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Abstract

Data contracts are tools that are gaining strength in the data engineering practice,
used to enhance data quality during data ingestion. This thesis aims to establish
a format specification for contracts and the associated system for enforcing these
agreements, particularly targeting source-aligned data products in the context of a
data mesh paradigm. This research addresses the pressing need in contemporary
data engineering to maintain data quality amid an increasing production of data,
proposing a proactive approach where data producers adhere to predefined quality
standards at the source. For this purpose, an application was designed to manage
and validate contracts, using a push-based data ingestion as the examined scenario.

The study analyzes existing proposals for data contracts and introduces the
creation of a contract object that facilitates quality agreements between data
producers and consumers. These agreements rely on declarative schema and quality
rules, used to computationally generate validations to ensure full alignment and
compliance. The system has been designed to incorporate a declarative finite state
machine workload management system in order to offer flexibility in adapting data
validation processes to diverse use cases.

The research and subsequent software implementation demonstrate the delicate
balance in defining a data contract between general standardization and domain-
specific quality expectations, which in turn heavily influences the design of the
enforcement system to account for this demand of configurability. Nonetheless,
by analyzing the implemented system it can be concluded that despite the time
overhead as a result of the enforcement, data contract agreement and enforce-
ment enable faster correction producer-side, ultimately elevating data quality for
consumers.

This thesis has been developed as part of the Research & Development unit of
Agile Lab s.r.l., with plans to integrate it into Witboost, Agile Lab main product.
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Introduction

Current organizations generate large amounts of raw data, product of their internal
processes, interactions with customers and external entities, and so on. This bulk
of information can be analyzed to extract knowledge to drive business. However,
in order to achieve this, the information should be reliable and possess certain
standards of quality, which often are overlooked by the producers of said data, and
only considered at later stages, where it might be too late to fix or get around.

Data engineering as a discipline has roots in this necessity, as it focuses on
designing the systems to gather and analyze data, responding to the exponential
increase in the amount of both the generated data and the data sources inside such
organizations. Based on this, different practices have appeared and vary greatly in
their structure and foundations, shaping organizations in the process, and fueling
growth thanks to data analysis, business intelligence, etc. that spur from this
collection of data.

Transforming data into value to generate business growth and ensuring its
quality properties, is done through a chain of transformation processes, cleanup
tasks, and other kinds of steps, creating what is called a data pipeline, through
which data flows and gets converted into knowledge. As a general rule, it always
involves a producer that generates data that can be interesting to an organization,
and a consumer that ingests this data and transforms it in a way so that meaning
can be extracted. Producers can either belong to the same organization, from
daily processes that persist the needed information for the business to work in
operational databases, or external owners of information. In addition, ownership
of the data and who holds it becomes of great importance in this process, as it
affects tasks like pipeline maintenance or improvement, which are transversal to
the production of data and are the ones in charge of answering to change and to
external requirements.

Through the years, different design guidelines and architecture have been created
to connect producers and consumers. Currently, data exchange occurs through a
variety of channels, each adhering to its unique set of standards and structures, or
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Introduction

sometimes, exhibiting a lack thereof, often tailored to serve specific use cases.
This heterogeneity in the way data is exchanged and handled has created a

breach in quality preservation, since the absence of a universal standard for data
exchange has allowed data to manifest in various forms, reflecting the design and
technical flaws of the systems that produce said data. Most of these systems
have been designed not with a data-driven approach, but rather to streamline the
acquisition of information to achieve some business goal, and produce data only as
a byproduct. And not unlike byproducts in real life, the quality of it can be greatly
questioned.

For this reason, both producers and consumers must implement agreements
and controls on the information they’re handling, especially in order to ensure
data quality, which is the main element to satisfy the requirements of the intended
purpose of the data [1]. The medium to ensure data quality should thus be inserted
into the data architecture of the organization and as such is dependent on the
technologies and platforms used to implement it. Some of these agreements are
implicit, like the choice of one technology instead of another and their underlying
standards (i.e. relational databases and SQL language); but others are done
explicitly, either via an agreement between parties, or as an imposition from one of
them (usually from the producer). This way, when a producer chooses a specific
technology, the protocol of communication, and the schema of the data, they impose
the main aspects that govern the interchange of information.

Is in this context that a new way to approach the control on the exchange of
information based on Data Contracts has started to gain strength on the last years,
as businesses acknowledge that the quality of the data ingested by their analytic
processes determines both the value of the output as well as increasing the return
of investment by lowering the cost of handling bad data. The concept has existed
for more than a decade, taking inspiration from service contracts and data licenses,
but modern contract definitions require not only to define the properties of data
but also to enforce them automatically as part of any data pipeline.

Following this trend, the purpose of this thesis is to explore the concept of data
contracts, culminating in the design and implementation of an effective enforcement
mechanism for their utilization in data exchange between two entities. The research
gains particular relevance due to the increasing market interest in data contracts
observed over the past year, which underscores the industry’s recognition of the
valuable role data contracts can play in improving data quality, security, and
reliability within today’s fast-paced data-driven landscape.

The thesis was developed as part of the author’s job as a Big Data Engineer
on Agile Lab s.r.l, an Italian IT consultancy company that focuses on Big Data,
Data Mesh, and Research and Development (R&D) in these fields. The company
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Introduction

was founded in 2014 and since then it has worked with large enterprises in fields
like banking, logistics, manufacturing, insurance, and others.

Founded on the principles of agility, innovation, and cutting-edge solutions,
Agile Lab has emerged as a dynamic force in the realm of data engineering and
digital transformation. Established with a vision to empower organizations with
data-driven insights, the company has continually pushed the boundaries of what’s
possible in the world of data engineering, being early adopters of the data mesh
paradigm, offering consultancy to companies interested in shifting their processes
into data mesh, as well as publishing a new product “Witboost” aimed to enter-
prises to solve data engineering challenges through discovery, enhancement, and
automation guided by governance best practices, based on the data mesh paradigm
practices, but not forcefully tying data architectures to it.

The current document presents a chapter-structured approach to present the
performed analysis and subsequent work. First, an examination of the existing
body of research in the field of data engineering, data quality, and data contracts,
setting the stage by establishing the current state of affairs.

With a solid foundation in place, the thesis transitions into the problem specifi-
cation phase. Here, the scope of the problem to be tackled is identified, as well as
the work to be done to undertake it.

Subsequently, the document follows the analysis, design and implementation
phases done through iterative agile development. Central to this phase is the
development of both a standardized data contract format and a robust enforce-
ment system. The approach is guided by the insights gained during the problem
specification phase, ensuring that the proposed solution addresses the identified
issues while adhering to industry best practices.

Finally, results and conclusions are presented. This section not only showcases
the outcomes of the performed work, but also evaluates the impact of the imple-
mented data contract format and enforcement mechanism on data quality and
exchange processes. It serves as a platform for drawing meaningful conclusions,
discussing implications, and offering valuable insights for future research within
this dynamic field.
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Chapter 1

Background

In the center of the field of data engineering lies the creation of platforms that host
processes built to collect data from different sources, transform it, and perform
analyses in order to extract information and knowledge. The meaning of this
data and the consequent extracted information and knowledge are used to make
decisions. These three concepts: Data, information, and knowledge, work as the
core of the practice, and their semantic differences have been extensively discussed.
The definition brought by Ackoff [2] has been considered extensively to be one of
the most clear, where the difference between data and information is functional
rather than structural, and the latter is created by transforming data with the aim
of increasing its usefulness. Knowledge instead is extracted from the information
and functions as the answer to the questions posed by the original use case and
business requirements.

In order to create knowledge from information, and information from data, is
necessary to define both the transformations and the platform under which the data
is placed and these transformations happen. The discussion on the best practices
for the actual implementation of these processes has created along the years several
different design guidelines and architectures to achieve the purpose of knowledge
extraction from data. This doesn’t always mean just the software implementation
and integration on the other existing systems in the organization, but could also
encompass a complete organizational shift in the way responsibilities are divided.

These guidelines build the baseline from which is possible to introduce further
processes like data quality which functions as the ultimate tool to ensure a successful
extraction of knowledge, and which should be inserted as part of these systems.
The way data quality is performed is dependent on the actual implementation and
this might differ on a case-to-case basis, both from the organization’s viewpoint and
from the data engineering team. Because of this, is fundamental to explain first
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the different kinds of existing data architectures and paradigms, to then introduce
data quality, and how this can be inserted in the context of data transformation
and data contracts.

1.1 Data architectures

Currently, the most widely used architectures are Data Warehouses and Data Lakes,
so it’s important to briefly mention how they approach data and also to highlight
the current limitations of these architectures.

1.1.1 Data Warehouse

Data warehousing is a business-driven data architecture, where data is handled
based on business goals. Golfarelli and Rizzi [3] define it as a repository for
historical, integrated, and consistent data to conduct data analyses that help
perform decision-making processes and improve information resources. These goals
are specified by requirements that come from stakeholders of the organization
and the data is modeled to serve them, allowing the quick creation of Business
Intelligence (BI) systems, and other types of business analytics.

A Data Warehouse architecture is designed so there is a clear distinction between
transactional (also called operational) and analytical data, where the latter is to
be kept in a centralized, standardized, and scalable way. Dehghani [4] makes a
great summary of how data is handled in a Data Architecture as follows: Data is
extracted from many operational databases and sources that support the day-to-day
business of the organization. All of the data is transformed into a universal schema
represented in a multidimensional and time-variant tabular format via ETL jobs. It
is then loaded into a centralized database called “warehouse” that stores the tables
with the information. This warehouse is designed for On-Line Analytical Processing
(OLAP) analysis. That is, big queries involving dynamic, multidimensional analyses
on a huge amount of records, different from how On-Line Transaction Processing
(OLTP) systems are performed, which usually involve only a couple of tables and
records and it’s aimed to be fast and offer ACID properties. Data is then accessed
through SQL-like queries by data analysts for reporting and analytical use cases.

There are several types of actual implementations of data architecture for the
warehouse, defined by the number of layers of separation of data and information.
The typical base architecture for a Data Warehouse is composed of two layers,
physically separating the operational data source and the data warehouse as seen
in Figure 1.1.
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Figure 1.1: Two-layer architecture for a data warehouse. Adapted from Golfarelli and Rizzi,
2007 [3].

On this architecture, the data flow stage is defined by Lechtenbörger [5] as a
series of layers with a specific responsibility, operation to be performed and a team
that holds the ownership:

1. Source layer: Data is present on the operational databases
2. Data staging: Data is loaded from the operational databases, and it

is cleansed and integrated, done through Extraction, Transformation,
and Loading tools (ETL), a process that standardizes the format of
the operational databases to the data warehouse dimensions.

3. Data warehouse layer: Clean Information is stored in one logi-
cally centralized single repository, which can be directly accessed or
through data marts.
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4. Analysis: Data is loaded from the data warehouse in an efficient
and flexible way to create reports.

In data warehouses, the ownership of the data relies on a team of specialized data
engineers and data scientists who maintain the warehouse and generate the queries
needed for the analysts and BI. Most, if not all, of the requests for pushing/pulling
data from the warehouse, pass through this team. Any change needed to the
dimensions of the information, regardless of the business-oriented goal or context
of the data, needs to pass through the data engineering team. This is a known
potential source of problems as will be explained later.

1.1.2 Data Lake

Data lakes appeared as an evolution of data warehouses, although in reality they
work side by side with them, as they’re designed for slightly different use cases.
They also consist of a centralized repository, albeit allowing to store both structured
and unstructured data at any scale [6]. The key fact that differentiates the Data
Lake and the Data Warehouse is how the data transformation is being performed.
As explained above, the data warehouse uses ETL jobs, so the Transformation is
done before saving the information on the warehouse to standardize the format,
whereas on a Data Lake, an ELT process is more common, so the Transformation
process is done after Loading the data on the lake.

This changes the fundamental way of saving and ingesting information. In a
data warehouse, having the transformation process before data is loaded into the
data warehouse means that the whole set of data is already present in a standard
schema of set dimensions that can be directly queried. On a Data Lake however,
the data is saved not in a standard format, but directly on the format of the source
(be it structured or unstructured), improving the availability and timeliness of data
but introducing new processes to be performed at a later point in time. In fact, to
access the data or perform analyses, it is necessary to carry out the appropriate
processing of the data (Transformation). Nonetheless, the advantage is seen in the
fact that the data to be ingested is already readily present, and different Business
Units can access newer information in a quicker way, not needing to wait for the
Data Warehouse ETL pipeline.

In both these architectures, data passes through two clear main steps. The first
step is delineated by the initial Extraction step of the pipeline to push data into the
warehouse or lake, where these systems act as the consumer, ingesting data from
external sources to an internal platform that is then considered as a data domain.
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That is, a perimeter where the information is handled and the ownership of it
belongs to a well-defined set of maintainers or a team, becoming the domain team.
Upstream on the ingestion, both operational databases and external providers
are considered producers in this step, acting outside of the domain of the lake or
warehouse.

By ingesting data, it is now transferred inside the domain ownership and handled
by their maintainers in order to allow businesses and data analysts to consume what
has been exposed in the warehouse and lake systems. This acts as the second main
step, where ownership is contained inside the architecture, and further requests to
access data are handled by the domain team. This differentiation of ownership will
be key to further quality checks and requirements that will be analyzed further in
the document.

1.2 Data Mesh

Data warehouses and lakes solve the problem of collecting data from different
sources and saving it in a reconciled format for the case of warehouses. However,
this centralization of data brings further issues. As organizations grow in complexity
and expect more data and in more instances, the systems are put under stress
and the data engineering team that tenders for the warehouse or lake starts to
fall behind the analysts’ and stakeholders’ requirements. Even if the systems are
built to scale with the increasing amount of consumed information and access to
it, the maintenance of these systems and the extension of them to provide new
views on data, data marts, etc. doesn’t scale as easily. In these scenarios, shortcuts
are taken and data quality and reliance on the data is the first thing to be lost.
When this happens, is necessary to not only reorganize the way these systems are
implemented, but also how they are handled, and the teams behind them. The
Data Mesh paradigm aims to solve this, defined as a decentralized approach to data
management proposed by Zhamak Dehghani and formalized in her 2022 book [4].

Is important to remark that Data Mesh is not only a data architecture, but
it also entails a “sociotechnical approach to share, access and manage data on
complex and large-scale environments” [4]. Its approach aims to manage large-scale
data in a decentralized way, where the ownership of the data is not centralized but
rather distributed among domains: Teams aligned to specific business domains
and the information handled by it, being in possess of the knowledge about the
real-life concepts and use cases of the data it produces. In this manner, it is able to
offer better data that they then expose to the rest of the mesh and to the exterior,
treating data as a company product with quality standards and expectations,
“shifting the value system from data as an asset to a product to serve and delight
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Figure 1.2: Four principles of data mesh and their interactions. Adapted from Dehghani, 2022
[4].

the data users (internal and external to the organization).” [4]. Each domain team
is independent from the others and in charge of handling their own data, ensuring
their quality.

Architecturally, data mesh transitions the way of consolidating data, passing from
monolithic data warehouses and lakes to a distributed mesh of communicating Data
Products accessed via standardized ports. This requires strong data governance, a
mechanism that ensures the system is secure, trusted, and delivers value through
the interaction of the parts [4]. In Data Mesh, this mechanism is modeled through
a federated model with automatic computation policies that are embedded in the
mesh and that monitor the overall health of the environment.

The whole operation of a data mesh is supported under four principles defined by
Dehghani that capture the logical architecture, operating model, and organizational
shifts. These principles work together as seen in Figure 1.2 to serve high-quality
data under a healthy mesh, empowering data teams to care for the produced
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knowledge. The principles are the following:

• Principle of Domain Ownership
• Principle of Data as a Product
• Principle of the Self-Serve Data Platform
• Principle of Federated Computational Governance

Operationally, these principles in action can work to create a data architecture
that allows for decentralized ownership, while offering the interfaces to access
data, manage governance, service data products on a platform, etc. Figure 1.3
summarizes this approach, where domains communicate with each other to access
and share data while having transversal federated governance and a data platform
to serve and discover the mesh data products.

Figure 1.3: Operating model of data mesh principles. Adapted from Dehghani, 2022 [4].

1.2.1 Domain Ownership

As outlined before, Data Mesh proposes a division of the organization into domain
teams that are parallel to the data transformation process, thus being accountable
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for the whole end-to-end data lifecycle and having ownership of the whole process.
In this context, ownership refers to the responsibilities to create, model, maintain,
evolve, and share data as a product to meet the needs of data users [4]. Ownership
thus means End-to-end data life cycle, quality responsibility, access control, and
security, ensuring compliance with standards and regulations, as well as metadata
management which is necessary for a successful Data Mesh integration.

The effective shift-left of the ownership closer to the source of the data achieves
more control over the data with the benefits of quality, scaling out, optimization for
continuous change, agility in the process by reducing bottlenecks, and cross-team
synchronization. It also improves the truthfulness and accuracy of the data by
closing the gap between the production and consumption of data, with improved
resiliency of analytics. This is key since Data Warehouses or Data Lakes would rely
on the centralized team in charge of the consolidation of data, being responsible
for the transformation of the data and the whole pipeline in general, overloading
the team with responsibilities and spreading thin the knowledge about the stored
data. Data marts may have given a small division of representation of the data
loosely compared to a data product, but the ownership of them still belongs to the
data warehouse team.

This shift into decentralized teams helps improve the approach to data compared
to the monolithic architectures, providing enhancement from the two sides of the
production of information: The first, from the workers and systems that produce
Operational Data and were not aware of the process of Data Warehouse and Data
Lake, being disengaged in the creation of added value but that now are part of
the mesh. The second, the disappearance of the single, centralized team that
ingests the data into the warehouse or the lake, which previously needed to struggle
with data quality based on the requirements given to them by all of the different
downstream consumers, and that could also be heterogeneous among themselves.
By decentralizing the domain teams, these won’t need to be aware of all the business
domains and change management driven by the source that inevitably slowed down
the process, and eventually gave distrust to the data consumers that wouldn’t rely
on the availability and quality of data.

By creating data domains based on the decomposition of business domains that
organizations today perform, Data Mesh pushes this decomposition all the way
down to the data and its ownership. This ownership will now possess a well-defined
boundary. To identify this boundary an approach of Domain Driven Design is used,
where these business domains are first identified and then based on these, map the
boundaries to the data, creating the data domains and having the business act as
the underlying structure. This results in data domains holding datasets with the
same lifecycle and high cohesion among them, facilitating ease of use and atomic
integrity.
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1.2.2 Data as a Product

Creating data domains enhances the care given to data, treating it now as a product.
On a data mesh, handling data as a product carries with it the same attributes
as a physical product manufactured by a company. It needs to delight the end
customer, provide quality and measure success, be advertised and made available
on different channels or representations, and so on. According to Marty Cagan [7],
a product needs to be feasible, valuable and usable. Thus, a Data Product must be
a well-defined entity that encompasses these attributes by itself. This means having
the responsibility of creating and transforming quality data, pushing it upstream
on the pipeline, and effectively inverting the model of responsibility compared to a
Data Warehouse or Lake. All the processes that are needed to build, expose, and
maintain the data must be inside the data product.

Following the same considerations, a data product must also be discoverable,
exposing all its information by itself (metadata, schema, syntax, etc.) and thus
being self-described. A central catalog is usually leveraged for this purpose but is
not strictly necessary. Furthermore, the data product also needs to be addressable,
understandable, trustworthy (encompassing attributes of quality, transparency,
completeness, etc.), natively accessible, interoperable with the rest of the mesh and
the exterior, valuable on its own, and secure, offering measures of access control.
The data it holds is usually denormalized, providing relevance by itself and not
having the need to consume other sources in order to extract knowledge.

Data products should be designed to have the ability to expose information in
many formats, allowing a polyglot approach. Nonetheless, this must be standardized
to allow only certain types of exposure to a certain customer but to allow the
possibility of having multiple representations of the same data in different formats.
The data products are read-only, as the only entity allowed to write in the storage
is the data product itself. To expose the produced information and its respective
metadata, the data product uses what is called Output Ports, acting as interfaces or
points of contact from which the consumers can consume the data, but also learn
about it thanks to the exposed metadata, offering as well properties of security by
access control lists to limit the access to the information.

Other ports that may be present on a data product and are worth noting
are Observability Ports, which expose information used to for example measure
service level objectives (SLOs), like information about timeliness, interval of change,
completeness, shape of data, lineage, etc. This allows consumers to read it and
gain trust in the offered data. By including this port along with others, like control
ports to configure data governance policies on a data product, the Data Product
achieves the accountability that a product should have.
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Figure 1.4: A unit of architecture for a Data (Product) Quantum. Adapted from Dehghani,
2022 [4].

The inclusion of the necessary ports to the data product creates a unit of
architecture that can be independently deployed, containing all necessary elements
for it to function and which Dehghani refers to as a Data Quantum. A high-level
view of the unit of architecture for a Data Quantum can be seen in Figure 1.4,
but for the purpose of this explanation, the concepts “Data Product” and “Data
Quantum” can be used interchangeably. The domain teams that design and deploy
data products must work to carry through these requirements in order to have a
successful Data Product.

1.2.3 Self-Serve Data Platform

By creating a mesh of data products, the requirement for a centralized platform
doesn’t disappear but rather changes purpose. It passes from handling the whole
data lifecycle and storage to the creation of a data-sharing platform that manages
the full lifecycle of individual data products, empowering domains’ cross-functional
teams to share information, helping to use it from source to consumption, and
effectively creating a reliable mesh rather than independent data products that live
by themselves. It eases both the domain teams and end users to discover, access
and use data products.
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The main benefits of having the platform that ties the mesh together are,
according to Dehghani [4], the reduction of the cost of decentralized ownership
of data; the abstraction of data management complexity, facilitating a load of
domain teams to manage the data product lifecycle; the reduction of the need of
specialization helping to open the data product development to more developers;
and the automation of governance policies.

1.2.4 Federated Computational Governance

Decentralizing the management of data introduces several new issues, some of
them solved by the self-serve data platform, like discoverability. But even if data
products interconnect and aim to offer data with high standards of quality, it’s
still necessary to balance the autonomy and agility of domains with the global
interoperability of the mesh. The Federated Computational Governance principle
proposes an operating model that creates an incentive and accountability structure
for this. It is a mechanism that ensures the system is secure, trusted, and that
delivers value through the interaction of the parts by addressing global issues,
such as interoperability, security, compliance, etc. The responsibility of modeling
the meaning of the quality of data still belongs to the domain, but automating
computation policies are added on top and enforced on the platform that assures
the data is secure, compliant, of quality, and usable [4].

Federated computational governance represents the evolution step after the
previous manual intervention and central processes of data validation and certifica-
tion that don’t scale quickly and offer minimal support for change. Even though
most of the responsibilities of these validations are delegated to the domain teams
that maintain the data products, this delegation is partial, since now the need for
a centralized and global set of rules that are applied to all data products, with
their interfaces and ports appears and it’s laid down by a cross-domain team, thus
“federated”.

By allowing the inclusion of policies embedded as-a-code, data mesh reduces
governance coordination friction among domains. The manual certification and
validation of policies by the federated governance team can now be automated in
the continuous delivery (CD) of data products. In this way, it is a practice that
creates global computation policies, arising from concerns on the mesh, defining
standards or policies to manage and secure the mesh with a team composed mainly
of domain data owners, rather than having general data experts.

The definition of these policies, both at the federated level with global policies
and at the domain level with the specification of Output and Observability ports,
rely on what the mesh and organization, through a team composed by members
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of the different business domains, decide are the requirements for it to function
correctly and generate knowledge, as this is the goal regardless of the actual
implementation. These requirements are usually based on mesh homogeneity for
interoperability, data quality for the correctness of the processes and outputs of
the platform, and other business and compliance requirements.

1.3 Data Quality

As briefly mentioned before, data is valuable when it’s possible to extract meaningful
knowledge from it that ultimately helps drive business decisions and provide insights
and new services. The degree to which data satisfies these requirements of its
intended purpose is what is known as Data Quality (DQ) [1]. This definition,
as general as it is, requests a way to delineate this level of “satisfaction” desired
from data in order to build processes upon it, and effectively generate valuable
knowledge. A model to assess the level of quality of a system or process has been
delineated under the standard ISO/IEC 25102 [1]. This standard proposes that
organizations must define quality goals that they expect their data to have based
on a set of analyses under a set of quality dimensions. However, as Jarke et al.
explain in [8], the outlining of these goals is characterized by two issues:

• Quality is subjective: Quality goals must be organized according to the
stakeholder groups, taking into account research results in data and software
quality.

• Quality goals are diverse in nature: These goals can be neither assessed
nor achieved directly but require complex measurement, prediction, and design
techniques, often in the form of an interactive process.

For this reason, even with standards to define data quality in an organization,
the ultimate technical aspects of what to define as quality may only have meaning
within the organization that sets them. Moreover, according to Golfarelli and Rizzi
[3], the corporate of an organization also plays a fundamental role in reaching data
quality, as they can create a role hierarchy where only a limited group of users
are in charge of data, and these people must be chosen by an appropriate and
accurate certification system (that can be specific for every enterprise area). The
centralization of these decisions carries possible setbacks that can cause bottlenecks
in the creation of knowledge, as already discussed in Section 1.2, so it always needs
to be assessed with care.
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1.3.1 Data Quality Model

In order to measure, ensure, and ultimately enforce quality on the data, it’s
necessary to define a measuring frame based on properties or dimensions. As
already stated, quality is subjective, so several proposals exist as to what these
dimensions should be, all using ISO/IEC 25012 as a baseline. This standard
proposes a model to measure data quality based on dimensions that data and the
systems used to manage it should hold. These dimensions are:

• Inherent: They’re intrinsic to the data and the values it contains

– Completeness
– Accuracy
– Consistency

– Currency
– Credibility

• Inherent and system dependent: They’re based both on the intrinsic data and
the system that stores and exposes it

– Precision
– Understandability
– Accessibility

– Compliance
– Efficiency
– Traceability

• System dependent: They’re mainly based on the system that stores and
exposes the data

– Availability
– Portability

– Recoverability

The standard provides a wide baseline for the identification of data quality
dimensions, but in modern systems where these quality checks are actually used
and implemented, usually a subset of them is actively monitored while ignoring
some of the dimensions, or passively providing them by the underlying technology
guarantees. For example, the Data Management Association (DAMA) of the
United Kingdom, a community of data professionals that acts as consultants for
the country’s government, proposes the following six dimensions as the core data
quality dimensions [9]:

• Completeness: Are all datasets and data items recorded?
• Consistency: Can we match the data set across data stores?
• Uniqueness: Is there a single view of the data set?
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• Validity: Does the data match the rules?
• Accuracy: Does the data reflect the data set?
• Timeliness: Is data representing the reality of the required point in time?

These core dimensions that DAMA proposes include other measures not included
in the standard ISO, like uniqueness and timeliness. Indeed, the decision of which
frame to use to measure quality data is effectively chosen according to the business
requirements and how the organization works.

Some examples of data quality checks that occur frequently in practice on
datasets might span from null-checking (checking that a certain dataset or column
contains at most X% of null values or not at all), the presence of only a closed and
known set of values for a certain attribute, number ranges that a numeric column
must follow, etc. Depending on the granularity of the evaluation and its specificity,
more or less complex checks can be performed. However, as already stated several
times, this is dependent on the business environment and the domain the data lives
in.

Some consider these metrics as part of a bigger set of attributes that Dehghani
[4] calls Data Guarantees. These define whether the data meets the guarantees
that their particular use case requires, not only on objective measures of data
quality, but also levels on levels of maturity, conformance to standards, temporal
characteristics, and so on.

Briefly, the categories of guarantees that Dehghani proposes are: Data Quality
metrics which encompass the dimensions already discussed, the Data Maturity
metrics which, in contrast to data quality metrics, indicate the point where an
organization is located in their roadmap towards a data-driven operating model
by measuring properties like degree of usage, diversity, evolving lifecycle, etc.
Dehghani also considers the guarantee of Data standards conformance, like industry
standards for external interoperability, or internal ones for interoperability inside
the organization, as well as legal standards on data. Lastly, the author defines
temporality metrics that illustrate the temporal shape of the data, assessing the
suitability and availability of data over time.

1.3.2 Data Quality Tools

Since Data Quality is fundamental to the implementation of pipelines for data-
driven organizations, quality checks should be created and applied to the desired
data. Desirably, these validations should be done in an automatic manner attached
to the different steps of a pipeline, executed both at the source level and wherever
the data is transformed in order to ensure a high user-based standard of quality.

17



Background

In a typical ELT pipeline, for example, quality checks should be run at the Load
stage, after the ingestion, to check if the source data contains bad data; and at the
Transform stage, to check if the transformation hindered the quality of the data as
well.

Considering the discussed importance of quality, is not a surprise that an infinity
of tools have been created and are used for checking data quality at various
dimensions and stages in the typical lifecycle of data. Some of these tools will now
be explained.

Great Expectations

Great Expectations (GX) is a tool for the validation of data to ensure user-defined
standards of quality while providing as well mechanisms for documenting and
profiling the analyzed data [10]. The tool is based on Expectations, which are
defined by the tool as “verifiable assertions about source data”. An expectation
provides a high-level declarative abstraction of a quality rule that a user would
want to verify on a Data Source, which in turn is an abstraction of a specific set of
stored information or data.

Thus, by abstracting both the process to enforce quality rules and the access
to the information, Great Expectations provides a flexible tool that adapts to
the specifics of a data architecture. This way, the data analyst or engineer needs
only to define the set of Expectations (or Expectation Suite) and the Data Source
connector to access the information, and the tool will manage the language or
technology-specific configurations to act on said data. Moreover, by providing
an extensible Expectation interface, custom validation rules can be created for
domain-specific validations, or published on the Expectation Gallery, a public
marketplace where contributions are made by members of the tool’s community.

Architecturally speaking (as seen in Figure 1.5), Great Expectations works under
a core component called Data Context, which stores metadata about a specific
project and contains the information about the defined Expectation Suites, Data
Sources, documentation, etc. that belong to said project, and being themselves
the other core components of the tool. Furthermore, the Data Context serves as
the entry point for the tool’s API, serving the requests and managing the internal
state and workflow of a validation, storing results, and interfacing with alerting or
notification services.

Using the Data Context it’s possible to create Data Sources which configure
the physical location of the data to be analyzed. Through this abstraction, it’s
possible to read data located not only on a local file system but also from cloud
storage, streams, etc. From these sources, batches of data can be configured using
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Figure 1.5: Great Expectations core components. Taken from [10]

the Batch Request object, and finally, Checkpoints can be built to execute and
save validations and their results. By querying the outcome of a Checkpoint, it’s
possible to know all the details about the execution of a suite of expectations and
their outcome.

By using this tool, it is possible to define validations both manually and, more
especially, in a computational manner so that these quality rules can be applied
to any set of information, receiving detailed reports or alerts that inform the user
about its outcome, and allowing the data ingestion process to stop as soon as a
quality inconsistency or issue arise.
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CUElang

In the context of validation, it is possible to find tools like CUE (also known as
CUElang) which take a different approach to validation. CUE is an open-source
language working on top of Golang, created as a tool for defining, generating, and
validating data [11]. It has a base on logical programming languages (Prolog), and
thus it allows the creation of type definitions that work as values. In fact, inside
this programming language, types and values are merged into a single concept and
this gives the potential to perform data validation based on an expected shape or
structure, while also enforcing value constraints.

CUE is not a general-purpose programming language, since its main objective
lies in data and object schema validation; and although it doesn’t offer more
sophisticated validation checks like Great Expectations, it has a strong type
definition mechanism to validate data schemas and configurations. An example of
a CUE script defining a schema can be seen in Figure 1.6, where it is possible to
appreciate the different levels of constraints that CUE offers.

Figure 1.6: CUElang example for a schema definition and validation. By constraining the
allowed Department name values, it’s possible to easily identify wrong data.

On AgileLab, CUE is especially used for schema definitions and validations for
YAML objects and configuration files.

1.4 Data Contract

As it has been explained, the importance of the quality of the data being used by
organizations can’t be overlooked, and this has led to the integration of quality
checks in the steps of a typical data pipeline. Furthermore, new controls on the
data and how it’s handled by the involved users have been proposed, among which
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the concept of a Data Contract, a tool to define beforehand the expectations and
promises both producer and consumer of the data must follow and comply.

1.4.1 The problem with Data Quality

To understand why it has become necessary to establish contracts on data and its
attributes, it’s crucial to take a look at the current status of the insertion of data
quality checks in a typical pipeline.

Nowadays, when a consumer ingests data, it needs to implement quality checks
as part of the pipeline, sometimes on several points of the process. These redundant
checks are being done not only for thoroughness but also because in general data
tends to degrade as it passes through the pipeline transformations. This degradation
happens not only because of faulty transformations or generalizations but especially
since the quality of the data on the source determines the potential maximum
quality of a pipeline. We can say that the quality of the source is the asymptotic
maximum value for the quality that data can achieve, and this is considered
uncontrollable as it lies outside the data analyst’s responsibility reach (or in the
case of a data product, outside of the data product team ownership). It becomes
difficult to maintain data quality, as sources constantly evolve, making it hard to
trust even if the source was considered trustworthy at an earlier point in time.

As the quality of the output of a data transformation or pipeline is determined
by the quality of its inputs, it’s nearly impossible to extract knowledge from
information that has been deemed as garbage from the start, even on high-quality
pipelines where the ETL process has been carefully designed to account for possible
different degrees of quality. In the data engineering practice, this is coined as the
“Garbage In / Garbage Out” principle (GIGO). As obvious and known as this issue
may seem in the practice, data engineers continue to struggle with poor quality
data [12], where is reported that 31% of revenue might be impacted by poor data
quality, and in 74% of occasions, data consumers are the ones to identify the data
issues, downstream on the pipeline [13].

Some of the roots of this problem can be found in the separation of concerns
that is established in architectures like Data Warehouses or Data Lakes, previously
mentioned in Section 1.1. The layer separation of these architectures has abstracted
the engineering team that handles the creation of operational data, and the platform
team that manages the centralized warehouse or lake from the processes that data
scientists actually perform on the data. Operational teams are only focused on
building software and architectures to handle the day-to-day operations, and
platform teams are given the overwhelming responsibility to understand the bulk
of data the business is producing.

21



Background

Furthermore, the concept of quality might also differ on each analyst’s use case,
and can also be understood differently on each side. What might be considered as
good data for one team, could be garbage to the other. Thus, it becomes complex
for teams to hold knowledge of the different domains the data is being used on,
and being unaware of this, they lack the motivation to achieve certain standards of
quality (not only in the general context of a dataset but rather at more specific
levels where the detailed requirements and nuances of quality might get easily lost).
The cognitive struggle to work on a beginning-to-end quality consistency increases,
and fails to build an incentive to produce quality data.

Data Mesh proposes a new approach by treating data as a product and enforcing
governance on it, ensuring that teams tender for the quality of the data they’re
exposing and selling. However, both on Data Mesh and other data architectures,
enforcement of these quality properties is poorly handled, scarce, or non-existent.
Data schemas are treated as non-consensual Application Programming Interfaces
(APIs) that could easily mutate rendering downstream pipelines useless. This was
identified by Chad Anderson [12], where he explains that:

While connecting ELT/CDC tools to a production database seems like
a great idea to easily and quickly load important data, this inevitably
treats a database schema as a non-consensual API. Engineers often never
agreed (or even want) to provide this data to consumers. Without that
agreement in place, the data becomes untrustworthy. Engineers want
to be free to change their data to serve whatever operational use cases
they need. No warning is given because the engineer doesn’t know that a
warning should be given or why.

1.4.2 The concept of a Data Contract

A solution that has emerged in the last years to solve the problem of data quality
is based on the concept of “Data Contract”, an agreement between data producer
and consumer that has roots in data licenses or service contracts for other kinds of
services. Here, both parties agree beforehand on an established set of expectations
and promises about the schema and quality of the information to be produced by one
and ingested by the other, with an important focus on making this an automatic
and auditable process that can be integrated into the pipeline as upstream as
possible, hopefully directly at ingestion time, allowing for problems to be identified
before the data is used on any analysis.

The overview purpose of a data contract can be seen summarized in Figure 1.7.
By introducing a data contract, it is possible not only to set a level of quality a
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producer must provide but also to introduce enforcement before the transformation
pipeline. In this way, early errors that would’ve been irrecoverable or costly to
fix downstream on the pipeline can be automatically identified and the related
data rejected. By this means, the quality of the input in the consumer pipeline is
guaranteed and consequently, its output has the potential to hold higher value.

Figure 1.7: Data contract as the mediator of data ingestion.

As Data Contracts administer the communication between producer and con-
sumer, the definition of these two actors will impact how and where the management
and enforcement of the contracts shall be done. Thus, it’s necessary to approach
the definition of these two participants in the context of data ingestion and contract
validation.

In general, there are two instances that are tackled by the design of data
contracts, based on the control of the ownership of the data source (the producer).
If the ownership lies outside the organization, be it an external data provider or any
other type of source that falls outside the organization’s data architecture or the
related data domain, the contract will probably be agreed upon at a business level.
Although both parties are incentivized to monitor and enforce the data stream to
be compliant with agreed properties, it is necessary to enforce at the consumer
level the data that is being ingested, as the contract, which was defined based
on business requirements, may not be actually aligned with what the producer is
actually providing and the consumer ingesting. The provided data quality cannot
be implicitly trusted, and thus the enforcement must be done at a consumer level.
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If the ownership lies inside the organization, the scenario becomes more complex,
as it becomes possible to manage at both the producer and consumer level that the
contract requirements are being satisfied, and that handled correctly, the output
of the process will be of high quality and satisfaction for both parties. The way
that this enforcement shall be done depends on the context and the existing data
architecture.

For example, in a Data Warehouse architecture, the contract might be agreed
between the data engineering team that handles the warehouse and data marts,
and the data analysts that ingest the data and build reports, train ML models,
etc. It is an internal agreement where agents of both parties make an agreement
on the required schema, semantics, and other data quality metrics, but ultimately
is the consumers that impose the rules to accept the information provided by the
warehouse or data marts, as there is usually a lack of metadata that explains the
data quality dimensions of the information present on the warehouse or data marts.

1.4.3 Data Contracts in a Data Mesh

In a Data Mesh platform, the difference between the control of the ownership and
the consequent establishment of the data contract is made clearer compared to
other data architectures. In fact, inside the mesh, where the ownership is handled
entirely inside the different domain teams, contracts that govern the communication
between data products can be easily built based on the ports they expose. As data
is treated as a product, each self-contained data product provides a set of ports that
provide valuable information about the data, its shape, quality, etc. Observability
ports are designed to produce data quality metrics, and output ports to expose
metadata containing in it the schema, service level agreements (SLAs), etc.

From the available information, it is possible to construct and apply the data
contract. In particular, on a Data Mesh, a data contract can be used at two
points inside the mesh: On Output ports where the data product is exposing the
attributes of the data is producing; and on Input ports of source-aligned data
products, which work as the entry point of the mesh. When the data originates
inside the mesh, data contracts are created by using the provided observability
and metadata exposed by the data product itself, and then the contract is exposed
by the data product as part of the Output and Observability ports as shown
in Figure 1.8, so monitoring of the produced data and its quality can be easily
performed in a pull like fashion by querying the ports of the data product to be
validated. Furthermore, the versioning of the data contract is tied to the data
product one, and the enforcement of supporting different versions of the contract
falls directly on the management of the lifecycle of the data product.
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Figure 1.8: Data contracts on a Data Mesh architecture. Source-aligned data products create
data contracts by agreeing with a data producer on quality properties. Inside the mesh, contracts
can be automatically built and enforced using data product ports.

A slightly different situation is verified on the edge of the mesh, on source-aligned
data products that consume data from external providers outside of the mesh.
Here, the contract is defined on the Input port and must be constructed and agreed
upon between the external provider and the related domain team (see Figure 1.8).
Moreover, as explained before, in these occasions where data is coming from an
external source and ownership is not held by the domain team, the enforcement of
the contract lies on the consumer and thus the data product team should apply
the appropriate controls to the input of the data product to ensure compliance
checks are in place.

Furthermore, source-aligned data products in their role of points of contact of
the mesh with the exterior become the source of the asymptotic maximum of the
quality on the mesh, as the value of the information that will be produced and
consumed inside of the organization environment will be capped by the quality at
the source (GIGO principle). For this reason, the implementation and enforcement
of data contracts on this point of the architecture is considered to be of the highest
priority.
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1.4.4 Data Contract implementation

By acknowledging the importance of a data contract in modern data architecture
environments, the need to implement the mechanisms to define and enforce said
contracts arises. The implementation of a data contract is a fuzzy task that hasn’t
been standardized yet, mainly since the concept is recent and it’s still in the initial
adoption process by companies. It is not only the formalization of a structure
that encloses the information of the contract (data quality properties, data schema,
service levels, pricing, etc.) but also the utilization of the formal contract to actually
mediate the consumption of data, enforcing the agreed specifics of the data.

Early examples of structures called “data contracts” and used for the purpose
of mediating between producers and consumers can be found as early as 2007
as part of the architecture of Windows Communication Foundation (WCF) [14]
for handling the communication of service-oriented applications in the operating
system. However, the domain of application for this concept was far from the data
engineering field.

The concept was later revisited in the following years by other authors like
Truong et al. [15] in 2011, as a proposal in a context closer to data management,
to act as a tool mediating Data-as-a-Service systems, defining the structure and
quality of exposed data based on “terms” and five main categories, although easily
extensible to others: Data Rights, Quality of Data, Compliance, Pricing Model, and
Control Relationship). Their contracts are defined in Extensible Markup Language
(XML), Resource Description Framework (RDF), or JavaScript Object Notation
(JSON).

More modern examples of Data Contract structure definitions have been proposed
both by organizations that handle large amounts of data and by data quality tools
as part of the features they offer, following the common practices of the data
engineering practice in the current years. Agile Lab itself, for example, has defined
a basic specification for a Data Contract as part of the Data Product specification
created by the company and made open-source in 2021. The data contract was
included in the specification in 2022 and is embedded in the definition of the Output
Port, allowing the definition of a schema with basic field checks (nullable, data
type, uniqueness), as well as SLAs, basic terms and conditions, pricing, security,
and the endpoint from where to access the data. However, most of these fields are
free-form plain text and are not defined in a way that automatic processes can be
built on top.

Another Data Contract definition is given by Open Data Mesh, an open specifi-
cation that defines a data product declaration using a JSON or YAML descriptor
document, released under Apache 2.0 license and developed by Quantyca s.r.l for
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a data mesh architecture. Similar to Agile Lab implementation, it defines data
contracts as part of the data product specification, but this time as part of a more
generalized “Service Agreements” concept which includes three different services
called “Promises”, “Expectations” and “Contracts” that are declared on a Control
port rather than on the Output port [16].

As defined in their specification, Promises are used to declare the intent of
a port in the data product. They are not guarantees of the outcome, but the
data product will behave with the goal of realizing their intent. Service APIs,
Service Level Objectives (SLO), and deprecation policies are examples of Promises.
Expectations on the other hand declare how the data product wants its port to be
used by consumers, by declaring the desired audience and usage patterns. Lastly,
Contracts describe promises and expectations that must be respected both by
themselves and the consumers. It includes terms of conditions, SLA, billing policies,
etc. The enforcement of these service agreements is left to the implementers of the
architecture to decide, although Open Data Mesh states that for Promises “this
verification should be automated by the underlying platform and synthesized in a
trust score shared with all potential consumers”.

More remarkably, PayPal, an international digital payment company, recently
developed and published a data contract format on April 2023 as an open-source
format under the Apache 2.0 license [17]. It is defined in YAML and is being used
in the implementation of Data Mesh at the company. The version 2.1.1 of the
format is composed of several sections shown in Figure 1.9 and defined as follows:

• Fundamentals: Contains general information about the contract, like name,
version, support contact, physical access, etc.

• Schema: Describes the dataset that the producer is exposing in the form of a
schema. The data quality properties are integrated with the schema at the
dataset or column level.

• Data quality: Quality rules and parameters that are included in the dataset.
It uses a tool called Elevate to perform the data quality check, although it
provides support for other data quality tools.

• Pricing: Describes the way that access to the dataset is billed.
• Service-level agreement (SLA): Describes the SLAs that the producer should

provide on the dataset. This enforces properties like latency, retention, time
of availability, etc.

• Security & stakeholders: Provides a space to list the stakeholders of the data
contract, as well as security measures to control the access to the dataset via
the definition of roles and their allowed actions.

• Custom properties: Covers other properties that the contract may include.
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Figure 1.9: Diagram showing the PayPal data contract format proposal. Taken from [17]

Based on the PayPal data contract format proposal, more data contract formats
have been proposed, each of them with slight modifications on how to define schema,
quality rules, etc. The AIDA User Group followed shortly by publishing the “Open
Data Contract Standard” as a fork of the PayPal data contract format specification
[18]. However, PayPal or these groups have yet to offer a tool for enforcing this
kind of contracts. PayPal mentions briefly the use of an internal service that uses
itself a data quality tool named “Elevate”, but no other details were given about
these platforms.

Nonetheless, all of the data contract specifications agree and emphasize that
any specification should be made in a generic and declarative way, to allow ease
of integration into other data quality tool languages and data architectures. The
same reasoning can be made to the rest of the format specification, as it shouldn’t
bring any language-specific or tool-specific declarations that bind it to a technology
stack, rendering it technology agnostic and pushing the responsibility of contract
enforcement to the data contract user.

Lastly, a more practical but more reduced in scope proposal for a data contract
was made by dbt, a tool for defining transformation workflows to centralize analytics
code, which on April 2023 released in version 1.5 the possibility to add their
own definition of “contracts” to their pipelines [19]. Since dbt uses YAML and
Structured Query Language (SQL)-like syntax to build projects that define data
transformations, it’s possible to build data schema and basic quality checks on top
of the data transformations. The platform includes already a well-defined data
transformation pipeline and quality validations upon which they built their own
concept of contracts.

This way, dbt contracts are introduced as a step in the model transformation
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pipeline where quality tests are run before a model is built, in order to check for
compliance with a well-defined set of constraints at both model and column level
of a dataset. This way, instead of running tests on data that has already been
pushed downstream and might cause breaking changes, it is run before and the
model will fail if this fails. However, as these contract checks are executed before
the load and transformation are executed, it can only perform checks on the shape
(schema) of the returned dataset, and only on constraints that can be applied to
the columns at the platform or database level (where most platform only enforce
simple constraints like NOT NULL, or PRIMARY|FOREIGN KEY).

The fact that several proposals for data contracts have been created in a short
span of time shows the acknowledgment by the community of the importance of
said contracts, but the actual enforcement of said contracts and their agreements
is still not present in any tool. Although there are several potential mechanisms
to enforce data contracts, there is no one agreement or standard, especially since
the concept has started to be taken into consideration only in recent years, and
the solutions are business-oriented, following closely the technology stack that an
organization might be working with, or by the data engineering most popular or
used frameworks. For this, the design of a data contract enforcement system must
be designed having in mind the context of the organization, and the products
they might be using for data management, especially on data governance and
observability.

1.5 Witboost

When discussing data engineering architectures, it is important to mention the
platforms on which these architectures are implemented. On this matter, Witboost
is the main product of Agile Lab, designed as a modular platform to productize data
under built automated data platforms driven by data governance best practices
[20]. It is technology agnostic and its structure helps build data architectures for
medium to large enterprises. The most common use of Witboost currently is to
facilitate the implementation of a Data Mesh platform on organizations that follow
the paradigm or are transitioning into it from more standard approaches. This
transition is leveraged thanks to the almost one-to-one correspondence of its main
components with the logical principles and architecture of the paradigm. In fact,
the product was designed with these principles in mind to leverage the advantages
that domain-driven design and data mesh practices provide to the management of
data.

Due to the microservice architecture of Witboost, it is an extensible platform
composed mainly of four components that can be seen in Figure 1.10: A Data

29



Background

Product Builder to leverage templates and blueprints to build automated data
pipelines and storage, a Data Product Marketplace to make discoverable the data
products inside the organization environment enhancing transparency and trust
around them, as well as a component for handling federated data governance
called Computational Governance Platform. Finally, it includes the Data Product
Provisioner module, which automates end-to-end provisioning and deployment of
data initiatives with policy compliance.

Figure 1.10: Overview of the Witboost architecture showing the main services and components.

Witboost is designed to be entirely technology agnostic, which means that is
not tied to a specific stack of technologies but it allows, through the introduction
of templates and technology-specific provisioners, to support any technology. Thus,
the customer has the ability to include a new multi-cloud strategy or add mul-
tiple technologies to an existing Data Mesh implementation. The Data Product
Provisioner module orchestrates the deployment of data products by choosing
automatically the infrastructure template that completely automates the deploy-
ment tasks of the modules that compose a data product, each one implemented
by a specific, user-defined technology. These infrastructure templates, also called
Specific Provisioners due to their nature of being able to provision a component
of a certain specific technology, are implemented as independent microservices
either by the customers following an interface specification common to all specific
provisioners, or used already built ones made open-source by Agile Lab.

The platform also introduces, through its Computational Governance Platform,
the ability to enforce standards and quality checks across all resources, defined
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within the organization by the governance platform team. With this, policy
compliance becomes a concrete development step inside the whole lifecycle of a
data engineering project, as a way to avoid the degradation of quality in the data
products of the organization.
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Chapter 2

Problem Specification

Based on the current push on the market to increase quality levels on data transfer,
ingestion and transformation, a problem arises for a way to enforce data contracts
in a flexible but standard way. Early adopters like PayPal or dbt have created their
own solutions to the problem, but they all lack some part of a generally accepted
data contract workflow. Paypal open-source project specified a way to declaratively
define the necessary user requirements on both schema and data quality rules but
lacks an open-source system that uses this format to ingest and control data. dbt
on the other hand takes advantage of its declarative schema definition and rule
enforcement on top of Database Management Systems (DBMS) features, but this
lacks the flexibility to enforce more complex rules and data quality dimensions.

2.1 Scope of this work

Following the previous analysis, it becomes necessary to define a proposal that
offers both a rigorous standard for data contracts to define quality rules that are
also extensible and flexible, plus a way to enforce them using data quality tools.
This last one is heavily dependent on the way data is being sent by the producer,
or handled by the consumer, and it may be one of the reasons that no solution is
offered off the shelf but they are in all likelihood internally developed and tailored
to a specific scenario.

Following this logic, and having in mind the limitations of this thesis, it is
necessary to define a scope that is complete enough to show a robust proof of
concept, but that should serve as a starting point for future developments. For
this, a push-based scenario on the edge of a data mesh has been chosen, where the
ownership of data belongs to the producer, and thus is not controllable by the end
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data user, who is conceptually forced to perform the checks based on the agreed
data contract. The data mesh environment is chosen as it is central to Agile Lab
culture and strategy, but it should be applicable to other similar environments as
well.

2.1.1 Main objectives

1. Create a robust, computable, and flexible data contract format that allows the
definition of data quality rules in a declarative way to be applied to datasets.

2. Design and implement a software solution that enforces the data quality rules
of a data contract on push-based data ingestions at the edge of a data mesh
environment and that can be integrated into Agile Lab’s Witboost.

2.2 Project phases

Study case outlining

As source-aligned data products on the data mesh are the point of contact of
the mesh with the exterior, is critical to ensure high standards of quality are
followed and enforced in order to guarantee high quality output. In these cases,
data might be queried or ingested from the external source based on the consumer
processes and more importantly, triggered by the consumer on what is called a
pull-based scenario. On the other hand, push-based scenarios are triggered by the
producer normally in accordance with previous agreements between the producer
and consumer for the dispatch of the data at regular intervals or as part of an
event-driven pipeline.

More critically, since push-based scenarios are triggered by the producer, is
difficult for the consumer to control the flow of data it is receiving and the quality
of it. In architectures like Data Warehouse, a stage environment is used as a
buffer between the warehouse and the external environment, in which data can be
validated and transformed. On Data Mesh, however, there is no centralized stage
buffer where to push the information and validate it, as each data product holds
the responsibility for its own information. This prohibits the duplication of data,
as the ownership would be divided between the data product and the hypothetical
stage buffer, meaning that the producer must push directly into the data product
storage (although this doesn’t necessarily mean that it will be pushing data into
the production-ready storage).

However, by internally analyzing the data product, it becomes evident that it
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could use the appropriate tools needed for validating the received data and have
control, albeit limited, of the flow of the data into itself to elevate to a higher level
the controls done to the data. Is in these cases that the data product can take
advantage of a service that provides the appropriate functionality given the data
contract that governs the communication between said data product and a specific
data source.

Data contract format specification

After delineating the scope and study case of this work, the first phase consisted
in the fulfillment of the first main objective, designing the data contract format
specification by analyzing the current proposals in the market, the definitions
and implementations of data quality, and the general requirements that it should
possess in order to function as the input of a service that implements the required
data quality checks based on its contents. For this purpose, a requirements-based
analysis and design was performed.

Software solution development

The development of the software service, based on the data contract format and
the analyzed study case was implemented after a high-level requirement phase
followed by an Agile development lifecycle based on the identified requirements.
The software architecture was designed using the hexagonal architecture pattern
and based on a declarative workload management state machine which allows
for the service to cover more diverse use cases in the future, handling pull-based
scenarios, different data formats, streaming, etc.

For the scope of the current work as a proof of concept, the software solution
was implemented with the capability of handling push-based scenarios on simple
storage objects. It was developed as a hexagonal micro-service architecture, where
the management of the Data Contract is done on a Scala micro-service mainly
following functional programming guidelines, and the data validation on a Great
Expectations Python micro-service.

As this software is intended to work as a minimum viable product for the
company, the final development contains the basic workflow to create, manage, and
enforce basic data contracts, and perform validation on comma-separated values
(csv) files stored in local storage.
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Chapter 3

Analysis and
Implementation

The following chapter will describe the process of analysis, design, and implemen-
tation of the specification and software products that realize the main objectives of
this thesis. In regards to the software development, it was done following an Agile
methodology, starting from a high-level requirements analysis using stories, and
then following a process of high-level and low-level design for the software product.
Following the iterative approach that is at the core of Agile processes, these two
kinds of designs were performed for each major feature to be implemented, rather
than an initial large design that would accompany the whole project from start to
end. This way, the project could be adjusted during its development process based
on the observed desired functionalities, manifested errors, etc. This was especially
useful on low-level design features, as the high-level architecture of the software
product would not suffer big changes, but the more detailed internal processes
defined on the low-level design steps could change swiftly without accumulating
technical debt and responding to changes in the decision process.

The following sections explain the analysis, design, and subsequent implementa-
tion of the Data Contract format specification, and of the Data Contract Manager
with its microservice architecture. The process, as already explained, started
from the high-level requirements identified inside the company by communicating
with the stakeholders and involved people, to then settle these requirements via a
high-level design refined using a low-level design, that finally gets implemented via
software and tested against the initial requirements.
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3.1 Data Contract Format

Based on the analysis done in Chapter 1 about the current implementation of Data
Contracts, it is possible to define a set of high-level requirements in the form of user
stories, which are the smallest unit of work in an agile framework and function as
an end goal for the developed product. On the data contract format specification
scope, the following set of user stories was defined, taking into account stakeholders
and the current state of the art.

• As a data consumer, I want to explicitly define the schema of the data I
will consume, so that I can ingest it without having issues with versioning,
updating queries, or losing relevant information.

• As a data consumer, I want to define data quality metrics that the data I will
consume should achieve, so that I can extract valuable knowledge from the
data.

• As a data consumer, I want to define service levels for the data that I will
consume, so that I can extract valuable knowledge from the data.

• As both a data consumer and data producer, I want the data contract to have
a structure from which I can build automatic and computable processes.

• As a data consumer, I want to evolve the data requirements I enforce on
the Data Contract based on the improvements of my analyses, so that I can
enhance the processes I make to extract knowledge.

• As a data producer, I want to have a clear understanding of the metric values
I need to provide so that I don’t enter into conflict with my consumers

• As a data producer, I want to define the pricing model of the ingestion of the
data, so that I can bill correctly my customers.

From this, and from the current format specifications already in the market,
it is possible to define a formal specification of a data contract to be used by
Witboost in the context of a Data Mesh. Using PayPal specification as a baseline
provides several benefits since it provides a well-established format that covers
the desired requirements and is released under an open-source license. However,
as this format was defined not to be as generic as possible, but to work on the
Data mesh implementation of PayPal and then modified to be open source, it has
some incompatibilities that may provide problems when used under the Witboost
platform.

First of all, the data quality tool being used by PayPal and mentioned briefly in
the specification is an internal tool called Elevate, and the format slightly depends
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on it and the required rule name needed to execute a specific validation. This
way, the data contract loses its declarative approach and depends heavily on the
underlying implementation of the software that manages it. It is agreed upon
that any data contract format should be able to be enforced by any platform and
thus should hold a high level of technology-agnostic features. A more generic and
declarative approach can be followed for more general rules that are present in
most data quality use cases, but always leaving the specification open for extension
for more technology-specific custom rules.

Other incompatibilities between PayPal format and Witboost are less impactful
but need to be considered as well, like naming conventions that differ for several
fields, and that PayPal specification is also very broad on all the use cases that
intend to cover, and many of the fields defined by PayPal are not designed to have
automatic computations on top of them, which is essential to a Data Contract
enforcement. In the same fashion, some fields already in use on the Agile Lab
data contract should be included in order to maintain the same minimum level of
information offered by it.

Figure 3.1: Example of the proposed Data Contract format

Having all of this in mind, the first version of the proposed contract can be seen
in Figure 3.1, and the specification definition for each field, and a corresponding
example YAML file can be found in Appendix A. The overall structure of the format
takes inspiration from the PayPal specification, but the specific field definitions are
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modified to fit the aforementioned requirements and incompatibilities. Thus, the
proposed sections are the following seven:

1. General information: Contains the header of the contract showing metadata
about the contract and its versioning, as well as data sharing agreement
information.

2. Access Information: Defines the way data should be transferred and where.
Includes properties to describe the protocol, data location, and security infor-
mation, as well as extra arguments that would be useful to characterize the
data to be read and can be leveraged by future validators to access the correct
information.

3. Schema: Defines the shape of the dataset, as well as basic constraints on the
data columns.

4. Data Quality: Declares the quality rules to be met by the information.
These are defined in a declarative way following inspiration on a configuration
designed by the Analytics Platform Engineering (APE) team at Ibotta [21]
for their data quality checks, as well as the format for warning and error
definitions used by the tool SodaCL [22]. The quality rules are defined within
three categories, following the Data Quality dimensions analyzed in Chapter 1:
Completeness, Uniqueness, and Validity rules. Table 3.1 shows the summary
of the supported data quality rules. A quality rule can be defined for one or
several columns, or none if it is defined at the dataset level.

Category Rule Description Threshold
check

Completeness size Checks the number of rows in the dataset = threshold
complete Checks the percentage of NULL values in a column ≥ threshold

Uniqueness unique Checks the uniqueness of a column = 1.0

Validity

min Checks that the values of a numeric column respect a
minimum threshold

≥ threshold

max Checks that the values of a numeric column respect a
maximum threshold

≤ threshold

allowedValues Checks that the values of a column belong to a closed set
of values

mean Checks that the arithmetic mean of a numeric column is
equal to the expected value

= threshold

stdev Checks that the standard deviation of a numeric column
is equal to the expected value

= threshold

custom Provides fields for a specific data quality rule based on a
specific supported technology and a quality rule name
to call, plus the needed parameters for the rule check

Table 3.1: Supported declarative quality rules on the proposed Data Contract format specification

In addition to the parameter provided by the user, the threshold is modified
based on the warning and fail parameters for each rule, as these provide a
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way to relax the constraints, especially the equalities, where an error tolerance
might be acceptable under the business requirements. For this purpose, the
warning and failure tolerance are defined as a percent error on the provided
user parameter, and control the threshold check, raising an error if and only if
the actual values are outside of the acceptability range.

5. Pricing: Provides a section to specify the cost of ingesting the provided data
based on the data size or the number of data scans. It is important to notice
that the enforcement of payment and cost calculations is outside of the scope
of the implemented data contract manager micro-service.

6. Service level agreements (SLAs): Defines the values for SLAs that the
data producer has to meet. The enforcement of the SLAs is outside the scope
of the implemented data contract manager micro-service.

7. Specifics (Other properties): Defines other information that might be
specific to the data contract and doesn’t fit in any of the other sections.

As Witboost works mainly with YAML files to store component information,
is logical to use the same format, as it also offers more flexibility than other file
formats like JSON (despite YAML files being prone to syntax errors as it uses
indentation as the main nesting tool).

For several fields, the OpenMetadata standard for format specifications is
leveraged, as it is widely used in the sector and provides a common format language.
Agile Lab already uses several of their schemas on data product specifications, on
fields such as dataset schema, tags, and data profiling; so the same structure can be
done on the Data Contract, allowing interoperability between components inside
the platform.

3.2 Data Contract Manager

After designing the data contract format to declare the agreements between pro-
ducers and consumers, it becomes necessary to use it to ensure the quality on the
data related to this agreement. The contract in itself is already a valuable tool as
a metadata annotation on the expected properties of the data to be ingested by
a certain producer, but it gains even more value when used to build automatic
validation processes on top of the contract definition.

For this reason, it becomes necessary to analyze how a system for this purpose
should be created. A Software solution that realizes this purpose can have different
forms, and as explained in Section 1.4.4, no one solution is standard. For this
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purpose, it is necessary to perform an analysis starting with the user requirements
to understand the possible design and implementation solutions.

3.2.1 Analysis

1. As a data consumer, I want to validate the data contract format and require-
ments in an automatic way, so that is compatible with the standard and the
requirements have a logical sense.

2. As a data consumer, I want to continuously monitor the ingested data, so that
it remains consistent and compliant to the contract.

3. As a data consumer, I want to evaluate the proposed data by a producer
before accepting the transfer of it, so that I don’t waste resources if the data
is not compliant.

4. As a data consumer, I want to receive warnings or alerts when the received
data is not compliant with the contract.

Based on the high-level requirements, two initial proposals were evaluated.
The first proposal defines a microservice system that manages the data contract
transaction, data ingestion workload, and inherent validation based on the agreed
contract. The second one is to design a library to be integrated into data ingestion
workloads of a specific technology (e.g. a wrapper of a Spark job that validates data
while it’s being ingested) and that shortcuts the pipeline if any error is identified.

The first option would provide a robust service that not only performs validation,
but also keeps a record of the processes being performed, allowing persistence and
versioning of data contracts, and being technology-agnostic, thus offering the
possibility to be configurable and work under different technologies. However, it
would provide a bigger overhead on a data transaction and would require existing
pipelines on both the producer and consumer side to be rewritten to include the
management and validation of the data contract in them.

The second option would offer a more light-weight, easily integrable solution that
can be included in existing pipelines with lower overhead, but with the drawback
of being ephemeral, not allowing to store metadata or records about the performed
processes, and being tied to the single technology for it was conceived, having to
be re-done for each type of data pipeline framework used inside the mesh.
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3.2.2 Design

Having these tradeoffs in consideration, the first option was chosen as the high-level
solution to be designed and implemented. This was further refined via a high-level
design process as a microservice system at the mesh level that will handle the data
contracts of the platform. At this level of design, the actual validation process is
not defined, but it must take into account the diversity of validations and data
that might exist, allowing the platform to be used by the Producer and Consumer
to mediate the exchange of data in different scenarios as seen in a high-level
infrastructure diagram in Figure 3.2. Both consumer and producer will interface
with a Manager that will handle the contract lifecycle and validation processes,
interfacing itself with the necessary tools to perform quality checks.

At a mesh level, it is expected for this system to be used as part of the Input
ports’ functionality of a Data Product to ingest and validate the information
ingested by it.

Figure 3.2: High-level design infrastructure of the system that will handle data contract lifecycle
and enforcement.

The chosen basic scenario for the implementation of the first version of the
service would be the ingestion of data initially located outside the mesh on a push-
based scenario (Figure 3.2 shows a basic operation flow of this use-case scenario).
In this context, the data location is owned by the consumer, and the producer will
push information into it. This location will be a type of storage, not in production,
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that will receive the data and will have its quality and format evaluated based on
the registered data contract to verify that is compliant with what was agreed upon.
The ownership of said location belongs to the consumer domain, likely inside a
Data Product.

Furthermore, it’s important to highlight that the high-level design foresees the
implementation of a data summary in order to achieve the high-level requirement
number three “As a data consumer, I want to evaluate the proposed data by a
producer before accepting the transfer of it so that I don’t waste resources if the
data is not compliant.”. This data summary would include properties of the data to
be sent, like format, size, shape, metadata, and row examples, in order to make an
early validation of the proposed data. An initial example of how a data summary
could be designed can be seen in Figure 3.3. However, for the scope of this thesis,
this requirement was not implemented in the software solution and was left for
future improvements of the system to accurately design and integrate it into the
validation workflow (where the Manager, as will be seen later, has been designed
to be easily extensible and configurable for processes like this one).

Figure 3.3: Small example showing a data summary object, used by producers to send initial
metadata about the data to be sent.

Validations in the system will be performed by two different kinds of tools:
CUElang and Data Quality tools. These are focused on different aspects of the
process and are defined as follows:

• CUE Validation: Format and structure validation for the Data Contract
object registered by the consumer, plus the data summary sent by the producer
and the eventual dataset schema.

• Runtime Validation: Data quality validation using a specific data quality
tool or framework, like Great Expectations.
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Based on the high-level solution, the microservice architecture is defined by a
Data Contract Manager that handles the lifecycle of the data contract and the
workload of the data validation, leaving the validation itself to a second microservice
named Data Contract Validator. Since the validation workload must be flexible,
the Manager is designed to handle declarative workloads based on a series of steps
that may vary depending on the user requirements. This microservice will expose
a defined interface that will allow the integration of different technologies in the
future, leaving the Manager technology agnostic and pushing the responsibility to
implement the quality checks to the Validator services based on the specifics of
said tool.

Through a low-level design process, the Data Contract Manager was designed
with a layered architecture composed of three layers: Application, Domain, and
Infrastructure layer, following a design pattern called “Ports and Adapters”, also
known as “Hexagonal architecture”. This pattern defines domains that encapsulate
the business behavior of different units of the application under Ports: Well-defined
interfaces that are then implemented by Adapters units. This abstraction helps
to seamlessly integrate different technologies by implementing different adapters,
allowing to have in future different tool integrations for Data Contract format
validations, Data Summary validations, Quality Runtime Validations, and more.

A summary of the three layers architecture can be seen in the diagrams shown in
Figures 3.4 and 3.5 where they show the Manager under two abstractions: The first,
as system domains, containing the ports they define and the dependencies between
them. Five domains compose the Manager, these being the Data Contract Lifecycle,
the Data Contract Validation, the Data Runtime Validation, the Data Transfer
domain, and the core Workload domain that handles the contract enforcement. The
second image is a Unified Modeling Language (UML) component diagram showing
the interfaces and components that compose the domains across the three layers.
In the diagram is worth noting the “soft dependencies” between the Workload
Manager component and the Workload Operation interfaces, as these are defined
only at runtime based on the declarative state machine that defines the data
contract workload, which will be explained in further detail later in this document.

Application layer

Handles API requests from producer and consumer actors. Contacts the domain
layer for the application logic. The main component is the Data Contract API.
It receives the request, maps them into data transfer objects, and sends them to
the domain layer. It is defined by the API port which in practice is declared as the
API interface specification.
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Figure 3.4: Data Contract Manager domain diagram. It shows the relationships between
application domains and the ports exposed by each one of them.

Domain Layer

Handles the business logic of the data contract enforcement. Creates the entities,
triggers validations in the context of a transaction, and based on the validation
evaluates the goodness of the workload result. It is the layer where the "Application"
entity of the hexagonal architecture resides. The different Application domains
are based on the entities and the responsibilities they handle and are defined as
follows:

Data Contract Lifecycle: Domain that is defined by the Data Contract
Lifecycle Port and the Data Contract Infrastructure Port. In charge of handling
the Creation, Retrieval, Update, and Deletion (CRUD) of Data Contracts. It
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Figure 3.5: Data Contract Manager component diagram. The three layers can be seen from top
to bottom: Application, Domain, and Infrastructure. All the domain ports are defined in the
Domain layer as per the design pattern, avoiding business logic leaking to other layers.
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consumes the port of the Data Contract Validation and is consumed by the
Runtime Validation domain to retrieve the contract information and trigger
the validations based on it.
Workload: A workload is a unit of work that contains the lifecycle of the
intention of pushing data into the mesh and validating it. It can be declaratively
defined via a state machine, but in general, starts when the Manager is notified
whether by the producer or the consumer that a data ingestion is to be done,
and ends when the quality runtime validations have finished. The outcome
of the workload (OK/WARNING/NOK) is dependent on the outcome of
the quality runtime validations and other checks the Manager might have
performed. This domain is defined by the Workload Manager Port and the
Workload Infrastructure Port; and is in charge of starting, retrieving, and
updating workloads, usually called in an asynchronous way.
Data Contract Validation: Application that encompasses the Data Contract
format validations and the Data Summary validations, since both are based on
a common format. Data Contract format validation validates the format and
contents of a Data Contract with respect to the specification. It autogenerates
data summary validations based on the contents of a contract, which is a
validation used to validate data summaries belonging to a specific data contract.
It is defined by the Data Contract Validator Port, Data Summary Validator
Port, and Data Contract Validator Engine Port.
Runtime Validation: A (Quality) Runtime Validation is a validation done
on the data that has been pushed by the producer into the consumer’s mesh
using the appropriate medium provided by the contract. This domain is in
charge of handling the business logic of deciding the tools to use to enforce the
quality rules using the appropriate port, and further determine the outcome
based on the received validation results. It is defined by the Data Runtime
Validator Port and the Data Quality Tool Port.
The Data Quality Tool Port is the interface of the tool that takes the application
runtime validation and triggers the appropriate validation of the data, handling
the communication with the external services.
Data Transfer: Often is necessary to transfer data from locations in order
to perform validations. As Validators might only have access to a specific
location to read and perform validations, is the responsibility of the Manager
to handle the transfer of information between locations. This domain is
heavily related to the storage technology, so several adapters that implement
the infrastructure port can be defined. The domain is defined by the Data
Transfer Port and the Data Infrastructure Port.
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Infrastructure Layer

The infrastructure layer contains the access to the registry of information for the
service, it contains the Adapter implementations of the Infrastructure Ports needed
by the domain application. It also contains the adapters to contact the external
tools that may be used, such as the Data Contract Validators for the Runtime
Validation, external storage like the file system or cloud storage for data transfer,
or other tools like CUElang.

3.2.3 Implementation

As mentioned before, the design of the system is composed of two microservices,
the Data Contract Manager for data contract validation and workload management,
and the Data Contract Validators for data quality validations. This section will
explain the technical aspects of the implementation of the Manager and will go
into the details of implementation, both its development process and the resulting
system.

The Data Contract Manager has been developed as a microservice in Scala
2.13 following pure functional programming practices, using the libraries cats and
cats-effect to handle Input/Output (IO) and asynchronous operation side effects.
The Application layer is implemented using the libraries http4s and tapir for
handling the API endpoints, both as a server receiving requests from consumers
and producers, and as a client for contacting the Data Contract Validators when
needed. On the infrastructure level, it uses a Docker containerized PostgreSQL
database for persisting data contracts, workloads, and their configurations; and to
work with the Java Database Connectivity (JDBC) layer to access the database
the application uses the library doobie.

The exposed API interfaces of the Data Contract Manager have been defined as
follows:

• POST /api/v1/data-contract: Registers a data contract, performing parsing
and validation before accepting it.

– Request body: application/json containing the data contract object as
a plain string. For an example of a data contract, see Appendix A.

– Response: 200 OK (success) with the registered data contract ID, or 400
Bad Request if a validation error occurred.

– Response body example:
"data-contract-finance-dataproduct1-1.0.0"
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• GET /api/v1/data-contract/{dataContractId}: Queries a Data Contract
based on its unique data contract ID

– Request body: None
– Response: 200 OK (success) with the data contract, 404 Not Found if

the specified data contract wasn’t found, 400 Bad Request if an error
occurred.

– Response body example:
{

"id": "data-contract-finance-dataproduct1-1.0.0" ,
"version": "1.0.0" ,
"producer": {

"name": "finance" ,
"group": "finance_othercorp.com"

},
"consumer": {

"name": "dataproduct1" ,
"group": "dataproduct1_corp.com"

},
"content": "..."

}

• POST /api/v1/workload: Creates a data transfer workload of a specific data
contract.

– Request body: application/json containing the data contract ID as a
plain string.

– Response: 200 OK (success) with the created workload and its status,
404 Not Found if the specified data contract wasn’t found, or 400 Bad
Request if a validation error occurred.

– Response body example:
{

"workloadId": "93a324c1-f923-451c-8a88-4d93d7669d60" ,
"dataContractId": "data-contract-finance-dataproduct1-1.0.0" ,
"status": "Created" ,
"result": {

"result": "OK" ,
"info": { ... }

}
}

• POST /api/v1/workload/notify/{workloadId}: Resumes a non-Running
workload, used to notify that the data is available to validate.

– Request body: None
– Response: 200 OK (success) with the workload and its current status

and result, 404 Not Found if the specified workload wasn’t found, or 400
Bad Request if a validation error occurred.

– Response body example:
{

"workloadId": "93a324c1-f923-451c-8a88-4d93d7669d60" ,
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"dataContractId": "data-contract-finance-dataproduct1-1.0.0" ,
"status": "RuntimeValidationInProgress" ,
"result": {

"result": "Running" ,
"info": null

}
}

• GET /api/v1/workload/{workloadId}: Polls the status of a workload using
its workload ID

– Request body: None
– Response: 200 OK (success) with the workload and its current status

and result, 404 Not Found if the specified workload wasn’t found, or 400
Bad Request if a validation error occurred.

– Response body example:
{

"workloadId": "93a324c1-f923-451c-8a88-4d93d7669d60" ,
"dataContractId": "data-contract-finance-dataproduct1-1.0.0" ,
"status": "Rejected" ,
"result": {

"result": "NOK" ,
"info": {

"dataSummary": "..." ,
"errors": [],
"results": [

{
"id": "minimum_fare_amount_rule" ,
"column": "fare_amount" ,
"metric": -52,
"severity": {

"fail": {
"success": false, "exceptionInfoModel": null

},
"warn": {

"success": false, "exceptionInfoModel": null
}

}
}

],
"success": "fail"

}
}

}

Workload management

The Workload domain is the core of the Data Contract Manager. In the context
of the system, a workload is the concept of the work that has to be done and
the result that it produces, living inside a well-defined finite state machine (FSM)
that dictates the set of processes a workload has to go through to produce a final
result. A low-level design was performed to design said domain, having in mind this
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definition and with the focus of keeping the generalization of possible workloads
and their FSM.

The workload, aside from holding the specific information each performing task
needs to work, also holds the current State inside the state machine, dictating the
action to be executed and producing an outcome that will determine the transition
to trigger and thus next state in the FSM. For this purpose, operations are chained
via a step function, which for each state may call an interface WorkloadOperation
bound for that specific state in the FSM. The work is done by a domain implementing
the interface, performing the unit of work, modifying the workload, and returning
the outcome so the step function transitions the workload accordingly. The design
for the management of workloads can be seen in the class diagram of Figure 3.6.

Figure 3.6: Workload Manager class diagram. The Workload Manager handles the Finite State
Machine and transitions workloads between states based on the outcome of their operation.

The Workload domain is designed in a way that its components are generic on the
realization of a process. On one hand, workload operations are wrapped under the
WorkloadOperation interface, so it’s important that the management is designed
to consider operations that could be not only synchronous but asynchronous as
well. This introduces a new challenge, as a workload now could either need to wait
for a blocking synchronous operation (i.e. an IO operation, or the response of an
HTTP call) to advance, or to be resumed after an asynchronous operation finishes.
To solve this, the workload is persisted using an infrastructure port and saving
the necessary information to resume it at a later point in time (which, in terms
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of the workload alone, consists of the current state, transition condition, and the
current workload information), and to use a callback system on asynchronous calls
to resume the workload when needed.

Moreover, to support multiple use cases on the way data contracts are enforced,
the Finite State Machine used by the workload Manager has to be both generic and
configurable, not ingrained in the software flow, but defined as a set of states and
transitions, which in turn can be persisted in a database and read at the startup
of the service, allowing for multiple FSMs to exist and to be configured without
affecting the codebase with big changes. A State, as seen in Figure 3.6 is based on
a Status which is just the State name, and the WorkloadOperation that must be
performed when a workload is present on said status.

Using this information, the workload manager creates workloads, setting them
on the initial state, performs the transitions of State based on the Result of
the Workload and the registered State Machine, and resumes workloads when
needed. For this last one, to resume a specific workload, the manager confronts
the state machine with the persisted status of the workload to be resumed. This
generalization means that is possible to define in the future multiple FSMs designed
to implement diverse use cases using the same infrastructure and cohabiting in the
system. The workload manager would possess the responsibility of updating the
workload inside the appropriate FSM based on its corresponding type.

Based on this, the following types of transitions can exist in the FSM. Further-
more, an example of how to define it on SQL is given for each one.

Transition types

• Initial transition: Transition that executes when a workload is created. Is
characterized by a NULL in the status_id column and a Running value as the
transition_condition.
INSERT INTO workload_machine_state (

status_id, transition_condition, transition_to_status_id,
operationidñ→

) VALUES (NULL, 'Running' , 1,
'_operation_setup_runtimevalidation' );ñ→

• Active transitions: Transitions that execute an action when they’re activated.
They contain a not null value in the operationid column. When they are
activated, the WorkloadOperation.invoke method bound to the specified
operationid value is called. A user can trigger via endpoint a Transition
with a Running value set as the transition_condition.
INSERT INTO workload_machine_state (
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status_id, transition_condition, transition_to_status_id,
operationidñ→

) VALUES (2, 'Running' , 3, '_operation_start_validation' );

• Passive transitions: Transitions that do not execute any action when they’re
activated. They are used for final outcomes (e.g. transitioning to the last State
of the FSM), or when the following Transition to be activated is triggered by
a finished asynchronous operation or by the user.
INSERT INTO workload_machine_state (

status_id, transition_condition, transition_to_status_id,
operationidñ→

) VALUES (3, 'OK' , 4, NULL);

• Self transitions: Transitions where the “from” and “to” States are the same
state. They may include an action or not. It’s useful for repetitive actions
that may be performed until another Condition is achieved. When defining
self transitions is important to be careful and implement a base case on the
operation to break self transitions, as currently the Manager doesn’t have a
way to interrupt infinite loop executions.
INSERT INTO workload_machine_state (
status_id, transition_condition, transition_to_status_id,

operationidñ→

) VALUES (3, 'none' , 3, '_operation_poll_validation' );

As a result of this design, Figure 3.7 shows an example of the Finite State
Machine that implements the proposed push-based scenario, handling the states of
workload creation, data transfer, and validation. Transitions can be triggered either
by the system itself when a task finishes with a specific result, by the execution of
an asynchronous callback, or by a user via service endpoints. Furthermore, there
are two end states, Accepted and Rejected, which model the outcomes of the data
validation and can be used by the downstream users to check the final result of the
process.

Lastly, it is possible to see how a recurring task is implemented using this system.
The runtime data validation is modeled in this state machine as an asynchronous
task that polls the quality tool results until the validation finishes and returns a
valid status. Internally, since the transition goes from and to itself, it translates
into the workload calling recursively itself until it receives the answer. This is
important, as appropriate timeout or failure mechanisms should be implemented
to avoid infinite recursion.

A Workload contains the Result of itself, specific to each state the workload
passes. The Result is used to determine the transition on the state machine and
will be what ultimately defines the success/failure of the workload. Furthermore, it
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Figure 3.7: Finite State Machine for a Push-based data ingestion scenario, where synchronous
operations are defined using a solid line, and asynchronous operations using dotted lines. Some
states interface with external services, so they are inherently async.
The table below is the representation of the FSM in the database where the foreign keys have
been resolved as names for readability. The initial state is represented as the entry with a NULL
value in the from_state column
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includes the final outcome of the validation, based on the quality rules enforcement
performed by the workload, so it’s possible to understand, along with the workload
State, if the workload outcome was Accepted, Accepted with warning, or Rejected.

Data Contract format validation

Data quality validation is not only applicable to the dataset, but also to its
surrounding metadata, and in this same fashion, to the data contract object as is
itself a way of metadata to express the expectations and promises agreed between
the two parties. The data contract enforcement would fail if the data contract itself
doesn’t attain certain levels of quality and structure. For this, a validation of the
format of the contract is necessary to identify errors even before it is registered
into the system, blocking the operation if this validation fails.

Figure 3.8: Data contract format validation done when a contract is being registered on the
Manager. It parses, decodes, and validates the input to guarantee that is in the expected form
and identifies many potential errors even before the contract is persisted in the system.

For this purpose, a two-step operation is done when the request to register a data
contract arrives at the Manager. As can be seen in Figure 3.8, the Manager first
tries to parse and decode the incoming request into domain objects, an operation
where both the structure and some data type validations are performed; and then
validates the input using CUElang using a crafted script for that specific format
version of the data contract. As parsing is safer than validation and easier to
implement with the help of specialized libraries, it is the first transformation done
to the input. If the received data contract doesn’t adjust to the expected domain
objects, further operations in the Manager would simply fail and thus the request
would be rejected. At the implementation level, this is done using Scala libraries
like circe to parse and decode the YAML input into Scala classes.

Furthermore, after the data contract has been decoded into domain objects, an
additional validation is executed against the YAML input of the contract using
CUElang. Taking advantage of the strengths of this language to perform schema
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validations, the format of the contract is validated against a cue file including the
restrictions to it. This cue file has the further advantage that it allows anyone
to validate their contracts against the expectations of the Manager, avoiding the
necessity to contact the system to verify its validity. The cue script used to validate
the data contract can be seen in Appendix B.

Infrastructure layer

At the infrastructure level, the database schema of the Manager was designed to
support basic queries on data contracts based on ID, tags, and actors, and queries
on workloads based on ID and related data contract. The schema also allows the
definition of the workload management Finite State Machine that is then loaded at
runtime, defining the Manager processes. The Entity Relationship (ER) diagram
of the database can be seen in Figure 3.9.

Figure 3.9: Data Contract Manager Entity Relationship diagram

Another important task that the Manager performs at the infrastructure level
is the capacity to transfer data from one location to another by means of the
Data Transfer domain. This allows workloads to move information as needed and
allows the Validators to access the necessary information to perform their tasks.
Currently, the implementation of the Data Transfer Infrastructure Port interface
is used to transfer files inside a local filesystem, specifically between the location
where the producer would drop the data on push-based data ingestion, and the
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location owned by the Validators to access and validate the quality. The specifics
of this behavior will be explained later in the document.

Integration with Data Contract Validator

Since the data contract defines schema and quality rules in a declarative way,
and the Manager is implemented to remain technology agnostic related to the
way these data quality checks are executed, this responsibility is pushed down to
a Validator service. For this motive, the Manager needs to interface with these
services. The data contract quality rules, defined in Section 3.1, are basic rules
that are simply propagated to a Validator that implements them. Moreover, the
possibility to add custom rules allows bypassing the declarativeness of the quality
rules to offer greater flexibility and strength, but it also means that the Data
Contract Manager should be open to integrate different technologies and select the
appropriate Validator to realize a certain quality rule.

The current design of the Manager solves this in the Domain layer, where the
Data Runtime Validator Service groups the rules based on the technology that
implements them or assigns a default technology for the declarative rules that are
not tied to any specific one, as all Validators should be designed and implemented to
understand the data contract rule format. Each group of rules is then transformed
into a validation configuration object that shall be sent to the appropriate endpoint
of each of the Validators, and that works as the starting point for them to build the
quality checks. This way, every time the Manager interfaces with the Validators,
it must wait until all of them answer in order to have a complete outcome, both
at the kick-off of the validation and when performing polling of the result. This
behavior is summarized in the diagram in Figure 3.10.

Since the Manager remains technology-agnostic, the design of the API interface
specification demands the same definition, allowing validation configurations to
be sent to the Validator, and eventually receiving validation status from them
that the Manager can understand and handle. The interface in its most basic
form defines two endpoints: The first one is used to start the validation using the
validation configuration object including the quality rules and other parameters
required to access the data. This endpoint is designed to just start asynchronously
the validation and won’t return the quality check results, as these checks might
take an undefined amount of time to complete. This is also consistent with the
provided example of the FSM. The second endpoint is used to poll the validation
results of a specific workload until the final outcome is calculated, moment in which
the Manager will accept or reject the transfer and save the result. Further details
on how the validation is performed will be provided in the following section.
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Figure 3.10: Sequence Diagram for the communication between Manager and Validator. On the
first moment, the Runtime Validator Service triggers the validation where it groups the quality
rules and communicates with the Validators. On a second moment, asynchronously, it polls the
Validators, gathering the results and updating the workload outcome.

3.3 Runtime Validation

While the Data Contract Manager is designed as a microservice to abstract the
complexity of handling a data contract, it doesn’t perform any validation on the
data itself, only on the contract itself and its lifecycle. This is the task of the Data
Contract Validator that at runtime will computationally generate and perform
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validations on data based on the quality rules agreed between the interested parties.

3.3.1 Analysis

As a starting point, to evaluate the architecture of the Validator inside the system,
an initial high-level design was performed. Specifically, a focus was made on the
aspects related to the software architecture of the service, the exposed interface by
the Validator for the Manager to communicate with it, and the way the service
should access the information to be validated. This last aspect was the most
pressing one, as the different possibilities for doing so could change drastically how
the system behaves and performs.

In a push-based scenario, the producer transfers the data into a predefined
location, which is agreed on this context inside the data contract specification. The
issue arises when the system, both the Manager and the Validator, but especially
this last one, need to access this location to perform their intended job.

The first analyzed possible solution was to provide the Validator with the
appropriate access control to the location where data had been pushed. The
advantage of this approach is having direct access to the source of data, so no
extra data transfer needs to be done, since the validations would be performed
directly on the target location. The disadvantage of this approach lies in the fact
that the Validator would need to receive not only the validation configuration but
also access control to every location to which data will be pushed, which might lie
in different domains under different ownerships, each one with possibly their own
access protocol or formats, increasing the complexity of the Validator in its task.

Taking this into account, the chosen solution is based on a “stage” location owned
by the Validator, thus not needing extra access control management, meaning it
can easily access the data present on it. The added complexity lies now in the new
responsibility of the Manager to transfer the data from the location defined in the
contract (whether it’s a remote/local or source/target location) to the Validator
stage location before triggering the quality checks, thus introducing the Data
Transfer domain into the application. By doing this, the Validator is left use-case
independent and with the single responsibility of translating quality rules and
executing them.

It’s important to note that a further disadvantage of this approach is that
it might constrain the size of data that can be analyzed, as transferring large
quantities of information could be expensive both in time and cost. However, as
the workloads executed by the Manager are designed in a modular and declarative
way, better solutions can be designed and implemented in the future.
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Figure 3.11: High-Level Design for the start of the data validation process. Externally, the
process is different based on the user that triggers the process and the data location. Internally,
the process remains the same.

In consequence, even if this transfer flow will slightly differ depending on whether
the scenario is pull-based or push-based —as the user who triggers the workload
will change, and potentially the source location will as well—, for the Manager and
Validator system, at a high level they will follow a consistent pattern which can be
seen in Figure 3.11: An HTTP request signals the availability of data, prompting
the Manager to initiate a transfer to the staging location, returning immediately
with an OK status and the Validator will schedule asynchronously the quality
checks execution, making this step asynchronous. While the quality checks are
being executed, the Manager will contact the Validator using a poll strategy to
update the workload status, which in turn will be polled by the user to retrieve
the outcome of the process.
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3.3.2 Design

The following design refers specifically to the Validator designed as part of the
implemented proof of concept. The design process is similar to the one performed on
the Data Contract Manager, done in parallel with this one. As the responsibilities
of the Validator are reduced compared to the Manager, the architecture of the
software is smaller and simpler. Nonetheless, the same three-layer architecture was
chosen as the system still needs to expose API interfaces, run business logic, and
communicate with infrastructure services, especially the library or framework that
performs the validation. The same Ports and Adapters architecture was followed,
but in this case, its advantages aren’t as striking, as this component is smaller
and more technology-oriented. As the Data Quality tool, Great Expectations
was chosen as the first Validator. Figure 3.12 shows the proposed domain and
component diagram.

Figure 3.12: Domain and Component diagram for a Validator. The three layers can be seen
from top to bottom: Application, Domain and Infrastructure.
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As already discussed, quality checks can be time-consuming so this process is
designed to be asynchronous. For this, the Validator must persist the results on
a database in order to serve requests for the outcome of any workload. These
validation outcomes, even if they’re generated by a specific technology, must conform
to a technology-agnostic business schema that the Manager knows how to handle,
in the same fashion as the difference between the received quality rules and the
implementation of these rules in the data quality tool domain-specific language.
Thus, the Validator must hold the responsibility of translation between the Data
Contract Manager’s business domain and the data quality language.

3.3.3 Implementation

For the development of the first Validator microservice, Great Expectations was
used as the underlying data quality tool, developing the microservice in Python
3.11. The service runs under the Asynchronous Server Gateway Interface (ASGI)
standard using the uvicorn library, allowing for asynchronous operations to be
executed under Python. As a potential addition, since the validation checks might
be time-consuming and might block the main thread, it has been considered to
utilize the library gunicorn that provides the baseline to work with multiple worker
instances of the service, orchestrated by a master node. Along with this, the library
FastAPI was used to implement the application layer, and following the Manager
technology stack, a containerized PostgreSQL accessed via the psycopg2 library
was used for the database infrastructure. This database instance is not the same
as the Manager’s, and the decision to use different instances for the two services
was taken to maintain independence between these two environments and on their
deployments.

The general process performed by the Validator, comprising rule translation and
quality check execution, can be summarized as seen in Figure 3.13. The execution
is based both on Great Expectation Checkpoints, as well as the Validator database,
where results are stored in domain objects to be polled by the Manager and updated
asynchronously when the Checkpoint execution finishes. The Validator stores only
the metric associated with a certain rule ID, column, and severity level, but does
not perform business logic regarding the success or failure of the whole validation.
Even if it possesses the information to do so by examining the outcome of each
expectation with the defined severity level, is a responsibility that lies on the Data
Contract Manager as part of the Data Runtime Validation domain. Specifically,
since the success or failure of a workload can depend on more criteria than the
success of an expectation alone, and the acceptance logic based on a severity level
may trigger further actions down the workload state machine, it’s important to
keep this behavior encapsulated on the Manager.
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Figure 3.13: Data Validation process on a Great Expectations Validator.

Application layer

The exposed API interfaces of the Data Contract Manager have been defined as
follows:

• POST /v1/validation/start: Starts a data validation using the settings in
the validation configuration

– Request body example:
{

"workloadId": "64f92252-a20d-45a2-b09c-c61f472a6023" ,
"validations": [

{
"id": "row_size_rule_id" ,
"dimension": "completeness" ,
"ruleType": "size" ,
"parameter": 10000,
"severity": {

"warn": { "tolerance": 0.1 },
"fail": { "tolerance": 0.15 }

}
},
{

"id": "allowed_values_id" ,
"dimension": "validity" ,
"ruleType": "allowedValues" ,
"columns": [ "payment_type" ],
"parameter": [1, 2, 3, 4, 5, 6]

}
],
"access": {

"path": "trips_data/" ,
"pattern": "trips_[\\d]+.csv"

}
}

– Response: 200 OK (success) with the validation status model with status
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OK if the validations started correctly, or 400 Bad Request if a validation
error occurred while creating the data quality checks.

– Response body example:
{

"workloadId": "64f92252-a20d-45a2-b09c-c61f472a6023" ,
"status": "OK" ,
"result": []

}

• GET /v1/validation/{workloadId}: Polls the status of a workload valida-
tion using a workload ID

– Request body: None
– Response: 200 OK (success) with the validation status model with status

OK if the validations started correctly, or 400 Bad Request if a validation
error occurred while creating the data quality checks.

– Response body example:
{

"workloadId": "64f92252-a20d-45a2-b09c-c61f472a6023" ,
"status": "OK" ,
"result": [

{
"id": "num_rows_rule" ,
"column": null,
"metric": 10000,
"severity": {

"fail": {
"success": true,
"exception_info": { "raised_exception": false }

},
"warn": {

"success": true,
"exception_info": { "raised_exception": false }

}
}

},
{

"id": "allowed_values_id" ,
"column": "payment_type" ,
"metric": [1, 2, 3, 4],
"severity": {

"fail": {
"success": true,
"exception_info": { "raised_exception": false }

},
"warn": null

}
},

]
}
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Domain layer

The technology implementation of the declarative quality rules into Great Expecta-
tions expectations was done using the core expectations provided by the library
in its Contributions Gallery. For each of the declarative rules, the appropriate
expectation name was chosen, and the parameters were calculated based on the
affected columns and the severity tolerance values. This means that the correspon-
dence between data contract quality rules and expectations is not a one-to-one
correspondence, but rather one-to-many, as each quality rule, following the speci-
fication defined in Table A.3, provides a possible list of columns to be analyzed
with the same rule, as well as two types of possible severities (warning and failure)
that impact the parameters to be used in the expectation. Table 3.2 shows the
translation between the quality rule types and the expectations provided by the
data quality tool.

If the translation succeeds, the Great Expectations checkpoint object is created,
containing the Expectation suite and the Data Source object to access the data.
At this point, a successful response is returned to the Manager, where this success
characterizes not the success of the quality checks, but of the setup and kickoff
of the validation. Then, the data quality executions are started asynchronously
and the checkpoint is executed. During this execution, the Validator is open to
more requests, either new validations to be created for other contracts, or polling
for workload results. When the execution finishes, the Expectation results are
translated into business domain objects and persisted, ready for queries requested
by the Manager.

Infrastructure layer

The infrastructure layer of the Validator is divided into two main aspects, the
Great Expectations API interface and the PostgreSQL database. The first one is
provided by the Great Expectation Python library, whereas the second consists
of a small containerized database instance containing a single table to store the
validations, its current status (OK/NOK/Running), and the eventual list of results.
As mentioned above, the OK/NOK status doesn’t imply the success or failure of
the data quality rules, but the execution of the process. The outcome of the quality
rules is calculated by the Data Contract Manager with the received results.

With the outcome of the Validator and the calculation of the success or failure
of the data contract enforcement, is possible to analyze if the received results are
what was expected when the contract was agreed. By implementing these two
services, is possible to validate the goodness of the data and avoid that faulty data
can be accepted by a domain.
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Rule Severity Expectation name Expectation arguments

size None expect_table_row_count_to_equal {value: parameter}
warn/fail expect_table_row_count_to_be_between {min_value:

parameter*(1-tolerance),
max_value:
parameter*(1+tolerance)}

complete None expect_column_values_to_not_be_null {column: column, mostly:
parameter}

warn/fail expect_column_values_to_not_be_null {column: column, mostly:
parameter-tolerance}

unique None expect_column_proportion_of_unique
_values_to_be_between

{column: column, min_value:
1.0}

warn/fail expect_column_proportion_of_unique
_values_to_be_between

{column: column, min_value:
1.0-tolerance}

min None expect_column_min_to_be_between {column: column, min_value:
parameter}

warn/fail expect_column_min_to_be_between {column: column, min_value:
parameter*(1.0-tolerance)}

max None expect_column_max_to_be_between {column: column, max_value:
parameter}

warn/fail expect_column_max_to_be_between {column: column, max_value:
parameter*(1.0+tolerance)}

allowedValues - expect_column_distinct_values_to_be
_in_set

{column: column, value_set:
parameter }

mean None expect_column_mean_to_be_between {column: column, min_value:
parameter, max_value:
parameter}

warn/fail expect_column_mean_to_be_between {column: column, min_value:
parameter*(1.0-tolerance),
max_value:
parameter*(1.0+tolerance)}

stdev None expect_column_stdev_to_be_between {column: column, min_value:
parameter, max_value:
parameter}

warn/fail expect_column_stdev_to_be_between {column: column, min_value:
parameter*(1.0-tolerance),
max_value:
parameter*(1.0+tolerance)}

custom - call field in the rule {column: column, **args}

Table 3.2: Translation table between data contract quality rules and Great Expectations
expectation configurations. For each quality rule, one expectation is created. The total number
of expectations created by a single quality rule is dependent on the number of columns defined
on it and the presence or absence of a severity tolerance.
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Results

By having implemented the two services, Data Contract Manager and Great
Expectations Data Contract Validator, containing the features mentioned in the
previous chapter, is now possible to tackle real-life use cases. In order to test the
application, a dataset where its quality could be deemed as “average” was chosen.
For this, and following the arguments exposed in this thesis, is necessary to first
define a business domain so that we could define a desired level of data quality and
thus be able to quantify what “average” would mean in the business context.

For testing the actual usability of the system, a weather domain was used.
Specifically, related to hourly weather measures of the Southeast region of Brazil
in 2019. A dataset was chosen following this, where the business interpretation
of the dataset fields is explained in Table 4.1. Overall, the dataset contains
measurements on precipitation, temperature, solar radiation humidity, wind, and
other measurements, taken by the hour by several weather stations in the evaluated
region. The data is provided by Instituto Nacional de Meteorologia (INMET), the
national institute of meteorology of the country.

In general, the dataset contains physical measurements, so it is expected that
measurement columns may contain missing values due to sensor errors, downtime,
etc., although it is still expected that the majority of the values should be present.
On the other hand, fields referring to the identification of the record, like timestamp,
weather station and its location, are expected to always be present as these do not
rely on physical measurements but rather on record identification and are part of
the metadata of the record.
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column type description example
index number Index of the record among each weather station measure-

ments
1

date string Date of the measurement in format YYYY-MM-DD 2019-05-12
hour string Hour of the measurement in format hh:00 04:00
pcpn_mm number Amount of precipitation in millimeters in the last hour 5.1
station_pressure_mb number Atmospheric pressure at station level in millibars 928.6
pressure_max_mb number Maximum air pressure for the last hour 928.6
pressure_min_mb number Minimum air pressure for the last hour 928.3
radiation_kj_m2 number Solar radiation in Kilojoules per squared meter. 1784
temp_c number Air temperature at the moment of measurement in celsius 25.4
dewpoint_c number Dew point temperature at the moment of measurement

in celsius
16.2

temp_max_c number Maximum temperature for the last hour 28.6
temp_min_c number Minimum temperature for the last hour 27.3
dewpoint_max_c number Maximum dew point temperature for the last hour 17.9
dewpoint_min_c number Minimum dew point temperature for the last hour 17.1
humidity_max_perc number Maximum relative humid temperature for the last hour

in percentage from 0 to 100
45

humidity_min_perc number Minimum relative humid temperature for the last hour in
percentage from 0 to 100

40

humidity_perc number Relative humid at the moment of measurement in per-
centage from 0 to 100

43

wind_direct_grad number Wind direction in radius-degrees (0-360) 152
gust_max_m_s number Wind gust in meters per second 11.4
wind_speed_m_s number Wind speed in meters per second 1.7
region string Brazilian geopolitical regions. The dataset contains only

the Southeast region (SE)
SE

state string Brazilian state two-letter code. The Southeast region is
composed by the states of São Paulo (SP), Rio de Janeiro
(RJ), Minas Gerais (MG) and Espírito Santo (ES)

SP

station string Station name Nova Venecia
station_code string INMET Station code A623
lat number Geographical latitude -18.695265
lon number Geographical longitude -40.390572
elev number Geographical elevation 156.02

Table 4.1: INMET Weather Dataset specification

After defining the domain and context of the data, it’s possible to set a data
contract in order to evaluate the desired quality attributes the dataset should
possess. Then, by registering the contract in the system and running the appropriate
workload, it will be possible to evaluate which quality rules have been broken, fix
the procedure that generates the data, and then repropose the validation with the
new, refurbished dataset. This way, it is possible to compare the outcome of a bad
versus a good dataset.

Furthermore, by executing this process, several metrics can be measured about
the process performance, like the average response time for each query (register
data contract, find data contract, create workload, starting validation, polling for
results, and others), and the percentage of broken rules before and after the dataset
correction.
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By taking a look at the columns definition, it is possible to create a set of
quality rules that ensure that the necessary fields are present and in the correct
format and domain (either numeric or value domain). For example, the humidity
percentage values should be expected to be always between 0 and 100, as negative
percentages or greater than 100% are mathematically impossible. Additionally,
as a measurement of high quality and fidelity, at least 95% of all the weather
measurements should be present, with the exception of the Solar Radiation column,
as night-time records shouldn’t report this value. Thus, the full set of quality rules
that have been designed are listed below.

1. The index, date, hour, region, state, station, station_code, lat,
lon, elev columns must not contain any null values, as these fields are the
identifiers of the measurement.

• Dimension: Completeness
• Type: Complete
• Parameter: 1.0
• Severity: Failure, no tolerance.

2. All the weather measurements columns except radiation_kj_m2 must be 95%
not null, to ensure that most of the measurements exist in the dataset.

• Dimension: Completeness
• Type: Complete
• Parameter: 0.95
• Severity: Warning: 5%, Failure: 10%

3. The radiation_kj_m2 column must contain values for 50% of the measure-
ments, to account for the night-time hours and with a large tolerance to
account for yearly daytime length variations.

• Dimension: Completeness
• Type: Complete
• Parameter: 0.5
• Severity: Failure: 15%

4. The pcpn_mm, station_pressure_mb, pressure_max_mb, pressure_min_mb,
radiation_kj_m2, humidity_max_perc, humidity_min_perc, humidity_perc,
wind_direct_grad, gust_max_m_s, wind_speed_m_s columns must contain
non-negative values, which are physically impossible.

• Dimension: Validity
• Type: Min
• Parameter: 0.0
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• Severity: Failure, no tolerance.
5. The humidity_max_perc, humidity_min_perc, humidity_perc columns must

not contain values larger than 100, since these fields represent percentages
∈ [0,100].

• Dimension: Validity
• Type: Max
• Parameter: 100.0
• Severity: Failure, no tolerance.

6. The wind_direct_grad column must not contain values larger than 360, since
this field represents angle degrees ∈ [0◦,360◦].

• Dimension: Validity
• Type: Max
• Parameter: 100.0
• Severity: Failure, no tolerance.

7. The state column must contain only state codes for states belonging to the
Southeast region.

• Dimension: Validity
• Type: Allowed Values
• Parameter: SP, RJ, MG, ES
• Severity: Failure, no tolerance.

8. The date column must be formatted in the ISO format “YYYY-MM-DD”.
• Dimension: Validity
• Type: Custom
• Technology: Great Expectations
• Call: expect_column_values_to_match_strftime_format
• Parameter: %Y-%m-%d
• Severity: Failure, no tolerance.

9. The hour column must be formatted in the ISO format “hh:mm”.
• Dimension: Validity
• Type: Custom
• Technology: Great Expectations
• Call: expect_column_values_to_match_strftime_format
• Parameter: %H:%M
• Severity: Failure, no tolerance.
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Using these rules, a data contract was created following the data contract specifi-
cation and registered on the Manager using the respective endpoints (see Appendix
A for the contract content). For testing purposes, the contract enforcement was
performed against a slightly modified dataset to introduce faulty measurements
in two columns: wind_direct_grad and humidty_perc. The error injection was
performed by adding values outside the domain of each column defined by the rules
to 6% of the rows. This was done in order to evaluate further the system’s ability
to identify breaking rules. Taking this into account, it is expected that the initial
validation would contain at least 2 rejected rules.

By executing the validation workload, it is possible to get a detailed result on
the rules that were respected against those that were broken. The initial test of the
dataset showed that out of the initial nine rules, 45 validations were generated (as
each validation is applied to a single column), and from these, only 33 were initially
successful (73.3% success rate). As this is a result much lower than expected, it
is necessary to analyze the metrics provided in the results, to understand which
rules were broken and why, as well as perform basic analysis of the read data, to
possibly identify further errors with the original dataset. The biggest issue with
the dataset is the use of −9999 as the value for null readings, instead of an empty
field as it’s normally done and was expected on the quality rules. These kinds of
insights can then be forwarded to the data producer in order to be fixed for the
producer to be compliant with the agreed contract.

After the correction of this value, the validation workload is re-executed and
the new result yields 41 out of 45 successful validations (91.1%) plus two warning
validations, so the remaining failed validations are related to the error injection.
Figure 4.1 illustrates the result of the validations and shows that by sticking to
the agreed rules, it’s possible to increase the overall quality of the data, blocking
major issues as soon as they are detected, and avoiding sending faulty data into
the consumer pipeline.

Additionally, as this process was being executed, performance results on the
systems were measured. Firstly, the execution time for different actions performed
by the Data Contract Manager and Data Contract Validator was measured. These
metrics were taken with the same dataset by executing the data contract registration
process n = 40 times and the data contract enforcement process m = 24 times
on a local Windows machine with 16GB of RAM and 1.80GHz i7 Intel Core
processor. Some steps are executed several times during the same registration or
enforcement process, so measurement amounts vary for each step but are always
n ≥ 40, m ≥ 24. Since the measurements were taken in a local machine, outliers
with a Z-score > 2.0 were removed to account for system usage peaks that may
impact the time measurements.
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Figure 4.1: Comparison of validation outcomes on different quality levels of a dataset. By
validating the data against the agreed rules, it is possible to quickly identify breaking quality
rules, and to improve the overall quality of the dataset

Figure 4.2: Execution time for actions performed by the Data Contract Manager (orange) and
the Data Contract Validator (purple).
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The results of these time measurements can be seen in Figure 4.2, excluding the
actual quality check executions which will be shown later. By analyzing the results,
it’s evident that the processes related to some kind of validation take the most
time. In particular, the graph shows peaks on the steps of the CUE validation step
at registration time, the Start Validation step at validation time which account for
the initial contact with the Validators, and the Validator Start Validation, which
account for the rule translation into expectations and the creation of the checkpoint.
It’s important to notice that the Start Validation execution time shown in the
figure, comprises also the time taken to receive the response from the Validators as
this is a synchronous operation, so it includes the Validator’s own Start Validation
step elapsed time, so the actual Manager time is much lower.

By analyzing the results, is clear that the time spent on the Transfer Data
step is lower than other steps, so the initial concern about slow executions isn’t
actually an issue. Moreover, all of the shown steps, including the transfer of data,
are orders of magnitude lower than the actual validation process as will be seen
later, and it is also evident that most of the system actions are in the order of tens
of milliseconds, with most non-validation actions taking 50ms or lower, showing a
good performance.

Figure 4.3: Execution time for the GreatExpectations quality check on various sizes of the
analyzed dataset.

In that sense, and regarding the quality check execution, Figure 4.3 shows
the elapsed time for the checkpoint execution on Great Expectations for different
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dataset sizes. Measurements were taken using the same dataset by varying the
number of rows, and for each size n = 10 executions were performed. Since the
measurements were taken in the same local machine as the others, outliers with a
Z-score > 2.0 were removed to account for system usage peaks that may impact
the time measurements. After collecting the values, it can be observed that the
executed validation time is in the order of tens of seconds, and scales linearly with
the dataset size, taking 26.62 ± 0.64s on a dataset of size 201.4MiB.

With these results, and by taking the average elapsed time for each performed
transition, it can be seen that the validation process accounts for around 96% of the
whole execution process, so if further developments are performed on this application
and these are concerned about time performance, the Validators’ execution should
be the main point for improvement.

Nonetheless, these numerical results validate the practical usability of the system
and allow for further evaluations on performance, quality improvement, etc., thus
validating not only the theoretical results by the implementation of the data
contract format and the enforcement system but also the practical application of
such a system. With only two executions of the validation process, it was possible
to improve the overall quality of the dataset and show the potential of such a
system with more complex rules.
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In light of the extensive work undertaken to create and implement a data contract
format and enforcement system, this thesis successfully demonstrates the usefulness
of the development and implementation of a data contract format and a management
service that can be integrated into data architecture platforms. Firstly, the data
contract format was designed to be an extensible and flexible specification following
closely the currently existing proposals. By carefully considering the varying needs
of data contracts across different domains, the format provides a robust foundation
that can accommodate evolving requirements and diverse data structures.

Moreover, the design of the Data Contract Manager has proven to create a
successful service in terms of extensibility, configurability, and versatility. The
manager’s potential adaptability to different contexts and the ease with which it
can be customized to meet specific organizational needs justify its practical utility.
Additionally, the establishment of well-defined interfaces throughout the system,
especially between the manager and the validators, positions the data contract
system as a reliable tool for data governance, allowing it to identify faulty data as
soon as it arrives in the system on a trust-but-verify scenario.

While the scope of this project was intentionally limited to serve as a functional
proof of concept, the results obtained have validated the feasibility of the proposed
approach, paving the way for future developments and integrations into more
comprehensive and robust systems. In this sense, this thesis has not only contributed
to the immediate goal of data contract enforcement but also left the door open
for further advancements in handling a wide range of workloads and data contract
scenarios.

4.1 Future developments

The outcome of this thesis offers a working baseline to start registering and
validating data contracts in a controlled environment and works as a strong basis
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to build on, especially to overcome the limitations and reduced scope that were
defined for the implementation. Specifically, the Data Contract Manager and
Data Contract Validators are open to supporting new features, such as execution
on a cloud environment; access to data store in cloud storage; and consequently
achieving the main goal of the project of integrating this system as a service on the
Witboost environment, to be part of the services that the platform has to offer.

In the same fashion, the project is open to extensions on the validation capabili-
ties of the system. Additional validations can be implemented on either the Manager
or Validator taking advantage of the data contract specification, which provides
extensive metadata that is not being used in its totality. As an example, further
validations based on the dataset schema or SLAs can be performed by including
the appropriate validators. Furthermore, by taking advantage of the extensibility
of the workload definition, more ingestion scenarios can be implemented, such as
pull-based or stream scenarios on both source-aligned and consumer-aligned data
products.

Lastly, a close look should be taken at the developments and improvements
done by other communities and their proposals in the context of data contracts,
as this is a subject that is rapidly evolving. As such, it is expected that different
viewpoints and solutions to the same problem arise, but that the joint contribution
of communities from different environments of the data engineering practice will
provide a robust way to handle data contracts and data quality moving forward.
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Appendix A

Data Contract Format
Specification

specVersion: 0.1.3
id: brazil-se-weather-contract-inmet-weather-domain-1.0.0
name: Brazil SE Weather Contract
kind: DataContract
version: 1.0.0
description: Contract to ingest hourly weather data from Brazil Southeast

statesñ→

consumer:
name: weather_domain
group: weather_domain.com

producer:
name: INMET
group: inmet_mail.com

tags:
- tagFQN: weather

source: Tag
labelType: Manual
state: Confirmed

- tagFQN: america
source: Tag
labelType: Manual
state: Confirmed

access:
eventType: push
protocol: HTTP
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location: /files/weather/se
accessConfiguration:

pattern: '(.*)southeast_\\d{4}.csv'

dataset:
name: weather_record
schema:

- name: index
dataType: int
description: ID of the record
constraint: PRIMARY_KEY

- name: date
dataType: date
description: Date of the record
constraint: NOT_NULL

- name: hour
dataType: time
description: Hour of the record
constraint: NOT_NULL

- name: pcpn_mm
dataType: number
description: Precipitation in millimeters

- name: station_pressure_mb
dataType: number
description: Atmospheric pressure at station level in millibars

- name: pressure_max_mb
dataType: number
description: Maximum atmospheric pressure in the last hour in

millibarsñ→

- name: pressure_min_mb
dataType: number
description: Minimum atmospheric pressure in the last hour in

millibarsñ→

- name: radiation_kj_m2
dataType: number
description: Solar radiation in kilojoules per squared meter

- name: temp_c
dataType: number
description: Temperature at reading time in celsius

- name: dewpoint_c
dataType: number
description: Dew point temperature at reading time in celsius

- name: temp_max_c
dataType: number
description: Maximum temperature in the last hour in celsius

- name: temp_min_c
dataType: number
description: Minimum temperature in the last hour in celsius

- name: dewpoint_max_c
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dataType: number
description: Maximum dew point temperature in the last hour in

celsiusñ→

- name: dewpoint_min_c
dataType: number
description: Minimum dew point temperature in the last hour in

celsiusñ→

- name: humidity_max_perc
dataType: number
description: 'Maximum humidity percent in the last hour, from 0 to

100'ñ→

- name: humidity_min_perc
dataType: number
description: 'Minimum humidity percent in the last hour, from 0 to

100'ñ→

- name: humidity_perc
dataType: number
description: 'Humidity percent at reading time, from 0 to 100'

- name: wind_direct_grad
dataType: number
description: Direction of the wind in positive degrees

- name: gust_max_m_s
dataType: number
description: 'Maximum gust speed in the last hour, in meters per

second'ñ→

- name: wind_speed_m_s
dataType: number
description: Wind speed at reading time in meters per second

- name: region
dataType: text
description: Brazil region code of the weather station

- name: state
dataType: text
description: Brazil state code of the weather station

- name: station
dataType: text
description: Weather station name

- name: station_code
dataType: text
description: Weather station code

- name: lat
dataType: number
description: Weather station latitude

- name: lon
dataType: number
description: Weather station longitude

- name: elev
dataType: number
description: Weather station elevation
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quality:
- id: unique_index_rule

name: Rule to ensure having a correct primary key column
dimension: uniqueness
type: unique
columns: [ index ]

- id: not_null_indexing_fields_rule
name: Rule to ensure having not null fields that identify the record
dimension: completeness
type: complete
columns: [ index, date, hour, region, state, station, station_code, lat,
lon, elev ]ñ→

parameter: 1
- id: not_null_measurements_rule

name: Rule to ensure that most of the measurements exist in the dataset
dimension: completeness
type: complete
columns:

- pcpn_mm
- station_pressure_mb
- pressure_max_mb
- pressure_min_mb
- temp_c
- dewpoint_c
- temp_max_c
- temp_min_c
- dewpoint_max_c
- dewpoint_min_c
- humidity_max_perc
- humidity_min_perc
- humidity_perc
- wind_direct_grad
- gust_max_m_s
- wind_speed_m_s

parameter: 0.95
severity:

warn:
tolerance: 0.05

fail:
tolerance: 0.1

- id: not_null_radiation_rule
name: Rule to ensure radiation rules exist for half of the data
(sun-time)ñ→

dimension: completeness
type: complete
columns: [ radiation_kj_m2 ]
parameter: 0.5
severity:
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fail:
tolerance: 0.1

- id: gt_zero_measurements_rule
name: Rule to ensure that weather measurements which can't be negative
aren't presentñ→

dimension: validity
type: min
parameter: 0
columns:

- pcpn_mm
- station_pressure_mb
- pressure_max_mb
- pressure_min_mb
- radiation_kj_m2
- humidity_max_perc
- humidity_min_perc
- humidity_perc
- wind_direct_grad
- gust_max_m_s
- wind_speed_m_s

- id: max_percent_measurements_rule
name: Rule to ensure that percent measurements don't go over 100%
dimension: validity
type: max
columns: [ humidity_max_perc, humidity_min_perc, humidity_perc ]
parameter: 100

- id: max_degrees_measurements_rule
name: Rule to ensure that degree measurements don't go over 360°
dimension: validity
type: max
parameter: 360
columns: [ wind_direct_grad ]

- id: allowed_states_rule
name: Rule to ensure only southeast regions are present in the dataset
dimension: validity
type: allowedValues
columns: [ state ]
parameter: [ SP, RJ, MG, ES ]

- id: custom_date_rule
name: Rule to ensure dates are in correct format
dimension: validity
type: custom
technology: GreatExpectations
call: expect_column_values_to_match_strftime_format
columns: [ date ]
args:

strftime_format: '%Y-%m-%d'
- id: custom_time_rule

name: Rule to ensure times are in correct format
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dimension: validity
type: custom
technology: GreatExpectations
call: expect_column_values_to_match_strftime_format
columns: [ hour ]
args:

strftime_format: '%H:%M'

pricing:
priceAmount: 0
priceCurrency: USD
priceUnit: fullScan

serviceLevelAgreements:
intervalOfChange: 1h
timeliness: 1m
upTime: 0.999

specific: {}

A.1 Schema properties

A.1.1 General information

specVersion: "major.minor.patch" # Semantic versioning
# General information
id: "<name>-<producer.name>-<consumer.name>-<version>"
name: string
kind: "DataContract"
version: "major.minor.patch" # Semantic versioning
description: string
ownerGroup: string
tags: # OpenMetadata tags

- tagFQN: string
source: "Tag"
labelType: "Manual"
state: "Confirmed"

consumer:
name: string
group: string

producer:
name: string
group: string
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access:
eventType: push | pull | event | stream
protocol: string
location: string
security:

token: string
accessConfiguration: {}

dataSharingAgreements:
purpose: string
security: string
intendedUsage: string
limitations: string
lifeCycle: string
confidentiality: string

84



Data Contract Format Specification

field required type description example
specVersion * string Version of the standard format 0.1.3
id * string Id of the contract, composed by the

contract name, the producer and
consumer name, and the contract
version

data-contract-template-
-producer-dataproduct1-1.0.0

name * string Name of the contract Data Contract for ingestion
kind * "DataContract" kind of the yaml, it specifies it’s a

data contract
"DataContract"

version * string Version of the contract, in semantic
versioning

1.0.0

description string Description of the contract Contract for reading some
data

ownerGroup string Who owns the contract in the com-
pany

dataproduct1_corp.com

tags Tag Open Metadata format for list of
tags

consumer Actor Consumer of the data contract,
maybe not be present if it’s a multi-
lateral contract

producer * Actor Producer of the data
Actor.name * string Name of the actor producer1
Actor.group * string Group where the actor belongs,

might be just the email
producer_othercorp.com

access * Object that holds the information
to access the consumer endpoint

access.eventType * pull | push |
event | stream

Type of data transfer. The ini-
tial scope is interested only in push
events

push

acesss.protocol * string Protocol to use to push the informa-
tion in the system

FTP

access.location * string URI endpoint to define the location
of the system that will receive the
data

ftp://ec2.mylocation.com

access.security * Object that includes the information
to initially contact the consumer
endpoint.

"${env.token}"

access.accessConfiguration * object Object that includes specific infor-
mation and configuration values to
access the data, might be used to
identify files, streams, etc.

{"pattern": "*.csv"}

dataSharingAgreements * Covers usage, privacy, purpose and
limitations as defined in Agile Lab
Data Product specification

Table A.1: Data contract format specification: General information fields

A.1.2 Dataset schema

dataset:
name: string
schema:

- name: string
dataType: string
description: string
constraint: PRIMARY_KEY | FOREIGN_KEY | UNIQUE | NOT_NULL
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field required type description example
dataset * Dataset Contains the schema information of

the dataset
dataset.name * string Name of the dataset employee_table
dataset.schema * [Column] Contains an array of the schema of

the dataset columns
dataset.schema.name * string Column name employee_id
dataset.schema.dataType * string Data type on yaml data types, so

it’s technology agnostic
string

dataset.schema.description * string Meaningful description of the col-
umn purpose

ID of the employee

dataset.schema.constraint * PRIMARY_KEY |
FOREIGN_KEY |
UNIQUE | NOT_NULL

Basic constraints on the column, is
equivalent to some quality check def-
initions but in simple format

PRIMARY_KEY

Table A.2: Data contract format specification: Schema fields

A.1.3 Quality

quality:
- id: string

name: string
columns: [string]
technology: string
dimension: completeness | validity | uniqueness
type: string
parameter: number | string | [string]
scheduleCronExpression: string
severity:

warn:
tolerance: number

fail:
tolerance: number
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field required type description example
quality Array of quality checks to be per-

formed on the dataset
quality.id * string Name of the quality check quality_check_not_null
quality.name * string Human readable name for the check "Quality check that a

column is not null"
quality.columns [string] Array of column names if the quality

check is applied at column level
[employee_id,
employee_salary]

quality.technology string Extensibility to invoke external
tools to perform the quality check.
If null, the native check will be per-
formed

quality.dimension completeness | valid-
ity | uniqueness

Data Quality dimension that is re-
lated to the current check

completeness

quality.type * string Quality check to be done, refer to
quality check types table to more
info

complete

quality.parameter number | string |
[string]

Value to be used in the quality check.
It may mean different things depend-
ing on the quality check type

0.99

quality.scheduleCronExpression CronExpression Quartz Cron expression to be used
for runtime checks

0 20 * * *

quality.severity Object that holds the information
to calculate the severity of the check.
If this is missing, every check that
is not exactly equal to the expected
quality.parameter will trigger a
fail alert

quality.severity.warn Object that holds the information
to trigger a warning alert for the
check. If a warning is triggered, the
data won’t be rejected but a warning
shall be created

quality.severity.warn.tolerance * number Tolerance percentage to which the
quality.parameter should hold
before launching a trigger.

0.05 a.k.a 5%

quality.severity.fail Object that holds the information
to trigger a fail alert. If a fail
is thrown, the data shall be re-
jected. The structure is the same as
quality.severity.warn

Table A.3: Data contract format specification: Quality rules fields

A.1.4 Pricing

This is directly taken from the PayPal data contract specification, with the addition
of “Full Scan” as a price unit.

pricing:
priceAmount: number
priceCurrency: string
priceUnit: MB | KB | GB | TB | PB | fullScan
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field required type description example
pricing Object that defines the pricing of

the ingestion of data
pricing.priceAmount * number Subscription price per unit of mea-

sure in priceUnit.
9.95

pricing.priceCurrency * string Currency of the subscription price USD
pricing.priceUnit * KB | MB | GB | TB

| PB | fullScan
Unit of measure for calculating cost fullScan

Table A.4: Data contract format specification: Pricing fields

A.1.5 SLAs

serviceLevelAgreements:
intervalOfChange: string
timeliness: string
upTime: number

field required type description example
serviceLevelAgreements Object to specify the SLAs of the

contract
serviceLevelAgreements
intervalOfChange

string Description of the interval of change
in which data is updated. It uses
ISO8601 units

1h30m

serviceLevelAgreements.
timeliness

string Description of the timeliness of the
data. It uses ISO8601 units

10s

serviceLevelAgreements.
upTime

number Uptime percentage of the data 0.99

Table A.5: Data contract format specification: Service Level Agreements fields
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Appendix B

Data Contract Format
Validation

Cue script for data contract format validation.

package datacontract

import (
"strings" // a builtin package

)

#ParsedString: {#s: string, output:
strings.ToLower(strings.Replace(strings.Replace(#s, " ", "-", -1), "_",
"-", -1)) }

ñ→

ñ→

#Version: string & =~"^[0-9]+\\.[0-9]+\\..+$"
#ParsedName: =~ "^[a-zA-Z-]+$" & (#ParsedString & {#s: name}).output

#OM_Tag: {
tagFQN: string
description?: string | null
source: string & =~"(?i)^(Tag|Glossary)$"
labelType: string & =~"(?i)^(Manual|Propagated|Automated|Derived)$"
state: string & =~"(?i)^(Suggested|Confirmed)$"
href?: string | null

}
#DataSharingAgreement: {

purpose?: string | null
billing?: string | null
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security?: string | null
intendedUsage?: string | null
limitations?: string | null
lifeCycle?: string | null
confidentiality?: string | null
...

}
#Actor: {

name: string & =~ "^[A-Za-z-_0-9]+$"
group: string & =~ "^[A-Za-z-_0-9.]+$"

}
#Access: {

eventType: "push"
protocol: "FTP" | "HTTP" | "HTTPS"
location: string
security?: token: string
accessConfiguration: {...}

}

#Dataset: {
name: string
schema: [... #OM_Column]

}
#OM_DataType: string &

=~"(?i)^(NUMBER|TINYINT|SMALLINT|INT|BIGINT|BYTEINT|BYTES|FLOAT| ⌋
DOUBLE|DECIMAL|NUMERIC|TIMESTAMP|TIME|DATE|DATETIME|INTERVAL|STRING| ⌋
MEDIUMTEXT|TEXT|CHAR|VARCHAR|BOOLEAN|BINARY|VARBINARY|ENUM|JSON)$"

ñ→

ñ→

ñ→

#OM_Constraint: string & =~"(?i)^(NOT_NULL|UNIQUE|PRIMARY_KEY)$"
#OM_Column: {

name: string
dataType: #OM_DataType
if dataType =~ "(?i)^(ARRAY)$" {

arrayDataType: #OM_DataType
}
if dataType =~ "(?i)^(CHAR|VARCHAR|BINARY|VARBINARY)$" {

dataLength: number
}
description?: string | null
fullyQualifiedName?: string | null
tags?: [... #OM_Tag]
constraint?: #OM_Constraint | null
if dataType =~ "(?i)^(JSON)$" {

jsonSchema: string
}
if dataType =~ "(?i)^(MAP|STRUCT|UNION)$" {

children: [... #OM_Column]
}

}
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#Quality: [... #QualityRule]
#CompletenessTypes: "size" | "complete"
#UniquenessTypes: "unique"
#NumberValidityTypes: "min" | "max" | "mean" | "stdev" | "custom"
#ValidityTypes: #NumberValidityTypes | "allowedValues"
#CronExpression: string & =~ "^(?:[0-9,*\/-LW?]+ ){5}[0-9,*\/-LW?]+$" //

Basic regex, but most of the expressions won't be valid cronñ→

#ColumnName: or([for column in dataset.schema { column.name }])
#Dimensions: "completeness" | "validity" | "uniqueness"

#SingleParameterValue: string | number | int
#ListParameterValue: [... string] | [... number]
#ParameterValue: #SingleParameterValue | #ListParameterValue

#BaseRule : {
id: string
name: string
columns?: [... #ColumnName] | null

dimension: #Dimensions
type: string
scheduleCronExpression?: #CronExpression | null

severity?: {
warn?: tolerance: number
fail?: tolerance: number

}
parameter?: _
technology?: _
call?: _
args?: _

}

#CompletenessRule : #BaseRule & {
dimension: "completeness"
type: #CompletenessTypes
[

if type == "size" {
parameter: int

},
if type == "complete" {

parameter: number
}

][0]
technology?: null
call?: null

}

#ValidityRule: #BaseRule & {
type: #ValidityTypes
dimension: "validity"
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[
if type == "custom" {

call: *id | string
technology: string
args?: [string]: #ParameterValue | null

},
if type == "allowedValues" {

parameter: #ListParameterValue
},
{parameter: int | number}

][0]
}

#UniquenessRule: #BaseRule & {
dimension: "uniqueness"
type: #UniquenessTypes
technology?: null
call?: null
parameter?: null

}

#QualityRule: #CompletenessRule | #ValidityRule | #UniquenessRule

#Units: "KB" | "MB" | "GB" | "TB" | "PB" | "fullScan"
#Pricing: {

priceAmount: number & >=0
priceCurrency: string
priceUnit: #Units

}

#Interval: string & =~ "^([0-9]+Y)?([0-9]+M)?([0-9]+d)?([0-9]+h)?([0- ⌋
9]+m)?([0-9]+s)?([0-9]+ms)?$"ñ→

#SLAs: {
intervalOfChange: #Interval
timeliness: #Interval
upTime: number & <= 1.0 & >= 0.0

}

#ProducerName: string & (#ParsedString & {#s: producer.name}).output
#ConsumerName: string & (#ParsedString & {#s: *consumer.name|""}).output

specVersion: "0.1.3"
// General information
id: string & =~ "^\(#ParsedName)-\(#ProducerName)-\(#ConsumerName)\([if

consumer != _|_ {"-"},{""}][0])\(version)$"ñ→

name: string
kind: "DataContract"
version: #Version
description: string
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tags: [... #OM_Tag]
consumer?: #Actor
producer: #Actor
access: #Access
dataSharingAgreements: #DataSharingAgreement
dataset: #Dataset
quality: #Quality
pricing?: #Pricing | null
serviceLevelAgreements?: #SLAs | null
specific: {...}
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