
POLITECNICO DI TORINO

Master of Science in Computer Engineering

Master’s Degree Thesis

Development of a fault injection methodology
and fault coverage analysis for a safety-relevant block

Supervisors Candidate
Matteo SONZA REORDA Alfredo PAOLINO
Mariagrazia GRAZIANO
Carlo RICCIARDI

Internship supervisors
Maria Silvia RATTO
Alberto RANERI

Academic Year 2022-2023

ˇ “(Ora posso correre
e giocare ˇ “(

Abstract

As electronic products become integral to daily life, their presence in safety-critical au-
tomotive systems becomes pervasive. The International Standard Organization (ISO)
26262 standard outlines guidelines for establishing a good level of safety in automotive
System-on-Chips (SoCs) but, despite the adherence to this standard, operational failures
still remain possible, prompting the need for Safety Mechanisms (SMs) to reduce random
hardware faults.
Nevertheless, SMs must go through a fine verification and validation phase, often involv-
ing fault injection, to ensure that they are compliant with the standard and they work as
intended.
This thesis examines the unique challenges posed by safety-critical SoCs and their SMs
within the automotive sector. In particular, it proposes a comprehensive in-house fault
injection and analysis tool named Fault Injection e Verification Component (FIeVC) to
ease the development of safety-critical components in Bosch SensorTec (BST), highlight-
ing its benefits and potential integration challenges. The FIeVC tool is developed in
Specman e and leverages parallel fault simulation to compare a fault-free system and a
faulty counterpart for mismatch detection, using four main components: the Monitor, the
Sequencer, the Bus Functional Model (BFM) and the Analyzer.
The thesis also details the development of preliminary scripts needed for generating fault
lists and modifying testbenches, both crucial aspects of a successful fault simulation. The
tool is evaluated using an accelerometer datapath from a Micro Electro-Mechanical Sys-
tems (MEMS) Inertial Measurement Unit (IMU) platform developed by BST.
The tests conducted to assess the FIeVC performance, show that the tool takes 68%
less time to perform a full fault simulation compared to traditional tools while keeping
the Test Coverage (TC) level basically unchanged. These substantial simulation time im-
provements are mainly obtained by making use of the parallel algorithm and the advanced
Specman e Testflow feature to implement the most critical and time-consuming task, the
Design Under Test (DUT) reset procedure.

Contents

List of Figures iv

Acronyms v

Introduction 1

1 Background 7
1.1 Fault life cycle . 7
1.2 Fault Models . 8

1.2.1 Stuck-At Faults . 8
1.3 Functional safety in ISO 26262 . 10

1.3.1 Failure modes classification . 10
1.3.2 Safety metrics . 11
1.3.3 Automotive Safety Integrity Level (ASIL) 12

1.4 Safety Mechanisms (SMs) overview . 13
1.5 Micro Electro-Mechanical Systems (MEMS) 15

1.5.1 Accelaration sensor . 16
1.5.2 Gyroscope sensor . 16
1.5.3 Bosch SMI240 Inertial Measurement Unit (IMU) 18

1.6 Related works . 19

2 Fault Injection e Verification Component (FIeVC) 21
2.1 Generic parallel fault simulator structure 22
2.2 Preparatory scripts . 23

2.2.1 Fault list generation script . 23
2.2.2 TestBench (TB) readaptation script 24

2.3 FIeVC structure . 26
2.3.1 Fault item . 27
2.3.2 Signal map . 27
2.3.3 Monitor . 27
2.3.4 Analyzer . 28
2.3.5 Sequencer . 30
2.3.6 Bus Functional Model (BFM) . 30

2.4 Simulation flow . 30

ii

2.5 Resetting the DUT using the Testflow feature 32
2.5.1 Simulation flow using the Testflow feature 33

2.6 Backpropagation issue . 34
2.6.1 External backpropagation . 34
2.6.2 Internal backpropagation . 35

3 Xcelium Fault Simulator (XFS) 37
3.1 Main features . 37
3.2 Simulation flow . 38

4 Results 41

5 Conclusions 43

iii

List of Figures

1 Typical bathtub curve representing the Failure Rate (FR) vs. Time graph . 2
2 Dependability and Security tree . 2
1.1 The fault evolution inside a system . 7
1.2 Stuck-At 0 (SA0) example . 9
1.3 Stuck-At 1 (SA1) example . 9
1.4 Flow diagram for failure mode classification [13] 11
1.5 ASIL classification table [32] . 12
1.6 Target values to obtain a certain ASIL classification [19] 13
1.7 SMs timing quantites . 14
1.8 Size comparison between a MEMS sensor and 1 euro cent coin 15
1.9 MEMS sensor module internal structure 15
1.10 MEMS accelerometer principle for x-axis and y-axis 16
1.11 Effect of Coriolis force on a tuning fork gyroscope 17
1.12 MEMS gyroscope mechanical structure . 17
1.13 Cascaded Integrator Comb (CIC)2 filter structure for consumer electronics

applications . 18
1.14 CIC2 filter structure for automotive applications 19
2.1 Parallel fault simulator diagram . 22
2.2 Functional unit representation (credits to Cadence®) 25
2.3 Simplified representation of the "mismatch_detected" logic 25
2.4 Simplified representation of the "fail_detected" logic 25
2.5 FIeVC structure with simplified connections 26
2.6 FIeVC fault classification (credits to Cadence®) 28
2.7 FIeVC fault classification flow . 29
2.8 FIeVC fault simulation flow . 31
2.9 FIeVC fault simulation flow with active Testflow feature 33
2.10 force command propagation error . 34
2.11 Extended TB structure to solve external backpropagation issue 35
3.1 XFS fault simulation flow (credits to Cadence®) 38
4.1 Comparison between XFS and FIeVC fault classifications 41
4.2 Comparison between XFS and FIeVC TC and total simulation time 42

iv

Acronyms

SoC System-on-Chip

ABS Anti-lock Braking System

ESC Electronic Stability Control

ACU Airbag Control Unit

ISO International Standard Organization

E/E Electrical/Electronic

FR Failure Rate

SM Safety Mechanism

DC Diagnostic Coverage

SPFM Single Point Fault Metric

LFM Latent Fault Metric

PMHF Probabilistic Metric for Hardware Failure

BST Bosch SensorTec

DUT Design Under Test

EDA Electronic Design Automation

KPI Key Performance Indicator

FIeVC Fault Injection e Verification Component

XFS Xcelium Fault Simulator

RE Regular Expression

TLM Transaction Level Modeling

SG Safety Goal

v

Acronyms

ASIL Automotive Safety Integrity Level

MEMS Micro Electro-Mechanical Systems

IMU Inertial Measurment Unit

ASIC Application Specific Integrated Circuit

BFM Bus Functional Model

RTL Register-Transfer Level

SAF Stuck-At Fault

SA0 Stuck-At 0

SA1 Stuck-At 1

CAT Cell-Aware Test

SEU Single Event Upset

SET Single Event Transient

IC Integrated Circuit

FS Functional Safety

FMEDA Failure Modes Effects and Diagnostic Analysis

ECC Error Correction Code

DCLS Dual Core Lock Step

TMR Triple Modular Redundancy

LBIST Logic Built-In Self-Test

FDTI Fault Detection Time Interval

FRTI Fault Reaction Time Interval

FHTI Fault Handling Time Interval

FTTI Fault Tolerant Time Interval

IMU Inertial Measurement Unit

LGA Line Grid Array

CRC Cyclic Redundancy Check

FIT Failure In Time

vi

Acronyms

BFM Bus Functional Model

CIC Cascaded Integrator Comb

ADC Analog-to-Digital Converter

DMR Double Modular Redundancy

FPGA Field Programmable Gate Array

UVM Universal Verification Methodology

TB TestBench

TCL Tool Command Language

CLI Command-Line Interface

UU Unpropagated Undetected

UD Unpropagated Detected

DU Dangerous Undetected

DD Dangerous Detected

TC Test Coverage

vii

viii

Introduction

Today, electronics have become part of our everyday lives. Consumer electronics, telecom-
munications, and avionics are just a few of the numerous fields in which electronics is a
leading portion of the final product.
The automotive sector is for sure no less, with an estimation of around 1,000 SoCs mounted
on a traditional vehicle and at least twice this number on an electric vehicle today. Nev-
ertheless, there is a significant distinction between an automotive SoC and a smartphone
SoC, which has to do with the potential implications of a failure in any of these devices.
A large majority of automotive SoCs are in fact defined as "safety-critical".
Safety-critical chips must be designed to operate in systems where the chip’s failure can
seriously harm human life, property, or the environment. Therefore, a failure in a safety-
critical chip can have catastrophic consequences, such as accidents, injuries, or even fa-
talities. On the other hand, failures in normal application chips typically have less severe
consequences, often limited to operational disruptions or inconvenience.
Anti-lock Braking System (ABS) controllers, Electronic Stability Control (ESC) systems,
or Airbag Control Units (ACUs) are only some examples of safety-critical systems mounted
on a car, and it is straightforward to imagine what consequences a single failure in one of
these systems could bring.
In an effort to limit chip failures and any regrettable incidents associated with them, the
automotive industry adopted in 2011 the so-called ISO 26262 safety standard, which fo-
cuses on managing and minimizing risks during the entire lifecycle of a safety-critical SoC
for road vehicles. The standard was updated in 2018.
ISO 26262 specifies a set of guidelines to follow and activities to perform during the
development process to ensure the achievement of Functional Safety (FS), defined as
the "absence of unreasonable risk due to hazards caused by malfunctioning behavior of
Electrical/Electronic (E/E) systems [17]".
Yet, even if both the specification and design phases are carried out in compliance with
the ISO 26262 standard, an SoC is never 100% safe due to some failures that could arise
during the operational phase. Thus, the operational phase of an electronic device is typ-
ically split into three distinct periods, strictly related to the Failure Rate (FR) of the
component itself [31]:

• The "early failure" period, in which possible manufacturing defects present in the
component rise and cause malfunctioning. These kinds of failures are labeled as
systematic and this phenomenon is known as infant mortality. During this period
the FR decreases over time.

1

Introduction

• The "intrinsic failure" period, in which systematic defects are less of a threat, but
random hardware faults could still arise due to different reasons, such as extreme
environmental conditions of temperature, humidity or dust, exposure to liquids,
Electro-Static-Discharge, Electromigration effect and so on. During this period the
FR remains basically constant but higher than 0.

• The "wear-out" period, in which the component starts showing signs of failure due
to aging and wear-out. During this period the FR starts to rise up to a point where
it is no longer acceptable and the component must be replaced.

The FR can be plotted on an FR vs. Time graph, obtaining the so-called bathtub curve
(Figure 1).

Figure 1. Typical bathtub curve representing the FR vs. Time graph

The target of any semiconductor company is then to reduce the frequency and severity of
random hardware faults, extending the useful life of the chip as a result.
To understand what means a company has to pursue this goal, the concept of safety must
be extended to the broader concept of dependability, defined as "the ability to deliver a
service that can be justifiably trusted" and exhaustively explained and discussed in [9].
In this paper, the taxonomy of a dependable system is described as a tree (figure 2).

Figure 2. Dependability and Security tree

As shown in figure 2, safety is one of the attributes of dependability, and the means to
ensure dependability are four, each of them defining different techniques complementary

2

Introduction

to each other.
Among them, the focus of this thesis targets fault tolerance, which establishes procedures
enabling a system to continue providing the required service in the presence of faults,
at the cost of possible degradation of the service itself. Fault-tolerant systems are then
equipped with Safety Mechanisms (SMs), needed to achieve the optimal robustness to
failures. SMs are able to mitigate the rate of random faults, contain their consequences
and reach the established safety goals.
A careful analysis should be done to understand which SMs best fit the design, keeping
in mind their pros and cons in terms of effectiveness and cost. The best SMs setup is the
one that optimizes the trade-off between these two elements while being compliant with
safety requirements and standards.
Regardless of the SMs inserted, ISO 26262 states that a validation phase must be done
before going into production. Validating these mechanisms involves verifying their effec-
tiveness, reliability, and adherence to safety standards and requirements.
Most common validation approaches rely upon analytical techniques, prototyping, com-
pliance testing and fault injection. And precisely the latter is the topic on which this
thesis revolves.
The basic concept behind fault injection is self-explanatory; it consists of intentionally
introducing faults in the chip or its model to simulate failure scenarios and evaluate
the response of SMs. Whatever the metric, the fault model or the behavioral domain
of the component taken into account [20], a fault simulator is essential to perform the
evaluation. Today, many different commercial fault simulators are already present on the
market. Among them, the Xcelium Fault Simulator (XFS) from Cadence® operates within
the XceliumTM Simulator compiled engine, which is the standard simulator used in BST
for simulation and verification processes. This means that with very little effort a fault
simulation campaign could be performed on the Design Under Test (DUT), making it a
very attractive solution for BST.
Nevertheless, these Electronic Design Automation (EDA) tools quite often require expen-
sive licenses and, for companies with many employees, many licenses would be required.
Thus, the high cost could cause a company to give up using them and look for different
solutions.
The ultimate goal of this thesis work is to study all the fundamental concepts of fault
injection and explore the benefits that an in-house fault injection and analysis tool could
bring in BST during the development of safety-critical components. Pros and cons of this
solution are analyzed from many points of view, taking into account parameters like per-
formance, flexibility, accuracy of results and integration with the underlying verification
environment.
BST makes large use of the Specman e Hardware Verification Language for their verifi-
cation environments, thus also the tool is developed in e to guarantee full compatibility,
and named "Fault Injection e Verification Component (FIeVC)".
Several algorithms exist to perform fault simulation, but all of them require a fault list in
addition to the description of the design and the input stimuli. On top of that, the FIeVC
uses the parallel algorithm, which also needs a modified testbench, with two DUTs instead
of one. This algorithm consists, in fact, of simulating at the same time both a fault-free
machine and a faulty machine, checking for possible mismatches in their outputs. To

3

Introduction

ease and automate the process of generating the fault list and duplicating the DUT, the
preliminary part of this thesis work mainly aims at developing two scripts:

• A TCL script is used to generate the circuit fault list. This script allows the user to
customize the fault list and perform injection recursively on the entire DUT or only
some specific sub-components.

• A Python script is used to make the testbench suitable for fault injection. Through a
precise parsing of both the testbench file and the DUT file, this script duplicates the
DUT for the parallel fault simulation, generates new testbench signals for mismatch
detection and connects them to the FIeVC via a Transaction Level Modeling (TLM)
interface.

These two scripts make extensive use of Regular Expressions (REs) and leverage on BST
naming conventions to increase their flexibility and adaptability to different components
at different hierarchy levels.
For what concerns the core of the thesis, its focus is of course on the FIeVC development.
The FIeVC is composed of 4 main components:

• Monitor, which constantly monitors the mismatch signals to detect possible discrep-
ancies between the golden and the faulty outputs.

• Sequencer, which generates the fault that is going to be injected next.

• BFM, which acts as a driver and forces the fault inside the DUT.

• Analyzer, which receives the results obtained from the monitor to categorize the fault
and extract a report file.

One of the greatest features of the FIeVC is that it works in a completely transparent
manner w.r.t the pre-existing verification environment and it can be easily connected or
disconnected by defining or not an environment variable.
Finally, the last part of the thesis aims at performing a fault simulation campaign in XFS,
to compare and validate the results obtained from the FIeVC . This simulation is carried
out by injecting the same faults into the design to have a 1-to-1 comparison and check for
possible discrepancies.
Benchmark tests to assess the FIeVC performance have been performed using as DUT
the accelerometer datapath of the SMI240, a MEMS IMU platform developed for the
automotive market.
A testing fault simulation, performed with a 1,000-fault sample, shows that the FIeVC
is able to obtain results very similar to XFS while speeding up the simulation process by
three times.
Lastly, the user experience has been extremely simplified by using a Makefile which hides
the complexity of the flow. In detail, an already existing Makefile has been expanded with
three new make targets through which the setup phase, the simulation phase (with the
FIeVC or XFS) and the comparison phase can be launched with a simple command.
The thesis is organized as follows: Chapter 1 provides some technical background to
better understand the proposed work and describes the state-of-art for what concerns

4

Introduction

FS and fault simulation tools. Chapter 2 describes in detail the FIeVC itself and the
preliminary phase scripts. Chapter 3 explains the steps done to perform a complete
fault simulation campaign through XFS, in order to have a basis for comparison with a
commercial fault simulation tool. Chapter 4 shows the results obtained with the FIeVC ,
and compares them with those obtained through XFS. Finally, the thesis ends with
Chapter 5, which illustrates further implementations and ideas for the next future and
proposes the concluding remarks.

5

6

Chapter 1

Background

1.1 Fault life cycle
Alongside dependability means, the dependability tree also defines dependability threats:
faults, errors and failures. These threats are closely related to each other.
A fault is defined as the presence of a defect inside the system. If the fault is excited by the
correct stimuli, it starts spreading its malicious effect all around the circuit, becoming an
error. If the error propagates deeply into the circuit, making its way up to the functional
outputs, it becomes a failure. A failure (also called misbehavior) is therefore an instance
in time when an output behavior not compliant with the circuit specifications is observed.
The failure is then a manifestation of the fault to the user.
The life cycle of a fault is thus divided into three phases:

• Quiescent phase. In this phase, the fault is present in the system but, due to the
lack of stimuli, it has not been propagated yet. The fault is said to be dormant or
passive.

• Activation phase. In this phase, the fault is activated evolving into an error.

• Propagation phase. In this phase, the fault propagated to the circuit outputs, evolv-
ing into a failure and causing misbehaviors.

At the system level, misbehaviors are the cause of hazards, generating in turn harmful
situations (figure 1.1).
When performing fault simulation, the goal is then to excite (fault→error) and observe
(error→failure) the highest amount of faults, to check which of them could be dangerous.

Figure 1.1. The fault evolution inside a system

7

Background

1.2 Fault Models
Several physical sources can be the cause of hardware faults. Some examples of real defects
in chips are:

• Manufacturing defects, like missing contacts, misaligned masks, presence of dust or
impurities during fabrication.

• Material defects, like imperfections in the crystal structure of silicon, wrong doping
and cracks.

• Time-dependent defects caused by aging, dielectric breakdown, electromigration.

Nevertheless, the simulation of these kinds of faults would be a quite challenging task in
the early phases of the design process. In fact, it would be practically impossible to inject
a physical error in a purely abstracted description of the circuit like the Register-Transfer
Level (RTL) or the gate-level one.
Yet, it is possible to cluster the physical faults in fault models, to enable the possibility
of performing fault simulation also on these abstracted descriptions.
A fault model is a logical representation of the physical fault, based on the effect that the
fault would have on the circuit.
These kinds of faults become then injectable because there is a precise correspondence
between the effect caused by them on the physical chip and on its logical descriptions.
If two different physical faults have common properties, and a similar manifestation in
terms of obtained results, they can be modeled by the same fault model, widely reducing
the variety of faults and in turn the complexity of the fault simulation process.
Some of the most popular fault models are:

• Stuck-At Fault (SAF) model, more precisely SA0 and SA1

• Bridging fault model

• Transistor fault model, more precisely stuck-open and stuck-short

• Delay fault model

• Cell-Aware Test (CAT) fault model

• Transient fault model, more precisely Single Event Upset (SEU) and Single Event
Transient (SET)

1.2.1 Stuck-At Faults
SAF model is one of the most common fault models because it covers a large majority of
physical defects and manufacturing errors occurring in an Integrated Circuit (IC). These
faults are characterized by a specific type of electrical behavior in which a signal line
becomes stuck at a particular logic value (either high or low) regardless of the input con-
ditions. When a SAF rises on a net, the data carried on it is forced to assume the logic-0
(SA0) value or the logic-1 (SA1) value.

8

1.2 – Fault Models

In a circuit having n nodes, it is possible to model:

• 2n single SAFs.

• 3n-1 multiple SAFs.

In complex designs, the amount of multiple SAFs would make the analysis extremely com-
plex and time-consuming, but fortunately, it is possible to infer the behavior of multiple
SAFs from single SAFs tests [8, 23]. This enables the possibility of restricting the analysis
to single SAFs only.
The most common technique to test SAFs is called "path sensitization" [14, 37]. Without
digging too much into the theory and the math behind this technique, it is worth knowing
that it is based on two consequential concepts:

• Fault excitation, which requires creating a difference between the good and the faulty
circuit in the fault site (i.e. drive a logic-1 on a SA0 net and vice-versa).

• Fault observation, which requires propagating this difference up to an output.

Figure 1.2. SA0 example

Figure 1.3. SA1 example

Figures 1.2 and 1.3 give a clear example of what excitation and propagation mean.
The upstream gates need to have inputs capable of creating a difference in value between
the good circuit and the faulty circuit for excitation to occur. On the other hand, the
downstream gates should not interfere with the faulty node’s value during propagation,
allowing the output value to reflect solely the value present on the faulty node.

9

Background

1.3 Functional safety in ISO 26262
To have a measure of how much a hardware component is able to achieve its Safety
Goals (SGs), ISO 26262 states that both qualitative and quantitative verification via var-
ious metrics must be done. From the scores obtained in each of these metrics, an ASIL is
awarded to the hardware component.

1.3.1 Failure modes classification
Before diving into the safety metrics defined in ISO 26262, it is important to understand
how failure modes, and in turn faults, can be classified. Failure modes are in fact "the
manners in which an item fails to provide the intended behavior" [18] i.e. the ways in
which a fault can manifest itself.
So, depending on the effects that faults produce on the circuit, they fall into one of these
four different categories [13, 15] (figure 1.4):

• Safe faults. They do not increase the probability of violation of a SG because they
are propagated neither to functional nor to safety outputs.

• Single-point faults. They are propagated to a functional output, but not covered by
any SM, directly leading to the violation of a SG.

• Residual faults. They are propagated to a functional output and covered by a SM,
but this is not able to prevent the violation of a SG.

• Multi-point faults. They are propagated to a functional output and covered by a
SM, which is able to detect and correct them. The only moment in which they can
cause the violation of a SG is when another fault, in the SM itself, is present. They
are in turn subdivided in:

– Detected. Even in the presence of multiple faults, the SM is able to detect and
correct them.

– Perceived. In the presence of multiple faults, they do not cause the violation of
a SG but somehow impact the driving experience.

– Latent. They are corrected by the SM without being detected.

10

1.3 – Functional safety in ISO 26262

Figure 1.4. Flow diagram for failure mode classification [13]

1.3.2 Safety metrics
After the failure modes are classified three key metrics are used to evaluate the effectiveness
of a safety architecture:

• Single Point Fault Metric (SPFM). It is a hardware architectural metric that reflects
the robustness of a safety design to deal with single-point and residual faults. It
reveals whether or not the SMs present in the component are enough to prevent the
risk from single point and residual faults in the hardware architecture.

• Latent Fault Metric (LFM). It is a hardware architectural metric that reflects the
robustness of a safety design to deal with latent faults. It reveals whether or not the
SMs present in the component are enough to prevent the risk from latent faults in
the hardware architecture.

• Probabilistic Metric for Hardware Failure (PMHF).Is the sum of the single-point,
residual and multi-point fault metrics. Its unit of measure is the Failure In Time
(FIT) (1 FIT = 1 failure ever 109 hours).

All these metrics strongly depend on the Diagnostic Coverage (DC) of each SM imple-
mented in the system. The DC is in fact the ratio of detected/controlled failures over the
total failures and it measures the effectiveness of the SM [3].

11

Background

1.3.3 Automotive Safety Integrity Level (ASIL)

The meaning of ASIL is two-fold.
When the ASIL is related to operating scenarios, it represents a risk classification scheme,
ranging from grade A (the least stringent) up to grade D (the most stringent); the higher
the ASIL classification, the higher the injury risk. The ASIL classification of a scenario is
performed through a risk assessment that takes into account three parameters: severity,
exposure and controllability of hazardous events. These three parameters are classified in
a range from 1 to 4, and the product between them determines the ASIL [5] (figure 1.5).

ASIL = Severity x (Exposure x Controllability)

Figure 1.5. ASIL classification table [32]

On the other hand, when the ASIL is related to hardware components, it is an attestation
that the component meets both qualitative and quantitative expectations in terms of SGs
for that ASIL level [4]. This means that an ASIL C component is suitable for ASIL A, B
and C (but not D) applications.
For a component to be attested with a certain ASIL classification, it must meet precise
requirements for each of the above-mentioned metrics (figure 1.6).

12

1.4 – Safety Mechanisms (SMs) overview

Figure 1.6. Target values to obtain a certain ASIL classification [19]

1.4 Safety Mechanisms (SMs) overview
For safety-critical systems, the role of a safety engineer is to devise a FS architecture
that includes SMs to meet the required metrics (SPFM, LFM, PMHF). These SMs are
additional hardware components, able to detect or correct errors and completely indepen-
dent from the functions they protect to achieve optimal robustness to failure. Usually, a
Failure Modes Effects and Diagnostic Analysis (FMEDA) drives the design exploration,
identifying where to focus the design effort to meet the constraints.
The selection of the best SM for a specific building block or system needs a careful analysis
of the trade-off between the effectiveness for safety metrics and the cost; the effectiveness
is represented by the DC, while the cost is represented by power consumption, area over-
head, performance impact, and even verification time and automation. Usually, high
effectiveness increases the cost in direct proportion, but to optimize this trade-off, the
benefits and costs of SMs should be analyzed in all aspects.
To this end, it is possible to classify SMs in four different categories, based on their working
principles:

• Information redundant. In this case, additional data are added to protect the original
information. Examples of this class are parity bits and Error Correction Codes
(ECCs).

• Time redundant. In this case, the same operation is executed more than once on
the same functional unit, but at different times. An example of this class is the
Execute-Retry-Checkpointing-Recovery technique.

• Space redundant. In this case, the same operation is executed on multiple functional
units simultaneously. Examples of this class are Dual Core Lock Step (DCLS) and
Triple Modular Redundancy (TMR).

• Diagnostic. In this case, the SM directly verifies if the intended functionality is
working correctly. An example of this class is the Logic Built-In Self-Test (LBIST)
technique.

While the hardware architectural metrics discussed in 1.3.2 do not encompass timing
constraints, it is evident that assessing the safety mechanisms comprehensively requires
considering timing performance. Some temporal quantities are then specified for both the
system and the SM in order to check if the latter behaves correctly [26]:

13

Background

• Fault Detection Time Interval (FDTI). It is a property of the SM itself, defined as
the time elapsed from the occurrence of a fault to its detection.

• Fault Reaction Time Interval (FRTI). Again, a property of the SM, defined as the
time elapsed from detecting a fault to recovering and restoring a safe state.

• Fault Handling Time Interval (FHTI). The sum of FDTI and FRTI.

• Fault Tolerant Time Interval (FTTI). It is both a property and a requirement of
the system, defined as the time within which it should be capable of detecting the
presence of faults and transitioning to a safe state. Failure to meet this timing
requirement could result in the fault escalating into a hazard and compromise the
correct behavior of the system.

To be compliant with the specifications, the property FHTI ≤ FTTI must hold for every
SM present in the system.

Figure 1.7. SMs timing quantites

14

1.5 – Micro Electro-Mechanical Systems (MEMS)

1.5 Micro Electro-Mechanical Systems (MEMS)

MEMS is a process technology used to create tiny integrated devices or systems that
combine mechanical and electrical components. MEMS fabrication uses semiconductor
manufacturing processes like deposition, doping or photolithography, meaning that both
the mechanical parts and the electronics that control them can be built on the same silicon
chip. These devices can range in size from a few micrometers to millimeters (figure 1.8) and
have the ability to sense, control and actuate on the micro scale while generating effects
on the macro scale. The MEMS sensor element and the Application Specific Integrated
Circuit (ASIC) evaluation circuit are both crammed inside a semiconductor housing (like
a Line Grid Array (LGA)) to form a MEMS sensor module, isolated from the external
environment through a mold compound (figure 1.9) [36].

Figure 1.8. Size comparison between a MEMS sensor and 1 euro cent coin

Figure 1.9. MEMS sensor module internal structure

15

Background

Today, high-volume MEMS can be found in a diversity of applications across multiple
markets like automotive, consumer electronics and many others. For example, modern
vehicles are unthinkable without MEMS IMUs. These systems are essential for movement
and impact detection, as well as position and orientation recognition.

1.5.1 Accelaration sensor
A MEMS acceleration sensor is composed of a signal processing chip (the ASIC) and a
micromechanical double comb-like silicon structure (the MEMS sensor); one of the comb
structures is fixed, while the other one can move and works on the principle of mass on a
spring (figure 1.10).

Figure 1.10. MEMS accelerometer principle for x-axis and y-axis

These two structures form what is known as capacitive transducer. Their fingers form a
capacitor, and the distance between the microstructures determines the capacity. The
moving fingers shift against the fixed fingers depending on acceleration or deceleration.
As a result, the distance between them changes, influencing the capacity. The integrated
electronics detect this change, convert it into a measured value and deliver it in output as
a voltage signal [21].

1.5.2 Gyroscope sensor
A MEMS gyroscope sensor measures angular rotational velocity and acceleration through
a vibrating structure, with the goal of maintaining a reference direction or providing sta-
bility.
One of the most common gyroscope structures is called tuning fork, in which a pair of
test masses are driven to resonance [6].
The underlying physical principle of gyroscopes is that a vibrating mass tends to continue

16

1.5 – Micro Electro-Mechanical Systems (MEMS)

vibrating in the same plane even if its support rotates. This kind of structure is subject
to the Coriolis apparent force, which causes the mass to exert a force on its support; by
measuring this force the rate of rotation can be determined (figure 1.11).

Figure 1.11. Effect of Coriolis force on a tuning fork gyroscope

To measure the Coriolis acceleration, the frame containing the resonating mass is teth-
ered to the substrate by springs at 90° relative to the resonating motion. Like in the
accelerometer, a capacitive transducer is then used to sense the displacement of the frame
in response to the force exerted by the mass and output a voltage signal [38] (figure 1.12).

Figure 1.12. MEMS gyroscope mechanical structure

17

Background

1.5.3 Bosch SMI240 Inertial Measurement Unit (IMU)

An IMU is an electronic device that measures and reports a body’s specific force, angu-
lar rate, and orientation, integrating multi-axe accelerometers and gyroscopes. Typical
configurations contain one accelerometer and one gyroscope per axis for each of the three
principal axes.
Among the various products present in the Bosch catalog, it is possible to find the SMI240,
a 6-in-1 IMU capable of measuring all 6 degrees of freedom: pitch (Ωx), roll (Ωy), yaw
(Ωz) rate and acceleration in x (ax), y (ay) and z (az).
The SMI240 is developed for the automotive market with safety targets up to ASIL B.
The target applications are especially related to hands-free and autonomous driving.
Being a safety-critical component, an onboard safety controller plus several SMs like par-
ity bits, redundant logic, Cyclic Redundancy Checks (CRCs) and others have been added
to reach the required 90% DC.
A perfect case study to understand how BST approaches safety is the CIC filter used in
∆ − Σ Analog-to-Digital Converters (ADCs) to remove quantization errors. In figure 1.13
a CIC filter of second order (CIC2) for consumer applications is depicted. The typical
elements of this kind of filter can be observed: the integrator, the decimator and the comb,
but nothing more is added when consumer electronics is the scope of the product.

Figure 1.13. CIC2 filter structure for consumer electronics applications

In figure 1.14 instead, a CIC2 adapted for automotive application is represented. The un-
derlying structure remains the same, but both combinational and sequential logic elements
are protected by SMs:

• The combinational elements like adders and subtractors are doubled to implement
what is called Double Modular Redundancy (DMR). Through this technique, each
operation is executed by a further set of adders/subtractors, and then compared
with the result obtained by the original set.

• The flip-flops are extended to support parity bits.

18

1.6 – Related works

Figure 1.14. CIC2 filter structure for automotive applications

1.6 Related works
Fault injection has been used for many years to evaluate the reliability of electronic systems
and it is today a standard in the corporate environment when dealing with safety-critical
components.
Depending on the technique used, fault injection environments can be classified as [27, 33]:

• Hardware-based environments. External physical sources like heavy-ion radiation
[25, 22] or power supply disturbances [29, 24] are used to introduce faults directly
into the hardware. Other tools instead use probes directly attached to the DUT pins
to inject faults [35, 12].

• Simulation-based environments. Faults are injected into the simulated hardware.
Different levels of abstraction can be used to model the DUT, from low level (VHDL,
Verilog models) [34] to high level (C, SystemC models) [30]. These environments are
much slower than the hardware-based ones, but they are highly controllable, flexible
and customizable. On top of that, by using this technique it is possible to start the
analysis process very early.

• Emulation-based environments. The target system is emulated with an Field Pro-
grammable Gate Array (FPGA) and the faults are injected in it [7].

Nowadays, one of the most common approaches used in simulation-based tools consists of
expanding a pre-existing verification environment with fault injection capabilities. When
dealing with this kind of environment, the biggest portion of the industry today works

19

Background

with SystemVerilog and Universal Verification Methodology (UVM) which is the standard
[10, 28, 16].
Anyway, some companies are still using Specman e for their verification purposes, but
there is a huge industry gap if they want to embed fault simulation processes in their
environments. In fact, the only industrial fault simulation tools based on Specman e
known by the time this document was written are those designed by the Italian company
Yogitech (now part of Intel Corporation). In the academic field instead, Specman e for
fault injection has been analyzed in [11].
The goal of this thesis work is then to fill this gap and enable BST to easily perform fault
simulations within the standard verification flow actually used in the company.

20

Chapter 2

Fault Injection e Verification
Component (FIeVC)

A fault simulator is a software tool that computes the behavior of a circuit in the presence
of faults to help users develop robust diagnostic tests and verify that SMs meets the fault
injection testing requirements.
Fault simulations can be executed using different algorithms [1]. The FIeVC is based on
a parallel algorithm, which offers a good balance between the low complexity of a serial
algorithm and the high performance of a concurrent algorithm. More complex techniques,
like the deductive and the differential, have not been considered to avoid getting lost in
the theory behind them.
The main strengths of the FIeVC are:

• Non-invasive environment. Despite being built on a pre-existing verification environ-
ment, the FIeVC is completely transparent to it. In fact, it only acts on the DUT,
leaving the underlying verification environment untouched.

• Ease of use. It is possible to choose between the fault simulation flow and the
functional verification flow by simply defining or not the BST_FAULT_SIM en-
vironment variable. Thanks to the ifdef directive it is possible to check whether
BST_FAULT_SIM is defined or not and compile the testbench and the required
files accordingly.

• Adaptability. The FIeVC can handle from basic to very complex designs at all
hierarchy levels. Thanks to the extensive use of REs and BST naming conventions,
the files composing the FIeVC are automatically readapted to the current DUT
before the elaboration phase with no particular effort required from the user.

• Flexibility. The FIeVC can be extended or modified at will. Thanks to the isolation
of tasks in different files, it is possible for example to extend the analysis to new
fault models by simply modifying one file.

21

Fault Injection e Verification Component (FIeVC)

2.1 Generic parallel fault simulator structure
For the sake of simplicity, the FIeVC simulates in parallel only two circuits, the golden and
the faulty one. Nevertheless, with some small changes in the preparatory scripts (section
2.2) and in the environment itself (section 2.3) it is possible to increase the degree of
parallelism and in turn the performance.
The general structure of a parallel fault simulator is depicted in the figure below (figure
2.1). The original BST verification flow is highlighted in green, while the additional
components required for the fault simulation are highlighted in red.

Figure 2.1. Parallel fault simulator diagram

The additional elements required to perform a fault simulation are then:

• A fault list. It is a file containing all the injectable faults of the design.

• An additional DUT. To ensure accurate reference results, the fault-free golden sim-
ulation must continuously run in parallel with the faulty simulation; this means that
a single DUT is not enough and the TB must be readapted for this purpose.

• Auxiliary signals. These signals ease the comparison process. Their usage makes the
comparison of outputs directly possible inside the TB indeed. The benefits of this
solution are primarily related to the possibility of keeping the FIeVC unaware of the
actual DUT, bringing an overall increase in generality and flexibility. More details
on these signals are given in section 2.2.2.

• A fault injection and fault analysis tool. This is trivial and it is of course the task
of the FIeVC itself.

22

2.2 – Preparatory scripts

2.2 Preparatory scripts
As seen in section 2.1, some preliminary operations are needed to make the fault simulation
possible. Anyway, implementing these features manually would be exhausting and, more
importantly, would completely hinder the flexibility and ease of use of the tool.
Thus, the fault list generation and the TB readaptation are completely entrusted to a
couple of scripts: a Tool Command Language (TCL) script for the fault list generation,
and a Python script for the TB readaptation.

2.2.1 Fault list generation script
The goal of this script is to generate a text file containing one fault per row.
Canonically a fault item is characterized by three parameters: fault site, fault kind and
injection time (section 2.3.1). However, this script simply outputs a list of injectable fault
sites instead of full fault items. In this way, both the fault kind and the injection time
can be managed directly by the FIeVC ; whenever a fault site is picked from the list, it is
the FIeVC that decides which specific fault (SA0, SA1, etc.) to inject and when to inject
it based on the settings defined by the user in the Sequencer (section 2.3.5) and the BFM
(section 2.3.6).
For this script, TCL is preferred over Python because it can be executed as a pre-
simulation script directly through the XceliumTM Simulator TCL Command-Line Inter-
face (CLI). With this setup, TCL commands are available while having full access to the
elaborated design. It is therefore possible to retrieve all the input ports, output ports and
internal nets of the design automatically using the find command.
The steps executed by this script are the following:

• Asks the user for the scope of the injection, supporting multiple components and
recursive injection.

• Issues the TCL find command on these components to retrieve input ports, output
ports and internal signals.

• Splits the vector signals into single-bit signals to make them injectable.

• Changes the path of the signal from ":dut:*" to ":dut_faulty:*" so that the faulty
DUT and not the golden one is injected.

• Lists all the obtained fault sites, one per row, in a text file.

23

Fault Injection e Verification Component (FIeVC)

2.2.2 TB readaptation script
This script takes care of everything related to the TestBench (TB) readaptation in order to
have an environment that accepts fault injection and fault analysis. The goal is therefore
to duplicate the DUT for the fault injection task and to add the comparison logic for the
fault analysis task.
Given that this script directly modifies the files of both the TB and the FIeVC , it must be
executed prior to the elaboration phase so that the environment used during the simulation
is up-to-date.
For what concerns the first task, the DUT duplication, a complete parsing of both the
VHDL design and the DUT instantiation in the TB is required to retrieve everything
needed to perform it (input/output signals, generic/port mapping and signal assignment).
With all these data at its disposal, the script can now declare the second DUT changing
its name from "dut" to "dut_faulty". On top of that, it renames all the outputs from "*"
to "*_faulty". The reason behind this renaming is very straightforward; two components
with the same output signal would generate a multiple-driven net error. Finally, also
input names are modified from "*" to "*_buf". The reason behind this second renaming
is much more subtle, and it is better explained later in this document (section 2.6.1).
For what concerns the second task instead, the comparison logic implementation, two
choices are possible:

• Bring the outputs belonging to teh DUT and DUT faulty in the FIeVC and imple-
ment the comparison logic there.

• Implement the comparison logic directly inside the TB.
The first is probably the more canonical of the two. In fact, this solution ensures that the
FIeVC is the only actor handling the fault simulation process. Nevertheless, it comes at a
higher cost: having an unknown number of outputs means that comparing all the golden
outputs with all the faulty outputs requires a for loop that cycles through and compares
them one by one at each and every clock cycle. Therefore this solution has a major impact
on the total simulation time.
The second solution instead brings a portion of the fault simulation process outside the
FIeVC , but it guarantees more flexibility and also comes at zero cost considering that
the TB is already under a reshaping process. For these reasons, this solution is the
implemented one.
However, before moving on with the comparison logic explanation, a short description of
the structure of a fault-tolerant block is crucial. As shown in figure 2.2, these blocks are
composed of a module and a SM connected to it. The module is the functional portion
of the design, which implements the desired functionality, while the SM is of course the
safety portion, which checks for possible errors inside the module. Consequently, also the
outputs of a fault-tolerant block are split into functional outputs and safety outputs.
Fortunately, in BST designs safety outputs can be distinguished from functional outputs
by the presence of the "_fail" string at the end of the signal name.
With this in mind, the new signals needed for the comparison and analysis process are:

• One "*_xor" signal per output. These signals take the value of "*" XOR "*_faulty"
and are used to know where the error has been propagated.

24

2.2 – Preparatory scripts

• A "mismatch_detected" signal. This signal produces the OR of all the above-
mentioned "*_xor" signals, meaning that it assumes the value ’1’ whenever there
is a mismatch in at least one functional output (figure 2.3). Before the OR with
other signals, vector "*_xor" signals must be squashed into a single bit by perform-
ing a reduced OR.

• A "fail_detected" signal. Similar to the "mismatch_detected" but for the safety
outputs (figure 2.4). This signal notifies that the SM detected an error and it is
therefore used to trigger for the fault analysis process.

Finally, the last operation performed by the script is to populate the FIeVC Signal Map
(section 2.3.2) to have direct access to all these signals from the FIeVC too.

Figure 2.2. Functional unit representation (credits to Cadence®)

Figure 2.3. Simplified representation of the "mismatch_detected" logic

Figure 2.4. Simplified representation of the "fail_detected" logic

25

Fault Injection e Verification Component (FIeVC)

2.3 FIeVC structure
With the setup required for the fault simulation ready, it is now time to see how the fault
injection and fault analysis are implemented.
A correct implementation of these two concepts is indispensable for a successful fault
simulation and it is in fact the problem addressed by the core of this thesis, which is the
FIeVC .
In figure 2.5, the structure of the FIeVC and how it is connected with the TB is shown.
The upper part of the figure shows the modified TB while, in the lower part, it is possible to
notice all the inner components of the FIeVC which are: Signal Map, Monitor, Analyzer,
Sequencer and BFM. These components are all declared inside a further component called
Env, which acts as a wrapper and also binds input ports to output ports to establish the
required connections.

Figure 2.5. FIeVC structure with simplified connections

The connections between the above-mentioned components are performed through the so-
called e ports, which in Specman e are the equivalent of the more common TLM ports. e
ports enhance the portability and interoperability of the FIeVC by making the separation
with the DUT possible.
There are two ways to use e ports:

• By creating connections between the simulated object (everything present inside the
TB), and the FIeVC components. These ports are called external.

• By creating connections between two FIeVC components. These ports are called

26

2.3 – FIeVC structure

internal or e2e.

For what concerns the ports kind instead, the ports used are mainly of two kinds:

• Simple ports. Used to directly access and transfer data.

• Event ports. Used to transfer events between the units for triggering or synchro-
nization purposes.

In the next sections, all the FIeVC subcomponents are explained in detail.

2.3.1 Fault item
To easily transfer information about the current injected fault and the next one, it is
necessary to define an atomic description that represents the fault and can be accepted
by the e ports.
A fault item is therefore used to model the physical fault. This fault item is composed of
three parameters [2]:

• Fault site. It indicates the net on which the injection must be performed. The
fault site is assigned to the fault item by the Sequencer (section 2.3.5), randomly
extracting one fault site from the fault site lists.

• Fault kind. It indicates the category of fault model injected. It could be a SA0, a
SA1, a SEU, etc.. The fault kind too is assigned to the fault item by the Sequencer
(section 2.3.5), randomly choosing between the fault kinds declared by the user.

• Injection time. It is the time in which the error should rise and manifest itself inside
the circuit. Having taken into account only SAFs in this version of the FIeVC , the
injection time is automatically set to an instant of time between the end of reset and
the start of test operations.

2.3.2 Signal map
This component is automatically generated by the TB readaptation script (section 2.2.2)
based on the auxiliary signals included in the TB. It acts as a connector between the
TB and the FIeVC , having direct access to all the "*_xor", the "mismatch_detected" and
the "fail_detected" signals using simple ports. By binding a simple port to the full HDL
path of the desired signal, it will continuously reflect the value of that signal making it
accessible from the FIeVC .

2.3.3 Monitor
The Monitor is in charge of keeping track of all the changes in the comparison logic lines
to detect possible mismatches and consequently perform the necessary operations.
Three functions are executed inside this component:

• generate_fault(). Whenever a new injection can be performed, the Monitor notifies
the Sequencer through an event port, called generate_next_fault.

27

Fault Injection e Verification Component (FIeVC)

• monitor(). The simulation of the current injected fault lasts until the test reaches its
end, or until a mismatch in some safety outputs is observed through the fail_detected
line. When one of these two situations occurs, it is possible to proceed with fault
classification in the Analyzer (section 2.3.4), and the next injection.
When the Monitor executes this function it waits for one of these two events to
trigger the analysis and proceed with the next injection. In the meantime, it also
checks if any mismatch happens on the mismatch_detected line because the Analyzer
requires this information to correctly classify a fault.

• update_tlm_ports(). The simulation time at which the first mismatch and the
first fail arise are saved too, and passed to the Analyzer for classification purposes.
This transfer is performed using tlm_analysis ports called mismatch_time_port and
fail_time_port. This kind of port is similar to an e port but also supports multiple
connections and broadcasting.

2.3.4 Analyzer
Whenever the simulation of a fault item is over (because the fault was detected or because
the test ended) it is possible to proceed with its classification, depending on the obtained
outcome.
For later comparisons, in the Analyzer the same fault classification used by XFS is imple-
mented (figure 2.6).

Figure 2.6. FIeVC fault classification (credits to Cadence®)

Faults are thus divided into four categories:

• Unpropagated Undetected (UU). The fault is neither propagated to a functional
output nor detected by a safety output. In this case, it is not possible to jump to
firm conclusions, but there are chances that the fault could be a safe fault.

28

2.3 – FIeVC structure

• Unpropagated Detected (UD). The fault is not propagated to a functional output
but detected by a safety output. In this case, the system is able to recover.

• Dangerous Undetected (DU). The fault is propagated to a functional output but not
detected by a safety output. In this case, the system is in danger because it means
that it is not possible to recover from this error.

• Dangerous Detected (DD). The fault is both propagated to a functional output and
detected by a safety output. In this case, the system is able to recover too.

Three functions are executed in this component:

• init_report(). The first thing to do for a good and complete analysis is to generate
a report file that can hold the results of all the injections.
The file is composed of four fields: fault site, fault kind, fault category, FRTI. This
function creates the new file and initializes it with the four fields division.

• analyze_fault(). As soon as the analysis is triggered, the value of mismatch_time
and fail_time are read from the two tlm_analysis ports. With these two numbers,
it is possible to check if, and at which instant of time the fault was propagated to a
functional or safety output and proceed with the classification (figure 2.7). Saving
also the difference between fail_time and mismatch_time (the FRTI) allows the user
to check if any SM has violated its timing constraints.

• generate_summary(). When the fault simulation campaign is over, the overall num-
ber of obtained UU, UD, DU and DD is written at the end of the report file.

Figure 2.7. FIeVC fault classification flow

29

Fault Injection e Verification Component (FIeVC)

2.3.5 Sequencer
The sequencer works as a fault item generator. It is connected to the Monitor through the
generate_next_fault port to receive a notification whenever a new fault item is needed.
The fault simulation, if not stopped by the user, will proceed until all possible faults have
been injected. When this happens, another event port, called fault_list_over, is used to
trigger the end-of-simulation phase.
Two functions are executed inside this component:

• fill_fault_sites_list(). At the very beginning of the simulation, the Sequencer reads
the fault sites list generated with the fault list generation script (section 2.2.1) and
creates some internal copies using lists of strings, more precisely one for each fault
kind. Despite slowing down the start-up process to make these copies, this solution
saves a lot of time in the long run. The main advantage is that whenever a new fault
item must be created, there is no need to access and reread the file. In this way, the
accesses to the file are reduced and in turn the simulation time.

• pick_fault(). With the setup obtained through the previous function, creating a
fault item basically means picking a fault site from one of the lists, and assigning
the corresponding fault kind and injection time. The execution of this function is
triggered by the generate_next_fault port.

2.3.6 Bus Functional Model (BFM)
The BFM acts as the fault injector of the system, and for this reason, it is also called
Driver.
Two functions are executed inside this component:

• force_fault. As soon as the simulation starts, and whenever the analysis phase
of an injected fault is over, the BFM retrieves from the Sequencer a new fault
and injects it on the DUT by executing on the simulator the command "force
(fault_item.fault_site) (fault_item.fault_kind)".

• release_fault. Before a new injection cycle is allowed to start, the BFM must release
the old fault by executing on the simulator the command "release
(fault_item.fault_site)".

2.4 Simulation flow
With the splitting of all the different tasks between these components, the simulation
flow turns out to be very linear and manageable. It is divided into three phases: init
phase, core phase and end phase. In each of the three phases, one or more functions
per component are executed. What is astonishing is that the complexity behind all these
functions is completely hidden from the user who can launch the simulation by simply
using the xrun command with the desired flags. The complete simulation flow is depicted
in figure 2.8.

30

2.4 – Simulation flow

Figure 2.8. FIeVC fault simulation flow

31

Fault Injection e Verification Component (FIeVC)

2.5 Resetting the DUT using the Testflow feature
The flow described so far does not take into account a simple yet crucial limitation:
whenever the BFM performs a new injection, it is required to reset the DUT and restart
the test from the beginning.
Resetting the DUT is needed because most probably the previous error spread inside the
circuit corrupting sequential elements, so the DUT must be restored to a known and safe
state. The first solution that comes to mind is very simple: close the simulation and
restart it, injecting the new fault as soon as the new simulation starts.
Although it sounds like an easy problem to solve, implementing this first solution brings
a high overhead in terms of simulation time mainly due to the time required by the
XceliumTM Simulator to open and retrieve the design snapshot. On top of that, the fault
lists generated in the Sequencer would be useless because they would get overwritten at
every new launch of the simulation, making it impossible to keep track of the already
injected faults. This means that rolling back to a single fault list contained in a file would
be required, further incrementing the simulation time. Considering all the downsides of
this solution, some time was spent to give a look at all the tools and features that Specman
e has to offer to check if another, less consuming solution could be implemented.
The solution found relies upon the advanced Testflow feature. The benefits of using this
approach are multiple and, if considered altogether, they heavily increase the performance
of the FIeVC .
By making the FIeVC components and the test itself "Testflow aware", it is possible to
partition the simulation and test execution into multiple subphases. With this structure,
the simulator guarantees that a unit proceeds to the next phase only after all activities
related to the current phase are done. The simulation therefore shifts from a monolithic
execution of the test to a multi-threaded version.
There are 8 predefined phases, 6 of which are used in the FIeVC . The implemented phases
are:

• ENV_SETUP. An objection is raised to make the test start.

• RESET. Both DUTs are reset to accept a new injection.

• INIT_DUT. After the reset but before the test execution, the faulty DUT is initial-
ized with a new injected fault.

• MAIN_TEST. With the faulty DUT ready, it is possible to start the test sequence.

• FINISH_TEST. Whenever the test sequence ends or a mismatch in a safety output
is detected, the test sequence is halted. From here the fault is analyzed and then
the test is brought back to the restart phase.

• POST_TEST. When the fault list is over, instead of going back to the reset phase
the test proceeds with the objection dropping and its natural conclusion.

The biggest strength of this approach is that it is possible to restart the test from a specific
phase at run time regardless of which phase is currently executed.

32

2.5 – Resetting the DUT using the Testflow feature

By exploiting the phases, the built-in synchronization feature and the rerun functionality,
it is possible to reset the DUT over and over again whenever a new injection must be
performed.
The functions seen in section 2.3 now become threads, each executed in a specific Testflow
phase as shown in table 2.1.

Phase
Component BFM Monitor Analyzer Test

ENV_SETUP start_test()
RESET drive_reset()
INIT_DUT force_fault() generate_fault()
MAIN_TEST monitor() drive_sequence()
FINISH_TEST release_fault() rerun(RESET) analyze_fault()
POST_TEST stop_test()

Table 2.1. Thread partitioning among the different Testflow phases

2.5.1 Simulation flow using the Testflow feature
The flow with this new functionality is very similar to the one explained in section 2.4
but more focused on the execution of Tesflow phases rather than on the single functions,
as shown in figure 2.9.

Figure 2.9. FIeVC fault simulation flow with active Testflow feature

33

Fault Injection e Verification Component (FIeVC)

2.6 Backpropagation issue
Unfortunately, a strange behavior was observed when injecting some faults during the
initial tests performed on the SMI240. More precisely, it looked like some faults were ob-
served on certain safety outputs not belonging to the forward cone of logic of the injected
node. The presence of a problem in the environment was made clear by the detection of
the fault effects even on the golden DUT, causing the entire simulation to fail. To make
the FIeVC usable was mandatory to understand the source of this problem and solve it.
To determine the causes of this behavior, a manual inspection of the signals’ propagation
on the schematic tracer was performed. The response of the circuit after an injection is
shown in figure 2.10. As observed from this picture, forcing a signal to assume a value also
forces all other signals connected to it to assume the same value, no matter if it belongs
to the forward or backward cone of logic.
The problem thus arises because the XceliumTM Simulator force command does not have
protection against backward propagation of the injected fault which is therefore propa-
gated throughout the whole net, up to the driver. This means injecting a signal is always
equivalent to injecting its driver and the whole net.
Considering that the VHDL port mapping connects two signals without interposing any-
thing between them, very likely the design will have big nets composed of different signals.
Depending on where the driver is located, the backpropagation is classified as external or
internal, and both of them require countermeasures to stop the propagation.

Figure 2.10. force command propagation error

2.6.1 External backpropagation
Among the two, external backpropagation is the one that does not allow performing fault
simulation at all. This means that a solution must be found no matter what.
This type of backpropagation is observed when the injected node is directly connected
to a DUT faulty input. If this is the case, it means that the driver of that node is
located outside the DUT faulty, and drives both the faulty and the golden DUT. The
combination of this structure and the force command behavior explained before causes
the fault to propagate from the faulty to the golden DUT because injected on the driver’s
output which is external.
The solution to this problem is to interpose a buffer between all the DUT faulty input
lines and their corresponding original drivers (figure 2.11) so that the input signals’ drivers
become the buffers themselves, reducing the scope of injection merely to the faulty DUT.
The buffer insertion is performed through the TB readaptation script, as explained in
section 2.2.2.

34

2.6 – Backpropagation issue

Figure 2.11. Extended TB structure to solve external backpropagation issue

2.6.2 Internal backpropagation
Unfortunately, this problem does not show only at the DUT faulty boundary but also
inside the component for the same reason. This means that faults cannot be injected on
component/gate inputs, but only on outputs (because they act as drivers for whole nets).
This is certainly a limitation of the FIeVC that must be considered when performing a
fault campaign.
To temporarily patch this issue, the fault list generation script (2.2.1) is modified so that
the list contains not the signals themselves but rather their drivers. Before proceeding with
the simulation, the generated list of drivers is re-elaborated to remove all the duplicates.
This solution makes it possible to perform the entire fault campaign and compare the
results with XFS with the downside of reducing the scope of the fault injection to only a
portion of the injectable nodes.
Two possible solutions for this problem are here reported but not implemented in the final
version of this thesis:

• Using fast recompilation feature of the XceliumTM Simulator to perform dynamic
buffer insertion. The fast recompilation allows recompiling a single VHDL file of
the entire design, reducing the time needed for subsequent compilations. In this
way, it is possible to add a buffer where needed, recompile the file and execute the
simulation. Anyway, this solution is not compatible with the Testflow feature, thus
bringing a huge loss in terms of performance.

• Creating a new Python script that duplicates every single file in the design with a
new version that puts buffers on all the components.

35

36

Chapter 3

Xcelium Fault
Simulator (XFS)

3.1 Main features
XFS is an easy and quick-to-setup tool able to operate within the existing XceliumTM

Simulator compiled engine, allowing for the seamless reuse of functional verification envi-
ronments. This means that it is possible to set up and perform a complete fault simulation
campaign by simply extending the simulation flow, without any required modification on
the pre-existing environment.
Contrary to the FIeVC , XFS supports only the serial fault simulation algorithm when
dealing with VHDL components. On top of that, this tool does not have a fast reset fea-
ture like the one offered by the FIeVC with the Testflow feature, meaning that the only
way to perform multiple injections in sequence is to close the running simulation, restore
the elaborated snapshot and relaunch the simulation from scratch. Later in section 4 the
impact that these two missing features have on the overall performance is shown.
Aside from all the files belonging to the original verification environment, two new files
are needed to use XFS:

• A fault specification file. Through this file, some preliminary information about the
fault simulation is passed to XFS. In particular, the command fault_target is used,
followed by the path of the component or sub-component on which the fault injection
is executed. This command also accepts two flags: -type to specify the type of fault
to inject (SA0, SA1, SET, SEU or all of them), -select to specify which types of nets
are going to be injected (ports, cells or sequential signals only).

• A strobe file. This file is used to define the splitting between functional and checker
outputs as discussed in section 2.2.2. To increase the reusability of this flow, instead
of generating a strobe file for each DUT, the tool uses a further TCL script that
automatically sets both functional and checker outputs by analyzing the component’s
output ports during the elaboration phase. Lastly, this script is also used to specify

37

Xcelium Fault Simulator (XFS)

strobing events for the signals. When the faulty DUT is simulated and these events
are triggered, the current value of all signals is compared with those expected.

3.2 Simulation flow
The overall simulation flow is quite different from the one used in the FIeVC , especially
because of the different algorithm used.
Using a serial algorithm means that it is possible to simulate only one DUT at a time.
This brings the need to perform a preliminary golden simulation in which a faultless DUT
is simulated. This simulation is performed using the classic xrun command. By using the
strobe events defined in the strobe file (section 3.1), the expected behavior of the golden
DUT is extracted and saved in the so-called fault database.
With the database ready, the desired fault list is generated by launching the xfsg command.
It is now possible to start all the simulations one after the other comparing at each and
every occurrence of the strobe events the obtained behavior with the expected behavior
stored in the database. The fault classification is in turn stored inside the database, and
at the end of the fault simulation campaign, a report can be generated through the xfr
command.
The scheme depicted in figure 3.1 summarizes all the steps mentioned above to get a
working fault simulation.

Figure 3.1. XFS fault simulation flow (credits to Cadence®)

Regarding fault categorization, the same approach described in section 2.3.4 is used.
The usage of a Makefile is highly suggested to wrap all the required commands and relative
flags and options under a single Make entry. The great advantage that Makefile also offers
is the possibility to declare environment variables whenever launching a new command.
Thanks to the Makefile, it is no longer necessary to split and rewrite all the files for the

38

3.2 – Simulation flow

functional verification, the FIeVC fault simulation and the XFS fault simulation. Simply
wrapping the non-shared portions of code around an ifdef directive makes it possible to
execute only those portions of code required by the desired procedure.

39

40

Chapter 4

Results

To validate the FIeVC performance a small portion of the SMI240 is used as DUT. In
particular, the chosen section is the accelerometer datapath. A sample of 1,000 faults (500
SA0 and 500 SA1) is extracted from the total pool of 37,542 faults of this component,
such that each fault site is a driver to avoid different behaviors when simulating with XFS
and with the FIeVC (see section 2.6.2). At the end of both simulations, a report with all
the necessary information is generated.
In figure 4.1, the comparison between the classification done by the two tools is shown. As
can be seen, XFS is able to classify only 840 faults out of 1,000, most probably because it
is not able to inject errors in those sites. By evenly splitting these 160 not-injected faults
among the other four categories, UU and DU have a pretty much perfect match between
the two tools. The only negative note of the FIeVC is a strange behavior observed in
the classification of DD and UD. The tool classifies in fact a lot of expected DD as UD.
The causes of this tendency toward the UD classification over the DD should be probably
sought again in the effect that the force command has on the system (see section 2.6).

Figure 4.1. Comparison between XFS and FIeVC fault classifications

41

Results

The Key Performance Indicator (KPI) used to check the consistency of the FIeVC w.r.t.
XFS is the TC. The TC is in fact defined as the percentage of detected faults out of the
detectable faults in the design. In other words, the TC is the ratio between the number
of detected faults over the injected faults. This means that the global behavior of the two
tools can be considered similar if their TCs are similar.
As expected, the two TCs are the same and in figure 4.2 the trivial comparison between
them is shown. Much more relevant in this picture is the simulation time instead. As
shown in the figure, in fact, the FIeVC simulation only takes 7 hours, against the 22
hours taken by XFS. This means that the FIeVC takes 68% less time to perform a full
simulation, which is a huge improvement considering that full fault simulations can take
up to some weeks or even months. The two main actors that bring to this outstanding
performance are the run-time Testflow reset and the parallel algorithm, as already stated
earlier.

Figure 4.2. Comparison between XFS and FIeVC TC and total simulation time

42

Chapter 5

Conclusions

This thesis is focused on the development of a fault injection and fault analysis tool for
safety-critical applications SoCs, where the impact of faults can be potentially disruptive.
The environment is developed in Specman e language to be fully compatible with the
underlying verification environment and with the goal of being non-invasive, easy to use,
highly adaptable and flexible.
The design of this tool is based on the most common fault simulator architectures, in
which the main components are:

• The driver to inject new faults.

• The monitor to check if faults propagate to outputs.

• The analyzer to classify each fault.

• The fault database.

Comparative results with the well-known XFS tool show that the usage of the parallel
algorithm over the serial one, and the implementation of the optimized Testflow reset
procedure cuts the total simulation time by 68% while keeping the test coverage level
unchanged. This means that even if there is not a perfect equivalence in the fault classifi-
cation between the two tools, the overall analysis brings the same result. On top of that,
an improvement of three times in terms of performance is crucial in the fault simulation
field, where simulations and analyses can last up to several days (if not entire months).
The main limitation of the architecture at the moment is the impossibility of correctly
injecting all the existing fault sites due to the problem of internal backpropagation pre-
sented in section 2.6.2. Nevertheless, this limitation could be removed in the near future
by finding a way to stop backpropagation.
The future of the FIeVC in BST seems bright, but still, a lot of improvements can be
made to make it more fungible and part of the standard BST verification process. In the
future, the following points could be addressed to unleash the full potential of this tool:

43

Conclusions

• Solve the backpropagation issue.

• Evaluate the benefits of parallel fault injection with multiple faulty DUTs running
in parallel to optimize simulation time.

• Expand the environment to make more complex and more precise analyses.

• Perform new tests on bigger designs like system-level architectures, or more complex
ones like gate-level components to check if the tool is adaptable to all these different
scenarios.

• Start a validation process with the ISO to ensure the level of compliance of this tool
and check whether it can be used on real application projects for external customers
too.

44

Bibliography

[1] Algorithms for Fault Simulation. URL http://ece-research.unm.edu/jimp/vlsi_
test/slides/html/fault_simulation1.html. Accessed: 2023-07-17.

[2] Fault Injection. URL https://en.wikipedia.org/wiki/Fault_injection. Ac-
cessed: 2023-07-19.

[3] Determining Diagnostic Coverage. URL https://www.kvausa.com/
determining-diagnostic-coverage/. Accessed: 2023-07-14.

[4] ASIL Certification for HW Components and HW Evaluation,
2021. URL https://www.functionalsafetyfirst.com/2021/08/
asil-certification-for-hw-components.html. Accessed: 2023-07-13.

[5] Automotive Safety Integrity Level, 2023. URL https://en.wikipedia.org/wiki/
Automotive_Safety_Integrity_Level. Accessed: 2023-07-13.

[6] Vibrating structure gyroscope, 2023. URL https://en.wikipedia.org/wiki/
Vibrating_structure_gyroscope. Accessed: 2023-07-13.

[7] Zain Ul Abideen and Muhammad Rashid. Efic-me: A fast emulation based fault
injection control and monitoring enhancement. IEEE Access, 8:207705–207716, 2020.
doi: 10.1109/ACCESS.2020.3038198.

[8] Agarwal and Fung. Multiple fault testing of large circuits by single fault test sets.
IEEE Transactions on Computers, C-30(11):855–865, 1981. doi: 10.1109/TC.1981.
1675716.

[9] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing, 1(1):11–33, 2004. doi: 10.1109/TDSC.2004.2.

[10] Marcello Barbirotta, Antonio Mastrandrea, Francesco Menichelli, Francesco Vigli,
Luigi Blasi, Abdallah Cheikh, Stefano Sordillo, Fabio Di Gennaro, and Mauro
Olivieri. Fault resilience analysis of a risc-v microprocessor design through a ded-
icated uvm environment. In 2020 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6, 2020. doi:
10.1109/DFT50435.2020.9250871.

45

http://ece-research.unm.edu/jimp/vlsi_test/slides/html/fault_simulation1.html
http://ece-research.unm.edu/jimp/vlsi_test/slides/html/fault_simulation1.html
https://en.wikipedia.org/wiki/Fault_injection
https://www.kvausa.com/determining-diagnostic-coverage/
https://www.kvausa.com/determining-diagnostic-coverage/
https://www.functionalsafetyfirst.com/2021/08/asil-certification-for-hw-components.html
https://www.functionalsafetyfirst.com/2021/08/asil-certification-for-hw-components.html
https://en.wikipedia.org/wiki/Automotive_Safety_Integrity_Level
https://en.wikipedia.org/wiki/Automotive_Safety_Integrity_Level
https://en.wikipedia.org/wiki/Vibrating_structure_gyroscope
https://en.wikipedia.org/wiki/Vibrating_structure_gyroscope

BIBLIOGRAPHY

[11] A. Benso, A. Bosio, S. Di Carlo, and R. Mariani. A Functional Verification based
Fault Injection Environment. In 22nd IEEE International Symposium on Defect and
Fault-Tolerance in VLSI Systems (DFT 2007), pages 114–122, 2007. doi: 10.1109/
DFT.2007.31.

[12] J. Carreira, H. Madeira, and J.G. Silva. Xception: a technique for the experimental
evaluation of dependability in modern computers. IEEE Transactions on Software
Engineering, 24(2):125–136, 1998. doi: 10.1109/32.666826.

[13] Yung-Chang Chang, Li-Ren Huang, Hsing-Chuang Liu, Chih-Jen Yang, and Ching-Te
Chiu. Assessing automotive functional safety microprocessor with iso 26262 hardware
requirements. In Technical Papers of 2014 International Symposium on VLSI Design,
Automation and Test, pages 1–4, 2014. doi: 10.1109/VLSI-DAT.2014.6834876.

[14] A. C. L. Chiang, I. S. Reed, and A. V. Banes. Path sensitization, partial boolean
difference, and automated fault diagnosis. IEEE Transactions on Computers, C-21
(2):189–195, 1972. doi: 10.1109/TC.1972.5008925.

[15] Avidan Efody. Getting ISO 26262 Faults Straight. URL https:
//verificationacademy.com/topics/functional-safety/articles/
Getting-ISO-26262-faults-straight. Accessed: 2023-07-14.

[16] Sameh El-Ashry, Mostafa Khamis, Hala Ibrahim, Ahmed Shalaby, Mohamed Ab-
delsalam, and M. Watheq El-Kharashi. On error injection for noc platforms: A
uvm-based generic verification environment. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 39(5):1137–1150, 2020. doi:
10.1109/TCAD.2019.2908921.

[17] International Organization for Standardization (ISO). Road vehicles – Functional
safety, ISO 26262, 2011.

[18] International Organization for Standardization (ISO). Road vehicles – Functional
safety - Part 1: Vocabulary, ISO 26262, 2011.

[19] International Organization for Standardization (ISO). Road vehicles – Functional
safety - Part 5: Product development at the hardware level, ISO 26262, 2011.

[20] Gajski and Kuhn. Guest editors’ introduction: New VLSI tools. Computer, 16(12):
11–14, 1983. doi: 10.1109/MC.1983.1654264.

[21] Robert Bosch GmbH. Bosch MEMS sensors, 2022. URL https://www.
bosch-mobility.com/en/solutions/electronic-components/mems-sensors/.
Accessed: 2023-07-12.

[22] U. Gunneflo, J. Karlsson, and J. Torin. Evaluation of error detection schemes using
fault injection by heavy-ion radiation. In [1989] The Nineteenth International Sym-
posium on Fault-Tolerant Computing. Digest of Papers, pages 340–347, 1989. doi:
10.1109/FTCS.1989.105590.

46

https://verificationacademy.com/topics/functional-safety/articles/Getting-ISO-26262-faults-straight
https://verificationacademy.com/topics/functional-safety/articles/Getting-ISO-26262-faults-straight
https://verificationacademy.com/topics/functional-safety/articles/Getting-ISO-26262-faults-straight
https://www.bosch-mobility.com/en/solutions/electronic-components/mems-sensors/
https://www.bosch-mobility.com/en/solutions/electronic-components/mems-sensors/

BIBLIOGRAPHY

[23] J.L.A. Hughes. Multiple fault detection using single fault test sets. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 7(1):100–108, 1988.
doi: 10.1109/43.3137.

[24] J. Karlsson, U. Gunneflo, P. Liden, and J. Torin. Two fault injection techniques for
test of fault handling mechanisms. In 1991, Proceedings. International Test Confer-
ence, pages 140–, 1991. doi: 10.1109/TEST.1991.519504.

[25] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo. Using heavy-ion
radiation to validate fault-handling mechanisms. IEEE Micro, 14(1):8–23, 1994. doi:
10.1109/40.259894.

[26] Philipp Kilian, Armin Köhler, Patrick Van Bergen, Markus Wörz, Martin Schneider,
Thorsten Groh, Tihomir Tomanic, and Martin Dazer. Best practices for advanced
modeling of safety mechanisms in an fta. IEEE Access, 11:60109–60129, 2023. doi:
10.1109/ACCESS.2023.3284751.

[27] Maha Kooli and Giorgio Di Natale. A survey on simulation-based fault injection
tools for complex systems. In 2014 9th IEEE International Conference on Design
Technology of Integrated Systems in Nanoscale Era (DTIS), pages 1–6, 2014. doi:
10.1109/DTIS.2014.6850649.

[28] Douglas Lohmann, Fabrizio Maziero, Elco João dos Santos, and Djones Lettnin.
Extending universal verification methodology with fault injection capabilities. In
2018 IEEE 9th Latin American Symposium on Circuits Systems (LASCAS), pages
1–4, 2018. doi: 10.1109/LASCAS.2018.8399945.

[29] G. Miremadi and J. Torin. Evaluating processor-behavior and three error-detection
mechanisms using physical fault-injection. IEEE Transactions on Reliability, 44(3):
441–454, 1995. doi: 10.1109/24.406580.

[30] Daniel Mueller-Gritschneder, Petra R. Maier, Marc Greim, and Ulf Schlichtmann.
System c-based multi-level error injection for the evaluation of fault-tolerant systems.
In 2014 International Symposium on Integrated Circuits (ISIC), pages 460–463, 2014.
doi: 10.1109/ISICIR.2014.7029567.

[31] Alessandra Nardi, Samir Camdzic, Antonino Armato, and Francesco Lertora. Design-
For-Safety for automotive IC design: Challenges and opportunities. In 2019 IEEE
Custom Integrated Circuits Conference (CICC), 2019.

[32] Animesh Sarkar. ASIL (automotive safety integrity levels) rat-
ings simplified, 2022. URL https://www.linkedin.com/pulse/
asil-automotive-safety-integrity-levels-ratings-animesh-sarkar/. Ac-
cessed: 2023-07-13.

[33] Horst Schirmeier, Martin Hoffmann, Christian Dietrich, Michael Lenz, Daniel
Lohmann, and Olaf Spinczyk. Fail*: An open and versatile fault-injection frame-
work for the assessment of software-implemented hardware fault tolerance. In 2015

47

https://www.linkedin.com/pulse/asil-automotive-safety-integrity-levels-ratings-animesh-sarkar/
https://www.linkedin.com/pulse/asil-automotive-safety-integrity-levels-ratings-animesh-sarkar/

BIBLIOGRAPHY

11th European Dependable Computing Conference (EDCC), pages 245–255, 2015. doi:
10.1109/EDCC.2015.28.

[34] V. Sieh, O. Tschache, and F. Balbach. Verify: evaluation of reliability using vhdl-
models with embedded fault descriptions. In Proceedings of IEEE 27th International
Symposium on Fault Tolerant Computing, pages 32–36, 1997. doi: 10.1109/FTCS.
1997.614074.

[35] Daniel Skarin, Raul Barbosa, and Johan Karlsson. Goofi-2: A tool for experimen-
tal dependability assessment. In 2010 IEEE/IFIP International Conference on De-
pendable Systems Networks (DSN), pages 557–562, 2010. doi: 10.1109/DSN.2010.
5544265.

[36] Loughborough University. An introduction to MEMS, 2002. URL
https://www.lboro.ac.uk/microsites/mechman/research/ipm-ktn/pdf/
Technology_review/an-introduction-to-mems.pdf. Accessed: 2023-07-12.

[37] P Vinopoornima and G Dhanabalan. Identification of stuck-at-faults of full adder
using fpga as a testing device. In 2019 IEEE International Conference on Intel-
ligent Techniques in Control, Optimization and Signal Processing (INCOS), pages
1–4, 2019. doi: 10.1109/INCOS45849.2019.8951350.

[38] Jeff Watson. MEMS gyroscope provides precision in-
ertial sensing in harsh, high temperature environments,
2016. URL https://www.analog.com/en/technical-articles/
mems-gyroscope-provides-precision-inertial-sensing.html. Accessed:
2023-07-13.

48

https://www.lboro.ac.uk/microsites/mechman/research/ipm-ktn/pdf/Technology_review/an-introduction-to-mems.pdf
https://www.lboro.ac.uk/microsites/mechman/research/ipm-ktn/pdf/Technology_review/an-introduction-to-mems.pdf
https://www.analog.com/en/technical-articles/mems-gyroscope-provides-precision-inertial-sensing.html
https://www.analog.com/en/technical-articles/mems-gyroscope-provides-precision-inertial-sensing.html

	List of Figures
	Acronyms
	Introduction
	Background
	Fault life cycle
	Fault Models
	Stuck-At Faults

	Functional safety in iso 26262
	Failure modes classification
	Safety metrics
	Automotive Safety Integrity Level (ASIL)

	Safety Mechanisms (SMs) overview
	Micro Electro-Mechanical Systems (MEMS)
	Accelaration sensor
	Gyroscope sensor
	Bosch SMI240 Inertial Measurement Unit (IMU)

	Related works

	Fault Injection e Verification Component (FIeVC)
	Generic parallel fault simulator structure
	Preparatory scripts
	Fault list generation script
	tb readaptation script

	fievc structure
	Fault item
	Signal map
	Monitor
	Analyzer
	Sequencer
	Bus Functional Model (BFM)

	Simulation flow
	Resetting the dut using the Testflow feature
	Simulation flow using the Testflow feature

	Backpropagation issue
	External backpropagation
	Internal backpropagation

	Xcelium Fault Simulator (XFS)
	Main features
	Simulation flow

	Results
	Conclusions

