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Summary
Data interlinking plays a crucial role in expanding and enriching linked open
data. One approach to address data interlinking involves the utilization of link
keys, which extends the concept of keys to scenarios where two RDF datasets
are described using distinct ontologies. An alternative approach employs various
similarities measures to evaluate the proximity of instances and decide if they
have to be linked. In this work, we will employ numerical link specifications and
document similarity.
Both approaches have their respective advantages and limitations, and none of
them provide a comprehensive solution for all interlinking challenges.
Hence, this master thesis considers ways to combine such approaches elegantly,
using the combination operators disjunction and injective complementation. We
will make use of pairs of datasets to perform experiments in order to analyze
the performance of different combination methods.
The results show that the combination of the two approaches was productive,
although it is very depending on the task we are analyzing.
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1 Introduction
In today’s society, we have access to vast amounts of information from var-
ious sources such as governments, universities, and online newspapers. The
abundance of data from various sources has led to the emergence of linked
data [11], which refers to a collection of practices facilitating the publication
of structured data on the web. Linked data principles involve the use of Uni-
form Resource Identifiers (URIs) as identifiers and technologies like Resource
Description Framework (RDF) to establish semantic relationships between en-
tities and describe them.
One of the significant advantages of linked data is the ability to identify the
same entity across different datasets through links. For instance, these links
can identify the same books or articles in distinct bibliographical data sources.
By leveraging these links, we can exploit the content of multiple data sources
and draw inferences between datasets. Therefore, identifying the manifestation
of the same entity across various datasets is a critical task in linked data. The
process of identifying and creating links is called data interlinking.
It is a practical approach that aims to enhance the effectiveness of data analysis
and utilization, when dealing with diverse data extracted from multiple sources.
Different approaches and methods have been proposed to solve this task [19],
[27]. We can classify them in two approach: numerical methods and logical
methods.
Numerical methods examine the property values of two resources and determine
which pairs should be linked based on similarity measurements. On the other
hand, logical methods employ an axiomatic characterization to determine when
two resources are considered the same, enabling the discovery of owl:sameAs
links between URIs from different datasets.
However, relying on a single approach may be limiting when attempting to gen-
erate all the necessary links in certain tasks. Instead of solely selecting the
method with the best performance, it may be worthwhile to explore the optimal
combination of both numerical and logical methods.
This report will focus on defining and combining two link specifications [29],
expressed using different methodologies, that have been extracted from two RDF
datasets. For that purpose, we will:

• Define what a link specification is.

• Explain what the two different approaches are for expressing a link speci-
fication and how to combine them.
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1 – Introduction

• Provide the semantics of compound operators.

• Discuss strategies for finding the best combination.

• Evaluate these strategies with experiments.

The report will encompass both theoretical and practical aspects. The theoreti-
cal section will include definitions of link specifications and compound operators,
while the practical section will involve an analysis of various experiments and
the exploration of practical techniques for achieving the desired goals.
In Chapter 2 we consider related work in data interlinking, and especially ap-
proaches that consider combining link specifications, than in Chapter 3 we give
the definition of link specifications, link keys and present the tools used. Moving
forward (Chapter 4) we will discuss the evaluation measures used for analyzing
the results obtained. Chapter 5 will primarily focus on combination operators,
presenting mathematical definitions as well as practical examples. In Chapter
6, we will present the datasets and methodology employed in our experiments.
Finally, in Chapter 7-8-9, we will showcase the three conducted experiments,
accompanied by graphical data and a detailed explanation of the results. The
report will conclude with a summary of works and conclusions.
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2 Related Work
The ultimate goal of data interlinking is to find pairs of URIs that represent the
same entity in two different RDF datasets [19] [27] [13]. This process results in
a set of links that can be added to the datasets by associating the corresponding
IRIs (Internationalized Resource Identifiers) with the owl:sameAs property.
The task can be simplified as follows: given two sets of identifiers ID and ID

′

from two datasets D and D′, we want to find the link set L which denotes the
same resource in both datasets.
The work is concerned with the combination and evaluation of several interlink-
ing approach together, we will combine link keys and numerical link specification
with each other.
Most methods roughly compute a numerical link specification ⟨σ, θ⟩ made of a
similarity measure σ between the entities to be linked and a threshold θ.
In this area Wombat [33] offers a method to navigate the realm of these link
specifications, commencing with the fundamental similarity between pairs of
datatype property values. Through supervised learning, it acquires the capabil-
ity to understand conjunction, disjunction, and differentiation of link specifica-
tions.
For numerical link specifications, links are usually produced by using a frame-
work, such as SILK [37] and LIMES [28]. LIMES is a framework specifically
created for interlinking datasets, incorporating a wide array of similarity mea-
sures that encompass numerical attributes. It offers a selection of similarity
functions and customizable threshold settings, simplifying the process of defin-
ing numerical link specifications.
LIMES operates in a similar manner to SILK, with the main distinction being
the absence of expressing the inverse operator and the specific mode of com-
position in a link specification. While Limes requires the link specification to
be written in an XML format, Silk provides a graphical interface that enables
us to easily connect property compositions from both datasets. KnoFuss [30]
is a system for semantic data fusion. It takes as input two semantic datasets
represented in RDF and resolves the data linking problem. For this task there
are several techniques which can be applied: for example, string based and set-
based similarity metrics for individual matching, using ontological constraints
and belief networks for dataset matching.
Azmy et al. [8] use RDF2vec [31] for entity matching across knowledge graphs,
and show a large-scale study for matching DBpedia and Wikidata, a similar
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2 – Related Work

approach is introduced by Aghaei and Fensel [3], who combine RDF2vec em-
beddings with clustering and BERT [16] sentence embeddings to identify related
entities in two knowledge graphs.
In our work we investigate the application of link keys, a specific variant of
logical link specifications. Link keys can be seen as an extension of relational
database keys, adapted to accommodate situations involving disparate datasets
and the unique attributes of RDF.
While a link key can be conceptualized as a set of aligned keys, the relationship
between link keys and keys is more intricate.
The key-based methods proposed by Achichi [2] and Farah [18] involve using
a key extraction algorithm [34] to extract pairs of keys that can serve as link
specifications. These approaches focus on extracting IN-keys, which are based
on shared values between properties present in both source and target datasets.
It is assumed that the two datasets are described using the same ontology, and
as a result, the extracted IN-keys typically correspond to strong IN-link keys,
rather than weak IN-link keys.
The distinction between strong and weak link keys lies in their treatment of
duplicates when finding links between two datasets. Both types of link keys
facilitate link discovery, but they vary in their allowance of multiple resources
satisfying the key conditions within each dataset. Weak link keys permit dupli-
cates, whereas strong link keys prohibit any duplicates.
Specifically, when combining keys and an alignment, it forms a strong link key,
while weak link keys are named so because they may not necessarily be com-
prised of keys. It’s worth noting that there may not necessarily be a one-to-one
correspondence between keys and link keys, and searching for keys that can be
converted into link keys may not always be successful [6] .
KeyRanker [18] outlines an approach for choosing and composing a disjunction
of multiple pairs of such keys. The selection process initiates with the most
comprehensive candidate, and subsequent key pairs are chosen based on the
incremental coverage they provide upon addition.
Atencia [5] propose a method for extracting link keys between two classes from
two RDF datasets, which doesn’t require an initial alignment between the prop-
erties of both datasets or make assumptions about their common vocabularies.
This approach extracts link key candidates from the data and then uses mea-
sures of the quality of these candidates to select the best option. It doesn’t rely
on supervised machine learning and, therefore, doesn’t require training links.
This deliverable aims at exploring the feasibility of merging link specifications
by establishing their syntax and semantics. In particular, it endeavors to ex-
pand the approach of extracting link key candidates into the realm of combining
extracted link keys, offering valuable insights into the process.

12



3 Preliminary Definition
3.1 RDF Dataset

Before going into the main topics, I will explain RDF and present the symbolism
we will use from now on.
RDF (Resource Description Framework) is a fundamental technology that un-
derlies the Semantic Web. It is a standard for representing structured data and
knowledge on the web in a machine-readable format and provides a flexible and
extensible framework for describing resources and their relationships.
At its core, RDF represents information as triples, consisting of subject-predicate-
object statements.
The subject refers to the resource being described, the predicate denotes a spe-
cific property or attribute of the subject, and the object represents the value or
another resource associated with the subject.
In RDF, an individual denotes a distinct resource or an instance belonging to
a class within an ontology. Essentially, it represents a singular object or entity
in the actual world.
Overall, RDF plays a crucial role in enabling the Semantic Web vision by pro-
viding a foundation for representing, linking, and leveraging structured data on
the web.
Now, we provide a definition of an RDF data set and their signature.

Definition 1. (RDF Dataset) Let U be a set of IRIs, B a set of blank
nodes and L a set of literals. An RDF data set is a set of triples from (U ∪ B) ×
U × (U ∪ B ∪ L).
Given an RDF data set D, we denote by UD, BD and LD, respectively, the sets
of IRIs, blank nodes and literals present in D.

Definition 2. (Signature of an RDF dataset) The signature of an RDF
data set D is the tuple ⟨RD, PD, CD⟩; where RD is the set of object property
identifiers, PD is the set of datatype property identifier and CD is the set of
class identifiers.

Recalling that in RDF, an individual may have several values for the same
property, we give an example of a RDF triple: ⟨ a1:o1, rdf:type, a1:Book ⟩, i.e.
all those entities with an identifier o1 of type Book.

13
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3 – Preliminary Definition

3.2 Link specification
In order to generate links between two RDF data sets, we give the definition of
link specification. This term encompasses numerical and logical link specifi-
cations.

Definition 3. (Link specification) A link specification is a function which
associates to two data sets D and D′ a set of links Ls(D, D′).

In order to process a link specification, we will use two frameworks Silk1 and
Linkex2, allowing expression of numerical and logical link specifications respec-
tively. The present work is concerned with the combination and evaluation of
two link specification’s methods together.
A numerical link specification ⟨σ, θ⟩ is made of a similarity measure σ and a
threshold θ. The idea is that two very similar entities can be considered as
equals.
For a given pair of datasets D and D′, such specifications may generate links
through (adapted from [33]) :

LD,D
′

σ,θ = {⟨o, o
′⟩ ∈ ID × ID′ ; σ(o, o

′) ≥ θ}

That is, given two entities (o, o′) belonging to two sets of individual identi-
fiers ID and ID′ from two RDF data sets, we will consider them to be equal and
include them in the set L of links if and only if their similarity value is greater
than θ.

We will use Silk Workbench to show an example of numerical link specification,
to do this we will use a default Silk task consisting of two datasets containing
entities on the movie theme.

1http://silkframework.org/
2https://gitlab.inria.fr/moex/linkex
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3 – Preliminary Definition

Figure 3.1: Example of a numerical link specification

Figure 3.1 illustrates an example of a numerical link specification imple-
mented in Silk. Given two entities, they are equivalent if certain conditions are
met. If the Levenshtein similarity between the "name" property value and the
"label" property value is greater than 0.92 and, if the similarity value between
the release dates of both entities is greater than 0.95, than the two entities are
deemed equivalent. The and operator is represented by the minimun aggrega-
tor. As we can see in this example the choice of similarity measure will vary for
each property comparison, and we should opt for the most suitable algorithm
for each comparison.

A logical link specification is a logical axiom used to find links between two
different datasets, the links are therefore a consequence. Unlike numerical spec-
ifications, it can be combined with other kinds of knowledge, such as ontologies
and ontology alignments, to infer links by using reasoning [9] [10] [23] [32].
While logical link specifications do not inherently include similarity metrics, it
is possible to deal with such metrics separately through the implementation of
specific rules or as part of a data preprocessing stage if deemed necessary.
Key-based specification are one of the several ways to express a logical link
specification.
Interlinking is usually accomplished in key-based approaches by extracting keys
from RDF datasets and then integrating them with ontology alignments [18] [2]
[34] [1].
In this context, we explore the utilization of link keys, which are a specialized
form of logical link specification. Link keys can be regarded as an extension of
relational database keys to encompass scenarios involving two distinct datasets
and the unique characteristics of RDF [17] [5] .

15



3 – Preliminary Definition

Definition 4. (Link key)A link key expression over two signatures ⟨R, P, C⟩
and ⟨R′

, P
′
, C

′⟩ is an element of 2(P ×P
′
)∪(R×R

′
)× 2(P ×P

′
)∪(R×R

′
)×(C × C

′), i.e.

{⟨pi, p
′

i⟩}i∈EQ, {⟨qj, q
′

j⟩}i∈IN , ⟨c, c
′⟩

such that EQ and IN are (possible empty) finite set of indices.

An example of a link key expression is:

{⟨prenom, firstName⟩}, {⟨nom, lastName⟩} link key ⟨Employés, Employees⟩
states that if an entity of the dataset Employés shares all the values of the

property prenom with all the values of the property firstName of dataset Em-
ployees, and at least one value of the property nom, with the value of the prop-
erty lastName of the dataset Employees, then they represent the same entity.
Let us clarify this concept using a practical example:

Employés

id prenom nom
a1 Giorgio Orioles
a2 Julie, Mary Jang
a3 Helene Mayer
a4 Paul, Mark Rudd

Employees

id firstName lastName
b1 Giorgio Orioles
b2 Julie Polar
b3 Helene, Anna Mayer
b4 Paul, Mark Rudd

Table 3.1: Entities of datasets Employés and Employees.

Applying the previous link key to these two datasets, we will get ⟨a1, b1⟩ and
⟨a4, b4⟩ as links; ⟨a3, b3⟩ is not selected because the first condition of sharing all
first names is not met.

3.2.1 Symbolism
Since in the following chapters we will use a symbolism, to express a link spec-
ification, slightly different from the one presented above, I will present it and
clarify its use. Let us begin with the premise that this symbolism is valid for
both link keys and numerical link specifications, and in addition, from now on
we will only represent and analyse IN-keys (sharing at least 1 value per prop-
erty).
While comparing properties between two distinct datasets, the choice of how to
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express a link specification depends on the specific properties being compared.
However, it is not always necessary to directly compare two properties; there is
also the option of composing them to create a new link specification.
Since RDF datasets are graph-based, with entities pointing to other entities, it
is important to remember that object of properties can themselves be entities
with their own properties. This allows us to express compositions of properties.
The composition operator ("/") will be used to represent a direct composition
between two properties. To clarify this concept, let us give an example:

Example 1: Given two datasets Staff and Employees, a possible link specifica-
tion could be {}, {⟨ dbp:building/dbp:area/foaf:name, wdt:building/wdt:sector/rdf:label
⟩}, ⟨Staff, Employees⟩.
Let us use graphs to better understand how it works.

(a) Staff (b) Employees

Figure 3.2: Graphs of datasets Staff and Employees

In our example, the two entities Employee_1 and Employee_3 cannot be
linked because the name of the area/sector of the building in which they work
are not the same ("mOeX " != "tyrex").
In addition to the composition operator, there is another one, the inverse op-
erator ("\") that acts in the opposite direction, searching for all entities that
have a property with a value (or entity) equal to the previous property. This
operator only has value if there is a composition of at least two properties, oth-
erwise it would lose its meaning, since, as explained earlier, it searches for all
entities that have the value of the property indicated after the \ equal to the
value of the property indicated before the \; if we remove the first property we
will not be performing the required operation, since we would have no value to
compare. Let us clarify this with an example:

17



3 – Preliminary Definition

Example 2: Given two datasets Staff and Employees, a possible link speci-
fication with the \ operator could be {⟨ ⟩}, {⟨ dbp:building/dbp:area/foaf:name,
wdt:building\ wdt:locatedIn/rdf:label ⟩}, ⟨Staff, Employees⟩.

When we look at the Figure 3.2 again, we find that the two entities don’t
correspond. In Employees dataset, we need to fetch the names of the sector
entities that share the same building as Employees_3. In this case, they don’t
match because "mOeX " is not equal to "tyrex".
In addition to generating property compositions, we can create a link specifica-
tion containing several property comparisons.

Example 3: Given two datasets Staff and Employees, a possible link speci-
fication could be: {⟨ ⟩}, {⟨name, name⟩, ⟨building, building⟩, ⟨team, group⟩},
⟨Staff, Employees⟩.

The example shows 3 different pairs of properties, links will be generated be-
tween entities that meet all three property comparisons. Thus only entities with
the same name, the same building and the same team will be added to the set
LD,D′ .
By examining this final example, we can gain a clearer understanding of the
distinction between link keys and numerical link specifications. A link key con-
sisted of multiple property comparisons, can be interpreted as a combination of
atomic link specifications, resulting in the intersection of the links identified by
each of them.

Example 4: Given the link specification of Ex. 3 and the three atomic link
specification a = (name, name), b = (building, building), c = (team, group).

LD,D′ = La ∩ Lb ∩ Lc

On the contrary, numerical link specifications provide the option to select ag-
gregators that merge similarity scores from several comparisons or aggregation
operators into a single score based on a designated aggregation function. Pop-
ular examples of aggregation functions include the weighted average and the
minimum score yielded by all operators.
In our work we will always use the minimum operator, as it acts similarly to
what we have seen for link keys, i.e. it finds the intersection between the link
sets of the different atomic link specifications.
From now on, we will use these symbolism to express the link specifications
analysed in the experiments.
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3.3 Tools
Let shift our attention to the specific tools I utilized, namely Linkex and Silk.
The selection of Linkex is driven by its unique capability to extract link key
candidates, whereas other tools merely extract key pairs without emphasizing
property composition.
On the contrary, Silk is among the numerous tools available for generating
numerical link specifications. The choice was made because Silk is likely the
most comprehensive and user-friendly option. Its graphical interface facilitates
the creation of link specifications, and it offers a wide range of features not found
in other tools currently available in the market.

3.3.1 Linkex
Linkex [1] is a tool allowing to discover link keys candidates between two RDF
datasets.
A link key candidate is a pattern of a link key expression defined as:

Definition 5. (Link key candidate) A link key expression K is a link key
candidate over two classes C, C′, if L(K) /= 0 and there is no link key expression
H such as H ⊆ K that generates the same link set as K i.e. L(K) /= L(H)

In order to correctly extract link keys candidates, Linkex use a Pattern Struc-
ture (PS) [20] which is a generalization of FCA (Formal Concept Analysis) [21]
to deal with non binary data.
After computing the PS, it generates a pattern concept lattice using a modi-
fied version of the AddIntent algorithm [35]. In this lattice, the intent of each
resulting pattern concept corresponds to a link key candidate, and its extent
represents the set of identity links generated by that candidate.

The tool allows to use several candidate extraction options, the main ones are:

• -c: define the maximum number of properties in a composition

• -c1 and -c2 : this option allows, for both datasets, the selection of specific
classes for analysis, enabling the user to focus on relevant data.

• -i: considers inverse of the properties (\ operator)

• -s: is a support threshold between [0;1] which enable to consider only prop-
erties that are instanciated for the specified percentage of instances.

• -t ⟨ eq or in ⟩: define the types of extracted keys (eq or/and in-link keys)
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To ensure accurate generation of links, it is necessary to normalize the data
by comparing properties. In our case, string normalization is the appropriate
approach. Linkex has incorporated various normalization techniques into the
code, such as standardizing date formats, rectifying ISBN codes, verifying if
a string represents a number, and more. We are specifically interested in two
types of normalizations: removal of special characters and conversion of strings
to lowercase. The original code included an additional normalization algorithm
that treated a string as a collection of letter or digit sequences, sorted them
accordingly. However, due to the inability to replicate this normalization on
Silk, I chose to remove it and maintain a consistent preprocessing phase across
both tools.

After generating a link key candidate, the tool saves the corresponding set of
generated links and provides the discriminability and coverage measures. These
measures are used for the selection of link keys.

3.3.2 Silk

Silk [37] is an open source framework for integrating heterogeneous data sources.
It is built on the Linked Data paradigm, which is founded on two fundamen-
tal concepts. Firstly, RDF provides an expressive data model for representing
structured information. Secondly, RDF links enable the connection of entities
across different data sources.
"Developers can utilize the declarative Silk-Link Specification Language (Silk-
LSL) to specify which types of RDF links should be established between data
sources, as well as the conditions that data items must satisfy to be interlinked"
[37].
These link conditions encompass diverse similarity metrics and can incorporate
the examination of the chart surrounding a data item, which is accomplished
through the utilization of an RDF path language.
Furthermore, the language specifies the access parameters for the pertinent data
sources and configures caching, indexing, and preselection functionalities within
the framework.
Different aggregation functions can be applied to the similarity scores when cre-
ating link conditions.
Silk accesses the relevant data sources through the SPARQL protocol, making it
suitable for use with both local and remote SPARQL endpoints. We will create
link specifications using the Silk Workbench graphical user interface.
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Data Sources

We will use a single method to input datasets into Silk, the Turtle one. We
will use Apache Jena Fuseki [12], a SPARQL server that provides a REST-style
interface for querying and updating RDF data and provides a web interface for
executing SPARQL queries against the uploaded data.
Silk provides the option to select entities belonging to a specific class and apply
property restrictions when defining link specifications. This allows for greater
precision and control over the linking process.

Link Specification Language

The core of a Silk link specification is the similarity metric section, which out-
lines how similarity metrics are combined to calculate a total similarity value for
a pair of entities. Silk provides several built-in similarity metrics for comparing
property values or sets of entities. [37]
Each metric in Silk evaluates to a similarity value between [0;1], with higher
values indicating a greater similarity.
The implemented similarity metrics in Silk cover comparisons between strings,
numbers, dates, coordinates, etc. However, for the purpose of our project, we
will only focus on the string similarity measures since those are the only ones I
used.
Specifically, they are: Jaro-Winkler distance [39] and Levenshtein distance [26],
I suggest referring to the book ’Data Matching’ [13] to gain a better understand-
ing of the different similarity metrics and their appropriate usage.
I chose to set the threshold for the similarity measure between 0.90 and 0.97,
based on the recommendation in the book ’Data Matching’ to use a high thresh-
old in order to achieve the most accurate results.
Aggregation functions can be applied to combine these similarity metrics.
As previously mentioned in Chapter 3, we will be using the MIN function. It is
worth noting that Silk also provides other aggregation functions, such as maxi-
mum, average, product and euclidean distance.
Similar to Linkex, preprocessing functions are utilized in Silk to normalize data
and generate a comprehensive set of links. These transformations may vary de-
pending on the type of data being analyzed. In our case, since we are comparing
strings, we will be using a filter to remove special characters and convert text
to lower case.

Posterior Evaluation

After we have manually completed our link specification, we can proceed to link
the data. In addition to generating the set of linked entities, we are given the
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option to manually evaluate each individual pair, examining both the property
value and the similarity value.
Although Silk allows for the input of reference links, either manually or via a
file, to enable the automatic calculation of precision and recall values, I have not
been able to use this feature, as to date, it is not working, so I use Alignment
API for measuring precision and recall, as I will explain in section 4.1 .
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4 Composition Operators
Now, shifting our attention to the primary objective of this work, which is to
integrate the two interlinking approaches, let us explore the composition op-
erators. These operators are introduced to be applied to form compound link
specifications:

Definition 6. (Compound link specification) Given two data set signa-
tures S and S′, a compound link specification over S and S′ is [7]

• either an atomic link specification over S and S′, or

• s ∧ s′ (conjunction)

• s ∨ s′ (disjunction)

• s \ s′ (complementation)

• s | s′ (injective complementation)

• s ⊕ s′ (symmetric injective complementation)

Definition 7. (Link set of compound link specification) Let D and D′ be
two data sets of signatures S and S ′. Let s and s′ be two link specifications over
their signatures, the link set generated by a compound link specification is the
subset of cD × c′D

′

defined as:

LD,D
′

s∧s′ = LD,D
′

s ∩ LD,D
′

s′

(4.1)
LD,D

′

s∨s′ = LD,D
′

s ∪ LD,D
′

s′

(4.2)
LD,D

′

s\s′ = LD,D
′

s \ LD,D
′

s′

(4.3)
LD,D

′

s|s′ = LD,D
′

s ∪ (LD,D
′

s′ −̇ LD,D
′

s )
(4.4)

LD,D
′

s⊕s′ = LD,D
′

(s∧s′)|(s∨s′)
(4.5)

such that LD,D
′

s′ −̇ LD,D
′

s = {⟨o, o
′⟩ ∈ LD,D

′

s ; o /∈ π(LD,D
′

s′ ) ∧ o′
/∈ π

′(LD,D
′

s′ )}
where π(Ls) = {o ∈ D; ⟨o, o′⟩ ∈ Ls} and π′(Ls) = {o′ ∈ D′; ⟨o, o′⟩ ∈ Ls}
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Since our goal is to combine link specifications, we can, for example, select
their intersection as conjunction does or take the union of the two, like the
disjunction operator does, or finding more complex combinations expressed by
the other operators. Out of the five operators available, I employed injective
complementation and disjunction in my work. This selection is justified by
the suitability of these operators for our objective.
Disjunction, in particular, generates the greatest number of links compared to
the other operators, it consists in the union of the links of the two link specifi-
cations.
On the other hand, injective complementation proves useful as it prioritizes the
first link set, enhancing our ability to model the combination by selecting the
optimal link sets from both approaches.
To elaborate on the notion of injective complementation, it returns links from
the first link specification supplemented with links from the second link specifi-
cation whose entities are not part of the first link specification.
Unlike disjunction, it gives priority to the first link specification and comple-
ments it with never found entities extracted from the second link specification.
Since link keys have better precision, we will choose them as the first link spec-
ification of the operator, putting for second the numerical link specifications,
which on the other hand have better recall. With the aim of integrating posi-
tive links generated by numerical link specifications without losing the precision
of the link key’s link set.
Hence, my anticipation is that recall is expected to be higher when using the
disjunction operator compared to other operators, as it typically generates a
larger link set. To facilitate understanding, let us give an example:

Staff

id name company team
i1 George Inria Moex
i2 Julie LIG Sigma
i3 Elena LJK Dao
i4 Paul Inria Tyrex
i5 Marco LIG Sigma

Employees

id name company group
z1 George Inria Moex
z2 Julie LIG Polar
z3 Elena LJK
z4 Paul Inria Tyrex
z5 Anna Sigma

Table 4.1: Instances of classes Staff and Employees of two RDF datasets D
and D′.
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Example 5. Given the following link specifications: k = ⟨name, name⟩ and
m = ⟨team, group⟩, with link sets:

Lk
D,D

′

= {⟨i1, z1⟩, ⟨i2, z2⟩, ⟨i3, z3⟩, ⟨i4, z4⟩}
Lm

D,D
′

= {⟨i1, z1⟩, ⟨i2, z5⟩, ⟨i4, z4⟩, ⟨i5, z5⟩}

We can compute the combination of the two using the two operators disjunction
(∨) and injective complementation (|) as follows:

LD,D
′

k∨m = LD,D
′

k ∪ LD,D
′

m = {⟨i1, z1⟩,⟨i2, z2⟩, ⟨i2, z5⟩, ⟨i3, z3⟩, ⟨i4, z4⟩, ⟨i5, z5⟩}
LD,D

′

k|m = LD,D
′

k ∪ (LD,D
′

m − LD,D
′

k ) ={⟨i1, z1⟩, ⟨i2, z2⟩, ⟨i3, z3⟩, ⟨i4, z4⟩, ⟨i5, z5⟩}

Beginning with the disjunction, the link set is formed by combining the links
from the first link specification with those from the second link specification.
For the injective complementation’s link set, we first include all the links from
the first link specification, and then we add the links from the second link spec-
ification if their entities are not already present in the first link specification.
As a result, ⟨i5, z5⟩ are added, while ⟨i2, z5⟩ are excluded since i2 is already
present in the first link specification as part of the ⟨i2, z2⟩ link.

4.1 Analysis of operators
After introducing the two operators we intend to use, I will provide additional
information regarding the expected recall values resulting from their combina-
tion. This will involve presenting the upper and lower bounds associated with
each operator.
However, we cannot do the same for precision, since there are no upper or lower
bounds for either operator.

• Disjunction’s Recall: recall(Ls∨s′ ) ≥ max(recall(Ls), recall(Ls′ ))

• Injective Complementation’s Recall: recall(Ls|s′ ) ≥ min(recall(Ls),
recall(Ls′ ))

Where min and max represent the minimum and maximum recall value between
the link sets of the two approaches.
Both operators enhance the recall of the link specification with lowest recall,
resulting in an improvement over that link specification. Regarding precision,
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injective complementation favors the first link specification, which was deliber-
ately chosen to have higher precision than the other. This preference should
contribute to enhancing the accuracy of the second link specification or poten-
tially improve both link specifications. However, it is important to note that we
cannot ascertain this mathematically, as there is also a possibility of precision
deterioration in both link specifications.
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5 Evaluation Measures
In the field of evaluation measures, we can categorize them into two classes:
unsupervised and supervised measures.
An "unsupervised" measurement method refers to a measurement that is calcu-
lated without any external guidance or supervision. In simpler terms, it means
that we do not have a set of reference links.
On the contrary, a "supervised" measurement method involves having a refer-
ence link set. The algorithm utilizes the provided true links as supervision to
conduct the calculation.
In this work, I employed two supervised measures, namely recall and precision
[38], as the performance metrics for our evaluation. To assess the effectiveness
of link specifications, we will refer to a set of reference links, which includes all
links deemed to be accurate between the two datasets.
On the other hand, the selection of link key candidates was based on two unsu-
pervised measures, discriminability and coverage.

5.1 Supervised measures
Assuming we have a ground-truth data set with the true match statuses of all
record pairs, we can classify each entity pair into the following four categories
[14]:

• True positive (TP). The following record pairs have been identified as
both matching and truly representing the same entity. In other words,
both records in these pairs refer to the identical entity.

• False positive (FP). These record pairs have been identified as matches,
however they do not represent true matches. The two records in each of
these pairs refer to distinct entities. The classifier has erred in identifying
these pairs as matches, which makes them false matches.

• True negative (TN). These record pairs have been identified as non-matches,
and they do indeed represent true non-matches. The two records corre-
spond to distinct real-world entities.

• False negative (FN). These record pairs have been classified as non-matches,
but they are in fact true matches. The two records in each of these pairs
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refer to the identical entity. The classifier has erroneously labeled these
pairs as non-matches, which categorizes them as false non-matches.

Based on the number of true positives , true negatives , false positives and false
negatives , different quality measures can be calculated [14], we will focus on
precision and recall.

• Precision. In information retrieval, this is a widely used metric for evalu-
ating the effectiveness of search results. It is calculated as

prec = TP

TP + FP

Precision determines the ratio of correctly classified true matches (TP)
out of the total number of classified matches (TP + FP). Therefore, it
quantifies how accurate a classifier is in identifying true matches.

• Recall. Another metric used for evaluation. It is calculated as

rec = TP

TP + FN

It determines the ratio of correctly classified true matches (TP) out of
the total number of actual true matches (TP + FN). Therefore, it quanti-
fies how well a link specification has identified actual true matching record
pairs as matches.

To compute these measurements using the set of reference links, I employed the
Alignment API tool [15]. By providing a file with the links generated from a
link specification, the tool yields precision and recall values as output.

5.2 Unsupervised measures
Turning to the unsupervised measures, we will quickly present two measures
used to select the best link key candidates [5].

• Discriminability: A measure of how closely the links generated by a link
specification align with a one-to-one mapping. The purpose of this measure
is to identify and eliminate link specifications that link a single entity from
one dataset to multiple entities in the other dataset, as such links do not
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accurately reflect the true relationships between the datasets.
For example the link key {⟨ ⟩}, {⟨name, firstName⟩}, ⟨Staff, Employees⟩
will produce links with the same entity repeated several times, as, in gen-
eral, many people share the same name.

• Coverage: measures the completeness of a link specification in relation to
the datasets, specifically, it evaluates the proportion of instances from both
classes that would be correctly linked by the link specification. It always
favours the most general link specifications.

We will employ these two measures to identify the link key candidates since,
with only unsupervised measures at our disposal, we sought those that can
serve as approximations of precision and recall. Specifically, discriminability
can be regarded as an approximation of precision, while coverage can be seen as
an approximation of recall. We will focus on candidates with the highest values
of discriminability and coverage among all candidates.
This selection is crucial because low discriminability increases the likelihood of
reduced precision when the same entity appears multiple times despite being
present only once in the reference link set.
Conversely, choosing insufficient coverage would result in too few links for analy-
sis, leading to a lack of representativeness and variability in the data. Addition-
ally, such a choice could introduce higher statistical uncertainty and fluctuation,
thereby affecting the reliability of the obtained results.
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6 Experimental Setting
In this section, we will present findings from experiments conducted with the
two interlinking approaches, as well as their combination using the aforemen-
tioned operators. The initial objective of the experiments is to determine which
of the two operators yield superior results. However, our primary focus is to
demonstrate the potential for obtaining improved link sets by combining link
keys with numerical link specification.

6.1 Experiments
After presenting the basics of the report and explaining the main protocols used,
let us get into the more practical part by explaining the conducted experiments.
The goal is to find the best approach that combines the benefits of link keys
and numerical link specifications, to do this we will use the following three ex-
periments.
In the initial experiment, I explored the combination of a link key and its cor-
responding numerical link specification, referred to as the "relaxed link key”,
the idea is to use the higher recall of the numerical link specification to add
more positive links to the link key thus improving precision and recall.
However, the results did not add value to the link key, which is why our research
will progress towards combining different link specifications. Here the goal
is to get value from the links of another link specification, for this reason we
will not only combine link keys and numerical link specification, but also two
link keys.
In this case, we observe significant improvements in the results, indicating that
combining two link specifications outperforms generating a single relaxed link
key in terms of performance.
For the last experiment, I used a new similarity approach, the document sim-
ilarity approach, overcoming the idea of creating links based on comparison
of properties, generating links using a global approach that transforms entities
into documents, containing their property values, and compares them based on
information retrieval methods.
I combined this new approach with link keys, trying to significantly increase
the recall of link keys while maintaining high values of precision. The results of
the combination led to a substantial improvement over link keys, and a slight
increase in the performance of the similarity approach.
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6.2 Data Sets

For our three experiments, we will utilize three distinct pairs of datasets, with
their corresponding set of reference links used for evaluation.
The Movie Task, which serves as the default in Silk, encompasses two datasets.
One of these dataset comprises entities extracted from DBpedia, while the
other contains entities extracted from linkedmdb. The datasets consist of 2132
and 1987 distinct entities, respectively. Property composition can be employed
within this context. The entities included in these tasks pertain to films, thus
encompassing properties related to movies, such as actors, directors, production
companies, and, quite simply, film titles.

The OAEI 2020 Task, which is also the largest, comprises two OAEI 2020
Campaign datasets focused on the Star Wars films. More specifically, these
two datasets contain entities extracted from two web pages that provide exten-
sive information about the Star Wars saga: http://starwars.wikia.com and
http://swtor.wikia.com. The first dataset consists of over 145,000 instances
across 269 total classes, while the second one contains 4,180 instances across
168 total classes.
The large size of these datasets posed challenges in terms of usability, as both
Silk and Linkex required substantial computation time to calculate all possible
links. To address this issue, I made the decision to manually reduce the size
of the two datasets by selecting entities belonging to a single class. In order
to minimize the reduction, I specifically chose the "character" class, as it was
believed to possess a substantial number of resources; 28430 instances and 804
in the two datasets.
Unlike the other dataset, this particular dataset does not offer the capability to
create link specifications with property composition. This limitation arises due
to both the excessive computational calculations involved and the fact that the
various entities within the dataset are independent of each other.
I want to emphasize that by reducing the datasets, we intentionally decreased
the recall values for each approach. However, it is important to note that this
reduction in recall is not a critical concern for our objective. Our main goal is
to enhance the initial performance of the two approaches without necessarily
focusing on the absolute value of recall obtained.

The Random Task, comprises a collection of entities and their properties ex-
tracted from DBpedia and the second dataset consists of entities extracted from
Wikidata. The task was generated by randomly selecting entities from Dbpedia
and then matching them with corresponding wikidata entities that are intended
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to represent the same entity.
These datasets contain 1184 and 1196 entities, respectively.
Since the task does not focus on a specific macro topic, the entities from the
same dataset are not inherently connected to each other. Therefore, the com-
position of properties should not be considered meaningful.
All three datasets were accompanied by reference link files, that we used in the
calculation of precision and recall.

#instances #links

Movie Dbpedia 2132 211Linkedmdb 1987

OAEI 2020 StarWars 28430 1358Swtor 804

Random Dbpedia 1184 1184Wikidata 1196

Table 6.1: Tasks summary table

We will carry out the first and second experiments on the first two tasks,
while for the last experiment we will use the Random task.

6.3 Methodology
To handle the first and second experiments, I followed the following methodol-
ogy: first, I utilized Linkex to extract potential link key candidates, and then
I filtered them based on specific criteria related to discriminability and number
of links. Among all the candidates, I chose those with the highest values of
discriminability and coverage, as explained in detail in chapter 5.2.
Next, I replicated the identical link specification on Silk to obtain the numerical
link specification associated with the selected link key.
To do this, I had to analyse which properties were involved in the link specifica-
tion in order to use the correct similarity measures and set the correct threshold.
After obtaining both sets of links, I merged the two link specifications using the
injective complementation and disjunction operators. Initially, I combined two
link specifications with similar set of properties, and subsequently with differing
ones.
The combined entity comprising a link key and its corresponding numerical link
specification will be referred to as a ’relaxed link key’.
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However, it is important to note a possible limitation in the methodology for
selecting link specifications.
While Linkex provided all the link key candidates with discriminability and cov-
erage, it was not possible to replicate this functionality on Silk. Therefore, I had
to rely on the numerical link specifications corresponding to the link keys. This
approach may have some drawbacks, as Linkex does not uncover all possible link
specifications, in fact, it only identifies link keys that generate at least one link.
Nevertheless, even if a link key does not find any links, it is highly unlikely that
its corresponding numerical link specification will yield a consistent number of
links and this goes against the rule I used for selecting candidates.
Having clarified this concept, let us proceed with the analysis of the tasks based
on the conducted experiments.
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7 First Experiment
The experimental process will unfold as follows: we will begin by introducing
the two pairs of datasets and outlining the objectives of the experiment. Subse-
quently, we will present the selected link specifications for each task and analyze
the precision and recall results using charts, along with the corresponding per-
centages of improvement or worsening. Lastly, we will provide the conclusions
drawn from the analysis.
We will divide the analysis into two separate sections, one for each task in which
the experiment is carried out.

7.1 Movie Datasets
7.1.1 Selected Link specification
Adhering to the methodology guidelines in chapter 6.3, I initiated the process
by generating link key candidates using Linkex. Subsequently, I employed a
selection criterion that prioritized candidates exhibiting high discriminability
and after evaluating the coverage of the link key candidates, I proceeded to
select the link keys that demonstrated above-average coverage, with a specific
criterion of having a number of links exceeding 40.
This last rule pertaining to the number of links was deemed necessary due to
its significance. Selecting link specifications with a small number of links might
lead to the distortion of the accuracy and reliability of the analysis.
My choices were these:

• Link specification n° 25 = {⟨ ⟩},{⟨ dbpp:cinematography \ dbo:cinematography
/dbpp:title, dcterm:title ⟩,⟨ dbpp:cinematography \ dbo:cinematography/dbpp:title,
rdfs:label ⟩}

• Link specification n° 45 = {⟨ ⟩},{⟨ dbpp:editing \ dbo:editing/dbpp:name,
dcterm:title⟩, ⟨ dbpp:editing \ dbo:editing/dbpp:name, rdfs:label ⟩,⟨ dbpp:editing
\ dbo:editing/foaf:name, dcterm:title ⟩,⟨ dbpp:editing \ dbo:editing/foaf:name,
rdfs:label ⟩}

• Link specification n° 64 = {⟨ ⟩},{⟨ dbo:writer\dbpp:writer/dbpp:title,
dcterm:title ⟩,⟨ dbo:writer\dbpp:writer/dbpp:title, rdfs:label ⟩}

• Link specification n° 97 = {⟨ ⟩},{⟨ dbpp:producer\dbo:producer/dbpp:title,
dcterm:title ⟩, ⟨ dbpp:producer\dbo:producer/dbpp:title, rdfs:label⟩}
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• Link specification n° 102 = {⟨ ⟩},{⟨ dbpp:name, dcterm:title⟩,⟨ dbpp:name,
rdfs:label ⟩,⟨ foaf:name,dcterm:title ⟩,⟨ foaf:name, rdfs:label ⟩}

• Link specification n° 105 = {⟨ ⟩},{⟨ dbpp:writer\dbo:writer/dbpp:title,
dcterm:title ⟩,⟨ dbpp:writer\dbo:writer/dbpp:title, rdfs:label ⟩ }

• Link specification n° 116 = {⟨ ⟩},{⟨dbpp:title, dcterm:title ⟩,⟨ dbpp:title,
rdfs:label ⟩ }

Based on the link specifications, it is apparent that the first dataset consists
in general of compound properties. Specifically, only 2 of them do not contain
composite properties. The reason behind this is the multilevel entity structure
present in the two datasets, where an entity can have another entity as its
property value.
But, the inverse function is employed to achieve a more intricate and, in our
case, more accurate link specification.
Additionally, it is clear that the final interlinking property is determined by
the title or name of the film being analyzed. This analysis holds significant
importance in selecting the appropriate string similarity for the numerical link
specifications, where I chose to utilize the Levenshtein distance, with a threshold
of 0.92. The choice was not dictated by an in-depth analysis of property values;
rather, I chose the most commonly used string measure.
Each of the chosen link specifications is independent of one another, meaning
their link sets are not subsets of each other. This decision was made to maximize
the diversity of the link specifications, aiming for higher precision and recall
values when combined. By selecting distinct link specifications, the likelihood
of duplicate links is reduced, resulting in improved performance.

7.1.2 Results
We now present the results obtained for the relaxed link keys, which I recall
being the combination of a link key and its corresponding numerical link spec-
ification. Together with charts, I will give some information on the link sets
generated for the two approaches. I used an histogram to illustrates the varia-
tion in links generated by two approaches utilizing identical link specifications.
The purpose of this analysis is to identify any correlations between a higher
number of links and improved precision and recall. While it is already estab-
lished that the numerical link specification yields a greater number of links, we
will examine whether the increased discovery of additional links positively im-
pacts recall and precision.
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We will now proceed to present the obtained results using two charts that show
the precision and recall values of four alternatives: original link key, numerical
link specification, relaxed link key with disjunction and injective complementa-
tion.
The x-axis of the charts will display the reference number of the link specifica-
tion for the corresponding values.

(a) Precision (b) Recall

Figure 7.1: Charts of precision and recall for relaxed link keys

The precision and recall values frequently are similar between the four alterna-
tives, except for link specification n° 97, which demonstrates a distinct link set,
it is the only one that obtain better precision for numerical link specification.
In order to provide clearer insights into the results before drawing conclusions,
we will present the average improvement percentages of precision and recall for
each compound operators (RLK Disjunction = Relaxed Link key with disjunction
and RLK InjCompl = Relaxed Link key with injective complementation) com-
pared to the precision and recall of both specific link specifications involved.

Precision Recall
Link Key Sim. Approach Link Key Sim. Approach

RLK Disjunction +1.3% 0% +3.9% 0%
RLK InjCompl +1.3% 0% +3.9% 0%

Table 7.1: Average improvement of performance
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Upon examining the results on Table 7.1, one could argue that both operators
yield similar outcomes, with the numerical link specification often matching the
results of the corresponding link key.
However, upon closer inspection of the charts, it becomes evident that the nu-
merical link specification produces identical results to the link key, which was
not expected. In theory, the numerical link specification should identify more
links, leading to a potential decrease in precision but an improvement in recall.
To investigate this anomaly further, I delved deeper into the issue and discov-
ered that the property involved in the linking process was a string, specifically
film titles that often consist of multiple words. Recognizing the error in selecting
the Levenshtein distance, I will reanalyze the same task using the Jaro-Winkler
distance as string similarity measure, as it is better suited for this particular
purpose.
Before proceeding with the analysis using the Jaro-Winkler distance, we will
first present bar charts displaying the number of links for each of the two ap-
proaches.
Following that, we will examine any potential correlations between the differ-
ence in links and the performance improvement observed in the relaxed link key
approach.

Figure 7.2: Number of links

From the Figure 7.2, it is apparent that the numerical link specification gener-
ates approximately 5-10% more links compared to the link key approach.
This could be advantageous since having a significant number of additional links,
when combined with the link key’s links, may enhance overall performance.
However, if the numerical link specification produced a substantially larger num-
ber of links than the link key, there would be a higher likelihood of including
mostly incorrect links. In such a scenario, combining the two sets of links would
likely result in poorer performance values.
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Move on to the charts and table displaying the average increments of the mea-
sures.

Precision Recall
Link Key Sim. Approach Link Key Sim. Approach

RLK Disjunction -2.1% 0% +3.64% 0%
RLK InjCompl +0.7% +2.88% +2.65% -1.23%

Table 7.2: Average improvement of performance

(a) Precision (b) Recall

Figure 7.3: Charts of precision and recall for relaxed link keys

7.1.3 Disjunction
Upon analyzing the Table 7.2, it becomes evident that when using the dis-
junction operator with relaxed link keys, there is a decrease in precision while
maintaining a value equal to the maximum recall, obtained by numerical link
specifications.
In agreement with the values shown in chart 7.3b, the numerical link specifica-
tions have a recall that is greater than or equal to the recall of the link keys.
Therefore, the combination of the two approaches did not result in a tangible
improvement; instead, it brought the combination’s recall to the same level as
that of the similarity approach.
Shifting our attention to the charts, we can meticulously observe the precision
and recall values for each link specification. It is noticeable that the relaxed
link keys with disjunction (represented by the yellow star) consistently exhibit

38



7 – First Experiment

lower precision values than the link keys, while their recall and their precision is
equal to that of the numerical link specification, indeed, one can see the overlap
of relaxed link keys with disjunction and numerical link specifications in charts
7.3a and 7.3b.
In terms of recall, the simple union approach employed by disjunction aims to
include as many links as possible. However, due to the inclusive nature of dis-
junction, there is a higher likelihood of adding incorrect links, resulting in a
reduction in precision.

7.1.4 Injective Complementation
By transitioning to injective complementation, we observed a minimal average
improvement of 0.7% in precision, alongside a slight decrease in recall of 1.23%.
Specifically, upon examining the charts, we notice that in two out of the seven
link specifications, the precision value is marginally higher than that of the link
keys, while the recall value is lower compared to the numerical link specification.
For a more comprehensive analysis of the precise values associated with each
method and to gain a clearer understanding of the overlapping points, I recom-
mend referring to the appendix A, which contains the complete tables.
The slight increase in precision observed with injective complementation can be
attributed to its emphasis on the links provided by the link keys.
The chart 7.3a illustrates that the link keys exhibit a notably high precision
value. Moreover, injective complementation effectively integrates all the correct
links not detected by the link keys but generated through the less restrictive
condition of the numerical link specification in the most optimal manner.

7.1.5 Comparison between operators
Upon examining the common trends depicted in the charts, we observe a no-
ticeable contrast in precision between the link keys and the relaxed link keys
with injective complementation. However, in terms of recall, injective comple-
mentation yields a lower value compared to the numerical link specification.
Conversely, for disjunction, the presence of multiple links leads to a significant
difference in precision when compared to the link keys.
As previously announced we look for correlations between the bar chart and the
individual values of each link specification.
The bar chart clearly illustrates that link specifications n° 64 and n° 97 exhibit
the largest disparity in the number of links between the two approaches. Based
on this analysis, it becomes apparent that a larger difference in links can lead
to a degradation in performance when using disjunction. However, it provides
an opportunity to enhance precision by utilizing the injective complementation
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operator.
Nonetheless, it is important to acknowledge that the improvements and deteri-
orations observed are minimal, as the relaxed link keys never exhibit a change
greater than 1 percent. Therefore, it is crucial to further investigate this differ-
ence in links when combining multiple link specifications together.

In summary, the results indicate that injective complementation has the highest
potential for improving performance since it increases precision and marginally
reduces recall. On the other hand, disjunction, while having the potential to
increase recall, also carries a significant risk of substantially reducing precision.
It is important to note that neither operator demonstrated outstanding results,
as the changes in precision and recall were less than or equal to 1 percent respect
to the best approach. Therefore, it is advisable to proceed with the analysis of
combining two different link specifications, under the assumption that this ap-
proach has the potential to significantly enhance performance.

7.2 OAEI 2020 Datasets
Now, we will replicate the analyses carried out previously to determine if the
attained improvements of the first experiment can be replicated in this new task.
The methodology employed remains unchanged, with the only addition being a
data selection process to mitigate the computational complexity associated with
these extensive datasets.

7.2.1 Selected Link specifications
I used Linkex to calculate the link keys. However, due to the large size of the
datasets, I had to remove the properties composition. This means that the en-
tities were compared directly based on the value of their properties.
The candidates in this experiment exhibited a unique behavior, there were only
32 completely independent link keys, but each had a high discriminability value
and number of links. To select the link keys, I chose three completely inde-
pendent ones and two additional ones that can be considered as children of the
initial three in a lattice of link keys.
All 5 link keys have high discriminability values and a link count of more than
150, which expresses excellent coverage, so they are good candidates.

• Independent link sets

– Link specification n° 7= {⟨ ⟩}, {⟨ ns5:wikiPageWikiLinkText,ns4:altLabel⟩}
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– Link specification n° 25= {⟨ ⟩}, {⟨ ns5:wikiPageWikiLinkText,ns1:name⟩}
– Link specification n° 30= {⟨ ⟩}, {⟨ns5:wikiPageWikiLinkText,

ns5:wikiPageWikiLinkText ⟩}

• Dependent link sets

– Link specification n° 81= {⟨ ⟩}, {⟨ ns5:wikiPageWikiLinkText,ns1:name⟩,
⟨ ns5:wikiPageWikiLinkText,ns4:altLabel⟩,
⟨ ns5:wikiPageWikiLinkText,ns5:wikiPageWikiLinkText ⟩}

– Link specification n° 82= {⟨ ⟩}, {⟨ ns5:wikiPageWikiLinkText,ns4:altLabel⟩,
⟨ ns5:wikiPageWikiLinkText,ns5:wikiPageWikiLinkText⟩,
⟨ ns5:wikiPageWikiLinkText,rdfs:label ⟩}

It is evident that, similar to the first task, the linking property used in this
experiment is consistently the name or label of the entity. Despite the presence
of many other properties that describe a character, none of them produced link
keys with satisfactory discriminability.
Hence, we can conclude that the name property holds significant importance
and serves as the primary property for entity linking. Therefore, we will con-
tinue to prioritize it in our analysis.
As for generating the corresponding numerical link specifications, I decided to
employ the Jaro-Winkler distance once again, but this time with a higher thresh-
old of 0.97. The rationale behind this decision is that with a lower threshold, a
significant disparity was observed between the links generated by the numerical
link specifications and the link keys. This resulted in lower precision values for
the numerical specifications, while recall values improved significantly.
However, our objective is to enhance both precision and recall or find a reason-
able balance between them. By using a higher threshold, we aim to strike a
balance between the two measures, as a lower threshold would have predomi-
nantly focused on maximizing recall.
Before computing the similarity measure I’ve applied the filters of translating
lowercase characters and removing special characters.

7.2.2 Results
The goal of the experiment, is to confirm the superiority of the injective com-
plementation operator and explore alternative methods beyond the two main
interlinking approaches.
We will begin by examining the relaxed link key approach. However, to simplify
calculations and considering the negative impact of disjunction observed in the
Movie task, we will solely use the injective complementation operator.

41



7 – First Experiment

Based on the results observed so far, the hypothesis is that using relaxed link
keys may yield slight improvements in performance.
Before showing the results, we present a bar chart illustrating the number of
links for each of the two interlinking approaches. This charts can be a valuable
resource for later analysis, since we have a significantly larger datasets com-
pared to the previous experiment, so the results may differ from what we have
previously observed.

Figure 7.4: Number of links

The observed differences between the two approaches are negligible, with only
two link specifications (n° 25 and n° 30) displaying a difference of approximately
4%. This suggests a potential for greater improvement in recall but an uncertain
impact on precision.
Moving forward, we will now analyze the results using the provided table and
charts.

Precision Recall
Link Key Sim. Approach Link Key Sim. Approach

RLK InjCompl +0.04% +2.65% +0.4% -0.03%

Table 7.3: Average improvement of performance
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(a) Precision (b) Recall

Figure 7.5: Charts of precision and recall for relaxed link keys

Upon examining the Table 7.3, it is evident that the results did not show any
improvement or deterioration, with both precision and recall values remaining
similar to the maximum values. However, it is worth noting that unlike the
previous task, the recall value has remained virtually unchanged for the relaxed
link key.
Although this is not a significant result in terms of performance improvement,
it does confirm our decision to exclude the disjunction operator, as its inclusion
would have hypothetically improved recall but adversely affected precision.

7.2.3 Numerical Link Specification
Regarding recall, as mentioned earlier, there is substantial overlap between the
relaxed link key and the numerical link specification, except for one link speci-
fication where there is a slight reduction in value.
The behavior of this approach can be attributed to the datasets themselves and
the numerical link specification. Specifically, since the two datasets are directly
compared, and since the task contains very few links that cannot be found from
the link key candidates used, the addition of one or two links to the link set
leads to marginal increases in precision.
In fact, when comparing the precision values of the numerical link specification,
we observe a notable increase of 2.65%. This can be confirmed by examining
the precision chart 7.5a, where the yellow point consistently remains above the
green point.
The recall chart 7.5b presents more challenges in interpretation due to extreme
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overlapping of the points. This overlapping is evident in the mere average de-
crease of only 0.03% between the relaxed link keys and the numerical link spec-
ifications.

7.2.4 Link key

Similarly to the recall chart 7.5b, the difference in precision between the link
keys and the relaxed link keys is so minimal that it is almost imperceptible.
Therefore, for a more detailed analysis, we refer to the appendix containing the
numerical tables.
Despite a slight increase of 0.04% in precision, it is not significant enough to
be considered as improved performance. The value is too low to indicate any
substantial enhancement.
Regarding recall, the difference between the positive links in the combination
link sets and the link key link sets is minimal. This is evident from the marginal
improvement of only 0.4% in recall. The reason could be found in the minimal
difference between the link keys’s recall and the numerical link specifications’s
recall of 0.43% in favor of numerical link specifications. Consequently, when
combining the two approaches, even a small number of additional positive links
are sufficient to achieve a recall comparable to that of the numerical link speci-
fication.

7.2.5 Comparison between approaches

Due to the reasons outlined earlier, it is challenging to establish a correlation
between the number of links generated by the two approaches and the per-
formance of relaxed link keys. Additionally, the link specifications with a 4%
difference of links between the link key link set and the combination link set, do
not demonstrate a notable increase in correct links compared to the other link
specifications, indicating a similar behavior among them.

In conclusion, this task presents unique characteristics that limit the genera-
tion of relaxed link keys. However, we have further confirmed the suitability of
the injective complementation operator for our objectives.
Let us now proceed to combine two different link specifications to try to over-
come the task limitations.
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7.3 Conclusion
Upon analyzing the results of the two tasks, we observed that the disjunction
operator is comparatively less effective than injective complementation. The
simple union approach utilized by disjunction, though aiming to maximize link
inclusion for improved recall, tends to introduce a higher likelihood of incorrect
links, thereby diminishing precision.
On the other hand, injective complementation yielded minimal enhancement
in both tasks, slightly elevating precision but offsetting this gain with a corre-
sponding reduction in recall.
Consequently, our findings highlight the inadequacy of this method in syner-
gizing the two approaches. For this reason, our forthcoming experiment will
involve exploring the fusion of diverse link specifications.
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8 Second Experiment
The idea of the second experiment is to combine different link specifications
with each other in order not only to overcome the limitations of link key link
discovery, but also with the aim of combining two link specifications with totally
different links and get a more complete and more accurate link set.
We will present the results, as in the previous experiment, dividing them into
two sections one for each task.

8.1 Movie Datasets
To further advance the analysis, we will proceed with combining multiple link
specifications with the objective of obtaining an enhanced link set and test the
superiority of the injective complementation operator over disjunction.
The selection of pairs for combination was conducted randomly, as all the link
specifications are independent of each other.
The forthcoming results will present combinations of two link specifications
utilizing both operators. For the sake of thorough analysis, we will not only
combine a link key with a numerical link specification but also the two link
keys. Specifically, in the former case, we will select the link key that yielded
the highest precision since, as explained earlier, injective complementation gives
precedence to the first link specification.
The hypothesis posits that the combination of the link key and numerical link
specification with injective complementation will offer the highest precision.
Conversely, in terms of recall, it is anticipated that disjunction will yield the
highest value.
Before unveiling the results, we will provide a concise legend summarizing the
approaches employed and the specific link specifications utilized.

• Link-Link Disjunction = disjunction of two different link keys

• Link-Link InjCompl = combination of two different link keys using the
injective complementation operator

• Link-Sim Disjunction = disjunction of a link key and a numerical link
specification

• Link-Sim InjCompl = combination of a link key and a numerical link spec-
ification using the injective complementation operator
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The pairs of link specifications, presented in section 7.1.1, employed for the
combinations are as follows:

• Link specification n° 116 WITH link specification n° 25

• Link specification n° 64 WITH link specification n° 45

• Link specification n° 102 WITH link specification n° 105

• Link specification n° 25 WITH link specification n° 97
In the table below we will use the terms First LS and Second LS to express the
two link specification on which we are comparing the values.

Precision Recall
First LS Second LS First LS Second LS

Link-Link Disjunction -8.52% +4.24% +24.37% +63.48%
Link-Link InjCompl -1.92% +11.37% +21.19% +59.68%
Link-Sim Disjunction -10.23% +5.22% +26% +61.66%
Link-Sim InjCompl +3.15% +20.97% +23.43% +59.03%

Table 8.1: Average improvement of performance

(a) Precision (b) Recall

Figure 8.1: Charts of precision and recall for two link specifications combined

8.1.1 Disjunction
Table 8.1 reveals that all four methods show significant enhancements in recall,
with none displaying an increase of less than 21%. As anticipated, disjunction
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yielded the highest values as it incorporates a larger number of links into its
link sets compared to injective complementation.
Conversely, the operator demonstrated a significant deterioration in precision,
since the addition of new links belonging to the second link set led to a sub-
stantial decrease in precision.
By examining both charts and the table, it becomes evident that Link-Link
Disjunction demonstrates superior precision compared to Link-Sim Disjunction,
whereas the second approach exhibits better recall.
However, it should be noted that despite the low precision values for both ap-
proaches in comparison to the maximum value, recall takes precedence. Con-
sequently, in this particular experiment, the combination of two link keys with
disjunction proved to be less effective than combining a link key and a numerical
link specification using the same operator.

8.1.2 Injective Complementation
Shifting our focus to injective complementation, the only approach that exhib-
ited a slight improvement of 3% in precision was the combination of a link key
and a numerical link specification with the injective complementation operator.
As predicted, both combination approaches involving injective complementa-
tion exhibit the highest precision values, thanks to the inherent behavior of the
operator itself.
Continuing from the previous paragraph, we now compare the two approaches,
namely Link-Link InjCompl and Link-Sim InjCompl. It becomes evident that
the latter yields superior values for both measures, thus reaffirming that com-
bining a link key with a numerical specification is more effective than combining
two link keys.
To explain this observation in terms of recall, it is clear that the link set of the
numerical link specification is more extensive than its corresponding link key,
which increases the likelihood of achieving higher recall.
In terms of precision, however, injective complementation introduces additional
links to the link set of the Link-Sim InjCompl approach. In our specific case,
more positive links are added than negative links, leading to an improvement in
precision.

8.1.3 Comparison between operators
In addition to the values presented for each method, the charts 8.1a and 8.1b
now include the maximum measure between the two link specifications that were
present prior to the combination (red triangle). This inclusion provides further
clarity regarding the results observed in the table.
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Upon examination, it becomes evident that only two out of the four combi-
nations generated significant maximum results for both measures. Specifically,
these combinations involve link specification n° 64 with link specification n° 45
and link specification n° 25 with link specification n° 97. These particular com-
binations yielded a satisfactory average increase in performance.
From these findings, we can conclude that the overall approach is productive.
However, the specific choice of link specifications has a notable impact on the
magnitude of improvements achieved. As our selection of pairs was random, we
cannot outline a definitive protocol for choosing the most optimal combination
of link specifications.
To determine which approach generally performed better, we can exclude the
"Link-Link InjCompl" method as its counterpart, "Link-Sim InjCompl," pro-
duced superior results for both measures. Furthermore, the "Link-Link Disjunc-
tion" method displayed a lower average increase in recall compared to its coun-
terpart, "Link-Sim Disjunction," but exhibited slightly higher precision. Nev-
ertheless, since the deterioration was evident in both approaches, we can also
discard the former.
Thus, we have established that combining two link keys may not yield the op-
timal results for either precision or disjunction. Henceforth, in line with the
objective of this report, we will prioritize combining only link keys with numer-
ical link specifications.
Finally, the best-performing method was the "Link-Sim InjCompl", as it im-
proved both measures. Although it may not be the top choice for increasing
recall, it still delivered a highly satisfactory outcome. Indeed, the improved
recall achieved by the other approaches resulted in a negative alteration of pre-
cision, which is not the desired outcome.

The main finding of this study is that combining two different link specifica-
tions together yields significantly better performance than creating relaxed link
keys.
Furthermore, we have demonstrated that the disjunction operator generally per-
forms inferiorly to injective complementation and moreover the best combina-
tion approach identified is the combination of a link key and a numerical link
specification, surpassing the performance of combining two link keys. This find-
ing holds substantial importance as it aligns with the objective of our report to
explore the combination of these two approaches.
For a more detailed analysis, the next chapter will involve further combinations
of the approaches utilized thus far.
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8.1.4 Combining previous approaches
In this chapter, building upon the previous chapter’s promising results, we will
explore the possibility of further combining the approaches employed so far.
The underlying concept involves integrating the previous combination approaches,
thereby adding an additional layer of combination to enhance overall perfor-
mance. Given the demonstrated superiority of the injective complementation
operator, all approaches will be conducted using this operator.
The hypothesis posits that the results may exhibit slight improvements, albeit
not exceeding 2%. This expectation arises from the belief that in previous exper-
iments, we have already approached the upper limit of performance achievable
through the combination of two link specifications.
Before showing the charts, I will outline the approaches to be analyzed in the
following list.

• RelaxedLink-RelaxedLink = combination of two different "relaxed" link keys.

• LinkKey-RelaxedLink = combination of two different link specification one
is a link key and the other one is a "relaxed" link key

• CombinedLinkKey-TwoApproachCombined = combination of the injective
complementation of the two link key and the injective complementation of
a link key and a numerical link specification.

(a) Precision (b) Recall

Figure 8.2: Charts of precision and recall for combined approaches
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The results depicted in the charts refute the hypothesis put forth, as none of
the three approaches yielded improvements. However, it is worth noting that the
utilized approaches did not disappoint. In fact, two out of the three approaches
matched the maximum values of precision and recall obtained thus far. These
two methods are the combination of two relaxed link keys and the combination
of a link key with a relaxed link key. The latter approach demonstrated slightly
lower values compared to the maximum, particularly in terms of recall.
If we were to provide an explanation for the inability to overcome the limitations
of previous experiments, we must consider the role of the similarity approach
in precision improvement. In this case, instead of adding new links, we are
creating new combined link specifications using relaxed link keys to enhance
performance.
Regarding the last combination attempted in the experiment, the results were
too varied to analyze its behavior effectively. However, a noticeable trend is a
decrease in values compared to the maximum calculated. This can be attributed
to the fact that one element of the injective complementation is the combination
of the two link keys, which, as observed in 8.1, does not perform as well.
These factors contribute to the challenges in surpassing the previous limitations
and achieving further improvements.
While the experiment can be regarded as positive for matching the best method
identified thus far, it is essential to acknowledge that the complexity of these two
methods is higher compared to the methods employed in previous experiments.
In conclusion the experiment showed us how it is not possible to improve the
measures calculated in second experiment, and that moreover the combination
of link key and numerical link specification is not only the most efficient in
terms of precision, but also as computational complexity, as it requires fewer
steps (combinations) to generate the same result presented in this subsection.

8.2 OAEI 2020 Datasets
We proceed to perform the same experiment on another task in order to check
whether the results match the previous task, and thus be able to give general
conclusions about the second experiment.
Since three out of five link specifications are totally independent, we will com-
bine them with each other, and finally we will also combine the two "child" links
specifications with each other. We therefore present the pairs of link specifica-
tions, presented in section 7.2.1, to be combined:

• Link specification n°7 WITH link specification n°30

• Link specification n°25 WITH link specification n°30
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• Link specification n°7 WITH link specification n°25

• Link specification n°81 WITH link specification n°82

As previously stated, the four approaches will be presented again in this exper-
iment, but with different assumptions.
Firstly, concerning the disjunction-based methods, it is expected that they will
exhibit significantly lower precision compared to the approaches utilizing injec-
tive complementation. However, their behavior regarding recall may show the
opposite.
Additionally, considering the findings from the relaxed link key results, it is
possible that the combination of two link keys performs better than the combi-
nation of a link key and a numerical link specification. My hypothesis is that
both approaches could be quite similar to each other.

Precision Recall
First LS Second LS First LS Second LS

Link-Link Disjunction -25.88% +3.64% +7.96% +13.64%
Link-Link InjCompl -4.4% +42.79% +7.86% +13.01%
Link-Sim Disjunction -28.3% +3.33% +8.22% +13.38%
Link-Sim InjCompl -5.5% +46.44% +8.08% +13.26%

Table 8.2: Average improvement of performance

(a) Precision (b) Recall

Figure 8.3: Charts of precision and recall for different link specifications com-
bined
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8.2.1 Disjunction
As anticipated, both approaches (Link-Link Disjunction and Link-Sim Disjunc-
tion) experienced a significant decline in precision due to the large number of
links in each link set.
Thus, performing a direct union of the sets resulted in a considerable deterio-
ration of precision, just as predicted. However, I expected to observe a more
pronounced improvement in recall.
Surprisingly, both approaches demonstrated a similar increase in recall of 7.96%
and 8.22%. This suggests the fact that the link sets of the link key and numer-
ical link specification, for the same link specification, are similar.
Consequently, combining the link sets of both approaches does not yield sig-
nificantly different results. However, in our specific case, the numerical link
specifications’s link sets consistently have a slightly higher number of links.
As a result, the Link-Sim Disjunction method achieves the highest recall value
among all four approaches.
One possible explanation for this similarity could be that, although expressed
using different properties (e.g., ns1:name and ns4:altLabel), the interlinking
property values for the link specifications are actually the same.
Moving forward, both approaches demonstrate a decrease in precision of over
25% when compared to the maximum value. To elucidate this finding, we can
refer back to the earlier explanation, since the link sets of the two link specifi-
cations are highly similar and contain the same correct links, combining them
only introduces more negative links, thus worsening the recall.
An important aspect to highlight is the significantly low precision values ob-
tained by the disjunction-based combinations involving the link specification
n° 30. This is likely due to the fact that this particular link specification has a
much lower precision compared to the link specification it is paired with. Hence,
the selection of link specification n° 30, while independent of the others, was
not optimal for improving performance.

8.2.2 Injective Complementation
As hypothesis earlier, the combination approaches involving injective comple-
mentation did not result in an increase in precision, but have produced better
value than disjunction. In fact, they exhibited a discrete decrease of 4.4 percent
and 5.5 percent, respectively, compared to the best value.
The explanation lies in the composition of the combined pairs of link sets. As
previously mentioned, regarding the similarity of recall values for the disjunc-
tion operator, the various link sets share a significant number of common values,
particularly positive links. This explains why combining two link sets primarily
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adds negative links, consequently leading to a decrease in precision.
In terms of recall, the two different approaches obtained similar values of 7.86%
and 8.08%. This further emphasizes that all four combination approaches
yielded very comparable recall values. The underlying reason for this simi-
larity can once again be attributed to the resemblance of link sets between link
keys and numerical link specifications.

8.2.3 Comparison between operators
The most crucial finding is that the two methods combining link keys outper-
form the other approach. This aligns with our initial assumption, as we observed
in the previous chapter that the numerical link specification generated only a
few additional correct links compared to its corresponding link key.
Thus, when we combine two link keys, we achieve a recall that is quite similar
to that obtained by combining a link key with a numerical link specification.
Moreover, by having fewer negative links, we can attain a higher precision value.

In conclusion, unlike the first experiment, we were unable to achieve a more
efficient method in this case. The charts indeed support this observation. In
the precision chart 8.3a, it is evident that no value surpasses the red triangle,
which represents the maximum value achieved by the two basic approaches.
Conversely, in the recall chart 8.3b, all values exceed the maximum.
Furthermore, we observed that, for this specific task, the most effective approach
for combination is actually the one involving two link keys. This is likely be-
cause the link keys are already responsible for generating the majority of correct
links, while the numerical link specification primarily generates new links, but
with a higher likelihood of being incorrect.

8.2.4 Adding new classes
I initially chose to focus on a single class to reduce computational complexity.
However, we encountered complications due to limitations within the datasets
itself, which prevented us from effectively combining the two approaches.
To address this, we have decided to expand our datasets by adding more classes,
allowing us to analyze a greater number of entities. Moreover, this expansion
presents an opportunity to discover new properties that can generate additional
link keys for use in the combination process.
I have added five new classes, resulting in a tripling of the number of links within
the datasets. However, the link key candidates remained the same, only with a
greater number of links. As expected, the recall has increased, but the precision
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values have remained largely unchanged for each approach and specific link.
I will refrain from presenting the data again to avoid repetition of the same
charts and tables.

In comparing the two experiments conducted thus far, we can not deny that
the combination of the two approaches of interlinking is more performant than
the approaches themselves, however we have been able to see how the dataset
type, the properties utilized, and the dataset’s capacity itself, is fundamental
for our purpose.
To strive towards a new method that combines the two approaches, our next step
in the subsequent chapter will involve replacing the property-based numerical
link specification with a document similarity approach.

8.3 Conclusions
Analyzing the experimental outcomes for both tasks reveals that, in the con-
text of Movie datasets, combining link keys with numerical link specifications
outperforms the combination of two link keys. Notably, the injective comple-
mentation operator emerges as the most effective strategy.
Conversely, the OAEI 2020 datasets exhibit a distinct pattern. Contrary to the
initial task, the same experimental setup not only fails to enhance overall per-
formance but also yields results conflicting with the earlier findings. Here, the
fusion of two link keys slightly outperforms the combination of a link key and a
numerical link specification.
These disparities can be attributed to the pivotal role of dataset characteristics
in shaping combination performance. Varying entity types and their intercon-
nections can favor or impede particular approach combinations, ultimately im-
pacting the global performance.
In fact, depending on the datasets we may generate link specifications that are
very similar to each other, making it unnecessary to combine them.
The next step was to use a new similarity approach that does not focus on
finding links by comparing property values, but rather seeks equality between
two entities by comparing them. This could allow us to have greater inter-
linking capabilities and thus have an additional opportunity for performance
improvement.
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For this final experiment, we will dedicate a bigger chapter due to its unique
methodology and strategy, setting it apart from the previous two experiments.
This includes discussing the approach we employ for extracting links in the sim-
ilarity method, as well as the specific combination operations we utilize.
Subsequently, we will explore into the theoretical framework behind this exper-
iment and outline the step-by-step process that will lead us to the results for
analysis.

Rather than relying on string similarity, we aim to explore an alternative form
of similarity.
The fundamental concept behind this experiment revolves around replacing the
link sets obtained through property-based numerical link specifications with
a link set generated through document similarity analysis between the two
datasets. This approach involves converting each entity into a text document
containing its specific property values and subsequently establishing a link with
an entity in the other dataset that exhibits an high similarity value.

9.1 Document similarity

Document similarity [25] involves assessing the degree of resemblance or over-
lap between two or more documents, considering factors such as their content,
structure, and context. Its purpose is to quantify the level of similarity between
documents.
To achieve this, mathematical models or algorithms are commonly used to ex-
tract relevant information from the documents and compare them.
They analyze factors like word frequency, term co-occurrence, semantic mean-
ing, or syntactic structure to determine document similarity.
The outcome of a document similarity analysis is typically a similarity score
or matrix, where higher scores indicate a greater level of similarity. This score
serves various purposes, such as ranking and retrieving documents based on
their relevance to a given query or identifying similar documents within a large
collection.

In our scenario, the TF.IDF [4] algorithm will be employed for calculating
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term weights in the documents during the embedding phase. Subsequently, co-
sine similarity [24] will be utilized to compare these weights and ascertain the
similarity between the documents during the computation phase. In practical
terms, TF.IDF are utilized to represent documents as vectors in the term space,
enabling the calculation of cosine similarity between these vectors.

9.2 TF.IDF
TF.IDF, which means Term Frequency-Inverse Document Frequency, is a nu-
merical statistic used to determine the significance of a term within a document
or a collection of documents [4].
TF.IDF takes into account two primary factors: term frequency (TF) and
inverse document frequency (IDF).

• Term frequency (TF) measures how frequently a term appears in a docu-
ment. It reflects the significance of a term within a specific document and
is calculated by dividing the number of times a term appears in a docu-
ment by the total number of terms in that document. It provides a local
indication of the significance of a term within a document.

• Inverse document frequency (IDF) evaluates the rarity or uniqueness of a
term across a collection of documents. It is computed by dividing the total
number of documents by the number of documents containing the term, and
then taking the logarithm of that ratio. IDF helps to identify terms that
are more distinctive or informative across the entire document collection.

The TF.IDF score is obtained by multiplying the term frequency (TF) by the
inverse document frequency (IDF) for each term in a document. The resulting
score indicates the relative importance of a term in the document and is higher
when the term appears frequently in the document but is relatively rare in the
overall document collection.

Definition 8. (TF-IDF) Given a term x and a document y the tf.idf value is
expressed as follow:

wx,y = tfx,y ∗ log
N

dfx
(9.1)

where tfx,y represent the frequency of x in y, N is the total number of docu-
ments and dfx is the number of documents that contain x

In summary, TF.IDF provides a way to measure the importance of terms in
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documents by considering both their frequency within a document and their
rarity across a collection of documents. It enables the identification of key
terms and plays a crucial role in various text analysis applications.

9.3 Cosine similarity
Cosine similarity quantifies the degree of similarity between two non-zero
vectors in a vector space by calculating the cosine of the angle between them.
The resulting value, ranging from -1 to 1, indicates the extent of similarity or
dissimilarity between the vectors.
To grasp the concept of cosine similarity, let’s imagine a vector space containing
two vectors, A and B. These vectors can represent various entities with numeri-
cal attributes, such as documents, images, or user preferences. Each dimension
of the vector corresponds to a specific feature or characteristic associated with
the entity.
Cosine similarity is calculated using the dot product of the vectors and the mag-
nitudes of the vectors.
Example 6. Given the two vectors A and B, the cosine similarity formula is:

cos(A, B) = (A ∗ B)/(∥A∥ ∗ ∥B∥) (9.2)

By computing the dot product of vectors A and B and normalizing it based on
the magnitudes of the vectors, cosine similarity provides a measure of how closely
the vectors align in direction and magnitude. A cosine similarity of 1 indicates
strong similarity, 0 denotes no similarity (orthogonality), and -1 signifies high
dissimilarity between the vectors.

9.4 Methodology
As our approach has changed, we will provide a revised explanation of the
methodology employed in our latest experiment. Based on the definition of
numerical link specification, this approach can be categorized as a numerical
link specification. It involves applying a similarity measure to two entities from
separate RDF datasets. However, there is a distinction in the methodology:
instead of utilizing a threshold for all comparisons, the approach selects the top
five values returned by the similarity measure and includes them in the link set.
When it comes to extracting link keys, we have maintained our existing proce-
dure of selecting the best link keys suggested by Linkex.
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The key distinction lies in the generation of a link set for the similarity-based ap-
proach. Initially, we save the property values of each entity from both datasets
into separate text documents, organizing them into two folders representing
their respective datasets. Next, we utilize Elasticsearch to load the data onto a
server, optimizing computational efficiency.
Elasticsearch [22] is an analysis software based on Lucene, employs Lucene’s
inverted index [36] for data storage and retrieval. It is possible to create pro-
grams that facilitates rapid and scalable indexing, searching, and analysis of
large datasets, catering to unstructured, semi-structured, and structured data.
In our case, we create two indexes, one for each datasets, and upload the corre-
sponding folders with documents.
Subsequently, we transform each entity of both datasets into a vector of tf-idf
scores and we calculate the cosine similarity between each source entity and
every target entity, selecting the top five entities with the highest values.
This was done to avoid assuming that the first generated link is always a positive
link. Therefore, I increased the range to include the top 5 links, allowing for a
broader consideration of potential connections, enabling a more comprehensive
exploration of possible links while accounting for variations in similarity mea-
surements.
After a step involving the retrieval of entity URIs, we generate our link set.
From this set, we retrieve only the links where the entities appear exactly once
in the entire set of links. To achieve this, starting from the first link, we search
for all occurrences of both entities and remove them, this algorithm is called
stable marriage.
In conclusion, we will merge the two approaches together. However, unlike be-
fore, we will not combine multiple link specifications, instead, we will integrate
link keys with an extensive link set.
This is because the link set represents the similarity between the two datasets,
rather than reflecting the similarity between entities based on properties com-
parisons.
It’s important to acknowledge that enhancing precision may present challenges.
Therefore, we will prioritize increasing recall while recognizing the potential for
improvements in precision as well.

9.5 Results of Random Datasets
The analysis will differ from previous experiments, as we possess a compre-
hensive link set encompassing both datasets, for this reason we will merge the
extracted link keys with this global link set.
Given the significant disparity in the number of links between the two sets, we

59

https://www.elastic.co/


9 – Third Experiment

will not employ the disjunction operator solely to enhance recall. Instead, we
will aim for balanced performance by utilizing injective complementation giving
priority to the link keys.
Before making any assumptions about the expected results, we will present the
selected link keys and conduct a separate analysis of the link sets derived from
the similarity approach.

9.5.1 Link keys
The candidate generation process involved a property composition value of 3.
The chosen candidates exhibit optimal discriminability, with all having a dis-
criminability score greater than 0.92. Aside from link n° 1108, the other candi-
dates display a moderate number of links, approximately 100.
Regarding the link specifications, it is observed that all five candidates don’t
possess a property composition. This is attributed to the random nature of
the dataset, making it highly improbable to obtain links with multiple property
compositions.

These are the candidates:

• Link specification n°594= {⟨ ⟩}, {⟨ dbo:deathDate, wdt:P570 ⟩}

• Link specification n°601= {⟨ ⟩}, {⟨ dbo:birthDate, wdt:P569 ⟩}

• Link specification n°862= {⟨ ⟩}, {⟨ foaf:homepage, wdt:P856 ⟩}

• Link specification n°1108= {⟨ ⟩}, {⟨ foaf:name, rdfs:label ⟩}

• Link specification n°1148= {⟨ ⟩}, {⟨ foaf:name, wdt:P373 ⟩}

Before proceeding to the next stage of combining approaches, it is important
to highlight an additional characteristic of the link keys: their performance
values.
Upon examination, all link specifications demonstrate outstanding precision,
with each exceeding 0.92. However, due to the relatively small size of some link
sets, the recall values are low, even below 4%.
An exception to this pattern is link key n° 1108, which stands out with its 637
links. Despite the high precision of 0.972, it achieves a recall of 0.524.
This remarkable recall value indicates that the link key candidate already serves
as an excellent representation of the intersection between the two datasets.
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9.5.2 Similarity based approach
I present the performance of the link set obtained from the document similarity.

precision = 0.958 recall = 0.667

While we have achieved a globally representative link set, the recall value falls
short of expectations, capturing only 66% of the available positive links.
This can be attributed to the filtering process where we specifically chose to
include only links with a discriminability equal to 1. As a result, a significant
number of positive links were removed, leading to a 96% decrease in total links
and a decrease in recall from 0.74 to 0.667.
Considering this, combining the link set with the link keys is expected to enhance
the recall value. However, given that the precision values of the link keys are
exceptionally high, with 2 out of 5 candidates achieving a precision of 1, it is
clear that we might not further improve precision.
In fact, considering the high precision of the similarity approach, it is possible
that we might obtain a negative average value for precision.
Therefore, while the combination has the potential to increase recall, it may not
result in a substantial improvement in overall performance due to the precision-
oriented nature of the key link candidates.

9.5.3 Combination’s result
As previously mentioned, I will combine the two approaches using only injec-
tive complementation, as utilizing the disjunction operator would significantly
diminish the high precision of the link keys.
For this experiment, my hypotheses are as follows: we can expect a probable
decrease in precision compared to the link keys, as it is unlikely to be improved
due to the substantial difference in links between the two link sets. On the other
hand, we anticipate an increase in recall. Without further ado, let’s examine
the calculated table and charts.

Precision Recall
Link Key Sim. Approach Link Key Sim. Approach

Link-Sim InjComp -1.31% +0.3% +603% +2.8%

Table 9.1: Average improvement of performance
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(a) Precision (b) Recall

Figure 9.1: Charts of precision and recall

9.5.4 Link Key
Upon analyzing the Table 9.1, it is evident that a decrease in link key’s precision
did occur, meeting the hypothesis made earlier.
The reason behind this can be attributed to the fact that the similarity approach
link set was generated with a discriminability of 1, similar to the link sets of
the link keys. On average, the similarity approach link set contains approxi-
mately three times more distinct entities than the link key link sets, as a result,
a considerable number of links, both positive and negative, are added to the
similarity approach side, leading to a decrease in precision.
Due to the significantly larger number of entities present in the link set of the
similarity approach compared to the link set of the link keys, the increase in
recall is notably substantial, 603%. Overall, this approach distinctly favors im-
provement over link keys, as the combination significantly enhances recall while
experiencing minimal loss in precision.

9.5.5 Similarity approach
When comparing the precision values of the relaxed link keys with those of the
similarity approach, we observe an average improvement of 0.3%. This improve-
ment arises because the precision of the similarity approach is quite high, 0.958.
In addition, the combination produced a 2.8% increase in recall; in the chart
9.1b, we observed an improvement in recall from link keys n° 594 and n° 862,
which initially had a low recall, achieving slightly higher recall than similarity
approach’s recall after the combination.
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Additionally, it is noteworthy that even link key n° 1148, with a recall of ap-
proximately 17%, obtained a recall very similar to the previous two link keys
after the combination.
The combination actually improved performance compared to the similarity ap-
proach, however, the percentages are so low that we actually did not get added
value to the similarity approach.

9.5.6 Comparison between approaches
The charts, reveals that all five combination values are remarkably similar, de-
spite variations in the values of each individual link key.
To comprehend this phenomenon, I observed that the similarity approach, through
injective complementation, essentially incorporates in the other candidates the
same links present in link set n° 1108 (the largest one). Additional links are
subsequently added, resulting in slightly different precision and recall values
among the various link key candidates.
Upon analyzing the data, I noticed that the link keys with the highest number of
links tend to perform better in both measures. These link keys exhibit a higher
initial recall, which is further enhanced through the combination process.
In terms of precision, a larger number of links in the link key link set reduces
the likelihood of adding links from the similarity approach, which, as we know,
possesses lower precision compared to the five link keys.
To provide a more comprehensive analysis, I have included a bar chart below,
comparing the number of links in the link key candidate and the number of links
generated as a result of the combination.
This chart serves to further illustrate the relationship between link quantity and
the outcomes of the combination process.

Figure 9.2: Number of links
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In conclusion, this experiment demonstrates the possibility of utilizing dif-
ferent similarity approaches in combination with link keys. However, in this
case, while an increase in recall was achieved, the decrease in precision was too
significant to consider it an overall performance improvement; we can say that
for this last experiment, the combination effectively combined the benefits of
both approaches, but failed to significantly outperform them.
It is evident that the combination with injective complementation between a
link set representing a single link specification and a link set representing the
similarity between two datasets may not be effective, as it results in the addi-
tion of numerous links from the larger link set, shifting the priority towards the
second link set in the formula 4.2.

64



10 Conclusion
This paper explores the utilization of both link keys and a similarity-based ap-
proach to establish connections between RDF datasets; the goal was to find
an approach that merge link keys and numerical link specification, in order to
combine the benefits of both and get a better interlinking approach of the two.
Given the abundance of approaches utilizing similarity, we chose not to restrict
ourselves to solely relying on property-based numerical link specification. In-
stead, we ventured to directly compare datasets using a document similarity
method, specifically employing the tf-idf algorithm.
Initially, we regarded link keys as the most promising interlinking strategy. How-
ever, as we gained a deeper understanding of the effectiveness of similarity ap-
proaches, we have presented methods that combine these approaches through
the use of two combination operators, namely disjunction and injective comple-
mentation.
Experimental evaluations demonstrate that among the two operators employed,
injective complementation proves to be more suitable for combining the two
approaches. It consistently achieves superior precision values and slightly lower
recall values than disjunction, while still maintaining improved performance.
On the other hand, disjunction primarily serves the purpose of increasing the
recall of the combined link set.
We have also shown that combining the two approaches with each other is more
effective than combining two link keys with each other.
However, we have observed that the effectiveness of such combination methods
varies depending on the characteristics of the datasets being analyzed. Con-
sequently, it can be concluded that the research did not yield optimal results
since injective complementation obtained marginal improvements over the two
approaches, so it can mitigate weaknesses of link key and similarity approach,
although not entirely eliminate them.
Future research could focus on using new similarity approaches to combine with
link keys, an example would be RDF2Vec, the idea is to represent RDF entities
as dense numeric vectors in an embedding space. RDF2Vec generate the vector
embeddings, and then compare the vectors to find similar entities. To generate
vector embeddings with RDF2Vec, the approach uses RDF graph walking. Ba-
sically, random or controlled paths are created in the RDF graph, in which they
move from one entity to another through relationships defined in RDF triples.
These paths generate sequences of entities, which are then used to train the
machine learning model, such as Word2Vec or Doc2Vec.
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The research could move into the exploration of new compound operators, an
hypothesis of a new operator is the conjunction of injective complementation of
the first link specification with the second and injective complementation with
the link specifications reversed. The idea is to use both link specifications by
giving them priority in injective complementation and finally use the intersec-
tion of the two different results.
Another idea is to continue the research done by Atentia in 2019, which searches
for the best way to extract automatic link key candidates using disjunction, re-
placing the latter operator with injective complementation.
So instead of looking for the best disjunction between link keys, we replace a
link key with a numerical link specification and try to exploit the same method
but with injective complementation.
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A Appendices
A.1 Movie Task

A.1.1 Relaxed Link Key Levenshtein

Precision Recall
Link Keys n25 0.6765 0.218
Similarity Links n25 0.6765 0.218
Relaxed Disjunction 0.6765 0.218
Relaxed InjCompl 0.6765 0.218
Link Keys n45 0.75641 0.27962
Similarity Links n45 0.75641 0.27962
Relaxed Disjunction 0.75641 0.27962
Relaxed InjCompl 0.75641 0.27962
Link Keys n64 0.7763 0.2796
Similarity Links n64 0.7763 0.2796
Relaxed Disjunction 0.7763 0.2796
Relaxed InjCompl 0.7763 0.2796
Link Keys n97 0.6538 0.2417
Similarity Links n97 0.6625 0.25118
Relaxed Disjunction 0.6625 0.25118
Relaxed InjCompl 0.6625 0.25118
Link Keys n102 0.928 0.54976
Similarity Links n102 0.928 0.54976
Relaxed Disjunction 0.928 0.54976
Relaxed InjCompl 0.928 0.54976
Link Keys n105 0.7821 0.28909
Similarity Links n105 0.7821 0.28909
Relaxed Disjunction 0.7821 0.28909
Relaxed InjCompl 0.7821 0.28909
Link Keys n116 0.9032 0.3981
Similarity Links n116 0.9032 0.3981
Relaxed Disjunction 0.9032 0.3981
Relaxed InjCompl 0.9032 0.3981
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A.1.2 Relaxed Link Key Jaro-Winkler

Precision Recall
Link Keys n25 0.6765 0.218
Similarity Links n25 0.6666 0.22749
Relaxed Disjunction 0.6666 0.22749
Relaxed InjCompl 0.6857 0.22749
Link Keys n45 0.75641 0.27962
Similarity Links n45 0.72839 0.27962
Relaxed Disjunction 0.72839 0.27962
Relaxed InjCompl 0.75641 0.27962
Link Keys n64 0.7763 0.2796
Similarity Links n64 0.74117 0.29857
Relaxed Disjunction 0.74117 0.29857
Relaxed InjCompl 0.78481 0.2891
Link Keys n97 0.6538 0.2417
Similarity Links n97 0.65476 0.26066
Relaxed Disjunction 0.65476 0.26066
Relaxed InjCompl 0.6666 0.2559
Link Keys n102 0.928 0.54976
Similarity Links n102 0.9141 0.5545
Relaxed Disjunction 0.9141 0.5545
Relaxed InjCompl 0.928 0.54976
Link Keys n105 0.7821 0.28909
Similarity Links n105 0.7683 0.2986
Relaxed Disjunction 0.7683 0.2986
Relaxed InjCompl 0.7848 0.2938
Link Keys n116 0.9032 0.3981
Similarity Links n116 0.8866 0.4076
Relaxed Disjunction 0.8866 0.4076
Relaxed InjCompl 0.9043 0.4028
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A.1.3 Combining Link Keys

Precision Recall
Link Specification n25 WITH Link Specification n116
Link-Link-Disjunction 0.77064 0.39811
Link-Link-InjCompl 0.77885 0.38389
Sim-Link-Disjunction 0.7589 0.4028
Sim-Link-InjCompl 0.9043 0.4028
Link Specification n45 WITH Link Specification n64

Link-Link-Disjunction 0.7333 0.41706
Link-Link-InjCompl 0.7658 0.40285
Sim-Link-Disjunction 0.7154 0.4176
Sim-Link-InjCompl 0.8095 0.4028
Link Specification n105 WITH Link Specification n102
Link-Link-Disjunction 0.8657 0.54976
Link-Link-InjCompl 0.928 0.54976
Sim-Link-Disjunction 0.8417 0.5545
Sim-Link-InjCompl 0.928 0.54976
Link Specification n97 WITH Link Specification n25

Link-Link-Disjunction 0.6372 0.3412
Link-Link-InjCompl 0.7368 0.3318
Sim-Link-Disjunction 0.6325 0.3507
Sim-Link-InjCompl 0.7423 0.3412
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A.1.4 Comparison between operators

Precision Recall
Link Specification n25 WITH Link Specification n116
RelaxedLink-RelaxedLink 0.9043 0.4028
LinkKey-RelaxedLink 0.9043 0.4028
CombinedLinkKey-
TwoApproachCombined

0.8235 0.3981

Link Specification n45 WITH Link Specification n64
RelaxedLink-RelaxedLink 0.8095 0.4028
LinkKey-RelaxedLink 0.8095 0.4028
CombinedLinkKey-
TwoApproachCombined

0.8095 0.4028

Link Specification n105 WITH Link Specification n102
RelaxedLink-RelaxedLink 0.928 0.5497
LinkKey-RelaxedLink 0.928 0.5497
CombinedLinkKey-
TwoApproachCombined

0.8635 0.4781

Link Specification n97 WITH Link Specification n25
RelaxedLink-RelaxedLink 0.7396 0.3365
LinkKey-RelaxedLink 0.7396 0.3365
CombinedLinkKey-
TwoApproachCombined

0.7396 0.3365
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A.2 OAEI 2020 Task

A.2.1 Relaxed Link Keys

Precision Recall
Link Keys n7 0.8281 0.4683
Similarity Links n7 0.8053 0.4691
Relaxed InjCompl. 0.8262 0.4691
Link Keys n25 0.7068 0.4065
Similarity Links n25 0.6778 0.4094
Relaxed InjCompl. 0.7061 0.4087
Link Keys n30 0.3986 0.3925
Similarity Links n30 0.3855 0.394
Relaxed InjCompl. 0.3996 0.394
Link Keys n81 0.8547 0.3336
Similarity Links n81 0.8463 0.3365
Relaxed InjCompl. 0.8558 0.3365
Link Keys n82 0.8443 0.3873
Similarity Links n82 0.8211 0.3889
Relaxed InjCompl. 0.8448 0.3889
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A.2.2 Combining Link specifications
Precision Recall

Link Specification n7 WITH Link Specification n30
Link-Link-Disjunction 0.4335 0.4728
Link-Link-InjCompl 0.7607 0.4728
Sim-Link-Disjunction 0.412 0.4735
Sim-Link-InjCompl 0.7555 0.47435
Link Specification n25 WITH Link Specification n30
Link-Link-Disjunction 0.4173 0.461
Link-Link-InjCompl 0.6713 0.4588
Sim-Link-Disjunction 0.4049 0.4624
Sim-Link-InjCompl 0.6593 0.4602
Link Specification n7 WITH Link Specification n25
Link-Link-Disjunction 0.7144 0.4735
Link-Link-InjCompl 0.7909 0.4735
Sim-Link-Disjunction 0.6873 0.4742
Sim-Link-InjCompl 0.7854 0.4742
Link Specification n81 WITH Link Specification n82
Link-Link-Disjunction 0.8445 0.3881
Link-Link-InjCompl 0.8445 0.3881
Sim-Link-Disjunction 0.8214 0.3895
Sim-Link-InjCompl 0.8448 0.3889

A.3 Random Task
Precision Recall

Similarity Approach 0.958 0.667
Link Keys n594 1.0 0.0794
Relaxed InjCompl. 0.9601 0.6706
Link Keys n601 1.0 0.2137
Relaxed InjCompl. 0.9632 0.6858
Link Keys n862 0.9216 0.0397
Relaxed InjCompl. 0.9578 0.6715
Link Keys n1108 0.9749 0.5245
Relaxed InjCompl. 0.9631 0.7052
Link Keys n1148 0.9742 0.1275
Relaxed InjCompl. 0.9589 0.6698
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