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Summary

This master thesis focuses on spatio-temporal data mining, a specialized
field of data mining and spatial analysis that aims at discovering interest-
ing patterns, relationships, and insights from data that have both spatial
and temporal dimensions. These relationships are useful to help in a wide
spectrum of applications and contexts, from urban planning to epidemiology.
Among different approaches to address spatio-temporal data mining we con-
sider co-location pattern mining. This method tries to uncover correlation
between features or attributes of a dataset whose instances are usually found
together in the same geographic area and at the same time. For example,
if we consider a dataset that represents events that may happen in a urban
context, we may find that an episode of type "Traffic-congestion" is often
spatially and temporally close to an episode of type "Sport-event". If these
two types of events are found close a certain number of times, a co-location
pattern ["Traffic-congestion", "Sport-event"] may be discovered.
Most of state of art methods to perform co-location pattern mining consider
only spatial datasets without any temporal information. In this context the
work "Parallel Co-location Pattern Mining based on Neighbor-Dependency
Partition and Column Calculation" proposes an innovative approach to per-
form spatial co-location mining. This method divides the entire set of neigh-
bor relationships among instances into some partitions. The co-location min-
ing is then applied independently for each partition employing some new
ideas to reduce the search space and thus the time and resources required
by co-location mining. So, this algorithm avoids serial processing and the
limitations typical of single machine computing. It can be applied also to
process massive spatial dataset.
One step forward in the field of co-location mining has been made in "Tem-
poral co-location pattern discovery in spatiotemporal data through parallel
computing". This work shows that the previously mentioned algorithm can
be extended to perform mining of spatio-temporal co-location patterns. The
contribution of this master thesis is the introduction of some new solutions in
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order to make spatio-temporal co-location mining more efficient and scalable.
In particular we propose some new ideas to find effectively spatio-temporal
neighbors of each event in the dataset. Our solutions are effective and im-
proves the efficiency of the baseline algorithm.
Successively, in order to extend the power of co-location mining, we intro-
duce the concept of "sequence of co-locations" or (co-location sequence). We
define a co-location sequence as a collection of co-locations that has an aggre-
gator event in common and respect some spatial and temporal constraints.
Co-location sequence mining should be able to discover relationships and
correlations, among spatio-temporal data, that simple co-location mining is
not able to find. In this thesis we provide a formal definition of co-location
sequence, we introduce some suitable metrics to evaluate how interesting are
the sequences found and we develop an algorithm to perform co-location se-
quence mining. The algorithm works in parallel manner and it is available for
huge spatio-temporal datasets (more than 30 M events). Our solutions are
developed using Apache Spark framework and Python language, the exper-
iments are run on BigData@Polito Cluster. The results we get confirm the
effectiveness of our algorithm for co-location sequence mining except for some
limitations mainly due to the lack of proper real-word dataset and restricted
amount of available computational resources.
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Chapter 1

Introduction

1.1 Big Data and Spatio-temporal Data
In an era defined by rapidly advancing technology, our world is flooded with
an unprecedented amount of information. This influx of data has given rise
to a phenomenon that has revolutionized industries, transformed decision-
making processes, and redefined the boundaries of innovation, the era of Big
Data. At the heart of the Big Data revolution is the concept of data mining,
the process of uncovering valuable patterns, trends, and relationships within
large and complex datasets. With the right tools and techniques, we can
manage to extract meaningful knowledge from this huge amount of informa-
tion. These data encompass a wide spectrum of sources and types, including
social media platforms, e-commerce websites, scientific research, healthcare
records, and beyond. In this thesis we focus on spatio-temporal data, this
type of data captures the interaction between geographical coordinates and
chronological instants. Its significance lies not only in the individual at-
tributes of space and time, but in the intricate relationships that emerge
when they are combined. Understanding these relationships is crucial for
making informed decisions and predicting trends on our dynamic real world.
In particular in the next sections we’ll focus on two types of spatio-temporal
data:

• People trajectories represented by a sequence of time-stamped points,
each of which contains also the information of latitude and longitude.

• Traffic and weather events, each of which contains a geographical loca-
tion along with a starting and ending timestamp.
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1 – Introduction

1.2 Mining Spatio-temporal Data and Co-location
Patterns

Spatio-temporal data encapsulates a multidimensional landscape where geo-
graphic coordinates and chronological instants converge. One way to extract
useful knowledge from this kind of data is co-location pattern mining.
A co-location pattern (or co-location) represents a subset of spatial features,
whose instances are frequently located together in spatial neighborhoods.
Originally the concept of co-location was related only to spatial features and
data, though the definition of co-location pattern can be extended to spatio-
temporal data (as we’ll discuss in chapter 3). We can visualize the main
objective of co-location mining considering the situation in figure 1.1. In this
simple example we can observe 3 types of events located in a city map: car
accident, traffic jam and construction work . The goal of spatio-temporal
mining is to discover the neighbors of each data event and finally extract
some general co-location rules. In this simple example potential co-locations
are: [traffic − jam, accident] ; [public − event, construction] . A good im-
plementation for co-location mining should be able to find out only patterns
that are meaningful. It’s likely that the event "construction" and "public
event" are close just for a coincidence; while it’s reasonable that a "traffic-
jam" event generates some issues to the traffic flow that may result in a "car
accident". Good algorithms for co-location mining define suitable metrics
and solutions to extract only significant patterns.

In this thesis we first analyze a spatial co-location pattern mining (SCPM)
algorithm: Parallel Co-location Pattern Mining based on Neighbor-Dependency
Partition and Column Calculation [1]. Then we discuss an updated version
of this SCPM algorithm developed by Liturri [9] that takes in account also
the temporal dimension and it is usable for data that has both geographi-
cal position and also temporal information. We aim to work with massive
spatio-temporal datasets, this makes the mining process very computational
expensive. Thus, our first contribution tries to make the algorithm devel-
oped by [9] more efficient and scalable in order to be employed with larger
datasets. Beyond this improvement our main contribution tries to take the
mining of co-location patterns to the next level. We introduce the concept
of sequence of co-location patterns as a set of consecutive co-location
patterns that happens in the same geographical area. The events that com-
pose the sequence of co-locations should also meet some temporal constraints
(discussed in 4.1). We introduce this new concept of sequence of co-locations
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1.3 – Thesis Structure

Figure 1.1. Example of different types of traffic events located in a map

to study and analyze the relationship between registered traffic events in a
specific area and their dependency to weather events. The rules defined by
the spotted sequences of co-locations may help to understand and organize
better an urban city environment; for example reducing car accidents and
making the traffic flow more functional. We define some new metrics to eval-
uate the importance of the co-location sequences. We also develop a new
algorithm for co-location sequence mining, which works in parallel way and
is able to compute the defined metrics in efficient and scalable manner. The
algorithm is developed and run using Spark technology, this makes it avail-
able to be employed for dataset with very huge amount of samples (up to 30
millions).

1.3 Thesis Structure
The following sections of this document are organized in this way.:
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1 – Introduction

• Chapter 2 provides a formal definition of co-location patterns and overviews
the state-of-art techniques available for Spatio Co-location Pattern Min-
ing (SCPM). Then we focus on Parallel Co-location Pattern Mining
based on Neighbor-Dependency Partition and Column Calculation [1]
which is a modern SCPM technique designed to be highly scalable and
suitable to operate with massive dataset.

• In chapter 3 we present a temporal extension of the co-location pattern
mining. We discuss the algorithm designed by Liturri in [9] to find
spatial and temporal correlations between trajectories data. We propose
some improvements to the spatio-temporal co-location pattern mining
algorithm in order to make it scalable and usable with larger datasets.
We show some evaluation results comparing the performance of original
and improved version of the algorithm. Finally we report a summary of
the results obtained applying spatio-temporal co-location mining on a
dataset containing information about traffic and weather events.

• The main contribution of the thesis is presented in chapter 4. Here we
introduce the new concept of co-location sequences. We brainstorm and
define some metrics suitable to measure the importance of co-location
sequences. Then we define an algorithm to make co-location sequence
mining in a parallelizable and efficient way exploiting Apache Spark
technology and Python. We also report some results obtained analyzing
a dataset which contains traffic and weather events.

• Finally we summarize the results obtained in the conclusion chapter 5.
Here we also discuss the limitations of our contribution as well as possible
future extensions and improvements.
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Chapter 2

Spatial Co-location
Pattern Mining

Co-location patterns refer to the simultaneous occurrence of multiple geo-
graphic features or spatial objects in close proximity to each other within
a given geographical area. Co-location patterns represent spatial features
whose instances are often located in close geographic proximity. These pat-
terns reveal associations and relationships that may not be apparent through
individual analysis of each feature. Co-location pattern mining purpose is to
identify and analyze these patterns to gain insights into the underlying spa-
tial processes, interactions, and dependencies. However mining co-location
patterns may result particularly challenging when working with huge amount
of data because it is a very expensive computation process. In this chapter
we first define the main notions for understanding co-location pattern min-
ing, then we overview state of art methods to address the problem focusing
on a a innovative approach called Parallel Co-location Pattern Mining based
on Neighbor-Dependency Partition and Column Calculation [1]

2.1 Fundamental Concepts And Problem Def-
inition

First we need to introduce some fundamental new concepts and metrics in
the field of Spatial Co-location Mining. In order to clearly explain these
new concepts we refer to a simple example of spatial dataset. The dataset
is composed of few samples localized in the space and associated with a
category label (represented in 2.1). Each sample instance could be close to
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2 – Spatial Co-location Pattern Mining

one or more instances belonging to a different category type (this relationship
is shown with red lines in figure 2.1).

Figure 2.1. Set of spatial instances and neighbor relationships; table
instance for co-location [B,C,D]

Spatial feature: is the name that describes a location or spatial entity.
The set of features in the dataset is represented with F = {f1, f2, f3, ....fm}.
In the simple example (figure 2.1) we consider a set of 4 generic features
F = {A, B, C, D}. In a more realistic scenario spatial features may be cate-
gories of shops (e.g. restaurant, supermarket) or categories of events related
to traffic (e.g. car-accident, traffic-jam).

Spatial instance: refers to the occurrence of a specific spatial feature
with a geographic location. Given a set of spatial features F, the set of in-
stances of F is represented as O = {o1, o2, o3, ....on} . Each instance oi is
composed by at least this information: < feature type, location > . The lo-
cation is usually expressed in term of latitude and longitude. For example in
figure 2.1 there are 3 spatial instances for feature D (yellow points).

Spatial neighbor relationship (R) : when two spatial instances (oi, oj)
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2.1 – Fundamental Concepts And Problem Definition

have a distance which is less than a specified distance threshold (min_distance)
they have a neighbor relationship. This is denoted as

R(oi, oj) =⇒ distance(oi, oj) ≤ min_distance (2.1)

(oi, oj) should belong to different features. The neighbor relationships are
showed with red lines in figure 2.1.

Neighbor set: given an instance o, the neighbor set of o is defined as
the collection of instances that has the neighbor relationship with o. It is
referred as {Neigh(o)= o′|o′ ∈ O, R(o, o′), o′ /= o}. For example in figure 2.1,
Neigh(D.1) = {B.1, B.2, C.1, C.2}. The neighbor set of some instance may
also be empty.

Neighbor database (D): the neighbor set of all instances is the neigh-
bor database. In table 2.1 is reported the neighbor database for our simple
example (figure 2.1).

Instance Prefix feature Neighbor set
A.1 {B.3}
A.2 {D.2}
A.3 {B.3, C.4}
A.4 {B.4}
B.1 {C.1,C.2,D.1,D.2}
B.2 {C.1,C.2,D.1,D.2}
B.3 A {A.1,A.3,C.3,C.4}
B.4 A {A.4}
C.1 B {B.1,B.2,D.1,D.2}
C.2 B {B.1,B.2,D.1}
C.3 B {B.3}
C.4 A,B {A.3,B.3}
C.5 {}
D.1 B,C {B.1,B.2,C.1,C.2}
D.2 A,B,C {A.2,B.1,B.2,C.1}
D.3 {}

Table 2.1. Neighbor database for example in figure 2.1
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2 – Spatial Co-location Pattern Mining

Spatial co-location (C): two or more features compose a spatial co-
location if the instances of these features frequently form cliques under the
constraint of spatial neighbor relationship. To establish "how frequently"
these cliques should be formed to compose a co-location, some suitable metric
are introduced in the following. Given a set of features F = {f1, f2, f3, ....fm}
a spatial co-location C = [f1, f2, f3, ....fk] is a non-empty subset of F (C ⊆ F )
whose instances are usually spatially close. The number (k) of features in the
spatial co-location is called size. The features of the co-location C should
be sorted in ascending lexicographic order.

Row instance or co-location instance (RI ) of a co-location C : is a
set of instances that respect 2 constraints:

1. the row instance RI covers all the features of C and no subsets of RI
covers all the features of C.

2. The spatial neighbor relationship R(oi, oj) holds for any pairwise taken
from RI. The instances of RI form a clique.

Table instance of a co-location C : is the collection of all row instances of
C, it is denoted as T(C). The table instance for co-location pattern [B,C,D]
is reported in figure 2.1.

Participation Ratio(PR): considering fi as a feature of the co-location
C (fi ∈ C) , the participation ratio of fi in C is the ratio between the num-
ber of distinct instances of fi in the table instance of C T(C) and the total
number of fi instances in the original dataset. The participation ratio of fi

in C is denoted as PR(fi, C).

PR(fi, C) = number of distinct instances of fiinT (C)
number of distinct instances of fi

(2.2)

Participation Index : introduced by [2] as a metric to measure the
importance of each co-location. The participation index of a co-location C
is denoted as PI(C) and represents the minimum participation ratio among
all the features in C :

PI(C) = mink
i=1PR(fi, C) (2.3)
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2.2 – State of Art Methods

Considering the pattern [B,C,D] in 2.1, the feature C has the minimum par-
ticipation ratio, so PI([B, C, D]) = PR(C, [B, C, D]) = 2/5.

A co-location C is considered prevalent if its participation index PI(C) is
greater than a defined threshold min_Participation_Index. The objective of
the Spatial Co-location Pattern Mining is to extract all the prevalent patterns
from a dataset containing spatial instances.

2.2 State of Art Methods
Mining spatial co-location patterns is an arduous task, it requires to com-
pute the participation index. This index depends on the table instance, so
it demands to identify all the row instances of the co-location patterns, re-
sulting in a very computational expensive process. Lot of efforts have been
made to find efficient algorithms able to perform co-location and reduce time
and resources needed to compute participation index. Another challenge of
algorithms for co-location pattern mining is that they should be designed to
discover all significant patterns without missing anyone. We now overview
some of the recent studies in this field.

One of the first work in this domain has been released by Huang et al. in
[3]. This is a join-based approach for co-location mining. In order to create
a table instance of a size-k candidate, this technique connects two common
size-(k1) co-locations. The algorithm developed in [3] is legacy, however
in this paper are introduced some concepts which are still fundamental for
modern co-location mining applications.

The join-based approach has been overcome by a solution presented in
the paper A Join-less Approach for Co-location Pattern Mining: A Sum-
mary of Results [10]. It introduces a join-less methodology for co-location
pattern mining and a way to materialize the neighbor relationships of a ge-
ographical dataset without duplicating the neighbor relationships or losing
co-location instances. The join-less co-location mining approach contains a
coarse pruning step that can select possible co-locations without actually lo-
cating co-location instances, which lowers the computational cost of finding
instances of co-location patterns using an instance lookup scheme. This al-
gorithm has been evaluated using synthetic datasets and real world datasets;
the results show the join-less co-location mining algorithm outperforms the
join-based algorithms [3] and that it is scalable in dense spatial datasets.
However, even better results are obtained by Wang et al. in the paper A
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2 – Spatial Co-location Pattern Mining

new join-less approach for co-location pattern mining [8]. In this work a new
structure called CPI-tree (Co-location Pattern Instance Tree) is introduced.
Spatial neighbor relationships between instances are put into the CPI-tree,
then the table instances are generated from there.

The aforementioned algorithms use participation index as metric to dis-
cover prevalent patterns. However, Yao et al. [6] observed that the participa-
tion index calculation treats the spatial space as homogeneous; neighboring
instances are connected but without taking into account their amount of
proximity or orientations, which can reduce the potency of the mined pat-
terns. Tobler’s First Law indicates that the contributions of instances to
their pattern’s significance diminish as the distance decreases. In order to
enhance the rough handling of pattern acquisition in conventional methods
and make the results more applicable and understandable, this study sug-
gests a variation of the commonly used measurement as a solution to this
issue. The developed algorithm provides two main innovations: (1) it fully
takes into account Tobler’s first law of geography and; and (2) it employs a
novel calculating method to find common patterns. This approach consid-
ers the influence that a neighboring instance’s distance and direction have
on the relevance of its pattern. According to the experimental findings, the
algorithm’s common co-locations are more accurate and have higher fineness
than co-locations mined using more conventional co-location techniques.

A different approach is presented in A clique-based approach for co-location
pattern mining [7]. The authors of this paper observed that in current works
for prevalent co-location pattern mining, the prevalence threshold is com-
monly a subjective value which determines whether a co-location pattern is
prevalent (interesting) or not. In this case the user should start the algorithm
many times to find the suitable prevalence threshold. This approach is not
very efficient due to the expensive costs of identifying row-instances needed to
find co-location patterns. By avoiding detecting row-instances of co-location
patterns, this new method makes it much simpler to determine an appropri-
ate prevalence level. To start, two effective schemes are created to produce
comprehensive and accurate cliques. Then, these cliques are converted into a
hash structure that is not dependent on the threshold for prevalence. Finally,
the hash structure effectively determines the frequency of each co-location
pattern.

Maximal dynamic spatial co-location pattern [4] proposes the concept of
the dynamic spatial co-location pattern that can reflect the dynamic relation-
ships among spatial features. It shows a technique to mine a small number
of prevalent maximal dynamic spatial co-location patterns that can derive
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2.3 – Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

all prevalent dynamic spatial co-location patterns, which can improve the
efficiency of obtaining all prevalent dynamic spatial co-location patterns. It
also propose an algorithm for mining prevalent maximal dynamic spatial co-
location patterns and two pruning strategies.

The aforementioned works are interesting and show interesting results to
partially solve the problem of co-location pattern mining. However these al-
gorithms employ a serialized approach, which is particularly time-consuming
and has scalability issues. The purpose of this thesis is to deal with Big Data,
thus we need a technique capable of handling huge amount of information,
exploiting some kind of parallel calculation. Parallel Co-location Pattern
Mining based on Neighbor-Dependency Partition and Column Calculation [1]
achieves this goal, so we provide an in-depth presentation of this work in the
next sections.

2.3 Parallel Co-location Pattern Mining based
on Neighbor-Dependency Partition and
Column Calculation

Yang et al. in [1] propose a new solution for spatial co-location mining that
is designed to be efficient and available also for massive spatial datasets.
This new approach is called Parallel Co-location Pattern Mining based on
Neighbor-Dependency Partition and Column Calculation. This is a new
SCPM algorithm, it computes participation index exploiting some novel con-
cepts: neighbor-dependency partition and column calculation. Fur-
thermore it introduces some pruning strategies to optimize the computation
of participation index. This solution is very interesting for our purpose of
analysing huge spatio-temporal datasets, all the new algorithms and solutions
that we’ll introduce in next chapters will be built upon Parallel Co-location
Pattern Mining based on Neighbor-Dependency Partition and Column Cal-
culation. So, in the next sections of this chapter, we explain how this SCPM
algorithm is working.

2.3.1 Neighbor-Dependency Partition
One of the main idea of Parallel Co-location Pattern Mining based on Neighbor-
Dependency Partition and Column Calculation is to divide the entire set of
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2 – Spatial Co-location Pattern Mining

neighbor relationships in groups. Each group is a partition and the co-
location mining task can be performed on each partition independently and
so in parallel. [1] defines a process to divide the neighbor database into suit-
able partitions. Before diving into this process we need to introduce some
concepts.

Given an instance oi whose feature type is fi, if there is any instance oj of
type fj (where fi /= fj) that satisfies the neighbor relationship R(oi, oj) and
fj is less in alphabetical order than fi, fj is the prefix feature of instance
oi. The lexicographic order is used to compare features. It should be noted
that some instances have not any prefix feature, while some instances can
have more than one prefix feature. For example, considering figure 2.1, the
neighbor set of instance B.3 is neigh(B.3) = {A.1, A.3, C.3, C.4} , thus A is
a prefix feature of instance B.3 (because A is less in alphabetical order than
B). While the neighbor set of B.1 is neigh(B.1) = {C.1, C.2, D.1, D.2}, so
B.1 has not any prefix feature.

Given a neighbor database D the neighbor-dependency partition cen-
tered around feature f is denoted as D(f) and contains a subset of records of
D that respect the following constraints:

1. All instances of feature f and their neighbor set.

2. The instance oj and its neighbor set Neigh(oj), if the feature type of oj

is not f, but f is a prefix feature of oj.

In table 2.2 is showed the neighbor-dependency partition centered around
feature C. This partition contains all the instances of type C and their neigh-
bors as well as the instances D.1 and D.2 with their neighbors because C is
prefix feature of instances D.1 and D.2.

Instance Prefix feature Neighbor set
C.1 B {B.1,B.2,D.1,D.2}
C.2 B {B.1,B.2,D.1}
C.3 B {B.3}
C.4 A,B {A.3,B.3}
C.5 {}
D.1 B,C {B.1,B.2,C.1,C.2}
D.2 A,B,C {A.2,B.1,B.2,C.1}

Table 2.2. Neighbor dependency partition centered on feature C for
example in figure 2.1
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2.3 – Parallel Co-location Pattern Mining based on Neighbor-Dependency Partition and Column Calculation

The Neighbor-Dependency partition has been introduced because it has an
important property.[1] observed and proofed that given the neighbor depen-
dency partition D(f), for any co-location C starting with f, C = {f, f1, f2, f3, ....fk}
(considering that the features of f are ordered in ascending lexicographic or-
der) all the row instances of C can be found inside D(f). This intuition is
very powerful. Co-locations starting with feature f can be discovered from
the neighbor-dependency partition D(f) correctly. Any SCPM algorithm can
be used on each partition to find prevalent co-locations with the same pre-
fix. If we divide the neighbor database in to many neighbor dependency
partitions we can perform the co-location mining task on each partition. It’s
important to highlight that the mining task on each partition is independent
and so can be executed in parallel.

2.3.2 Column Calculation
Commonly, state of art methods for SCPM compute the participation index
using table instances of patterns. The calculation of table instances is a
very expensive operation, thus [1] developed a new strategy able to compute
participation index of co-location patterns without requiring table instances.
Let’s make an example to show that the entire table instance is not always
needed to compute participation index. Supposing we are mining the co-
location pattern:

{B, C, D}

We assume that the table instance of the pattern is composed by these 6
rows:

{B.1,C.1,D.1}
{B.1, C.2, D.1}
{B.1, C.1, D.2}
{B.2, C.1, D.1}
{B.2, C.1, D.2}
{B.2,C.2,D.2}

According to the definition of participation ratio and participation index, we
need to count the distinct number of instances for each feature type that
appear in the table instance (e.g number of distinct instances of B, C and
D). In this case only 2 rows of table instance are needed: {B.1, C.1, D.1} ,
{B.2, C.2, D.2}. The column calculation for SCPM aims at computing this
count without requiring the entire table instances of the mined co-locations.
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2 – Spatial Co-location Pattern Mining

To describe the column calculation strategy we need to introduce some new
concepts.

Given a co-location C and feature f ∈ C, if the instance o of f is in-
cluded in any row instance of C, o is called the participating instance
of f in C. The collection of all participating instances of f in C is called
participating instances set and it is denoted as PIns(f, C). For example in
figure 2.1 the instance B.1 is a participating instance of co-location C =
{B, C, D}. The participating instance set of B in co-location C = {B, C, D}
is Pins(B, {B, C, D}) = {B.1, B.2}. According to this definition we can re-
formulate the equation for participation ratio as:

PR(fi, C) = |PIns(f, C)|
|N(f)| (2.4)

Where N(f) is the instance set of feature f (i.e. the distinct number of in-
stances of type f ). Then the participation index is still obtained with ex-
pression (2.3). The collection of all participating instances could be obtained
from the table instances, but as we said before this is not the most convenient
way. The main goal of column calculation is to reduce as much as possible
the search space where participating instances are sought.

To introduce the concept of Candidate participating instance set we
consider a co-location pattern C of size k +1 (with k ≥ 2). If f is a feature of
pattern C, we define Cf

k as the set of all size-k sub-patterns of C containing
f. The candidate participating instance set CPIns(f, C) for feature f of a
size-(k+1) pattern C is defined as:

CPIns(f, C) = ∩C ′∈Cf
k
PIns(f, C ′) (2.5)

It can be easy verified that participating instance set for feature f of co-
location C is a subset of candidate participating instance set:

PIns(f, C) ⊆ CPIns(f, C) (2.6)

Thus to find PIns(f, C) we only need to verify the instances contained in
CPIns(f, C). An instance o ∈ CPIns(f, C) is a true participating in-
stance of f in C if it exists a row instance of C that contains o. Consider-
ing co-location pattern C = {B, C, D} the candidate participating instance
for feature B is obtained as: CPIns(B, {B, C, D}) = PIns(B, {B, C}) ∩
PIns(B, {B, D}).

A neighbor set Neigh(o) of instance o can be divided in different groups
by feature type. The grouped neighbor set of o on feature f is:
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groupN(o, f) = {o′|o′ ∈ Neigh(o), o′.t = f}

where o’.t is the feature type of instance o’. For example considering the exam-
ple in figure 2.1, the neighbor set for B.1 is Neigh(B.1) = {C.1, C.2, D.1, D.2}.
The grouped neighbor sets for B.1 are:
groupN(B.1, C) = {C.1, C.2}
groupN(B.1, D) = {D.1, D.2}

Finally, we can define the concept of Row Instance Search Space
(RISS). Given a co-location C and an instance o, where o.t ∈ C; let f ∈ C
and f /= o.t, the instance set of f whose instance may form a row instance
of C with o is called the row instance search space of instance o on feature
f, denoted as RISS(o, f):

RISS(o, f) =
I

group N(o, f) ∩ PIns(f, C), P Ins(f, C) known
group N(o, f) ∩ CPIns(f, C), otherwise

It’s easy to verify that any instance of type f that may be a row instance
of C with instance o, is contained in RISS(o,f). So, the search space is re-
duced from groupN(o, f) to RISS(o, f). Once the search space is defined, to
discover a row instances containing o we can perform the Cartesian product
between all the RISS of o, then we check if these combination of instances
are actually a row instance and we update the participating instance count
for the spotted co-locations.
[1] proposes also a concrete implementation of this approach and it shows
that SCPM based on Parallel Neighbor-Dependency Partition and Column
Calculation outperforms other techniques. This new algorithm is scalable
and is able to work with massive spatial datasets (300K instances). However
this application is developed to work with data that contains only spatial
dimension.
In the next chapter of this thesis we’ll show that Parallel Co-location Pattern
Mining based on Neighbor-Dependency Partition and Column Calculation
can be extended to deal with spatio-temporal data.

2.4 Apache Spark
All the algorithms and experiments of this thesis are carried out using Apache
Spark engine for large-scale data processing. Thus, before going into details
of spatio-temporal mining, we overview the main concepts of Apache Spark
technology. Apache Spark is designed to provide fast processing and scala-
bility to deal with Big Data. To achieve this goal Spark extensively uses the
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main memory. We can compare Spark with other frameworks for processing
large scale datasets, such as Apache Hadoop MapReduce. The main differ-
ence is that MapReduce involves many disk I/O especially in iterative jobs,
while Spark stores and processes data in the main memory. Thus, Spark
reaches processing speed way faster then Apache MapReduce.
The fundamental building blocks of Spark are the so called Resilient Dis-
tributed Datasets (RDDs). RDDs are stored in main memory (when possi-
ble) or local disk, they provide a distributed, fault-tolerant collection of data
that can be processed in parallel across a cluster of computers. They are
automatically rebuilt on machine failure.
Spark programs are written in terms of operations on RDDs. In particular
Spark computing framework provides a programming abstraction and trans-
parent mechanisms to execute code in parallel on RDDs. The complexities
coming from fault-tolerance, scheduling and synchronization is hidden and
managed automatically by the framework.
There are two types of operations that can be performed on RDDs: trans-
formations and actions. Transformations take one or more existing RDDs
and produce a new RDD. In order to optimize the execution plan Spark
employees lazy evaluation, transformations on RDDs are not executed im-
mediately when called. Transformations are lazy, they are not carried out
right away. Instead, they are saved as a set of instructions to be carried
out in response to a trigger for an action. Operations such as map, flatMap,
groupByKey are examples of transformations employed in our applications.
Actions are procedures that trigger transformations, return results to the
driver program, or send data to an external storage device. Actions are eager,
which means they start the real calculation when called and are executed in-
stantly. Actions are used to extract data from RDDs or to trigger side effects
like saving data to disk or printing results. Some examples of actions are
collect and saveAsTextFile.
Another fundamental concept in Spark’s execution model is the Directed
Acyclic Graph (DAG). It represents the order in which RDDs are trans-
formed in a Spark application. Spark creates a DAG as a logical execution
plan when transformations are applied to RDDs. The steps and actions nec-
essary to compute the outcome are listed in the DAG. The DAG enables
Spark to decide how data should be moved between stages and optimize the
execution strategy.
Beyond support for RDDs operations, the Spark environment provides many
other features. The framework actually contains many components (showed
in figure 2.2).
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Spark Core contains the basic functionalities of Spark exploited by all other

Figure 2.2. Spark main components

components (e.g. task scheduling, fault recovery, memory management) and
provides APIs to create RDDs and to apply transformations and actions on
them. Spark SQL is a component of Apache Spark that provides a unified
interface for working with structured and semi-structured data. It combines
the capabilities of a relational database management system (RDBMS) with
the distributed computing power of Spark. Spark SQL provides support to
manage DataFrames, distributed collections of data organized into named
columns, similar to tables in a relational database. DataFrames provide a
higher-level abstraction compared to RDDs. Spark SQL provides simple and
expressive APIs for data manipulation, filtering, grouping, aggregation, and
other common data operations. However for the algorithms we develop in
this thesis, it’s enough to work with RDDs.
Other components of the Spark framework (e.g Spark Streaming, MLlib,
GraphX) are extremely powerful, but are not helpful for the applications
discussed in this thesis.
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Chapter 3

Spatio-temporal
Co-location Mining

Spatio-temporal data mining aims at unraveling intricate patterns and in-
sights present in datasets that evolve over both space and time. This ap-
proach empowers researchers, analysts, and decision-makers to discover hid-
den relationships, predict future trends, and make informed decisions across
a spectrum of domains. For example in the field of urban planning and trans-
portation management, spatio-temporal data mining allows for the analysis
of traffic patterns over time, aiding in the identification of congested zones
and peak hours. This information can be leveraged to optimize traffic flow,
reduce commuting times, and enhance overall urban mobility. In epidemi-
ology, spatio-temporal analysis plays a vital role in tracking the spread of
diseases. By examining the geographical progression of outbreaks alongside
temporal data, health authorities can allocate resources effectively, imple-
ment timely interventions, and mitigate the impact of contagions.
One of the way to find relationship between spatio-temporal data is co-
location mining. The concept of spatial co-location mining discussed in the
previous chapter can be extended to perform mining of spatio-temporal co-
location patterns. In chapter 2 we dealt with data that have only a geographic
locations without any temporal information. To perform spatio-temporal co-
location mining we consider two kinds of spatio-temporal kind of data with
two different purposes:

1. People trajectories: the main goal is to analyze human behavior and
find correlation among people and some other points of interest (shop,
restaurant). The trajectory of each person is sampled, each sample is
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represented by a dataset row that contains the people identifier, the
geographic coordinates and the timestamp.

2. Traffic and weather events: each row of the dataset represents an
occurrence of a particular episode concerning traffic or weather domains.
Each event is represented by a category name(e.g. accident, congestion,
rain) a geographic location, a start and a final timestamp. The ob-
jective of the analysis is to find common interactions between different
categories of traffic events and their correlation with weather events.

[9] developed an algorithm to perform mining of spatio-temporal data, in
particular this application has been developed to mine people trajectories
data, our contribution aims at improving the algorithm to make it more
efficient and scalable to work with a huge volume of data. Then we’ll also
check the effectiveness of the new algorithm when working with traffic and
weather events.

3.1 People trajectories
Starting from a set of trajectories that represent the movement of a group
of people we want to develop a technique that is able to find people that
are correlated. The idea is that if two or more people have some kind of
relationship they will be found together in the same geographical area during
same time. The trajectories of the people are represented by a set of sampled
points, each point is a row of the dataset with the following structure:

< persond_id, (latitude, longitude), timestamp >

For example in figure 3.1 are showed the trajectories of two people (P1 and
P2) that have some spatially and temporally close points. These two people
may be correlated, if they have enough close points the co-location pattern
[P1, P2] may be prevalent and would be spotted by the application. The
representation of the data is different with respect to the structure used for
spatial co-location mining. We can consider the person_id as if it corre-
sponded to the feature of the spatial dataset. The objective of the spatial
co-location mining was to find correlations among categories of entities,
while in spatio-temporal co-location mining of trajectories we want to find
correlation between people represented by person_id. The main differences
between spatio-temporal and spatial co-location mining are summarized in
table 3.1.
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3.1 – People trajectories

Spatial mining Spatio-temporal
mining

Feature
The descriptor of
the entity (plant

type)

The entity itself
(person identifier)

Instance An entity located in
space

An entity located in
space in a certain

time
Goal of the
co-location

mining

Find correlation
among categories

Find correlation
among entities

Table 3.1. Differences between spatial and spatio-temporal mining
of people trajectories

Figure 3.1. Trajectories of 2 people that may form a spatio-temporal pattern

In section 2.1 we introduced the concept of spatial neighbor relationship.
Here we need to define the concept of spatio-temporal neighbors. Two
instances oi and oj are considered spatio-temporal neighbors if their dis-
tance is lower then a given threshold and they respect a time constraint for
which the difference between their timestamp is under a certain threshold
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(max_difference_time). So, the spatio-temporal neighbor relationship is re-
ferred as:

R(oi, oj) =⇒ distance(oi, oj) ≤ min_distance
AND |oi.ts − oj.ts| ≤ max_difference_time

(3.1)

where o.ts is the timestamp of the instance.
To perform spatio-temporal co-location mining we can exploit the tech-

nique "Parallel Co-location Pattern Mining based on Neighbor-Dependency
Partition and Column Calculation" (described in chapter 2) with some up-
dates. In particular the neighbors computation phase should be changed in
order to consider also temporal information. Once the entire set of spatio-
temporal neighbors has been computed we can employ parallel computation
based on neighbor dependency partition and column calculation to extract
co-location patterns. This idea is used in [9] to perform co-location mining
of people trajectories. The architecture of this new technique is showed in
figure 3.2.

As we can observe in figure 3.2, the application is composed of two main
phases: the first one is responsible to find all the spatio-temporal neighbors
of each point; the second phase discovers all the prevalent co-location pat-
terns. This second phase exploits the parallel approach that has already been
developed by [1] and presented in chapter 2 of this thesis. On the other hand,
the algorithm to compute spatio-temporal neighbors is an innovation. This
algorithm should find groups of instances that satisfies spatial and temporal
neighbor constraints in an efficient and parallelizable way. To perform this
task we may check all the pairs of points in the dataset, but this is not very
efficient. Given a dataset of N timestamped points, to check each pair of
points we need to do Cartesian product and this result in a complexity of
O(N2). This operation is very expensive and may be not feasible when work-
ing with huge volume of data. To address this problem search data structures
are needed.
[9] developed a parallelizable solution to compute spatio-temporal neighbors
that exploits ballTree structures as showed in figure 3.3. This solution is de-
veloped exploiting Apache Spark framework, in particular the computation
is expressed in terms of operations on RDDs. The idea of this architecture
is to divide the original dataset into groups and perform neighbor search for
each group. In order to group the instances, the temporal dimension is con-
sidered, the time is split into days, all the data points of a day form a group,
which is taken as input form the BallTree. The boundary points between
two consecutive days are grouped all together and are used to build another
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Figure 3.2. Design of spatio-temporal co-location mining algorithm

BallTree.
The BallTree is a space partitioning data structure used to perform ef-

ficient nearest neighbor search in multi dimensional spaces. In particular
the data points are partitioned into nested balls and search operations are
performed over these balls. In our algorithm the BallTree is used to find
spatial neighbors. To compute the spatial distance the Haversine distance
is used. The BallTree implementation of skcit-learn Python module is em-
ployed. This structure offers simple methods to specify a distance threshold
to find neighbors. After applying the BallTree in parallel manner, for each
point of the dataset we get the list of spatial neighbors. The RDD obtained
as output of the BallTree has the form:

< oi, [list of spatial neighbors of oi] >

Then a map function is applied to check the time constraint, discarding
all the couples that do not have the spatio-temporal neighbor relationship
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Figure 3.3. Parallel ballTree design to extract spatio-temporal neighbors

(3.1) . The spatial neighbors that do not respect the time constraint are
simply removed from the list. After this operation we get an RDD with this
structure:

< oi, [list of spatio-temporal neighbors of oi] >

From this list the neighbor database is generated. Then the neighbor database
is fed to the next phase of the algorithm which is able to find co-location pat-
terns exploiting neighbor dependency partitions and column calculation.

3.2 Improving spatio-temporal neighbor com-
putations

The original algorithm developed by [9] to find spatio-temporal neighbors is
summarized in figure 3.4. This solution works good but can be optimized.
In this section we present some alternative approaches to compute spatio-
temporal neighbors in order to improve the efficiency of the process.
We first explore some different search data structure in place of BallTree. We
experiment with R-tree, which is commonly used to index spatial dataset and
geographic coordinates. The R-tree works with similar principles of BallTree,
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Figure 3.4. Structure of algorithm to compute spatio-temporal neighbors

the main difference is that the R-tree partitions the data points in rectangu-
lar bounding box. This new solution is schematized in figure 3.5.

Figure 3.5. Structure of algorithm to compute spatio-temporal
neighbors with R-tree

Another optimization come from a simple observation. In the original
algorithm (figure 3.4) the time constraint check is made through a map func-
tion. We can avoid this step and use just one single flatMap function that
cares of filtering the neighbors that do not respect the time constraint. This
solution is showed in figure 3.6.

In figure 3.7 we use two different trees data structure: one is used to op-
timize and search for spatial neighbors of each instance, another is used to
compute the temporal neighbors. Then the two neighbor lists are "joined"
to find the final spatio-temporal neighbor list. In this case, considering an
instance oi, another instance oj is a spatio-temporal neighbor of oi if it ap-
pears both in spatial and temporal list of neighbors of oi.

Finally this idea of joining the result obtained with two different trees is
taken in account also by the algorithm described by figure 3.8, but with a
different approach. In this case the two trees are created and joined inside the

31



3 – Spatio-temporal Co-location Mining

Figure 3.6. Structure of simplified algorithm to compute spatio-
temporal neighbors

Figure 3.7. Structure of algorithm to compute spatio-temporal neighbors
joining results obtained with two trees

flatMap function, which emits directly the list of spatio-temporal neighbors.
While in the previous version (3.7) two different RDDs were generated and
then joined to find the list of spatio-temporal neighbors of each instance.

3.3 Evaluation and comparison of algorithms
for spatio-temporal neighbors computa-
tion

In this section we make a comparison among the original algorithm for spatio-
temporal mining developed by [9] and the new proposed solutions.

3.3.1 Experiment setup and dataset
To carry out our experiments we consider a GPS trajectory dataset called
Geolife developed by Microsoft Research Asia ([12]). A GPS trajectory is
composed by a set of points associated with latitude, longitude, a timestamp
and an identifier of the person. 182 people have been involved to register
17,621 trajectories. Most of them have been captured in Beijing, China from
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Figure 3.8. Structure algorithm to compute spatio-temporal neighbors join-
ing results obtained with two trees created inside flatMap

April 2007 to August 2012. The sampling does not follow a regular rate, the
points are logged every 1 ∼ 5 seconds or every 5 ∼ 10 meters. In figure 3.9
the people with the highest number of sampled points are reported.

Figure 3.9. Number of points labeled with spatial and temporal location for
people with highest sampled points

Many trajectories of Geolife dataset have been labeled with transportation
mode (e.g. walk, driving, bus) however in our evaluation we focus only on
correlation between people without considering transportation mode. In the
study of [9] they considered a reduced version of Geolife, they used only one-
sixth of the original dataset with a total number of 3.3M points. In this work
we show that actually the algorithm is able to scale with the entire Geolife
dataset which contains almost 24 M points. All the applications described
in this thesis have been implemented using PySpark, a Python library for
Apache Spark, and run on BigData@Polito Cluster [13]. This cluster is
operated by SmartData@Polito group, it was originally composed of 36 nodes
with a maximum capacity of 220 TB of data (around 650 TB of raw disk
space). The complete infrastructure now has more than 1,700 CPU cores,
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19 TB of RAM memory and 8 PB of raw storage available, however these
resources are shared and split between many users. The BigData@Polito
Cluster provides support to store and process huge quantities of data and
allows the execution of many common open-source frameworks. In particular,
we exploit Hadoop Distributed File System (HDFS) that allows distributed
storage and replication of data. We make use of Hadoop Spark to efficiently
process in parallel each of the small pieces of a huge volume of data. We
employ JupyterLab to debug and submit our applications. Spark jobs are
submitted to the BigData@Polito Cluster, then results are saved in the logs
which are accessed through Hadoop User Experience (HUE).

3.3.2 Results
The described algorithm is able to find co-location patterns of frequently
close people. The number of detected patterns depends on the values of
some parameters: min_participation_index (prevalence threshold), distance
(spatial threshold) and max_difference_time (temporal threshold). A deep
discussion and interpretation of these results is carried out in [9]. In figure
3.10 we just report a summary of these results, we show the number of
discovered co-locations patterns with different prevalence thresholds.

Figure 3.10. Number of co-locations patterns discovered with fixed values
of distance=0.5 km and max_difference_time=5 minutes

In this thesis we want to establish how the different approaches to com-
pute spatio-temporal neighbors affect the performance of co-location mining
algorithm. In figure 3.11 we report the time required by the algorithm for

34



3.4 – Analysis of traffic and weather events

co-location mining of trajectories when using different solutions to compute
spatio-temporal neighbors. In particular we considered all the solutions de-
scribed in the previous section 3.2, each of these solutions is labeled with the
number of the figure that represents it.

Figure 3.11. Execution time required by spatio-temporal co-location mining
using different approaches to compute spatio-temporal neighbors

The solution 3.6 considerably improves the baseline, it requires 41 % less
time. This new solution to compute spatio-temporal neighbors does not
disrupt the original baseline idea, however it needs less operations in terms of
numbers of RDDs generated. The algorithm in 3.6 allows co-location mining
to scale to bigger datasets. On the other hand, the approaches in 3.7 and 3.8
are not helpful, they introduce some overhead due to join computations.

3.4 Analysis of traffic and weather events
The algorithm developed for spatio-temporal mining of people trajectories
can be simply adapted for spatio-temporal mining of traffic events. The
types of data that represent traffic and weather events have the following
structure:

< event_type, (latituted, longitude), startT imestamp_endT imestamp >

event_type is a category type of events concerning traffic, urban or weather
domain (e.g. Accident, Construction, Snow). The main difference of this
traffic events with data that represent trajectory is that traffic events have
an instant of start and end, while trajectory samples are associated with
a single timestamp. However this dissimilarity is simply filled considering
startTimestamp as the reference time to check time constraints when mining
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traffic and weather events data. We apply the new algorithm, originally
developed for spatio-temporal mining of people trajectories, also on a dataset
containing millions of traffic and weather events located in space and time.
We perform this analysis to check the effectiveness of the algorithm in a
different field and to evaluate if our application is actually able to disclose
some important correlation among these kinds of events.

3.4.1 LSTW dataset
To perform our analysis we consider Large-Scale Traffic and Weather (LSTW)
Events Dataset published in [11]. This dataset contains about 30.8 million
traffic and 5.6 million weather events that cover the contiguous USA from
August 2016 to the end of Dec 2020. This data are retrieved from different
sources (the US and state departments of transportation, law enforcement
agencies, traffic cameras, and traffic sensors within the road-networks). Traf-
fic event is a spatio-temporal entity, it is associated with location and time
and a category type. The event types available in LSTW are:

• Accident (A): a common type, which may involve one or more vehicles,
and could result in fatality.

• Broken-Vehicle (BV): refers to the situation when there is one (or
more) disabled vehicle(s) in a road.

• Congestion (CG): refers to the situation when the speed of traffic is
slower than the expected speed.

• Construction (CS): an on-going construction or maintenance project
on a road.

• Event (E): situations such as sports event, concerts, or demonstrations,
that could potentially impact traffic flow.

• Lane-blocked (LB): refers to the cases when we have blocked lane(s)
due to traffic or weather condition.

• Flow-incident (FI): refers to all other types of traffic entities. Exam-
ples are broken traffic light and animal in the road.

The distribution and relative frequency of the event categories is showed
in 3.2.
The weather events in LSTW dataset are collected using the measures cap-
tured by weather stations located in airports. The taxonomy is defined as:

36



3.4 – Analysis of traffic and weather events

Entity Type Raw Count Relative Frequency
Accident 2,638,226 8.6%

Broken-Vehicle 645,713 2.1%
Congestion 24,541,194 79.7%

Construction 728,138 2.3%
Event 47,497 0.2%

Lane-Blocked 501,583 1.6%
Flow-Incident 1,692,486 5.5%

Total 30,794,837 100%

Table 3.2. Distribution of traffic events in LSTW dataset

• Severe-Cold: extremely cold condition, with temperature ≤ −23.7°.

• Fog: low visibility condition as a result of fog or haze.

• Hail: solid precipitation including ice pellets and hail.

• Rain: rain of any type, ranging from light to heavy.

• Snow: snow of any type, ranging from light to heavy.

• Storm: the extremely windy condition, where the wind speed is at least
60 km/h.

• Precipitation: any kind of solid or liquid deposit, but different from
snow or rain. This was a generic label we frequently observed in raw
weather data.

Weather events unlike traffic events can’t be located in a specific geo-
graphic point. Each weather event is associated to the airport code where it
has been registered. Then to compare weather and traffic data, the airport
code of the closest airport station is assigned also to traffic events. A traffic
and weather events are "spatially close" if they have the same airport code.
This is a simple way to find correlations between weather and traffic data,
however it’s not so accurate. The main limitation is that airport stations are
distributed in a sparse way over the territory. Each airport covers a wide
geographic area, it’s not sure that all the points associated with an airport
actually undergo the same weather events.
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3.4.2 Summary of results
The algorithm for traffic and weather co-location mining can be run with
different parameter values:

• distance: the spatial distance expressed in kilometers within which two
events are considered close.

• max_difference_time: the maximum difference expressed in minutes be-
tween the starting moment of 2 events within which these events are
considered close.

• min_Participation_Index : the threshold to filter not relevant co-locations.
Co-location patterns with Participation Index lower than min_Participation_Index
are discarded.

We first check how many co-locations are obtained considering both traf-
fic and weather events (LSTW dataset). In figure 3.12 number of discov-
ered co-location patterns is reported with different values of distance and
min_Participation_Index keeping fixed the value of max_difference_time
to 30 minutes.

The results of figure 3.12 show that the values of distance affect the num-
ber of co-locations found only when the value of min_Participation_Index is
small (≈ 0.01) as showed in details in figure 3.13. Furthermore we can observe
that there is not any co-location pattern that has Participation_Index >
0.07 . While when we considered GeoLife trajectories dataset we found pat-
terns with Participation_Index up to 0.9 (figure 3.10). This gap is due to
the fact that LSTW dataset is composed of few generic categories of events
(about 20) which contains a huge number of instances (in the order of 1 M).
It’s unlikely to found patterns with high values of Participation_Index con-
sidering this kind of dataset. An interesting dataset for co-location mining
should have more specific categories of events with less events. For example
the category "Event (E)" represents a generic public event that may affect
traffic flow. It would be preferable if this category was split into many cate-
gories according the specific event (e.g. concert, public demonstration, sport
event) as well as the number of people involved.

In table 3.3 the co-location patterns with highest value of participation in-
dex are shown (distance=1.5 km; max_difference_time=30 min). All these
patterns are composed by a traffic event category and a weather event cat-
egory. Co-locations pattern among traffic events category have lower values
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Figure 3.12. Traffic and weather: number of co-locations found with differ-
ent values of distance and minimum participation index

Figure 3.13. Traffic and weather: number of co-locations found with
different values of distance and fixed value of minimum participation
index = 0.01

of participation index. Not all the co-location patterns in this list are signif-
icant. For example [Construction, Severe cold] it’s difficult to explain, while
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[Accident, Light rain] may be meaningful. Rain usually makes roads slip-
pery increasing the probability of an accident in the area. We can also notice
that all the patterns in the table 3.3 are of size 2. As expected co-location
patterns with bigger size are less likely and have lower values.

Co-location pattern Participation index
[Construction, Severe cold] 0.075
[Flow incident, Severe cold] 0.074

[Event, Severe cold] 0.067
[Construction, Light snow] 0.059
[Congestion, Severe cold] 0.058

[Flow incident, Light snow] 0.057
[Flow incident, Storm] 0.056
[Construction, Storm] 0.055
[Accident, Severe cold] 0.047
[Accident, Light rain] 0.044

Table 3.3. Top 10 traffic-weather co-location patterns mined with dis-
tance=1.5 km; max_difference_time=30 min

In table 3.4 size-3 co-locations patterns with highest participation index
are reported (algorithm run with distance=1.5 km; max_difference_time=30
min). As expected the participation indexes of size-3 patterns are lower than
participation index of size-2 patterns. However some of these patterns make
sense.

As we discussed in section 3.4.1 the weather events of LSTW dataset
cover a wide geographic area. Each weather event has a huge neighbor set,
this could lead to misleading co-location patterns. Thus, in order to ob-
tain more accurate results, we carry out spatio-temporal co-location mining
considering only traffic events from LSTW dataset. We expect that traffic
co-locations have lower values of participation index with respect to traffic-
weather co-location patterns. In figure 3.14 are showed the numbers of co-
location patters discovered for different values of min_participation_index
when considering only traffic events.

For min_participation_index set to 0,01 we got only two traffic co-location
patterns. While for the same value of min_participation_index we observed
80 traffic-weather co-locations patterns. This is due to the fact that the
weather events have a huge number of neighbors and this lead to co-location
patterns with higher values of participation index.
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Co-location pattern Participation index
[Congestion, Flow Incident, Light Rain] 0.0102

[Congestion, Flow Incident, Moderate Fog] 0.0101
[Congestion, Flow Incident, Precipitation] 0.0061

[Congestion, Construction, Light Rain] 0.0034
[Congestion, Construction, Moderate Fog] 0.0025
[Congestion, Construction, Flow Incident] 0.0024

[Construction, Event, Severe Fog] 0.0018
[Congestion, Construction, Severe Fog ] 0.0012

[Congestion, Construction, Precipitation] 0.0011
[Construction, Event, Moderate Snow] 0.0010

Table 3.4. Top 10 size-3 traffic-weather co-location patterns mined with
distance=1.5 km; max_difference_time=30 min

Figure 3.14. Traffic only: number of co-locations found with differ-
ent values of participation index threshold. distance fixed to 1.5 km;
max_difference_time fixed to 30 minutes

Again, co-locations patterns with size 3 are discovered only for lower values
of min_Participation_Index.
In table 3.5 are reported the most prevalent traffic-only co-location patterns
ordered by participation index.

To complete the analysis we compare the execution time when changing
input parameters. min_Participation_Index acts as a threshold to filter the
discovered co-locations, thus it doesn’t affect the execution time. While, we
expect that the execution time increase as distance and max_difference_time
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Co-location pattern Participation index
[Congestion, Flow-Incident] 0.00561

[Accident, Congestion] 0.00100
[Accident, Flow-Incident] 0.00079

[Broken-Vehicle, Flow-Incident] 0.00032
[Lane-Blocked, Flow-Incident] 0.00024

[Accident, Lane-Blocked] 0.00019
[Construction, Flow-Incident] 0.00018
[Broken-Vehicle,Congestion] 0.00017
[Accident,Broken-Vehicle] 0.00016

[Broken-Vehicle,Lane-Blocked] 0.00015

Table 3.5. Top 10 traffic-only co-location patterns mined with distance=1.5
km; max_difference_time=30 min

growth. Indeed, higher values of these parameters lead to bigger neighbor
database increasing the supports of co-location patterns. This is confirmed
in figure ??.

Figure 3.15. Execution time required for co-location mining with different
values of distance and max_difference_time

The execution is slower for the algorithm that considers both traffic and
weather events. This is because, as discussed before, weather events are
associated with a large spatial area and so they have a huge neighbor set.
Neighbor database generated mining both traffic and weather events is way
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bigger than neighbor database obtained mining only traffic events. However
the developed algorithm is able to scale up and is able to handle even this
huge amount of data.
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Chapter 4

Co-location Sequence
Mining

In this chapter we dive into the core contribution of this work. We introduce
the problem of “Co-location Sequence Mining”. First we provide a formal def-
inition of Co-location Sequences and what do they represent. Then we define
some new metrics to measure the relevance of the sequences, underlying the
pros and cons of all the new measurements. Later we propose an algorithm
for mining these kinds of sequences and computing the suitable metrics. The
application is developed to be highly scalable and efficient since it should be
able to work with a huge volume of data. Finally the main results of co-
location sequence mining applied on a dataset containing traffic and weather
events are reported.

4.1 Problem definition
To introduce the concept of co-location sequence, we consider two simple co-
locations [A, B] and [A, C] that follow the definition given in 2.1. These 2 co-
locations inform us that events of type A are usually spatially and temporally
close to events of type B and type C. We aim at finding a new concept to
express the correlation between these two co-locations. We introduce the
sequence of co-locations that is denoted as:

[A, B] ⇒ [A, C] (4.1)

Any instance of the sequence of co-location respect these constraints:
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• [A, B] and [A, C] are spatial or spatio-temporal co-location patterns (as
defined in 2.1)

• The event of type A is referred as aggregator, it is the same event in
the first and second co-location.

• The event of type C should begin after the event of type B

• The event of type C starts after the event of type B but before a certain
amount of time defined by a parameter max_difference_time: C.t −
B.t < max_difference_time

With this definition we are affirming that when an event of type A is close
temporally and spatially to an event of type B is likely to observe an event
of type C in the same geographical area that starts immediately after B. In
other words the fact that an event A is close to an event of type B implies
that an event of type C is going to happen in the same area. We consider
valid also sequences of type:

[A, B] ⇒ [A, B] (4.2)

if the two instances of type B represent different events. For example con-
sidering the situation in figure 4.1 at time 1 we can observe a "Construc-
tion" (maintenance, or re-paring project in a road) that is close temporally
and spatially to a "Congestion" event. Than immediately after at time 2
the same "Construction" will be close spatially and temporally to "Accident"
that has started immediately after the "Congestion". If there are many cases
of "Construction" near to "Construction" and then followed by "Accident"
we’d observe a co-location sequence of type [Construction, Congestion] ⇒
[Construction, Accident]. To determine if the co-location sequence is actu-
ally meaningful we use some metrics discussed in 4.2.
The event of type "Congestion" and "Accident" are close to the aggregator
event "Construction", however they could not be close to each other. Thus,
the standard co-location mining described in the previous chapters may not
be able to discover any kind of relationship between "Congestion" and "Ac-
cident". The co-location sequence mining is necessary to find this hidden
correlations.
It’s important to remark that a sequence can be composed of more than 2

co-locations. We define the sequence size as the number of co-locations in
the sequence. For example a size-3 co-location sequence is:

[A, B] ⇒ [A, C] ⇒ [A, D] (4.3)
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Figure 4.1. Traffic events that may generate a co-location sequence

In this case the event A works as aggregator, the event C should start im-
mediately B and, in turn, the event D should start immediately after C.
Up to here we considered only examples of sequences composed of size-2 co-
locations, however the definition is still valid if the sequence is composed of
co-locations with size>2. For example:

[A, B, C] ⇒ [A, D] (4.4)

is a possible co-location sequence. The event of type A is the aggregator
and is the same in both co-locations. The event of type D should start
immediately after both B and C.

Given a dataset of events located in time and space, we can find all possi-
ble co-location sequences starting from a set of spatio-temporal co-locations
retrieved using some algorithm (e.g the one described in chapter 3) . From
this set we generate all possible candidate co-location sequences. For each
candidate sequence we check if it is matched by some group of instances in
the original dataset and we compute some metrics. So, in our idea co-location
sequence mining should be implemented as post processing with respect to
spatio-temporal mining.
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4.2 Metrics
In order to understand which sequences are meaningful we introduce some
new metrics to take into account different aspects. Since there is not any
previous study in the field of co-location sequence mining, we propose new
various approaches to compute support and confidence of the sequences. Ac-
tually we propose our custom definition of support and confidence, which
may be different from the standard definition. In 4.4 we’ll discuss about
actual interpretability and significance of these new metrics.

4.2.1 Metrics 1
Considering a co-location sequence [A, B] ⇒ [A, C] we define support1 as
the number of distinct groups of events that respect the rule imposed by
sequence. The distinct refers to the first co-location of the sequence ([A, B]),
if there are 2 or more groups with the same couple of events for the first
co-location of the sequence, these will contribute to increase support just
once. For example suppose that there are 4 groups of instances that match
the sequence [A, B] ⇒ [A, C]:

• [A.1, B.1] ⇒ [A.1, C.2](support + 1)

• [A.1, B.2] ⇒ [A.1, C.2](support + 1)

• [A.1, B.2] ⇒ [A.1, C.7](support + 0)

• [A.1, B.1] ⇒ [A.1, C.3](support + 0)

support1([A, B] ⇒ [A, C]) = 2
support1 for [A, B] ⇒ [A, C] defines how many times the couple of neighbor
events [A, B] is followed by the couple of events [A, C] where the instance of
A should be the same e the event C should start after B with a difference of
time that does not exceed the constraint max_difference_time

Considering the sequence [A, B] ⇒ [A, C], we define confidence1 as the
ratio between support1[A, B] ⇒ [A, C] divided by the support of the first co-
location (total number of distinct couples of instances [A,B] that are spatially
and temporally close)

confidence1 ([A, B] ⇒ [A, C]) = support1 ([A, B] ⇒ [A, C])
support([A, B]) (4.5)
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where support([A, B]) is the number of neighbor couples [A, B]. As well as in
the co-location mining phase even in the co-location sequence mining phase
two or more instances of an event are considered neighbors if respect the 2
following criteria:

• The two instances are spatially close: the distance between A and B is
lower than a parameter referred to as distance_threshold

• The two instances are temporally close: the absolute value of the differ-
ence between the beginning of the two events is lower than a parameter
referred to as max_difference_time

High value of confidence1 for sequence [A, B] ⇒ [A, C] means that is
likely that a couple of event [A, B] is followed by [A, C] where A is the
same event in the two couples and the event C starts immediately after B.
Although it’s not true that all the sequences with high values of confidence1
are meaningful, in fact there may be cases where a sequence has support1
equals 1 or another similar small number and however has a confidence1 ≈
1. In this situation the sequence should not be considered significant, the
value of confidence1 is misleading. For this reason we explore other metrics
to measure the importance of the sequences.

4.2.2 Metrics 2
Considering the sequence of co-location [A, B] ⇒ [A, C] we introduce a new
definition of support and confidence. To define the new support we consider
only the instances that are not working as aggregator: B and C . The sup-
port2 is the number of couples [B, C] that are spatially and temporally close
(C starts after B, and their time difference in terms of C.start-B.start is lower
than max_difference_time).

support2([A, B] ⇒ [A, C]) = number of [B,C] spatially close
s.t start C - start B < max_difference_time

(4.6)

We define confidence2 as the ratio between support2 and the number of
instances of the first type:

confidence2 ([A, B] ⇒ [A, C]) = support2([A, B] ⇒ [A, C])
number of events(B) (4.7)
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The confidence2 ([A, B] ⇒ [A, C]) is simply the likelihood that an event of
type B is followed by an event of type C with respect to the total number of
events of type B. For example suppose that there are 4 groups of instances
that match the sequence [A, B] ⇒ [A, C]:

• [A.1, B.1] ⇒ [A.1, C.2](support + 1)

• [A.2, B.1] ⇒ [A.2, C.2](support + 0)

• [A.3, B.1] ⇒ [A.3, C.7](support + 1)

• [A.1, B.1] ⇒ [A.1, C.3](support + 1)

support2([A, B] ⇒ [A, C]) = 3
This metric has a big limitation: different sequences can have the same value
of confidence2. For example if we consider two sequences:

([A, B] ⇒ [A, C])
([D, B] ⇒ [D, C])

these 2 sequences have the same values of confidence2 because they only
differ for the aggregator event feature, that do not contribute to support2.
Thus confidence2 as it is, is not suitable to evaluate the importance of the
sequences. Although confidence2 is useful because can be compared with
other metrics. An interesting comparison is the ratio between confidence1
and confidence2:

confidence1
confidence2 (4.8)

To explain how this ratio can be interpreted let’s make an example. If we
consider the simple co-location sequence ([A, B] ⇒ [A, C]) a high ratio be-
tween confidence1 and confidence2 means that the event of type A increases
the probability that an event of type B followed by C happen.

4.2.3 Metrics 3
Confidence1 aims at measuring the likelihood of a co-location pattern to be
followed by another pattern. We introduce a new confidence with a different
purpose. We define confidence3 as the ratio between support1 and the
number of instances of the aggregator feature type.

confidence3 ([A, B] ⇒ [A, C]) = support1([A, B] ⇒ [A, C])
number of events(A) (4.9)
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We can interpret confidence3 ([A, B] ⇒ [A, C]) as the likelihood that the
event A implies that there is an event B in its neighborhood followed by an
event of type C. A limitation of this metric is that the denominator may be
a large number when there are lot of events from the same feature label. In
these cases the ratio of confidence3 results in very small number that may
be difficult to interpret.

In the next section we introduce an algorithm for co-location sequence
mining which is able to compute all these new metrics.

4.3 Algorithm
In this section we present a new algorithm to make co-location sequence
mining in a scalable, parallelizable and efficient manner. Our solution works
as post processing with respect to the co-location pattern mining phase.
The algorithm for co-location sequence mining needs as input the results of
the co-location pattern mining, in particular the entire list of retrieved co-
location patterns and the neighbor database are needed. The algorithm for
co-location sequence mining we developed is composed of different stages:

1. Generate candidate sequences: starting from the pre-computed list
of all the co-location patterns, this phase produces the list of all potential
co-location sequences.

2. Find instances that match candidate sequences: starting from the
list of all potential co-location sequences and the neighbor set, this phase
searches and finds all the groups of instances that respect the sequence
rule. It’s the core and most demanding phase.

3. Compute metrics: once we found all co-location sequences with the
list of instances that match them, the algorithm provides as output all
the required metric values.

The design structure of the algorithm is reported in figure 4.2. In the fol-
lowing sections we describe in details the implementation of the application.

4.3.1 Generate candidate sequences
This algorithm takes as input the list of spatio-temporal co-locations gener-
ated by the process described in chapter 3 and produces a list of sequences of
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Figure 4.2. Architecture of the application for co-location sequence mining

co-locations as defined in the previous section 4.1. The candidate sequences
are generated considering all the possible combination of all the co-locations
with each other. The algorithm takes as input a list of co-locations grouped
around each feature type (f ). Each row of the list has this format:

<f, [list of co-locations starting with f ]>

For example if we consider a set of feature type {A,B,C,D} the input list of
co-locations may be:
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(A, [[A, B], [A, C], [A, B, C]])
(B, [[B, C], [B, D], [B, C, D]])

(D, [])
(C, [[C, D]])

To generate all the candidate sequences we can work separately for each input
row (for each group of co-locations). All the co-location patterns inside a
group has at least one feature in common with all the other patterns inside
the group. For example considering the group centered around feature A:

(A, [[A, B], [A, C], [A, B, C]])

all the three co-location patterns have the feature A in common. The candi-
date sequences are generated by the Cartesian product among all the three
patterns, the result would be:

([A, B] ⇒ [A, C])
([A, B] ⇒ [A, B, C])

([A, C] ⇒ [A, B])
([A, C] ⇒ [A, B, C])
([A, B, C] ⇒ [A, B])
([A, B, C] ⇒ [A, C])

However it’s not enough to compute the Cartesian product in each group
of co-location pattern. Before starting with the Cartesian product we need
to make a consideration: if we take a co-location pattern [A, B] there is not
any temporal concept of "before" and "after". [A, B] rule simply says that the
feature A and B are usually temporally and spatially close. So, in co-location
mining there is not any difference between [A, B] and [B, A]. While in co-
location sequence mining this difference matters. So we define a flatMap
function full_colocations that works in this way. It takes as input the rows
of the co-locations. For example for the group centered around feature A:

(A, [[A, B], [A, C], [A, B, C]])

the output of full_colocations is the set of rows:

(A, [A, B])
(B, [B, A])
(A, [A, C])
(C, [C, A])

(A, [A, B, C])
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(B, [B, A, C])
(C, [C, A, B])

Then a group_by function is used to recreate a set of groups with the follow-
ing structure:

<f, [full list of co-locations that starts with f ]>

Considering again the set of input co-locations:

(A, [[A, B], [A, C], [A, B, C]])
(B, [[B, C], [B, D], [B, C, D]])

(D, [])
(C, [[C, D]])

The result after applying full_colocations and group_by would be:

(A, [[A, B], [A, C], [A, B, C]])
(B, [[B, A], [B, A, C], [B, C], [B, D], [B, C, D]])
(C, [[C, A], [C, A, B], [C, B], [C, B, D], [C, D]])

(D, [[D, B], [D, B, C], [D, C]])

Once we get the list of full co-locations grouped by feature we can apply gen-
erate_candidate that works parallelly for each group of co-location patterns
and produce all the possible combination between co-locations. Considering
the same example, the output of candidate sequences would be:

([’B’, ’A’], [’B’, ’A’]) ([’B’, ’A’], [’B’, ’A’, ’C’]) ([’B’, ’A’], [’B’, ’C’]) ([’B’,
’A’], [’B’, ’D’]) ([’B’, ’A’], [’B’, ’C’, ’D’]) ([’B’, ’A’, ’C’], [’B’, ’A’])

...

([’D’, ’B’, ’C’], [’D’, ’B’]) ([’D’, ’B’, ’C’], [’D’, ’B’, ’C’]) ([’D’, ’B’, ’C’], [’D’,
’C’]) ([’D’, ’C’], [’D’, ’B’]) ([’D’, ’C’], [’D’, ’B’, ’C’]) ([’D’, ’C’], [’D’, ’C’])

The algorithm to find the candidate sequences has been developed with
PySpark, the main steps of the process are reported in figure 4.3.

Pseudocode for this phase of the algorithm is the following:
fullColocations=input.flatMap(full_colocations).groupByKey()
output=fullColocations.flatMap(generate_candidate)
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Figure 4.3. Architecture of the application to generate candidate
co-location sequences

4.3.2 Find instances that match candidate sequences
This algorithm takes as input the list of candidate co-location sequences
and the neighbor dependency partition of all the features. The neigh-
bor dependency partitions are simply extracted from the neighbor database
which is computed during the co-location mining phase. While the list of
candidate sequences is the result of the generate candidate sequences algo-
rithm described in previous section 4.3.1. The goal of this new phase is to
find all the groups of instances that match the candidate sequences in order
to extract the required metrics. The instances are events represented by a
tuple:

(’feature type’, ’start timestamp_end timestamp’)

To make clear the purpose of the algorithm, it should goes through the neigh-
bor dependency partition and find all the groups of instances that respect
the constraints for one of the candidate sequences. This process should be
repeated for all the candidate sequences. We can process each candidate se-
quence independently. In order to visualize the expected output of the algo-
rithm, let’s suppose we are mining the candidate sequence ([A, B] ⇒ [A, C])
. The result of Find instances that match candidate sequences would be a
tuple with this structure:

< s, [list of group of instances that match s] >
For example:

< ([A, B] ⇒ [A, C]), [list of instance groups that match ([A, B] ⇒ [A, C])] >

Once we got the list of instance groups that match the co-location sequence,
we can simply compute all the metrics defined in previous section 4.2.

The general idea of this application is reported in the schema 4.4. To build
the algorithm we make an assumption: the list of candidate sequences is
small enough to be contained in some kind of local variable. So as first step
we define a function group_candidate_sequences that starts from the list of
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Figure 4.4. Architecture of the algorithm Find instances that match
candidate sequences

candidate sequences and generate a dictionary that has as key the feature
(f ) and as value the list of candidate sequences that contains f in one of the
co-locations of the sequence. For example if we suppose that we have only
two candidate sequences

([C, D] ⇒ [C, B])
([C, A] ⇒ [C, B])

The sequence_dictionary generated by group_candidate_sequences would
be:

{
A : [([C, A] ⇒ [C, B])]
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B : [([C, D] ⇒ [C, B]), ([C, A] ⇒ [C, B])]
C : [([C, D] ⇒ [C, B]), ([C, A] ⇒ [C, B])]

D : [([C, D] ⇒ [C, B])]
}

The sequence_dictionary is sent to the cluster as a shared variable and then
can be accessed by all the functions in the PySpark code. The reason why
the list of candidates has been organized in this kind of dictionary will be
clear later. Once the candidate sequences has been handled and converted
into the suitable dictionary, the algorithm starts to manipulate the RDD rep-
resenting the neighbor dependency partition (partitions_RDD). This RDD
is computed during the co-location mining phase, each row represents a par-
tition centered around feature type (f ) and has the format:

< f, [< o, [list of neighbor of instance o] >] >

where o is an instance of type f or f is a prefix of o. The first operation on
the partitions_RDD is a flatMap referred as flattern_partitions_instances.
Each row of the partitions_RDD has a feature f as key. We retrieve all the
candidate sequences that contain f simply extracting the list of sequences
from the pre-defined sequence_dictionary using f as key. For each neighbor
dependency partition (for each row of partitions_RDD) centered around f the
function flattern_partitions_instances emits a set of rows with this format:

<
s, [list of groups of close instances that match one or more co-location inside sequence s] >

where s is the candidate sequence. In the list of neighbors are considered only
the groups where at least one instance is of type f (center of the partition).
This is done in order to avoid to overload the data structures used in the
intermediate steps with redundant information. To make an example let’s
suppose that the list of candidate sequences for feature B is:

sequence_dictionary[B] =
[([C, D] ⇒ [C, B]), ([B, A] ⇒ [B, C]), ([D, A] ⇒ [D, B])]

the function flatten_partitions_instances that takes as input the neighbor
partition centred around B would emits 3 rows:

1. ( ([C, D] ⇒ [C, B]), [ list of instances of close (C,B) found inside B-
dependency partition] )
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2. ( ([B, A] ⇒ [B, C]), [ list of instances of close (B,A) and list of instances
of close (B,C) found inside B-dependency partition] )

3. ( ([D, A] ⇒ [D, C]), [ list of instances of close (D,B) found inside B-
dependency partition] )

After the flatten_partitions_instances a function to group all the instances
is applied. A groupByKey is employed using the co-location sequence as key.
After the groupByKey we get an RDD that has the rows composed like this:

<
s, [list of all the groups of instances that match ALL the co-locations in the sequence] >

Following the example, after the groupByKey we get:

1. ( ([C, D] ⇒ [C, B]), [list of instances of close (C,B) and (C,D) found
inside all dependecy partitions ] )

2. ( ([B, A] ⇒ [B, C]), [list of instances of close (B,A) and (B,C) found
inside all dependecy partitions ] )

3. ( ([D, A] ⇒ [D, C]), [ list of instances of close (D,A) and (D,C) found
inside all dependecy partitions ] )

At this point the function map_sequence_instances is applied indepen-
dently for each row (each row has a sequence as key and a list of groups of
close instances as value). This function generates all the possible combina-
tions comparing each group of close instances with all the other groups. If
the compared groups respect the sequence (the feature type of the considered
groups are the same of the sequence) it means that they potentially match the
co-location sequence. Although this is not enough, since the function should
also check the temporal constraints given by the definition of co-location
sequence itself. Let’s see how map_sequence_instances is working with an
example. We suppose that we are mining the sequence:

([A, B] ⇒ [A, C])

This sequence is matched by couple of group of close instances such as:
[(′A′,′ 2016 − 08 − 14T00 : 07 : 00_2016 − 08 − 16T00 : 08 : 00′), (′B′,′ 2016 −
08 − 14T00 : 07 : 01_2016 − 08 − 16T00 : 09 : 00′)] ⇒ [(′A′,′ 2016 − 08 −
14T00 : 07 : 00_2016 − 08 − 16T00 : 08 : 00′), (′C ′,′ 2016 − 08 − 14T00 : 08 :
02_2016 − 08 − 16T00 : 07 : 30′)]
This set of instances respect the constraints given by the definition of co-
location sequence:
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• The instance of aggregator element A is the same in the 2 groups: (’A’,
’2016-08-14T00:07:00_2016-08-16T00:08:00’) belongs to both first and
second group of close instances.

• The instance of type C in the second group starts immediately after the
instance of type B: (’C’, ’2016-08-14T00:08:01_2016-08-16T00:07:30’)
starts 1 minute after (’B’, ’2016-08-14T00:07:01_2016-08-16T00:09:00’)

Figure 4.5 summarizes how the data have been partitioned for this phase
of the algorithm. The algorithm "Find instances that match candidate se-
quences" takes as input the neighbor database for a set of feature F =
{f1, f2, ..fn} and a set of candidate co-location sequences S = {s1, s2, ..sn}.
The neighbor database is divided into N partitions centered around each fea-
ture of the feature set F. For each partition centered around f the flatMap
function flattern_partitions_instances. This function finds a portion of cliques
that match the co-locations contained inside the candidate sequences. Only
the co-location sequences that include f are considered. Then a groupByKey
is needed to gather the entire list of cliques that matches all the co-locations
of each sequence. Afterwards a map function (map_sequence_instances) can
operate independently for each sequence. It compares each cliques with all
the other to find group of cliques that match the entire sequences. Once
we found all the group of instances matching the sequences, we can simply
compute all the metrics introduced in section 4.2.

4.4 Experimental evaluation: co-location se-
quence mining of traffic events

In this section we discuss the configuration and the results we got experi-
menting the algorithm for co-location sequence mining. Our main goal is to
check whether is possible to discover some interesting rules and correlation
between traffic and weather events applying the algorithm for co-location
sequence mining. We also need to verify that the metrics we introduced are
useful and coherent.

4.4.1 Experimental setup
The dataset considered is the LSTW dataset, already described in section
3.4.1. We also create three new dataset as subset of LSTW:
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Figure 4.5. "Find instances that match co-location sequences" algo-
rithm: manipulation of data
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• California: contains all the events of the LSTW dataset registered in
the state of California (5.4 M events)

• Texas: contains all the events of the LSTW dataset registered in the
state of Texas (2.7 M events)

• New York: contains all the events of the LSTW dataset registered in
New York state (2.9 M events).

We applied our analysis in these three datasets and in the original LSTW
dataset that covers the whole territory of USA. The original LSTW dataset
that contains events from all the contiguous United states is referred as "All
states". The algorithm has been developed using PySpark and run on the
BigData@Polito Cluster following the approach previously described in sec-
tion 3.3.1. The algorithm can be run changing different parameters both
in co-location mining and sequence co-location mining phases. The main
parameters that can be set to run the algorithm are:

• distance: the spatial distance expressed in kilometers within which two
events are considered close.

• max_difference_time: the maximum difference expressed in minutes be-
tween the starting moment of 2 events within which these events are
considered close.

• min_Participation_Index : the threshold to filter not prevalent co-locations.
Co-location patterns with Participation Index lower than min_Participation_Index
are discarded.

• sequence_length: the number of co-locations that are considered to com-
pose a sequence.

• only_traffic: if set true only traffic events are considered otherwise also
weather events are taken in account.

For the aforementioned problems of the LSTW weather data (see 3.4.1), we
decided to consider only traffic events for co-location sequence mining (i.e. we
set only_traffic=true) In 3.4 we showed that is difficult to obtain co-locations
with high value of participation index when mining LSTW traffic events. For
experimental purpose we decided to set min_Participation_Index=1−10 in
order to obtain a significant number of co-location patterns as input of the co-
location sequence mining phase. Due to the limitations in term of computa-
tional and memory resources we were able just to perform mining of 2-size se-
quences (sequence_length=2 ). Regarding distance and max_difference_time
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we consider reasonable values in the range of respectively: 0.5km - 1.5 km
and 5min - 30 min.

4.4.2 Results
Figure 4.6 summarizes the analysis and result we performed. The figure
shows the number of co-location sequences discovered, when changing dis-
tance and max_difference_time. The found sequences are divided in three
bands: the sequences in the first blue band have support1<10; the sequences
in the second yellow band have 100 < support1 ≥ 10; the sequences in the
third black band have support1>100 . The analysis is performed for all the 4
datasets. In general, the algorithm is able to extract a significant number of
sequences. As expected the number of supported sequences grows as the dis-
tance and temporal parameters get bigger. Nevertheless most sequences have
a limited number of support1. To observe sequences with support1>100,
large values of distance and max_difference_time are needed (1.5 km, 30
minutes).

The trends are similar for all the 4 considered datasets. Though, higher

Figure 4.6. Summary of obtained results

numbers of co-locations sequences are found considering "All states" as dataset,
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since it contains a greater number of events. In order to better visualize
the type of results that are found by the co-location sequence mining, in
table 4.1 we report an extract of the outcomes of the algorithm run with
(max_difference_time=15 min ; distance= 1 km) and All states dataset. In
the table are reported the top 20 sequences ordered by value of confidence1
in descending order.

sequence Support1 Confidence1 Confidence2 Confidence3
([FI, CG] ⇒ [FI, CG]) 10944 0,314311152 0,010035005 0,006466228
([FI, BV ] ⇒ [FI, CG]) 47 0,255434783 0,002236288 2,78E-05
([CS, BV ] ⇒ [CS, CG]) 1 0,25 0,002236288 1,37E-06
([BV, FI] ⇒ [BV, CG]) 42 0,24852071 0,020572696 6,50E-05
([CS, FI] ⇒ [CS, CG]) 19 0,240506329 0,020572696 2,61E-05
([FI, CS] ⇒ [FI, CG]) 18 0,24 0,000652349 1,06E-05
([FI, A] ⇒ [FI, CG]) 177 0,231372549 0,003174103 0,00010458
([A, FI] ⇒ [A, CG]) 155 0,218002813 0,020572696 5,88E-05
([LB, A] ⇒ [LB, CG]) 21 0,21 0,003174103 4,19E-05
([FI, E] ⇒ [FI, CG]) 3 0,2 0,003263364 1,77E-06
([LB, FI] ⇒ [LB, CG]) 24 0,19047619 0,020572696 4,78E-05
([E, A] ⇒ [E, CG]) 1 0,166666667 0,003174103 2,11E-05
([FI, LB] ⇒ [FI, CG]) 20 0,157480315 0,002133246 1,18E-05
([E, FI] ⇒ [E, FI]) 9 0,155172414 0,004642874 0,000189486
([E, CG] ⇒ [E, CG]) 22 0,141935484 0,010035005 0,000463187
([BV, A] ⇒ [BV, CG]) 19 0,137681159 0,003174103 2,94E-05
([BV, LB] ⇒ [BV, CG]) 5 0,135135135 0,002133246 7,74E-06
([CG, FI] ⇒ [CG, FI]) 4116 0,125836926 0,004642874 0,000167718
([E, FI] ⇒ [E, CG]) 7 0,120689655 0,020572696 0,000147378

Table 4.1. Co-locations results with 1km and 15 min thresholds

A complete description of the event labels is provided in section 3.4.1 .
We can observe that the most supported pattern is([Flow−Incident, Congestion] ⇒
[Flow−Incident, Congestion]) (referred as ([F, CG] ⇒ [F, CG])) which also
has the highest value of confidence1. This means that this is the most sig-
nificant sequence found. It’ important to note that not all the sequences in
the table with high values of confidence1 are so meaningful. For example the
sequences ([CS, BV ] ⇒ [CS, CG]) and ([E, A] ⇒ [E, CG]) are supported
just once, so they can’t be considered meaningful even if they have an high
value of confidence1. Thus, as expected, confidence1 is a good metric but
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is not enough to judge if a co-location sequence is relevant. It’s not easy to
define a threshold in terms of confidence1 that discriminates interesting and
not interesting co-location sequences.

The same configuration with max_difference_time=15 min and distance=
1 km is considered also to compare confidence1 and confidence2. Figure 4.5
shows a scatter graph, where each point in the chart is a co-location sequence,
the horizontal axis represents confidence1 values, while vertical axis contains
confidence2 values. Confidence2 values are much lower than confidence1.

Figure 4.7. Confidence1 vs Confidence2 for all sequences ex-
tracted considering "All states" dataset; distance=1km and
max_difference_time=15 min

There are not sequences with a confidence2 > 0,04. While we can observe
values of confidence1 up to 1, although most sequences have a confidence1
value lower than 0,1. The results in figure 4.7 confirms that confidence2
metric cannot be used to discriminate which co-location sequences are im-
portant. This metric is useful to be compared with other confidences.
In figure4.8 are reported the values of the ratio between confidence1 and con-
fidence2 for some of the sequences found considering All states dataset ( dis-
tance=1km and max_difference_time=15 min ). The sequence ([Broken −
V eichle, Lane − Blocked] ⇒ [Broken − V eichle, Accident]) ([BV, LB] ⇒
[BV, A]) has a considerable value of this ratio, this means that the event of
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type Broken − V eichle increase the probability of finding an event of type
Lane−Blocked followed by an event of type Accident in the same area. Not
all the sequences with an high value of the ratio between confidence1 and
confidence2 can be considered meaningful.

Figure 4.8. Confidence1/Confidence2 for some sequences extracted consid-
ering "All states" dataset; distance=1km and max_difference_time=15 min

Similar trends are observed in the scatter graph that compares confidence1
and confidence3 (4.9). Confidence3, similarly to confidence2, does not reach
high values and always remain lower than 0.006.

To complete the analysis we check the execution time of the algorithm
for co-location sequence mining. In figure 4.10 are reported the execution
times obtained with different configuration of input parameters (distance ;
max_difference_time). The co-location mining phase is negligible if com-
pared with the time required by co-location sequence mining. As we can
expect, the execution time is lower when the algorithm is run with small val-
ues of max_difference_time and distance. The computation depend on the
dimension of the neighbor database, when the constraints on distance and
max_difference_time are strict (smaller values) the number of neighbors for
each spatio-temporal event is reduced and the execution of the algorithm is
faster since there are less data to consider.
To summarize, in this section we verified the effectiveness of the algorithm
for co-location sequence mining, showing that the application is able to find
many sequences of correlated categories of traffic events. However it’s hard to
extract some general association rules, considering our definitions and met-
rics. We found many sequences with low values of support that may alter the
value of other metrics. This issue is probably due to the intrinsic structure of
the considered dataset. We expect more clear results if the algorithm would
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Figure 4.9. Confidence1 vs Confidence3 for all sequences ex-
tracted considering "All states" dataset; distance=1km and
max_difference_time=15 min

be applied to a dataset that contains more specific traffic labels and so less
instances for each event type.
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Figure 4.10. Execution time (in hours) of algorithm for co-location sequence
mining with different values of distance and max_difference_time
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Chapter 5

Conclusion

This thesis highlights the importance of co-location patterns. Co-location
pattern mining is an innovative technique that can be used to discover rela-
tionships and correlations between categories of events in different contexts:
urban field, traffic management, scientific researches. These patterns are dis-
covered when instances of certain attributes or categories tend to co-occur or
appear together within the same geographic area and at the same time. In
this thesis we show that co-location pattern mining can be effectively applied
to huge datasets (more than 30 M instances). Many state-of-art algorithms
have been developed to perform co-location pattern mining task. Most of
these technique have a big issue: they are not scalable and struggle when
employed with huge datasets. The recent introduction of parallel co-location
pattern mining based on column calculation and neighbor-dependency par-
tition is extremely interesting for our purpose. However this algorithm man-
ages data that only have spatial dimension. In this thesis we aim to deal
with data that have both spatial and temporal information. We witness the
lack of an algorithm able to mine spatio-temporal co-location patterns in
the literature. Nevertheless, we show that the idea of parallel co-location
pattern mining based on column calculation and neighbor-dependency par-
tition can be employed also for an application that handles spatio-temporal
events. There are many different approaches to develop the algorithm for
spatio-temporal co-location mining. The critical phase of this algorithm is
the computation of spatio-temporal neighbors among instances. As far as
we know there is not a standard procedure to perform the calculation of
spatio-temporal neighbors. Thus, we explore different solutions and we com-
pare the results of them in terms of required execution time to find out the
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most efficient. Overall, the algorithm we develop is able to successfully per-
form spatio-temporal co-location mining over a huge dataset that contains
more than 30M of events located in space and time. Our best solution for
spatio-temporal co-location mining outperforms the algorithm we considered
as baseline, requiring 41 % less time.
We apply our analysis on 2 different types of datasets: Geolife (people tra-
jectory data) and LSTW (traffic and weather events). The results we get in
terms of co-location patterns are interesting. Nevertheless we try to give our
contribution to the field of co-location pattern mining, introducing the new
concept of sequence of co-location patterns.
A sequence of co-location patterns is a set of related co-locations that share
an aggregator event and respect some spatio-temporal constraints. This new
concept should help to find occult relationships among categories event that
simple co-location mining is not able to discover. We provide a formal defini-
tion and suitable metrics to perform mining of co-location patterns sequences.
Furthermore we show an implementation of an algorithm able to perform this
task in a parallel manner exploiting Apache Spark environments. We test
the new application on a dataset containing more than 30M events related
to traffic and weather (LSTW). The algorithm is able to deal with huge
amount of data, and the results are encouraging, but our analysis has also
some limitations. The considered dataset contains few general category la-
bels and many events for each category, this kind of structure likely alter
some results. We can’t find other datasets containing a sufficient number
of spatio-temporal events. Furthermore, due to the limited computational
resources available, we can’t perform mining of co-location sequences with
size > 2. Finally, the algorithm for co-location sequence mining works as
"post-processing" with respect to the simple co-location mining phase. As a
future work, the integration between co-location sequence mining and sim-
ple co-location mining may be investigated. This hypothetical application
should be tested on other new datasets containing more detailed labels with
less instances.
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