:

SINR(i,r;n) = |hr|2Pi

|hr|2
q

j∈Ir(n)\i Pj + N
(3.4)
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Simulated information rate of a downlink NOMA in Static channel approximation

At the n-th SIC iteration, among the remaining users’ signals, User-r decodes
the one whose corresponding SINR is maximum. So, the optimal choice is as
follows:

iopt,r;n = argmax
i∈Ir(n)

SINR(i,r;n)

= argmax
i∈Ir(n)

|hr|2Pi

|hr|2
q

j∈Ir(n)\i Pj + N

= argmax
i∈Ir(n)

Piq
j∈Ir(n)\i Pj + N/|hr|2

(3.5)

We define:

Pn ≜
Ø

k∈Ir(n)
Pk

This way we have:

Piq
j∈Ir(n)\i Pj + N/|hr|2

= Pi

Pn − Pi + N/|hr|2
(3.6)

Since Pn ≥ Pi, ∀i and N/|hr|2 > 0, the denominator of the previous expression is
always positive. Therefore, the original maximization problem reduces to maximize
Pi:

iopt,r;n = argmax
i∈Ir(n)

Pi (3.7)

It’s interesting to observe that Equation (3.7) does not depend on index r.
Hence, each User-r, at the n-th iteration, will decode the signal (among the
available ones at the n-th iteration) with the highest allocated power. If we assume
|h1| > |h2| > ... > |hm|, and so we choose a power allocation policy such that
P1 < P2 < ...Pm, User-r will perform SIC according to the following decoding order:
Xm, Xm−1, ..., Xr.

In our 2-user system, we have |h1| > |h2| and P1 < P2, hence User-1 will decode
and subtract X2 before decoding X1, instead User-2 will directly decode X2. If we
assume User-1 performs an ideal SIC:

Y1 = h1X1 + h1X2 + Z1
(ideal) SIC−−−−−−→ Ỹ1 = Y1 − h1X2 = h1X1 + Z1 (3.8)

We can write the SINR for User-1 and for User-2 accordingly to Equation (3.4).
For User-1: 

SINR(2,1;1) = |h1|2(1−α)P
|h1|2αP +N

(1st iteration)

SINR(1,1;2) = |h1|2αP
N

(2nd iteration)
(3.9)
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Simulated information rate of a downlink NOMA in Static channel approximation

For User-2: î
SINR(2,2;1) = |h2|2(1−α)P

|h2|2αP +N
(3.10)

The ideal SIC assumption is used to derive the capacity region shown in Equation
(3.14), however our simulations will keep into account the propagation of the SIC
error (see Section 3.5.4 for further details).

To ensure the system operates correctly, SINR(2,1;1), SINR(1,1;2), SINR(2,2;1)
must each exceed a respective threshold. However, it can be shown that:

SINR(2,1;1) > SINR(2,2;1)

Therefore, the threshold constraints apply only to SINR(1,1;2) and SINR(2,2;1).
To simplify the notation we set:SNR(1) ≜ SINR(1,1;2)

SINR(2) ≜ SINR(2,2;1)
(3.11)

We notice that:

• User-1 equivalent channel is AWGN with SNR = SNR(1)

• User-2 equivalent channel is AWGN with SNR = SINR(2)

Therefore, considering the AWGN channel capacity formula (A.6), we get:
R1 ≤ log2(1 + SNR(1)) = log2(1 + |h1|2αP

N
)

R2 ≤ log2(1 + SINR(2)) = log2(1 + |h2|2(1−α)P
|h2|2αP +N

)
(3.12)

The set of achievable rate pairs (R1, R2) describes the capacity region of a
Gaussian broadcast channel (see appendix B.3 for a formal explanation).

We define the following two SNRs parameters with respect to the total trans-
mitted power P : 

ρ1 ≜ |h1|2 P
N

ρ2 ≜ |h2|2 P
N

(3.13)

The achievable rates inequalities can be re-written as:
R1 ≤ log2 (1 + αρ1)

R2 ≤ log2

1
1 + (1−α)ρ2

1+αρ2

2 (3.14)

Figure 3.1 shows the achievable rates as a function of the parameter α, fixed
ρ1 = 13 dB and ρ2 = 10 dB.
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Simulated information rate of a downlink NOMA in Static channel approximation

Figure 3.1: Two-user NOMA AWGN downlink system - achievable rates (men-
tioned on p. 13)

3.3 FER Vs. SNR simulation
In this analysis we fix the following input parameters:

• min{ρ2} = −3 dB

• |h1|2
|h2|2 = 5→ ρ1 ≃ ρ2 + 7 dB

• α = 0.2

• m1 = 8 bits/symbol

• m2 = 2 bits/symbol

• Niter = 7

• RC−U1 = RC−U2 = RC ≃ 1/3 (unpunctured configuration)

14



Simulated information rate of a downlink NOMA in Static channel approximation

The simulation is performed by increasing the ρ2 value step by step. For each ρ2
value, we collect 500 wrong frames. The overall simulation finally stops when the
frame error rate (FER) of both users goes below 10−2.

Figure 3.2, 3.3 and 3.4 show the results of the simulations for different values of
fsize−U1 and fsize−U2.

Figure 3.2: Two-user downlink NOMA - FER Vs. SNRs, fsize−U1 = 300 bits
(mentioned on p. 15)

As expected, by increasing the frame length the performance of the turbo decoder
improves; however, further increasing the frame length over a certain threshold
does not lead to a significant reduction of the FER, as it soon tends to be saturated.
From this analysis, we concluded that choosing a frame size around 600 represents
a good compromise between decoding performance and computational cost; more
details about the performance of the UMTS turbo code for different input frame
sizes can be found in [6].
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Figure 3.3: Two-user downlink NOMA - FER Vs. SNRs, fsize−U1 = 604 bits
(mentioned on p. 15)

3.4 MODCODs Vs. capacity region
3.4.1 Achievable rates analysis
In the following analysis:

• We fix the user SNRs

– ρ1 = 13 dB

– ρ2 = 10 dB

• Niter = 13

• We consider a subset of α values ∈ {0,0.5}

• For each value of α we vary the modulation cardinality of users and their
puncturing patterns until we find and store:
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Figure 3.4: Two-user downlink NOMA - FER Vs. SNRs, fsize−U1 = 1004 bits
(mentioned on p. 15)

– A pair of two MODCODs; the first of User-1 and the second of User-2,
corresponding to a FER slightly below 10−3 for both users.

– Another pair of two MODCODs; the first of User-1 and the second of
User-2, corresponding to a FER slightly above 10−3 for both users.

• We interpolate the information rates (r−U1 and r−U2) corresponding to the pair
of MODCODs with FER below 10−3 with the ones corresponding to the pair
of MODCODs with FER above 10−3; finally we compute the corresponding
rates, for both users, evaluated at FER = 10−3

Before continuing with the simulation analysis, it is appropriate to list some
important comments concerning the reliability of the obtained results.

• User-1 frame size (fsize−U1) has been fixed around 600 bits (independently
from the considered value of α) instead, User-2 frame size (fsize−U2) varies
according to the ratio between the modulation cardinality of the two users.

17



Simulated information rate of a downlink NOMA in Static channel approximation

Notice that, since simulations are taken frame by frame, the user with the
lowest rate will also have a smaller information frame size. Smaller frame sizes
imply:

– An intrinsic reduction of the code rate due to the fixed overhead of the
turbo encoding system (12 tail bits independently from the frame size).

– A worst performance of the turbo decoder as we previously discussed and
shown in Section 3.4.

• The chosen puncturing patterns are not optimal. In [7] has been proposed
an algorithm to find optimal rate-compatible punctured turbo codes (RPTC)
patterns, whose parameters include the information sizes and the puncturing
period. In our work we do not apply the proposed algorithm but we choose the
puncturing patterns presented in [7] corresponding to the ones which are found
for information size equal to 320 and puncturing period equal to 8 (Table
3.1). However, as said before, our analysis include different frame sizes for
every α and for every user; therefore a puncturing pattern (which is optimized
for frame lengths equal to 320) can perform better or worse depending on
the considered frame length. In this work we do not quantify the impact of
non-optimal puncturing on the achieved performances.
To learn more about the notion of rate-compatible codes refer to [8], then see
[9], [10] and [7] for their extensions to turbo code.

• As can be seen in the tables below, the FER values of the MODCODs used
for interpolation are often relatively far from 10−3. This spreading leads to
less interpolation accuracy and consequently some results may be less reliable
than others.

Pattern index Code Rate Systematic part First encoder Second encoder
1 1/3 11111111 11111111 11111111
2 4/11 11111111 11011101 11111111
3 2/5 11111111 01010101 11111111
4 4/9 11111111 01010101 11110011
5 1/2 11111111 01010001 10110011
6 4/7 11111111 01000001 10110001
7 2/3 11111111 01000001 00010001
8 4/5 11111111 01000000 00000001

Table 3.1: Puncturing patterns (mentioned on pp. 18, 19)

Table 3.2 shows the pairs of MODCODs that achieve a FER immediately
below 10−3; on the other hand, Table 3.3 shows the pairs of MODCODs that
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achieve a FER immediately above 10−3. The rates of User-1 and User-2 (r−U1 and
r−U2) are expressed in information bits per channel symbol. mi and PUi indicate
for User-i ∈ {1,2} the modulation efficiency and the puncturing pattern index
respectively. We ordered the puncturing pattern indexes in such a way that higher
indexes correspond to higher code rate patterns; in Table 3.1 all the implemented
puncturing patterns are shown in detail.

α fsize−U1 fsize−U2 (m1, PU1) (m2, PU2) FER−U1 FER−U2 r−U1 r−U2
0.05 600 1804 (2,1) (4,5) 5.0e-04 7.4e-04 0.6623 1.9912
0.10 600 964 (2,5) (4,3) 1.8e-04 2.6e-04 0.9901 1.5908
0.15 600 654 (4,1) (4,2) 3.2e-04 4.2e-04 1.3245 1.4437
0.20 608 428 (4,3) (2,6) 8.7e-04 1.6e-04 1.5875 1.1175
0.25 602 336 (4,4) (2,5) 3.5e-04 6.8e-05 1.7602 0.9825
0.30 602 336 (4,4) (2,5) 9.4e-05 5.8e-04 1.7602 0.9825
0.35 600 264 (4,5) (2,4) 3.3e-04 4.6e-04 1.9802 0.8713
0.40 602 216 (6,1) (2,2) 9.5e-04 3.3e-04 1.9868 0.7129
0.44 604 182 (6,2) (2,1) 7.8e-04 7.4e-04 2.1649 0.6523

Table 3.2: Pairs of MODCODs for User-1 and User-2 @FER < 10−3 (mentioned
on p. 18)

α fsize−U1 fsize−U2 (m1, PU1) (m2, PU2) FER−U1 FER−U2 r−U1 r−U2
0.05 602 1898 (2,2) (4,6) 2.1e-03 4.1e-03 0.7218 2.2758
0.10 600 1056 (2,6) (4,5) 3.3e-03 4.2e-02 1.1299 1.9887
0.15 608 668 (4,2) (4,3) 2.9e-03 5.9e-03 1.4442 1.5867
0.20 602 452 (4,4) (4,1) 1.2e-02 2.6e-03 1.7602 1.3216
0.25 600 394 (4,5) (2,7) 2.1e-02 2.6e-02 1.9802 1.3003
0.30 600 338 (4,5) (2,6) 1.9e-03 1.8e-02 1.9802 1.1155
0.35 600 296 (6,1) (2,5) 6.9e-03 2.2e-02 1.9868 0.9801
0.40 604 218 (6,2) (2,3) 1.5e-03 2.8e-03 2.1649 0.7814
0.44 604 180 (6,3) (2,2) 7.3e-03 6.8e-03 2.3780 0.7087

Table 3.3: Pairs of MODCODs for User-1 and User-2 @FER > 10−3 (mentioned
on p. 18)

Finally, Table 3.4 shows the interpolated results from the previous tables evalu-
ated at FER = 10−3.

Figure 3.5 shows the MODCODs performances against the capacity region.
As expected, the dashed curves corresponding to the implemented MODCODs

are below the capacity region. It is interesting to observe that, as the information
theoretical limit increases, it becomes more and more difficult to find a MODCOD
capable of approaching it.

19



Simulated information rate of a downlink NOMA in Static channel approximation

α r−U1 r−U2
0.05 0.6907 2.0419
0.10 1.0724 1.6952
0.15 1.3860 1.4905
0.20 1.5969 1.2506
0.25 1.8173 1.1263
0.30 1.9336 1.0033
0.35 1.9826 0.8929
0.40 2.0092 0.7479
0.44 2.1890 0.6598

Table 3.4: Interpolated rates for User-1 and User-2 @FER = 10−3 (mentioned
on p. 19)

Figure 3.5: Two-user NOMA AWGN downlink system - MODCODs Vs. achiev-
able rates (mentioned on p. 19)
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3.4.2 Sum-rate analysis
The sum-rate theoretical bound is given by:

Rsum−bound = log2 (1 + αρ1) + log2

A
1 + (1− α) ρ2

1 + αρ2

B
(3.15)

If we consider an orthogonal multiple access system (OMA), a fraction α of the
channel resources is exclusively assigned to User-1, instead a fraction 1 − α is
assigned to User-2. Each user has all the available power P for transmission, this
way (fixed the same input SNRs ρ1 and ρ2) the OMA rate limits are given by:R1−OMA ≤ α log2 (1 + ρ1)

R2−OMA ≤ (1− α) log2 (1 + ρ2)
(3.16)

And the corresponding sum-rate limit is:
Rsum−OMA = α log2 (1 + ρ1) + (1− α) log2 (1 + ρ2) (3.17)

Figure 3.6 shows the sum-rate performances of the interpolated MODCODs
evaluated at FER = 10−3 (black dashed curve) against the sum-rate given by the
capacity region (red curve) and the sum-rate limit given by an orthogonal multiple
access (OMA) system with the same input SNRs (13,10) dB (blue curve).

As expected the sum-rate of the capacity region is the highest; instead, for this
particular SNRs pair, the sum-rate of the interpolated MODCODs is even below
the one of the OMA system.

3.4.3 Operating point: MAX-MIN approach
In [11], [12] different types of power allocation for a NOMA system are analyzed.
In particular they focused on the MAX-MIN approach under proportional fairness
constraints, which provides very good results in terms of proportional fairness
and transmission rate variation. We limit our analysis on the simple MAX-MIN
approach (which may penalizes the user with highest SNR). Figure 3.7 shows
different curves representing the minimum between the rate of User-1 and User-2;
in particular they refer to the capacity region (red curve), to the OMA system
(blue curve) and to the interpolated MODCODs evaluated at FER = 10−3 (black
dashed curve).

Please notice that the dashed lines indicate the MAX-MIN rate and the corre-
sponding alpha value (operating point); obviously the MAX-MIN rate is the same
for both users. As expected, the capacity region provides a MAX-MIN operating
point with higher rate in respect to the OMA system one; instead, the MAX-MIN
operating point of the interpolated MODCODs has the lowest rate.

Notice that the NOMA operating point is lower than the OMA one (α = 0.15
Vs. α = 0.44).
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Figure 3.6: Two-user NOMA AWGN downlink system - Sum rate analysis
(mentioned on p. 21)

3.4.4 Results for different input SNRs
The entire analysis has been repeated for other input SNR pairs:

• (ρ1 = 13, ρ2 = 10) dB (previously tested)

• (ρ1 = 15, ρ2 = 12) dB

• (ρ1 = 20, ρ2 = 10) dB

In the following sections we report all the results concerning all the SNR pairs.
For simplicity, captions of tables and figures are abbreviated; please refer to the
figures and tables above for the full name.

3.4.5 Results: MODCODs with FER below 10−3

The following tables show the MODCODs with FER < 10−3

• Table 3.5 for input SNRs (13,10) dB
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Figure 3.7: Two-user NOMA AWGN downlink system - MAX MIN rate analysis
(mentioned on p. 21)

• Table 3.6 for input SNRs (15,12) dB

• Table 3.7 for input SNRs (20,10) dB

α fsize−U1 fsize−U2 (m1, PU1) (m2, PU2) FER−U1 FER−U2 r−U1 r−U2
0.05 600 1804 (2,1) (4,5) 5.0e-04 7.4e-04 0.6623 1.9912
0.10 600 964 (2,5) (4,3) 1.8e-04 2.6e-04 0.9901 1.5908
0.15 600 654 (4,1) (4,2) 3.2e-04 4.2e-04 1.3245 1.4437
0.20 608 428 (4,3) (2,6) 8.7e-04 1.6e-04 1.5875 1.1175
0.25 602 336 (4,4) (2,5) 3.5e-04 6.8e-05 1.7602 0.9825
0.30 602 336 (4,4) (2,5) 9.4e-05 5.8e-04 1.7602 0.9825
0.35 600 264 (4,5) (2,4) 3.3e-04 4.6e-04 1.9802 0.8713
0.40 602 216 (6,1) (2,2) 9.5e-04 3.3e-04 1.9868 0.7129
0.44 604 182 (6,2) (2,1) 7.8e-04 7.4e-04 2.1649 0.6523

Table 3.5: SNRs (13,10) dB @FER < 10−3 (mentioned on p. 22)
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α fsize−U1 fsize−U2 (m1, PU1) (m2, PU2) FER−U1 FER−U2 r−U1 r−U2
0.045 602 1636 (2,4) (6,3) 6.6e-04 8.0e-04 0.8801 2.3918
0.10 622 856 (4,2) (4,5) 7.4e-04 8.7e-04 1.4432 1.9861
0.15 612 552 (4,4) (4,3) 6.8e-04 8.7e-04 1.7586 1.5862
0.20 600 400 (4,5) (4,1) 7.8e-04 4.4e-04 1.9802 1.3201
0.25 600 338 (4,5) (2,6) 1.1e-04 9.4e-05 1.9802 1.1155
0.30 602 272 (6,2) (2,5) 3.0e-04 1.5e-04 2.1655 0.9784
0.35 604 242 (6,2) (2,4) 1.5e-04 1.2e-04 2.1649 0.8674
0.40 600 196 (6,3) (2,3) 7.4e-04 5.8e-04 2.3810 0.7778
0.45 602 148 (6,4) (2,1) 2.3e-04 4.6e-04 2.6404 0.6491

Table 3.6: SNRs (15,12) dB @FER < 10−3 (mentioned on p. 23)

α fsize−U1 fsize−U2 (m1, PU1) (m2, PU2) FER−U1 FER−U2 r−U1 r−U2
0.025 600 1204 (2,6) (4,6) 2.3e-04 4.8e-04 1.1299 2.2674
0.05 602 676 (4,4) (4,5) 3.6e-04 9.2e-04 1.7602 1.9766
0.10 602 440 (6,2) (4,3) 2.2e-04 3.6e-04 2.1655 1.5827
0.15 602 300 (6,4) (4,1) 1.0e-04 2.5e-04 2.6404 1.3158
0.20 612 234 (8,2) (2,6) 9.6e-05 1.2e-04 2.8868 1.1038
0.25 612 186 (8,3) (2,5) 2.3e-04 8.1e-05 3.1710 0.9637
0.30 600 162 (8,3) (2,4) 5.8e-05 1.0e-04 3.1746 0.8571
0.35 616 144 (10,1) (2,3) 7.0e-04 2.6e-04 3.3118 0.7742
0.40 606 118 (10,1) (2,1) 9.5e-05 6.8e-04 3.3115 0.6448

Table 3.7: SNRs (20,10) dB @FER < 10−3 (mentioned on p. 23)

3.4.6 Results: MODCODs with FER above 10−3

The following tables show the MODCODs with FER > 10−3

• Table 3.8 for input SNRs (13,10) dB

• Table 3.9 for input SNRs (15,12) dB

• Table 3.10 for input SNRs (20,10) dB

3.4.7 Results: interpolated MODCODs @FER = 10−3

The following tables show the interpolated MODCODs’ performances evaluated at
FER = 10−3

• Table 3.11 for input SNRs (13,10) dB

• Table 3.12 for input SNRs (15,12) dB
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α fsize−U1 fsize−U2 (m1, PU1) (m2, PU2) FER−U1 FER−U2 r−U1 r−U2
0.05 602 1898 (2,2) (4,6) 2.1e-03 4.1e-03 0.7218 2.2758
0.10 600 1056 (2,6) (4,5) 3.3e-03 4.2e-02 1.1299 1.9887
0.15 608 668 (4,2) (4,3) 2.9e-03 5.9e-03 1.4442 1.5867
0.20 602 452 (4,4) (4,1) 1.2e-02 2.6e-03 1.7602 1.3216
0.25 600 394 (4,5) (2,7) 2.1e-02 2.6e-02 1.9802 1.3003
0.30 600 338 (4,5) (2,6) 1.9e-03 1.8e-02 1.9802 1.1155
0.35 600 296 (6,1) (2,5) 6.9e-03 2.2e-02 1.9868 0.9801
0.40 604 218 (6,2) (2,3) 1.5e-03 2.8e-03 2.1649 0.7814
0.44 604 180 (6,3) (2,2) 7.3e-03 6.8e-03 2.3780 0.7087

Table 3.8: SNRs (13,10) dB @FER > 10−3 (mentioned on p. 24)

α fsize−U1 fsize−U2 (m1, PU1) (m2, PU2) FER−U1 FER−U2 r−U1 r−U2
0.045 600 1610 (2,5) (6,4) 2.5e-02 1.9e-01 0.9901 2.6568
0.10 604 864 (4,3) (4,6) 6.1e-02 1.7e-01 1.5853 2.2677
0.15 600 532 (4,5) (4,4) 4.9e-02 7.7e-03 1.9802 1.7558
0.20 602 384 (4,6) (4,2) 2.8e-02 4.7e-03 2.2547 1.4382
0.25 602 346 (4,6) (2,7) 1.6e-03 1.4e-03 2.2547 1.2959
0.30 602 278 (6,3) (2,6) 3.2e-03 2.4e-03 2.3794 1.0988
0.35 600 244 (6,3) (2,5) 1.6e-03 2.7e-03 2.3810 0.9683
0.40 602 196 (6,4) (2,4) 1.4e-03 8.8e-03 2.6404 0.8596
0.45 628 168 (8,1) (2,2) 1.2e-03 3.1e-03 2.6498 0.7089

Table 3.9: SNRs (15,12) dB @FER > 10−3 (mentioned on p. 24)

• Table 3.13 for input SNRs (20,10) dB

3.4.8 Results: interpolated MODCODs Vs. capacity region
The following figures show the interpolated MODCODs’ performances evaluated at
FER = 10−3 against the capacity region of the Gaussian broadcast channel.

• Figure 3.8 for input SNRs (13,10) dB

• Figure 3.9 for input SNRs (15,12) dB

• Figure 3.10 for input SNRs (20,10) dB

In general it can be observed that the rate performance of the implemented
MODCODs follows the bound of the capacity region related to the particular pair
of SNRs under analysis and give us an idea on the achievable performances with
M-QAM and Turbo Code in static channel conditions.
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α fsize−U1 fsize−U2 (m1, PU1) (m2, PU2) FER−U1 FER−U2 r−U1 r−U2
0.025 600 1208 (2,7) (4,7) 4.5e-03 1.2e-01 1.3158 2.6491
0.05 608 692 (4,5) (4,6) 1.8e-02 1.7e-02 1.9805 2.2541
0.10 600 400 (4,7) (4,4) 3.5e-03 1.4e-03 2.6316 1.7544
0.15 604 292 (6,5) (4,2) 3.9e-03 1.1e-03 2.9608 1.4314
0.20 600 242 (8,3) (2,7) 5.6e-03 1.3e-03 3.1746 1.2804
0.25 612 192 (8,4) (2,6) 2.0e-02 1.5e-03 3.5172 1.1034
0.30 612 192 (8,4) (2,6) 1.1e-03 4.4e-02 3.5172 1.1034
0.35 606 144 (10,2) (2,4) 2.9e-03 2.7e-03 3.6071 0.8571
0.40 614 108 (10,3) (2,2) 7.4e-02 3.6e-03 3.9613 0.6968

Table 3.10: SNRs (20,10) dB @FER > 10−3 (mentioned on p. 24)

α r−U1 r−U2
0.05 0.6907 2.0419
0.10 1.0724 1.6952
0.15 1.3860 1.4905
0.20 1.5969 1.2506
0.25 1.8173 1.1263
0.30 1.9336 1.0033
0.35 1.9826 0.8929
0.40 2.0092 0.7479
0.44 2.1890 0.6598

Table 3.11: SNRs (13,10) dB - interpolated rates @FER = 10−3 (mentioned on
p. 24)

3.4.9 Results: sum-rate analysis
The following figures show the sum-rate analysis.

• Figure 3.11 for input SNRs (13,10) dB

• Figure 3.12 for input SNRs (15,12) dB

• Figure 3.13 for input SNRs (20,10) dB

It is interesting to observe that in the case of input SNRs (20,10) dB the sum-
rate of the interpolated MODCODs is, for some alpha, higher than the maximum
sum-rate achivable by an OMA system with same SNRs. As the difference between
the two users’ SNRs decreases, the advantage of implementing a NOMA system
with respect to an OMA decreases as well.

26



Simulated information rate of a downlink NOMA in Static channel approximation

α r−U1 r−U2
0.045 0.8928 2.4029
0.10 1.4529 1.9938
0.15 1.7785 1.5974
0.20 1.9994 1.3608
0.25 2.2045 1.2729
0.30 2.2736 1.0606
0.35 2.3374 0.9359
0.40 2.4981 0.7941
0.45 2.6489 0.6736

Table 3.12: SNRs (15,12) dB - interpolated rates @FER = 10−3 (mentioned on
p. 24)

α r−U1 r−U2
0.025 1.2221 2.3185
0.05 1.8182 1.9850
0.10 2.4225 1.7128
0.15 2.8417 1.4229
0.20 3.0525 1.2632
0.25 3.2859 1.0851
0.30 3.5030 0.9504
0.35 3.5218 0.8216
0.40 3.5411 0.6567

Table 3.13: SNRs (20,10) dB - interpolated rates @FER = 10−3 (mentioned on
p. 25)

3.4.10 Results: MAX-MIN rate analysis
The following figures show the MAX-MIN rate analysis.

• Figure 3.14 for input SNRs (13,10) dB

• Figure 3.15 for input SNRs (15,12) dB

• Figure 3.16 for input SNRs (20,10) dB

Concerning the MAX-MIN rate, as in the case of sum-rate analysis, the advantage
of a NOMA system over an OMA system is greater when the difference between
the input SNRs of the two users is larger.

The MAX-MIN operating points of the implemented MODCODs are:
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Figure 3.8: SNRs (13,10) dB - MODCODs Vs. achievable rates (mentioned on
p. 25)

• α = 0.15 for SNRs (13,10)

• α = 0.14 for SNRs (15,12)

• α = 0.07 for SNRs (20,10)

3.5 Simulation specifications
In this section we provide some further details concerning the simulation setup and
algorithms.

• In Section 3.5.1 we describe the MODCODs interpolation functions.

• In Section 3.5.2 we show the pseudo codes of puncturing and “reverse” punc-
turing algorithms.

• In Section 3.5.3 the algorithm to determine the frame size of the two users is
presented.
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Figure 3.9: SNRs (15,12) dB - MODCODs Vs. achievable rates (mentioned on
p. 25)

3.5.1 Interpolation functions
Fixed α, MODCODs corresponding to a FER above 10−3 are logarithmically
interpolated with the ones corresponding to a FER below 10−3. We define:

• r−Ui(1) ≡ “rate of User-i corresponding to FER−Ui(1) < 10−3”

• r−Ui(2) ≡ “rate of User-i corresponding to FER−Ui(2) > 10−3”

• r−Ui ≡ “rate of User-i evaluated at target FER = 10−3”
Then:

r−Ui = r−Ui(2) +
A

log 10−3 − log FER−Ui(2)
log FER−Ui(1)− log FER−Ui(2)

B
(r−Ui(1)− r−Ui(2)) (3.18)

The obtained interpolated rates at FER = 10−3 are interpolated each others
for different value of α using the following functions:y1 = b1 log (c1x1 + 1) , for User-1

y2 = b2 log (c2x2 + 1)− b2 log (c2 + 1) , for User-2
(3.19)
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Figure 3.10: SNRs (20,10) dB - MODCODs Vs. achievable rates (mentioned on
p. 25)

Where:

• (x1,x2) independent variables.

• (y1,y2) dependent variables.

• (b1,b2) interpolation coefficients.

• (c1,c2) tunable parameters.

3.5.2 Puncturing algorithms
In this section we describe the implemented puncturing algorithms. Algorithm
1 is performed at the transmitter side after turbo encoding. The purpose of this
algorithm is to remove some bits (the ones indicated by the puncturing matrix)
before transmission in order to increase the code rate. Algirithm 2 is performed
after signal demodulation and right before soft decoding: it adds zero symbols in
the puncturing positions in order to perform decoding.
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Algorithm 1: Puncturing (performed at TX) (mentioned on p. 30)
Input :

• UserCodedBlock: user coded block after turbo encoding

• P: puncturing pattern matrix

• FrameLength: information frame size

• BlockLength: expected coded block length after puncturing

Output :

• UserPuncturedBlock: user punctured code block

1 // Remove the 12 tail bits
2 UserCodedBlock-No-Tail ← UserCodedBlock
3 // Extract systematic and constituent encoder parts
4 Systematic-part ← UserCodedBlock-No-Tail
5 1st-encoder-part ← UserCodedBlock-No-Tail
6 2nd-encoder-part ← UserCodedBlock-No-Tail
7 // Compute the number of periods that fit in the frame size
8 Nperiods = ⌊ F rameLength

RowLength(P )⌋
9 // Initialize the punctured block

10 UserPuncturedBlock ← initialization(BlockLength)
11 // Bit assignment: If P (j) = 1→ the bit is not punctured
12 for i← 1 to Nperiods do
13 for j ← 1 to RowLength(P) do
14 if systematic(P (j)) == 1 (not punctured) then
15 UserPuncturedBlock ← add systematic bit
16 end if
17 if 1stEncoder(P (j)) == 1 (not punctured) then
18 UserPuncturedBlock ← add 1st encoder bit
19 end if
20 if 2ndEncoder(P (j)) == 1 (not punctured) then
21 UserPuncturedBlock ← add 2nd encoder bit
22 end if
23 end for
24 end for
25 UserPuncturedBlock ← add the remaining bits and tail bits
26 return UserPuncturedBlock
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Algorithm 2: Reverse puncturing (performed at RX) (mentioned on p. 30)
Input :

• Y-demod: demodulated signal

• P: puncturing pattern matrix

• FrameLength: information frame size

Output :

• Y -filled: signal with zero-symbols inserted in puncturing positions

1 // Initialize the systematic, 1st encoder and 2nd encoder parts
2 // Notice that they are initialized with all zero symbols as if

they were all punctured
3 SystematicPart ← zero-initialization(FrameLength)
4 1stEncoderPart ← zero-initialization(FrameLength)
5 2ndEncoderPart ← zero-initialization(FrameLength)
6 // Compute the number of periods that fit in the frame size
7 Nperiods = ⌊ F rameLength

RowLength(P )⌋
8 // Replace the zero symbols with demodulated symbols in the

unpunctured positions
9 for i← 1 to Nperiods do

10 for j ← 1 to RowLength(P) do
11 if systematic(P (j)) == 1 (not punctured) then
12 // Replace the zero symbol in the systematic part
13 SystematicPart ← addsymbol(Y-demod)
14 end if
15 if 1stEncoder(P (j)) == 1 (not punctured) then
16 // Replace the zero symbol in the 1st encoder part
17 1stEncoderPart ← addsymbol(Y-demod)
18 end if
19 if 2ndEncoder(P (j)) == 1 (not punctured) then
20 // Replace the zero symbol in the 2nd encoder part
21 2ndEncoderPart ← addsymbol(Y-demod)
22 end if
23 end for
24 end for
25 // Parallel to serial conversion
26 Y -filled ← PTS(SystematicPart,1stEncoderPart,2ndEncoderPart)
27 Y -filled ← add the remaining symbols and tail symbols
28 return Y -filled
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Figure 3.11: SNRs (13,10) dB - Sum rate analysis (mentioned on p. 26)

3.5.3 FrameLength setting algorithm
As previously explained in Section 3.4, the frame size of User-1 is fixed at approxi-
mately 600 bits, whereas the frame size of User-2 will vary according to the ratio
between the modulation cardinality of the two users (and their puncturing matrix
rates).

We define:

• Nsymbols-U1 ≡ “total number of transmitted symbols per block for User-1”

• Nsymbols-U2 ≡ “total number of transmitted symbols per block for User-2”

Since the simulation is taken block by block, the frame size of the two users
must respect the following constraint:

• Nsymbols-U1 = Nsymbols-U2
→ BlockLength-U1 / m1 = BlockLength-U2 / m2

Algorithm 3 is built in order to satisfy this constraint. In words: we start from
fsize−U1 = 600, we check if there exists a fsize−U2 that satisfies the constraint, if not
we increase fsize−U1 and we repeat the procedure until the constraint is satisfied.
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Algorithm 3: Compute users’ frame size (mentioned on p. 33)
Input :

• m1: modulation efficiency of User-1

• m2: modulation efficiency of User-2

• PU1: puncturing pattern matrix of User-1

• PU2: puncturing pattern matrix of User-2

Output :

• fsize−U1

• fsize−U2

1 // Initialize the frame size of User-1 to 599
2 fsize−U1 ← 599
3 while 1 do
4 fsize−U1 ← fsize−U1 + 1
5 // Compute the block length (after puncturing) as a function of

the frame size and the puncturing pattern matrix
6 BlockLength-U1 ← ComputeLength(fsize−U1,PU1)
7 // Compute the block length of User-2 such that Nsymbols-U1 =

Nsymbols-U2 is satisfied
8 BlockLength-U2 ← m2

m1
·BlockLength-U1

9 // Check if implicit constraints are satisfied
10 if BlockLength-U1/m1 AND BlockLength-U2 are integer then
11 // Find a fsize−U2 value that fits PU2 and BlockLength-U2
12 fsize−U2 ← FindSize(BlockLength-U2,PU2)
13 // Check if the found value is a valid integer number
14 if fsize−U2 is integer then
15 break while (algorithm end)
16 end if
17 end if
18 end while
19 return fsize−U1, fsize−U2
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Figure 3.12: SNRs (15,12) dB - Sum rate analysis (mentioned on p. 26)

3.5.4 Successive interference cancellation (SIC)
Concerning the SIC implementation, we have assumed a complete channel state
information at both transmitter and receiver sides; therefore the receiver knows
the following parameters:

• Total transmitted power: P

• Power allocation factor: α

• Users’ channel gains: h1,h2

• Additive white Gaussian Noise Variance: N

Both User-1 and User-2 demodulate the signals as log-likelihood-ratio (LLR)
output type (in order to perform soft decoding later). To achieve a LLR output
type, the Noise Variance information is needed by the receiver. In case of User-2,
when he decodes its own signal from the superimposed signal, we have already seen
in Section 3.2 that the Noise Variance is given by:

NU2 = |h2|2αP + N (3.20)

35



Simulated information rate of a downlink NOMA in Static channel approximation

Figure 3.13: SNRs (20,10) dB - Sum rate analysis (mentioned on p. 26)

Instead from the User-1 perspective (the user who performs SIC), when he decodes
the User-2 signal, the Noise Variance is:

NU2|U1 = |h1|2αP + N (3.21)

(Where NUi|Uj is the Noise Variance observed by User-j when he decodes the User-i
signal).

Once the User-2 signal has been decoded from User-1 receiver as X̂2, User-1
subtract it from the superimposed signal:

Ỹ1 = h1X1 + Z1 − h1(X2 − X̂2) (3.22)

Therefore, when User-1 decodes its own signal, the Noise Variance is given by:

NU1 = E
è
|Z1 − h1(X2 − X̂2)|2

é
(3.23)

Unfortunately Equation (3.23) is difficult to solve; hence User-1, in order to
compute it, performs the following approximation:

X̂2 = X2
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Figure 3.14: SNRs (13,10) dB - MAX-MIN rate analysis (mentioned on p. 27)

This way Equation (3.23) becomes:

NU1 = E
è
|Z1|2

é
= N (3.24)

The previous assumption simplifies the model but makes the Noise Variance
estimation worse, so the decoding performances (in terms of frame error rate) get
slightly worse as well.
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Figure 3.15: SNRs (15,12) dB - MAX-MIN rate analysis (mentioned on p. 27)
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Figure 3.16: SNRs (20,10) dB - MAX-MIN rate analysis (mentioned on p. 27)
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Chapter 4

Epilogue

4.1 Conclusions

Through this work, it has been shown how closely M-QAM and turbo code-based
MODCODs can approach the theoretical transmission rate limits in a NOMA
system. Different analyses have been involved, starting with a comparison to the
capacity region of a Gaussian broadcast channel, followed by an evaluation of
sum-rate performance and MAX-MIN operating points, and comparing them with
OMA performance limits. The capacity region can theoretically be approached
using an infinite-length code; consequently, we examined and quantified the impact
of employing finite-length codes on performance while maintaining a fixed target
frame error rate.

4.2 Future Works

In the remaining part of the chapter, we present some potential future research
directions for this thesis. Our main goal is to repeat the entire analysis within a
fading channel and improve the simulation accuracy.

• In Section 4.2.1, we discuss a possible future study focusing on the analysis of
a NOMA system under fading conditions.

• In Section 4.2.2, we outline various improvements that can be implemented
in the current work, with a specific emphasis on enhancing the reliability of
simulation results.
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4.2.1 Fading channel approximation
So far, we have approximated the channel gain to be static. Now, let’s consider
the channel gain affected by a time-varying gain.

Fast Fading

In a fast-fading channel, each transmitted codeword is affected by multiple channel
coefficients [13], drawn according to a given probability distribution. If the code is
sufficiently long, we can assume that all the possible channel coefficients affect the
entire transmitted codeword. Under this condition, in principle, we can reliably
transmit information at a rate equal to or less than the ergodic capacity. The
following definitions regarding the ergodic capacity and the ergodic capacity region
have been taken from the book “Wireless Communications” by A. Goldsmith [14].
The ergodic capacity, assuming known channel state information (CSI) at the
receiver, and in the absence of power adaptation, is given by the following formula:

Cergodic = Ef(γ)[log2(1 + γ)] =
Ú ∞

0
dγ log2(1 + γ)f(γ) (4.1)

Where γ is the instantaneous SNR, and f(γ) is its corresponding distribution
defined by the fading model.

Starting from Equation (3.12), the ergodic capacity region of our NOMA down-
link system becomes: R1 ≤ Ef(|h1|)[log2(1 + |h1|2αP

N
)]

R2 ≤ Ef(|h2|)[log2(1 + |h2|2(1−α)P
|h2|2αP +N

)]
(4.2)

As an example, we can consider a very typical fading model, commonly used to
model multipath fading phenomena, which is Rayleigh Fading [15]. In this model,
we have: hi ∼ CN (0, σ2

i )
i ∈ {1,2}

(4.3)

As a consequence, the channel gains’ magnitude is Rayleigh distributed:f(|hi|) = |hi|
σ2

i
exp

;
− |hi|2

2σ2
i

<
i ∈ {1,2}

(4.4)

Equation (4.2) becomes:
R1 ≤

s∞
0 d|h1| log2(1 + |h1|2αP

N
) |h1|

σ2
1

exp
î
− |h1|2

2σ2
1

ï

R2 ≤
s∞

0 d|h2| log2(1 + |h2|2(1−α)P
|h2|2αP +N

) |h2|
σ2

2
exp

î
− |h2|2

2σ2
2

ï (4.5)
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We introduce the input average-SNR parameters:
E[ρ1] ≜ E[|h1|2] P

N

E[ρ2] ≜ E[|h2|2] P
N

(4.6)

From the Rayleigh distribution, we know:E[|hi|2] = 2σ2
i

i ∈ {1,2}
(4.7)

So we can derive the σi parameters:σi =
ñ

1
2E[|hi|2]

i ∈ {1,2}
(4.8)

By looking at Figure 4.1, we can observe that the capacity region, fixed the same
SNRs, decreases due to the fading effect. This result is expected from the Jensen
inequality:

E[log2(1 + γ)] ≤ log2(1 + E[γ]) (4.9)

(a) SNRs (13,10) - Static (b) SNRs (13,10) - Rayleigh Fading

Figure 4.1: Capacity region: Static Vs. Rayleigh fading (mentioned on p. 43)

In order to simulate a NOMA system under fast fading conditions using our
simulation setup, we have to assume that the receiver knows all the channel gains of
each transmitted symbol of each block, so that the phase can be synchronized. This,
of course, is not feasible, hence one of our objectives is to implement a system from
scratch where the ergodic capacity region can be used as a performance comparison
metric.
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Block Fading

The block-fading approximation requires that the channel gain evolves according
to a specific probability distribution for each transmitted code block, and remains
constant throughout the transmission of the entire block. Additionally, the channel
gains of different blocks are statistically independent of each other. An example
of block-fading gain is given by the Shadowing gain. Shadowing refers to slowly
time-varying phenomena [16] caused by the presence of obstacles in the channel,
such as building walls, car bodies [17], trees, etc. In this model, the channel gain
evolves following a log-normal distribution, which is well suited to describe the
effects of shadowing. If X is log-normally distributed with parameters µ and σ; i.e.
X ∼ LN (µ, σ), its pdf is given by:

f(x) = 1
x
√

2πσ
exp

I
−(ln x− µ)2

2σ2

J
(4.10)

Where σ values ranging from 5 to 12 dB are commonly considered [18].
Differing from the fast-fading approximation, the block-fading approximation

holds particular significance as it can provide a reliable representation of a real
communication scenario where the channel evolves slowly enough to enable the
receiver to estimate its coefficients. Developing an analysis that incorporates the
block-fading approximation requires a comparison of performance with outage
capacity and outage probability.

4.2.2 Other Improvements
As discussed in Section 3.4, there are reliability concerns regarding the precision of
the results obtained. To address this issue, we would like to:

• Implement an algorithm for identifying optimal (or sub-optimal) puncturing
patterns based on the input parameters. By doing so, we aim to achieve a
higher information rate and eliminate the “random goodness” variable of the
selected puncturing pattern; this way performances of various simulations
with different parameters become more consistent with each other.

• Improve the interpolation functions.

• Improve the resolution of the rates associated with the MODCODs to be
tested. This step will reduce the variation of the FER around the target FER,
leading to a better interpolation accuracy.

• We would like to rerun the simulations on more powerful hardware. This
would allow us to increase the length of the transmitted blocks and bring the
performance of the MODCODs even closer to the theoretical capacity region.
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Appendix A

Review of single-user
Information theory

A.1 Introduction
In this chapter we will review the elements of information theory concerning the
transmission of information by a single sender to a single receiver, in particular:

• In Section A.2 we define and describe the properties of the information entropy,
joint entropy and relative entropy.

• In Section A.3 we define and describe the notion of mutual information.

• In Section A.4 we introduce the AEP and the other definitions that are needed
to prove the channel coding theorem.

• In Section A.5 we present the notion of Communication Channel, Channel
Capacity, the Channel Coding Theorem and its proof using jointly typical
decoding.

• In Section A.6 we extend the notion of entropy and mutual information to
continuous random variables.

• In Section A.7 we introduce the AWGN channel, we derive its capacity and
we introduce the maximum likelihood decoding.

The information theory results affect different areas, such as:

• Communication systems.

• Storage systems.
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• Physics (statistical mechanics).

• Computer science (Kolmogorov Complexity).

• Mathematics.

• Philosphy of Science (Novacula Occami).

• Economics.

For the purpose of this essay, we will focus on communication system aspects
only. Most of the contents related to this Appendix and Appendix B derives from
Shannon results [19] and follows the order and notations presented in the book of
Joy A. Thomas and Thomas M. Cover [20].

A.2 Entropy
The information theory revolves around the Entropy, a quantity that describes
the average uncertainty of a random variable, or, from another point of view, the
expected information that we gain by observing an outcome of that variable.

Given a discrete r.v. X with alphabet ΩX and probability mass function:

p(x) = P (X = x), x ∈ ΩX , M = |ΩX |

Its entropy is defined as:

Definition A.2.1 (Entropy).

H (X) ≜ −
Ø

x∈ΩX

p(x) log2 p(x) [bits]

Some of the entropy key properties are listed below:

• H(X) ≥ 0

• H(X) = H(p) (Label invariance)

• H(X) = 0 if ∃! x ∈ ΩX : p(x) = 1

• H(X) is a concave function in p

• max H(X) = log2 M , achieved if p(x) = 1/M , ∀x ∈ ΩX

All the above properties can be checked by observing Figure A.1 and Figure A.2,
where the possible entropy values of a cardinality M = 3 random variable are
displayed.
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Figure A.1: Entropy, (3D) plot of a cardinality-three r.v. (mentioned on p. 48)

Theorem A.2.1 (Averaging a subset of the probability vector always increases
the entropy). Given the vector:

p(X) = (p1, ..., pJ , pJ+1, ..., pM)

We average a subset Λ ⊆ ΩX with cardinality J = |Λ| < M . Suppose, for simplicity,
that the averaged elements are the first J of the probability vector p(X):

p ≜
1
J

JØ
i=1

pi

This does not lead to a loss of generality, since the entropy is invariant to permuta-
tions in the probability vector. The resulting (partially) averaged probability vector
is:

pJ−AV E(X) = (p, ..., p, pJ+1, ..., pM)

Then the following in always true:

H(pJ−AV E) ≥ H(p), ∀J ∈ {2, ..., M}
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Figure A.2: Entropy, (color) plot of a cardinality-three r.v. (mentioned on p. 48)

In Figure A.3 is displayed an example where the entropy of a distribution

p(X) = (p1, p2, p3)

is compared with the one of a partially averaged distribution, where the first two
entries p1 and p2 are averaged. As can be seen, the achieved entropy is quite larger
in respect to the original distribution. Intuitively, the average operation makes
the overall probability mass to be distributed more uniformly among the possible
outcomes in respect to the previous configuration; this leads to an increase of the
outcome uncertainty and therefore the entropy increases as well.

The definition of entropy can be extended to a pair of random variables. Given
two discrete random variables X and Y , with, respectively, alphabets ΩX and ΩY ,
their joint entropy is defined as:

Definition A.2.2 (Joint entropy).

H (X, Y ) ≜ −
Ø

(x,y)∈ ΩX×ΩY

p (x, y) log2 p (x, y) [bits]

The conditional entropy of the random variable X given Y , instead, is defined
as:
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Figure A.3: Entropy, original vs. (partially) averaged distribution (mentioned on
p. 50)

Definition A.2.3 (Conditional entropy).

H (X| Y ) ≜
Ø

y∈ ΩY

p (y) H (X| Y = y) [bits]

Definition A.2.3 describes the residual uncertainty of the random variable X
after Y has been revealed. We can rewrite it as:

H(X|Y ) = −
Ø

y∈ ΩY

p (y)
Ø

x∈ Ωx

p (x| y) log2 p (x| y)

= −
Ø

(x,y)∈ ΩX×ΩY

p (x, y) log2 p (x| y)

The following results are derived:

• H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ) (Chain Rule)

• H(X, Y ) ≤ H(X) + H(Y ), equality holds iff X and Y are independent.

• H(X|Y ) ≤ H(X), equality holds iff X and Y are independent.
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The chain rule for the entropy can be generalized for n random variables as
follows:

Theorem A.2.2 (Chain rule for entropy). Given (X1, ..., Xn) ∼ p(x1, ..., xn); then:

H(X1, ..., Xn) = H(X1) + H(X2|X1) + ... + H(Xn|Xn−1, ..., X1)

A.2.1 Relative entropy
Given two probability mass functions p(x) and q(x), their relative entropy (or
Kullback-Leibler divergence) is defined as:

Definition A.2.4 (Relative entropy).

D(p| |q) ≜
Ø

x∈|ΩX|
p (x) log2

p (x)
q (x)

The relative entropy satisfies:

• D(p| |q) ≥ 0, with equality iff q(x) = p(x)

• D(p| |q) /= D(q| |p), unless q(x) = p(x)

The relative entropy can be considered as a sort of distance between the two
distributions; it represents the amount of information that we loose by modelling
p(x) with q(x).

An example is shown in Figure A.4, where a distribution p(x) is modeled with
two different binomial distributions, having different parameter p. The distribution
in the figure on the right is clearly closer to the original, as a result it has a lower
relative entropy (the corresponding values are displayed in the figure titles).

A.3 Mutual information
Given two discrete random variables X and Y , with, respectively, alphabets ΩX and
ΩY , the mutual information I(X; Y ) is the Kullback-Leibler divergence between
the joint distribution and the product of the marginal ones:

Definition A.3.1 (Mutual information).

I (X; Y ) ≜ D(p(x, y)| |p(x)p(y)) =
Ø

(x,y)∈ ΩX×ΩY

p (x, y) log2
p (x, y)

p (x) p (y)
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Figure A.4: Relative entropy, comparison between two different model distribution
(mentioned on p. 52)

Starting from Definition A.3.1, we can easily show that:

I (X; Y ) = H(X)−H(X|Y )

Therefore, the mutual information can be interpreted as the information that
we gain on X once Y is revealed; or, from another perspective, the amount of
uncertainty of X that is removed once Y is observed. From the results presented
in Section A.2, we can derive the following properties:

• I(X; Y ) ≥ 0

• I (X; Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = I(Y ; X)

• I(X; Y ) = H(X) + H(Y )−H(X, Y )

The above results are summarized in the Venn diagram displayed in Figure A.5.
The mutual information satisfies the following chain rule.

Theorem A.3.1 (Chain rule for mutual information). Given (X1, ..., Xn, Y ) ∼
p(x1, ..., xn, y); then:

I(X1, ..., Xn; Y ) = I(X1; Y ) + I(X2; Y |X1) + ... + I(Xn; Y |Xn−1, ..., X1)
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Figure A.5: Mutual information, Venn diagram (mentioned on p. 53)

Equivalently:

I(Y ; X1, ..., Xn) = I(Y ; X1) + I(Y ; X2|X1) + ... + I(Y ; Xn|Xn−1, ..., X1)

Where the conditional mutual information of X and Y given Z is defined as:

Definition A.3.2 (Conditional mutual information).

I(X; Y |Z) ≜ H(X|Z)−H(X|Y, Z) = H(Y |Z)−H(Y |X, Z) = I(Y ; X|Z)

A.4 Law of large numbers in information theory
A.4.1 Asymptotic equipartition property (AEP)
We first recall the law of the large numbers.

Theorem A.4.1 (Weak law of the large numbers). Given a sequence of random
variables: X1, X2, ..., Xn; such that each Xi is i.i.d. with mean µ = Ep(x)[Xi]; the
weak law of large numbers states that, for any ε > 0:

lim
n→∞

P

A----- 1n
nØ

i=1
Xi − µ

----- < ε

B
= 1

We can derive an analogous law for the entropy. The entropy described in
Definition A.2.1 can be re-written as:
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H (X) =
Ø

x∈ ΩX

p (x) log2
1

p (x) = Ep(x)

C
log2

1
p (x)

D
(A.1)

Considering an i.i.d. sequence X1, X2, ..., Xn; the corresponding sequence:

log2
1

p (X1)
, log2

1
p (X2)

, ... , log2
1

p (XN)

is also i.i.d.

Notice here that here p(Xi) are i.i.d. random variables with alphabets:
Ωp(X) = {p(X = x1), ..., p(X = x|ΩX |)}.

By applying A.4.1, we get:

lim
n→∞

P

A----- 1n
nØ

i=1
log2

1
p (Xi)

−H(X)
----- < ε

B
= 1

From the properties of logarithms and exploiting independence of X1, ..., Xn we
can write:

lim
n→∞

P

A----- 1n log2
1

p (X1, X2, ..., Xn) −H (X)
----- < ε

B
= 1 (A.2)

Equation (A.2) describes the asymptotic equipartition property (AEP), whose
consequences are very surprising.

A.4.2 Typical sequences
From AEP we can state that, for n sufficiently large:

p (X1, X2, ..., Xn) ≃ 2−nH(X)

In this respect, we define the typical set Aε
(n) as the set containing all the length-n

(typical) sequences whose probability is close to 2−nH(X); more precisely:

Definition A.4.1 (Typical set).

A(n)
ε ≜

î
xn = (x1, ..., xn) ∈ Ωn

X : 2−n(H(X)+ε) ≤ p(xn) ≤ 2−n(H(X)−ε)
ï

= {xn ∈ Ωn
X : H(X)− ε ≤ − 1

n
log2 p(xn) ≤ H(X) + ε}

The following properties are satisfied; ∀ε > 0:
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• ∃n∗ : if n > n∗, then P (A(n)
ε ) > 1− ε

•
---A(n)

ε

--- ≤ 2n(H(X)+ε)

• ∃n∗ : if n > n∗, then
---A(n)

ε

--- ≥ (1− ε)2n(H(X)−ε)

As an example, let’s consider the following cardinality four discrete r.v. X with
alphabet ΩX = {x1, x2, x3, x4} and distribution pi = P (X = xi), where:

• p1 = 0.2, p2 = 0.3, p3 = 0.1, p4 = 0.4

• n = 104 (sequence length)

• nsim = 20 (number of simulations)
At each simulation we generate a length-n sequence x1, ..., xn where xi is a realization
of X. We compute the corresponding estimated entropy: Hest = 1

n

qn
i=1 log2

1
pi

and
we compare it with the true entropy:
H = −q4

i=1 pi log2 pi. Figure A.6 shows that at each simulation the estimated
entropy is very close to the true one, for example, if we set ε = 0.02, by looking
the Figure we can check that all the nsim = 20 sequences belong to A(n)

ε .

2 4 6 8 10 12 14 16 18 20

simulation index

1.82

1.84

1.86

1.88

True entropy vs. Estimated entropy

n = 1e+04

H(X)

estimated H

Figure A.6: True entropy vs. estimated entropy (mentioned on p. 56)

A.4.3 Jointly typical sequences
Two sequences Xn and Y n with joint distribution p(xn, yn) = rn

i=1 p(xi, yi) are
jointly typical if they are typical sequences and their empirical joint entropy is
close to the true joint entropy. More precisely:
Definition A.4.2 (Jointly typical set).

A(n)
ε ≜ {(xn, yn) ∈ (Ωn

X , Ωn
Y ) :

| − 1/n log2 p(xn)−H(X)| < ε,

| − 1/n log2 p(yn)−H(Y )| < ε,

| − 1/n log2 p(xn, yn)−H(X, Y )| < ε}
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The following properties are satisfied; ∀ε > 0:

• ∃n∗ : if n > n∗, then P ((Xn, Y n) ∈ A(n)
ε ) > 1− ε

•
---A(n)

ε

--- ≤ 2n(H(X,Y )+ε)

• ∃n∗ : if n > n∗, then
---A(n)

ε

--- ≥ (1− ε)2n(H(X,Y )−ε)

If we consider the pair of independent sequences (X̃n, X̃n) ∼ p(xn)p(yn), these
properties hold:

• P ((X̃n, X̃n) ∈ A(n)
ε ) ≤ 2−n(I(X;Y )−3ε).

• ∃n∗ : if n > n∗, then P ((X̃n, X̃n) ∈ A(n)
ε ) ≥ (1− ε)2−n(I(X;Y )+3ε)

A.5 Channel coding theorem

A.5.1 Communication channel
Definition A.5.1. A discrete channel (ΩX , p(y|x), ΩY ) is a system with input
alphabet ΩX and output alphabet ΩY , characterized by a probability transition
matrix whose the generic element p(y|x) represents the probability of observing
y ∈ ΩY having transmitted the symbol x ∈ ΩX ; p(y|x) satisfies:

• p(y|x) ≥ 0, ∀x ∈ ΩX ,∀y ∈ ΩY

• q
y p(y|x) = 1, ∀x ∈ ΩX

We consider only memoryless channels (the output probability depends only on the
input at that time and is conditionally independent on previous channels inputs
and outputs).

Definition A.5.2. The nth extension of the discrete memoryless channel is given
by (Ωn

X , p(yn|xn), Ωn
Y ); where the alphabets Ωn

X and Ωn
Y contains the n-symbols

vectors:

• xn = (x1, ..., xn) ∈ Ωn
X

• yn = (y1, ..., yn) ∈ Ωn
Y

We suppose that the current input symbol does not depends on the previous input
symbols; under this assumption we have: p(yn|xn) = rn

i=1 p(yi|xi). An example of
p(yn|xn) of this form is given by the AWGN channel discussed in Section A.7.
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We want to transmit a message belonging to the message set, whose cardinality
is M . Each message is mapped to the corresponding index in the index set
{1,2, ..., M}.

Definition A.5.3. An (M, n) code with M messages and n symbols per message
consists of:

• An encoding function fn : {1, ..., M} → Ωn
X

• xn(i) ∈ Ωn
X represents the codeword associated to the message i.

• The codebook is the set of all the codewords: C ≜ {xn(1), ..., xn(M)}

• A decoding function g : Ωn
Y → {1, ..., M}.

We now put everything together to define the communication channel shown in
Figure A.7.

Figure A.7: Communication channel (mentioned on p. 58)

• A message W with index i is encoded to Xn = xn(i).

• Xn is transmitted through the discrete channel.

• Y n is received.

• After decoding Y n we get a guess of the original transmitted message i → Ŵ .

We now list some definitions concerning the error probability.

Definition A.5.4 (Conditional probability of error).

λi ≜ P (g(Y n) /= i|Xn = xn(i)) =
Ø

yn:g(yn) /=i

p(yn|xn(i))

Definition A.5.5 (Maximal error probability).

λMAX ≜ max
i∈{1,...M}

λi
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Definition A.5.6 (Average error probability).

λAV E ≜
1

M

MØ
i=1

λi

If the index of W is uniformly distributed the average error probability is equal
to the overall error probability:

Pe ≜ P (Ŵ /= W ) = P (g(Y n) /= W ) = λAV E

A.5.2 Channel capacity
Definition A.5.7. The rate of a (M, n) code is defined as:

R ≜
log2 M

n
[Information bits per symbol]

(log2 M is the number of bits per message and n is the number of symbols per
message). Notice that M = ⌈2nR⌉ so a code is said to be a (2nR, n) code.

A rate R is achievable if there exists a (2nR, n) code such that λMAX → 0 as
n→∞.

Definition A.5.8. The (operational) Channel Capacity is the supremum of all
achievable rates; i.e. all the rates less than the Channel Capacity are achievable by
means of a (2nR, n) code for n sufficiently large.

Definition A.5.9. The Information Channel Capacity is given by:

C ≜ maxp(x)I(X; Y )

where X and Y are random variables representing, respectively, the transmitted
and the received symbol.

Theorem A.5.1 (Channel coding theorem). The operational Channel Capacity is
exactly equal to the Information Channel Capacity, i.e., given a discrete memoryless
channel (Ωn

X , p(yn|xn), Ωn
Y ) and a rate R ≤ C = maxp(x)I(X; Y ), there exists

a (2nR, n) code achieving R with λMAX → 0. Conversely, any code achieving
λMAX → 0 must have R ≤ C = maxp(x)I(X; Y ), where λMAX is the maximal error
probability defined in Defn A.5.5.

Theorem A.5.1 is an essential result of information theory, therefore we present
its proof.
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Proof. We suppose the entire codebook to be random and represented by the M×n
matrix displayed in Equation (A.3), where each row is a n-symbols codeword drawn
according to p(xn) = rn

i=1 p(xi).

C =


x1 (1) x2 (1) · · · xn (1)

... ... . . . ...
x1 (M) x2 (M) · · · xn (M)

 (A.3)

Each element of the matrix is i.i.d., therefore the probability of a particular
codebook C is given by:

P (C) =
MÙ

w=1

nÙ
i=1

p(xi(w)) (A.4)

1. The sender chooses a message with index W = w, where P (W = w) =
1/M, ∀w ∈ {1, ..., M} and encodes it to Xn(w) (the wth row of C).

2. The codeword Xn(w) is transmitted through the channel; the receiver receives
Y n according to p(yn|xn(w)) = rn

i=1 p(yi|xi(w)) and uses a decoding algorithm
to guess W as Ŵ (Y n).

We now compute the average error probability in respect to the codebook and
codewords (transmitted messages):

E[W,C](e) ≜
Ø
C,w

P (C, W = w)P (Ŵ (Y n) /= w|C, w)

C and W are independent → P (C, W = w) = P (C)P (W = w)

E[W,C](e) =
Ø

C
P (C)

MØ
w=1

P (W = w)P (Ŵ (Y n) /= w|C, w)

=
Ø

C
P (C) 1

M

MØ
w=1

P (Ŵ (Y n) /= w|C, w)

By the symmetry of the codebook construction, the average error probability does
not depend on the particular transmitted message W ; in other words, as long as
the codebook is not revealed, the probability of error is the same for any selected
message (for any transmitted codeword); hence, for simplicity and without loss of
generality, we suppose that the message W = 1 is selected:

MØ
w=1

P (Ŵ (Y n) /= w|C, w) = MP (Ŵ (Y n) /= 1|C, W = 1)

=⇒ E[W,C](e) =
Ø

C
P (C)P (Ŵ (Y n) /= 1|C, W = 1)

We consider the jointly typical decoding algorithm, which is asymptotically optimal:
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• The receiver guess Ŵ iff (Xn(Ŵ ), Y n) ∈ A(n)
ε and there is no other index

W
′

/= Ŵ : (Xn(W ′), Y n) ∈ A(n)
ε .

We consequently have a decoding error if one or more of the following events occur:

• Ec
1 ≡ “(Xn(1), Y n) /∈ A(n)

ε ”

• E2 ≡ “(Xn(2), Y n) ∈ A(n)
ε ”

...

• EM ≡ “(Xn(M), Y n) ∈ A(n)
ε ”

The average probability of error becomes:

E[W,C](e) =
Ø

C
P (C)P (Ec

1 ∪ E2 ∪ ... ∪ EM |C, W = 1)

From the union bound inequality we get:

P (Ec
1 ∪ E2 ∪ ... ∪ EM |C, W = 1) ≤ P (Ec

1 |C, W = 1) +
MØ

j=2
P (Ej|C, W = 1)

We start to consider P (Ec
1 |C, W = 1) = P ((Xn(1), Y n) /∈ A(n)

ε |C, W = 1).

Since p(yn|xn(1)) = rn
i=1 p(yi|xi(1)), we have that:

p(yn, xn(1)) = p(xn(1))p(yn|xn(1)) =
nÙ

i=1
p(xi(1))p(yi|xi(1)) =

nÙ
i=1

p(yi, xi(1))

This last observation allows us to state that (from the 1st property of jointly typical
sequences presented in Section A.4.3) sequences Xn(1) and Y n are jointly typical
with probability close to 1, independently from the particular random codebook C,
provided that n is sufficiently large; therefore we have:

P (Ec
1 |C, W = 1) ≤ ε

We now consider P (Ej|C, W = 1) = P ((Xn(j), Y n) ∈ A(n)
ε |C, W = 1).

If j /= 1, Xn(j) and Xn(1) are independent, so are Y n and Xn(j); i.e.

(Y n, Xn(j /= 1)) ∼
nÙ

i=1
p(yi)p(xi(j))

As a consequence, independently from the particular random codebook C, Xn(j)
and Y n are jointly typical with probability equal or less than 2−n(I(X;Y )−3ε); therefore
we have:

P (Ej|C, W = 1) ≤ 2−n(I(X;Y )−3ε), j = 2, ..., M
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We combine the previous results:

P (Ec
1 ∪ E2 ∪ ... ∪ EM |C, W = 1) ≤ ε + (M − 1)2−n(I(X;Y )−3ε)

→ E[W,C](e) ≤
Ø

C
P (C)(ε + (M − 1)2−n(I(X;Y )−3ε))

Finally we get the following inequality:

E[W,C](e) ≤ ε + (M − 1)2−n(I(X;Y )−3ε) = ε + (2nR − 1)2−n(I(X;Y )−3ε)

For n sufficiently large we get:

E[W,C](e) ≤ ε + 2n(R−[I(X;Y )−3ε])

Hence we can make E[W,C](e) arbitrarily small provided that R < I(X; Y ):

• Fixed ϵ > 0

• ∃n∗ : E[W,C](e) < ϵ,∀n > n∗

Now we choose a distribution of x which maximizes the mutual information. Given
(X∗, p(x∗)) : I(X; Y ) = C, we can make E[W,C](e) arbitrarily small provided that
R < C. Since the average probability of error over all the codebooks and codewords
is small, there exists at least one good codebook C∗ = {x∗n(1), ..., x∗n(M)} such
that λAV E(C∗) is small; where λAV E, defined in Defn A.5.6, is the average error
probability in respect to the transmitted codeword:

λAV E(C∗) = 1
M

MØ
i=1

λi(C∗) ≤ ϵ

Where λi(C∗) is the conditional error probability given the message i is selected
(the codeword Xn(i) ∈ C∗ is transmitted). Suppose (without loss of generality)
that the conditional probabilities are ordered: λ1 ≤ λ2 ≤ ... ≤ λM ; we can write:

λAV E(C∗) = 1
M

(
M/2Ø
i=1

λi(C∗) +
MØ

i=M/2+1
λi(C∗))

We define the “good-half codebook” as the set of all codewords with index i ≤ M/2;
the “bad-half codebook” as the set of all the remaining codewords:

• C∗
good = {x∗n(1), ..., x∗n(M/2)}

• C∗
bad = {x∗n(M/2 + 1), ..., x∗n(M)}
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We rewrite the average probability of error as:

λAV E(C∗) = 1
M

(
Ø

i∈I(C∗
good

)
λi(C∗

good) +
Ø

i∈I(C∗
bad

)
λi(C∗

bad))

The minimum error probability of the “bad-half codebook” can not be smaller than
the maximum error probability of the “good-half codebook”:

λAV E(C∗) ≥ 1
M

(
Ø

i∈I(C∗
good

)
λi(C∗

good) + M

2 λMAX(C∗
good))

=⇒ λAV E(C∗)− 1
2λMAX(C∗

good) ≥ 1
M

Ø
i∈I(C∗

good
)
λi(C∗

good) ≥ 0

=⇒ λMAX(C∗
good) ≤ 2λAV E(C∗) ≤ 2ϵ

Therefore there exists a good code with rate:

R
′ = log2

M/2

n
= R− 1

n
n→∞−−−→ R

such that the maximum probability of error can be made arbitrarily small provided
that R ≤ C; this proves the channel coding theorem.

A.6 Differential entropy
In this section the differential entropy is defined. Its properties are very similar to
the entropy of a discrete r.v. (Section A.2); hence to avoid repetition we will only
focus on its peculiar properties.

Definition A.6.1. Given a continuous r.v. X with probability density function
f(x), its differential entropy is defined as:

h(x) =
Ú

SX

dxf(x) log2 f(x)

Where SX is the support of X.

The following properties are satisfied.

• Given c, a ∈ R:

– h(X + c) = h(X) (translations do not change the differential entropy)
– h(aX) = h(X) + log2 |a|
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• Given another continuous r.v. Y with density f(y):

– h(X, Y ) = h(X) + h(X|Y ) = h(Y ) + h(Y |X) (Chain Rule)
– h(X, Y ) ≤ h(X) + h(Y ), equality holds iff X and Y are independent
– h(X + Y |X) = h(Y ), if X and Y are independent

• If XG ∼ N (µ, σ2
G)

– h(XG) = 1/2 log2(2πeσ2)

• If X is any continuous r.v. with variance σ2
G (same as XG), the following

inequality holds:

– h(X) ≤ h(XG)

Definition A.6.2. Given two densities f(x) and g(x), their relative entropy (or
Kullback-Leibler distance) is defined as:

D(f ||g) =
Ú

dxf(x) log2
f(x)
g(x)

Definition A.6.3. The mutual information between two continuous r.v. X and
Y , with joint density f(x, y), is defined as:

I(X; Y ) =
Ú

dxdyf(x, y) log2
f(x, y)

f(x)f(y)
From the definition it follows that:

• I(X; Y ) = h(X)− h(X|Y ) = h(Y )− h(Y |X) = h(X) + h(Y )− h(X, Y )

• I(X; Y ) = D(f(x, y)||f(x)f(y))

A.7 AWGN channel
Let us briefly describe the AWGN channel. In this model the noise is Gaussian
distributed; this assumption is very simple but at the same time is used in many
scenarios, as a matter of fact thanks to the CLT the overall sum of many random
noise contributions tends to be Gaussian distributed.

Definition A.7.1. A (SX , f(yn|xn), SY ) channel is AWGN if:

f(yn|xn) =
nÙ

i=1
f(yi|xi) =

nÙ
i=1

1√
2πσ2

exp
A
−(yi − xi)2

2σ2

B

I.e. f(yn|xn) ∼ Nn(xn, σ2In), where Nn denotes the multivariate Gaussian distri-
bution of a n-dimensional random vector.
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The generic received symbol Y is equal to the input symbol plus a white noise
added by the receiver side:

Y = X + Z

where Z ∼ N (0, σ2) is the white noise.

Figure A.8: AWGN channel

A.7.1 AWGN Capacity
We can easily evaluate the channel capacity of the AWGN channel by exploiting
the properties of differential entropy displayed in Section A.6; keeping into account
that:

• X and Z are independent.

• Z is Gaussian distributed with zero mean.

Therefore we get:

I(X; Y ) = h(Y )− h(Y |X) = h(Y )− h(X + Z|X) = h(Y )− h(Z)

In order to find the maximum we exploit the following inequality:

h(Y ) ≤ h(YG) = 1/2 log2(2πeσ2
Y )

I.e. the maximum entropy is achieved if Y is Gaussian distributed:

Y = YG ←→ Y ∼ N (µY , σ2
Y )

Assuming the transmission power constraint E[X2] ≤ P , the previous condition is
satisfied if X ∼ N(µX , P − µ2

X)⇐⇒ Y ∼ N (µX , P − µ2
X + σ2)

The variance is maximixed if µX = 0, i.e. if X ∼ N (0, P )→ Y ∼ N (0, P + σ2)

→ h(YG) = 1/2 log2(2πe(P + σ2))

Since C = maxf(x)I(X; Y ), we finally get:

CAW GN = 1/2 log2(2πe(P + σ2))− 1/2 log2(2πeσ2) = 1
2 log2

3
1 + P

σ2

4
(A.5)
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If we transmit complex signals with in-phase and quadrature components the
capacity is doubled:

CAW GN = log2

3
1 + P

σ2

4
= log2 (1 + SNR) (A.6)

Where SNR denotes the (useful) signal to noise power ratio. Similarly to what
we saw in Section A.5, it can also be proven in the continuous case that any rate
below capacity can be achieved with arbitrarily small probability of error.
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Review of multi-user
Information theory

B.1 Jointly typical sequences (extension)
In this section, in order to analyze the multi-user channels, we extend the notion of
typical sequences (Section A.4) to a collection of three random variables XA, XB, Y
with joint distribution:

• p(xA, xB, y), (xA, xB, y) ∈ ΩXA
× ΩXB

× ΩY

Let’s consider three n-sequences of that variables:

• Xn
A = XA1, ..., XAn

• Xn
B = XB1, ..., XBn

• Y n = Y1, ..., Yn

So that the corresponding joint random vector can be written as:

• (Xn
A, Xn

B, Y n) = (XA1, XB1, Y1), ..., (XAn, XBn, Yn)

drawn accordingly to:

• p(xn
A, xn

B, yn) = rn
i=1 p(xAi, xBi, yi) = rn

i=1 P (XAi = xAi, XBi = xBi, Yi = yi)

We derive the AEP by following the same logic presented in A.4:

− 1
n

log2 p((XA1, XB1, Y1), ..., (XAn, XBn, Yn)) = − 1
n

nØ
i=1

log2 p(XAi, XBi, Yi)

• (XAi, XBi, Yi) and (XAj, XBj, Yj), i /= j, are independent
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• so are log2 p(XAi, XBi, Yi) and log2 p(XAj, XBj, Yj)

Therefore by applying the weak law of the large numbers (Theorem A.4.1) we
derive:

lim
n→∞

P

A-----− 1
n

nØ
i=1

log2 p(XAi, XBi, Yi)−H(XA, XB, Y )
----- < ε

B
= 1

Equivalently:

lim
n→∞

P
3----− 1

n
log2 p((Xn

A, Xn
B, Y n))−H(XA, XB, Y )

---- < ε
4

= 1

I.e. for n sufficiently large the following holds: p(Xn
A, Xn

B, Y n) ≃ 2−nH(XA,XB ,Y )

In this respect sequences Xn
A, Xn

B and Y n with joint distribution p(xn
A, xn

B, yn) =rn
i=1 p(xAi, xBi, yi) are jointly typical if they are typical sequences and their empir-

ical joint entropy is close to the true joint entropy. More precisely:

Definition B.1.1 (Jointly typical set (extension)).

A(n)
ε ≜ {x = (xn

A, xn
B, yn) ∈ (Ωn

XA
, Ωn

XB
, Ωn

Y ) :
| − 1/n log2 p(xn

A)−H(XA)| < ε,

| − 1/n log2 p(xn
B)−H(XB)| < ε,

| − 1/n log2 p(yn)−H(Y )| < ε,

| − 1/n log2 p(xn
A, xn

B, yn)−H(XA, XB, Y )| < ε}

The following properties are satisfied. ∀ε > 0, ∃n∗ : if n > n∗, then:

1. P ((Xn
A, Xn

B, Y n) ∈ A(n)
ε ) > 1− ε

2. x ∈ A(n)
ε =⇒ p(x) .= 2−n(H(XA,XB ,Y )±ε)

3.
---A(n)

ε

--- .= 2n(H(XA,XB ,Y )±2ε)

Where a
.= 2n(b±ε) means | 1

n
log2 a− b| < ε

Given S1, S2 ⊆ {XA, XB, Y } we build their corresponding n-sequences:

• Sn
1 = S11, ..., S1n

• Sn
2 = S21, ..., S2n

with distributions p(s1) and p(s2) respectively. The following holds:
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4. If (s1, s2) ∈ A(n)
ε (S1, S2) =⇒ p(s1|s2) .= 2−n(H(S1|S2)±2ε)

Where

A(n)
ε (S1, S2) ≜ {(s1, s2) :

| − 1/n log2 p(s1)−H(S1)| < ε,

| − 1/n log2 p(s2)−H(S2)| < ε,

| − 1/n log2 p(s1, s2)−H(S1, S2)| < ε}

Considering again S1 and S2, let’s suppose the n-sequence Sn
2 = s2 has

been revealed. We define A(n)
ε (S1|s2) as the set of s1 sequences that are jointly

typical with s2, more precisely:

A(n)
ε (S1|s2) ≜ {s1 :

| − 1/n log2 p(s1)−H(S1)| < ε,

| − 1/n log2 p(s1, s2)−H(S1, S2)| < ε}

If s2 ∈ A(n)
ε , the following hold:

5. |A(n)
ε (S1|s2)| ≤ 2n(H(S1|S2)+2ε)

6. (1− ε)2n(H(S1|S2)−2ε) ≤ qs2 p(s2)|A(n)
ε (S1|s2)|

We consider S1, S2, S3 ⊆ {XA, XB, Y } and S̃n
1 , S̃n

2 , S̃n
3 such that:

P (S̃n
1 = s1, S̃n

2 = s2, S̃n
3 = s3) =

nÙ
i=1

p(s3i)p(s1i|s3i)p(s2i|s3i)

(I.e. S̃n
1 and S̃n

2 are conditionally independent given S̃n
3 but with the same

marginal as Sn
1 and Sn

2 ). The following property is satisfied:

7. P ((S̃n
1 , S̃n

2 , S̃n
3 ) ∈ A(n)

ε ) .= 2−n(I(S1;S2|S3)±7ε)

Proof. We present the proof of the various properties listed above.

1. This follows directly from the definition of jointly typical set

2. Same as the first
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3. The upper bound derives from:

1 ≥ P ((Xn
A, Xn

B, Y n) ∈ A(n)
ε )

=
Ø

x∈A
(n)
ε

p(x) ≥ |A(n)
ε |min(p(x))

= |A(n)
ε |2−n(H(XA,XB ,Y )+ε)

→ |A(n)
ε | ≤ 2n(H(XA,XB ,Y )+ε)

Instead, the lower bound follows from:

1− ε ≤ P ((Xn
A, Xn

B, Y n) ∈ A(n)
ε )

=
Ø

x∈A
(n)
ε

p(x) ≤ |A(n)
ε |max(p(x))

= |A(n)
ε |2−n(H(XA,XB ,Y )−ε)

→ |A(n)
ε | ≥ (1− ε)2n(H(XA,XB ,Y )−ε)

I.e. overall we have: ---A(n)
ε

--- .= 2n(H(XA,XB ,Y )±2ε)

Q.E.D.

4. From the definition of A(n)
ε (S1, S2) it follows that:

• p(s2) .= 2−n(H(S2)±ε)

• p(s1, s2) .= 2−n(H(S1,S2)±ε)

Therefore:

p(s1|s2) = p(s1, s2)
p(s2)

.= 2−n(H(S1,S2)−H(S2)±2ε) .= 2−n(H(S1|S2)±2ε)

Q.E.D.

5. We use the previous property:

1 ≥ P (s1 ∈ A(n)
ε (S1|s2))

=
Ø

s1∈A
(n)
ε (S1|s2)

p(s1|s2) ≥ |A(n)
ε (S1|s2)|min(p(s1|s2))

= |A(n)
ε (S1|s2)|2−n(H(S1|S2)+2ε)

=⇒ |A(n)
ε (S1|s2)| ≤ 2n(H(S1|S2)+2ε)

Q.E.D.
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6. From the first property:

1− ε ≤ P ((Sn
1 , Sn

2 ) ∈ A(n)
ε )

=
Ø
s2

p(s2)
Ø

s1∈A
(n)
ε (S1|s2)

p(s1|s2) ≤
Ø
s2

p(s2)|A(n)
ε (S1|s2)|max(p(s1|s2))

=
Ø
s2

p(s2)|A(n)
ε (S1|s2)|2−n(H(S1|S2)−2ε)

=⇒ (1− ε)2n(H(S1|S2)−2ε) ≤
Ø
s2

p(s2)|A(n)
ε (S1|s2)|

Q.E.D.

7.
P ((S̃n

1 , S̃n
2 , S̃n

3 ) ∈ A(n)
ε ) =

Ø
(s1,s2,s3)∈A

(n)
ε

p(s3)p(s1|s3)p(s2|s3)

.= 2n(H(S1,S2,S3)±2ε)2−n(H(S3)±ε)2−n(H(S1|S3)±2ε)2−n(H(S2|S3)±2ε)

.= 2−n(I(S1;S2|S3)±7ε)

Q.E.D.

B.2 Multiple-access channel
Definition B.2.1 (Multiple-access channel). A discrete memoryless multiple-access
channel (ΩX1 × ...×ΩXm , p(y|x1, ..., xm), ΩY ) with m transmitters and one receiver
consists of:

• m alphabets ΩX1 , ..., ΩXm associated to the m transmitters

• One alphabet ΩY to the receiver

• A probability transition matrix p(y|x1, ..., xm)

Each user i ∈ {1, ..., m} transmits a message belonging to his message set
Wi ∈ {1, ..., Mi}

Definition B.2.2. An (M1, ..., Mm, n) code with Mi messages per transmitter i
(Mi = ⌈2nRi⌉; where Ri is the code rate of user i) and n symbols per message
consists of:

• m encoding functions:

72



Review of multi-user Information theory

– f1 : W1 → Ωn
X1...

– fm : Wm → Ωn
Xm

• Ωn
Xi

represents the codebook of the user i.

• A decoding function:

– g : Ωn
Y → W1 × ...×Wm

Figure B.1: Multiple access communication scheme

Similarly to how we did in Section A.5 we define the average error probability
(over codewords). We suppose that each user uniformly chooses a message (from
his message set) independently from the other users selected messages. Therefore:

Definition B.2.3 (Average probability of error for multiple-access channel).

λAV E ≜ α
Ø

w=(w1,...,wm)∈W1×...×Wm

P (g(Y n) /= w|xn
1 (w1), ..., xn

m(wm) sent)

where:
α ≜ 1/(M1 × ... × Mm)

Differently from how we did in Section A.5.2, where we defined the achievability
in respect to the maximal probability of error, we now define the achievability of
the set of rates in respect to the average probability of error:

Definition B.2.4. The set of rates (R1, ..., Rm) is said to be achievable for the
multiple-access channel if there exists a ((2nR1 , ...,2nRm), n) code such that λAV E → 0
as n→∞.

Theorem B.2.1 (Multiple-access channel capacity region). The capacity region (i.e.
the closure of the achievable rates sets (R1, ..., Rm)) of a multiple-access channel
(ΩX1 × ...× ΩXm , p(y|x1, ..., xm), ΩY ), corresponds to the closure of the convex hull
of all (R1, ..., Rm) satisfying:

R(S) < I(X(S); Y |X(Sc)), ∀S ⊆ {1, ..., m}

Where:
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• (X1, ..., Xm) ∼ p1(x1) · ... · pm(xm)

• Sc = {1, ..., m} \ S

• R(S) = q
i∈S Ri

• X(S) = {Xi : i ∈ S}

In words: given any subset of users, the sum of their rates to be achievable should
be less than the information that we gain on their transmitted symbols once the
received symbol is revealed, given the transmitted symbols of the other users.

For m = 2 (let’s call the two users A and B) we get the following achievability
constraints:

• RA < I(XA; Y |XB)

• RB < I(XB; Y |XA)

• RA + RB < I(XA, XB; Y )

Proof. We prove the achievability for two users (A and B). We extend the assump-
tions we made for the single user in Section A.5.2 to the two-user scenario:

• Both codebooks of user A and B are randomly generated as Mj×n, j ∈ {A, B}
matrices where each row is a n-symbols codeword drawn according to

– pA(xn
A) = rn

i=1 pA(xAi) for user A

– pB(xn
B) = rn

i=1 pB(xBi) for user B

• The resulting codebooks are:

– CA =


xA1 (1) xA2 (1) · · · xAn (1)

... ... . . . ...
xA1 (MA) xA2 (MA) · · · xAn (MA)



– CB =


xB1 (1) xB2 (1) · · · xBn (1)

... ... . . . ...
xB1 (MB) xB2 (MB) · · · xBn (MB)


• Each element of each matrix is i.i.d. hence the probability of a particular

multiple-access code is given by:

– P (CA, CB) = P (CA)P (CB) = rMA
wA=1

rMB
wB=1

rn
i=1 pA(xAi(wA))pB(xBi(wB))

1. Sender A picks a message with index WA = wA, where P (WA = wA) = 1/MA,
∀wA ∈ {1, ..., MA} and encodes it to Xn

A(wA) (the wth
A row of CA)
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2. Sender B picks a message with index WB = wB, where P (WB = wB) = 1/MB,
∀wB ∈ {1, ..., MB} and encodes it to Xn

B(wB) (the wth
B row of CB)

3. Codewords Xn
A(wA) and Xn

B(wB) are transmitted; the receiver receives Y n

according to p(yn|xn
A(wA), xn

B(wB)) = rn
i=1 p(yi|xAi(wA), xBi(wB)) and uses a

decoding algorithm to guess (WA, WB) as (ŴA, ŴB)(Y n)

We now compute the average error probability over codebooks and codewords
(transmitted messages):

E[WA,WB,CA,CB ](e)≜
q

CA,CB,wA,wB
P (CA,CB ,WA=wA,WB=wB)P ((ŴA,ŴB)(Y n) /=(wA,wB)|CA,CB ,wA,wB)

Since WA, WB, CA, CB are independent, we get:

E[WA,WB,CA,CB ](e)=
q

CA,CB
P (CA,CB) 1

MA×MB

q
wA,wB

P ((ŴA,ŴB)(Y n) /=(wA,wB)|CA,CB ,wA,wB)

By the symmetry of the codebooks construction, the average error probability does
not depend on the particular transmitted messages WA and WB; in other words,
as long as the codebooks are not revealed, the probability of error is the same
for any selected messages (for any transmitted codewords); hence, for simplicity
and without loss of generality, we suppose that the messages WA = 1, WB = 1 are
selected:

Ø
wA,wB

P ((ŴA, ŴB)(Y n) /= (wA, wB)|...) = (MA×MB)P ((ŴA, ŴB)(Y n) /= (1,1)|...)

=⇒ E[WA,WB ,CA,CB ](e) =
Ø

CA,CB

P (CA, CB)P ((ŴA, ŴB)(Y n) /= (1,1)|CA, CB,1,1)

We consider the jointly typical decoding algorithm:

• The receiver guess (ŴA, ŴB) iff (Xn
A(ŴA), Xn

B(ŴB), Y n) ∈ A(n)
ε and there is no

other pair of indexes (W ′
A, W

′
B) /= (ŴA, ŴB) : (Xn

A(W ′
A), Xn

B(W ′
B), Y n) ∈ A(n)

ε .

We consequently have a decoding error if one or more of the following events occur:

• Ec
11 ≡ “(Xn

A(1), Xn
B(1), Y n) /∈ A(n)

ε ”

• E i1 = {tMA
i=2 Ei1}, Ei1 ≡ “(Xn

A(i), Xn
B(1), Y n) ∈ A(n)

ε ”

• E1j = {tMB
j=2 E1j}, E1j ≡ “(Xn

A(1), Xn
B(j), Y n) ∈ A(n)

ε ”

• E ij = {t(i /=1,j /=1) Eij}, Eij ≡ “(Xn
A(i), Xn

B(j), Y n) ∈ A(n)
ε ”
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Where for simplicity we use i, j instead of wA, wB respectively.
The average probability of error becomes:

E[WA,WB ,CA,CB ](e) =
Ø

CA,CB

P (CA, CB)P (Ec
11 ∪ E i1 ∪ E1j ∪ E ij|CA, CB,1,1)

From the union bound inequality we get:

P (Ec
11∪E i1∪E1j∪E ij|...) ≤ P (Ec

11|...)+
MAØ
i=2

P (Ei1|...)+
MBØ
j=2

P (E1j|...)+
Ø

i /=1,j /=1
P (Eij|...)

In what follows we will apply the properties of the joint typical sequences listed in
Section B.1.

We start to consider: P (Ec
11|...) = P ((Xn

A(1), Xn
B(1), Y n) /∈ A(n)

ε |CA, CB,1,1)

Since p(yn|xn
A(1), xn

B(1)) = rn
i=1 p(yi|xAi(1), xBi(1)), we have that:

p(yn, xn
A(1), xn

B(1)) = p(xn
A(1), xn

B(1))p(yn|xn
A(1), xn

B(1))

=
nÙ

i=1
p(xAi(1), xBi(1))p(yi|xAi(1), xBi(1))

=
nÙ

i=1
p(xAi(1), xBi(1), yi)

This last observation allows us to state that (from the 1st property of jointly
typical sequences presented in Section B.1) sequences Xn

A(1),Xn
B(1) and Y n are

jointly typical with probability close to 1, independently from the particular random
codebooks CA, CB provided that n is sufficiently large; therefore we have:

P (Ec
11|CA, CB,1,1) ≤ ε, ∀CA, CB

Now let’s consider: P (Ei1|...) = P ((Xn
A(i), Xn

B(1), Y n) ∈ A(n)
ε |CA, CB,1,1)

We note that Xn
A(i), i /= 1 and Xn

A(1) are independent, so are Xn
A(i) and Y n;

therefore we have:
P ((Xn

A(i), Xn
B(1), Y n) ∈ A(n)

ε |CA, CB,1,1)
=

Ø
(xn

A(i),xn
B(1),yn)∈An

ε

p(xn
A(i), xn

B(1), yn|CA, CB,1,1)

=
Ø

(xn
A,xn

B ,yn)∈An
ε

pA(xn
A)p(xn

B, yn) ≤ 2n(H(XA,XB ,Y )+2ε)2−n(H(XA)−ε)2−n(H(XB ,Y )−ε)

= 2−n(I(XA;XB ,Y )−4ε) = 2−n(I(XA;XB)+I(XA;Y |XB)−4ε)

= 2−n(I(XA;Y |XB)−4ε)

After repeating the same procedure for P (E1j|...), we obtain the following inequali-
ties:
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• P (Ei1|CA, CB,1,1) ≤ 2−n(I(XA;Y |XB)−4ε), ∀i /= 1,∀CA, CB

• P (E1j|CA, CB,1,1) ≤ 2−n(I(XB ;Y |XA)−4ε), ∀j /= 1,∀CA, CB

Finally:

P (Eij|...) = P ((Xn
A(i), Xn

B(j), Y n) ∈ A(n)
ε |CA, CB,1,1)

=
Ø

(xn
A(i),xn

B(j),yn)∈An
ε

p(xn
A(i), xn

B(j), yn|CA, CB,1,1) =
Ø

(xn
A,xn

B ,yn)∈An
ε

p(xn
A)p(xn

B)p(yn)

≤ 2n(H(XA,XB ,Y )+2ε)2−n(H(XA)−ε)2−n(H(XB)−ε)2−n(H(Y )−ε)

= 2n(H(XA,XB ,Y )+2ε)2−n(H(XA)−ε)2−n(H(XB |XA)−ε)2−n(H(Y )−ε)

= 2−n(H(XA,XB)+H(Y )−H(XA,XB ,Y )−5ε)

= 2−n(I(XA,XB ;Y )−5ε)

Where we exploit the independency between XA and XB so that H(XB) =
H(XB|XA) → H(XB|XA) + H(XA) = H(XA, XB). We put everything together
and we get:

E[WA,WB ,CA,CB ](e) ≤ ε + (MA − 1)2−n(I(XA;Y |XB)−4ε) + (MB − 1)2−n(I(XB ;Y |XA)−4ε)

+(MA − 1)(MB − 1)2−n(I(XA,XB ;Y )−5ε) n→∞−−−→ 2n(RA−[I(XA;Y |XB)−4ε)]

+2n(RB−[I(XB ;Y |XA)−4ε)] + 2n([RA+RB ]−[I(XA,XB ;Y ))−5ε)]

IF RA<I(XA;Y |XB), RB<I(XB ;Y |XA), RA+RB<I(XA,XB ;Y )−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 0

Hence the average error probability over codebooks and codewords tends to zero
if the rates constraints are satisfied; therefore, in these conditions, there exists at
least a good codebooks pair (C∗

A, C∗
B) such that the average error probability over

codewords (defined in Defn B.2.3) tends to zero for that codebooks; this proves
the achievability for the multiple-access channel.

B.3 Broadcast channel
Definition B.3.1 (Broadcast channel). A discrete memoryless broadcast channel
(ΩX , p(y1, ..., ym|x), ΩY1 × ...× ΩYm) with one transmitter and m receivers consists
of:

• m alphabets ΩY1 , ..., ΩYm associated to the m receivers

• One alphabet ΩX to the transmitter

• A probability transition matrix p(y1, ..., ym|x)
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The transmitter transmits a message Wi ∈ {1, ..., Mi} to each user i ∈ {1, ..., m}.

Definition B.3.2. An (M1, ..., Mm, n) code with Mi messages per receiver i (Mi =
⌈2nRi⌉; where Ri is the code rate of user i) and n symbols per message consists of:

• one encoding function:

– f : (W1, ..., Wm)→ Ωn
X

• m decoding functions:

– g1 : Ωn
Y1 → W1

...
– gm : Ωn

Ym
→ Wm

Figure B.2: Broadcast communication scheme

Definition B.3.3. Assuming (W1, ..., Wm) uniformly distributed over M1×...×Mm,
the average probability of error can be defined as:

λAV E ≜ P (g1(Y n
1 ) /= W1 ∪ ... ∪ gm(Y n

m) /= Wm)

Definition B.3.4. The set of rates (R1, ..., Rm) is said to be achievable for the
broadcast channel if there exists a ((2nR1 , ...,2nRm), n) code such that λAV E → 0 as
n→∞.

Unlike the multiple-access channel, for the broadcast channel, there is no
comprehensive theory capable of defining its capacity. However, there are specific
cases in which it is possible to define it. One of these is the so-called degraded
broadcast channel, where we can a priori identify the receivers with a “good”
channel and those with a “bad” channel [21].

As in the multiple-access channel, it is possible to derive such capacity using
the notions of random codebook and jointly typical decoding. However, we avoid
presenting the proof in this thesis, furthermore in [22], it has been demonstrated
that there is a strong duality between the capacity region of the multiple-access
channel and the one of the Gaussian broadcast channel, which is our primary focus.
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Specifically, given two channels, one being a multiple-access and the other being
its dual broadcast (with the same gains and noise power), if we know the capacity
of one, it is possible to deduce the capacity of the other.
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