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Summary

Nowadays, Global Navigation Satellite System (GNSS) receivers are embedded in
a variety of electronic devices, and a growing number of users depend on them to
navigate themselves to a destination. GNSS technology allows the user to estimate
its position through multilateration, which is based on satellite detection, the
estimation of the signal Time-of-Arrival (ToA), and the subsequent measurement
of the receiver-to-satellite ranges (commonly referred to as “pseudoranges”). The
low power of GNSS signals makes the continuous satellite’s signal tracking a
challenging task for the receiver, especially considering the tight constraints on
resource usage. Internet of Things (IoT) electronics host “by definition” low-power-
consumption network connectivity, and they could enable new patterns for the
Position Velocity and Time (PVT) estimation, based on collaborative, multi-agent
Position Navigation and Time (PNT) methods that would not imply a continuous
operation of the embedded GNSS receiver.

This study aims to understand whether Machine Learning (ML) techniques could
support such paradigms for the PVT estimation in IoT devices, in the attempt
to avoid the need for costly continuous signal tracking, demodulation of the
navigation message, and pseudorange construction and correction, by exploiting the
information made available by a set of networked collaborative users. In particular,
we aim to share multi-satellite delay-Doppler matrices and their associated position
estimates gathered by conventional GNSS receivers operating within a network.

The work has been developed in two different stages. The first step was generating
an experimental environment, building a dataset inclusive of the IoT receiver’s and
its surrounding networked receivers’ position information. In detail, we considered 4
networked receivers, randomly distributed within a 200m radius of the IoT receiver.
For each receiver, the pseudoranges and the delay-Doppler matrices were simulated,
as well as the PVT solutions. The next step was to use machine learning techniques
to estimate the IoT receiver’s position, based on the information shared by the
networked receivers. Two different machine learning open-source libraries have
been tested: XGBoost (eXtreme Gradient Boosting), and Keras, to implement a
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neural network (namely, a multi-layer perceptron). Finally, the estimation of the
IoT position obtained using the two machine learning tools has been compared to
a simplified “reference” model, where the IoT receiver’s position is approximated
by the arithmetic average of the networked receivers’ positions.

The estimation error on the IoT receiver position obtained using machine learning
tools is lower (typically, 10 to 20%) than the estimation error shown by the simplified
reference model. This observation is confirmed when doing a further validation of
the models, over geographic regions different from the one used to generate the
training dataset. Concerning, instead, the positioning error, the position estimates
are in general showing a 50m offset compared to the “true” position. Although such
a distance is not negligible, and considering also that the work has been developed
in an experimental environment (with all the limitations that this entails), this
preliminary study suggests that the PVT estimation via machine learning could
work, and its use in support of PVT estimation might be further investigated.
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Chapter 1

Introduction

The purpose of a GNSS receiver is to determine the user’s Position Velocity and
Time (PVT) by processing the signals transmitted by satellites. To do that, the
receiver must be capable of continuously acquiring and tracking the signals from
the satellites in view, then demodulate and process these signals, to translate them
into meaningful information for the user.

This work will be especially focused on the determination of the receiver’s position.
GNSS technology allows the user to estimate its position by means of multilateration,
which is based on the satellite detection, the estimation of the signal Time-of-Arrival
(ToA) and the subsequent measurement of the receiver-to-satellite ranges. These
latter measurements are commonly affected by the misalignment between on-
board satellites clocks and receivers’ local oscillator, for this reason they’re named
pseudoranges.

The low power of GNSS signals makes the continuous satellite’s signal tracking
a demanding task for the receiver, especially considering the tight constraints on
resources’ usage. The reduction of the computational load on the device hosting
the receiver and, more in general, power-saving techniques, represent a significant
topic when dealing with GNSS receiver intended for a mass market audience[1].
In the last couple of decades, strategies for power saving have been explored with
special reference to smartphones, with solutions going from powering on and off
the chip [2], to switching to alternative location sensors [3], to reducing the number
of GNSS receiver channels [4].

On top of that, the recent growth of user applications requiring small size, low cost,
low power consumption devices, is making even more challenging the implementation
of GNSS receivers, pushing the current technology to its limits, and the search for
new approaches to positioning is increasing in importance [5]. Along with studies
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intended to implement new hardware solutions for extra-small devices, such as,
for instance, wearables [6], there are others focusing on the possibilities offered by
Cloud computing platforms [7].

IoT electronics host “by definition” low power-consumption network connectivity,
and they could represent the ideal application to enable new patterns for the PVT
estimation, by mean of collaborative, multi-agent PNT methods that would not
imply a continuous operation of the embedded GNSS receiver. The use of ML
techniques could hence be an efficient solution to support such paradigms for the
PVT estimation in IoT devices.

As a matter of fact, in the last decades, ML tools have been successfully adopted
across a large number of disciplines, going from engineering to finance to healthcare,
and have become part of our everyday life. Tasks like image recognition, speech
recognition, fraud detection, but also medical diagnosis and stock market forecasting
are enhanced by machine learning tools [8]. The significant advantage of these
approaches with respect to traditional methods of data processing is in their ability
to learn from a given set of data, detecting patterns that can be used to forecast and
/ or detect a specific behavior on different (or future) sets of data. When it comes
to IoT devices, the growing number of computing applications relying on them is
constantly pushing towards the use of ML models, with a special regards to all those
tools and solutions meant to combine accuracy with low energy consumption[9].

In GNSS domain, there have been different studies exploring the potential of ma-
chine learning methodologies, ranging from the forecast of atmospheric phenomena
that have an impact on the signals [10] [11] to the improvement of the accuracy
of the PVT solution in urbanized areas [12] [13]. In this study, the aim is to
understand if and in which extent ML techniques could be exploited to support
the position estimation for IoT devices. Previous works have already explored the
possibilities of collaborative methods for positioning, with the aim to improve the
positioning performance in case of limited availability and lack of continuity of the
GNSS service[14].

After an introductory chapter concerning GNSS receivers and ML techniques
(Chapter 2), the methodology, the design and set up of the experimental environment
will be displayed (Chapter 3), followed by the results on ML models and position
estimation (Chapter 4).
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Chapter 2

Background

2.1 Global Navigation Satellite Systems
This section is dedicated to the illustration of the basic concepts concerning GNSS.
Due to the extent of the topic, the intent here is to give a high-level overview on
how a conventional receiver works, with a special reference to the methodology used
to estimate the user’s position based on satellites’ signals detection. A thorough
description of GNSS principles and applications can be found in [15].

2.1.1 GNSS receiver operations and architecture
For a GNSS receiver, the basic concept used to establish the user position is founded
on measuring the time it takes for the signal transmitted by the satellite, whose
location is known, to reach the receiver. From a high-level point of view, the user’s
PVT solutions are the result of a sequence of operations, which can be described
as follows:

1. identification of the satellite;

2. estimation of the Time-of-Arrival (e.i., the time instant when the signal
broadcast by the satellite reaches the user);

3. construction of the receiver-to-satellite ranges (commonly referred to as "pseu-
doranges");

4. estimation of the PVT solutions.

These operations are carried out at different unit stages within the receiver. Figure
2.1 shows a conventional GNSS receiver architecture [16]:
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Figure 2.1: GNSS receiver: block diagram of a conventional architecture

With reference to Figure 2.1, four main functions can be identified:

• Antenna and front-end processing, where the received signals are amplified,
filtered and then digitalized;

• Acquisition, where the satellite is identified and a rough, early estimation of
code phase offset and Doppler shift is performed;

• Tracking, where there is a refinement of code phase offset and Doppler shift;

• Application processing, where the navigation message demodulation is com-
pleted, followed by pseudorange construction and estimation of the PVT
solution.

Each satellite within a GNSS constellation has a unique Pseudo-Random Noise
(PRN) code, that is broadcast as part of the navigation message (see subsection
2.1.2). This code allows any receiver to identify exactly which satellite is in view.
However, the satellite signal has an extremely low power at the ground level, in the
order of 10−5W , which means, it can be easily masked out by noise. The receiver
front-end stage must be capable, first of all, to amplify and filter the signal to an
intermediate frequency, and then convert it to a digital stream of samples.

Baseband processing, instead, include all those algorithms required to detect and
follow a visible GNSS signal. The operations here are identified as "acquisition"
and "tracking".
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The acquisition stage has the overall function of detecting the i-th satellite, based
on the correlation of the received signal with several local replicas of the possible
"expected" signals: when the local replica and the input signal are aligned, the
tracking process is initiated. The tracking stage uses correlation functions as well,
to refine the local replica generation. In general, the receiver tracks each signal
using dedicated channels running in parallel, where each channel tracks one signal,
providing pseudorange and phase measurements. The acquisition and tracking
operations for a conventional GNSS receiver are described in subsection 2.1.4.

The output of the baseband processing is a pair of code delay and Doppler phase
or frequency, which represent the actual measurement of a GNSS receiver. The
replica code phase is converted into satellite transmit time, required to compute
the pseudorange measurement, while the replica carrier Doppler phase or frequency
is converted into delta pseudorange. Pseudorange and pseudorange rate are then
used to estimate the PVT solutions (see subsection 2.1.3).

2.1.2 GNSS constellations and signals
A Global Navigation Satellite System provides signals from a constellation of
satellites, which are distributed in such a way to guarantee an almost global
coverage on the Earth surface. There are four sets of GNSS constellations:1

• GPS (Global Positioning System), owned and operated by the United States
Government;

• Galileo (named after the Italian astronomer Galileo Galilei), created upon
the initiative of the European Union (EU) and the European Space Agency
(ESA);

• GLONASS (GLObal NAvigation Satellite System), developed and operated
by the Russian Federation Government;

• BeiDou (named after the Great Bear Constellation), developed and operated
by the Chinese Popular Republic.

1In addition to the GNSS systems listed above, other two can be mentioned, even though
they’re not global systems: the QZSS (Quasi-Zenith Satellite System), operated by the Japanese
government, that only covers the Asia-Oceania regions, and the NavIC (Navigation with Indian
Constellation), developed by the Indian government, that only covers the Indian region.

5



Background

Figure 2.2: GNSS constellations and their features: GPS, Galileo, GLONASS
and BeiDou

Figure 2.2 shows the difference in GNSS features, like the orbital altitude, the
period, the number of satellites and the frequency of the signal 2. The reference
constellation for this work is the GPS; it is understood that the same approach
can be applied to any of the other systems.

The signals transmitted by the satellites must carry specific data, such that for
the user it is possible to identify each satellite in a unique way. One of the most
common technique for GNSS to allow the satellites’ identification without ambiguity
is using mutually orthogonal codes. In this way, the receiver can easily separate
the signal of the satellite of interest from the others.

For legacy GPS, the signal in space consists of 3 components:

1. Carrier: a radio frequency sinusoidal signal;

2. Ranging Code: a sequences of zeroes and ones, which allow the receiver to
determine the travel time of the radio signal from the satellite to the receiver.
They are called Pseudo-Random Noise sequences or PRN codes;

2Referenced information have been collected from https://gssc.esa.int/navipedia.
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3. Navigation Data: a binary-coded message, carrying information on the satellite
ephemeris 3, clock bias parameters, almanac, satellite health status, and other
information.

The result of the modulation of such signal is the Direct Sequence Spread Spectrum.

Figure 2.3: Exemplification of the GPS signal components

The transmission of multiple PRN signals on a common carrier frequency is referred
to as Code Division Multiple Access (CDMA). A different technique, referred to as
Frequency Division Multiple Access (FDMA) consists, instead, in assigning each
satellite with a specific carrier frequency. As a note, the main advantage of FDMA
when compared to CDMA is that it guarantees signal separation, since each signal
is transmitted in a dedicated frequency slot. On the other hand, it requires a higher
complexity (and cost) regarding antenna and receiver design.

3The ephemeris are a collection of Keplerian elements or satellite position and velocity
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2.1.3 GNSS observables and PVT estimation
Based on their geometry, Global Satellite Systems can be classified as spherical
systems, where the sources of the signals (i.e., the satellites) are placed at known
locations in the space and the user’s position can be obtained by intersection of
spheres. The estimation of the position is done by the receiver via multilateration.
From a strictly geometrical point of view, in a 2-dimensional space, the coordinates
of an object can be computed without ambiguity if at least 3 reference emitters’
locations are known: the user’s position will be computed as the intersection of the
3 circumferences.

Figure 2.4: A simple geometry: localization of an object in a 2-dimensional space.
The ambiguity on the position in the case only 2 emitters are available (left) is
resolved when a third emitter is available (right)

However, when dealing with satellite navigation, not only the circumferences are
replaced by spheres, but there is a further unknown to be taken into account: time.
Let’s assume, for instance, that a satellites transmits a signal at time instant Ttx.
The same signal will be received by the user at time Trx = Ttx + τ , where τ is the
delay or propagation time. The distance between the transmitter and the receiver
can be thus estimated as:

d = c · (Trx − Ttx) = c · τ, (2.1)

where c is the speed of light.

The 2.1 holds true only if both the transmitter’s and the receiver’s clocks are
synchronous. Given the magnitude of the speed of light constant, any gap between
the two would result in a non-negligible error on the final distance.
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All satellites vehicles host high-grade atomic clocks that are very stable in time
and are synchronous. On the other hand, it is not possible to have receivers’ clocks
aligned with the satellite time scale, due to cost and complexity constraints. As a
consequence, the receiver’s clock will have a bias δtu with respect to the satellite
time, and such a bias will affect the computation of the distance d. The measured
distance is different from the geometric range and it is named pseudorange, ρ:

ρ = c · τ + c · δtu (2.2)

Figure 2.5: Signal travelling from the satellite to the user

Figure 2.5 shows the signal propagation from the satellite to the user. The clock of
the satellite might be slightly misaligned of δtSat with respect to the ideal GNSS
time scale. However, such a bias is small and, most importantly, known, since it can
be monitored by the control segment. It is thus possible to make the assumption
δtSat = 0.

δtRec, instead, cannot be corrected, and that’s why it will have to be kept as
an unknown when setting the equations to solve the positioning problem. With
respect to the geometrical standpoint, the receiver will estimate the position by
constructing at least 4 pseudoranges, from 4 satellites.

The final set of equation to be solved is the one showed in Figure 2.6, where:

• xi, yi, zi represent the ith satellite’s coordinates

• ρi is the ith pseudorange

• brec = c · δtu is the range bias due to the clock bias
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Figure 2.6: Example of the equations to solve the positioning problem (multilat-
eration) using 4 satellites

To be able to estimate its position, a receiver must have at least 4 satellites in view,
which means that the satellites must be necessarily in Line Of Sight (LOS), e.i.,
there must be no obstacles in between the user and the satellite (buildings, trees,
etc.) - see Figure 3.6. If a larger number of satellites is in view, a better estimation
is possible. Modern receivers use at least to 12 channels in order to perform the
position estimation. Appendix C illustrates further details to understand the
importance of how the satellites’ geometry with respect to the user can affect the
estimation of the position.

2.1.4 Baseband signal processing
Code delay and Doppler frequency or phase represent the natural measurement of a
GNSS receiver, made available at the output of the baseband processing operations.
The baseband operations are divided into "acquisition" and "tracking" stages. In
particular, the receiver is said to be in acquisition mode when searching for signals,
and then transits to tracking mode once the signal is found. The basic principle of
GNSS baseband processing is founded on the correlation process, made possible by
the satellites’ signals design (see subsection 2.1.2). The ranging codes are built to
have:

• high auto-correlation properties: when the code is compared with an aligned
replica of itself, the correlation output is maximum;

• low cross-correlation properties: when the code is correlated with another
code of the same family, the correlation output is low.
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Figure 2.7 shows an exemplification of the correlation process. The receiver shifts
the code replica (by changing ∆t) until it finds a peak in the correlation output.

Figure 2.7: Signal correlation: the code replica is shifted with respect to the
incoming signal until a peak is found at the correlation output

In detail, the receiver first assigns each channel with a PRN code. Then, a local
replica is generated, in such a way that its code delay and phase characteristics
vary. The correlation function, referred to as Cross Ambiguity Function (CAF),
will hence vary over a two-dimensional search space, defined by code delay offset
and Doppler shift. Over the search space, the value of the CAF is compared against
appropriate thresholds to understand whether the ith satellite is in view or not.
Figure 2.8 shows an example of CAF over the search space 4.

When a channel is first set up, usually there are no estimates available for code
delay and Doppler phase or frequency. Therefore, each channel will launch a cold
search for the signal (see more at pp.231-232 [15]). When in acquisition mode,
each channel is looking for all possible pairs of code delay, Doppler frequency, by

4The figure of the CAF is extracted from [17]
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Figure 2.8: Example of Cross Ambiguity Function over the delay - Doppler
domain (search space)

generating a set of possible local replicas, and correlating each of them with the
incoming signal. In this context, the power of the correlation output is somehow a
measure of how close to the real signal the estimates of the code delay and carrier
phase are. It must be considered that real-life systems are very noisy, and as a
consequence it is complex not only to detect the peak in CAF, but also to define
an appropriate threshold to assess whether the signal is present or not (see more at
pp. 219-223 [15]).

Once the satellite is identified and a earlyt, rough estimation of the code delay
and Doppler shift are available, the signals processing moves to the tracking stage.
Here, the incoming signal is first cleared of its Doppler frequency (according to the
current estimation), and then compared with PRN code replicas generated locally
(according to the current estimation of code delay). At each iteration, based on the
output of this correlation process, the estimators provide fresh values of Doppler
and delay to the wiping blocks, which progressively improve the quality of the
signals. The patterns are usually replicated over different channels, and each of
these processes a given signal from a given satellite. A high level description of the
operations performed on a single channel is shown in Figure 2.9.

A good estimation of the residual carrier frequency and phase is not possible until
the code is wiped off; at the same time, a good estimation of the code delay is not
possible until the residual modulation is present. For this reason, the architecture of
the tracking stage is commonly built using feedback loops on both carrier frequency
/ phase and code delay.

12
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Figure 2.9: Schematic description of the operations done at tracking stage

The carrier tracking loop is meant to refine the estimation of the frequency and
the phase of a noisy sinusoidal signal, and to track the frequency changes while
the satellite is moving. To this purpose, the Phase Lock Loop (PLL) or Frequency
Lock Loop (FLL) are employed. For what concerns instead the Delay Lock Loop
(DLL), the delay information is contained in the correlation peak. The DLL is
based on two correlators and two local replicas of the code. The signal at the input
of the DLL requires that the residual Doppler modulation has been almost totally
removed.

Figure 2.10: Tracking stage: carrier and code loops
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2.2 Machine learning tools
The core of the work is based on the use of machine learning techniques to process
data from the experimental scenario and estimate the IoT receiver position based
on the information shared by the networked receivers. More precisely, the idea is to
understand if and how a machine learning approach could improve the estimation of
the IoT receiver position with respect, for instance, to an approximation calculated
from the average of the networked receivers’ positions.

As already mentioned in section 1, ML represents an expanding branch of com-
putational algorithms and has become part of our everyday life, being applied
successfully in diverse fields, ranging from pattern recognition, to finance, to medical
applications and so on. The designation of Machine Learning gathers a complex of
different tools, which all have in common the ability to learn from the surrounding
environment.

Based on the approach, ML problems can be classified in supervised learning,
unsupervised learning and reinforcement learning.

Supervised learning will map an input to an output based on a known dataset,
inclusive of input-output pairs "examples". The input-output relation can be found
by defining some loss function to measure the error between the model’s prediction
and the "true" value. The algorithm will be set in such a way that the loss function
is minimized. This is the case of the work discussed in this thesis: we build a
dataset, comprehensive of both input and output features’ measurements, and we
aim to find models to estimate the output on new datasets. As explained in detail
in section 3.2, when approaching a supervised learning problem it is essential to
divide the initial dataset into train, validation and test dataset. Using the whole
data to build the model could result in a good data-fitting on the current dataset,
while we need to assess also the generalization of the model on new data.

As opposite to the supervised learning, there are cases where the input features’
measurements are the only available data (i.e., no information on the output), and
the task is to describe how the data are organized or clustered. In this case, we
talk about unsupervised learning, since there are no correct answers, and there is
no teacher [18]. It will be the algorithm to suggest how the data are meant to be
structured. When new data is introduced, the features already learned will be used
to address them to the appropriate class.

Reinforcement learning is a self-teaching approach that learns from its own experi-
ence. At every iteration, the decisions are taken based on previous feedback that
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represent either rewards or penalties. The objective is to maximize the cumulative
reward over time.

For supervised learning problems, a further distinction can be done based on the
expected output, depending on whether we need to predict continuous numerical
values or to assign a certain label or attribute the output variable. In the first
case, the task is to address a regression problem, while in the second case, we
aim to solve a classification problem. A simple example would be, to forecast the
temperature. We might be interested in knowing what the temperature will be
(numeric value), or whether the weather will be "hot" or "cold" (attribute) - see
Figure 2.11.

Figure 2.11: Type of problem: regression (left) vs. classification (right)

Based on the considerations done so far, the problem we’re going to solve is a
supervised regression problem where we’re dealing with numeric features. Amongst
the possible tools available, we have chosen to test two open-source libraries:
XGBoost (eXtreme Gradient Boosting) 5 and Keras 6.

2.2.1 Gradient-boosted decision tree (XGBoost library)
XGBoost is a gradient-boosted decision tree machine learning library. It imple-
ments parallel tree boosting and can be used not only for regression, but also for
classification problems. In the past years, it has gained popularity for being the
winning solution of an important ML challenge[19], and has since then been used
for a large number of competitions.

5Free download at https://anaconda.org/anaconda/py-xgboost
6Free download at https://anaconda.org/conda-forge/keras
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In all supervised learning problems, the goal is to find the relation that best
approximates the output variables from the values of input variables, exploiting
the information available in the train dataset. The gradient boosting technique is
based on the idea of “boosting” or improving a single, weak model, by combining
it with a number of other weak models, to generate a collectively strong model -
see Figure 2.12.

Figure 2.12: Example of gradient-boosting decision tree architecture

The Gradient-boosting Decision Tree (GBDT) method seeks an approximation
in the form of a weighted sum of functions, which are called weak learners. The
method tries to find an approximation that minimizes the average value of the
loss function on the training set, by applying the steepest descent step to this
minimization problem. The training is done on an ensemble of weak decision trees,
with each iteration using the error residuals of the previous model to fit the next
model. The final prediction will then be a weighted sum of all the "weak" trees
predictions.

The working principle of the GBDT method is founded on the basic concepts of
decision trees and ensemble learning.

A decision tree is a classifier expressed as a recursive partition of the instance space.
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The structure evolves in the fashion of a growing tree, and is made-up of nodes
(features), branches (decisions) and leaves (outcome). The "root" node represents
the feature identified as the most significant of all when starting the process of
decision-making. Due to the fact that its structure recalls a flowchart diagram
(and due to the analogy with the logical thinking), the decision tree method can
be very intuitive to comprehend. The problem, however, is that this approach is
extremely sensible to data and generally shows good fitting on the training dataset,
as opposite to a poor accuracy on a test dataset. Ensemble learning is one of the
techniques used to reduce this undesired behavior. Through the combination of a
number of different models, an ensemble learning will result in a better performance
on new data. The two most popular ensemble learning methods are bagging and
boosting:

• with bagging, several models are trained in parallel, and each of them learns
from a random portion or subset of the data;

• with boosting, different models are trained in sequence, and the residual error
of the previous model is exploited to fit the next model.

GBDT algorithms leverage different hyperparameters that, appropriately tuned, will
make the difference on the performance and the accuracy of the model. Two of the
most significant hyperparameters are learning rate and the number of estimators.
The learning rate denotes how quickly the model learns: the lower the learning
rate, the better the model will perform, even though the decision process will take
longer. The number of estimators, instead, is nothing but the number of trees
used in the model. As a note, if the learning rate is low, probably more trees
will be required to train the model; at the same time, using too many trees can
lead to overfitting on the training dataset (with consequent poor fitting on new
data), which is the the opposite of what we’re trying to do when applying ensemble
methods to decision trees.

On top of GBDT algorithms, XGBoost implements a number of optimizations,
that can be found described in the documentation 7.

2.2.2 Neural Networks (Keras library)
Keras is a library that eases the definition, training and evaluation of neural network
models. Neural networks can be considered a universal approximator, due to their
ability to reproduce and model nonlinear processes. Their name is inspired by the

7see https://xgboost.readthedocs.io/en/stable/
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similitude to the human brain, since they emulate the way biological neurons make
connections with each other.

The simplest network we can think of is formed by a single unit, namely, the neuron.
The function implemented by a neuron consists of a linear combination of its inputs,
plus a final non-linearity, similar, for example, to logistic regression. Each neuron
has a set of input data (xi) and their weights (wi), a bias or threshold b and an
output y - see Figure 2.13.

Figure 2.13: A single-neuron network

The non-linearity f that produces the output y is called "activation function" and
is typically a sigmoid, a hyperbolic tangent or a Rectified Linear Unit (ReLU).

As intuitive, a single neuron is quite limited in terms of tasks that can perform.
By gathering several neurons in parallel, it is possible to create layers and, by
combining these layers, an actual network can be built. This architecture is referred
to as Multi-Layer Perceptron (MLP).

With reference to Figure 2.14, 3 types of layers can be identified:

• Input layer, that represents the initial data for the neural network;

• Hidden layers, that are intermediate layers between input and output;

• Output layer, where the prediction for the given inputs is produced.

During the training process, at every iteration, based on the difference between the
prediction of the network and the target output (i.e., the loss or error function value),
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Figure 2.14: Exemplification of a multi-layer perceptron

the network adjusts its weighted associations according to a certain learning rule,
which is typically based on some variant of gradient descent. These adjustments
are repeated either for a fixed number of passes ("epochs"), or until the prediction is
sufficiently close to the target output, which means, until meeting defined criteria.

Stochastic Gradient Descent (SGD) is one of the most common optimization
algorithm used to train neural models. The approach consists in computing the
gradient of the error with respect to the weights, then updating the weights in such
a way that the error is minimized. The gradient represents the direction of the
steepest descent in the error space, and the step size determines the magnitude of
the update. The step size is nothing but the learning rate. As seen for the GBDT,
setting an appropriate learning rate is very important. High values of learning rate
could cause the algorithm to diverge, while low values could require a long time to
reach acceptable results (i.e., a high number of epochs).

The method is called “stochastic” because it only uses one sample from the training
set to calculate the gradients at each iteration. This speeds-up the process, even
though it could introduce a sort of instability: the loss, in fact, can temporarily
increase and decrease with respect to the previous iteration. As a countermeasure
to this behavior, in SGD smaller learning rate are preferred, and used in conjunction
with other techniques, like "mini-batch". With "mini-batch", instead of iterating
through the entire dataset or one observation, the dataset is split into into small
subsets (batches) and for each batch the gradient is computed. Using a subset of
data results in a lower number of iterations with respect to SGD.
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Chapter 3

Methodology, design and
set-up of the experimental
scenario

With reference to the standard architecture (see Section 2, Figure 2.1), the purpose
of this work is to understand if both tracking stage and application processing
could be replaced by machine learning techniques, supported by collaborative users
sharing their data (delay-Doppler mapping and estimated position) - see Figure
3.1.

Figure 3.1: GNSS Receiver: use of machine learning to support PVT estimation
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The first part of the work has been dedicated to the creation of an experimental
environment in Matlab. We assume to have an IoT receiver, surrounded by a set of
n networked receivers, randomly located within a radius Rtol. The IoT receiver has
no chance to estimate its position, unless assisted by "standard" receivers. The idea
is to build a dataset where the following information are available for each receiver:

• positions in geodetic, local and ECEF coordinates (see Appendix B for a
description of the reference frames),

• satellites in view,

• delay-Doppler frequency pairs (with respect to each satellite in view).

The second part of the work has been focused on the data processing via ML tools
in Python environment, using two different machine learning open-source libraries,
XGBoost and Keras. The aim is to understand whether or not is it possible to
estimate the IoT receiver position by using the data shared by the networked
receivers. The work flowchart is shown in Figure 3.2.

Figure 3.2: Work flowchart

Finally, the estimation of the IoT position obtained using the two machine learning
tools has been compared to a simplified “reference” model, where the IoT receiver’s
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position is approximated by the arithmetic average of the networked receivers’
positions.

3.1 Experimental environment
This section describes the steps followed to build the experimental scenario in
Matlab, namely:

1. Generation of the GNSS constellation;

2. Definition of the position of the IoT receiver and generation of the networked
receivers;

3. Computation of the pseudoranges and pseudoranges’ rates based on visible
satellites;

4. Computation of code delay and Doppler frequency.

3.1.1 Generation of the GNSS constellation
Matlab function semread_function.m retrieves almanac data for all the available
GPS satellites for a specific time and timezone. For each satellite in the constellation,
the almanac consists of:

1. coarse orbit information;

2. health status;

3. satellite vehicle identification;

4. clock corrections;

5. IoT time (for correlation with UTC).

These are the information needed by the receiver to identify a specific satellite
and determine its position in space. The list of parameters returned by sem-
read_function.m and their description is shown in Figure 3.3.
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Figure 3.3: Matlab semread_function: parameters and description

Based on these data, the Matlab function gnssconstellation.m returns the satellite
positions and velocities at the datetime t. Positions and velocities are specified in
the ECEF coordinate system. If the timezone for the datetime is not specified, it
is assumed to be UTC.
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3.1.2 Definition of the position of the IoT receiver and
generation of the networked receivers

To build the experimental scenario, first of all we need to define the position of the
IoT receiver. The position is randomly set within a specified area, identified by its
geodetic coordinates (maximum - minimum latitude and longitude, plus average
altitude). The initial area for training was chosen to correspond to Germany, given
the edges in Figure 3.4. In terms of altitude, the average value over Germany is
used: 263m 1.

Figure 3.4: Edges (Lat, Lon) of the area where the scenario is developed

Once the position of the IoT receiver is determined, it is possible to generate the
networked receivers. We chose to consider a worst-case situation, where the number
of networked receivers is 4. The idea is to have them randomly distributed within
a certain radius Rtol with respect to the IoT receiver. The assumption is to use a
200m radius (see also 3.1.3, where a plausibility check of the maximum radius is
done).

1https://www.worlddata.info/
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Figure 3.5: Distribution over Germany of the dataset and detail of a single
set including the IoT receiver ("IoT") and the 4 surrounding networked receivers
("Rec")

A first dataset of 500 points has been created following this approach - see Figure
3.5, where both the distribution of the points on the area and a detail of the single
row (IoT plus the 4 networked receivers) is shown. The attributes that need to be
defined for the receivers are listed in Table 3.1

The position of the IoT receiver is defined with respect to geodetic coordinates
(Latitude Longitude Altitude, or LLA), then translated into both East North
Up (ENU) and Earth Centered Earth Fixed (ECEF) coordinates. The geodetic
coordinates are preferred when the main need is to locate a point on the Earth’s
surface; however, they are less practical when, for instance, the networked receivers
must be generated within a certain radius from the IoT "center". Also, the velocity
of the receivers will be likely available in local ENU coordinates, rather than
in Geodetic or ECEF coordinates. For all these reasons, once the IoT receiver
coordinates have been defined, they are translated into local coordinates using the
Matlab function lla2enu.m (Appendix D) and only afterwords the 4 networked
receivers’ positions are generated (again, in ENU coordinates).
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attribute unit description
name [string] name of the receiver (1,2,...,n)

mask angle [deg] random mask angle with respect to available satellites
azimut [deg] azimut angle with respect to satellites in view

elevation [deg] elevation angle with respect to satellites in view
visibility [-] number of satellites visible from the receiver
sat ID [-] satellite identification number

satNum [-] number of satellites in view
VisibleSatPos [m,m,m] position of satellites in view, ECEF coord
VisibleSatVel [m/s,m/s,m/s] velocities of satellites in view, ECEF coord
position dms [deg,min,sec;deg,min,sec] position of the receiver in lat,lon
position alt [m] altitude of the receiver
position lla [deg,deg,m] position of the receiver in lat,lon,alt
position enu [m,m,m] position of the receiver, EastNothUp coord
position ecef [m,m,m] position of the receiver, ECEF coord

posdiff [m,m,m] difference in position between satellite and receiver
losVector [m,m,m] line of sight between satellite and receiver

velocity enu [m/s,m/s,m/s] velocity of the receiver, EastNothUp coord
velocity enu [m/s,m/s,m/s] velocity of the receiver, ECEF coord
velocity ecef [m/s,m/s,m/s] velocity of teh receiver, EastNothUp coord
pseudorange [m] pseudorange between satellite and receiver

pdot [m/s] pseudorange rate between satellite and receiver
pseudorange matlab [m] pseudorange computed using Matlab toolbox function

pdot matlab [m/s] pseudorange rate computed using Matlab toolbox function
bias [s] receiver clock bias

integer [-] number of integer repetitions of codes in pseudorange
delay [s] delay computed from pseudorange

doppler [1/s] doppler frequency computed from pseudorange rate
delay matlab [s] delay from pseudorange (Matlab toolbox function)

doppler matlab [1/s] doppler frequency from pseudorange rate (Matlab toolbox function)

Table 3.1: Attributes of the Receivers

Normally, due to environmental constrains, such as the presence of tall buildings or
trees, a certain receiver might not be able to see all the satellites available at that
specific time. By specifying a random mask angle for each receiver, it is possible
to cut out of the view a certain number of satellites, thus making the scenario
more realistic. Once this has been done, we use the Matlab function lookangles.m
(Appendix E) to calculate azimut and elevation of the satellites in view and then
cut out all the non-relevant data (i.e., coming from non-visible satellites).
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Figure 3.6 shows an exemplification of satellites position (at a certain time instant
t) with the elevation masks (a) and a depiction of the LOS and NLOS satellites for
the user due to environmental constraints (b).

Figure 3.6: Example of mask angles: (a) distribution of the satellites with the
elevation angles and (b) LOS and NLOS satellites for the user

3.1.3 Computation of the pseudoranges and pseudoranges’
rates based on visible satellites

In our environment, the IoT receiver is placed at the center of an area of radius
Rtol. In the same area, there are 4 networked receivers, and each of them has a
certain number of satellites in view, which means, has all the relevant information
required to compute the pseudorange and the pseudorange rate. The Matlab
function pseudoranges.m (Appendix F) takes as inputs:

• the receiver position, in geodetic coordinates;

• the visible satellites’ positions, specified as an S-by-3 matrix in ECEF coordi-
nates, where S is the number of satellites;

• the receiver velocity, in local coordinate system;

• the visible satellites’ velocities, specified as an S-by-3 matrix in ECEF coordi-
nates, where S is the number of satellites.
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The clock bias is not taken into account in this formula; for this reason, it is
not formally correct to talk about pseudorange. To get an effective pseudorange,
the data returned from the function must be corrected using the information on
the clock bias. An alternative computation (see Appendix G), which has been
developed for this work, uses:

• for the calculation of the pseudorange, the difference between receiver and ith

satellite positions, both expressed in ECEF coordinates, plus the clock bias;

• for the calculation of the pseudorange rate, the dot product of the difference
between receiver and ith satellite positions and the LOS (i.e. the unit vector
for position difference).

All the work has been developed under the assumption of having a zero clock
bias for all the receivers. Realistic values can be in the order of 10−6s. For what
concerns the velocities of the receivers instead, it is made the assumption that the
IoT receiver is not moving, while the networked receivers velocities are comparable
to those of people walking (3 to 6 km/hour).

Once the pseudorange and pseudorange rate have been calculated, it is possible to
simulate the information on code delay τ and Doppler frequency fd:

τ = ρ % LCODE (3.1)
fd = (fL1 · ρ_rate)/c (3.2)

where ρ and ρ_rate are the ones previously computed, fL1 is the carrier frequency
and LCODE is calculated as:

LCODE = p · Lchip, (3.3)

where p is the code length and Lchip = c/Rchip, with c equal to the speed of light.

The referred values for carrier frequency, code length, code duration, chip duration
and chip rate are shown in Appendix A.

28



Methodology, design and set-up of the experimental scenario

Check of the integer number of code repetition
For a receiver that has in view n satellites, the integer number of code repetitions
for all of these satellites is the same. If this condition was not met, the code delay
parameter would lose its meaning and role in the satellite’s identification process.

Figure 3.7: Illustration of code replicas meaning: for a receiver that has in view
n satellites, the integer number of code repetitions for all of these satellites must
be the same

With reference to the simulation scenario, we must make sure that all of the
networked receivers are located within an area that guarantees that the same
number of integer code repetitions is shared amongst the pseudoranges. By means
of increasing the tolerance radius Rtol, it has been verified that the data are always
consistent for networked receivers located within a 23km radius from the IoT
receiver (see Appendix H). This value is well larger than the 200m radius used for
the development of the simulation environment.

3.1.4 Processing of the dataset before data export
Before moving to machine learning tools, the data have been pre-processed by
applying some further constraint. In particular:

• for every point of the dataset, all of the receivers (networked and IoT) must
have at least 6 satellites in common; where this condition is not met, the data
point is discarded;

• for every point, we want to export the same number of features; it has been
chosen to limit the data to 6 common satellites in view for each receiver.
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Based on the assumptions above, whenever the receivers share more than 6 satellites
in view, only the data related to the first 6 are part of the data export, while all
the others are not taken into account.
Considering the number of features to be processed, a dataset made of 500 points
has been created.

Table 3.2 shows the final set of parameters that will be processed with ML tools.
Networked receivers are numbered 1 to 4, while the IoT receiver is identified as
receiver 5.

label unit description
lati deg latitude of the i-th receiver
loni deg longitude of the i-th receiver
alti [m] altitude of the i-th receiver
xi [m] x-ECEF coordinate of the i-th receiver
yi [m] y-ECEF coordinate of the i-th receiver
zi [m] z-ECEF coordinate of the i-th receiver

biasi [s] clock bias of the i-th receiver
taui1 [s] delay of the i-th receiver to satellite 1
taui2 [s] delay of the i-th receiver to satellite 2
taui3 [s] delay of the i-th receiver to satellite 3
taui4 [s] delay of the i-th receiver to satellite 4
taui5 [s] delay of the i-th receiver to satellite 5
taui6 [s] delay of the i-th receiver to satellite 6

doppleri1 [1/s] doppler of the i-th receiver to satellite 1
doppleri2 [1/s] doppler of the i-th receiver to satellite 2
doppleri3 [1/s] doppler of the i-th receiver to satellite 3
doppleri4 [1/s] doppler of the i-th receiver to satellite 4
doppleri5 [1/s] doppler of the i-th receiver to satellite 5
doppleri6 [1/s] doppler of the i-th receiver to satellite 6

xavg [m] x-ECEF average coordinate of the 4 networked receivers
yavg [m] y-ECEF average coordinate of the 4 networked receivers
zavg [m] z-ECEF average coordinate of the 4 networked receivers

Table 3.2: Data export; networked receivers are numbered 1 to 4, while IoT is
identified as receiver 5
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3.2 Machine Learning
Once that the data are available, we want to assess if is it possible to estimate
the IoT receiver position using the information shared by the networked receivers.
Below is a recap of the assumptions and constraints applied to the input dataset:

• the IoT receiver can be located anywhere in the area delimited by the coordi-
nates specified in Figure 3.4;

• for each IoT receiver, n = 4 networked receivers are randomly generated to
lay within a radius Rtol = 200m from the center IoT location;

• for every receiver, a random mask angle has been defined, ranging from 0 to
20 degrees;

• the clock bias is always set equal to zero;

• the networked receivers are all moving slowly (e.g., a person walking or
running);

• the IoT receiver is not moving;

• for every receiver (networked and IoT), there must be at least 6 satellites in
view;

• for every point of the dataset, all of the receivers (networked and IoT) must
share at least 6 satellites in view; any additional data is truncated.

As already stated in section 2, since we’re treating a supervised regression problem,
it is essential to split the dataset into training set, validation set and test set. The
reason is that, the learning algorithms tends to tailor their learning parameters
based on the available information. A very high accuracy in the prediction over
the training set (overfitting) can result in poor results on a different dataset. The
ability to find the best data-fitting is different from the ability to predict, which is
instead what is expected from a machine learning tool.
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Definition of the target output
With reference to Figure 3.4, for every receiver the location is specified both in
geodetic (or Latitude Longitude Altitude (LLA)) and ECEF coordinates. During
the first experiments, the choice of the geodetic coordinates as target output has
shown extremely poor results. The error was in fact ranging in the order of 103m,
totally out of span if compared to the radius of 200m. It must be kept in mind that
at the equator 1◦ of latitude corresponds approximately to 111km, which means
that a low numerical error on LLA coordinates will lead to high inaccuracy in
the prediction. Moreover, the relation between pseudorange and LLA coordinates
is highly non-linear, due to the local models for altitude estimation (i.e., Geoid
WGS84, see Appendix B). For the reasons above, all of the experiments have been
conducted setting the ECEF coordinates as target output. The predictions are
then translated back into geodetic coordinates, and finally to the ENU frame, to
be compared, also graphically, to the "real" IoT position.

Data Normalization
In our dataset, the features can be extremely different in magnitude: they’re
ranging from the LLA coordinates, in the order of 102, to the ECEF coordinates, in
the order of 107. Some of the features, like for instance Doppler frequency, can have
negative values. Such a discrepancy in numeric values for the different features can
greatly affect the performance of the algorithm. The best practice in this case is to
normalize all of the entries before running the code. In our case, each feature x
has been normalized as:

xnormalized = x − µ(x)
σ(x) ; (3.4)

where µ is the mean of the feature and σ is its standard deviation.

Figures 3.8, 3.9 and 3.10 show how the definition of the target output (LLA
coordinates instead of ECEF coordinates) and the normalization of the data have
affected the results of the models. In the first experiments, when using as output
variables the geodetic coordinates, the IoT receiver position was estimated to be
totally far-off the true location (see Figure 3.8, where the vertical axis scale goes
up to 50km). When using instead the ECEF coordinates as outcome variables,
without normalizing the data, the models would still return estimates totally out
of range (see Figure 3.9, where the vertical axis scale goes up to 20km). Finally,
the choice of ECEF coordinates as output variables and the normalization of the
data has proved to give results consistent with the input dataset - see Figure 3.10,
where all the results are lying within a 200m radius.
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Figure 3.8: Distance from the true position of the IoT receiver using LLA
coordinates as output target and no normalization: the estimation is totally out of
span.

Figure 3.9: Distance from the true position of the IoT receiver using ECEF
coordinates as output target and no normalization: the estimation is still out of
span.

Figure 3.10: Distance from the true position of the IoT receiver using normalized
ECEF coordinates as output target: the estimation is within the correct range
(< 200m).
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Single Scalar Metric
The easiest method to make an estimation on the IoT receiver position without the
need of any machine learning tool is to use an averaged value from the networked
receivers’ positions:

xavg = 1
N · qN

i=1 xi , yavg = 1
N · qN

i=1 yi , zavg = 1
N · qN

i=1 zi ,

where N = 4 is the number of the i networked receivers and the coordinates x, y, z
are the ones defined in ECEF domain.

To ease the interpretation of the results, a Single-Scalar Metric (SSM) index has
been defined, as the ratio between the mean square error of the position estimated
by the machine learning (MSEML) and the mean square error of the position
calculated as the average of the 4 networked receivers’ positions (MSEavg):

SSM = MSEML

MSEavg

. (3.5)

If the SSM index is lower than 1, the prediction of the ECEF location done with
the machine learning is better than the simple average of the networked receivers’
positions.

3.2.1 XGBoost
XGBoost provides a number of tuning hyperparameters that must be appropriately
modulated to optimize the model. Table 3.3 describes the main hyperparameters
that have been leveraged to build the model in XGBoost.

hyperparameter description use
objective determines the loss function to be used mean squared error has been chosen as optimizer in the regression
lambda L2-regularization term low values could lead to overfitting
alpha L1-regularization term low values could lead to overfitting

colsample bytree percentage of features used per tree high values could lead to overfitting
subsample percentage of samples used per tree low values could lead to underfitting
max depth determines how deeply a tree is allowed to grow high values can result in data overfitting

n estimators number of trees we want to build to be tested, can’t tell a-priori the effect on data fitting
learning rate step size shrinkage it is used to prevent overfitting

Table 3.3: XGBoost Hyperparameters
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Given the number of hyperparameters to be identified (and the ranges to be
screened), the tuning has been done using Optuna, an automatic hyperparameter
optimization framework2. This decision has led to split the dataset into two
portions:

• a set of 200 samples, to be used by Optuna for the selection of the best
fitting parameters (of these, the 80% will be used for training and the 20% for
validation);

• a set of 300 samples, to be used for training (200 samples) and validation (100
samples) once the hyperparameters have been selected in Optuna.

Figure 3.11: Illustration of data split for XGBoost - use of Optuna library for
hyperparameters optimization

A common practice in regression problems where data are split into training and
validation sets is to divide the overall dataset into k different sub-sets to perform a
k-fold Cross-Validation. At every iteration k:

• one sub-set is selected to be the validation set;

• all the others k − 1 sets are used for the training.

2Free download at https://anaconda.org/conda-forge/optuna
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Figure 3.12: Illustration of cross validation for XGBoost

This approach allows a better estimation of the actual accuracy of the model. For
our work, we have used a 3-folds cross validation, plus we have included in the
training set the data used for Optuna (see Figure 3.12, where the sets are identified
as A, B, C).

To stress the importance of splitting the data into separate training and validation
sets, Figure 3.13 shows the results on the x, y coordinates obtained during the
first trials done in XGBoost, where the same dataset was incorrectly used for both
training and validation. Data were not even normalized at that time, but the
results of the ML estimate look outstanding, with a Single-Scalar Metric of 0.18.
Rather than being a "prediction", this is a result of data fitting (overfitting).
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Figure 3.13: Incorrect use of machine learning techniques: average position
predicted by XGBoost is extremely close to the real position (zero) only due to
data overfitting (training dataset = validation dataset)

The training in Optuna can be done with reference to a single parameter at a
time. Separate runs of Optuna have been done using first x, and then y, as target
optimization parameters. It has been observed that the importance assigned to
the hyperparameters changes consistently, with a predominance, for y coordinate,
of the learning rate, while the same hyperparameter is way less important when
optimizing with respect to x coordinate.

This behavior can be seen in the results over both training and validation datasets.
When comparing the two optimization, the Single Scalar Metric is lower on the
training set (better fitting), but higher on the validation set - see Figure 3.15.
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Figure 3.14: Hyperparameter importance in Optuna

With XGBoost is also possible to evaluate how significant each feature (i.e., input
parameter) has been in the construction of the boosted decision trees within the
model.
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Figure 3.15: Results over training and validation dataset with XGBoost

In our case, there isn’t a clear relevance of a specific feature for all the receivers, so it
happens, for instance, that the code delays of the third receiver with respect to the
satellites n◦3 and n◦5 have been useful, but there is no general trend of the model
particularly relying on code delay information. Doppler frequency instead has
been, generally, classified with a lower importance. Based on these considerations,
additional trials have been done excluding some features, like Doppler frequency
and receiver velocity, but there has been no sensible improvement in the data. The
only effect has been a minor worsening of the fitting on the training dataset vs. a
minor improvement of the fitting on the validation set.
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3.2.2 Keras
In Keras we’re dealing with two levels of tuning, one related to the structure to
assign to the neural network, and the other referred to the model optimization (for
a given network structure).

As for the structure, the main parameters to be defined are:

• the number of nodes / neurons at Input Layer : the number of features that
have to be used as model inputs;

• the number of nodes / neurons at Output Layer : the number of features that
need to be predicted by the model output;

• the number of Hidden Layers: the number of hidden layers between input and
output;

• the number nodes / neurons for each Hidden Layers

• the activation function: used to determine a non-linearity into the output of a
node / neuron. Rectified Linear Unit (ReLU) function is used at input and
hidden layers, while linear identity function (no activation) is used at output
layer.

Figures 3.16, 3.17 and 3.18 show an example of the difference in results that can be
achieved over training and validation datasets when changing the number of hidden
layers and of their nodes. As for the model optimisation, the Adam optimizer has
been chosen3 and tested with different values of learning rate.

Similarly to what has been done for XGBoost, the data are normalized and split
into training and validation (validation_split n = 20%). The loss function (i.e.,
the function to be minimized during the training phase) is the mean squared error.
The training phase in Keras can be advantageously managed by using an Early
Stopping function, that terminates the training once that the loss is found to be no
longer decreasing. The Early Stopping requires in input the maximum number of
iterations ("Epochs") and a patience index, which corresponds to the number of
iterations with no improvement after which the training will be stopped.

3Adam is a stochastic gradient descent method, based on adaptive estimation of first-order
and second-order moments, see (https://keras.io/api/optimizers/adam/)
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Figure 3.16: Results when using 4 hidden layers, with 20 nodes each. The behavior
of loss and validation loss over the iterations show a high level of overfitting on the
training dataset

Figure 3.17: Results when using no hidden layers. The ability of learning of the
network is negligible (underfitting)

Figure 3.18: Results when using one hidden layer with 5 nodes. Learning and
prediction are well balanced
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2-nodes or 1-node output layer
When it comes to define the nodes at the output layer, there are two possible
choices:

• using a single network to predict both x and y coordinates (2-nodes output
layer), or

• using two separate models, to do the optimization over x and y coordinates
separately (1-node output layer).

Given a certain number of input features, an independent network for each pa-
rameter is expected to maximize the learning capabilities of the model. On the
other hand, using a single network to predict more than one output (i.e., multi-task
learning) could be a better solution when the number of samples is limited with
respect to the number of features. It is difficult to say a priori which approach
could fit better. Both of them have been tested, and there is a slight improvement
when using a single network for both outputs.
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Chapter 4

Results

In this chapter, the results from ML processing are first validated, then the overall
results on the position estimation are discussed.

4.1 Validation of ML models
To understand if and in what extent the models in XGBoost and Keras can be
trusted, a first check can be done by applying those models to different sets of data.
A first validation has been carried out by testing 10 datasets, of 500 samples each,
generated over the same geographic region of the reference dataset (see Figure 3.4).

Figure 4.1: Comparison of results from XGBoost and Keras over 10 additional
validation sets created in the German area
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The results do not differ much from what obtained on the reference dataset; also,
the performance in XGBoost and Keras are comparable - see Figure 4.1. The SSM
is always lower than 1, meaning that the model estimate works better than the
simplistic model defined as the average of the networked receivers positions. In
particular, the estimation error on the IoT receiver position obtained using machine
learning tools is lower (typically, 10 to 20%) than the estimation error showed by
the simplified reference model.

To go further into models’ validation, new datasets have been created for other
geographic regions. The aim was to understand if we had developed a procedure
that could be used everywhere or if it was in some way "tailored" on the features
belonging to the original area (Germany). In detail, we have built:

1. 5 datasets of 500 samples each, created in a region shifted in longitude (e.i.,
further east than the German area), delimited by the cities of Brno (Czech
Republic), Gdansk (Poland), Prague (Poland) and Minsk (Belarus); we’ll refer
to this region as "Polish area" (see Table 4.2 and Figure 4.2).

2. 5 datasets of 500 samples each, created in a region shifted in longitude and
latitude (i.e., further west and south than the German area), delimited by
the cities of Seville (Spain), Bilbao (Spain), Porto (Portugal) and Zaragoza
(Spain); we’ll refer to this region as "Spanish area" (see Table 4.1 and Figure
4.2).

3. 1 datasets of 500 samples, created in a region delimited by the cities of Lusaka
(Zambia) and Kinshasa (Congo Democratic Republic); we’ll refer to this region
as "Congolese area" (see Table 4.3 and Figure 4.3).

4. 1 datasets of 500 samples, created in a region delimited by the cities of
Chelyabinsk (Russian Federation) and Astana (Kazakhstan); we’ll refer to
this region as "Russian area"(see Table 4.4 and Figure 4.3).

The general idea is to perform, first of all, a validation of the models obtained over
the reference dataset on all the other 4 regions. The results are shown in Figure
4.4. The prediction looks like degrading moving further east in longitude with
respect to the reference area. For the Congolese region, where we’ve moved below
the equator, the prediction look sensibly improved.

A final model validation is done by training the models over the Spanish and Polish
datasets, then performing the validation over the other areas. The results are
aligned with what already seen (Figure 4.5).
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Figure 4.2: Distribution of the sample points generated over different geographic
areas with respect to the experimental scenario: "Polish" and "Spanish" areas

location min Lat max Lat min Lon max Lon
Seville (Spain) 37.389092 - - -
Bilbao (Spain) - 43.263013 - -

Porto (Portugal) - - -8.597684 -
Zaragoza (Spain) - - - -0.889085

Table 4.1: Edges (Lat, Lon) of the
"Spanish" area

location min Lat max Lat min Lon max Lon
Brno (Czech Republic) 49.195060 - - -

Gdansk (Poland) - 54.352025 - -
Prague (Poland) - - 14.437800 -
Minsk (Belarus) - - - 27.561524

Table 4.2: Edges (Lat, Lon) of the
"Polish" area
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Figure 4.3: Distribution of the sample points generated over different geographic
areas with respect to the experimental scenario: "Russian" and "Congolese" areas

location min Lat max Lat min Lon max Lon
Kinshasa (Congo Democratic Republic) - -4.441931 15.266293 -

Lusaka (Zambia) -15.387526 - - 28.322817

Table 4.3: Edges (Lat, Lon) of the "Congolese" area

location min Lat max Lat min Lon max Lon
Chelyabinsk (Russian Federation) - 55.164442 61.436843 -

Astana (Kazakhstan) 51.160523 - - 71.470356

Table 4.4: Edges (Lat, Lon) of the "Russian" area
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Figure 4.4: Keras model is tested on the different validation dataset; the prediction
seems strongly improved when moving right below the Equator

Figure 4.5: Keras script is validated on Spanish and Polish sets, then validated
on other regions
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4.2 Position Estimation

A first evaluation of the receiver’s position estimate obtained through the ML
models can be done by looking at the distribution of their distance from the "true"
IoT position. Figure 4.6 shows the values of distance from the true IoT position
returned by both the reference model ("AVG", in red in the plot) and the ML
model ("ML", in blue in the plot - in this case, XGBoost), while the true position
of the IoT receiver coincides with the horizontal axis.

Keeping in mind the definition of SSM index (see 3.5), the values returned by
ML model are, in general, closer to the true position: the SSM over the tested
samples is 0.83. However, by looking at the detail of a single sample, it is clear
that the ML models do not always perform better than the simplified reference
model. There are cases, in fact, where the simplified reference model seems to
give a better estimate, or where the two models are basically returning the same
estimate (and hence there would be no advantages in using ML). A simple check
can be done defining a percentage of Machine Learning Asset (MLA):

MLA = 100 ·
qN

i=1 nMLi

Ntot

(4.1)

where Ntot is the total number of samples, and nML is equal to 1 if the ML model
estimates better than the simplified model, and equal to 0 otherwise:

For the samples shown in Figure 4.6, the MLA is around 70%, which is an informa-
tion to be considered together with the one coming from the SSM.

The values shown in Figure 4.6 are computed using local ENU coordinates; it is
sufficient to translate them into LLA to get a plot in geodetic coordinates. Figures
4.7, 4.8, 4.9 and 4.10 show three samples randomly chosen within the dataset.
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Figure 4.6: Distance from true IoT position based on simplified average model
(red) and ML model (blue)

Figure 4.7: Sample A: distance from the true position is 47.65m when using
reference simplified model and 25.08m when using XGBoost model
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Figure 4.8: Sample B: distance from the true position is 29.02m when using
reference simplified model and 15.52m when using XGBoost model

Figure 4.9: Sample C: distance from the true position is 105.46m when using
reference simplified model and 68.58m when using XGBoost model

Figure 4.10: Sample D: distance from the true position is 67.62m when using
reference simplified model and 57.15m when using XGBoost model
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Chapter 5

Conclusions

In the development of the work, we assumed to have an IoT receiver surrounded
by n networked receivers, sharing relevant information about their position. Based
on a dataset inclusive of both networked and IoT receivers position information,
different models have been trained, to assess whether machine learning could be
able to estimate the IoT position better than the bare average of the networked
receivers positions.

The estimation error on the IoT receiver position obtained using machine learning
tools is lower (typically, 10 to 20%) than the estimation error showed by the
simplified reference model. This observation is confirmed when doing a further
validation of the models, over geographic regions different from the one used to
generate the training dataset. Concerning, instead, the distance from the IoT
receiver, the estimations are in general showing a 50-meters offset with respect to
the “true” position. Although such a distance is not negligible, and considering
also that the work has been developed in an experimental environment (with
all the limitations that this entails), this preliminary study suggests that the
PVT estimation via machine learning could work and its use in support of PVT
estimation might be further investigated.
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Appendix A

GPS signal parameters

The values of code length and duration, chip duration and rate, and of the carrier
frequencies L1 and L2 are shown in Table A.1.

Code length p 1023 -
Code duration Tcode 1 ms
Chip duration Tchip 997.5 ns

Chip rate Rchip 1.023 Mchips/s
Frequency fL1 154 · 10.23 MHz
Frequency fL2 120 · 10.23 MHz

Table A.1: GPS code information
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Appendix B

Reference Frames

In order to compute the distance between a user and a satellite it is necessary for
them to share a common reference system. Positions can be expressed:

• in geodetic coordinates: longitude, latitude, height

• in local coordinates, such as East-North-Up reference frame

• in Earth-Centered-Earth-Fixed coordinates

Geodetic Coordinates
The position of the user is conventionally expressed in geodetic coordinates: longi-
tude, latitude and height.

Figure B.1: Latitude and Longitude
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Concerning height, or altitude, since the Earth is not spherical1 and not uniform
in density, an absolute height has to be defined with respect to an idealized mean
sea level. The surface which serves as the global zero reference for measurement of
height is the Geoid, which represents the locus of all points with the same gravity
potential best fitting the average sea level globally - see Figure B.2.

Figure B.2: Geopotential surface for Earth Gravitational Model (EGM 96)

A reference ellipsoid is defined for each navigation systems. For GPS, it is the
World Geodetic System (WGS 84).

Figure B.3: Parameters of WGS 84

1The Earth can be approximated as an ellipsoid of revolution, obtained by revolving an
ellipsoid about its minor axis (oblate ellipsoid)
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Local Coordinates (ENU)
When dealing with positioning and tracking application, a local, Cartesian coor-
dinate system might be more practical than Geodetic or ECEF coordinates. By
definition, local coordinates are based on the tangent plane determined by the
local vertical direction and the Earth’s axis of rotation (see Figure B.4). The three
coordinates represents the positions along the northern axis, the local eastern axis,
and the vertical position. Two right-handed variants exist: East-North-Up (ENU)
coordinates North-East-Down (NED) coordinates.

ECEF Coordinates
The Earth-centered, Earth-fixed coordinate system (ECEF) is a Cartesian reference
system meant to represents all the locations in the vicinity of the Earth (including
its surface, interior, atmosphere, and surrounding outer space). The origin of the
reference system is placed in correspondence of the center of mass of the Earth,
while the three axis are:

• z, along the axis of rotation

• x, in the equatorial plane, toward the vernal equinox2

• y, defined to complete a right-handed system

Figure B.4: Geodetic, ENU and ECEF coordinates

2It is the direction of intersection of the earth’s equatorial plane with the plane of earth’s
orbits around the sun
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Appendix C

Geometric Dilution of
Precision

With reference to the definitions given in section 2.1.3, the generic pseudorange
equation:

ρi =
ñ

(xi − xrec)2 + (yi − yrec)2 + (zi − zrec)2 + brec (C.1)

can be linearized by means of Taylor expansion around a known location (and
time) with coordinates ˆxrec, ˆyrec, ˆzrec and ˆbrec. The linearized equation will depend
on the displacement with respect to the approximation point:

∆ρ = ρ̂i − ρi = axi · ∆xrec + ayi · ∆yrec + azi · ∆zrec − ∆brec (C.2)

where:

∆xrec = xrec − ˆxrec;
∆yrec = yrec − ˆyrec;
∆zrec = zrec − ˆzrec;
∆brec = brec − ˆbrec;
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and the coefficients axi, ayi and azi are defined as:

axi = xi − ˆxrec

r̂i

;

ayi = yi − ˆyrec

r̂i

;

azi = zi − ˆzrec

r̂i

;

The quantity r̂i is the geometrical distance between the linearization point and the
satellite:

ri =
ñ

(xi − ˆxrec)2 + (yi − ˆyrec)2 + (zi − ˆzrec)2 (C.3)

In case 4 satellites are used, the equations C.2 can be written in a compact
expression as:

∆ρ = H · ∆x (C.4)

where H =


ax1 ay1 az1 1
ax2 ay2 az2 1
ax3 ay3 az3 1
ax4 ay4 az4 1

 is the matrix of the coefficients.

By rewriting the C.4 with respect to ∆x, we can define and solve an optimization
problem, that in its final expression can be written as:

∆x = (HT · H)−1 · HT ∆ρ (C.5)

In general, the matrix combination (HT · H)−1 · HT , which is sometimes called
the least-squares solution matrix, is a 4 x n matrix (where n is the number of the
satellites) and depends only on the relative geometry between the user and the
satellites at a certain time t. By applying the definition of covariance to the error
in the position and time estimate dx, after some mathematical operations [15], it
can be found that:

cov(dx) == (HT · H)−1 · σ2
UERE, (C.6)

with σ2
UERE is the square of the satellite User Equivalent Range Error (UERE).

The elements of the matrix (HT · H)−1 quantify how pseudorange errors translate
into components of the covariance of dx.
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In particular, the elements on the diagonal are the variance of the error in the
different dimensions (including time), while the off-diagonal elements indicate the
level of cross-correlation between the variables.
Defining:

G = (HT · H)−1 = gij (C.7)

For each dimension, it will be possible to express the error as:

σ2
xrec

= g11 · σ2
UERE

σ2
yrec

= g22 · σ2
UERE

σ2
zrec

= g33 · σ2
UERE

σ2
brec

= g44 · σ2
UERE

The standard deviation of the positioning error can be obtained as:

σ =
ñ

σ2
xrec

+ σ2
yrec

+ σ2
zrec

+ σ2
brec

· = GDOP · σUERE. (C.8)

Figure C.1: Example of high and low GDOP for different emitters geometries

The quantity:

GDOP =
√

g11 + g22 + g33 + g44 =
ñ

tr((HT · H)−1) (C.9)
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is the Geometric Dilution of Precision (GDOP) factor. This parameter is, by
construction, a function of the satellites’ geometry with respect to the user, while
the σUERE represents the pseudorange error factor.

To understand the meaning of the GDOP, Figure C.1 shows a simple example
of how the distribution of the emitters can impact on the final precision on the
position estimate.
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Matlab function lla2enu.m

1 function xyzENU = lla2enu (lla , lla0 , method)
2 % lla2enu Transform geodetic coordinates to local East -

North -Up coordinates
3 % xyzENU = lla2enu (lla , lla0 , method) transforms the

geodetic coordinates , lla , to local East -North -Up (
ENU) Cartesian coordinates , xyzENU. Specify the
geodetic coordinates either as a 3- element row vector

or an N-by -3 matrix of [lat , lon , alt ]. Specify the
origin of the local ENU system with the geodetic
coordinates , lla0 , as a 3- element row vector or an N-
by -3 matrix of [lat0 , lon0 , alt0 ]. The conversion
method is specified either as 'flat ' or 'ellipsoid ',
to specify if earth is assumed to be flat or
ellipsoidal . The local ENU coordinates are returned
as a 3- element row vector or an N-by -3 matrix of [
xEast , yNorth , zUp] in meters. lat and lat0 specify
the latitude in degrees . lon and lon0 specify the
longitude in degrees . alt and alt0 specify the
altitude in meters.

4 %
5 % Notes
6 % -----
7 % - The latitude and longitude values in the geodetic

coordinate system
8 % uses WGS84 standard .
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9 % - Altitude is specified as height in meters above
WGS84 reference

10 % ellipsoid .
11 %
12 % Limitations of the Flat Earth approximation
13 % -------------------------------------------
14 % - This transformation assumes the vehicle moves in

parallel to the
15 % earth 's surface .
16 %
17 % - This transformation method assumes the flat Earth z

-axis is normal to
18 % the Earth at the initial geodetic latitude and

longitude only. This
19 % method has higher accuracy over small distances

from the initial
20 % geodetic latitude and longitude , and nearer to the

equator . The
21 % longitude will have higher accuracy when there are

smaller variations
22 % in latitude .
23 %
24 % - Latitude values of +90 and -90 may return

unexpected values because of
25 % singularity at the poles.
26 %
27 % Example :
28 %
29 % %Define the geodetic coordinates
30 % lla =[45.976 ,7.658 ,4531];
31 %
32 % %Define the reference geodetic coordinates
33 % lla0 =[46.017 7.750 1673];
34 %
35 % % Transform from geodetic to local ENU coordinates

using the flat
36 % %earth approximation
37 % xyzENU = lla2enu (lla , lla0 , "flat ");
38 %
39 % See also lla2ned , enu2lla , ned2lla
40
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41 % Copyright 2020 The MathWorks , Inc.
42
43 % References
44 % ----------
45 % - [1] Stevens , B. L., and F. L. Lewis , Aircraft

Control and Simulation ,
46 % Second Edition , John Wiley & Sons , New York , 2003.
47 %
48 % - [2] Hofmann -Wellenhof , Bernhard , Herbert

Lichtenegger , and James Collins .
49 % Global positioning system: theory and practice .

Springer Science &
50 % Business Media , 2012.
51 %
52 %# codegen
53
54 narginchk (3 ,3);
55 validateattributes (lla , {'double '}, {" real", "

nonempty ", "2d", "ncols", 3}, " lla2enu ", 'lla ', 1);
56
57 validateattributes (lla0 , {'double '}, {" real", "

nonempty ", "2d", "ncols", 3}, " lla2enu ", 'lla0 ', 2);
58
59 method= validatestring (method , {'flat ', 'ellipsoid '},

" lla2enu ", "method", 3);
60
61 %Verify that the inputs are within the range
62 matlabshared . internal .latlon. validateLat (lla0 (: ,1)

,0);
63 matlabshared . internal .latlon. validateLat (lla (: ,1) ,1)

;
64 matlabshared . internal .latlon. validateLon (lla0 (: ,2)

,0);
65 matlabshared . internal .latlon. validateLon (lla (: ,2) ,1)

;
66
67 %Verify that input matrix sizes are correct
68 [minSize , idx ]= min ([ size(lla ,1) , size(lla0 ,1) ]);
69 if minSize ~=1 && size(lla ,1) ~= size(lla0 ,1)
70 if idx ==1
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71 coder. internal .error (" shared_coordinates :
latlonconv : IncorrectllaSize ");

72 else
73 coder. internal .error (" shared_coordinates :

latlonconv : Incorrectlla0Size ");
74 end
75 elseif size(lla ,1) == size(lla0 ,1)
76 idx =0;
77 end
78
79 if idx ==1
80 llatmp=repmat(lla ,size(lla0 ,1) ,1);
81 lla0tmp =lla0;
82 elseif idx ==2
83 lla0tmp =repmat(lla0 ,size(lla ,1) ,1);
84 llatmp=lla;
85 else
86 llatmp=lla;
87 lla0tmp =lla0;
88 end
89
90 xyzENU=nan(size(lla0tmp ,1) ,3);
91
92 switch method
93 case " ellipsoid "
94 % Transform to xyz in ENU frame using [2]
95 xyzENU=fusion. internal .frames. lla2enu (llatmp ,

lla0tmp );
96 case "flat"
97 % Transform to xyz in ENU frame using [1]
98 xyzNED = matlabshared . internal .latlon.

lla2nedFlat (llatmp , lla0tmp );
99 rotm =[0 1 0; 1 0 0; 0 0 -1];

100 xyzENU =( rotm*xyzNED ') ';
101 end
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Appendix E

Matlab function
lookangles.m

1 function [az , el , vis] = lookangles (recPos , satPos ,
maskAngle )

2 % LOOKANGLES Satellite look angles from receiver and
satellite positions

3 % [az , el , vis] = LOOKANGLES (recPos , satPos) returns
the look angles ,

4 % azimuth az and elevation el in degrees , of the
satellites using the

5 % satellite positions satPos in the Earth -Centered -
Earth -Fixed (ECEF)

6 % coordinate system in meters and the receiver
position recPos in

7 % geodetic coordinates in (latitude -longitude - altitude
) in

8 % (degrees , degrees , meters). The output vis is a
logical array specifying

9 % the visibility of each satellite . The visibility is
determined using

10 % the default receiver mask angle of 10 degrees .
11 %
12 % [az , el , vis] = LOOKANGLES (... , maskAngle ) returns

the look angles and
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13 % visibilities of satellites with a mask angle
maskAngle .

14 %
15 % Example :
16 % recPos = [42 -71 50];
17 % t = datetime ('now ');
18 % gpsSatPos = gnssconstellation (t);
19 % maskAngle = 5;
20 % [az , el , vis] = lookangles (recPos , gpsSatPos ,

maskAngle );
21 % fprintf ('%d satellites visible at %s.\n', nnz(

vis), t);
22 %
23 % See also gnssconstellation , pseudoranges ,

receiverposition , gnssSensor .
24
25 % Copyright 2020 The MathWorks , Inc.
26
27 %# codegen
28
29 if (nargin < 3)
30 maskAngle = 10;
31 end
32
33 validateattributes (recPos , {'double ', 'single '}, ...
34 {'vector ', 'numel ', 3, 'real ', 'finite '});
35 validateattributes (satPos , {'double ', 'single '}, ...
36 {'2d', 'ncols ', 3, 'real ', 'finite '});
37 validateattributes (maskAngle , {'numeric '}, ...
38 {'scalar ', 'real ', '>=', 0, '<=', 90});
39
40 [vis , az , el] = nav. internal .gnss. satelliteStatus ( ...
41 recPos , maskAngle , satPos);
42 end
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Matlab function
pseudoranges.m

1 function [p, pdot] = pseudoranges (recPos , satPos ,
varargin )

2 % PSEUDORANGES Pseudoranges between GNSS receiver and
satellites

3 % p = PSEUDORANGES (recPos , satPos) returns the
pseudoranges , in meters ,

4 % between the receiver at position recPos and the
satellites at positions

5 % satPos. The receiver position is specified in
geodetic coordinates

6 % (latitude -longitude - altitude ) in (degrees , degrees ,
meters). The

7 % satellite positions are specified as an S-by -3
matrix in meters in the

8 % Earth -Centered -Earth -Fixed (ECEF) coordinate system.
S is the number of

9 % satellites .
10 %
11 % [p, pdot] = PSEUDORANGES (___ , recVel , satVel)

returns the pseudorange
12 % rates , pdot , in meters per second , between the

receiver and satellites .
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13 % The receiver velocity , recVel , is specified in
meters per second in the

14 % North -East -Down (NED) coordinate system. The
satellite velocities ,

15 % satVel , are specified as an S-by -3 matrix in meters
per second in the

16 % ECEF coordinate system. S is the number of
satellites .

17 %
18 % [p, pdot] = PSEUDORANGES (___ , 'RangeAccuracy ',

rangeStd , ...
19 % 'RangeRateAccuracy ', rangeRateStd ) returns the

pseudoranges and
20 % pseudorange rates with random noises specified by

rangeStd and
21 % rangeRateStd , in meters and meters per second ,

respectively . The
22 % default value of rangeStd and rangeRateStd are 1 and

0.02 ,
23 % respectively .
24 %
25 % Example :
26 % recPos = [42 -71 50];
27 % recVel = [1 2 3];
28 % t = datetime ('now ');
29 % [gpsSatPos , gpsSatVel ] = gnssconstellation (t);
30 % [p, pdot] = pseudoranges (recPos , gpsSatPos ,

recVel , gpsSatVel );
31 %
32 % See also gnssconstellation , lookangles ,

receiverposition , gnssSensor .
33
34 % Copyright 2020 The MathWorks , Inc.
35
36 %# codegen
37
38 narginchk (2 ,8);
39
40 validateattributes (recPos , {'double ', 'single '}, ...
41 {'vector ', 'numel ', 3, 'real ', 'finite '}, ...
42 'pseudoranges ', 'recPos ', 1);
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43 validateattributes (satPos , {'double ', 'single '}, ...
44 {'2d', 'ncols ', 3, 'real ', 'finite '}, ...
45 'pseudoranges ', 'satPos ', 2);
46
47 % Parse optional inputs.
48 numOptArgs = numel( varargin );
49 validNumOptArgs = any( numOptArgs == [0 2 4 6]);
50 coder. internal . errorIf (~ validNumOptArgs , 'MATLAB:minrhs '

);
51 if ~ isempty ( varargin ) && isnumeric ( varargin {1})
52 recVel = varargin {1};
53 satVel = varargin {2};
54 validateattributes (recVel , {'double ', 'single '}, ...
55 {'vector ', 'numel ', 3, 'real ', 'finite '}, ...
56 'pseudoranges ', 'recVel ', 3);
57 validateattributes (satVel , {'double ', 'single '}, ...
58 {'2d', 'nrows ', size(satPos , 1), 'ncols ', 3, '

real ', 'finite '}, ...
59 'pseudoranges ', 'satVel ', 4);
60 optArgsStart = 3;
61 else
62 recVel = zeros(size(recPos), 'like ', recPos);
63 satVel = zeros(size(satPos), 'like ', satPos);
64 optArgsStart = 1;
65 end
66 numOptArgs = numOptArgs - (optArgsStart -1);
67 defaults = struct('RangeAccuracy ', 1, 'RangeRateAccuracy

', 0.02);
68 props = matlabshared . fusionutils . internal . setProperties (

defaults , ...
69 numOptArgs , varargin { optArgsStart :end });
70 rangeStd = props. RangeAccuracy ;
71 rangeRateStd = props. RangeRateAccuracy ;
72
73 validateattributes (rangeStd , {'double ', 'single '}, ...
74 {'scalar ', 'real ', 'nonnegative '}, ...
75 'pseudoranges ', 'RangeAccuracy ');
76 validateattributes (rangeRateStd , {'double ', 'single '},

...
77 {'scalar ', 'real ', 'nonnegative '}, ...
78 'pseudoranges ', 'RangeRateAccuracy ');
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79
80 % Convert input receiver position and velocity .
81 recVel = fusion. internal .frames. ned2ecefv (recVel , recPos

(: ,1) , recPos (: ,2));
82 recPos = fusion. internal .frames. lla2ecef (recPos);
83
84 % Calculate pseudoranges and pseudorange rates using

satellite and
85 % receiver positions and velocities .
86 [p, pdot] = nav. internal .gnss. calculatePseudoranges (

satPos , satVel , ...
87 recPos , recVel);
88
89 % Add measurement noises.
90 p = p + rangeStd .* randn(size(p), 'like ', p);
91 pdot = pdot + rangeRateStd .* randn(size(pdot), 'like ',

pdot);
92 end
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Appendix G

Alternative calculation of
pseudoranges and
pseudoranges rates

1
2 % OPT2 --> use my function
3 for i=1: num_rec
4 % calculate receiver position in ECEF frame
5 Receiver (i). position_ecef = rotation_lla2ecef ( Receiver

(i). position_lla (1 ,1) ,Receiver (i). position_lla (1 ,2) ,
Receiver (i). position_lla (1 ,3));

6 % calculate receiver velocity in ECEF frame
7 Receiver (i). velocity_ecef = rotation_enu2ecef ( Receiver

(i). position_lla (1 ,1) ,Receiver (i). position_lla (1 ,2) ,
Receiver (i). velocity_enu );

8 % calculate position difference
9 Receiver (i). posdiff = Receiver (i). VisibleSatPos -((

Receiver (i). position_ecef ).* ones (3, length( Receiver (i)
. VisibleSatPos )) ');

10 % calculate line of sight vector
11 Receiver (i). losVector = ( Receiver (i). posdiff )./

vecnorm (( Receiver (i). posdiff ), 2, 2);
12 % compute pseudorange
13 Receiver (i). pseudorange = vecnorm ( Receiver (i).posdiff

,2 ,2)+ Receiver (i).bias;
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14 % compute pdot
15 Receiver (i).pdot=zeros (1, length( Receiver (i).

VisibleSatVel ));
16 for j=1: length( Receiver (i). VisibleSatVel )
17 [ Receiver (i).pdot(j)] = dot (( Receiver (i).

VisibleSatVel (j ,:) -Receiver (i). velocity_ecef ),
Receiver (i). losVector (j ,:)) ';

18 end
19 end
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Appendix H

Check of the integer number
of code repetition

1 %% Machine Learning techniques for Positioning ,
Navigation and Timing in IoT devices

2 % build a simulation scenario including :
3 % gnss satellites
4 % n=4 gnss receivers , positioned randomly within a

selectable radius
5 % 1 IoT device that has to identify its own position

based on the
6 % informations on doppler frequency and delay coming

from the 4 receivers
7 %% STEP 1: generate the gnss constellation - later on we

'll include Galileo satellites
8 t= datetime (" today "," TimeZone ","UTC ");
9 d=t -2; % variable "d" is meant to represent a further

degree of freedom with respect to "t"
10 DATA= gnssDATA ;
11 [DATA ,TITLE ]= semread_function (d);
12 [satPos ,satVel ,satID] = gnssconstellation (d,DATA ,

GNSSFileType =" SEM "); % in ECEF coordinates
13 %% STEP 2: specify the position of the IoT receiver
14 % For sake of simplicity , we 'll define a radius R_tol (

calibratable , starting value is 200 meters)
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15 % The gnss receivers will be generated randomly within
the circle with radius R_tol

16 % The IoT device is located at the center of the circle
17 % The IoT device and the receivers positions are

specified in geodetic coordinates (latitude ,
longitude )

18 % altitude is based on avg altitude Turin (wrt sea level
)

19 IoT_receiver =IoT;
20 %prompt = 'specify the IoT receiver in terms of [LAT(deg

min sec);LON (deg min sec)]: ';
21 % IoT_receiver . position_dms =input(prompt);
22 IoT_receiver . position_dms =[45 04 47;7 37 55];
23 %prompt = 'specify the IoT altitude in meters: ';
24 % IoT_receiver . position_alt =input(prompt);
25 IoT_receiver . position_alt =239;
26 IoT_receiver . position_lla =[ dms_angle ( IoT_receiver .

position_dms ),IoT_receiver . position_alt ];
27 IoT_receiver . position_enu = lla2enu ( IoT_receiver .

position_lla , IoT_receiver .position_lla ,'flat ');
28 IoT_receiver . position_ecef = rotation_lla2ecef (

IoT_receiver . position_lla (1 ,1) ,IoT_receiver .
position_lla (1 ,2) ,IoT_receiver . position_lla (1 ,3));

29 IoT_receiver . velocity_enu =[0 ,0 ,0]; % initial assumption ,
to be generated randomly

30 IoT_receiver . velocity_ecef = rotation_enu2ecef (
IoT_receiver . position_lla (1 ,1) ,IoT_receiver .
position_lla (1 ,2) ,IoT_receiver . velocity_enu );

31 IoT_receiver .bias =0; % initial assumption
32 %% STEP 3: generate the gnss receivers / repeat from

here!
33 % specify position and velocity ; the receivers must be

located within a
34 % radius R_tol with respect to the IoT receiver
35 R_tol =23650; % define the circle of radius R_tol , in

meters
36 num_rec =4; % specify the number of receivers
37 % generate the object receivers
38 for i=1: num_rec
39 Receiver (i).name =['Rec ' num2str (i)];
40 end
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41 % STEP 3.1: generate the receivers positions by setting
randomly angle and distance wtr the IoT

42 % reference (0 ,0) in xy plane
43 % angles are 0 - 90 - 180 - 270
44 theta =2* pi *[0;1/4;1/2;3/4]; % angle in xy coord ref of

the receivers
45 % all the receivers are placed on the limit radius
46 dist=R_tol*sqrt(ones(num_rec ,1)); % distance of the

receivers from IoT device
47 x = IoT_receiver . position_enu (1 ,1) + dist .* cos(theta);
48 y = IoT_receiver . position_enu (1 ,2) + dist .* sin(theta);
49 % define avg altitude
50 a = 239; % meters , in Turin - to be checked again
51 alt = a *(1+0.1* ones(num_rec ,1));
52 % define gnss receivers position in EastNorthUp

coordinates
53 for i=1: num_rec
54 Receiver (i). position_enu =[x(i),y(i),alt(i)];
55 end
56 % translate gnss receivers position from ENU to Lat -Lon -

Alt
57 for i=1: num_rec
58 Receiver (i). position_lla = enu2lla ( Receiver (i).

position_enu , IoT_receiver .position_lla ,'flat ');
59 % correct a "wrong" estimation of the altitude with

method enu2lla
60 Receiver (i). position_lla (3)= Receiver (i). position_lla

(3) -a;
61 end
62 % plot the circle of radius R_Tol , the IoT and the

receivers location in
63 % geoplot
64 numCirclePoints = 360;
65 angle = linspace (0, 2 * pi , numCirclePoints );
66 xcord = IoT_receiver . position_enu (1 ,1)+R_tol*cos(angle);
67 ycord = IoT_receiver . position_enu (1 ,2)+R_tol*sin(angle);
68 x_cord_lla =zeros (360 ,3);
69 for i=1:360
70 x_cord_lla (i ,:)= enu2lla ([ xcord(i),ycord(i) ,0],

IoT_receiver .position_lla ,'flat ');
71 end
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72 circle = geopolyshape ( x_cord_lla (: ,1) ,x_cord_lla (: ,2));
73 geoplot (circle ,'-')
74 hold on
75 % geoplot of the IoT and receivers ' positions
76 geoplot ( IoT_receiver . position_lla (1 ,1) ,IoT_receiver .

position_lla (1 ,2) ,'ko')
77 text( IoT_receiver . position_lla (1 ,1) ,IoT_receiver .

position_lla (1 ,2) ,' IoT ', 'Color ','k');
78 hold on ,
79 for i=1: num_rec
80 geoplot ( Receiver (i). position_lla (1 ,1) ,Receiver (i).

position_lla (1 ,2) ,'r*')
81 text( Receiver (i). position_lla (1 ,1) ,Receiver (i).

position_lla (1 ,2) ,' Rec ', 'Color ','r','
VerticalAlignment ','bottom ');

82 hold on ,
83 end
84 % NOTE: use different colors or at least add legend
85 % STEP 3.2: generate the gnss receivers velocity and

clock bias
86 % specify a receiver velocity ( NorthEastUp )
87 % for sake of simpliccity , we consider people walking

3-6 km/hour
88 direction =2* pi*rand(num_rec ,1);
89 velocity_vect =(3+3* rand(num_rec ,1))/3.6;
90 vel_x= velocity_vect .* cos( direction );
91 vel_y= velocity_vect .* sin( direction );
92 vel_z=zeros(num_rec ,1);
93 for i=1: num_rec
94 Receiver (i). velocity_enu =[ vel_x(i),vel_y(i),vel_z(i)

];
95 end
96 % specify clock bias of the receivers (start with zero)
97 % later on , we can use 10e -06* rand
98 for i=1: num_rec
99 Receiver (i).bias =0*10e -06* rand;

100 end
101 % STEP 3.3: specify a mask angle and check which

satellites are in view
102 % generate a random mask angle for each receiver
103 for i=1: num_rec
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104 Receiver (i). mask_angle =0*20* rand;
105 end
106 % calculate azimut , elevation and satellites in view
107 for i=1: num_rec
108 [ Receiver (i).azimut , Receiver (i).elevation , Receiver (i).

visibility ] = lookangles ( Receiver (i).position_lla ,
satPos , Receiver (i). mask_angle );

109 % fprintf ('%d satellites visible at %s.\n',nnz( Receiver (i
). visibility ),t);

110 end
111 % cut out data from not visible satellites
112 for i=1: num_rec
113 [ Receiver (i).azimut , Receiver (i).elevation , Receiver (i).

VisibleSatPos , Receiver (i). VisibleSatVel , Receiver (i).
satID ]= satview (satPos ,satVel , Receiver (i).azimut ,
Receiver (i).elevation , Receiver (i).visibility ,length(
DATA. PRNNumber ));

114 end
115 %% STEP4: compute pseudoranges and pdot based on visbile

satellites
116 c = physconst (" Lightspeed ");
117 % OPT2 --> use my function
118 for i=1: num_rec
119 % calculate receiver position in ECEF frame
120 Receiver (i). position_ecef = rotation_lla2ecef ( Receiver

(i). position_lla (1 ,1) ,Receiver (i). position_lla (1 ,2) ,
Receiver (i). position_lla (1 ,3));

121 % calculate receiver velocity in ECEF frame
122 Receiver (i). velocity_ecef = rotation_enu2ecef ( Receiver

(i). position_lla (1 ,1) ,Receiver (i). position_lla (1 ,2) ,
Receiver (i). velocity_enu );

123 % calculate position difference
124 Receiver (i). posdiff = Receiver (i). VisibleSatPos -((

Receiver (i). position_ecef ).* ones (3, length( Receiver (i)
. VisibleSatPos )) ');

125 % calculate line of sight vector
126 Receiver (i). losVector = ( Receiver (i). posdiff )./

vecnorm (( Receiver (i). posdiff ), 2, 2);
127 % compute pseudorange
128 Receiver (i). pseudorange = vecnorm ( Receiver (i).posdiff

,2 ,2)+ Receiver (i).bias;
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129 % compute pdot
130 Receiver (i).pdot=zeros (1, length( Receiver (i).

VisibleSatVel ));
131 for j=1: length( Receiver (i). VisibleSatVel )
132 [ Receiver (i).pdot(j)] = dot (( Receiver (i).

VisibleSatVel (j ,:) -Receiver (i). velocity_ecef ),
Receiver (i). losVector (j ,:)) ';

133 end
134 end
135 %% STEP 5: compute code delay tau
136 % code length
137 p_code =1023;
138 R_chip =1.023 e06;
139 L_chip=c/R_chip;
140 L_CODE=L_chip*p_code;
141 % use calculation from OPT1 and OPT2
142 for i=1: num_rec
143 Receiver (i).delay=rem( Receiver (i).pseudorange ,L_CODE

);
144 Receiver (i). integer =fix( Receiver (i). pseudorange /

L_CODE);
145 end
146 %% CHECK THE CODE REPLICAS
147 for j=1: length( Receiver (1). integer )
148 if (( Receiver (1). integer (j)+ Receiver (2). integer (j)+

Receiver (3). integer (j)+ Receiver (4). integer (j))/
num_rec ) ~= Receiver (1). integer (j)

149 fprintf ('the code replicas are not consistent ! do
not use data\n');

150 else
151 fprintf ('all the code replicas are consistent \n

');
152 end
153 end
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