
POLITECNICO DI TORINO

Faculty of Engineering
Master of Science in Computer Engineering

Master Thesis

Securing communication
between microservices in a

multi-cloud scenario using Istio
service mesh

Advisors

Prof. Cataldo Basile
Candidate:

Francesco Nevola

Company tutors

Dott. Riccardo Cavazza
Spike Reply

A.Y. 2022/2023

To my family, my friends and me

ii

Nosce te ipsum.
Socrate

iii

Acknowledgements

I thank my family and friends for being very supportive in this journey.
Without them, I would not have grown this way and I would not have been
able to reach this milestone.
I will always be grateful to you.

iv

Summary

The purpose of this work is to ensure, in a multicloud context, that services
in a microservice application communicate securely.
To do this, we first created two clusters on two different cloud providers and
then installed Istio service mesh.
After creating the environment, we deployed a microservices application,
dividing the services between the two clusters.
Through the creation of ad-hoc metrics, we verified that the services com-
municate with each other by encrypting the connections. We also created
additional metrics to monitor other security-related aspects such as scans of
certificates associated with services, number of requests for individual ser-
vices.
In addition, we test the environment to evaluate if communication take place
encrypting data and application is resilient to Dos attack. In conclusion Istio
service mesh proved to be a good solution in accomplishing the tasks we set
out to do even though it does not guarantee encryption of all communica-
tions.
For future work, it is also possible to use this tool to create authentication
policies and improve dashboard.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Objectives . 3
1.2 Chapter organization . 3

2 Service mesh 4
2.1 Introduction . 4
2.2 Microservices architecture vs monolithic architecture 4

2.2.1 Microservices architecture 5
2.2.2 Monolithic architecture 6

2.3 Service mesh definition . 9
2.4 Services and components . 9
2.5 Control plane and data plane 10

3 Service mesh tools 13
3.1 Introduction . 13
3.2 Istio . 13

3.2.1 Definition . 13
3.2.2 Working mechanism 14
3.2.3 Components . 15

vi

3.2.4 Security features . 17
3.3 AWS app mesh . 20

3.3.1 Overview . 20
3.3.2 Security features . 22
3.3.3 Istio vs AWS service mesh 22

3.4 Linkerd . 23
3.4.1 Overview . 23
3.4.2 Security features . 23
3.4.3 Istio vs Linkerd . 25

3.5 Kong mesh . 25
3.5.1 Overview . 25
3.5.2 Security features . 25
3.5.3 Istio vs Kong service mesh 26

4 Multi-cloud cluster design 28
4.1 Introduction . 28
4.2 Multi-cloud environment . 28

4.2.1 Definition . 28
4.2.2 Multi-cloud vs Hybrid-cloud 29
4.2.3 Benefits and Challenges 29

4.3 Kubernetes cluster . 30
4.3.1 Definition . 30

4.4 Istio deployment models . 31
4.5 Environment setup . 32

5 Environment monitoring and testing 37
5.1 Intoduction . 37
5.2 Environment monitoring . 37

5.2.1 Prometheus . 37
5.2.2 Configuration . 38
5.2.3 Kiali . 39

vii

5.2.4 Grafana . 40
5.3 Environment testing . 48

5.3.1 Istiod traffic analysis 48
5.3.2 Dos attack . 48
5.3.3 Nmap test . 49

6 Conclusions 51

A Clusters installation 53
A.1 AKS cluster . 53
A.2 GCP cluster . 54

B Istio configuration and installation 56
B.1 Plugin certificates to cluster 56
B.2 Multi-primary installation 59
B.3 Multi-primary verification 61

References 65

viii

List of Figures

2.1 Microservices architecture [7] 5
2.2 Monolithic architecture [7] 7
2.3 The control plane in a service mesh distributes configuration

across the sidecar proxies in the data plane [10] 12

3.1 Sidecar proxy along with every service deployed in Istio mesh
[11] . 15

3.2 Istio components architecture [12] 16
3.3 Istio security architecture [13] 18
3.4 Istio identity provisioning [13] 18
3.5 Peer authentication policy with "STRICT" mode enabled [13] 19
3.6 Request authentication policy [13] 19
3.7 Example of authorization policy [13] 20
3.8 AWS service mesh components [14] 21
3.9 Linkerd’s architecture [21] 24
3.10 Kong’s architecture [25] . 26

4.1 AKS cluster after creation 33
4.2 GCP cluster after creation 33
4.3 Online boutique architecture [34] 34
4.4 Home page Online boutique 36

ix

5.1 In-mesh Production Prometheus for monitoring multicluster
Istio [36] . 38

5.2 Prometheus federation configuration 40
5.3 Graph of the micorservices app on Kiali 41
5.4 Istio mesh dashboard . 42
5.5 Frontend service on Istio service dashboard 43
5.6 Microservice app dashboard on Grafana 44
5.7 mTLS vs non mTLS connections from my-gcp cluster to my-

aks-cluster . 45
5.8 mTLS vs non mTLS connections from my-aks cluster to my-

gcp-cluster . 46
5.9 Hours remaining to the expiration of certificates in AKS cluster 47
5.10 Analysis of packets exchanged by the Istio controller with

other services . 48
5.11 DOS on istiod . 49
5.12 nmap on ingress gateway . 50
5.13 nmap on egress gateway . 50

B.1 Example of config file in which there are informations about
the clusters created . 57

B.2 Helloworld version toggling between v1 and v2 after sending
at least two requests from the Sleep pod on cluster1 64

B.3 Helloworld version toggling between v2 and v1 after sending
at least two requests from the Sleep pod on cluster2 64

x

List of Tables

2.1 Microservices vs Monolithic advantages and disadvantages [7] 8

3.1 Istio vs AWS service mesh 23
3.2 Istio vs Linkderd . 25
3.3 Istio vs Kong mesh . 27

xi

Chapter 1

Introduction

Before the advent of microservices-based approaches, software development
was primarily driven by monolithic architectures, where an application is
built as a single cohesive entity with all its components tightly intercon-
nected. This made software challenging to scale and maintain. Moreover,
with the advancement of technology and the evolution of the Internet, those
applications moved towards the web. Initially, they followed the full-stack
model, where the entire application was handled both on the client and
server sides. For these reasons they tended to be complex to manage and
difficult to update.
The introduction of “REST APIs” (Application Program Interfaces) led to
the adoption of “Service-Oriented Architectures” but complexity remained
high. Then, the shift to microservices was a game-changer. This approach
allowed complex applications to be developed as a collection of independent
services, each handling a specific functionality. Microservices are modular,
scalable, and can be managed independently, enabling organizations to de-
velop those applications in more flexible and efficient manners. So, their
design and development changed into a technology-agnostic and highly scal-
able architecture [1].

1

1 – Introduction

In parallel, cloud computing model has become increasingly popular in ap-
plication developement since it is efficient, helps reducing costs, and speeds
up timeline [2].
Considering all these aspects, today, microservices-based approach is the
most effective way to develop application in cloud [3]. Moreover, many com-
panies decided to rely on multiple cloud providers to benefit from many
advantages [4]. However, being able to secure such environment is very chal-
lenging for several reasons:

• Cloud computing provides loads of resources for users, such as storage
and bandwdith capacities. Because of this it is difficult to have an over-
all control over them and malicious users could take advantage of this
weakness by targetting a certain cloud resource and launching a DDoS
(Distributed denial of service) [5].

• Those services and platforms must be continuously updated to be com-
pliant with the latest regulatory polices, which includes the new GDPR
(General Data Protection Regulation) [6].

• Malicious insiders could bypass security systems like firewalls and intru-
sion detection systems, gaining root privilege to network components
and tampering with sensitive and confidential data.

• Since software and hardware maintenance is directly handled by cloud
services, clients aren’t involved in these tasks anymore, leading to threats
related to security compliance, hardening, auditing and patching.

• During the transmission of data, if weak authentication and encryp-
tion schemes are used, data leakage becomes an issue, resulting in huge
economic damages for companies [5].

These are the motives why securing service communication in a multicloud
environment is crucial for every application.

2

1 – Introduction

1.1 Objectives

The purpose of this work is to use a service mesh tool called “Istio”, in
a multi-cloud scenario, to manage encryption and authentication of a mi-
croservices application, ensure resilience by limiting the damage of a possible
DDoS attack, and provide constant monitoring of the entire application.
For the monitoring part, tools such as Prometheus, Kiali and Grafana will
be discussed and some security metrics will be analyzed. In addition, tests
will be conducted to evaluate whether the proposed security properties are
met.

1.2 Chapter organization

The work is organized in this way:

• In the second chapter, we will analyze what is meant by microservices
apps and the advantages compared to a monolithic approach. We will
also study what a service mesh is and its main components.

• In the third chapter, we will focus on four service mesh tools, with a
primary focus on Istio, comparing it to the other three.

• In the fourth chapter, we will create a multi-cloud scenario with Istio
and deploy a microservices application.

• Finally, in the last chapter, we will install and use monitoring tools to
showcase the potential of the service mesh in gathering data related to
the security of our application. In addition, there will performed three
security tests.

3

Chapter 2

Service mesh

2.1 Introduction

This chapter will take a general look at the concept of service mesh.
Before discussing the main topic, it will be defined what is meant by a mi-
croservice architecture and what the differences are with a monolithic one.
Then a formal definition of service mesh will be given, which will contain
some useful terms for understanding how it works.
Finally the analysis will conclude by looking specifically at the various ser-
vices and components offered by this paradigm, and by discussing two fun-
damental components: the control plane and the data plane.

2.2 Microservices architecture vs monolithic
architecture

In this section, we will define microservices architecture analyzing its pros
and cons and than we will do the same for the monolithic one. Finally we
will make a comparison between the two architectures.

4

2 – Service mesh

2.2.1 Microservices architecture

Microservices applications are characterized by having several independent
components that can communicate with each other through proper APIs.
Each microservice is managed independently of other services and can be
written in different programming language [7].

Figure 2.1: Microservices architecture [7]

The advantages of microservices are:

• Agility – Small teams can deploy frequently.

• Flexible scaling – If a microservice is overloaded, new instances of that
service can be quickly distrbuted.

• Continuous deployment – Very frequent releases compared to the past.

• Highly maintainable and testable – New features can be experimented
with, and it is easier to find and fix bugs.

• Independently deployable – Since microservices are individual units
they allow for fast and easy independent deployment of individual fea-
tures [8].

5

2 – Service mesh

• Technology flexibility – Teams are free to choice the tools they want to
use.

• High reliability – A service can be modified without bringing down the
entire application.

The disadvantages of microservices can be summarized as follow:

• Development sprawl – If development sprawl isn’t properly managed, it
results in slower development speed and poor operational performance
[8].

• Exponential infrastructure costs – Each microservice has its own cost.

• Added organizational overhead – Teams need to add another level of
communication and collaboration to coordinate updates and interfaces.

• Debugging challenges – Debugging is more complicated.

• Lack of standardization – Without a common platform, there can be a
proliferation of languages, logging standards, and monitoring.

• Lack of clear ownership – As more services are introduced, so are the
number of teams running those services [8].

2.2.2 Monolithic architecture

Monolithic applications are characterized by having all program components
in a single block. In this case, if one component needs to be updated, the
entire application requires recompiling and testing [8].

The advantages of a monolithic architecture include:

• Easy deployment – Deployment is simpler since there is only one exe-
cutable file.

6

2 – Service mesh

Figure 2.2: Monolithic architecture [7]

• Easy Development – The application is build with one code base so it
is easier to develop.

• Performance – A single API can perform the same function of numerous
APIs.

• Simplified testing – The phase of testing can be performed faster than
with a distributed application.

• Easy debugging – Easier to find an issue since all code located in one
place.

While, the disadvantages of a monolith include:

• Slower development speed – The development is more complex and
slower.

• Scalability – Individual components cannot be scaled.

• Reliability – An error in any module could affect the entire application’s
availability.

7

2 – Service mesh

• Barrier to technology adoption – Any changes in the framework or lan-
guage affects the entire application, making changes often expensive
and time-consuming [8].

• Lack of flexibility – The technologies used are constrained to those
already present in the monolith.

• Deployment – If there is a small change to a monolithic application the
entire monolith require to be redeployed [8].

In this table the two architectures are compared:

Microservices Monolithic
Indipendent scaling of services. Not scalable as microservices

since all components int the
same system.

Each service developed with
different technologies.

Not flexible as microservices
since all components use the
same technology stack.

A single failure not affect the
entire system since components
are isolated.

All components are combined
in a single system.

Continuous deployment. Challenging to adopt new tech-
nology.

Network latency can impact
performances.

Faster communication between
components.

Testing can became more com-
plicated as the number of ser-
vices grows.

It takes longer to develop new
features.

Service coordination more
challenging.

Easier management and moni-
toring of all components.

Table 2.1: Microservices vs Monolithic advantages and disadvantages [7]

8

2 – Service mesh

2.3 Service mesh definition

Once these concepts have been defined, we want to give a formal definition
of a service mesh.
A service mesh is a dedicated infrastructure level that provides several
features to microservices applications. It allows to improve application re-
silience, observability, and security by using sidecar proxy mechanism. In
this approach, each service instance of the application is linked to a “side-
car” [9]. These proxies are components aimed at handling communications
among services, manage the phase of monitoring, and deal with security
issues [10].

2.4 Services and components

In this discussion it is important to give a panoramic about the various
component services and functions used in the context of service mesh. So
we can analyze the following:

• Container Orchestration Framework: a tool that deals with monitoring
and managing the set of containers within an application. One of the
most widely used frameworks is Kubernetes.

• Services and Instances: an instance is a single running copy of a mi-
croservice; in Kubernetes an instance consists of a small group of con-
tainers called pods.

• Sidecar Proxy: a sidecar proxy runs alongside a single instance or pod.
It allows traffic to be routed between containers. Besides it is managed
by the orchestration framework.

• Service discovery: instances that want to interact with each other per-
form a DNS lookup. The list of available instances are managed by the

9

2 – Service mesh

container orchestration framework, which also provides the interface for
DNS queries.

• Load balancing: load balancing is executed providing richer algorithms
and more powerful traffic management.

• Encryption: request and responses are directly encrypted or decrypted
by service mesh. The most common implementation for traffic encryp-
tion is mutual TLS (mTLS), in which a public key infrastructure (PKI)
generates and distributes certificates and keys for use by sidecar proxies.

• Authentication and authorization: request coming from inside or outside
the application can be authorized and authenticated by service mesh so
that instances can receive validated requests.

• Support for the circuit breaker pattern: unhealthy instances are isolated
and gradually returned to the pool of healthy instances [10].

2.5 Control plane and data plane

There are two fundamental components that work together to ensure net-
work properties and observability to a microservice application: control plane
and data plane.

The control plane is responsible for managing the configuration and con-
trolling the overall operation of the service mesh [9].
In particular the control plane has the following features:

• Keeps track of all the services within the mesh and enables their com-
munication.

• Manages traffic routing, load balancing, and traffic shaping across the
mesh.

10

2 – Service mesh

• Handles security and authentication, making sure that communication
channels are encrypted.

• Reinforces the various policies related to traffic management, security
and observability.

The data plane manages network traffic between services within the mesh
network by serving sidecars proxy. Each service is associated with a sidecar
proxy [9].
These are the various functions of data plane:

• Sidecar proxy intercepts the incoming and outgoing traffic of each mi-
croservice.

• Ensure efficient use of resources.

• Handles communication between the various services within the mesh
applying some policies such as circuit breaking.

• Sidecar proxy collects and sends telemetry data.

11

2 – Service mesh

Figure 2.3: The control plane in a service mesh distributes configuration
across the sidecar proxies in the data plane [10]

12

Chapter 3

Service mesh tools

3.1 Introduction

In the previous chapter, we defined what microservices and monolithic ar-
chitectures are and provided a general overview of the concept of a service
mesh: we gave a definition, described its properties, and analyzed its com-
ponents.
In the following we will go on to analyze Istio and three others service mesh
tools.
The first part of each section will focus on giving a general overview of the
tool, while in the second we will analyse the security properties of each tool.
Finally we will compare each service mesh tool with Istio service mesh.
Let’s dive into the discussion.

3.2 Istio

3.2.1 Definition

Istio is an open-source project that can seamlessly integrate with existing
distributed applications, improving their functionality without significant

13

3 – Service mesh tools

changes to the app code.
With Isio, users benefit of:

• Secure interservice communication with features such as TLS encryp-
tion and strong identity-based security measures.

• Built-in load balancing for different transport types, such as HTTP and
gRPC.

• Advanced traffic control capabilities, including directional code and
traffic offense management.

• A scalable system that can manage access, restrictions, and other quo-
tas.

• Advanced analysis with metrics, logs, and trace tools for all cluster
traffic.

Although Istio’s control plane is based on Kubernetes, it is versatile
enough to add applications from other clusters or those outside of Kuber-
netes, such as VMs. With its extensive community and partner support,
users can manually install Istio or choose a vendor solution that integrates
and manages Istio services for them [11].

3.2.2 Working mechanism

Istio consists of two main parts: the data plane and the control plane.
The data plane handles the actual communication between different services.
Without a tool like Istio, the network is pretty much blind to the details
of the data it’s moving. But, with a service mesh like Istio, there’s a helper
called a proxy (specifically, the Envoy proxy) that checks all the data going
through. This allows the network to understand and make decisions based
on that data. Whenever you add a new service in your system, this proxy
is automatically set up with it, whether it’s in a cluster or on separate

14

3 – Service mesh tools

computer systems (VMs).
The control plane, on the other hand, manages and updates these proxies. It
uses the rules you provide and the information it knows about the services
to keep the proxies in line with any changes [11].

Figure 3.1: Sidecar proxy along with every service deployed in Istio mesh
[11]

3.2.3 Components

Envoy

Istio uses the Envoy proxy, a high-efficiency tool made in C++, to handle all
incoming and outgoing traffic within its service mesh. In Istio, only Envoy
proxies deal with this traffic. These Envoy proxies are attached to services,
enhancing them with numerous advanced features.
Some of these are:

• Finding services dynamically

15

3 – Service mesh tools

• Balancing loads

• Ending TLS sessions

• Monitoring health and handling traffic disruptions

The proxy ensures that Istio can make and enforce rules while also gather-
ing detailed data about the network’s activity. Besides, this approach allows
to add Istio’s features to a system without changing the original code. With
the help of Envoy proxies, Istio can direct traffic with detailed rules, ensure
network stability with measures like retries and failovers, boost security and
control access, and add custom features through a flexible extension system
based on WebAssembly [12].

Figure 3.2: Istio components architecture [12]

16

3 – Service mesh tools

Istiod

Istiod is responsible for discovering services, managing configurations, and
handling certificates. It takes high-level traffic rules and translates them into
specific settings for Envoy proxies, sending these settings to the sidecars
when needed. While Istio can work with different environments like Kuber-
netes or VMs, Istiod makes sure all sidecars understand these settings in
a consistent manner. Through Istio’s Traffic Management API, users can
guide Istiod to fine-tune how traffic flows within the service mesh. For secu-
rity, Istiod ensures safe communication between services and users. Istio can
enhance unsecure traffic within the mesh and make policy decisions based
on service identities instead of less reliable network indicators. With Istio,
there’s also control over who can reach the services. Lastly, Istiod functions
as a Certificate Authority, creating certificates to ensure encrypted and se-
cure communication within the network [12].

3.2.4 Security features

Identity and certificate management

Istio uses a mechanism to understand if a message comes from a person, a
single service, or a group of services. For platform that don’t have a built-in
way of identifying services, it can use things like the service name.
Besides, it gives every workload a special ID using X.509 certificates. There
are Istio agents by each Envoy proxy that help manage these certificates and
keep them updated [13].

Authentication

Istio provides two kind of service authentication: peer authentication and
request authentication.

17

3 – Service mesh tools

Figure 3.3: Istio security architecture [13]

Figure 3.4: Istio identity provisioning [13]

18

3 – Service mesh tools

• Peer authentication: Istio uses mTLS to provide service to service au-
thenticatication. With this mechanism, every service gets a special ID
so they can talk to each other, the communication between services is
private, and "keys" or "passwords" are managed directly by Istio.
For operators who need to migrate to Istio, "permissive" mode can be
enabled, that allows services to accept both mTLS and plaintext traffic
[13].

Figure 3.5: Peer authentication policy with "STRICT" mode enabled [13]

• Request authentication: it is used to evaluate credential attached to the
request. JSON Web Token and custom authentication provider such as
ORY Hydra are used for enabling this authentication.
Istio uses request authentication policies to check if JSON Web Token
(JWT) is a valid token [13].

Figure 3.6: Request authentication policy [13]

All the authentication policies are stored in "Istio config store".

19

3 – Service mesh tools

Authorization

Istio uses authorization policies which can be configured to allow or deny
the service to access to a specific workload. Each Envoy proxy manages the
authorization request according to the policies provided.
For instance, fig. 3.7 shows an authorization policy that denies requests if
the source is not the foo namespace [13].

Figure 3.7: Example of authorization policy [13]

3.3 AWS app mesh

3.3.1 Overview

AWS App Mesh is a service mesh that facilitates monitoring and control of
services. It standardizes the way your services communicate with each other,
giving you end-to-end visibility and high availability for your applications.
App Mesh gives you consistent visibility and control of network traffic for
each service in an application.

The components of AWS app mesh are the following:

• Service mesh – A service mesh manages the network traffic between the
services within it.

20

3 – Service mesh tools

• Virtual services – A virtual service abstracts the actual service provided
by a virtual node directly or indirectly through a virtual router.

• Virtual nodes – A virtual node acts as a logical pointer to a discoverable
service, such as an Amazon ECS or Kubernetes service. For each virtual
service, you will have at least one virtual node [14].

• Virtual routers and routes – Virtual routers handle traffic for one or
more virtual services within the mesh. A virtual router has a route
associated with it. The route is used to match requests for the virtual
router and to distribute traffic to its associated virtual nodes.

• Proxy – After the mesh creation, proxies can be associated to services.
The proxy manages the traffic in an appropriate way [14].

Figure 3.8: AWS service mesh components [14]

21

3 – Service mesh tools

3.3.2 Security features

Now we want to describe the principal security features provided by AWS
service mesh:

• Encryption: AWS App Mesh uses the Transport Layer Security (TLS)
protocol to encrypt network traffic between services in the mesh, ensur-
ing that sensitive data is protected from eavesdropping attacks;optionally
is possible to have MTLS authentication [15].

• Authorization: AWS App Mesh supports role-based authorization, al-
lowing teams to define and manage permissions for access to services in
the mesh. In addition, AWS App Mesh supports integration with AWS
Identity and Access Management (IAM) to provide granular access con-
trol [16].

• Credential management: AWS App Mesh enables centralized manage-
ment of credentials for accessing services in the mesh, reducing the risk
of exposure of sensitive credentials [17].

• Protection against DDoS attacks: AWS App Mesh includes protection
features against DDoS attacks, such as AWS Shield and AWS WAF, to
ensure the availability of services in the mesh [18].

• Integration with AWS CloudTrail: AWS App Mesh is integrated with
AWS CloudTrail to provide comprehensive auditing of activity in the
mesh, enabling teams to track user activity and identify security breaches
[19].

3.3.3 Istio vs AWS service mesh

In this subsection we provide a comparison between Istio and AWS service
mesh.

22

3 – Service mesh tools

Istio AWS service mesh
Open source platform. Based on AWS platform.
Can be executed on any infras-
tructure.

Specifically suitable for AWS
environment.

IT teams have to take care of
installation, configuration, up-
dating, and troubleshooting.

All the activities are simplified
since are managed by AWS un-
derlying environment.

More flexible. Less flexible in terms of ad-
vanced customisation.

Cost depends on the infrastruc-
ture and personnel required for
management.

Cost based on the consump-
tion of resources and network
requests made.

Table 3.1: Istio vs AWS service mesh

3.4 Linkerd

3.4.1 Overview

Linkerd is a service mesh for Kubernetes. It makes running services easier
and safer by giving runtime debugging, observability, reliability, and secu-
rity. Like others service mesh tools, Linkerd has two basic components: a
control plane and a data plane. Linkerd works by installing a set of ul-
tralight, transparent “micro-proxies” next to each service instance. These
proxies automatically handle all traffic to and from the service [20].

3.4.2 Security features

In this section we analyze security features of Linkerd service mesh:

• Authentication and authorization: Linkerd uses the mTLS protocol

23

3 – Service mesh tools

Figure 3.9: Linkerd’s architecture [21]

to authenticate and authorize communications between microservices.
This means that each microservice must authenticate itself and present
a valid certificate before communicating with other microservices [22].

• Certificate management: Linkerd has a main control system with a
certificate-making part named "identity." This part creates security cer-
tificates for each Linkerd proxy. These certificates are tied to the identity
of the pods they are in and last only a day, being replaced automati-
cally. Each proxy uses the certificates to safely communicate with one
another [22].

• Access control: Linkerd allows to set authorization rules to control ac-
cess to microservices ensuring that only authorized applications can
access the microservices [23].

24

3 – Service mesh tools

3.4.3 Istio vs Linkerd

In table 3.3 we can appreciate the differences between Istio and Linkerd.

Istio Linkerd
It uses sidecar proxy for each
service.

It uses Linkerd proxy written
in Rust.

More complexity and higher
learning curve.

It focuses on ease of use and
user experience.

More overhead. High performance and low
overhead.

Wider community and more
developed ecosystem.

Active community.

Most comprehensive set of ad-
vanced features.

Essential functionalities based
on ease of use.

Broader interoperability due to
its support for the Envoy appli-
cation network interface (API).

Integration with other instru-
ments and technologies.

Table 3.2: Istio vs Linkderd

3.5 Kong mesh

3.5.1 Overview

Kong Mesh is a service mesh built on top of the Kong Gateway API plat-
form. It provides a set of features that help to manage and secure microser-
vices running in a Kubernetes cluster or any other cloud environment. The
features provided are traffic routing, load balancing, service discovery, ob-
servability, security, and policy enforcement [24].

3.5.2 Security features

Security features provided by Kong mesh are the following:

25

3 – Service mesh tools

Figure 3.10: Kong’s architecture [25]

• Mutual TLS (mTLS): Kong Mesh uses mutual TLS to provide secure
communication between services. It ensures that only authenticated and
authorized requests are allowed to access the service, and it encrypts
the data transmitted between services [26].

• Certificate management: Kong Mesh gives an identity to every proxy
within the data plane. It is flexible in terms of Certificate Authority
(CA) backends and handles certificate renewals automatically.
Kong Mesh provides two main CA backends: builtin and provided. With
the first, CA root certificate and the corresponding keys are created and
stored as secret. While, with provided CA backend, users give their own
CA root certificate and key [26].

• Access Control Lists (ACLs): Kong Mesh allows administrators to define
access control lists to restrict access to services based on IP addresses,
HTTP methods, or other criteria [27].

3.5.3 Istio vs Kong service mesh

26

3 – Service mesh tools

Istio Kong mesh
It uses sidecar proxy for each
service.

It integrates service mesh func-
tionalities based on Envoy and
includes Kong’s API gateway
functionality.

It provides granular control
over traffic routing, advanced
load balancing rules and flex-
ible configuration options.

It offers traffic routing, load
balancing, and advanced re-
quest control using config-
urable plugins and rules.

It supports service authenti-
cation, role-based authorisa-
tion (RBAC), data-in-transit
encryption and other advanced
security features.

It provides authentication, au-
thorisation, access control and
credential management.

Very active developers commu-
nity.

It benefits the Kong commu-
nity.

It offers broad compatibility
with the Kubernetes ecosystem
and has tight integration with
monitoring and tracking ser-
vices.

It offers integrations with mon-
itoring tools and take advan-
tage of Kong’s extensions and
plugins.

Table 3.3: Istio vs Kong mesh

27

Chapter 4

Multi-cloud cluster design

4.1 Introduction

In this chapter we will study how to create a multicloud cluster using Istio
service mesh.
I will first go on to compare the concepts of multicloud and hybrid cloud.
Next I will discuss Azure Kubernetes Service and Google Cloud platform
and list the steps followed to create clusters in these cloud providers.
Then I will discuss Istio’s various solutions for creating the multicluster and
will explain why I chose one of these.
Finally I will discuss how I deployed a microservices app in the cluster multi-
cloud.

4.2 Multi-cloud environment

4.2.1 Definition

Multi-cloud is a strategy that is used by organizations in order to use mul-
tiple cloud services on which to deploy their applications. A multi-cloud
environment may involve the use of two or more public clouds, two or more

28

4 – Multi-cloud cluster design

private clouds, or a combination of both. The main goal is to provide man-
agement flexibility for the organization’s various workloads [28].

4.2.2 Multi-cloud vs Hybrid-cloud

The concepts of multi-cloud and hybrid cloud differ in the type of cloud
infrastructure. Speaking of multi-cloud, we mean the use of cloud services
from different public cloud providers for different workloads.
Conversely, if we talk about hybrid cloud, we indicate the use of multiple
computing environments, such as public cloud environments and private
cloud environments, for common workloads.
In order to better understand the differences of the two concepts, this anal-
ogy can be used. The hybrid cloud can be associated with a hybrid car,
which combines two different types of engine, an electric motor and a tradi-
tional combustion engine, to power the car.
While a multi-cloud infrastructure could be associated with using different
types of transportation to get to different places. For example, one could
drive to the mall because it is easier to take shopping bags home, but one
could choose the train to save gasoline and avoid rush-hour traffic [28].

4.2.3 Benefits and Challenges

In the introduction to multi-cloud, we stated that flexibility is one of the
main reasons why we choose this strategy. Now we are going to analyze in
more detail what benefits lead to choosing this approach:

• Taking the best of each cloud: it allows you to choose among various
cloud providers the one that best suits your needs such as speed, per-
formance, reliability and others.

• No vendor lock-in: you are not tied to a single provider allowing you to
reduce data, interoperability and cost issues.

29

4 – Multi-cloud cluster design

• Cost efficiency: you can significantly reduce costs by taking advantage
of the best combination of different providers.

• Innovative technology: you can take advantage of new technologies of-
fered by various cloud providers as they invest heavily in the develop-
ment of new products.

• Advanced security and regulatory compliance: regardless of the service,
provider or environment, consistent security policies and compliance
technologies are guaranteed across all workloads.

• Increased reliability and redundancy: in case one cloud stops working
this does not affect the services of other clouds and computing needs
can be handled by another cloud [28].

Having listed the benefits that a multi-cloud architecture can bring to an
organization, we want to list the difficulties that such an implementation
can generate. First, we can corroborate the difficulties of managing the en-
vironment since, having to manage various cloud providers, it is important
to understand how the organization’s requirements can be met. In addition,
other thorny nodes are maintaining consistent security, integration of soft-
ware environments, and difficulties in achieving consistent performance and
reliability across clouds.

4.3 Kubernetes cluster

4.3.1 Definition

A Kubernetes cluster is a set of nodes running containerized applications
managed by Kubernetes, an open-source system for automating, scaling,
and managing containerized applications. The cluster is managed by the
control plane. In particular, it deals with Nodes and the Pods. Nodes are
machines where containers run. Each node communicate with the control

30

4 – Multi-cloud cluster design

plane and contains the services necessary to run Pods. Pods are the smallest
deployable units and hold one or more containers. Containers within a pod
share the same network namespace, enabling them to communicate using
localhost. Namespace divides a cluster into multiple virtual clusters, useful
when multiple users or teams share a cluster [29].
Among the various cloud services that enable the creation of a kubernetes
cluster are AKS (Azure kubernetes service) and GCP (Google cloud plat-
form).

AKS cluster

AKS is a hosted Kubernetes service that helps to deploy in a simple way a
Kubernetes cluster. It handles tasks like monitoring and maintenance. Along
with the creation of AKS cluster, there is the creation and configuration of
the control plane [30].

GCP cluster

GCP is a managed Kubernetes service used to deploy and operate con-
tainerized applications using Google’s infrastructure. It allows to configure
the infrastructure environment such as networking, scaling, hardware, and
security. It provides control plane and nodes to manage the various com-
ponents. The environment of GCP is composed by nodes that are grouped
together to form a cluster. Apps are packaged into containers that are de-
ployed as Pods in nodes. To interact with the workloads Kubernetes API
are used [31].

4.4 Istio deployment models

Within an Istio mesh, the control plane orchestrates communication between
workloads. These workloads fetch their settings from the control plane.
In its most basic form, a single control plane can manage a single cluster,

31

4 – Multi-cloud cluster design

which is termed a primary cluster. However, when we look at multicluster
setups, they can either have their own control planes or share them. Clusters
with their own control planes are called primary clusters, while those without
are termed remote clusters [32].
Istio provides four possibilities for install a mesh across multiple Kubernetes
cluster[33]:

1. Multi-primary

2. Multi-primary on different networks

3. Primary-Remote

4. Primary-Remote on different networks

I decided to distribute multiple control planes across different clusters.This
setup provides resilience to the application [32].
In particular, we have the following benefits:

• Failure of one control plane affects only the clusters it manages.

• Changes in one region or cluster don’t impact others.

• Configurations can be introduced more carefully, possibly one cluster
at a time.

• Service access can be limited, allowing for better control. For instance,
a service available in Cluster A might be kept unavailable in Cluster B.

4.5 Environment setup

At the beginning, two clusters were created: one on “Azure Kubernetes Ser-
vice” (AKS) as shown in Figure 4.1 and another on “Google Cloud Platform”
(GCP) as shown in Figure 4.2.

32

4 – Multi-cloud cluster design

Figure 4.1: AKS cluster after creation

Figure 4.2: GCP cluster after creation

After that, Istio service mesh was installed with the "multi-primary on
different network" deployment model that allows one control plane on AKS

33

4 – Multi-cloud cluster design

and another one on GCP. Once Istio has been installed, a namespace was
created for each cluster and a proxy sidecar enabled. Then, an e-commerce
application consisting of 11 microservices was deployed. Searching on github,
I found an application that fits the bill: Online boutique.
It is an e-commerce application composed by 11 microservices where users
can browse items, add them to the cart, and purchase them [34].
In fig.4.3 we can see how the application is organized. All services talk witch
each other over gRPC.
For demonstration purposes, I decided to divide the microservices between

Figure 4.3: Online boutique architecture [34]

the clusters of AKS and GCP. In the app folder kubernetes manifests of
services are provided.
In AKS, I applied manifests for the following services:

• frontend

• shippingservice

• productcatalogservice

• paymentservice

34

4 – Multi-cloud cluster design

• emailservice

• currencyservice

Whereas in GCP for the following services:

• adservice

• cartservice

• checkoutservice

• recommendationservice

Before applying the manifests, I modified the "frontend," "checkout," and
"productcatalog" manifests to allow all services to communicate properly.
For "frontend" and "productcatalog", which are on the AKS cluster, I re-
placed the names of called services with the respective addresses of services
on the GCP cluster; conversely, for "checkout," present on GCP, I replaced
the names of called services with the respective addresses of services on the
AKS cluster. Finally, I applied the service manifests by dividing them into
clusters as seen above.
After the following steps, we can see 4.4 what the main page of the applica-
tion looks like.

35

4 – Multi-cloud cluster design

Figure 4.4: Home page Online boutique

36

Chapter 5

Environment monitoring
and testing

5.1 Intoduction

In the last chapter, I showed all the steps followed to create a multi-cloud
cluster with Istio on AKS and GCP and to deploy a microservice application.
In this, some tools to monitor the whole cluster will be used. In particular we
will see tools such as Prometheus, Kiali, and Grafana. Finally, some security
tests done on the environment will be shown.

5.2 Environment monitoring

5.2.1 Prometheus

Prometheus is an open-source monitoring and alerting toolkit. It monitors by
collecting time series data: metrics recorded with timestamps and associated
key-value labels [35].
Prometheus comes with several components:

• The primary server that scrapes and stores data.

37

5 – Environment monitoring and testing

• Client libraries to integrate into applications.

• A push gateway for ephemeral jobs.

• Specific exporters for various services.

• An alert manager.

• Several auxiliary tools.

.

5.2.2 Configuration

To monitor our multicloud cluster on which Istio is installed, we decided
to install the prometheus instance on both clusters that gather data and
then consolidate this information to a production mesh-wide Prometheus
instance. In our case, we applied this mesh-wide Prometheus instance in
AKS cluster [36].

Figure 5.1: In-mesh Production Prometheus for monitoring multicluster Istio
[36]

38

5 – Environment monitoring and testing

For this installation we followed the following steps:

• Applied the prometheus deployment in each cluster with this command:

kubectl apply
https://raw.githubusercontent.com/istio/istio
/release-1.19/samples/addons/prometheus.yaml

• Edited prometheus configuration present on AKS cluster with this:

KUBE_EDITOR="nano"
kubectl -n istio-system edit
cm prometheus -o yaml

We configure the file as in Figure 5.2. For the remote cluster, we decided
"gcp-cluster" so we provided also the address of Istio ingress gateway
on GCP cluster. While, for the local cluster we used AKS.

5.2.3 Kiali

Kiali is a monitoring tool for Istio that offers insights into the configuration
and health of a service mesh. By analyzing traffic patterns, it provides a
clear view of the mesh’s topology and highlights any issues [37].

Because I decided to install production mesh-wide Prometheus istance on
AKS, I also applied the Kiali instance on this cluster.
We used a simple installation provided by Istio with the following command:

kubectl apply -f https://raw.githubusercontent.com/
istio/istio/release-1.19/samples/addons/kiali.yaml

39

5 – Environment monitoring and testing

Figure 5.2: Prometheus federation configuration

Microservices app on Kiali

In the Figure 5.3 we can appreciate the graph of our microservice application.
We can see that on the left is the AKS cluster with its services while on the
right is the GCP cluster.
Taking a closer look at the graph, we can appreciate the locks between the
various services indicating that they communicate using mTLS.

5.2.4 Grafana

Grafana is a monitoring tool that allows to set up dashboards for Istio. It
lets you track the well-being of Istio as well as the applications operating
within its service mesh [38].
As in the case of Kiali, we applied Grafana to AKS with the following

40

5 – Environment monitoring and testing

Figure 5.3: Graph of the micorservices app on Kiali

command:

kubectl apply -f https://raw.githubusercontent.com/
istio/istio/release-1.19/samples/addons/grafana.yaml

41

5 – Environment monitoring and testing

Microservices app on Grafana

Once you have logged into Grafana you can access the Istio dashboards. For
me, was interesting to keep an eye on the mesh dashboard Figure 5.4, which
provides a number of useful pointers for all the services of the mesh.
We can note that for each service there is the number of requests per second,
latency, and success rate.

Figure 5.4: Istio mesh dashboard

I get more detailed information about a single service from the services

42

5 – Environment monitoring and testing

dashboard as shown in Figure 5.5 In this case, we can see the frontend ser-
vice. Moreover, with grafana and prometheus I was able to to create new

Figure 5.5: Frontend service on Istio service dashboard

metrics. In this regard, I thought of creating ad-hoc metrics for our appli-
cation.
In Figure 5.6 all the metrics included in the new dashboard can be seen.

43

5 – Environment monitoring and testing

Figure 5.6: Microservice app dashboard on Grafana

Mtls connections vs non mTLS connections

To verify that the entire application communicates using the mTLS proto-
col, I created several metrics that monitor the number of communications
per second that use this security protocol versus those that use unknown
protocols.
The graph in Figure 5.7, represents types connections per second between
the GCP cluster and the AKS cluster. In particular, the green line represents

44

5 – Environment monitoring and testing

the number of mTLS connections while the yellow line should represents the
number of requests that does not use mTLS. In this case the number of first
connections fluctuate and are zero only at a brief juncture while unknown
connection is equal to zero.

Figure 5.7: mTLS vs non mTLS connections from my-gcp cluster to my-aks-
cluster

In the other hand, the graph in Figure 5.8 , deals with types connections
per second between the AKS cluster and the GCP cluster. Again, the green

45

5 – Environment monitoring and testing

line represents the number of mTLS connections while the red line represents
the number of unknown connections. In contrast to the previous case, we
can observe that both types of connections are present in a similar way.

Figure 5.8: mTLS vs non mTLS connections from my-aks cluster to my-gcp-
cluster

46

5 – Environment monitoring and testing

Certificate expirations

I created another metric that monitors how many hours remain until the
expiration of certificates for all services in the mesh.
We expect that Istio rotates the certificates and assigns them to services
frequently. In fact, in this Figure 5.9 we can see that there are less than 24
hours until the certificates of all services in the cluster expire.

Figure 5.9: Hours remaining to the expiration of certificates in AKS cluster

47

5 – Environment monitoring and testing

5.3 Environment testing

5.3.1 Istiod traffic analysis

In the first test, I performed traffic analysis with "Wireshark" to evaluate
how communications between the Istio controller and the other services take
place. Considering the time frame ranging from 0 to 1.06 seconds of the
Figure 5.10, we can observe that istio controller, which has the address
"10.48.0.1", exchanges data with Istio egress gateway, which has the address
"10.44.3.5", using tls protocol. We can see the same behaviour between Istio
egress gateway ("10.44.3.5") and the service with address "10.44.1.10", in the
time frame from 1,507 to 1,508 seconds.

Figure 5.10: Analysis of packets exchanged by the Istio controller with other
services

5.3.2 Dos attack

In this test, I attempted to do two DoS attacks on the Istio controller of GCP
cluster. To do this, I installed three dedicated pods from which I launched
the attack to "istiod". The graph in the Figure 5.11 shows the input and
output traffic of all containers in the GCP cluster. The top part shows the

48

5 – Environment monitoring and testing

input traffic while the bottom part the output traffic. In the left part of the
graph, we can see the first attack. In this case, the load of the incoming
connections starts from 5 Mb/s, after a period of time it reaches around 10
MB/s, and slowly drops to zero. In the middle part of the graph we can
observe the second attack. In this other case, the traffic starts from 0 MB/s,
rises to 7.5 MB/s, and then drops to zero.

Figure 5.11: DOS on istiod

5.3.3 Nmap test

In the third test, I used nmap on the ingress gateway and egress gateway
of Istio across both clusters. By running the following command "nmap -p-
-vv –script firewall-bypass -o ingess.nmap", I identified two open ports on
eastwest as shown in figure 5.12 and two open ports on the ingress gateway
as seen in Figure 5.13.

49

5 – Environment monitoring and testing

Figure 5.12: nmap on ingress gateway

Figure 5.13: nmap on egress gateway

50

Chapter 6

Conclusions

In this work, we demonstrated how Istio service mesh constitute a good
solution in a multicloud environment. It proves to be useful for mTLS com-
munication between services by taking care of certificate management even
though it does not guarantee encryption of all communications. In addition,
thanks to monitoring tools such as Prometheus, Kiali, and Grafana, it is
possible to keep track both globally and specifically of all the services in
the mesh. In particular, using Grafana it is possible to create dashboards
with custom metrics to monitor crucial aspects such as encrypted connec-
tions and certificate expiration. Finally, the security tests performed verified
that Istio’s controller communications take place using the tls protocol, the
application is resilient to possible dos attacks because Istio limits the num-
ber of incoming requests, and both the input gateway and the inter-cluster
communication gateway (egress gateway) have only two open ports.
For future work it would be interesting to create authentication policies to
enable the mandatory use of mtls both at the whole mesh and the indi-
vidual namespace levels. Also, it might be useful to create authentication
policies with JWT Token to accept or deny connection requests. Finally,
the collection of metrics with Prometheus, Kiali, and Grafana in a multi-
cloud environment could be optimized by creating additional metrics that

51

6 – Conclusions

can record the number of requests per individual service and for the entire
mesh.

52

Appendix A

Clusters installation

A.1 AKS cluster

There are several methods to create a cluster on AKS:

• Azure command line interface

• Azure PowerShell

• Azure portal

The Azure command line will be used in the proposed solution.
First, to create a cluster, we need to create a resource group. A resource
group is a logical container in which to deploy and manage Azure resources
[39]. The following command can be used to create the resource group:

az group create --name myResourceGroup \
--location eastus

In this command you can replace "myResourceGroup" with the name of
the desired resource group and "eastus" with the value for the chosen region.
To get a complete list of regions you can type the following command:

az account list-locations

53

A – Clusters installation

Once the creation of the resource group is complete, we need to create
a container registry: An Azure container registry is a private registry for
container images and is used to securely build and deploy our applications.
Here is the command to enter on the Azure CLI:

az acr create --resource-group myResourceGroup \
--name <acrName> --sku Basic

In this case the resource group will be the one created earlier, <acrName>
will be the name of the container registry to be created which must be unique
within Azure and contain 5 to 50 alphanumeric characters. Basic sku is an
optimized entry point that balances storage and throughput.

Now that we have both the resource group and the container registry we
can create the cluster.
To create the cluster run the following command:

az aks create \
--resource-group myResourceGroup \
--name myAKSCluster \
--node-count 2 \
--generate-ssh-keys \
--attach-acr <acrName>

In this case we need to provide the name of the previously created resource
group, enter a new name for the cluster instead of "myAKSCluster" enter the
number of nodes (in this case we want to create a cluster with two nodes),
and provide the name of the container registry already created.

A.2 GCP cluster

There are two options for creating a GKE cluster:

54

A – Clusters installation

• Autopilot: mode with which to create a preconfigured cluster, with op-
timized configuration ready for production workloads.

• Standard: allows you to manage the configuration in a customized way,
adapting to production workloads.

Here we will see the steps for installing a cluster with Autopilot mode
using Google Cloud CLI [40]. To create the cluster, you must have a project.
If it has not yet been created run the following command:

gcloud projects create PROJECT_ID

Where ProjectID is the ID of the Project you want to create, it must start
with a lowercase letter and contain only ASCII letters, digits and dashes and
must be between 6 and 30 characters long.
Now to create the cluster just use the following command:

gcloud container clusters create-auto CLUSTER_NAME \
--region REGION \
--project=PROJECT_ID

In ClusterName should be entered the name of the new cluster, in region
should be entered the region for the cluster, instead of ProjectID should be
entered ID of the project on which to create the cluster. To be able to see
the available regions run the following command:

gcloud compute regions list

55

Appendix B

Istio configuration and
installation

B.1 Plugin certificates to cluster

First, after receiving the various information from the clusters, we need to
access the "config" file in ".kube" directory. In this file are the configurations
of the clusters created.

Now, we need to list config file in our KUBECONFIG environment variable
with this command:

export KUBECONFIG=
"${KUBECONFIG}:${HOME}/.kube/config"

After, we need to set two environment variable for the two clusters [41]:

export CTX_CLUSTER1=<your cluster1 context>
export CTX_CLUSTER2=<your cluster2 context>

We can replace "<your cluster context>" with the name of the context

56

B – Istio configuration and installation

Figure B.1: Example of config file in which there are informations about the
clusters created

present under the section "contexts" in the "config” file.
As said before, before starting the installation, we need to plugin CA cer-
tificate. At the beginning we generate the root certificate and key [42]. So
we create the directory in Istio installation package to hold certificates and
keys:

mkdir -p certs
pushd certs

We continue with the generation of root certificate and key:

make -f ../tools/certs/Makefile.selfsigned.mk
root-ca

Then for each cluster we need to generate an intermediate certificate and
key:

57

B – Istio configuration and installation

make -f ../tools/certs/Makefile.selfsigned.mk
cluster1-cacerts

make -f ../tools/certs/Makefile.selfsigned.mk
cluster2-cacerts

In each cluster we create a secret cacerts. For instance we can provide
this command for the cluster1:

kubectl create --context="${CTX_CLUSTER1}"
namespace istio-system

kubectl create --context="${CTX_CLUSTER1}"
secret generic \
cacerts -n istio-system \
--from-file=cluster1/ca-cert.pem \
--from-file=cluster1/ca-key.pem \
--from-file=cluster1/root-cert.pem \
--from-file=cluster1/cert-chain.pem

Then we can do the same for the second cluster:

kubectl create --context="${CTX_CLUSTER2}"
namespace istio-system

kubectl create --context="${CTX_CLUSTER2}"
secret generic \
cacerts -n istio-system \
--from-file=cluster2/ca-cert.pem \
--from-file=cluster2/ca-key.pem \
--from-file=cluster2/root-cert.pem \
--from-file=cluster2/cert-chain.pem

58

B – Istio configuration and installation

B.2 Multi-primary installation

After configuring the certificates, comes the actual installation of the multi-
primary cluster [43]. First set the cluster’s network to istio-system names-
pace:

kubectl --context="${CTX_CLUSTER1}"
get namespace istio-system && \

kubectl --context="${CTX_CLUSTER1}"
label namespace istio-system
topology.istio.io/network=network1

Then the clusters must be configured as primary. You create the Istio con-
figuration for the first cluster:

cat <<EOF > cluster1.yaml
apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
spec:
values:
global:
meshID: mesh1
multiCluster:
clusterName:cluster1
network: network1

EOF

59

B – Istio configuration and installation

Now you can apply the configuration with the following command:

istioctl install --context="${CTX_CLUSTER1}"
-f cluster1.yaml

After Istio is configured, the east-west gateway must be installed in the
cluster:

samples/multicluster/gen-eastwest-gateway.sh \
--mesh mesh1 --cluster cluster1
--network network1 | \
istioctl --context="${CTX_CLUSTER1}"
install -y -f -

Now comes the stage where services are exposed in the cluster:

kubectl --context="${CTX_CLUSTER1}" apply
-n istio-system -f \
samples/multicluster/expose-services.yaml

The same steps should be followed for the installation of Istio in the
second cluster. Once you have completed the installation of Istio on both
clusters you need to enable endpoint discovery. To do this Install remote
secret in cluster2 to provides access to cluster1’s API server and than do the
same for the other cluster.
Command for cluster 1:

istioctl x create-remote-secret \
--context="${CTX_CLUSTER1}" \
--name=cluster1 | \
kubectl apply -f
- --context="${CTX_CLUSTER2}"

Command for cluster 2:

60

B – Istio configuration and installation

istioctl x create-remote-secret \
--context="${CTX_CLUSTER2}" \
--name=cluster2 | \
kubectl apply -f - --context="${CTX_CLUSTER1}"

B.3 Multi-primary verification

As a final step we want to make sure that our multi-cluster cloud communi-
cates properly. To do this we will create two versions, one for each cluster,
of a simple Helloworld app. When it receives a request it will respond by
providing its own version. To call the Helloworld service we will use another
app called Sleep that will simulate traffic in the mesh network [44].
To deploy the services, we have to perform the following steps:

• Create the namespace in each cluster (in this case we use namespace
“sample” but we can use whatever name we want):

kubectl create --context="${CTX_CLUSTER1}"
namespace sample

kubectl create --context="${CTX_CLUSTER2}"
namespace sample

• We need to enable sidecar injection in this way:

kubectl label --context="${CTX_CLUSTER1}"
namespace sample \
istio-injection=enabled

kubectl label --context="${CTX_CLUSTER2}"

61

B – Istio configuration and installation

namespace sample \
istio-injection=enabled

• Create the service in each cluster:

kubectl apply --context="${CTX_CLUSTER1}" \
-f samples/helloworld/helloworld.yaml \
-l service=helloworld -n sample

kubectl apply --context="${CTX_CLUSTER2}" \
-f samples/helloworld/helloworld.yaml \
-l service=helloworld -n sample

• Deploy the application to cluster1 and cluster2:

kubectl apply --context="${CTX_CLUSTER1}" \
-f samples/helloworld/helloworld.yaml \
-l version=v1 -n sample

kubectl apply --context="${CTX_CLUSTER2}" \
-f samples/helloworld/helloworld.yaml \
-l version=v2 -n sample

• Deploy the Sleep application to both clusters:

kubectl apply --context="${CTX_CLUSTER1}" \
-f samples/sleep/sleep.yaml -n sample
kubectl apply --context="${CTX_CLUSTER2}" \

-f samples/sleep/sleep.yaml -n sample

62

B – Istio configuration and installation

• Now we have to send requests from the Sleep pod on cluster1 to the
HelloWorld service:

kubectl exec --context="${CTX_CLUSTER1}"
-n sample -c sleep \
"$(kubectl get pod --context="${CTX_CLUSTER1}"
-n sample -l \
app=sleep -o
jsonpath=’{.items[0].metadata.name}’)" \
-- curl -sS helloworld.sample:5000/hello

• Do the same for the cluster2:

kubectl exec --context="${CTX_CLUSTER2}"
-n sample -c sleep \
"$(kubectl get pod --context="${CTX_CLUSTER2}"
-n sample -l \
app=sleep -o
jsonpath=’{.items[0].metadata.name}’)" \
-- curl -sS helloworld.sample:5000/hello

In both cases we have to verify that Helloworld version toggles between
v1 and v2.

63

B – Istio configuration and installation

Figure B.2: Helloworld version toggling between v1 and v2 after sending at
least two requests from the Sleep pod on cluster1

Figure B.3: Helloworld version toggling between v2 and v1 after sending at
least two requests from the Sleep pod on cluster2

64

Bibliography

[1] Muji. A brief history of apllication development. url: https://hhhypergrowth.
com/a-brief-history-of-application-development/.

[2] Peter Mell and Tim Grance. “The NIST Definition of Cloud Comput-
ing”. In: Nist (2011).

[3] IBM Market Development Insights. Microservices in the enterprise,
2021: Real benefits, worth the challenges. url: https://www.ibm.
com/downloads/cas/OQG4AJAM.

[4] Rachel Nizinski. Optimizing your multicloud or hybrid environment
strategy. url: https://blogs.oracle.com/cloud-infrastructure/
post/optimize-multicloud-strategy.

[5] Yunusa Simpa Abdulsalam and Mustapha Hedabou. “Security and Pri-
vacy in Cloud Computing: Technical Review”. In: ResearchGate (2021).
doi: 10 . 3390 / fi14010011. url: https : / / www . researchgate .
net/publication/357354384_Security_and_Privacy_in_Cloud_
Computing_Technical_Review.

[6] Hillary Baron et al. “Clooud security complexity: Challenges in man-
aging security in Hybrid and Multi-cloud Environments”. In: Cloud
security alliance (2019).

[7] Baeldung. Microservices vs. Monolithic Architectures. url: https://
www.baeldung.com/cs/microservices-vs-monolithic-architectures.

65

https://hhhypergrowth.com/a-brief-history-of-application-development/
https://hhhypergrowth.com/a-brief-history-of-application-development/
https://www.ibm.com/downloads/cas/OQG4AJAM
https://www.ibm.com/downloads/cas/OQG4AJAM
https://blogs.oracle.com/cloud-infrastructure/post/optimize-multicloud-strategy
https://blogs.oracle.com/cloud-infrastructure/post/optimize-multicloud-strategy
https://doi.org/10.3390/fi14010011
https://www.researchgate.net/publication/357354384_Security_and_Privacy_in_Cloud_Computing_Technical_Review
https://www.researchgate.net/publication/357354384_Security_and_Privacy_in_Cloud_Computing_Technical_Review
https://www.researchgate.net/publication/357354384_Security_and_Privacy_in_Cloud_Computing_Technical_Review
https://www.baeldung.com/cs/microservices-vs-monolithic-architectures
https://www.baeldung.com/cs/microservices-vs-monolithic-architectures

BIBLIOGRAPHY

[8] Chandler Harris. Microservices vs. monolithic architecture. url: https:
//www.atlassian.com/microservices/microservices-architecture/
microservices-vs-monolith.

[9] Wubin Li et al. “Service Mesh: Challenges, State of the Art, and
Future Research Opportunities”. In: IEEE International Conference
on Service-Oriented System Engineering (SOSE) (2019), pp. 122–127.
doi: 10.1109/SOSE.2019.00026. url: https://ieeexplore-ieee-
org.ezproxy.biblio.polito.it/document/8705911.

[10] Floyd Smith and Owen Garrett. What is a service mesh? url: https:
//www.nginx.com/blog/what-is-a-service-mesh/.

[11] The Istio service mesh. url: https://istio.io/latest/about/
service-mesh/.

[12] Architecture. url: https://istio.io/latest/docs/ops/deployment/
architecture/.

[13] Istio security. url: https://istio.io/latest/docs/concepts/
security/.

[14] What is AWS App Mesh? url: https://docs.aws.amazon.com/app-
mesh/latest/userguide/what-is-app-mesh.html.

[15] Transport Layer Security. url: https://docs.aws.amazon.com/app-
mesh/latest/userguide/tls.html.

[16] How AWS App Mesh works with IAM. url: https://docs.aws.
amazon.com/app-mesh/latest/userguide/security-iam.html.

[17] AWS Secrets Manager Features. url: https://aws.amazon.com/
secrets-manager/features/?nc1=h_ls.

[18] AWS Shield. url: https://docs.aws.amazon.com/waf/latest/
developerguide/shield-chapter.html.

[19] Logging with AWS CloudTrail. url: https://docs.aws.amazon.com/
app-mesh/latest/userguide/logging-using-cloudtrail.html.

66

https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://www.atlassian.com/microservices/microservices-architecture/microservices-vs-monolith
https://doi.org/10.1109/SOSE.2019.00026
https://ieeexplore-ieee-org.ezproxy.biblio.polito.it/document/8705911
https://ieeexplore-ieee-org.ezproxy.biblio.polito.it/document/8705911
https://www.nginx.com/blog/what-is-a-service-mesh/
https://www.nginx.com/blog/what-is-a-service-mesh/
https://istio.io/latest/about/service-mesh/
https://istio.io/latest/about/service-mesh/
https://istio.io/latest/docs/ops/deployment/architecture/
https://istio.io/latest/docs/ops/deployment/architecture/
https://istio.io/latest/docs/concepts/security/
https://istio.io/latest/docs/concepts/security/
https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/tls.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/tls.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/security-iam.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/security-iam.html
https://aws.amazon.com/secrets-manager/features/?nc1=h_ls
https://aws.amazon.com/secrets-manager/features/?nc1=h_ls
https://docs.aws.amazon.com/waf/latest/developerguide/shield-chapter.html
https://docs.aws.amazon.com/waf/latest/developerguide/shield-chapter.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/logging-using-cloudtrail.html

BIBLIOGRAPHY

[20] Linkerd overview. url: https://linkerd.io/2.14/overview/.

[21] Linkerd architecture. url: https://linkerd.io/2.14/reference/
architecture/.

[22] Automatic mTLS. url: https : / / linkerd . io / 2 . 14 / features /
automatic-mtls/.

[23] Authorization Policy. url: https://linkerd.io/2.14/features/
server-policy/.

[24] Kong Mesh overview. url: https://docs.konghq.com/mesh/latest/.

[25] Kong Mesh architecture. url: https://docs.konghq.com/mesh/
latest/introduction/architecture/.

[26] Mutual TLS. url: https : / / docs . konghq . com / mesh / latest /
policies/mutual-tls/.

[27] ACL. url: https://docs.konghq.com/hub/kong-inc/acl/#main.

[28] What is multicloud? url: https://cloud.google.com/learn/what-
is-multicloud.

[29] Kubernetes documentation. url: https : / / kubernetes . io / docs /
home/.

[30] What is Azure Kubernetes Service? url: https://learn.microsoft.
com/en-us/azure/aks/intro-kubernetes.

[31] GKE overview. url: https : / / cloud . google . com / kubernetes -
engine/docs/concepts/kubernetes-engine-overview.

[32] Deployment Models. url: https://istio.io/latest/docs/ops/
deployment/deployment-models/.

[33] Install multicluster. url: https://istio.io/latest/docs/setup/
install/multicluster/.

[34] Online boutique. url: https://github.com/GoogleCloudPlatform/
microservices-demo.

67

https://linkerd.io/2.14/overview/
https://linkerd.io/2.14/reference/architecture/
https://linkerd.io/2.14/reference/architecture/
https://linkerd.io/2.14/features/automatic-mtls/
https://linkerd.io/2.14/features/automatic-mtls/
https://linkerd.io/2.14/features/server-policy/
https://linkerd.io/2.14/features/server-policy/
https://docs.konghq.com/mesh/latest/
https://docs.konghq.com/mesh/latest/introduction/architecture/
https://docs.konghq.com/mesh/latest/introduction/architecture/
https://docs.konghq.com/mesh/latest/policies/mutual-tls/
https://docs.konghq.com/mesh/latest/policies/mutual-tls/
https://docs.konghq.com/hub/kong-inc/acl/#main
https://cloud.google.com/learn/what-is-multicloud
https://cloud.google.com/learn/what-is-multicloud
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://learn.microsoft.com/en-us/azure/aks/intro-kubernetes
https://learn.microsoft.com/en-us/azure/aks/intro-kubernetes
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview
https://istio.io/latest/docs/ops/deployment/deployment-models/
https://istio.io/latest/docs/ops/deployment/deployment-models/
https://istio.io/latest/docs/setup/install/multicluster/
https://istio.io/latest/docs/setup/install/multicluster/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo

BIBLIOGRAPHY

[35] Prometheus overview. url: https://prometheus.io/docs/introduction/
overview/.

[36] Monitoring Multicluster Istio with Prometheus. url: https://istio.
io / latest / docs / ops / configuration / telemetry / monitoring -
multicluster-prometheus/.

[37] Kiali. url: https://istio.io/latest/docs/ops/integrations/
kiali/.

[38] Grafana. url: https://istio.io/latest/docs/ops/integrations/
grafana/.

[39] Deploy an Azure Kubernetes Service (AKS) cluster. url: https://
learn.microsoft.com/en-us/azure/aks/tutorial-kubernetes-
deploy-cluster?tabs=azure-cli.

[40] Create Autopilot Clusters. url: https://cloud.google.com/kubernetes-
engine/docs/how-to/creating-an-autopilot-cluster?hl=it.

[41] Configure Access to Multiple Clusters. url: https://kubernetes.io/
docs/tasks/access- application- cluster/configure- access-
multiple-clusters/.

[42] Plug in CA Certificates. url: https://istio.io/latest/docs/
tasks/security/cert-management/plugin-ca-cert/.

[43] Install Multi-Primary on different networks. url: https://istio.
io/latest/docs/setup/install/multicluster/multi-primary_
multi-network/.

[44] Verify the installation. url: https : / / istio . io / latest / docs /
setup/install/multicluster/verify/.

68

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://istio.io/latest/docs/ops/configuration/telemetry/monitoring-multicluster-prometheus/
https://istio.io/latest/docs/ops/configuration/telemetry/monitoring-multicluster-prometheus/
https://istio.io/latest/docs/ops/configuration/telemetry/monitoring-multicluster-prometheus/
https://istio.io/latest/docs/ops/integrations/kiali/
https://istio.io/latest/docs/ops/integrations/kiali/
https://istio.io/latest/docs/ops/integrations/grafana/
https://istio.io/latest/docs/ops/integrations/grafana/
https://learn.microsoft.com/en-us/azure/aks/tutorial-kubernetes-deploy-cluster?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/aks/tutorial-kubernetes-deploy-cluster?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/aks/tutorial-kubernetes-deploy-cluster?tabs=azure-cli
https://cloud.google.com/kubernetes-engine/docs/how-to/creating-an-autopilot-cluster?hl=it
https://cloud.google.com/kubernetes-engine/docs/how-to/creating-an-autopilot-cluster?hl=it
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/
https://istio.io/latest/docs/tasks/security/cert-management/plugin-ca-cert/
https://istio.io/latest/docs/tasks/security/cert-management/plugin-ca-cert/
https://istio.io/latest/docs/setup/install/multicluster/multi-primary_multi-network/
https://istio.io/latest/docs/setup/install/multicluster/multi-primary_multi-network/
https://istio.io/latest/docs/setup/install/multicluster/multi-primary_multi-network/
https://istio.io/latest/docs/setup/install/multicluster/verify/
https://istio.io/latest/docs/setup/install/multicluster/verify/

	List of Figures
	List of Tables
	Introduction
	Objectives
	Chapter organization

	Service mesh
	Introduction
	Microservices architecture vs monolithic architecture
	Microservices architecture
	Monolithic architecture

	Service mesh definition
	Services and components
	Control plane and data plane

	Service mesh tools
	Introduction
	Istio
	Definition
	Working mechanism
	Components
	Security features

	AWS app mesh
	Overview
	Security features
	Istio vs AWS service mesh

	Linkerd
	Overview
	Security features
	Istio vs Linkerd

	Kong mesh
	Overview
	Security features
	Istio vs Kong service mesh

	Multi-cloud cluster design
	Introduction
	Multi-cloud environment
	Definition
	Multi-cloud vs Hybrid-cloud
	Benefits and Challenges

	Kubernetes cluster
	Definition

	Istio deployment models
	Environment setup

	Environment monitoring and testing
	Intoduction
	Environment monitoring
	Prometheus
	Configuration
	Kiali
	Grafana

	Environment testing
	Istiod traffic analysis
	Dos attack
	Nmap test

	Conclusions
	Clusters installation
	AKS cluster
	GCP cluster

	Istio configuration and installation
	Plugin certificates to cluster
	Multi-primary installation
	Multi-primary verification

	References

