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Abstract

Global Navigation Satellite Systems (GNSS) and Inertial Navigation Systems
(INS) play pivotal roles in modern navigation and positioning applications. The in-
tegration of these two technologies has become crucial for achieving high-accuracy
and robust navigation solutions in various domains, such as autonomous vehicles,
aviation and mobile devices. These two technologies are characterized by com-
plementary features, with GNSS providing absolute position but suffering from
external conditions and INS offering continuous, high-rate relative motion data
but being affected by error accumulation over time. Their integrations aim to em-
phasize strengths while minimizing weaknesses for robust and accurate navigation
solutions.

Several integration approaches, of different complexity, can be found in litera-
ture. In this thesis a factor graph framework has been adopted to perform such
integration. Factor graphs have proven as a powerful mathematical framework
for modeling and solving complex estimation and optimization problems as Simul-
taneous Localization and Mapping (SLAM). Recently, because of their flexibility,
factor graphs have emerged as an alternative method for GNSS positioning. Factor
graphs describe positioning problems in terms of optimization problems, allowing
the solution to be obtained over multiple iterations, differently from other tradi-
tional navigation filters such as Extended Kalman Filter (EKF). This means that
the involved functions are linearized multiple times and time correlation between
consecutive epochs is better exploited. Moreover, positions related to previous
instants can be kept inside the graph so that, as new positions are estimated, the
gained information can be used to refine the old solutions, obtaining a better per-
formance in post-processing. These features, along with many robust estimation
techniques that have been developed for factor graphs, allow to obtain positioning
solutions which can be more robust in challenging environments, such as urban
scenarios.

This thesis provides a comprehensive overview of GNSS and INS technologies
as well as the mathematical formulation of factor graphs. The framework of a
GNSS/INS tight integration based on factor graphs is then developed. Finally, an
analysis of the results obtained deploying this formulation on a MATLAB receiver
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is performed and compared to the solution obtained from an EKF. The data-
set used for this purpose is taken from a urban scenario (città di Torino). In
conclusion, the results obtained in this thesis prove the advantages coming from
the integration of GNSS and INS in a factor graph framework, offering increased
accuracy and robustness in complex environments.
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Chapter 1

Satellite Navigation and
Inertial Navigation systems

1.1 Global Navigation Satellite Systems
Global Navigation Satellite Systems (GNSS) involve a constellation of satellites,
orbiting Earth, continuously transmitting signals over the globe that allow properly
equipped receiver devices to determine their three-dimensional position and timing
information with respect to an absolute reference frame.

The positioning is achieved solving a geometric problem involving distances
(ranges) of a user to a set of GNSS satellites of which the position is known.
These fundamentals information are determined by the user’s receiver elaborating
signals transmitted by the satellites. [1]

The ability to provide high positioning accuracy under all weather conditions
has resulted in GNSS revolutionizing modern positioning and navigation. The
roots of this technology date back to 1960, and since then, it has undergone sig-
nificant development.

1.1.1 Fundamentals of satellite-based navigation
Time of Arrival (ToA) is the simplest and most common ranging technique. This
method is based on knowing the exact time a signal was sent, the exact time the
signal arrives and the speed at which the signal travels (assumed to be the speed
of light). By multiplying the interval of time by the signal speed, the so called
range (distance user-transmitter) is obtained. Once different ranges are computed
by the receiver from a set of visible reference transmitters, in this case satellites,
a multilateration problem is solved.

In order to solve the positioning problem, the receiver’s clock and the satellites’
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clocks should be perfectly synchronized. However, having the user clock perfectly
aligned to that of the satellites is an infeasible operation for cost-complexity rea-
sons. The temporal misalignment is then typically considered as an additional
unknown in the positioning context. In other words, the multilateration problem
is formulated as a four-dimensional problem: three-dimensions given by the posi-
tion plus the temporal dimension, represented by the user clock bias. Given that
the number of unknowns is equal to four, at least four satellites must be avail-
able to perform the multilateration. In this context, the term pseudorange is used
instead of range.

The problem can be represented for simplicity in a bi-dimensional set-up as
shown in Figure 1.1. Once the distances have been computed, the geometrical

Figure 1.1: 2-D trilateration based on Time-of-Arrival (ToA). Point A is the re-
ceiver position

position of the receiver can be unambiguously retrieved from the intersection of
the three circles centered in the satellites positions. This computation is called
trilateration.

To extend this process to a three-dimensional formulation a new spatial com-
ponent will be added (i.e. height) as well as another satellite. The distances from
each satellite will now represent spheres instead of circles. Computing the inter-
section of these four spheres the three-dimensional location can be unequivocally
retrieved [1, 2].
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1.1 – Global Navigation Satellite Systems

1.1.2 GNSS architecture

Any GNSS constellation operates through three different segments known as the
Space Segment, the Ground Control Segment, and the User Segment [1].

The Space segment consists of the satellites themselves (enough to ensure that
at least four are visible simultaneously from any point at any time) whose major
function is the down-link transmission of radio-navigation signals, as well as storage
and re-transmission of the navigation message sent by the control segment. These
transmissions are controlled by highly stable atomic clocks onboard the satellites.

The Ground control segment consists of a global network of ground facilities.
It utilizes earth based tracking stations around the world to manage the entire
navigation system by tracking the satellites, keep the corresponding GNSS time
scale updated, performing analyses and sending commands and data to space.

The User segment consists of the GNSS receivers. The satellites’ Radio Fre-
quency (RF) signals are tracked and decoded to determine pseudoranges (and
other information), utilized in determining user’s position, velocity, and time.

In figure 1.2 a schematic representation of GNSS segments and their interac-
tions.

Figure 1.2: GNSS system segments [3].

1.1.3 Navigation Satellite Systems

Nowadays, several satellite systems (i.e. constellations) have been developed for
both military and civilian applications. In the following section, an overview of
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the most important global coverage satellite systems is given, with the main pur-
pose of examining their core features in relation to architectural structure and
signal construction. However, of particular significance within this overview is the
Global Positioning System (GPS), given that all the GNSS ranging data under
consideration within this thesis are obtained from this constellation.

GPS

Global Positioning System (GPS) is composed by 24 Medium-Earth Orbit
(MEO) satellites, circling the Earth twice a day (celestial time) at an altitude
of about 20200 Km, became fully operational in 1993 [4]. At the time of writing,
the number of operational GPS satellites amounts to 31 [5, 6]. The GPS signal is
a spread spectrum Code Division Multiple Access (CDMA) signal modulated at
two carrier frequencies in the L-band (1 GHz - 2 GHz): L1 (1575.42 MHz) and
L2 (1227.60 MHz). These signals are modulated by two Pseudo-Random Noise
(PRN) codes, the Coarse-Acquisition (C/A) code on L1 and the P-code on both
L1 and L2, that grant orthogonality between transmissions from different satel-
lites. P-code is restricted only to military users via its encryption by a Y code. In
addition to PRN codes, the navigation message consisting of information such as
satellite ephemeris, satellite clock bias and satellite status is also modulated onto
the L1 and L2 carriers [1, 7].

GALILEO

Galileo constellation consists of 28 operational satellites satellites, all but two
placed in three circular MEO-planes at an altitude of 23222 Km above the Earth
[8]. Galileo satellites permanently transmit CDMA signals modulated on top of
three different carriers: E1 (1575.420 MHz), E5 (1191.795 MHz) and E6 (1278.750
MHz); E5 signal is further sub-divided into two signals, E5a (1176.450) and E5b
(1207.140) [9]. Differently from GPS signals, Galileo signals have a further mod-
ulation on top of them, a sub-carrier modulation (Binary-offset carrier - BOC),
allowing interoperability with GPS system and reducing interference from other
systems transmitting over the same bands.

GLONASS

Globalnaya navigatsionnaya sputnikovaya sistema (GLONASS) constellation
consists of 24 operational satellites satellites placed in three circular MEO-planes
at an altitude of 19130 Km above the Earth. GLONASS-M satellites transmit
Frequency Division Multiple Access (FDMA) signals, characterised by the same
PRN over different RF-carriers. Next generation GLONASS-K satellites are meant
instead to transmit CDMA signals for both restricted and civil services [1, 7].

BEIDOU
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1.2 – GNSS receiver

The BeiDou Navigation Satellite System is the Chinese satellite navigation
system. The first generation, known as BeiDou-1, had three satellites providing
limited navigation services mainly in China and nearby regions from 2000 to 2012.
The second generation, called BeiDou-2 or COMPASS, began operating in 2011
with 10 satellites and extended coverage to the Asia-Pacific region. The third
generation, BeiDou-3, launched in 2015, aimed for global coverage. Nowadays,
the space constellation consists of 3 Geostationary-Earth Orbit (GEO) satellites,
3 Inclined Geosynchronous Orbit (IGSO) satellites, and 24 MEO satellites. [7]

The research carried out in this thesis can be applied to all these satellite
systems, allowing multi-constellation signal processing.

1.2 GNSS receiver
A GNSS receiver serves as the interface between a navigation system and a generic
target end-user. The receiver will continuously acquire and track the low-power
RF-signals transmitted by a group of visible satellites of a given GNSS-constellation
in order to determine the information needed to obtain the PVT solution. These
information are the temporal misalignment information (code delay), leading to
pseudorange measurements, and the frequency-offset information (carrier frequency
offset), leading to Doppler-shift measurements. The combination of these observ-
ables, then, is exploited within a processing unit to produce a PVT solution.

High-cost professional receivers, to enhance the precision of the PVT solution,
also exploit carrier phase information. Adding this observable, it is possible to
gain precision solving the integer-cycle ambiguity [10]. This work only includes a
short overview of low-cost GNSS receiver radio-frequency front-end and, beyond
analogue-to-digital conversion, of the early signal-processing stages.

1.2.1 Ranging signals structure
GNSS satellites continuously transmit synchronous navigation signals towards the
Earth. These signals, named Signal-in-Space (SIS), are properly constructed to
contain ranging codes and navigation data, thus allowing the receiver to compute
both the satellite coordinates and the user-to-satellite temporal misalignment, in
the view of constructing an estimate of the pseudorange (i.e. noisy and biased
user-to-satellite range). This signal is constructed starting from the waveform
at RF (carrier) on top of which the navigation message and the spreading code
are modulated. The navigation message is a binary sequence which brings about
relevant information including ephemeris, satellite-clock corrections, and all syn-
chronization parameters needed to retrieve a pseudorange estimate. As in case of
Galileo signal structure, a further modulation, called sub-carrier, may be present.
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A schematic representation of the signal construction is represented in Figure
1.3.

While the spreading code is a binary pseudo-random-noise (PRN) ranging se-
quence which grants the orthogonality between signals belonging to the same con-
stellation (Multiple Access scheme) and implements a Direct Sequence Spread
Spectrum (DSSS) paradigm to mitigate inter-system interference [11].

Figure 1.3: Multi-layer GNSS signal structure

The RF-SIS broadcast by satellites are affected by interference effects due to
the upper (ionosphere) and lower (troposphere) layers of the atmosphere, as well as
other effects such as scintillation, the presence of other GNSS systems transmitting
over adjacent bands, and, possibly, intentional interference (e.g. jamming, spoofing
etc.). Hence, the captured signal broadcast by a single satellite will have the
structure described previously, but might be compromised in its integrity and
characterized by a very low signal intensity.

1.2.2 Front-end structure
The incoming signals are captured though the receiver’s antenna and then fed
to the front-end section. The front-end is responsible for the elaboration of the
received signals for signal processing tasks. A schematic representation of a typical
front-end structure is given in Figure 1.4. The shown components, at front end
architecture level, absolve interconnected tasks aimed to process and convert a RF
signal to a baseband digital signal as follows [12].:

– Filtering and amplification: ensure low-noise and out-of-band rejection, as
well as amplification to compensate for transmission losses.
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1.2 – GNSS receiver

– Down-conversion: the front end is responsible for down-converting the signal,
so that the spectrum is shifted to intermediate frequencies (IF), meaning that
a residual carrier modulation is still present , but close to baseband.

– Quantization: the signal is now digitized through analog to digital converters
(ADC).

– Automatic Gain Control: here the front-end section gain is regularized to
take benefit from the full dynamic range.

Figure 1.4: GNSS receiver analogue front-end [13].

1.2.3 Signal Acquisition and Tracking
The final receiver front-end output is a sequence of noisy samples, at intermediate
frequency, yIF [n]. This sequence is then further processed by the receiver to ac-
tually recover delay and Doppler-shift. To compute these quantities, the sequence
of samples will pass through two consecutive stages: the acquisition stage and
the tracking stage. In the acquisition stage, the digitized signal is correlated with
local digital replicas of different PRN ranging sequences, so that the correct PRN
is identified and a rough estimate of delay and Doppler-shift is obtained. In the
tracking stage, starting from the acquisition stage output, the local replica is kept
synchronized with the noisy IF-samples in order to dynamically retrieve an accu-
rate estimate of delay and Doppler-shift. These quantities are eventually exploited
to compute pseudorange and Doppler measurements [14].

Acquisition

The acquisition stage has the aim of estimating the arrival time τ , that is
used for computing user position and clock offset, and the Doppler frequency fd,
which instead is used for computing the user velocity and clock drift. Other then
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estimating τ and fd, also an estimation of the carrier phase may be performed; this
aspect will not be faced in this thesis. Given the noisy samples yIF [n] as input,
the receiver will compute the Cross-Ambiguity Function (2-D cross-correlation
between the incoming signal and the local replica) as [15]:

Si(τ, fd) =
L−1Ø
n=0

yIF [n]ci(n − τ)ej2π(fIF +fd)n (1.1)

where yIF [n] is the sequence of samples of the received signal, ci is the PRN code
of the i-th satellite, τ is the local code offset, fd is the local Doppler shift, L is
the number of samples contained in the so called integration time Td (Td = LTs)
given a sampling time Ts), and fIF is the intermediate frequency (IF) of the carrier.
Instead, the exponential represent the locally generated carrier, where the Doppler
shift fd is applied (the phase of the received signal is unknown and it not estimated
at this stage, then a complex exponential in the local signal is used). Since the
CAF is a complex function, its squared modulus is usually considered. First, the
receiver has to detect which satellites are present in the received signal (each of
them transmits a specific PRN): for every PRN a local replica is produced and
used to compute, with the incoming signal, the corresponding CAF. It is then
compared with a predetermined threshold and, if every point is below it, the
satellite identified with that PRN is flagged as not present.

Finally, for the detected PRNs, the estimate of the couple of unknowns {τ, fd} is
performed with a Maximum-likelihood (ML) approach, maximizing the normalized
squared norm of the CAF. Hence, defining a vector pML = {τ , fd}, the problem is
to find p̂ML such that [13]:

p̂ML = max
{τ,fd}

|Si(τ, fd)|2 (1.2)

In Figure 1.5 a typical CAF is represented. The location of the peak is detected
by the software receiver so that the corresponding value p̂ML = {τ̂ , f̂d} can be re-
trieved. Moreover, the noise-floor height is proportional to the noise level affecting
the incoming signal, causing the peak to be not so identifiable if the satellite signal
is too degraded.

Tracking

Once the acquisition has been performed, the estimate τ̂ and f̂d will be passed
to the tracking stage as input. Here, the codes are kept synchronized so that a
fine code alignment is obtained through a dynamic recovering of delay and phase
between the sequences. Doppler and pseudorange measurements are then contin-
uously obtained. The most common architecture is designed with an outer closed
feedback control loop which, inside, contains code and carrier tracking loops [16].
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1.2 – GNSS receiver

Figure 1.5: Cross Ambiguity Function for a noisy GPS signal.

The code delay is followed by the Delay Lock Loops (DLL), while the carrier can
be tracked in two ways: following the phase, using Phase Lock Loops (PLL), or
following the Doppler frequency, using the Frequency Lock Loops (FLL). In some
applications PLL and FLL are used simultaneously (see Figure 1.6). With the
adjustments obtained by these tracking loops, the final estimation of τ̂ and f̂d is
obtained and, other than that, the carrier and code wipe-off is performed, allowing
the navigation data demodulation [17, 18].

Figure 1.6: High-level tracking loop (PLL+DLL) architecture. Subscripts a and t
stand for acquisition and tracking respectively.
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1.3 GNSS PVT solution
Once carrier and code tracking loops (PLL and DLL) are locked, the final outputs
of the receiver can be obtained: pseudorange and Doppler frequency. Pseudorange
measurements, as anticipated in Section 1.1.1, can be obtained as the difference
between the moment the receiver detects the signal, called Time of Arrival (ToA),
and the time the signal was transmitted by the satellite, as indicated in the signal’s
navigation message (that has been previously decoded), multiplied by the speed
of light. This difference will lead to the computation of a pseudorange instead of
the geometrical range (i.e. user-satellite distance) due to the inherent presence of
a bias. In fact the satellite and the receiver have their own independent clocks,
making the synchronization unfeasible for cost reasons. Because of that, as antic-
ipated previously, the localization problem is described by four unknowns: three,
due to the geometrical 3-D position, plus one, due to the receiver’s clock bias (the
satellite’s clock bias instead can be compensated for, since these clocks are contin-
uously monitored by the control segment). Hence, at least four satellites have to
be in view leading to the availability of four independent pseudoranges to be pro-
cessed. In this section, an overview of the most common measurement models of
pseudorange and Doppler-shift is given, leading to the estimation of the receiver’s
position, velocity and time (PVT). The following discussion is done referring to
[1, 2]

1.3.1 Pseudorange equations and position computation
At each epoch, the pseudorange measurement associated with the j-th satellite
can be described mathematically as:

ρj = rj + c(δtu − δtj) + Ij + Tj + ϵj (1.3)

where rj is the true range between the receiver antenna at signal reception time and
the satellite antenna at transmission time; δtu and δtk are the receiver clock bias
and the satellite clock bias respectively; Ij and Tj represent the delays induced on
the signal passing through the ionosphere and troposphere respectively, ϵj accounts
for residual errors. That being said, in the extracted navigation data there are also
present information useful to compensate for known bias-error components such
as the satellite clock offset, relativist effects and the ionospheric and tropospheric
induced delays. These compensations will affect only the deterministic components
of these errors. Hence, the corrected pseudorange ρj can be re-written as:

ρj = rj + bu + ϵρj
(1.4)

Here, all the residual errors affecting the pseudorange measurement have been
collected in the term ϵρj

, usually called User Equivalent Range Error (UERE),
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while the receiver clock-bias term c · δtu has been replaced by its range-equivalent
term bu, in meters. Furthermore, the expression of the geometric range rj between
user and j-th satellite is the Euclidean distance between the satellite itself xj =
(xj, yj, zj) and receiver antenna phase centre coordinates xu = (xu, yu, zu):

rj =
ñ

(xj − xu)2 + (yj − yu)2 + (zj − zu)2 (1.5)

For each j-th satellite, an equation as (1.4), that is non-linear in the term xu,
will be available. These nonlinear equations can be solved for the unknowns by
employing iterative techniques based on linearization. Given an approximation
point x̂u = (x̂u, ŷu, ẑu, b̂u), we can linearize them around that point, obtaining for
each j − th equation:

ρj = ρ̂j − xj − x̂u

r̂j

∆xu − yj − ŷu

r̂j

∆yu − zj − ẑu

r̂j

∆zu + bu (1.6)

where
ρ̂j = r̂j + b̂u (1.7)

r̂j =
ñ

(xj − x̂u)2 + (yj − ŷu)2 + (zj − ẑu)2 (1.8)
and

xu = x̂u + ∆xu

yu = ŷu + ∆yu

zu = ẑu + ∆zu

bu = b̂u + ∆bu

(1.9)

To simplify the equations these new variables are introduced:

∆ρj = ρ̂j − ρj

ax,j =
xj − x̂u

r̂j

ay,j =
yj − ŷu

r̂j

az,j =
zj − ẑu

r̂j

(1.10)

The ax,j, ay,j and az,j terms in (1.10) denote the direction cosines of the unit vector
pointing from the approximate user position x̂u to the j − th satellite. Now the
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equation (1.6) can be rewritten as:

∆ρj = ax,j∆xu + ay,j∆yu + az,j∆zu − ∆bu (1.11)

Supposing that Ns satellites are in view, a system of equations in matrix form
can be written:

∆ρ = H∆x (1.12)

where the used terms are:

∆ρ =


∆ρ1
∆ρ2

...
∆ρNs

H =


ax,1 ay,1 az,1 1
ax,2 ay,2 az,2 1

... ...
ax,Ns ay,Ns az,Ns 1

∆x =


∆xu

∆yu

∆zu

−∆bu

 (1.13)

(1.12) is a system of linear equations. Hence a Least Squares solution can be
retrieved as:

∆x = (HT H)−1HT ∆ρ (1.14)

Moreover, the errors affecting pseudoranges (indicated as ϵρj
) in equation (1.4))

are usually assumed to be Gaussian, zero-mean and equally distributed, described
by a covariance called σ2

UERE. Hence the covariance matrix of ϵρ, that includes all
the pseudoranges, can be written as:

cov(ϵρ) = σ2
UERE · INs×Ns (1.15)

where INsxNs is the identity matrix of dimension Ns × Ns. This error, affecting
pseudoranges, will propagate in the solution according to:

cov(∆x) = (HT H)−1 · σ2
UERE (1.16)

Finally, defining the so called Geometric Dilution of Precision (GDOP ):

GDOP =
ñ

trace((HT H)−1) (1.17)

the standard deviation of the positioning error can be expressed as:

σx = GDOP · σUERE (1.18)

1.3.2 Doppler equations and velocity computation
The tracking loop (precisely the PLL) continuously provide as output the Doppler-
shift between the received signal with respect to the nominal one. This shift
is due to the relative motion between satellite and user (Doppler effect). Since
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the satellite’s velocity can be retrieved from the information contained in the
navigation data, an estimation of the user’s velocity is then possible. According
to the Doppler equation, yields:

fr,j = fc,j(1 −
vu,j · aj

c
) (1.19)

where fr,j is the received (hence affected by the Doppler) frequency related to the
j-th satellite, fc,j is its nominal carrier frequency, vu,j is the user-satellite relative
velocity, aj = (ax,j, ay,j, az,j) is the unit steering vector pointing from user to
satellite and finally c indicates the speed of light.

Given that the relative velocity user-satellite can be written as difference be-
tween the satellite (vj = (vj,x, vj,y, vj,z)) and user (vu = (vu,x, vu,y, vu,z)) velocity:

vu,j = vj − vu (1.20)

and substituting (1.20) into (1.19), Doppler-shift is obtained as:

δf = fr,j − fc,j = −fc,j

(vj − vu) · aj

c
(1.21)

Moreover, the receiver’s clock is affected by a frequency bias offset, causing the
actually received frequency fr,j to be different from the measured signal frequency
fu,j. This offset can be related to the receiver’s clock drift rate δṫu as:

fr,j = fu,j(1 + δṫu) (1.22)

Now, substituting (1.22) into (1.21), after some steps:

c(fu,j − fc,j)
fc,j

+ vj · aj = vu · aj −
cfu,jδṫu

fc,j

(1.23)

and expanding the dot products:

c(fu,j − fc,j)
fc,j

+ vj,xaj,x + vj,yaj,y + vj,zaj,z = vu,xaj,x + vu,yaj,y + vu,zaj,z −
cfu,jδṫu

fc,j

(1.24)
Regarding the left side, fc,j is known, as well as fu,j and aj (the latter from
the position computation), vj is computed from the satellite navigation mes-
sage. On the other hand, the right side includes the velocity components of
vu = (vu,x, vu,y, vu,z) = (ẋu, ẏu, żu) that has to be estimated, the term fu,j/fc,j

that is very close to unity (hence the approximation fu,j/fc,j ≃ 1) and the term
cδṫu = ḃu. Hence, in order to simplify (1.24), the variable dj is introduced as:

dj =
c(fu,j − fc,j)

fc,j

+ vj,xaj,x + vj,yaj,y + vj,zaj,z (1.25)
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doing so, the equation (1.24) can be rewritten as:

dj = ẋuaj,x + ẏuaj,y + żuaj,z − ḃu (1.26)

Finally, considering that Ns satellites are in view, Ns equations as (1.26) will
be available. Compacting all of these equations in matrix form, it yields:

d = Hẋ (1.27)

where ẋ = (ẋu, ẏu, żu, −ḃu). The velocity estimation can be expressed as Least
Square solution as:

ẋ = (HT H)−1HT d (1.28)

Note that the matrix H obtained here is the same matrix H that arises in the
resolution of the positioning problem and ẋ is the time derivative of x. Because
of that, even though this formulation is linearized, it is useful to re-formulate the
velocity estimation problem to be solved in an iterative way. It means that the
correction ∆ẋ = (∆ẋu, ∆ẏu, ∆żu, −∆ḃu), that is the time derivative of ∆x, has to
be estimated and applied to the linearization point ˆ̇x = (ˆ̇xu, ˆ̇yu, ˆ̇zu, ˆ̇bu), given that:

ẋu = ˆ̇xu + ∆ẋu

ẏu = ˆ̇yu + ∆ẏu

żu = ˆ̇zu + ∆żu

ḃu = ˆ̇bu + ∆ḃu

(1.29)

Doppler measurement equation (1.26) can then be re-written substituting (1.29)
in, while the nominal Doppler measurement equation can still be retrieved from
(1.26), substituting the linearization point ˆ̇x in, obtaining:

dj = (ˆ̇xu + ∆ẋu)aj,x + (ˆ̇yu + ∆ẏu)aj,y + (ˆ̇zu + ∆żu)aj,z − (ˆ̇bu + ∆ḃu)

d̂k = ˆ̇xuaj,x + ˆ̇yuaj,y + ˆ̇zuaj,z − ˆ̇bu

(1.30)

Taking the difference of the two expressions in (1.30), the following expression can
be written:

∆dj = ∆ẋuaj,x + ∆ẏuaj,y + ∆żuaj,z − ∆ḃu (1.31)

where ∆dj = dj − d̂j. Recalling the definition of dj (1.25), it can be noticed
that the first term is equal to the opposite of the pseudorange-rate (it holds:
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ρ̇j = −
c(fu,j − fc,j)

fc,j

). Then, taking the difference of dj and d̂j, the satellite velocity

is simplified, obtaining ∆dj = −∆ρ̇j = ρ̇j − ˆ̇ρj (from now on the pseudorange-rate
ρ̇j will be considered as the GNSS observable, together with the pseudorange ρj).
Instead, ˆ̇ρj can be computed from the linearization point ˆ̇x as [19]:

ˆ̇ρj = (vj − ˆ̇x) · aj + ˆ̇bu (1.32)

Again, compacting all of these Ns (number of satellites) equations in matrix
form and having ∆ρ̇j = ˆ̇ρj − ρ̇j, it yields:

∆ρ̇ = H∆ẋ (1.33)

from which the estimation of the velocity correction to be applied to the lineariza-
tion point can be obtained as:

∆ẋ = (HT H)−1HT ∆ρ̇ (1.34)

1.4 Inertial Navigation System
In this section an overview about Inertial Navigation Systems (INS) will be pro-
vided, covering the mathematical foundations for explaining the principles of navi-
gation systems and their integration, leading to the estimation of position, velocity
and attitude, as well as the overall architecture structure.

1.4.1 Inertial Navigation System architecture
An Inertial navigation system (INS) is a navigation system based on the effect of
gravity, hence it is governed by Newton laws of physics. It involves a blend of iner-
tial measurements, mathematics, control system design and geodesy. It comprises
a set of inertial sensors, known as an inertial measurement unit (IMU), together
with a navigation processor. These sensors will measure accelerations generated
on the object by external forces and integrating these, the change in velocity and
then in position can be retrieved [20]. A stand-alone INS will then provide just
relative information about position and velocity, as consecutive variations of these
quantities. Hence, it can provide an absolute solution only if some a-priori infor-
mation, together with an initial reference frame, are available. This concept is
known as Dead-Reckoning [21]. As a consequence of this, the errors affecting an
inertial navigation solution grow with time, due to the consecutive summations in
the Dead-Reckoning method, as in Figure 1.7.

A conventional IMU consists of three gyroscopes for measuring angular rates
and three accelerometers for measuring accelerations. They are mounted in triad,
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Figure 1.7: Dead-Reckoning approach [21].

respectively, so that their three axes are mutually orthogonal, setting up a Carte-
sian reference frame.

Note that accelerometers, as they are conceived, will sense the specific force
(i.e. the non-gravitational force per unit mass on a body, sensed with respect to
an inertial frame.) at which they are subject to. For example, a non-rotating
accelerometer which is in free fall, and then subject only to gravity, will sense
nothing. On the contrary, under zero acceleration, it will sense the gravitation,
and the measured specific force will be equal and opposite to the acceleration due
to gravitation. The used term gravitation, that will be indicated as γ, is the funda-
mental mass attraction force; it does not incorporate any centripetal components.
Moreover, in the e-frame, a stationary accelerometer will sense also the centrifu-
gal acceleration due to the earth rotation. The composition of gravitation and
centrifugal acceleration is the so called gravity, hereinafter indicated as g (usually
approximated to 9.81ms−2). For this reason, when using an accelerometer, the
user must know the attitude of the accelerometer itself in order to compensate the
effect of gravity. Hence the use of gyroscopes, which can sense the angular rates
with respect to a reference frame, such as in an ECEF frame, is needed. Figure 1.8
shows a typical strapdown inertial sensors assembly for an IMU The term strap-
down is used to refer to an IMU-configuration in which the inertial sensors are
directly embedded in the body and rotate with it. Nowadays sensors as gyros and
accelerometers can be found in a wide range of different designs, varying in cost,
size and performance. In this thesis the adopted gyros and accelerometers are
manufactured using micro-electromechanical systems (MEMS) technology offering
the advantages of low cost, size, and mass, and a high shock tolerance, but give
relatively poor performance. They can be included in the automotive-grade and
are typically employed in the mass-market sector [21].
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Figure 1.8: IMU assembly for of strapdown inertial sensors [22].

1.4.2 Reference frames

Here, the reference frames that will be adopted in the following discussion are
presented, as well as the mathematical set up to apply coordinates-transformation
from one frame to another [20].

Inertial Frame (i-frame)
Given a frame, it is considered to be inertial if it is non-rotating and non-accelerating
with respect to far-off stars, at least as far as the accuracy of the measurement
instruments used can sense. The definition of the i-frame is then the following;
Origin : Earth’s centre of mass
Z-Axis : Parallel to the Earth’s instantaneous spin axis
X-Axis : Pointing towards the mean equinoctial colure in the equatorial plane
Y-Axis : Orthogonal to the X and Z axes to complete a right-handed frame

Earth Centred Earth Fixed Frame (ECEF or e-frame)
The Earth-fixed frame is defined as
Origin : Earth’s centre of mass
Z-Axis : Parallel to the Earth’s mean spin axis
X-Axis : Pointing towards the mean meridian of Greenwich
Y-Axis : Orthogonal to the X and Z axes to complete a right-handed frame

Body Frame (b-frame)
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The body frame represents the orientation of the IMU axes. In a strapdown iner-
tial system as used herein, the IMU is rigidly mounted to the vehicle and thus can
have arbitrary orientation. For convenience, the body frame (i.e. IMU axes) is
assumed to be aligned with the frame of the vehicle with the following convention.
An example is given in Figure 1.9
Origin : Centre of IMU
X-Axis (Roll) : Pointing towards the front of the vehicle
Y-Axis (Pitch) : Pointing towards the right of the vehicle
Z-Axis (Yaw) : Orthogonal to the X and Y axes to complete a right-handed frame.

Figure 1.9: IMU axes aligned with vehicle body frame.

Coordinate Transformation Matrix
There are different ways to pass from one frame to another (e.g. quaternions, Euler
angles etc.). In this thesis, a matrix representation of this type of transformation is
adopted, called coordinate transformation matrix. The coordinate transformation
matrix (also called Direction Cosine Matrix (DCM)) is a 3 × 3 matrix, indicated
as C, used to change vector representation coordinates from one frame to another.
The lower index represents the from-coordinate frame and the upper index the
to-frame (i.e. Cto−frame

from−frame). They are obtained expressing the versors defining the
final frame axes in the starting frame [21]. For example, given a vector v expressed
in the starting frame 1 − frame, that will be indicated as v1, the coordinate
transformation of vector v from 1 − frame to 2 − frame, called v2, can be done
as follows:

v2 = C2
1v

1 (1.35)
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note that, as a property of DCM matrices, C2
1 = C1

2
T .

1.4.3 Strapdown Mechanization equations
The navigation processor, given some inertial sensor measurements, proceed with
the computation of the inertial position, velocity and attitude. To do so, a system
of equations, called mechanization equations, are used. Here, they will be first rep-
resented in continuous time form. This dissertation makes reference to [21, 23, 20].

Attitude computation
Given the gyro-measurements vector ωb

gyro, where b indicates the b − frame, first
the estimated earth angular velocity ωe

i,e (where the subscript i, e indicates that it
is the e − frame velocity computed w.r.t. the i − frame) has to be subtracted,
hence:

ωb
e,b = ωb

gyro − Ce
b
T ωe

i,e (1.36)

obtaining then the angular velocity of the b−frame w.r.t. the e−frame, expressed
in the b − frame. The matrix Ce

b
T is still an unknown in equation (1.36), but it

can be described using the differential equation:

Ċ
e

b = Ce
bΩb

e,b (1.37)

where Ωb
e,b is the skew-symmetric matrix of ωb

e,b which is described by equation
(1.36).

Velocity computation
First of all, as anticipated before, an accelerometer will measure, referring to an
inertial frame i − frame, the specific force f , that is the acceleration at which it
is subject to (ai,b) minus the gravitational acceleration γ. Hence, expressing them
in the e − frame:

f e = Ce
bf

b = ae
i,b − γe (1.38)

that can be re-written in terms of ae
i,b:

ae
i,b = Ce

bf
b + γe (1.39)

instead, the gravity vector g in the e − frame is expressed as:

ge = γe − ωe
i,e × [ωe

i,e × re
e,b] (1.40)

where γe is the gravitational acceleration and the term ωe
i,e × [ωe

i,e × re
e,b] is the

centrifugal acceleration.
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Then, writing the expression of the body velocity with respect to the e−frame,
ve,b, expressed in the e − frame, it yields:

ve
e,b = ve

i,b − ωe
i,e × re

e,b (1.41)

where re,b is the position of the body w.r.t the e − frame. Differentiating:

ae
e,b = ae

i,b − 2ωe
i,e × ve

e,b − ωe
i,e × [ωe

i,e × re
e,b] (1.42)

To obtain this equation (1.42), the earth rotation ωi,e was considered constant.
Finally, substituting (1.39) and (1.40) in (1.42)

ae
e,b = Ce

bf
b − 2ωe

i,e × ve
e,b + ge (1.43)

The term 2ωe
i,e × ve

e,b indicates the Coriolis acceleration.
The relationship between the acceleration ae

e,b and the velocity ve
e,b is:

v̇e
e,b = ae

e,b (1.44)

substituting (1.43) into (1.44) and integrating, the body velocity ve
e,b with respect

to the e − frame, expressed in the e − frame itself, can be computed.

Position computation
Once the velocity ve

e,b is obtained, it is trivial to compute the position re
e,b since:

ṙe
e,b = ve

e,b (1.45)

hence a second integration is needed.

1.4.4 Attitude and position computation
Obviously the equations previously showed, even though they are theoretically
sufficient to describe the system evolution, are not suitable for a software imple-
mentation. There are several methods to handle these equations by numerical
integration. Three integration functions are involved, attitude, velocity and, con-
sequentially, position, and the inherent non-linearities require these integrations
to occur at very high rates. To minimize the system computational requirements,
most inertial navigation systems output what are known as coning and sculling
integrals which are integrated internally and can then be used at lower rates for full
state integration. This approach is commonly referred to as: two-speed integration
algorithm. It is composed by a more complex exact algorithm for moderate speed
updating fed by a simplified high-speed algorithm. The high-speed algorithm con-
tains a simple summing operation of angular rate and specific force sensors inputs,
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plus an approximate coning and sculling motion integration function. Under con-
ditions of constant angular rate and specific force vectors (i.e., zero-coning and
zero-sculling), the coning and sculling terms become zero and the simple sum-
ming operation becomes analytically exact. In the high-speed algorithm, the con-
ing integral refers to the non-linear high-rate contribution in the attitude update,
while the sculling integral to the non-linear high-rate velocity update contribution.
While, at lower speed, the integration of the velocity and angular rate outputs is
performed, reducing the amount of bandwidth needed to process the data. With
this approach, given an arbitrary time step size, the algorithm can provide ori-
entation, velocity and position solution with higher accuracy with respect to the
computations done just at medium-rate. Moreover the two-speed algorithm pro-
vides a lower computational complexity with respect to a one-speed algorithm run
at higher rate, without loosing in accuracy. For a more in-depth discussion and
technical details, refer to [24, 25].
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Chapter 2

Integration of Inertial
Navigation and
Satellite-based positioning

There are several sensors which can be employed for positioning and navigation,
leading to a different formulation of the PVT problem. Different sensors are char-
acterized by different properties, leading to advantages and disadvantages of one
over the other. The integration of inertial and satellite navigation systems arises
exactly for this reason: coupling different sensors in order to exploit their comple-
mentary characteristics, emphasizing strengths and minimizing weaknesses.

2.1 Complementary nature of GNSS and INS
In case of GNSS and INS, their integration can reach superior system performance
with respect to either system in a stand-alone mode. In fact their characteristics,
showed in the previous chapter and here summarized, make them suitable for in-
tegration. INS is characterized by a relatively high rate in delivering navigation
information (e.g. 100 Hz), while GNSS, in a low cost receiver, provides informa-
tion at lower rate (e.g. 1 Hz) [26]. However, IMU are intrinsically affected by
deterministic errors, such as bias, and stochastic errors, such as bias drift or noise.
Even if a stochastic modelling describing these errors can be formulated, it is not
possible to completely remove them. Hence, due to the integrations needed to
retrieve the solution, these errors are integrated too, causing the level of accuracy
to decrease over time, as explained in Section 1.4.1. On the contrary, GNSS offers
a good long-term stability, involving errors effectively time invariant with homo-
geneous accuracy (bounded within few meters). Moreover, while INS will provide
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information in any condition, being self-contained, GNSS is strongly affected by
environmental conditions: it needs at least four satellites in view to provide a
PVT solution and the RF-signals are subject to reflection/diffraction as well as
degradation due to the atmospheric layers (troposphere and ionosphere) [20].

In GNSS/INS integration, GNSS can update the inertial navigation solution
avoiding it to drift in the long term; while INS can be used to interpolate GNSS
trajectory and bridge outages, allowing a fine tracking of the body dynamics. This
approach provides an overall improving of the navigation system performance in
terms of accuracy, continuity and reliability.
In the following, an overview of different possible approaches for implementing a
GNSS/INS integration is given, as well as a deeper insight on the technique that
has been adopted in this thesis.

2.2 Integration architectures
As anticipated, there are different approaches that can be used to perform GNSS/INS
integration. Their main difference is the amount of information the two systems
are meant to share and at which the information is fused together. These are the
most common ones [27]:

• Uncoupled integration

• Loose integration

• Tight integration

• Ultra-tight integration

The uncoupled integration is the integration with the minimum amount of infor-
mation shared by the two systems. In this architecture, GNSS and INS elaborate
satellite observables and IMU measurements independently. Once GNSS receiver
output a PVT solution, it is used to initialize again the INS Dead-Reckoning al-
gorithm, so that the accumulated error is reset to zero. However the INS error
increasing rate is not affected (i.e. there is no feedback of estimated INS errors
into the navigation algorithm), leading to a rapid decay of the solution accuracy
between two consecutive GNSS epochs (even worse in presence of GNSS outages)
[28, 29, 30]. The Ultra-tight integration instead is the deepest possible integration
between the two systems. In fact in this setup the GNSS solutions are used to
re-calibrate the INS, which is used directly inside the GNSS receiver: it allows
maintaining tracking loops even when GNSS outages occur or in high dynamics
applications. Unfortunately, for this implementation, the GNSS receiver source
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code should be accessible but it is usually available only for receiver manufactur-
ers. That being said, a more detailed discussion about the two remaining solutions
is given in the following sections [13, 30, 31].

2.2.1 Loose integration
The Loosely-coupled hybridization strategy, with respect to the uncoupled one, has
some information shared between the independent navigation units. Here, as the
uncoupled one, the GNSS unit independently process the satellites signals in order
to obtain an estimation of user position and velocity, as well as the INS unit. These
are given as input to a navigation filter, which will provide a blended navigation
solution. The navigation filter, additionally, provides feedback information about
biases affecting inertial sensors, allowing a mitigation of the IMU errors drift [13,
32].

With respect to architectures with deeper integrations, this solution is charac-
terized by a lower level of complexity, being the integration performed at high-level
and having the navigation state with fewer dimensions. Hence also the processing
time will be shorter. Anyway some drawbacks are present. Having the navigation
filter independent from the GNSS unit implies that it is unaware of statistical
properties characterizing the navigation state, leading to sub-optimal solutions.
Two different filters (INS-filter and navigation filter) also imply that process noise
must be added twice. Moreover, all the information acquired by the receiver are
lost whenever it is not able to provide a navigation solution (e.g. not enough
satellites are in view) [33].

A schematic representation of loose integration architecture is showed in Figure
2.1.

Figure 2.1: INS/GNSS loose integration.
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2.2.2 Tight integration
In this architecture, the noisy ranging observables (pseudorange and pseudorange-
rate), obtained by the GNSS receiver, are not processed by an independent GNSS-
filter but are directly passed to a GNSS/INS common filter. This filter then
will process the raw satellite measurements along with the position, velocity and
attitude updates provided at high-rate by the INS process unit mechanization.
Hence, in this approach, the inertial system is providing predictions on position,
velocity and attitude at high-rate. These estimates are used, along with GNSS
satellites position and velocity, obtained from the ephemerides, to provide also the
nominal pseudorange and pseudorange-rate measurements to the navigation filter.
Once the navigation filter is fed with the observed pseudorange and pseudorange-
rate from the GNSS receiver too, the difference with the nominal ones is used to
refine the INS solution as well as the bias affecting the IMU sensors [13, 27, 32].
The block-diagram for a tight integration is provided in Figure 2.2.

Figure 2.2: INS/GNSS tight integration ((ρ, ρ̇) refer to pseudorange and
pseudorange-rate respectively).

Tight integrations bring some advantages with respect to the loose one. As
anticipated previously, since GNSS observables are fed directly to the navigation
filter, those measurements are here elaborated with a statistical characterization
of noise sources and modelling of states correlation, resulting in a better accuracy
in the solution [13, 33, 34]. Moreover in this approach there is no constraint on
the minimum satellites in view needed. In fact, even if less then four satellites are
available, the GNSS receiver provides anyway pseudoranges and pseuodorange-
rates to the navigation filter, which process them with the information given by
the INS unit. This characteristic provides robustness and continuity to the overall
system in challenging environments such as urban canyons or high-dynamics ap-
plications. Finally the process noise is applied only once to the navigation filter,
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differently from the loose integration. As the loose solution brought with itself the
advantage of a lower design complexity and a lower number of states, this archi-
tecture instead has the disadvantage of greater computational load and enhanced
system complexity [34].

2.3 Tight integration framework
This thesis will exploit the GNSS/INS tight integration, hence that will be the
structure considered hereinafter. In this section, the mathematical formulation
of a discrete-time state space model, able to handle both GNSS observables and
INS dynamics in an integrated environment, will be given. The final part will
cover details about the actual software implementation, managing the flow of data
coming from GNSS and INS unit.

2.3.1 INS/GNSS state-space model
As discussed previously, in a tight integration the centralized filter has to handle
measurements coming from the INS and GNSS units and, through some filtering
algorithm, provide corrections to the navigation state. To do so, first an appro-
priate state-space model formulation is needed. Moreover it has to include the
mathematical formulation of the navigating body inertial motion dynamics as well
as the model converting the GNSS-observables into a useful aid, in order to refine
the system navigation state.

There are two different navigation modes for implementing a GNSS/INS inte-
gration unit that can be found in literature: direct and indirect navigation mode.
In the direct navigation mode the absolute body position, velocity and attitude
together with the biases affecting INS sensors are estimated by the filter. While
in the indirect navigation mode it is the error-state to be estimated and, conse-
quently, applied to the corresponding total state quantities, refining their predic-
tions. The indirect (i.e. error-based) mode will be the one adopted in this thesis
to develop the navigation filter. First the state-space model will be formulated in
continuous-time (as for INS mechanization), then the discrete-time form, needed
to be implemented in the software, will be presented.

The error-state δx, vector of dimension 17, can be defined as [32]:

δxe = [δre
x δre

y δre
z δve

x δve
y δve

z δϵe
x δϵe

y δϵe
z

δbb
a,x δbb

a,y δbb
a,z δbb

g,x δbb
g,y δbb

g,z δbu δḃu]T (2.1)
where the superscripts e and b refer, as in the previous chapter, to the ECEF-
frame (e − frame) and body-frame (b − frame) respectively. The terms in (2.1)
are listed below:
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• δre = [δre
x δre

y δre
z]T is the position error vector.

• δve = [δve
x δve

y δve
z]T is the velocity error vector.

• δϵe = [δϵe
x δϵe

y δϵe
z]T is the misalignment error vector.

• δbb
a = [δbb

a,x δbb
a,y δbb

a,z]T is the accelerometer bias error vector.

• δbe
g = [δbb

g,x δbb
g,y δbb

g,z]T is the gyroscope bias error vector.

• δbu = [δbu δḃu]T is the error vector collecting receiver clock bias δbu and
receiver clock drift δḃu corrections.

Note that the vector ϵe is directly related to the rotation matrix Ce
b used in

Section 1.4. In fact, the vector collects Roll (that refers to the x − axis), Pitch
(that refers to the y − axis) and Yaw (that refers to the z − axis) angles, which
define the orientation of the b − frame with respect to the e − frame. Choosing
some convention (intrinsic/extrinsic rotation and angles order), the matrix Ce

b can
be obtained as a non-linear combination of these angles. The three chosen angles
would be sufficient to described the body orientation and are, in fact, included
in the state vector. Anyway, the matrix representation (even if redundant, hav-
ing 9 entries instead of 3) is more suitable for mathematical manipulations (also
quaternions could have been chosen at this regard) [35].

2.3.2 System process model
How the sensor errors affect the navigation state is described by the error-dynamics
equations. These equations are derived by applying a differential operator to the
navigation equations. That is, the variables of the navigation equations are per-
turbed differentially and the differentials are then interpreted as small differences,
or errors. The following discussion makes reference to [32, 29]

INS error-dynamics equations

In Section 1.4.3 the following differential equations were obtained (assuming
the same conventions of the previous chapter):

Ċ
e

b = Ce
bΩb

e,b (2.2)

ae
e,b = Ce

bf
b − 2ωe

i,e × ve
e,b + ge (2.3)

ṙe
e,b = ve

e,b (2.4)
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taking equation (2.4) and differentiating, it is simply:

δṙe
e,b = δve

e,b (2.5)

instead, differentiating (2.2):

δĊ
e

b = δCe
bΩb

e,b + Ce
bδΩb

e,b (2.6)

the term δCe
b represent the perturbation from the exact rotation Ce

b. Given the
relatively small rotation angles δϵe, we can represent the perturbed rotation Ĉ

e

b

as the composition of the exact rotation and the perturbation. Mathematically:

Ĉ
e

b = (I − S(δϵe))Ce
b (2.7)

where S(·) is the skew-symmetric operator and (I − S(δϵe)) is expression for
infinitesimal rotations. Hence the perturbation can be written as the difference
between the perturbed rotation and the exact one:

δCe
b = Ce

b − (I − S(δϵe))Ce
b = −S(δϵe)Ce

b (2.8)

taking the derivative with respect to time of (2.8):

δĊ
e

b = −S(δϵ̇e)Ce
b − S(δϵe)Ce

bΩb
e,b (2.9)

where the equation (2.2) has been substituted in.
Equaling the right-hand side of equations (2.6) and (2.9):

−S(δϵ̇e)Ce
b − S(δϵe)Ce

bΩb
e,b = δCe

bΩb
e,b + Ce

bδΩb
e,b (2.10)

substituting (2.8) into (2.10):

−S(δϵ̇e)Ce
b + δCe

bΩb
e,b = δCe

bΩb
e,b + Ce

bδΩb
e,b (2.11)

and solving with respect to S(δϵ̇e), the following expression is obtained:

S(δϵ̇e) = −Ce
bδΩb

e,bC
b
e (2.12)

that can be re-written in vector form as:

δϵ̇e = −Ce
bδωb

e,b (2.13)

Recalling that δωb
e,b was described in Section 1.4.3 by the equation (1.36):

ωb
e,b = ωb

gyro − Ce
b
T ωe

i,e (2.14)
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it can be differentiated to obtain:

δωb
e,b = δωb

g − Ce
b
T S(δϵ)ωe

i,e − Ce
b
T δωe

i,e (2.15)

where the equality δCe
b
T = Ce

b
T S(δϵ) (that is the transposed of the equation

(2.8)) has been used.
Finally, substituting (2.15) into (2.13), assuming the earth rotation as a con-

stant (δωe
i,e = 0) and after some manipulation:

δ̇ϵ
e = −Ce

bδωb
g − Ωe

i,eδϵ (2.16)

Instead, differentiating equation (2.3) (assuming again δωe
i,e = 0):

δae
e,b = δv̇e

e,b = δCe
bf

b + Ce
bδf b − 2Ωe

i,eδve
e,b + δge (2.17)

Assuming that δge = Nδre
e,b, meaning that the perturbation of the gravity

vector ge is due to the displacement δre
e,b mapped into the gravity domain by the

tensor N , and recalling that a skew-symmetric matrix times a vector is associated
to the cross-product (hence its properties are valid), the following equation is
obtained:

δv̇e
e,b = S(Ce

bf
b)δϵ + Nδre

e,b − 2Ωe
i,eδve

e,b + Ce
bδf b (2.18)

The equations (2.5), (2.16) and (2.18) can be compacted in matrix form as:δṙe
e,b

δv̇e
e,b

δϵ̇e

 =

 I 0 0
N −2Ωe

i,e F
0 0 −Ωe

i,e


δre

e,b

δve
e,b

δϵe

+

 0
Ce

bδf b

−Ce
b
T δωb

g

 (2.19)

where F = S(Ce
bf

b).

In the INS model (2.19), the terms δf b and δωb
g represent the inertial sensors

error-vectors. This model would fit in the navigation filter if those errors were
characterized by a zero-mean normal distribution. However the inertial sensors
are also affected by deterministic errors (i.e. biases). Hence, they are modeled
with a first-order approximation as sum of a time-varying bias component (δbb

a)
and a noise component (δbb

g) as in (2.20)

δf b = bb
a + ωb

f

δωb
g = δbb

g + ωb
ω

(2.20)

The bias components errors (δbb
a) and (δbb

g) are included in the state error-
vector (as showed in (2.1)) in order to estimate and compensate them. Given this
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sensor bias error-model, the INS error-dynamics model (2.19) can be re-written
as:



δṙe
e,b

δv̇e
e,b

δϵ̇e

δḃ
b

a

δḃ
b

g

 =


I 0 0 0 0
N −2Ωe

i,e F Ce
b 0

0 0 −Ωe
i,e 0 Ce

b

0 0 0 −diag(α) 0
0 0 0 0 −diag(β)




δre

e,b

δve
e,b

δϵe

δbb
a

δbb
g

+

+


0 0 0 0

Ce
b 0 0 0

0 Ce
b 0 0

0 0 I 0
0 0 0 I




wb
f

wb
ω

wb
a

wb
g



(2.21)

where wb
a and wb

g are driving noises, included to model the bias drift as an ap-
propriate stochastic process (first-order Gauss-Markov process in this case), while
diag(α) and diag(β) are diagonal matrices of time constants for the accelerometer
and gyro bias models respectively.

GNSS/INS error-dynamics equations

In order to complete the dynamics error-model, the receiver clock bias δbu

and the receiver clock drift δḃu have to be included in the error-state vector.
Considering the vector δbu = [δbuδḃu], the dynamics of these quantities is simply
written as:

δḃu =
C
0 1
0 0

D
δbu (2.22)

Hence, the final dynamics error-model can be formulated augmenting the state
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in equation (2.21) with δbu, which dynamics is described by (2.22), obtaining:



δṙe
e,b

δv̇e
e,b

δϵ̇e

δḃ
b

a

δḃ
b

g

δḃu


=



I 0 0 0 0 0
N −2Ωe

i,e F Ce
b 0 0

0 0 −Ωe
i,e 0 Ce

b 0
0 0 0 −diag(α) 0 0
0 0 0 0 −diag(β) 0

0 0 0 0 0
C
0 1
0 0

D





δre
e,b

δve
e,b

δϵe

δbb
a

δbb
g

δbu


+

+



0 0 0 0
Ce

b 0 0 0
0 Ce

b 0 0
0 0 I 0
0 0 0 I
0 0 0 0
0 0 0 0




wb

f

wb
ω

wb
a

wb
g



(2.23)

Equation (2.23) can be written compactly as:

δẋ = Φδx + Gω (2.24)

where δx is the error-state defined as (2.1), Φ is the 17 × 17 state-transition
matrix, which define mathematically the time-evolution of the errors affecting the
state and G is the 17 × 12 shaping matrix, used to characterize the white noise ω
in input, matching the actual system characteristics.

The dynamics error-model defined in (2.21) is still the theoretical formulation of
the dynamics of the errors affecting the system, In order to be implemented in the
navigation filter it has to be reformulated, from continuous-time form, in discrete-
time form. Given the time-step ∆t, the discrete-time state-transition matrix at
time k, indicated as F k, can be directly derived from the continuous-time state-
transition matrix Φ as:

F k = eΦ∆t =
infØ

k=0

1
k!(Φ∆t)k (2.25)

This expression can be approximated to the first order as:

F k = eΦ∆t ≃ I + Φ∆t (2.26)

The error due to approximation in (2.26) (also known as forward Euler method)
can be considered negligible because of the small sampling time ∆t (i.e. the INS
update rate: 0.1s).
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Instead the discrete-time process-noise covariance matrix at time k, indicated
as Qk, can be obtained solving the following integral:

Qk =
Ú tk+1

tk

F (tk+1, τ)G(τ)Q(τ)GT (τ)F T (tk+1, τ)dτ (2.27)

where F (tk+1, τ) is the discrete-time state-transition matrix computed between
times τ and tk+1, while the matrix Q(τ) is the continuous-time spectral density
matrix of the noise (derived form the sensors specifications).

The integral in (2.27) is solved numerically with the following approximation:

Qk = (F kG(tk)Q(tk)GT (tk) + G(tk)Q(tk)GT (tk)F T
k )

∆t

2 (2.28)

In conclusion, the discrete-time dynamics error-model can be formulated com-
pactly as:

∆xk+1 = F k∆xk + Qkωk (2.29)
where δ has been substituted with the symbol ∆, remarking the fact that the
infinitesimal perturbation δx becomes a discrete correction (according to the time-
step ∆t) to be applied to the state. This discrete-time model will be the one
employed as process model in the integrating navigation filter for the GNSS/INS
tightly coupled architecture.

2.3.3 System observation model
The system observation model is a mathematical formulation responsible for map-
ping the incoming raw measurements into the state domain, allowing the filter to
combine and process this new set of raw data and obtain a refined update in terms
of error-state vector. In this context the measurements consist in pseudoranges
and pseudorange-rates. Since the tightly coupled framework with indirect config-
uration has been chosen, the measurement vector fed to the navigation filter is
itself in error-form, obtained as the difference between the INS-predicted measure-
ments and the raw GNSS measurements provided by the GNSS-receiver. The INS
can compute these quantities processing information about the estimated receiver
position and velocity, together with satellites position and velocity (obtained from
the GNSS-receiver). The difference between these two groups of measurements
embodies the information about the correction to be applied to the state, that has
to be retrieved with some computation [20, 32].

Hence, the observation vector zj,k, where j indicates the j − th satellite and k
the k − th epoch, can be formulated mathematically as:

zj,k = ζ̂j,k − ζj,k (2.30)

where:
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• ζj,k = (ρj,k ρ̇j,k)T is the raw measurement, composed of pseudorange and
pseudorange-rate associated with the j − th satellite, provided by the GNSS-
unit at the k − th epoch.

• ζ̂j,k = (ρ̂j,k
ˆ̇ρj,k)T ) is the nominal measurement, composed of predicted pseu-

dorange and pseudorange-rate associated with the j − th satellite, provided
by the INS-unit at the k − th epoch.

Assuming that Ns satellites are in view, the observation vector, compacting the
measurements associated of all the satellites, is defined as:

zk =


z1,k

...
zNs,k

 =



ρ̂1,k − ρ1,k
...

ρ̂Ns,k − ρNs,k

ˆ̇ρ1,k − ρ̇1,k
...

ˆ̇ρNs,k − ρ̇Ns,k


(2.31)

In Section 1.3, an extensive derivation of the Least Square solution of the non-
linear PVT problem, for a standalone GNSS positioning, was provided. In particu-
lar, the analysis of the linearized pseudorange model was provided in Section 1.3.1,
while the pseudorange-rate model was analyzed in Section 1.3.2. Both formulations
were given in a state-space form, in which the linearization was performed around
an approximation point x̂ and v̂ (containing also the user clock bias and clock drift
respectively), and the corrections ∆x and ∆v were obtained. The respective final
models are: (1.12) for position (and clock bias), and (1.33) for velocity (and clock
drift). The combination of the aforementioned models leads to the formulation of
a INS/GNSS linearized model as follows [20]:

ρ̂1,k − ρ1,k
...

ρ̂Ns,k − ρNs,k

ˆ̇ρ1,k − ρ̇1,k
...

ˆ̇ρNs,k − ρ̇Ns,k


=



a1,k
T 0 0 0 0 1 0

... ... ... ... ... ... ...
aNs,k

T 0 0 0 0 1 0
0 a1,k

T 0 0 0 0 1
... ... ... ... ... ... ...
0 aNs,k

T 0 0 0 0 1





∆xe
k

∆ve
k

∆ϵe
k

∆bb
a,k

∆bb
g,k

∆bu,k

∆ḃu,k


+ vk (2.32)

or, in compact form:
zk = Hk∆xk + vk (2.33)

where aj,k = [(
xj,k − x̂k

r̂j,k

) (
yj,k − ŷk

r̂j,k

) (
zj,k − ẑk

r̂j,k

)]T is the unit vector, expressed in
ECEF-coordinates, pointing to the j − th satellite from the approximation point
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x̂k, at the k − th epoch. This linearization point is obtained as the last INS-
update applied to the absolute state. Hk represent the system observation matrix
of size 2Nsat × 17. This matrix is formed from the Jacobian H , defined in (1.13),
that links the position and clock bias ∆x to pseudoranges ∆ρ, as well as the
velocity and clock drift ∆v to the pseudorange-rates ∆ρ̇, as showed in (1.33),
accurately filled with zeros. Finally, vk accounts for the residual errors affecting
the measurement vector zk. The statistical description of these errors, affecting
both pseudoranges and pseudorange-rates, is provided by the matrix Rk, called
observation-noise covariance matrix. This matrix can be estimated in different
ways (in this thesis the methodology derived in [36] is adopted).

2.3.4 INS/GNSS tightly-coupled implementation
The previous section was devoted to the definition of the theoretical framework
for the GNSS/INS tight integration. Here, instead, the analysis of the software
implementation of such architecture will be developed. The first problem to be
handled is the different rates at which the INS and GNSS units operate. In fact
in the adopted integration software, which aims to simulate a realistic operating
scenario, the GNSS-rate, at which the GNSS-receiver provides the observables, is
set to 1Hz, the INS-rate to 10Hz and the IMU-rate to 100Hz.

As explained in Section 1.4.4, the INS adopt a two-speed integration algorithm:
the IMU-rate is the rate at which the sensors (accelerometers and gyros) provide
measurements and at which coning and sculling integrals are performed; while the
INS-rate is the rate at which the INS process unit performs the actual integration,
providing position, velocity and attitude updates. Note that the GNSS-rate, dif-
ferently from the other two, is the rate at which the GNSS-receiver would provide
the observables if satellite signals were constantly available. Because of external
environmental conditions (e.g interference etc.), these signals can be interrupted
or severely disrupted. Hence, the aforementioned periodicity of 1Hz is just an
upper-bound, and this emphasizes the importance of the integration with inertial
sensors, used to interpolate GNSS-solutions providing continuity in the positioning
[29]. Regarding the integration filter timing, it is dictated by the instants at which
groups of GNSS-observables are provided by the GNSS-receiver.

To keep this flow of data synchronized, all the units involved in the integrated
module are administrated by a Finite-State-Machine (FSM). The FSM is a schedul-
ing unit used to properly manage inertial navigation unit and navigation filter op-
erations. This is done assigning timestamps to inertial data (accelerometers and
gyros measurements) and GNSS-observables, then the correct synchronization is
achieved following the order dictated by these timestamps, without needing any
common-clock.

For clarity, a summary of the operations performed by the different units is
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reported here.

Inertial Navigation System

• High-rate (100Hz): IMU-measurements are provided and coning and sculling
integrals are performed.

• Medium-rate (10Hz): Mechanization equations are solved providing position,
velocity and attitude updates, which are used to refine the current absolute
solution. Moreover, the INS provides the estimates of state-transition matrix
F k and process-noise covariance Qk, used to describe the system dynamics.

• Low-rate: when the navigation filter enters in the integration chain, the INS
unit has to be fed with satellites position and velocity so that the nominal
GNSS-observables ρ̂ and ˆ̇ρ can be computed (according to (1.7) and (1.32)).

Navigation filter

• Whenever a new set of GNSS-observables is available, the integration fil-
ter steps in the integration chain. It takes as inputs pseudoranges and
pseudorange-rates, together with satellites information (used to compute ob-
servation matrix Hk and observation-noise covariance matrix Rk), from the
GNSS-receiver, while nominal pseudoranges and pseudorange-rates, as well
as matrices F k and Qk, from INS-unit. All these information, coming from
both INS and GNSS units, are processed together with a filtering algorithm
so that a low-rate integrated state correction ∆x is provided.

As last observation, it has to be noticed that the FSM has to be initialized. In
fact, since the INS provides only relative solutions in terms of updates, a first GNSS
stand-alone solution (first-fix) is needed. This is done waiting a set of observables
composed of at least four satellites and computing a PVT solution. For example,
a simple recursive Least Squares (LS) on these observables can be performed, as
in (1.14) and (1.34), starting from an arbitrary linearization point.

2.3.5 Latency management
Since this implementation has the purpose of simulate a real-time application,
GNSS-latency issues must be accounted for. In fact, as explained before, due
to different causes (GNSS-outages, ranging signal losses etc.), GNSS-observables
are characterized by an unstable arrival frequency. In this thesis, to manage this
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problem, a replay-buffer solution is implemented inside the FSM. Whenever an
expected set of GNSS-observables is missing, the data provided by the INS-unit
are also stored in the buffer. Then, when the delayed GNSS-observables arrive,
the buffered data are restored and GNSS-update performed. In case the temporal
delay is larger then a certain threshold, the GNSS-outage is declared [27]. A
schematic representation of this solution is shown in Figure 2.3.

Figure 2.3: Buffer-replay latency management (picture taken from [30]).
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Chapter 3

Factor Graphs

This chapter provides an overview of factor graphs for modeling and solving infer-
ence problems, including GNSS/INS integrated positioning. Factor graphs belong
to the family of probabilistic graphical models, which are tools used to model and
analyze complex systems involving probabilistic relationships and dependencies.
They provide an intuitive and structured way to represent the interconnections
between variables, allowing the design of flexible and modular software to retrieve
the solution. In family are also Bayesian networks, the most known and sim-
ple graphical models; they are first introduced and then used to formulate factor
graphs, that are a more convenient representation. Factor graphs are in fact just
Bayesian networks conditioned on sensors data, that are typically known. The
inference problem will be then formulated as an optimization problem on factor
graphs. Finally, they will be adapted and applied to the GNSS/INS integration
problem.

3.1 Probabilistic modeling
To introduce probabilistic modeling, the Simultaneous Localization and Mapping
(SLAM) problem, typical in robotics, will be used as example. In fact, as a gener-
alization of the localization problems, landmarks’ (reference points used to retrieve
information by sensors) position may not be known a-priori, and the unknown map
has to be reconstructed while localizing with respect to it. In case their position
is known, this can be reformulated as a trilateration problem.

A simplified representation of a small SLAM problem (that keeps a relative
generality) is showed in Figure 3.1. The unknown consequential states x1 x2 and
x3 are linked to landmarks l1 and l2 through some measurements, given by the
sensors’ perception of the landmarks themselves (these variables can be vectors in
general, the bold notation is not used in this chapter for simplicity).
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Figure 3.1: A small SLAM problem example. Arrows describe the evolution of
states over time while dotted lines represent relationship between states and mea-
surements

3.1.1 Bayesian networks
The involved unknowns in a positioning problem can be handled with a probabilis-
tic description in the Bayesian framework, meaning that a belief over continuous,
multivariate random variables x ∈ Rn have to be modeled. For this purpose,
probability density functions (PDFs) p(x) are used, for which it holds [37]:

s
p(x)dx = 1

p(x) ≥ 0
(3.1)

Given a set X of random variables together with a set of measurements Z, the
actual interest is in the probability distribution of the set of variables X given the
knowledge of the set of measurements Z, that is the conditional density [38]:

p(X|Z) (3.2)
where the vertical-bar notation is used to indicate the term given. Probabilis-
tic graphical models are adopted to obtain an expression for (3.2) over complex
systems, as will be showed.

Bayesian networks (in short Bayes net) are directed graphical models in which
variables θj are represented by nodes. The set of all the random variables Θ =
{θ1...θn}, that includes both states X and measurements Z, is associated, through
a Bayes net, with the joint probability density p(Θ), that is described as the
product of conditional densities of each variable. Mathematically:

p(Θ) =
nÙ

j=1
p(θj|πj) (3.3)

where πj is an assignment of values to the parents of θj. What defines the node-
parents relationships is the structure of the Bayes net itself (arrows’ direction).
For clarity, in Figure 3.2 a Bayes net is constructed on the example in Figure 3.1,
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Figure 3.2: Bayes net retrieved from example in Figure 3.1. The variables associ-
ated with measurements are represented with rectangles, since they are observed
variable

The random variables involved in the Bayes net in Figure 3.2 are object’s and
landmarks’ positions X as well as measurements Z, forming the set Θ = {X, Z}.
Given the definition in (3.3), it yields [38]:

p(Θ) = p(X, Z) = p(x1)p(x2|x1)p(x3|x2)
× p(l1)p(l2)
× p(z1|x1)
× p(z2|x1, l1)p(z3|x2, l2)p(z4|x3, l2) (3.4)

where the different factors, corresponding to a Bayes net’s node each, have been
divided into four groups. They can be distinguished in:

• Markov chain p(x1)p(x2|x1)p(x3|x2).

• Prior densities on landmarks p(l1)p(l2).

• A conditional density on the absolute measurement of the first position p(z1|x1).

• Three conditional densities on relative measurements of the three positions
with respect to landmarks p(z2|x1, l1)p(z3|x2, l2)p(z4|x3, l2).

Note that the node-parents relationships are defined by the arrows’ direction
represented in the Bayes net: x2 is an element of the parents set of z3 while its
parent set coincides with x1.

Through a Bayes net it is now possible to model any system as a product
of probabilistic relationships. As anticipated before, measurement variables (z1,
z2 and z3 in the example) are usually assumed to be given, and the interest is to
estimate the set of variables X given that knowledge. The most common estimator
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in these problems is the so called Maximum a Posteriori (MAP) estimate, that is
finding the maximum of the posterior density p(X|Z). Mathematically [39]:

XMAP = argmax
X

p(X|Z) (3.5)

Exploiting the Bayes’s law [39], equation (3.5) can be re-written as:

XMAP = argmax
X

p(Z|X)p(X)
p(Z) (3.6)

In (3.6) the posterior p(X|Z) is expressed as the product of the measurement
density p(Z|X) and the prior p(X), normalized by the factor p(Z). Since the set
of measurements Z is assumed to be known and the maximization of the function
is performed, the normalization factor p(Z) can be dropped. Moreover, the factor
p(Z|X) is usually formulated as a Gaussian distribution in Z. Considering Z just
as a parameter, p(Z|X) can be seen as a function of X, but, in general, it will not
be a Gaussian distribution in this new variable. The equation (3.6) will then be
reformulated equivalently as [38]:

XMAP = argmax
X

l(X; Z)p(X) (3.7)

where l(X; Z) is the likelihood function of the set X given the measurement set
Z, defined as:

l(X; Z) ∝ p(Z|X) (3.8)
where it has been emphasized the fact that it is any function proportional to
p(Z|X) but in the variable X, with Z considered just as a parameter. Factor
graphs will be adopted as probabilistic graphical models to perform a distinct
division between the states X and the measurements Z, together with the necessity
of handling non-Gaussian descriptions of the likelihood function l{X; Z}.

3.1.2 Factor Graphs for Inference
Similarly to Bayes nets, factor graphs describe a joint density as a product of
factors. These factors can be any function ϕ of variables in the set X, without
being constricted to be probability densities.

The MAP estimate of the example problem is described by (3.5). Taking (3.4),
conditioning on Z and exploiting the Bayes’ law, it holds:

p(X|Z) ∝ p(x1)p(x2|x1)p(x3|x2)
× p(l1)p(l2)
× l(x1; z1)
× l(x1, l1; z2)l(x2, l2; z3)l(x3, l2; z4) (3.9)
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that is a factored unnormalized probability density over the set of variables X.
This factorization, in which the measurement set Z is considered just a set of
parameters, can be conveniently represented by a factor graph as in Figure 3.3

Figure 3.3: Factor graph formulation of the small SLAM example. It is obtained
conditioning the Bayes’ net in Figure 3.2

A factor graph, unlike Bayes nets, does not associate a conditional density
function to each variable. Instead, the factors appearing in (3.8) are represented
with a new node type (black dots in Figure 3.3). If a factor is function of a subset of
the variables set X, then the corresponding black dot in the graph will be linked to
only those variables. The 9 factors appearing in (3.8) can then be easily associated
to the corresponding factors in the factor graph of Figure 3.3.

Formally, a factor graph is a bipartite graph referred to as F ∈ (U , V , E), with
two types of nodes: factors ϕi ∈ U and variables xj ∈ V . Factor nodes and variable
nodes are linked by edges ei,j ∈ E . A factor ϕi will be linked to a set of variables
Xi, that are the variables of which the factor is function of. Hence, a factor graph
F embodies the factorization of a global function ϕ(X) as [38]:

ϕ(X) =
nÙ

i=1
ϕi(Xi) (3.10)

Following the definition reported in (3.10) and applying it to the small SLAM
example:

ϕ(X) = ϕ(l1, l2, x1, x2, x3) = ϕ1(x1)ϕ2(x2, x1)ϕ3(x3, x2)
× ϕ4(l1)ϕ5(l2)
× ϕ6(x1)
× ϕ7(x1, l1)ϕ8(x2, l2)ϕ9(x3, l2) (3.11)

that is the unnormalized posterior p(X|Z). Note that there is a direct corre-
spondence between factors in (3.4), describing the Bayes net, in equation (3.9),
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describing the Bayes net conditioned in Z and in (3.11), describing the factor
graph. It holds for example:

ϕ6(x1) = l(x1; z1) ∝ p(z1|x1) (3.12)

Finally, given (3.5), inference on factor graphs is performed similarly, being it
the set of variables X such that:

XMAP = argmax
X

p(X|Z) = argmax
X

ϕ(X) = argmax
X

nÙ
i=1

ϕi(Xi) (3.13)

It is worth noting that each function ϕi(Xi) has no restrictions on its prop-
erties, it can be linear, non-linear, continuous or discrete, hence every type of
measurements or constraint can be added to the graph.

3.2 MAP Inference for Nonlinear Factor Graphs
The MAP, described in (3.13), is the most common estimator used to find an
estimate of the variables once a probabilistic distribution is given

To find an estimate of the variables once a probabilistic distribution is given, the
most common estimator is the MAP estimate described in (3.13). Since the most
frequent involved functions are Gaussian priors and likelihood functions derived
from measurements affected by normally-distributed noise, factors will be of the
form [37]:

ϕi(Xi) ∝ exp
3

−1
2∥hi(Xi) − zi∥2

Σi

4
(3.14)

where ∥.∥Σi
is the Mahalanobis norm, involving an ni × ni covariance matrix Σi.

Performing some mathematical manipulation:

XMAP = argmax
X

nÙ
i=1

ϕi(Xi)

= argmax
X

log

A
nÙ

i=1
ϕi(Xi)

B

= argmin
X

−log

A
nÙ

i=1
ϕi(Xi)

B

= argmin
X

−log

A
nÙ

i=1
exp

3
−1

2∥hi(Xi) − zi∥2
Σi

4B

= argmin
X

−log

A
exp

A
−1

2

nØ
i=1

∥hi(Xi) − zi∥2
Σi

BB

= argmin
X

nØ
i=1

∥hi(Xi) − zi∥2
Σi

(3.15)
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where (3.14) has been substituted in (3.13) (the proportionality relationship has
been substituted with an equality relationship since functions do not need to be
normalized in this context), the negative logarithm has been applied and the coeffi-
cient 1/2 dropped. After these steps, the MAP estimate XMAP can be formulated
as (3.15), that consists in minimizing a sum of non-linear squares. Note that every
term involved in this sum is a measurement-derived likelihood function or prior
density on some variable, and they are all summed together to create a global cost
function to be minimized.

The functions hi(Xi), introduced in (3.14), that map variables Xi into a proper
domain, are in general nonlinear. Hence, the minimization process involved in
(3.15) has to be handled with some nonlinear optimization methods (e.g. Gauss-
Newton, Levenberg-Marquardt etc.). This topic will be discussed in the next
section.

3.2.1 Linearization
Given the non linear functions hi(Xi), they can be linearized through a Taylor
expansion around a linearization point X0

i , obtaining:

hi(Xi) ≃ hi(X0
i ) + Hi∆Xi (3.16)

where ∆Xi = Xi − X0
i is the state update vector, while Hi, the Jacobian of the

measurement function hi(Xi) is defined as:

Hi ≜
∂hi(Xi)

∂Xi

-----
X0

i

(3.17)

Substituting now (3.16) in (3.15), a linearized version of the MAP estimate, in the
variable ∆X, is obtained:

∆X∗ = argmin
∆X

nØ
i=1

∥hi(X0
i ) + Hi∆Xi − zi∥2

Σi

= argmin
∆X

nØ
i=1

∥Hi∆Xi − (zi − hi(X0
i )∥2

Σi
(3.18)

Once ∆X∗ is obtained, it holds XMAP = X0 + ∆X∗. The difference zi − hi(X0
i )

is the prediction error.
Note that the Mahalanobis norm can be re-written as an l2 − norm performing

some mathematical steps. Recalling the Cholesky decomposition, given a real,
symmetrical positive-definite matrix S, it holds S = UT U , where U is an upper
triangular matrix (usually indicated as S1/2). Hence, the Mahalanobis norm of a
vector a can be re-written as [38]:

∥a∥2
Σ ≜ aT Σ−1a = aT ((Σ−1/2)T Σ−1/2)a = (Σ−1/2a)T (Σ−1/2a) = ∥Σ−1/2a∥2

2 (3.19)
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where Σ−1/2 is the Cholesky factor of Σ−1 (the inverse of a symmetric matrix S−1

is still symmetric).
Given the result in (3.19), the equation (3.18) can be re-written with a change

of variables:
Ai = Σ−1/2Hi (3.20)

bi = Σ−1/2(zi − hi(X0
i )) (3.21)

so that (3.18) becomes:

∆X∗ = argmin
∆X

nØ
i=1

∥Ai∆Xi − bi∥2
2 (3.22)

Equation (3.22) can be expressed in matrix form compacting the various matrices
Ai in a matrix A as well as the vectors bi in a vector b, obtaining:

∆X∗ = argmin
∆X

∥A∆X − b∥2
2 (3.23)

Given this equation, there are several efficient algorithms that can be applied to
retrieve ∆X∗. However, in the following section, a more general approach will be
showed.

The A matrix in (3.23) embodies the structure of the underlying factor graph.
Its dimension depends on how many variables xi are involved and how they are
connected but, in most of the applications, it will be a sparse matrix. The sparsity
of the matrix, and hence of the factor graph it is related to, comes from inherent
properties of the system it is describing. Taking for example the small SLAM
problem showed in Figure 3.3, if the object keeps moving, new states x4, x5, ..., xN

will be created, obtaining a situation as in Figure 3.4. Assuming them to be
described by a Markov-chain (that is a realistic assumption in most of the cases),
each of them will be linked by factors only to the adjacent ones. Even considering
landmarks’ positions to be unknown, the arising edges in the graphs will be far
less than the possible ones. The resulting factor graph, and hence the associated
matrix A, will be then sparse.

The sparsity property arising in these problems is fundamental for different
reasons. First of all, probabilistic graphical models are useful thanks to sparsity
(they would not be representative if the factor graph in Figure 3.4 was a fully
connected graph). Moreover, computing the solution of problems involving so
many variables with a dense (i.e. not sparse) A matrix can lead to computational
problems. In fact the algorithms employed to retrieve the solution (i.e. MAP
estimate) are designed specifically to exploit sparsity.

Before moving on, assuming that the solution ∆X∗ has been found, a Gauss-
Newton algorithm can be adopted to retrieve iteratively the solution XMAP [38].
Starting from the linearization point X0

(1), the state update ∆X∗
(1) is found. The
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Figure 3.4: Factor graph describing a larger SLAM problem [38]

problem can be re-linearized around X0
(2) = X0

(1) + ∆X∗
(1) so that a new state

update ∆X∗
(2) will be obtained, and so on. This process stops when convergence

is achieved.

3.2.2 Elimination algorithm
As discussed in the previous section, the computation of ∆XMAP implies repeat-
edly solving possibly large but sparse linear systems. In fact, under the assumption
of priors described by a normal distribution as well as measurements affected by
Gaussian-noise, performing the MAP inference can be reformulated in solving mul-
tiple linear Least Square problems, for which several efficient algorithms already
exist in literature. However, as will be showed, these approaches can be seen as
particular cases of a more general algorithm, the Elimination algorithm. This al-
gorithm, which can be applied to any factor graph under any assumption, allows
the computation of the corresponding posterior density p(X|Z) factorized so that
an easy recovery of the MAP estimate is possible. An intuitive representation over
probabilistic graphical models is also possible, thanks to the sparse characteristic
of the problems to which factor graphs are usually applied.

As described in the previous section, a factor graph embodies the unnormalized
posterior as product of factors, each of which is function of a subset Xi of the
variables set X. Hence, it represents a global function ϕ(X) for which it holds:

p(X|Z) ∝ ϕ(X) =
nÙ

i=1
ϕi(Xi) (3.24)

Note that, differently from how they were presented, given a problem as in Fig-
ure 3.1, it is more intuitive to construct a factor graph as in Figure 3.3 than a Bayes
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net as in 3.2, since each factor represents given measurements or prior knowledge
about some variables Xi. Bayes nets instead are more suitable for computing the
MAP estimate, as will be showed afterwards. In fact, the elimination algorithm
is a method for retrieving, given a factor graph, the corresponding Bayes net but
having just the variables set X as unknown.

The variable elimination algorithm allows to factorize any factor graph:

ϕ(X) = ϕ(x1, x2, ..., xn) (3.25)

into a Bayes net of the form:

p(X) = p(x1|S1)p(x2|S2)...p(xn) =
nÙ

i=1
p(xi|Si) (3.26)

where x1, ..., xn are all the variables involved, numerated with a chosen ordering
[38]. Given the factor graph ϕ(X), eliminating the first variable x1 means factoriz-
ing it as ϕ(X) = p(x1|S1)ϕ(x2, ..., xn), where the first term represent the probability
distribution of x1 conditioned on the variables it depends on (i.e. variables con-
nected to x1 in the factor graph), which are collected into the separator S1. The
second term is a reduced factor graph, since x1 has been eliminated. The same is
done for x2 and so on, obtaining at the end a Bayes net as in (3.26). This algorithm
is a succession of local factorization steps: to eliminate xi, all remaining factors it
is connected to (that only involve the variable xi and the ones contained in the sep-
arator Si which it depends on) are multiplied together, obtaining the intermediate
product Ψ(xi, Si). This function is factorized obtaining Ψ(xi, Si) = p(xi|Si)τ(Si),
where τ(Si) is a new factor that will be added in the resulting partial factor graph
ϕ(xi+1, ..., xn). When the last variable xn is eliminated, the separator Sn will be
empty, generating simply a prior p(xn).

For this algorithm, a convenient graphical representation is possible. Taking
again the small SLAM problem as an example, the elimination algorithm applied
to it with a chosen elimination ordering (l1 → x1 → x2 → l2 → x3) is showed in
Figure 3.5

The obtained Bayes net in figure describe a posterior factorization in only the
variables X. Hence, starting from the factor graph ϕ(x1, x2, x3, l1, l2), the follow-
ing factorization (Bayes net) is obtained (note that the factorization follows the
elimination ordering, a different ordering leads to a different factorization as well
as a different Bayes net structure):

p(x1, x2, x3, l1, l2) = p(l1|x1)p(x1|x2)p(x2|l2, x3)p(l2|x3)p(x3) (3.27)

The algorithm holds in general. If the assumption of linear measurements func-
tions (or linearized ones) affected by Gaussian noise is considered again, the elim-
ination algorithm boils down to a sparse Cholesky or a sparse QR factorization
algorithm, as will be showed below.
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(a) Eliminating l1 (b) Eliminating x1 (c) Eliminating x2

(d) Eliminating l2 (e) Eliminating x3 (f) Bayes net

Figure 3.5: Elimination algorithm applied to the small SLAM example factor
graph. The results of a variable elimination are represented in green, while factors
and variables involved in an elimination step in red (also the green τ(Si) factor
obtained from the elimination of xi−1 will be involved in the elimination of xi,
hence it is circled in red). Figures 3.5a to 3.5e are elimination steps, while figure
3.5f represents the obtained Bayes net

As analyzed in the previous section, a linearized factor graph (or just a linear
one) in which measurements are effected by Gaussian noise and priors are described
by a normal distribution can be described by a large but sparse matrix A. This
matrix together with the vector b (defined in (3.20) and (3.21) respectively) defines
the equation (3.23), that is:

∆X∗ = argmin
∆X

∥A∆X − b∥2
2 (3.28)

hereinafter the symbol ∆ will be dropped for simplicity and because what will be
said holds in general for linear problems, regardless of their origin.

Using again the small SLAM problem factor graph as an example (reported
here for clarity), the related matrix A will have the following block structure:
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Figure 3.6: Factor graph formulation of the small SLAM example

[A|b] =



x1 x2 x3 l1 l2 b
A11 b1 ϕ1
A21 b2 ϕ2
A31 A34 b3 ϕ3

A44 b4 ϕ4
A51 A52 b5 ϕ5

A62 A65 b6 ϕ6
A75 b7 ϕ7

A83 A85 b8 ϕ8
A92 A93 b9 ϕ9


(3.29)

it can be seen that every block row in matrix A corresponds to a factor of the
factor graph in 3.6, while every block column correspond to a variable (except for
the vector b that has been added to it). For example, a unary factor as the one
connected only to l1 is described by the only block matrix in the 4-th block-raw
A44,that will be referred to as A4 ≜ A44 with set of variables X4 ≜ x4. Similarly, a
binary factor as the one between x1 and l1 is described by the two block matrices
in the 3-th block-row A31 and A34 and will be referred to as A3 ≜ [A31|A34] with
X3 ≜ [x1 l1]T . With the assumptions made, each factor involved will be of the
form:

ϕi(Xi) = exp
3

−1
2∥AiXi − bi∥2

2

4
(3.30)

with Ai and bi being the i-th block-row of [A|b], and Xi the set of involved variables.
Now the elimination algorithm will be run through again in this context. When

the variable xi is being eliminated, the product of the all the adjacent factors
ϕj(Xj) (with j = 1 : nf , nf = number of adjacent factors) will provide the
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intermediate product:

Ψ(xi, Si) =
nfÙ

j=1
ϕj(Xj) = exp

−1
2

nfØ
j=1

∥AjXj − bj∥2
2

 (3.31)

where Si is the separator, that is the set of all the variables, not eliminated yet,
which xi is connected to. This expression can be compacted creating the interme-
diate matrix Āi that stacks all the matrices involved in the considered factors, as
well as the vector b̄i, obtaining:

Ψ(xi, Si) = exp
3

−1
2∥Āi[xi; Si] − b̄i∥2

2

4
(3.32)

For example, considering the elimination step showed in Figure 3.5a, l1 is being
eliminated, involving two factors that can be easily identified in (3.29). Hence it
will be:

Ā1 =
C
A11
A31 A34

D
=
C
A1
A3

D
b̄1 =

C
b1
b3

D
(3.33)

The factorization of Ψ(xi, Si) can be done in several ways. Here a QR-factorization
approach will be used. Performing a QR-factorization on the augmented matrix
[Âi|b̂i] it can be decomposed as [38]:

[Āi|b̄i] = Q

C
Ri Ti di

Ãi b̃i

D
(3.34)

so that equation (3.32) can be re-written as:

Ψ(xi, Si) = exp
3

−1
2∥Āi[xi; Si] − b̄i∥2

2

4
= exp

3
−1

2∥Rixi + TiSi − di∥2
2

4
exp

3
−1

2∥ÃiSi − b̃i∥2
2

4
= p(xi|Si)τ(Si) (3.35)

where the orthonormal matrix Q has been dropped since it does not change the
values or the involved norms. This can be done variable by variable until all the
factor graph is transformed into a Bayes net.

Considering equation (3.35), given the normal-distribution p(xi|Si), the Gaus-
sian parameters can be retrieved as:

p(xi|Si) = exp
3

−1
2∥Rixi + TiSi − di∥2

2

4
= exp

3
−1

2∥xi − µi∥2
Σi

4
(3.36)

hence:
∥Rixi + TiSi − di∥2

2 = ∥xi − µi∥2
Σi
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∥Rixi − (di − TiSi)∥2
2 = ∥xi − µi∥2

Σi

∥Rixi − (di − TiSi)∥2
2 = ∥Σ−1/2xi − Σ−1/2µi∥2

2 (3.37)

obtaining [38]:
Σi = (RT

i Ri)−1 (3.38)

µi = R−1
i (di − TiSi) (3.39)

Equation (3.38) provides the covariance matrix Σi while equation (3.39) the mean
µi.

Finally, the MAP estimate XMAP (or equivalently the Gauss-Newton step X∗)
can be obtained via back-substitution. In fact, at the end of the elimination
algorithm, a Bayes net is obtained, that is described by (3.26). Recalling that:

XMAP = argmax
X

p(X) = argmax
X

nÙ
i=1

p(xi|Si) (3.40)

and given that in a normal distribution the maximum happens in correspondence
of the mean value µi, it holds:

x∗
i = R−1

i (di − TiS
∗
i ) (3.41)

For the last eliminated n-variable (x3 in the small SLAM example) the separator
is empty, so it will be just x∗

n = R−1
n dn, then, by construction, the MAP estimate

of the separator S∗
i will be known for the other variables.

In the following section factor graphs as a model describing also the temporal
evolution of a system will be described.

3.2.3 Fixed-lag smoothing and filtering
In the previous section the analysis of a given factor graph has been performed.
However, in most of the localization problems, measurements arrive as a temporal
sequence, meaning that the corresponding factor graph is dynamically constructed.
In this section, the considered factor graphs will be the typical graphs obtained
in a GNSS/INS integration application. This is because a generalization on this
topic would divert the focus from the main objective and which is out of the aim
of this thesis. In a GNSS/INS context, landmarks considered in the previous dis-
cussion will be actually the satellites, for which position and velocity is known.
Hence variables as l1 and l2 of the SLAM example 3.6 will not be present. There
will be then two types of factors: unary factors, connected to just one variable
xi, that describe absolute measurements (GNSS observables) or prior knowledge
about that variable; binary factors, connecting two adjacent variables, that de-
scribe the dynamic model (it can be assumed or derived from INS measurements).
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Figure 3.7: A typical factor graph arising in a GNSS/INS application

A graphical representation of this problem will be provided below, recalling that
every manipulation done over a graph has its mathematical formulation. A typical
factor graph for this application will look like the one in Figure 3.7. Applying the
elimination algorithm following the ordering (x1 → x2 → x3), the Bayes net in
Figure 3.8a is obtained.

(a) (b)

(c) (d)

Figure 3.8: Evolution of the graphical model through two successive epochs

The Bayes net in 3.8a can be used to easily retrieve the MAP estimate X∗ =
(x∗

1, x∗
2, x∗

3) as in section 3.2.2.
As a new set of GNSS observables comes, a new variable x4 will be added

(i.e. the state at the new epoch), together with a relative factor constraining it
dynamically to x3 and an absolute factor describing GNSS-measurements. This is
represented in Figure 3.8b. In order to obtain the equivalent Bayes net of Figure
3.8d, from the estimate x∗

3, a prior factor can be retrieve as follows:

ϕprior(x3) = exp
3

−1
2∥x3 − x∗

3∥2
Σ3

4
(3.42)

where x∗
3 has been obtained previously and its covariance Σ3 describes the uncer-

tainty about this estimate, computed as in (3.38). This factor describes in fact
the previous estimation (prior knowledge) of this variable. The graph can then be
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re-arranged as in Figure 3.8c A small factor graph is then formed involving the
last two variables [38]. This can be transformed again into a Bayes net following
the ordering (x3 → x4), obtaining Figure 3.8d. From this new Bayes net, it is pos-
sible not only to compute x∗

4 but also to re-compute x∗
1, x∗

2, x∗
3, using the additional

knowledge coming new measurements.
Note that the Bayes net in Figure 3.8d is described by:

p(X) = p(x1|x2)p(x2|x3)p(x3|x4)p(x4) (3.43)

meaning that x1 is a leaf (i.e. it does not point to any other variable or, equiv-
alently, none of the other variables’ conditional density depends on it). Then,
excluding x1 from the Bayes net does not cause any loss of information (differently
from removing it from a factor graph). This process of dropping a leaf-variable
that has been already eliminated is called marginalization. This is because the
intermediate factor τ(Si) that appears during the elimination steps as in Section
3.2.2, carries up in the Bayes net the information about previous states.

Moreover it can be noted that if all the previous states are dropped when a
new one comes (i.e. the number of nodes kept at each epoch, called window size
ws, is ws = 1) only the filtering operation is performed, obtaining the equivalent
of a Kalman filter. While having a window size ws > 1 means that also previous
states are estimated at each epoch, performing a smoothing process.

In the next section the actual formulation for GNSS and GNSS/INS applications
is given.

3.3 Factor Graphs for GNSS
In this section, factor graphs will be used as framework to perform filtering and
smoothing for a stand-alone GNSS receiver.

The state to be considered at each k-th epoch in this context is the one involved
in the computations in Section 1.3.1 (position and user-clock bias) and in Section
1.3.2 (velocity and user clock-drift). Stacking those variables in a single state
vector ∆xk for each k-epoch:

∆xk = [∆xk ∆yk ∆zk ∆ẋk ∆ẏk ∆żk − ∆bu,k − ∆ḃu,k]T (3.44)

The symbol ∆ is used since the linearized equations (1.13) and (1.34) will be
used. Similarly to what was said in the previous section, at k-th epoch, a new
set of GNSS observables will be available, while the state at epoch k − 1 has been
estimated already. Figure 3.9a reports the resulting situation.

The factors involved are: Ns absolute unary factors ϕ
(j)
GNSS (one for each visible

satellite) and a relative binary factor ϕdynamics constraining the two states to some
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(a) (b)

Figure 3.9: Factor graph at k-th epoch

dynamics model. To proceed, a prior factor ϕprior on the already estimated xk−1
is retrieved as in Figure 3.9b.

How to solve a factor graph like the one showed here has been analyzed in the
previous section. Then what is left is to characterize mathematically the involved
factors. This is done writing them in the form ϕ = exp (∥A∆x − b∥2

2), so that
the matrix A and the vector b will be used in the elimination algorithm in the
QR-factorization form as in 3.2.2.

Prior factor

The prior factor ϕprior is retrieved from the previous estimate x̂k−1. The factor
is then described by an estimated covariance matrix Σk−1 and the expected value
of the new estimate E{xk−1} that is x̂k−1 itself. This is because without any other
information its best estimate is the one already available. Elaborating these two
information:

ϕprior = exp
1
∥xk−1 − x̂k−1∥2

Σk−1

2
= exp

1
∥x̂k−1 + ∆xk−1 − x̂k−1∥2

Σk−1

2
= exp

1
∥∆xk−1∥2

Σk−1

2
= exp

1
∥Σ−1/2

k−1 ∆xk−1∥2
2

2
(3.45)

leads to:
Aprior = Σ−1/2

k−1 bprior = 0 (3.46)

GNSS factor

A GNSS factor ϕ j
GNSS, coming from the j-th satellite at the k-th epoch, is

described by the measurement ζj,k = [ρj,k ρ̇j,k]T as well as the observation function
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hk(·). The observation model developed in Section 2.3.3, that is based on the
linearization process in Sections 1.3.1 and 1.3.2 The only difference is that here
the state-components related to INS are not present, so dimensions are lower. Note
that the linearization is made around the point x̂k that is obtained as f(xk−1),
where f(·) is a dynamic model used to propagate the previous state and perform
a prediction. The adopted dynamic model will be described later on.

ϕ j
GNSS = exp

1
∥hj,k (xk) − ζj,k∥2

Rj,k

2
= exp

1
∥Hj,k∆xk − hj,k (x̂k) + ζj,k∥2

Rj,k

2
= exp

1
∥Hj,k∆xk − (ζ̂j,k − ζj,k)∥2

Rj,k

2
= exp

1
∥R

−1/2
j,k Hj,k∆xk − R

−1/2
j,k (ζ̂j,k − ζj,k)∥2

2

2
(3.47)

where Rj,k is the observation-noise covariance associated to the j-satellite at the
k-epoch, computed as [36]. Note that in the second step there is a change of sign:
it does not change the value of the norm and the same observation matrix Hj,k

used in the previous chapters is obtained. Recalling the definition of observation
vector zj,k = ζ̂j,k − ζj,k, it follows:

A j
GNSS = R

−1/2
j,k Hj,k b j

GNSS = R
−1/2
j,k zj,k (3.48)

For convenience, once every Ns factor ϕ j
GNSS is obtained, they can be compacted

in a single factor ϕ j
GNSS, following what was done in Section 2.3.3. Then it is:

ϕGNSS = exp
1
∥R

−1/2
k Hk∆xk − R

−1/2
k (ζ̂k − ζk)∥2

2

2
(3.49)

AGNSS = R
−1/2
k Hk bGNSS = R

−1/2
k zk (3.50)

for completeness, the measurement vector zk and the system observation matrix
Hk are reported here:

zk =



ρ̂1,k − ρ1,k
...

ρ̂Ns,k − ρNs,k

ˆ̇ρ1,k − ρ̇1,k
...

ˆ̇ρNs,k − ρ̇Ns,k


Hk =



a1,k
T 0 1 0

... ... ... ...
aNs,k

T 0 1 0
0 a1,k

T 0 1
... ... ... ...
0 aNs,k

T 0 1


(3.51)

where aj,k = [(
xj,k − x̂k

r̂j,k

) (
yj,k − ŷk

r̂j,k

) (
zj,k − ẑk

r̂j,k

)]T is the unit vector, expressed in
ECEF-coordinates, pointing to the j − th satellite from the approximation point
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x̂k, at the k − th epoch.

Dynamic factor

The general formulation of a dynamic factor ϕdynamics is:

ϕdynamics = exp
1
∥f(xk−1) − xk∥2

Qk−1

2
(3.52)

where f(·) is the dynamic model and Qk−1 is the process-noise covariance matrix.
In a stand-alone GNSS application there is no direct observation of the behaviour
of the body (i.e. its dynamics) between two epochs. Hence, the dynamic model
has to be chosen a-priori. The most common model used in literature is the
constant-velocity model. Given the estimate x̂k−1, the prediction x̂k is obtained
as:

x̂k = F k−1x̂k−1 (3.53)

F k−1 =



1 0 0 ∆t 0 0 0 0
0 1 0 0 ∆t 0 0 0
0 0 1 0 0 ∆t 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 ∆t
0 0 0 0 0 0 0 1


(3.54)

where ∆t is the time step between two epochs. Instead the process-noise covariance
Q has fixed typical values. The dynamic factor ϕdynamics can be then written as:

ϕdynamics = exp
1
∥F k−1xk−1 − xk∥2

Qk−1

2
= exp

1
∥F k−1x̂k−1 + F k−1∆xk−1 − x̂k − ∆xk∥2

Qk−1

2
= exp

1
∥[F k−1 − I][∆xk−1 ∆xk]T − (x̂k − F k−1x̂k−1)∥2

Qk−1

2
= exp

1
∥[F k−1 − I][∆xk−1 ∆xk]T ∥2

Qk−1

2
= exp

1
∥[Q−1/2

k−1 F k−1 − Q
−1/2
k−1 I][∆xk−1 ∆xk]T ∥2

2

2
(3.55)

defining the two matrices F Q = Q
−1/2
k−1 F k−1 and IQ = −Q

−1/2
k−1 I where I is the

identity matrix, it holds:

Adynamics = [F Q IQ]; bdynamics = 0 (3.56)

Note that being a binary factor it involves both unknowns ∆xk−1 and ∆xk.
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Elimination algorithm

Now that the involved factors have been mathematically characterized a brief
description of the elimination algorithm applied to a typical GNSS factor graph
is here reported. Collecting the defined matrices and vectors defining each factor,
the matrix A augmented with the vector b describing the factor graph will be:

[A|b] =

Aprior bprior

F Q IQ bdynamics

AGNSS bGNSS

 (3.57)

The chosen elimination ordering is ∆xk−1 → ∆xk. In Figure 3.10 the elimination
steps are reported. The elimination of the variable ∆xk−1, reported in Figure

(a) Elimination of ∆xk−1 (b) Elimination of ∆xk (c) Resulting Bayes net

Figure 3.10: Elimination algorithm applied to the factor graph at k-th epoch

3.10a, implies first the creation of the following augmented block matrix (first two
block rows of [A|b] corresponding to the two factors):

[Āk−1|b̄k−1] =
C

Aprior bprior

Adynamics bdynamics

D
=
C
Aprior bprior

F Q IQ bdynamics

D
(3.58)

then, performing the QR-factorization:

QR
1
[Āk−1|b̄k−1]

2
→
C
Rk−1 T k−1 dk−1

Ã b̃

D
(3.59)

matrix Ã and vector b̃ are the quantities describing the factor τ in Figure 3.10b.
Once Rk−1, T k−1 and dk−1 are computed, they are stored and will remain associ-
ated to the state at that epoch. Note that this step is equivalent to the propagation
step in a Kalman filter (the factor τ represent a prior of the variable ∆xk hence,
its prediction).

For the next step, elimination of the variable ∆xk in Figure 3.10b, another
QR-factorization is required (block matrix composed of the remaining factors):

[Āk|b̄k] =
C
AGNSS bGNSS

Ã b̃

D
(3.60)
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QR
1
[Āk|b̄k]

2
→
è
Rk dk

é
(3.61)

Once the matrix Rk and the vector dk have been computed, the obtained Bayes
net in figure 3.10c can be solved with equation (3.41). The estimate of ∆xk, with
the associated covariance Σk is then simply:

∆x∗
k = R−1

k dk (3.62)

Σk = (RT
k Rk)−1 (3.63)

This computation is equivalent to the update step of a Kalman filter.
Now the smoothing performed via back substitution is possible. In fact, given a

fixed-lag value of nlag, at each epoch k the factor graph will be composed of nodes
until the one at epoch k − nlag. For all these nodes, the values of R, T and d
have been stored, and erased when these states become too old. Introducing the
variable lag = 1 : nlag, the new estimates of these variables for each lag-value are:

∆xk−lag = R−1
k−lag(dk−lag − T k−lag∆x∗

k−lag+1) (3.64)

Once these corrections ∆xi are obtained, they are applied to the corresponding
state xi

3.4 Factor Graphs for GNSS/INS integration
In order to employ a factor graph in a GNSS/INS integration filter little changes
have to be applied to the discussion performed in the previous Section 3.3.

In fact, as explained in Section 2.3, in the integrated navigation filter also
IMU-biases ∆ba and ∆bg are estimated as well as the orientation ∆ϵ, hence the
considered state at the k-epoch, of dimension 17, is:

∆xk = [∆rk ∆vk ∆ϵk ∆ba,k ∆bg,k ∆bu,k]T (3.65)

What has to be changed with respect to the previous discussion are the dynamic
factor ϕdynamics and the GNSS factor ϕGNSS. A schematic representation of the
situation is showed in Figure 3.11. The correction ∆x∗

k−1 is fed to the INS unit
from the integrated navigation filter. Then, as explained in Section 2.3.4, the
INS provides updates ∆x

(i)
k−1 at medium-rate (10Hz, 10-times the GNSS-rate),

together with the matrices F
(i)
k−1 and Q

(i)
k−1 computed as in 2.3.2. Finally, the last

updated state x
(10)
k−1 is used as linearization point, and here is computed ζ̂k. In

Figure 3.11 a schematic representation of the situation is shown, together with the
relevant quantities that are exchanged with the INS-unit.
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Figure 3.11: Factor graph (FG) with INS unit on top

GNSS factor

The only difference with respect to ϕGNSS discussed previously is that the sys-
tem observation matrix has to be accurately filled with zeros, to account for the
bigger state vector. The matrix Hk = becomes the one in equation (2.32). More-
over, the computation of ζ̂j,k = [ρ̂j,k

ˆ̇ρj,k]T is not performed over the prediction
done with some dynamic model f(xk−1) but is performed over the last INS updated
x

(10)
k−1 using the equations (1.7) and (1.33) reported here:

ρ̂j,k =
ò

(xj,k − x
(10)
k−1)2 + (yj,k − y

(10)
k−1)2 + (zj,k − z

(10)
k−1)2 + b

(10)
u,k−1 (3.66)

ˆ̇ρj,k = (vx,j,k−v
(10)
x,k−1)ax,j,k+(vy,j,k−v

(10)
y,k−1)ay,j,k+(vz,j,k−v

(10)
z,k−1)az,j,k+ḃ

(10)
u,k−1 (3.67)

with xj,k the j-satellite position at time k, ẋj,k the velocity and aj,k the norm-
vector pointing to the j-satellite at time k.

Dynamic factor

The computed matrices F
(i)
k−1 and Q

(i)
k−1 (as explained in Section 2.3.2) for each

i, can be used all together to form a factor ϕdynamics constraining the two states
at two consecutive epochs as in a stand-alone GNSS solution. However, now the
dynamic model describing the system behaviour between these two epochs is no
more assumed but is directly estimated by the INS-unit. In other words, each F

(i)
k−1

and Q
(i)
k−1 will contribute to the construction of the comprehensive state-transition

matrix F k−1 and process-noise covariance Qk−1, both of dimension 17×17, between
two consecutive epochs.

72



3.4 – Factor Graphs for GNSS/INS integration

Dropping the subscript k − 1 for simplicity it holds:

∆x(i+1) = F (i)∆x(i) + v(i) (3.68)

where vi is the zero-mean process-noise affecting the system, with covariance Q(i).
Similarly x(i+2) can be written as:

∆x(i+2) = F (i+1)∆x(i+1) + v(i+1) = F (i+1)F (i)∆x(i) + F (i+1)v(i) + v(i+1) (3.69)

Indicating with E{·} the expected value linear operator, noting that E{v} = 0
with v the zero-mean process-noise at any instant, the expected values of ∆xi+2

k−1
and ∆xi+1

k−1, exploiting equations (3.68) and (3.69) are [37]:

E{∆x(i+1)} = F (i)E{∆x(i)} + E{v(i)}
= F (i)E{∆x(i)} (3.70)

E{∆x(i+2)} = F (i+1)F (i)E{∆x(i)} + F (i+1)E{v(i)} + E{v(i+1)}
= F (i+1)F (i)E{∆x(i)} (3.71)

Moreover, from the definition [37] of the covariance of a vector ω: Σω ≜ E{(ω −
E{ω})(ω − E{ω})T }, it follows:

Σ(i+1) = E{(∆x(i+1) − E{∆x(i+1)})(∆x(i+1) − E{∆x(i+1)})T }
= E{(F (i)∆x(i) + v(i) − F (i)E{∆x(i)})(F (i)∆x(i) + v(i) − F (i){(∆x(i)})T }
= E{(F (i)(∆x(i) − E{∆x(i)}) + v(i))(F (i)(∆x(i) − E{∆x(i)}) + v(i))T }

= F (i)E{(∆x(i) − E{∆x(i)})(∆x(i) − E{∆x(i)})T }F (i)T + E{v(i)v(i)T }+

+ F (i)E{(∆x(i) − E{∆x(i)})v(i)T } + E{v(i)(∆x(i) − E{∆x(i)})T }F (i)T

=
5
F (i)Σ(i)F (i)T

6
+
è
Q(i)

é
(3.72)

where: ∆x(i) and v(i) are supposed uncorrelated, E{(∆x(i) − E{∆x(i)})(∆x(i) −
E{∆x(i)})T } = Σ(i) by definition as well as E{v(i)v(i)T } = Q(i). Then:

Σ(i+2) = F (i+1)Σ(i+1)F (i+1)T + Q(i+1)

=
5
F (i+1)F (i)Σ(i)F (i)T

F (i+1)T
6

+
5
F (i+1)Q(i)F (i+1)T + Q(i+1)

6
(3.73)

Observing the final results of equation (3.72) and (3.73) it can be notice that the
covariance describing a given update is given by the sum of the propagation of the
initial covariance and of the process-noise covariances affecting the updates. Note
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that this propagation is performed eliminating the k − 1 variable, and hence the
prior factor ϕprior (initial covariance) and the dynamic factor ϕdynamics (process-
noise), according to some state-transition matrix. Then, F k−1 and Qk−1 can be
computed recursively starting from F k−1 = I and Qk−1 = 0. At every INS update
i the following computation is performed:

F k−1 = F
(i)
k−1F k−1 (3.74)

Qk−1 = F
(i)
k−1Qk−1F

(i)T

k−1 + Q
(i)
k−1 (3.75)

Once the matrices F k−1 and Qk−1 are obtained, the dynamic factor can be
described directly with the matrix Adynamics and the vector bdynamics as in (3.56).

3.5 Factor Graphs iterations and fixed-lag smooth-
ing parameters

One of the advantages of factor graphs employed as filters is that multiple iterations
can be performed to achieve the estimate of the state. In fact, as mentioned at
the end of Section 3.2.1, a Gauss-Newton algorithm can be exploited. Once the
correction ∆x∗

k has been computed it can be applied to the nominal state xk

and the estimation can be performed again. Eventually this process will converge
to the estimate xMAP

k . To limit the computations involved in this process it is
convenient to start the iterations after the elimination of the variable ∆xk−1, that
is the step represented in Figure 3.10b. In fact the intermediate factor τ contains
all the information coming from previous estimates. After the elimination of the
variable ∆xk (step in 3.10c), the estimate ∆x∗

k
(1) is performed (together with the

computation of its covariance Σ(1)
k ), where the superscript (1) indicates the first

iteration. Now assuming x
(1)
k = x̂

(1)
k + ∆x∗

k
(1) as new linearization point x̂

(2)
k , a

prior factor ϕk can be computed as (3.46) (and substituting τ), and the factor
ϕGNSS is computed again as (3.50), with Hk and ζ̂k computed with respect to the
new linearization point x̂

(2)
k . This process can be repeated until convergence.

The condition of conference has to be defined with respect to a given threshold
t. In particular the iteration process stops when:

∥∆x∗
k

(n) − ∆x∗
k

(n−1)∥
∥∆x∗

k
(n−1)∥

< t (3.76)

end

xMAP
k = x̂

(n)
k + ∆xk

(n) = x̂k
(1) +

nØ
j=1

∆x∗
k

(j) = x̂k
(1) + ∆xMAP

k (3.77)
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where ∆xMAP
k is a comprehensive single correction to be applied to the initial

linearization point x̂k
(1) to obtain xMAP

k . Decreasing the value of the threshold
t increases the number of iterations needed to achieve convergence, hence the
computation time, but the solution is expected to be improved. In the next chapter
the effect of different values of t will be analyzed.

Once the final correction ∆xMAP
k is obtained, it can be propagated through the

Bayes net to perform smoothing. As described in Section 3.2.3, this is done via
back substitution using the equation (3.41), reported and adapted to the context
here:

∆xMAP
k−lag = R−1

k−lag(dk−lag − T k−lag∆xMAP
k−lag+1) (3.78)

where Rk−lag, T k−lag and dk−lag are obtained for each variable when it is elim-
inated. The variable lag spans from 1 to a defined nlag. Increasing nlag leads to
a larger number of computations as well as a larger number of parameters (R, T
and d) to be stored, but the accuracy level of the solution is expected to increase.

It is clear that a trade-off between performances and computational cost has
to be handled. This topic will be discussed in the next chapter, together with a
comparison with the Kalman filter.
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Chapter 4

Field testing

In the previous chapters an overview of GNSS and INS technologies as well as
their mathematical description has been provided. Then the advantages of their
integration have been discussed together with an overview of the possible inte-
gration strategies that can be adopted. Among them, the tight integration has
been chosen for this thesis. This architecture is based on a navigation filter in
which the fusion of the measurements coming from the two different technolo-
gies is performed. In this thesis a different approach with respect to the most
traditional Extended Kalman Filter (EKF) has been adopted: the factor graph
framework. Its characterization was discussed in details in Chapter 3, starting
from the general mathematical descriptions and then adapting it to the case of
GNSS/INS tight integration. The factor graph solution implemented in this thesis
has two parameters that can be tuned: a threshold t, defining the convergence of
the Gauss-Newton algorithm; and nlag, defining the number of epochs on which
the smoothing is performed. In this chapter, a comparison between the different
solutions is performed.

The different solutions are obtained using the software MATLAB, in which a
GNSS/INS tight integration performed with an EKF was already available. A
factor graph framework to provide GNSS stand-alone and GNSS/INS integrated
solutions has then been added. The dataset considered in analysis was collected
during a car ride in a urban area nearby Politecnico di Torino (Torino, Italia). The
employed GNSS-receiver is a low cost NVS NV08C-CSM while inertial measure-
ments (specific force and angular velocity) are collected with a low cost MEMS-
technology strapdown IMU sensor: TDK Invensense MPU-9250, composed of two
triads of accelerometers and gyroscopes. Even if the discussion performed in this
thesis does not put any constraint on the satellite constellations, the obtained
dataset involves only GPS satellites. The adopted hardware was mounted on the
vehicle platform and the measurements collected synchronously. This setup pro-
vided a dataset composed of 1740 GNSS epochs in total. Additionally, also a
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ground-truth was generated. It is a highly accurate description of the followed
trajectory, obtained with a multi-frequency, multi-constellation GNSS-receiver of
the Novatel OEM7 family (user manual available at [40]). This receiver uses a
combination of a tactical-grade IMU and Real-time kinematic positioning (RTK)
technique, supplying real-time localization at sub-centimeter level accuracy. The
obtained reference trajectory is showed in Figure 4.1. The availability of a refer-
ence trajectory will allow an effective comparison between the different possible
trajectory estimations.

Figure 4.1: round-truth trajectory (Google Earth)

In Figure4.1, representing the reference trajectory, there are four highlighted
zones because in this urban scenario there are some segments (sectors) of particular
interest due to their challenging characteristics. They are represented in Figure
4.2 and here described:

• Sector A and Sector B: poor satellites’ visibility due to the surrounding build-
ings, expected presence of multipath and shadowing effects (Figures 4.2a and
4.2b).

• Sector C: good visibility condition but presence of dense foliage (Figure 4.2c).

• Sector D: presence of highly reflective and diffractive surfaces (Figure 4.2d).
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(a) Sector A (b) Sector B

(c) Sector C (d) Sector D

Figure 4.2: Zoomed challenging urban areas (Sectors). (Google Earth images)

The state estimated at each epoch is the one defined in equation (2.1), that is a
vector of dimension 17. However, the relevant components for a comparison with
the reference trajectory are the first three, regarding the estimate of the position,
that is the one used to retrieve the estimated trajectory. In fact the reference
trajectory is given in LLA (Latitude(deg), Longitude(deg), and Altitude(m) co-
ordinates, assuming earth’s surface WGS84-model), while the position estimate is
in the ECEF frame (x(m), y(m), z(m)). In order to perform a comparison and
analyze the results,it is convenient to express both in a ENU (East(m), North(m),
Up(m)) frame, that is defined on the plane tangent to the earth’s surface in the
local position. The three axis are the vertical axis (pointing externally) defining
the plane itself and the other two, laying on the plane, pointing east and north
respectively. Then, a position p(k)

α , computed using some α-filter, and a position
p

(k)
ref , obtained from the reference trajectory, will be available at each k-epoch.

pk = [p(k)
x p(k)

y p(k)
z ]T (4.1)

The first two components in equation (4.1) are fused together as in (4.2) to obtain
the horizontal position p

(k)
(h) (that is the trajectory seen from above), that will be

compared to the horizontal reference trajectory. Instead the vertical positioning
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(corresponding to the subscript (v)), that is affected by heavier uncertainty (due
to geometry arising in the multilateration problem), will be compared separately.

p
(k)
(h) =

ñ
(p(k)

x )2 + (p(k)
y )2 (4.2)

To compare the the obtained solutions to the reference one, it is useful to define the
total, horizontal and vertical error affecting the estimated trajectory with respect
to the reference one at each epoch one as:

e(k) =
ò

(p(k)
α − p

(k)
ref )

T
(p(k)

α − p
(k)
ref )

e
(k)
(h) =

ò
(p(k)

(h),α − p
(k)
(h),ref )

T
(p(k)

(h),α − p
(k)
(h),ref )

e
(k)
(v) =

ò
(p(k)

(v),α − p
(k)
(v),ref )

2

(4.3)

In this chapter first the accuracy of a GNSS stand-alone solution is compared
with a GNSS/INS tight integration solution using factor graphs for both, to high-
light the advantages coming from fusing different positioning sensors. This will be
done in Section 4.1. Then in Section 4.2 the equivalence of a filter implemented
through a certain set-up of factor graphs and the EKF is shown, followed by an
analysis of the effect of multiple iterations performed at each epoch . Finally in
Section 4.2.2 the fixed-lag smoothing of the solution is performed in a factor graph
framework and the obtained results will be discussed.

4.1 Stand-alone GNSS and GNSS/INS integrated
solution

The comparison between a stand-alone GNSS solution and a GNSS/INS tightly
coupled integrated solution is performed in this section. This is done to highlight
the advantages of including INS in a positioning system.

In Figure 4.3 the trajectories obtained with the two different solutions is shown
together with the reference trajectory. It can be seen how the INS allows the
navigation filter to estimate a smoother trajectory. Sectors A,B and D, 4.3a, 4.3b
and 4.3d respectively, show in particular how the the INS helps to estimate a
trajectory closer to the ground-truth even in challenging environments. This is
because a GNSS alone solution is too affected by the external environment in such
sectors.

In Figure 4.4 the horizontal and vertical errors over time are represented. Look-
ing at the horizontal component 4.4a, it can be seen how the GNSS stand-alone
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(a) Sector A (b) Sector B

(c) Sector C (d) Sector D

Figure 4.3: 2-D trajectories (latitude/longitude) obtained through a stand-alone
GNSS and a tight integrated GNSS/INS, w.r.t. ground-truth.
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(a) Horizontal component

(b) Vertical component

Figure 4.4: Error on the horizontal and vertical position in ENU-coordinates of
GNSS only and tight integrated GNSS/INS solutions, w.t.t. ground-truth.

solution presents several peaks in sectors A and B in both components. This is
due to reflection and diffraction effects together with the reduced visibility caused
by the the urban architecture. In these sectors the presence of the IMU sensors
improves the solution consistently. Sector C still presents some improvement with
the GNSS/INS, but of less magnitude with respect to the other sectors. Finally,
in sector D both solution are characterized by a similar error magnitude. On the
other hand, the vertical component 4.4b shows the vertical component of both
solutions. The behaviour of this component is similar to the one described for
the horizontal component. The main difference is in sectors B and D: The former
shows that the higher peak is shared by both GNSS and GNSS/INS solutions, so
the INS is not able to mitigate that particular outlier; in the latter it can be seen
how is the GNSS stand-alone solution to perform better.

To better compare the horizontal and vertical solution of the two estimation
methods it is useful to visualize the Error Cumulative Density Function (ECDF)
computed w.r.t. the ground-truth, describing how the error is distributed along
the whole trajectory. Looking at Figure 4.5 it is evident how the addiction of
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(a) Horizontal component

(b) Vertical component

Figure 4.5: ECDF of the horizontal and vertical positions in ENU-coordinates of
GNSS stand-alone and tight integrated GNSS/INS solutions, computed w.t.t. the
reference trajectory.

INS to GNSS leads to a great improvement in the level of accuracy.In fact the
former consistently maintains a leftward position relative to the latter, except for
a segment in the higher percentiles in the vertical component meaning that given
most percentiles, Only at the 95-percentile the GNSS stand-alone vertical solution
seems to perform better than the GNSS/INS one, but this is true only for a small
fraction of the ECDF curve. It is even more evident looking at the maximum error
present in the two solution: with the presence of the INS the maximum error in
the horizontal component is reduced of 21.1 m that is a reduction of 47%, while
in the vertical one it is reduced of 4.4 m (12%).

Finally, a global characterization of the two solutions is given by the box-plot
in Figure 4.6. The box-plot considers the horizontal and vertical components
simultaneously. Here the trend of the median and mean of the errors affecting each
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solution are represented and, for each solution, the 25-th and the 75-th percentiles
are represented as upper and lower bound of each light blue box. In particular the
median and the mean, starting from 3.84 m and 5.40 m, are reduced of 1.28 m
(33%) and 85 cm (16%) respectively. The distribution of the errors is also closer
to zero and the outliers are mitigated.

Figure 4.6: Box-plot of the overall error affecting the solutions obtained with
different numbers of iterations

4.2 Extended Kalman filter and factor graph com-
parison

In this section the performances obtained with a GNSS/INS tight integration using
a filter based on factor graphs, changing the parameters nlag and t, are compared
to the ones characterizing the most common EKF. First, the equivalence between
the solution obtained with an EKF and the one obtained with a certain set-up
of the factor graph framework is showed. As explained in Section 3.4, at each k
epoch, eliminating the node at (k − 1) is equivalent to the prediction step, while
eliminating the node at k is equivalent to the correction step. Hence, obtaining
the MAP estimate of the last node in just one step (no iterations) and without
propagating it the older nodes (no smoothing), produces the same solution as the
one obtained with an EKF. This factor graph set-up will be indicated as standard
factor graph (FG). As can be seen in Figure 4.7, the trajectories obtained with the
two different filters are completely overlapped.

Similarly, to compare them with grater accuracy, Figure 4.8 shows their error
for each epoch. Again the two curves appear completely overlapped. proving the
equivalence of the two considered filters.

84



4.2 – Extended Kalman filter and factor graph comparison

Figure 4.7: 2-D experimental trajectories (latitude/longitude) obtained through
an EKF and a FG, w.r.t. ground-truth.)

Figure 4.8: Error on the vertical position in ENU-coordinates of EKF and FG
solutions, computed w.t.t. the reference trajectory.
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4.2.1 Gauss-Newton approach

In this section the number of nodes considered at each epoch is fixed to 1 (i.e.
nlag = 0), meaning that there is no smoothing over the previous epochs. Instead
the analysis is focused on the effect of applying the Gauss-Newton algorithm to
obtain a refined MAP estimate of the current state, as explained in Section 3.5.
That algorithm consists in eliminating the last node multiple times obtaining dif-
ferent corrections to be applied to the full state, until convergence is reached. The
convergence itself depends on a predefined threshold t: the lower it is, the more
iterations will be performed. The values of the parameter t that has been consid-
ered in this work are represented in table 4.1, together with the average number
of iterations consequently performed at each epoch. The analysis includes also a
set-up of the FG, hereinafter standard FG, equivalent to an EKF.

t(%) Average iterations per epoch
50 3
20 5
10 11
4 29
2 59
1 101

0.2 324
0.1 558

Table 4.1: Average iterations performed at each epoch for different values of thresh-
old t

In Figure 4.9 the different obtained trajectories are showed, while the zoom in
is performed only on sector A and just for a few solutions for clarity. Increasing
the number of iterations, the obtained trajectories have a similar behaviour, but
they are slightly shifted to the ground-truth solution, as can be seen especially in
sector A, Figure 4.9a.

To better analyze the solution, it is convenient to refer to Figures 4.10 showing
the horizontal and vertical error over time. Only three solutions are represented
for simplicity: FG (no iterations), FG t = 4 and FG t = 0.1, so that the effect of a
medium and the maximum number of iterations can be compared to the standard
solution over time. The first thing that can be noticed is that at the beginning of
the trajectory and before sector C, the solution with t = 0.1 shows the presence of
greater errors. This fact suggests that imposing a too low threshold’s value leads
to a worsening of the accuracy level of the solution in some part of the trajectory,
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(a) Sector A

Figure 4.9: 2-D experimental trajectories (latitude/longitude) obtained with dif-
ferent numbers of iterations performed at each epoch, w.r.t. ground-truth.

since it introduce additional errors. This is due to some characteristics of the
dataset that makes the Gauss-Newton algorithm to reach a sub-optimal minimum
in this regions. In these same segments, however, the solution with t = 4 shows a
better performance with respect to the standard FG, as the errors have the same
behaviour but with a slightly lower magnitude. In sector A the performances are
similar among the different solutions. In the horizontal component there is a peak
emerging in the FG t = 4 solution, that is then mitigated performing a larger
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number of iterations (i.e. FG t = 0.1). Finally, in sectors B and D a significant
improvement on the level of accuracy can be noted, for both the vertical and
horizontal components.

(a) Horizontal component

(b) Vertical component

Figure 4.10: Error on the horizontal and vertical positions in ENU-coordinates
of FG solution obtained with different numbers of iterations performed at each
epoch, computed w.t.t. the reference trajectory.

To perform a quantitative comparison among the different solutions it is con-
venient to analyze the ECDFs in Figure 4.11. Figure 4.11a regards the horizontal
component while Figure 4.11b the vertical one. In both figures the 50-th, 75-th
and 95-th percentiles are zoomed in, and the absolute variation among the best
and worst solutions in each of them is reported.

Starting from the horizontal component, it can be seen that for the lower portion
of the curves the solution obtained with FG t = 1 stands always to the left side
of the other curves, meaning that this solution present a lower error where the
trajectory is affected by errors of low intensity. The solutions with a higher number
of iterations (FG t = 0.2 and FG t = 0.1) are, in this portion of the plot till the
90-th percentile almost always to the right side of the other curves, reflecting the
fact that in the segments with lower errors these solutions are instead presenting
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greater ones, as analyzed before. Instead, in the higher portion of the plot, from
the 95-th percentile on, they get closer to the other curves. It is in fact FG t = 0.1
that has the best performance in terms of maximum horizontal error, with a value
of 23.2 m, slightly less then 23.7 m obtained with the standard FG. Instead the
greater maximum error of 28 m is given by FG t = 0.2. From the 50-th percentile
on, the best solution is given by FG t = 4, that left-bounds the over curves in
this region until the very last percentiles. Overall, the solutions given by the
thresholds from t = 20 to t = 1 stand to the left side of the standard FG, showing
an improvement of the solution.

An analogous analysis can be done for the vertical component. For the lower
part of the plot, the curve that stands most to the left side is FG t = 50, until
the 50-th percentile where the best solution is given by the standard FG, but for
just a small portion of the plot, followed by FG t = 2. However, from this point
on, the best solution is given again by FG t = 4 and t = 10. In the final part,
it is the former solution that gives the best performance in terms of maximum
error, that is of 20 m, second just to 17.7 m given by t = 1. It can be noticed
that the greater maximum error of 32.4 m is given by the standard FG solution,
hence performing multiple iterations allows to mitigate the highest error peaks
present in the vertical component of the trajectory. Except for the solutions with
higher number of iterations t = 1, t = 0.2, t = 0.1, that give high errors for most
of the ECDF plot and only get better in the last portion, the overall plot shows
that performing multiple iterations to compute MAP estimate lead to a better
estimation, that translates in shifting the curves to the left side of the ECDF plot.

To better compare the different solutions, their behaviour at the 50-th, 75-th
and 95-th percentiles can be plotted in histograms for both the horizontal and
vertical components as in Figures 4.12a and 4.12b. Both plots show a similar
behaviour, in accordance to the ECDF curves. Decreasing the threshold t, that is
incrementing the number of iterations, there is generally a reduction of the error
affecting the solution in every percentiles, particularly in the 75-th and 95-th ones.
What can also be seen is that the last three solutions, that are t = 1, t = 0.2
and t = 0.1, show instead an increment of the error in these percentiles. This is
still related to the degraded performances in the segments at the start and before
sector C of the trajectory. Hence, the solutions obtained with a higher number
of iterations are characterized by poorer performances related to the trajectory
segments affected by lower errors, while succeed in mitigate the errors where they
are present in greater intensity, as was showed in the ECDF curves 4.11a and
4.11b.

To summarize the observations reported above, a box-plot describing the errors
affecting the different solutions can be exploited, figure 4.13. Starting from the
standard FG solution, characterized by a mean of 4.56 m and a median of 2.56 m,
these values keep decreasing until a minimum of 3.20 m (−30%) is reach for the
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(a) Horizontal component

(b) Vertical component

Figure 4.11: ECDF of the horizontal and vertical positions in ENU-coordinates
of FG solution obtained with different numbers of iterations performed at each
epoch, computed w.t.t. the reference trajectory.

mean at FG t = 4 while the median finds its minimum value of 2.27 m (−11%)
at FG t = 2. this behaviour is shared also with the percentiles. Instead for the
last three solutions these values start growing again. In this plot the maximum
values of the error are represented as outliers. It can be seen that increasing the
number of iterations allows in general to decrease the maximum error, with the
best performance in this sense obtained with t = 4, followed by t = 0.1.

The performed analysis on the effect of performing multiple iterations at each
epoch shows how the level of accuracy is in general increased adapting a Gauss-
Newton algorithm. Setting a more stringent threshold leads to a better perfor-
mance in terms of mean and median of the overall error, as well as a mitigation
of the error peaks. In particular, the considered trajectory benefits of this feature

90



4.2 – Extended Kalman filter and factor graph comparison

(a) Horizontal component (b) Vertical component

Figure 4.12: Histogram representing the the horizontal error affecting the solutions
obtained with different numbers of iterations at 50-th, 75-th and 95-th percentiles.

mostly where the standard solution is less accurate (i.e. sectors B and D). How-
ever, as the threshold defining the convergence of the algorithm gets lower, the
solution, in terms of mean and median is worsened, while the maximum error over
the whole trajectory is kept relatively low.

Figure 4.13: Box-plot of the overall error affecting the solutions obtained with
different numbers of iterations
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4.2.2 Fixed-lag smoothing

In this section the effect of introducing a smoothing operation to obtain the so-
lution is analyzed. Here the number of iterations is fixed to 1, so that the effect
can be compared to the standard factor graph filtering process, that is equal to
the extended Kalman filter. The parameter involved in this analysis is the already
introduced nlag, that represents how old is the last state that is refined through
the smoothing process at each epoch. From now on, however, the considered pa-
rameter will be the more representative window size ws, describing the number
of nodes (states) kept in the evolving Bayes net retrieved from the factor graphs
at each epoch, as described in Section 3.2.3. These two parameters are trivially
related as ws = nlag + 1, since ws include also the new node at each epoch. What
will be called standard FG is just the solution obtained with ws = 1. Instead, the
maximum number of possible nodes to be included is the full trajectory, composed
of 1740 nodes. The solution obtained in such configuration will be indicated as
ws = full.

A first overview on the effect of the smoothing process can be seen looking
at Figure 4.14, representing the trajectories obtained for different window sizes.
The values of ws considered in this thesis are ws = [2, 5, 10, 20, 50, 100, 200,
500, 1000, full]. Differently from the effect of performing multiple iterations,
the smoothing process leads to a change in the trajectory shape, making it looking
smoother. This can be seen for example in Figures 4.14a, reporting a zoom in sector
A. Another thing that can be noticed is that the difference between trajectories
obtained with higher values of ws are hardly noticeable.

To analyze the effect of different window sizes in the solution along the tra-
jectory it is useful to refer to Figure 4.15a and 4.15b, where the errors affecting
the trajectories, decomposed in horizontal and vertical components respectively,
are represented. For simplicity of visualization only the values of ws = 20, 500
are considered, together with the standard FG filter corresponding to ws = 1.
Starting from the horizontal component, in the initial portion of the trajectory
there is a similar behaviour among the different solutions, with some oscillations
around the FG curve introduced by the smoothing in the very first trait. This
effect can be seen more accentuated in the portion between sectors B and C. In
the critical sectors A and B there is an evident decrease in the magnitude of the
errors. In fact here the curve associated with the smoothed solutions are almost
always below the one associated with the standard FG solution, and, moreover, in
the smoothed solutions the error has a smoother behaviour, without the presence
of the evident peaks occurring in the standard solution. Instead, there is not a
noticeable decrement in the error magnitude in sectors C and D, but the error
trend looks smoothed here too. The vertical component is affected in a similar
way by the smoothing: together with sectors A and B, also sector C and D present
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(a) Sector A

Figure 4.14: 2-D experimental trajectories (latitude/longitude) obtained with dif-
ferent numbers of ws, w.r.t. ground-truth.

a visible accuracy increase. However, the portion of the trajectory between B and
C presents a degradation of the quality, presenting higher error values.

The average error distribution can now be analyzed referring to Figure 4.16a,
ECDF of the horizontal component and Figure 4.16b, ECDF of the vertical one.
Both curves have one thing in common: up to 70-th percentile, the curves until
ws = 20 have an analogous behaviour, that is different from the one shared by
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(a) Horizontal component

(b) Vertical component

Figure 4.15: Error on the horizontal and vertical positions in ENU-coordinates
of solutions obtained obtained with different window sizes, computed w.t.t. the
reference trajectory.

the curves from ws = 200 to ws = full, that are overlapped to millimeter level.
Instead, in this region, the curves corresponding to ws = 50 and ws = 100 have
an intermediate behaviour; eventually they will overlap to the ones with grater
window sizes. The lower part of the horizontal ECDF is characterized by a small
difference in terms of error magnitude (the maximum difference in the 50-th per-
centile is just of 14 cm). However, around the 50-th percentile it can be noticed
how the curves characterized by higher values of window sizes stand to the right
side, being described by a slightly higher error, while for the remaining curves,
increasing the window size results in a slightly better accuracy level. Looking at
the higher part of the plot, from the 70-th percentile on, the differences between
the curves start becoming more evident. The standard FG curve, together with
ws = 2 curve are left-bounded by the others, proving their worst capability to
mitigate higher error values. The curves from ws = 50 to ws = full can now
be considered as a whole. Finally the remaining curves ws = 5, ws = 10 and
ws = 20 present similar behaviours, but considering just those three the accuracy
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increase slightly by increasing the window size. The minimum maximum error of
16.8 m is achieved by ws = 20, slightly less of 17.2 m obtained with higher values
of window sizes, but fairly better then 23.7 m obtained by the standard FG (the
maximum error is decreased by 29%). An analogous trend can be seen for the
vertical component in Figure 4.16b. Looking at the zoomed percentiles, at the
50-th the curves with values of ws = 100 and higher perform slightly better then
the others, while for the other curves there is a reversed trend: higher is the ws,
worse is the accuracy level. This situation presents itself completely mirrored in
the 75-th percentile, but the difference are sill under the meter-level. In the 95-th
percentile, the situation is very similar to the one in the horizontal component:
the group of curves with ws ≥ 50 together with ws = 20, which still has a different
behaviour with respect to the others, are the ones performing better. Regarding
the maximum error, the minimum, 15.6 m, is still achieved by ws = 20, while
with higher window sizes the maximum error is 21.7 m and the standard FG with
a maximum error of 32.4 m is the one performing worse. The obtained reduction
with ws = 20 is of 52%.

A summary of the analysis carried out above can be visualized in Figures 4.17a
and 4.17b, representing in a clearer way what was represented in the zoomed
boxes in Figures 4.16a and 4.16b. There is more evident how from ws = 200 on,
increasing the window size does not improve the level of accuracy of the solution.
This is partially caused by the chosen modelling of noise covariance. Assuming
the noise to be Gaussian does not correctly model signals reflection and blockage,
that are particularly present in urban scenarios. Hence the time correlation will
not be accurate, causing the increment of the window size to be noneffective or
even leading to worse accuracy [41]. In fact a window size of 20 seems to be the
best choice for this dataset, considering also the lighter computational complexity.

In Figure 4.18 the box-plot showing the statistical description of the global error
affecting each solution is represented. It can be seen how performing the smoothing
lead to an increasing of the accuracy level of the solution. The minimum of the
median, of 2.11 m, is reached at ws = 200 and remains unchanged with greater
window sized. Starting from a mean (RMSE) of 2.56 m there is a improvement
of 17.6%. ws = 20 is characterized by a mean of 2.36 m, 12% more then the
one reach with greater window sizes. Instead the value of the mean, starting from
4.55 m, reaches its minimum at ws = 20 with the value of 3.57 m, a difference of
22%. The solution that is able to decrease the values of the maximum errors is
obtained with ws = 20 as can be seen in the picture.
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(a) Horizontal component

(b) Vertical component

Figure 4.16: ECDF of the horizontal and vertical components of solutions obtained
with different window sizes, computed w.t.t. the reference trajectory.

4.3 Final comparison

In this section, a solution obtained with a Gauss-Newton approach and also per-
forming the smoothing over a fixed window size is obtained and compared to the
standard factor graph filtering solution, that is equivalent the the most common
extended Kalman filter. Given the results obtained in the previous section, a
good trade-off between accuracy level and computational complexity is given by
a threshold t set to 4 and a window size ws set to 20. With this parameters the
solution is obtained and compared to the standard FG solution. In Figure 4.19 the
trajectories obtained with the described architectures are represented. It is evi-
dent, especially in sectors A, B and D, Figures 4.19a, 4.19b and 4.19d respectively,
how the solution obtained exploiting both Gauss-Newton approach and smoothing
process stands closer to the reference trajectory.
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(a) Horizontal component (b) Vertical component

Figure 4.17: Histogram representing the the horizontal error affecting the solutions
obtained with different window sizes at 50-th, 75-th and 95-th percentiles.

Figure 4.18: Box-plot of the overall error affecting the solutions obtained with
different window sizes

The same can be seen in Figures 4.20a and 4.20b, representing the error in the
horizontal and vertical components respectively. In both components, it can be
seen how the peaks characterizing the standard FG solution are mitigated and the
overall error affecting the solution is lowered in almost every part of the plots.

Looking instead at the ECDF describing the average error distribution, it is
clear how the solution benefits from having multiple iterations and the smoothing

97



Field testing

(a) Sector A (b) Sector B

(c) Sector C (d) Sector D

Figure 4.19: 2-D experimental trajectories (latitude/longitude), w.r.t. ground-
truth.
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(a) Horizontal component

(b) Vertical component

Figure 4.20: Error on the horizontal and vertical positions in ENU-coordinates,
computed w.t.t. the reference trajectory.

process. In fact the curve obtained with these techniques left-bounds completely
the curve associated with the standard FG. In particular, for higher percentiles
the difference becomes even more evident. For example, at the 95-th percentile
the difference is of 4.01 m and 8.94 m for the horizontal and vertical component
respectively. Considering the maximum error, the gain in precision level is maxi-
mized: for the horizontal component there is a difference of 14.2 m, representing
a reduction of the error of the 60%; for the vertical component it is even more
important, with a difference of 24.4 m translating in a reduction of the 75%.

Finally, a global statistical description of the errors affecting the two different
solutions is reported in Figure 4.22 as box-plot. While the median remains very
close, going from 2.56 m to 2.14 m, the mean (RMSE) decreases more, involving a
reduction of the 44%, from 4.55 m to 2.56 m. The maximum error is also reduced
according to what was said in the analysis of the ECDFs.
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(a) Horizontal component

(b) Vertical component

Figure 4.21: ECDF of the horizontal and vertical components of solution, com-
puted w.t.t. the reference trajectory.

4.4 Computational complexity
In this chapter the equivalence of the extended Kalman filter and a standard
factor graph (a single iteration performed and a single node kept at each epoch)
was shown, followed by an analysis of the effect of performing multiple iterations,
as of the benefits of performing the smoothing of the previously estimated states
at each epoch. In this section the computational complexity involved in these
operations is briefly analyzed.

The code used to formulate a factor graph navigation filter from which the
showed results were obtained has been written in MATLAB environment. In the
Table 4.2, the times spent to obtain the extended Kalman filter, standard factor
graph and multiple iterations plus smoothing (defined with the parameters t = 4
and ws = 20) factor graph solutions are reported. They are obtained as average
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Figure 4.22: Box-plot of the overall error

values of the times spent for computing the whole trajectory (1740 epochs) in
several run. Given the time difference of 44 s between the EKF and the standard
FG architectures, with the latter presenting an increment of 16% in the taken
computational time, it is evident that implementing a factor graph to obtain the
equivalent solution of an EKF is not convenient. Instead, when multiple iterations
together with the smoothing process is employed, the time difference with an
EKF becomes of 73 s, implying an increment of 27%. However, given the superior
performances of this architecture, as showed in the previous section, if the accuracy
level is more relevant than the complexity of the filter in the considered application,
a factor graph filter that exploits the Gauss-Newton approach together with the
smoothing process may be the optimal choice.

EKF FG FG (t=4 and ws=20)
Total 270 s 314 s 343 s

Per epoch 155 ms 180 ms 197 ms

Table 4.2: Time spent to estimate the whole trajectory with different navigation
filters
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Chapter 5

Conclusions

Global Navigation Satellite Systems (GNSS) is a reliable technology that allows
accurate and stable localization and navigation in several contexts. However in
urban environments there is a limited satellite visibility and presence of multipath
due to the presence of tall buildings, causing a stand/alone GNSS application to
be less reliable. In order to achieve a more reliable positioning in such challenging
scenarios, multi-sensor navigation solutions have attracted a lot of interest. In
this thesis, the integration of GNSS with Inertial Navigation Systems (INS) is
addressed. The aim is to exploit to the best the complementary nature of these two
technologies. This thesis focus was on a probabilistic graphical model approach
for the implementation of such integration: factor graphs. They were initially
developed to handle Simultaneous Localization And Mapping (SLAM) problems.
Formulating the GNSS/INS integration in a factor graph framework leads to the
resolution of an optimization problem, for which a vast literature is available. The
first advantage of exploiting factor graphs are their flexibility. In fact every factor
in the graph represent a probabilistic constraint, which may come from collected
measurements or prior knowledge about some variable, which is simply expressed
as a cost function, allowing for easy addition of different sensors. Moreover, they
can be seen a generalization of an Extended Kalman Filter (EKF) as have been
shown in the results. Furthermore, they offer additional features: performing
the estimation of the state at the last epoch with multiple iterations applying a
Gauss-Newton algorithm to the optimization problem involved and performing the
smoothing over the states at previous epochs, refining the previous estimates. The
benefits coming from these techniques have been showed.

Further studies can be carried out on this topic. In fact, all the existing liter-
ature about non-linear optimization problems, arising in factor graphs applied to
multi-sensor navigation, can be exploited: different cost functions can be adopted
to enhance robustness (M-estimators); inclusion of Switch Constraints (SC), which
define an observation weighting function which is estimated together with the other
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states (they were developed for robust loop closure detection in SLAM and then
extended to GNSS for multipath mitigation); assume a Gaussian Mixture Model
(GMM) for pseudorange measurements to better account for the presence of mul-
tipath; adoption of more sophisticated algorithm for non-linear optimization such
as Levenberg-Marquardt (LM) algorithm or Powell’s dogleg (PDL) algorithm. Fi-
nally, an analysis of the effect of the addition of other different sensors could be
pursued.
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