
POLITECNICO DI TORINO
Corso di Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

Gamification applied to Java development
and testing

Relatori

Prof. Marco TORCHIANO

Prof. Riccardo COPPOLA

Dott. Tommaso FULCINI

Candidato

Matteo FAVRETTO

Ottobre 2023

Summary

The importance of software testing has risen enormously given the ever-increasing
diffusion and importance of software in the modern world. However, this activity
tends to often be overlooked and neglected, especially in didactic contexts, because
of its intrinsic not creative, repetitive nature.

The goal of this thesis work is to apply gamification concepts, such as compe-
tition and the completion of goals, to the teaching of software testing concepts
to students, to increase their engagement with the activity and, in turn, promote
their understanding of the concepts and their importance.

The means to do so is Unit Brawl, an application designed to be employed
by students and teachers in the context of the laboratory sessions that are held
throughout the Object-Oriented Programming course for the Bachelor’s Degree in
Computer Engineering at the Politecnico di Torino. Students can use the application
to track their progress in the requirements for laboratory assignments and gauge
the quality of the tests they produce. Additionally, the application implements a
competition among students based on their submitted implementations and tests:
students are assigned points when the opponents’ submissions fail on their tests,
and when their submission passes an opponent’s tests.

This work analyses the data regarding the usage of the platform by the stu-
dents and their results during the laboratory session, assessing the impact of the
gamification mechanics and planning future developments for them.

ii

Acknowledgements

This thesis marks the end of a long, winding path that shaped the man I am today
in more ways than I can express. It is therefore appropriate to take a moment to
express my gratitude towards the people who have accompanied me on this journey.

Starting from my family, and specifically my mom and dad, you have been by
my side all along, supporting me in all my choices in more ways than I express.
Thank you for all the sacrifices you’ve made to help me along the way.

To my grandparents, the ones still with us as well as Nonna Rina and Nonno
Cesco. I hope I have made you proud.

To my friends. There is no need for me to list all of you, you know who you are.
I could have not asked for better friends, and I genuinely mean that. A lot of the
person I am today comes from having such a special group of people around me. I
hope you know how much you mean to me. Here’s to the next sticker albums we’ll
make.

And of course thanks to Professors Marco Torchiano and Riccardo Coppola,
and Doctor Tommaso Fulcini for the help in producing this thesis. It has been by
far the largest undertaking of my life so far, and your contribution has made the
difference.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms x

1 Introduction 1

2 Background 3
2.1 Software Testing . 3

2.1.1 Software Testing Life Cycle 4
2.1.2 Test-Driven Development . 6
2.1.3 Test Classification . 6

2.2 Gamification . 7
2.2.1 The Octalysis framework . 8
2.2.2 Gamification in Software Testing 11

3 Design 14
3.1 Context of the application . 14
3.2 Overview of the gamified process 15

3.2.1 Phase 1: Developing and submitting a solution for the as-
signment . 15

3.2.2 Phase 2: Free-for-all . 17
3.3 Gamification mechanics . 19

3.3.1 Requirements List and Coverage Dashboard 19
3.3.2 Scarcity of Time . 21
3.3.3 Avatars and Customization 21
3.3.4 Free-for-all, Scores and Leaderboards 21

4 Implementation 24
4.1 Server . 24

v

4.1.1 Database . 25
4.2 Front-ends . 25

4.2.1 Player front-end . 26
4.2.2 Admin front-end . 30

4.3 Dockerization . 31
4.3.1 GitLab Continuous Integration 34

5 Results 37
5.1 Experiment organization . 37

5.1.1 Session 1: Control group (No platform) 37
5.1.2 Session 2: Platform Version 1 38
5.1.3 Session 3: Platform Version 2 40

5.2 Results and students’ feedback analysis 41

6 Conclusions 43
6.1 Possible future developments . 44

Bibliography 46

vi

List of Tables

2.1 The core drives of the Octalysis framework 10

3.1 Gamification mechanics . 22

5.1 Participation and test quality data for Session 1 38
5.2 Participation and test quality data for Session 2 39
5.3 Participation and quality data for the Session 3 40

vii

List of Figures

2.1 Software Testing Life Cycle phases. 5
2.2 A view of CodeDefender’s graphical user interface. 12
2.3 A view of Testable’s graphical user interface 13

3.1 Requirements table displayed upon checking progress. 16
3.2 Coverage dashboard presenting, from left to right, instruction cov-

erage percentage, method coverage percentage, and class coverage
percentage. 17

3.3 Example of a session with three players 18
3.4 Requirements table showing a problem with the first requirement. . 20
3.5 Coverage dashboard presenting, from left to right, instruction cov-

erage percentage, method coverage percentage, and class coverage
percentage. 20

3.6 Octalysis analysis of the gamification features 23

4.1 UML diagram representing the core application structure 25
4.2 Navigation bar . 26
4.3 Initial view of the Progress tab . 27
4.4 Requirement table . 27
4.5 Requirement table . 28
4.6 Coverage dashboard . 29
4.7 Global leaderboard displaying the complete ranking, with the top

user highlighted in gold and the current user in green 29
4.8 Local leaderboard displaying only the user and the opponents imme-

diately above and below them . 30
4.9 Initial Docker stack structure for the core containers of the application 33
4.10 Complete Docker stack structure, including the Nginx proxy container 34

5.1 Test result distribution in Session 1 38
5.2 Test result distribution in Session 2 40
5.3 Test result distribution in Session 3 41

viii

Acronyms

BPMN
Business Process Model and Notation

CI
Continuous Integration

PO
Programmazione a Oggetti

SUT
System Under Test

UML
Unified Modeling Language

x

Chapter 1

Introduction

In the modern world, software is becoming more and more pervasive. From Internet-
of-Things to smartphones, to cloud services, and so on, code and software influence
an increasing part of human life. With such an ever-increasing importance, the
importance of testing such software has been growing as well. Testing software
means, in general, verifying that it behaves as expected, both during its normal
operations and when it needs to handle malfunctions. Consequences of inaccurate
testing, or lack thereof, can be dire, and examples of this are not uncommon: from
the NASA orbiter that crashed on Mars in 1999 due to its software using the
Imperial system of measurement rather than the metric one [1] to the seven years
in which the hole in the ozone layer over Antarctica remained undetected (from
1978 to 1985) because the data analysis software used by NASA would ignore
values that deviated from the expected range, or the bug in the Therac-25 medical
radiation therapy device that caused it to emit a much higher dose of radiation
than the safe amount, causing at least three patients to die as a direct consequence
of radiation overdose [1], the costs of poorly tested software can be enormous,
both in monetary terms and in human lives. And even when it does not come to
such dramatic events, producing low-quality, untested code adds to the so-called
technical debt of a project: whenever imperfect or untested code is produced, this
figurative debt grows, and sooner or later developers will have to pay it back, in
the form of reviewing old code, testing it and, often, fixing problems that may have
been noticed much earlier, and fixed much easier, if only the code had been tested
sooner.

Despite all the reasons and arguments that can be made for software testing,
it is still an activity that is often overlooked, neglected, or done poorly. This
also happens in academic environments: students who are taught software testing
concepts do not find the activity particularly engaging, because of its repetitive,
scarcely creative nature. Furthermore, once an assignment has been completed, at
least apparently, testing the implementation might seem unnecessary.

1

Introduction

Therefore, this thesis work aims to develop a tool to promote software testing in
an academic context, incentivizing students to test the software they produce. To
do so, the concept of gamification has been employed. Gamification refers to the
use of design elements characteristic of games in non-game context [3], to facilitate
the engagement of users in a given activity, and it has been successfully employed
in various fields, from teaching to organizational productivity, knowledge retention,
crowdsourcing and more. Specifically, this work focuses on the development of Unit
Brawl, a platform to promote and gamify the process of developing and testing Java
code. This platform has been made available to the students of the Object-Oriented
Programming course in the Bachelor Degree in Computer Engineering, for the
academic year 2022-2023.

This thesis work will follow the following structure:

• Chapter 2 - Background will present the main concepts that this work is based
on: from software testing, its life cycle and various types, to gamification and
the specific framework that was considered for this work, while also presenting
some existing examples of gamified tools for software testing

• Chapter 3 - Design will illustrate the mechanics of the application, analyzing
the concepts and ratio behind them

• Chapter 4 - Implementation will explain the application’s architecture, from
the server in the back-end to the two different front-ends, as well as the way it
was packaged in a Docker container and deployed on the Politecnico’s website

• Chapter 5 - Validation will present the results of the employment of the
application in the context of the course

• Chapter 6 - Conclusions will review the overall work and present some general
considerations of it, as well as possible further analysis and developments to
be carried out in the future

2

Chapter 2

Background

Unit Brawl aims at promoting high-quality software testing using gamification
elements. The goal of this chapter is to delve into what software testing and
gamification are. In particular, the various phases of software testing will be
presented, as well as the various possible types of software testing according to the
most common classifications.

2.1 Software Testing
Software Engineering is a branch of engineering that focuses on the design, develop-
ment, testing, and maintenance of software applications. The design phase includes
the planning of a solution to target the requirements and needs. Development refers
to the actual implementation of the design produced in the previous step. Testing,
which is not necessarily a subsequent step to development, but rather an integral
part of it that allows to formally and empirically guarantee that the software
being developed behaves as expected. Lastly, maintenance refers to the process
of monitoring the completed system’s activity to detect possible anomalies and
resolve them as quickly and effectively as possible, as well as updating the system
throughout its lifecycle, adding new features, refining existing ones, and correcting
possible implementation errors. The focus of this work will be on the testing phase,
a vital but sometimes overlooked part of Software Engineering. The IEEE Standard
Glossary of Software Engineering Terminology provides the following definitions
[5]:

• test: an activity in which a system or component is executed under specified
conditions, the results are observed or recorded, and an evaluation is made of
some aspects of the system or component

• verification: the process of evaluating a system or component to determine

3

Background

whether the products of a given development phase satisfy the conditions
imposed at the start of that phase

• validation: the process of evaluating a system or a component during or at
the end of the development process to determine whether it satisfies specified
requirements

We can therefore define software testing as an activity carried out to verify whether
a given application or one of its components satisfies the requirements that were
specified for it, by recording or observing its behaviour.

2.1.1 Software Testing Life Cycle
The Software Testing Life Cycle (STLC) [10] provides a formal framework to
ensure that a given piece of software meets its requirements and is free of defects.
This framework is articulated in a series of phases, each of which presents specific
deliverables. The overall goal across the whole process is to find and document any
possible defect of the software application as early as possible: the earlier in the
process a defect is discovered, the easier it is to address and resolve it with lower
costs, both in terms of money and effort required.

The Software Testing Life Cycle consists of the following phases:

1. Requirement Analysis: this is the phase where the requirements are defined
as clearly as possible, consulting with the application’s stakeholders to clarify
potential ambiguities.

2. Test Planning: during this phase, the efforts and costs of the testing activity
are estimated, and a testing strategy is developed by selecting the testing
methods and techniques that will be used.

3. Test Case Development: the goal of this phase is to produce detailed test
cases, possibly also including the needed test data. The test cases produced
must cover the scope that has been defined in the earlier phases.

4. Test Environment Setup: this activity can be carried out in parallel with
the previous phase, and consists in creating the environment in which the
tests will be executed. This can include hardware configuration, operating
system settings, software configuration, test terminals, and more.

5. Test Execution: during this phase, the previously assembled test cases are
executed in the selected environment, recording eventual defects found as well
as their severity and priority. It is important to emphasize that this phase
may need to be repeated multiple times, until all defects have been found and
fixed, and the software is deemed ready for the release.

4

Background

Figure 2.1: Software Testing Life Cycle phases.

6. Test Closure: this final stage of the process consists of documenting all
the results obtained, including the defects found and solved, as well as all
the activities carried out during the testing process. This phase should also
include the recording of feedback that can be useful to improve future testing
processes.

5

Background

2.1.2 Test-Driven Development
An area in which software testing is of particular importance is the test-driven
development (TDD) approach [6]. Test-driven development is defined by D. Janzen
and H. Saiedian as writing automated tests prior to developing functional code in
small, rapid iterations. The idea is to convert the application’s requirements into
test cases that reflect them, and the development process should aim at producing
code that passes such tests. In JUnit in Action (Manning Publications, 2003)
V. Massol and T. Husted have stated that Test-Driven Development (TDD) is
a programming practice that instructs developers to write new code only if the
automated test has failed and to eliminate duplications. The goal of TDD is ‘clean
code that works’ [8]. We can also find another definition of TDD by the Agile
Alliance [2]: "Test-Driven Development” refers to a style of programming in which
these activities are tightly interwoven: coding, testing (in the form of writing unit
tests), and design (in the form of refactoring). It can be succinctly described as the
following set of rules:

• write a “single” unit test describing an aspect of the program

• run the test, which should fail because the program lacks that feature

• write “just enough” code, the simplest possible, to make the test pass

• “refactor” the code until it conforms to the simplicity criteria

• repeat, “accumulating” unit tests over time

Overall, Test-Driven Development is reported to significantly reduce defect rates
and the effort required by the final phases of the development process, at the cost of
a moderate increase in the initial effort. Test-Driven Development has an integral
role in Extreme Programming (XP), an Agile development methodology that aims
at developing object-oriented software in very short iterations with little upfront
design[6].

2.1.3 Test Classification
It is possible to classify software testing techniques according to different criteria.
A first example would be the classification based on the specificity of the test:

• unit tests aim at verifying the correctness of single software units, e.g.
methods or classes.

• integration testing is aimed at checking the interactions between multiple
software units

6

Background

• system testing checks the system as a whole

• user interface (UI) testing focuses on the user interface, testing the possible
interactions between the user and the system

• acceptance testing is used to determine to what degree an application meets
the end users’ approval[4]

Another form of test classification considers the technique being adopted, and the
knowledge of the element under test that is available to the tester:

• black-box testing is performed having no notion of the internal implementa-
tion of a software unit or application and only considers input and expected
vs actual output

• white-box testing requires full knowledge of the implementation of the
element being tested and aims at covering all possible code execution paths
within it

• mutation testing aims at designing new tests and evaluating the quality of
existing ones, by altering a program in a small way and checking whether the
test suite can detect the change (or mutation)

• exploratory testing has individual users freely explore the application,
interact with it, and hopefully discover defects that were not covered in the
scope of other tests[9]

Lastly, other types of tests include:

• performance testing that focuses on verifying that the application satisfies
performance-related requirements

• stress testing determines the robustness of an application when operating
beyond the limits of normal operation[12]

• penetration testing is used to assess the system’s security and its ability to
withstand an attack

• usability testing is used to assess the effectiveness and ease of the user
experience

2.2 Gamification
Gamification is defined by Deterding et al. as the use of design elements character-
istic of games in non-game contexts[3]. It is often employed as a tool to increase

7

Background

and facilitate the engagement of users, a practice that is used in various contexts,
such as teaching, organizational productivity, knowledge retention, crowdsourcing,
and more.

The game design elements used for gamification have been formalized by Robson
et al. in the MDE (Mechanics - Dynamics - Emotions) framework[11]. Mechanics
are the decisions made by the designers of the gamified experience to communicate
to the users the goals, rules, settings, context, types of interactions, and boundaries
that are in place in the experience. They are constant, meaning that they do
not change from player to player or from the first time a user engages with the
experience to the next time. Dynamics emerge from the mechanics put in place
by the designer of the experience as how the user follows the mechanics to engage
with the activity. They refer to the strategic decisions and interactions that
occur in the experience. They pose a challenge to the designer of the experience,
since they are not always predictable with absolute certainty, and can lead to
unintended behaviors, which can be positive or negative in relation to the goal of
the experience. Lastly, emotions are the mental affective states that are evoked
within the participants of the gamified experience. They can be viewed as the
product of the mechanics put in place, and the generators of the dynamics that
occur among the participants during the experience.

2.2.1 The Octalysis framework
The framework that guided the design of the application is the Octalysis Framework,
created by Yu-kai Chou and presented in his book Actionable Gamification -
Beyond Points, Labels and Leaderboards[7]. This framework identifies eight main
gamification mechanics groups, called core drives, based on the psychological aspects
on which the various mechanics are based. The eight core drives are the following:

• Epic Meaning & Calling: the author defines this core drive as “the drive
where a player believes that he is doing something greater than himself or he
was ‘chosen’ to do something”. It is a drive that is often employed by adding
a narrative layer to a gamified experience.

• Development & Accomplishment: this drive is based on the feeling of
progress, developing skills, and overcoming a challenge.

• Empowerment of Creativity & Feedback: this drive aims at involving
the player in the creative process, within the boundaries of the experience,
allowing them to express themselves and receive feedback about the resulting
product of his creativity.

• Ownership & Possession: it is the drive based on the idea of making the
player feel as if they own something, such as virtual currencies or goods within

8

Background

the context of the gamified experience, and making them protect and improve
what they own.

• Social Influence & Relatedness: this drive revolves around social dynamics
within the context of the gamified experience, both in a positive light, such
as mentorship, alliances, and companionship, and in a negative light, such as
competition and envy.

• Scarcity & Impatience: it is a drive based on the idea of promising something
to the player that they cannot obtain right away, but they have to wait or put
in effort to obtain it.

• Unpredictability & Curiosity: his drive is based on the sense of anticipation
and curiosity generated by not knowing what is going to happen, implying
random-based elements or mechanics that are undisclosed to the user to
stimulate their engagement

• Loss & Avoidance: lastly, this drive exploits the desire to prevent something
bad from happening, for example, an event that might cause all the progress
to be lost.

It is possible to group the core drives according to different criteria. Note that
the following classifications and the nomenclature they use do not aim at having
scientific value, but only at providing a general understanding of their meaning.

Left-Brain Drives VS Right-Brain Drives

The first classification is the one that divides the drives into two groups, called
left-brain and right-brain drives. The eight drives have been arranged in the octagon
representing the framework according to this definition, therefore Accomplishment,
Ownership, and Scarcity are left-brain drives, while Empowerment, Social Influence,
and Unpredictability are right-brain drives. Left-brain drives are the ones that
are more closely related to logic, calculations, and ownership, and are based on
extrinsic motivation, meaning that they provide motivation based on the desire to
obtain something. Right-brain drives, on the other hand, relate more closely to
creativity, self-expression, and social aspects, and are based on intrinsic motivation
referring to the fact that they rely on the intrinsic appeal of the activity they entail
rather than on the promise of reaching a goal or obtaining an item.

We can observe how left-brain drives are the most employed because they are
the easiest to implement and provide the quickest results. However, studies have
shown that if the user stops being offered the extrinsic motivator, their motivation
will decrease to much lower than when the motivator was first offered. Moreover,
excessively employing left-brain drives might lead to stagnation and possibly drive

9

Background

users away from the experience. Right-brain techniques are therefore needed,
considering how they can provide the user with a much deeper motivation and
connection to the experience, when used properly.

White-Hat Mechanics VS Black-Hat Mechanics

A second possible classification identifies two groups of mechanics, called white-hat
and black-hat. While the previous classification was based on the psychological
traits and aspects exploited by the mechanics, this classification is based on the
emotions and sensations that are evoked by the mechanics. White-hat mechanics
aim at producing a positive feeling in the user, such as satisfaction for having
reached a goal or a sense of control and pride for the items they own, while black-hat
mechanics are designed to provide negative sensations in the user, such as anxiety
for a possible negative event occurring in the context of the experience.

The two groups are best suited for different purposes and contexts: black-hat
mechanics are effective for scenarios like an e-commerce online store, in which the
anxiety of missing out on an offer can prompt users to perform purchases that
they would not otherwise have. While dealing with a longer-running experience,
however, black-hat mechanics can have the opposite effect: if the user associates
their experience with the product solely to feelings such as addiction or anxiety, it
is only natural that, over time, they will be driven away from the product by the
compounding of those sensations, or by the discovery of new and more appealing
stimuli. This is where white-hat mechanics can prove effective, balancing the
black-hat ones and keeping the user engaged with the product. It is worth noting
that black-hat mechanics are not always and only negative: when employed in a
balanced and transparent fashion they can prove extremely effective in approaching
new users.

Core Drive Left/Right
Brain

Black/White
Hat

Epic Meaning and Calling - White
Development and Accomplishment Left White
Empowerment of Creativity and Feedback Right White
Ownership and Possession Left -
Social Influence and Relatedness Right -
Scarcity and Impatience Left Black
Unpredictability and Curiosity Right Black
Loss and Avoidance - Black

Table 2.1: The core drives of the Octalysis framework

10

Background

2.2.2 Gamification in Software Testing
As previously mentioned, gamification elements can be effectively employed in
various contexts. A typical example of this is their use as an educational tool,
promoting students’ engagement by providing a novel approach to the topics being
taught and stimulating a more active interaction with them from the students.
This thesis focuses on this context specifically, analyzing the effects of gamification
elements when applied in teaching software testing concepts and techniques.

As a preparatory analysis, a few tools and platforms that use gamification in
the context of software testing have been selected and examined.

The first tool presented is CodeDefenders. It is a competitive tool in which
two teams face each other working on a Java class: one team plays the role of
the attacker, while the other plays as the defender. The goal of the attacker is to
create mutants, which are variants of the starting class, while the defender has
to write tests that discover and “kill” the mutants. The defender team can see
where the attackers have introduced a mutant, but they cannot see what has been
changed. The defenders’ goal is, therefore, to write unit tests that pass against the
original class but fail against the mutant, to discover and "kill" it. Once a mutant
has been killed, the defenders can see what changes have been made. The goal of
the attackers, as mentioned, is to introduce variants of the starting class that go
undetected. However, it could be possible for an attacker to create a variant of the
class that is semantically different from the original class, but functionally the same.
In other words, attackers can write an alternative implementation of an existing
class that behaves in the same way as the original. By doing so they would create a
so-called equivalent mutant, that would be undetectable using unit tests because it
would pass all the tests that pass on the original class. If the defender thinks that
the attacker wrote an equivalent mutant, the defender can accuse the attacker, who
can then submit a test that succeeds on the original class but fails on the mutant
to prove that it was not, in fact, an equivalent mutant. The game is played by
assigning points to the players, to the defender when they write tests that find and
kill mutants and when they correctly claim that the attacker wrote an equivalent
mutant, and to the attacker when they write mutants that go undetected by the
tests, or when they provide tests that successfully prove that a mutant was not
equivalent when accused by the defender.

We can refer to the Octalysis framework and identify the core drives employed
in the design of CodeDefenders:

• Epic Meaning & Calling: the narrative layer referring to attackers and de-
fenders constructed on the application leverages this core drive, allowing the
players to abstract their activity from mere coding.

• Development & Accomplishment: by providing a scoring system and leader-
boards, the player can have clear feedback on their results versus the other

11

Background

players.

• Empowerment of Creativity & Feedback: this core drive is intrinsically tied
to the coding activity in general since the way mutants and tests are written
heavily depends on the single player’s methods.

• Social Influence & Relatedness: by splitting players into teams and having
them compete against each other, social dynamics are put in place.

Figure 2.2: A view of CodeDefender’s graphical user interface.

Another interesting case of the application of gamification in software testing
is represented by the framework developed by Costa et al., which is of partic-
ular interest for the articulated narrative layer that it employs, leveraging the
Epic Meaning & Calling core drive from the Octalysis framework. Notably, this
framework also represents an example of gamification in the context of exploratory
testing. Participants are identified by one of three roles: a specialist, having full
knowledge of the system being explored, a judge recording the actions performed
by the users, and testers, who are the students themselves, freely exploring the
system. Their goal is to explore the system, noting possible defects and flaws,
recording them, and assigning them a priority level. A report of their activity is
then generated, and in the second part of the experience, the testers can examine
and grade each other’s reports, according to specified criteria and provide a justifi-
cation for the scores they assign. The specialist will then proceed to examine the
actions recorded by the judge in the first part of the activity and the evaluations
submitted in the second part, rewarding the players based on their performance.

12

Background

Another core drive leveraged by the framework is the Ownership & Possession one,
providing the users with customizable avatars and the possibility to exchange the
points they earn with customization items. Other notable core drives used by the
framework are Social Influence & Relatedness, for the competitive component of
the activity, Development & Accomplishment, introducing a scoring system based
on performance, and Unpredictability & Curiosity, for the chance to obtain bonus
points assigned by the specialist on the base of merit and performance.

Such a framework highlights the positive value that a strong narrative component
can have on the testing experience: users reported a liking for the narrative context,
which was based on the cinematographic franchise “Pirates of the Caribbean”.

Lastly, the Testable tool represents yet another virtuous example of gamification
in teaching software testing concepts and techniques, focusing on unit testing.
Much like the previous framework, Testable provides a strong narrative component,
in which the user helps Buggy, an insect wanting to learn programming, to write
quality code by creating unit tests, competing against aliens, his adversaries. The
narrative layer is supported by a detailed graphical user interface, which is coherent
with the narrative premises. Moreover, the tool exploits the Social Influence &
Relatedness core drive in a way that helps the tool itself: users are rewarded for
sharing it on social media. This represents a way in which the drive can be used
by designers to help the tools and gamified experiences gain popularity, offering
rewards to the user.

Figure 2.3: A view of Testable’s graphical user interface

13

Chapter 3

Design

The goal of this chapter is to present the context in which Unit Brawl is designed to
be used, which is the Object-Oriented Programming course of the Bachelor Degree
in Computer Engineering at Politecnico di Torino. Then the mechanics used in the
application will be introduced, starting from the ones that were already in place at
the start of this work, and then illustrating the ones I introduced or reworked.

3.1 Context of the application
Unit Brawl is designed to be a didactic tool helping to teach software testing
concepts, with a particular focus on unit testing, during the Object-Oriented
Programming course held in the Bachelor Degree in Computer Engineering at
Politecnico di Torino. During the course, weekly laboratory sessions are carried out
by the students, in which they receive an assignment to complete by implementing
a simple Java application. Each student is given a personal repository, where they
can push their solution. When the deadline for the assignment expires, a test suite
is run on each student’s solution, generating a report using Maven’s Surefire and
JaCoCo plugins, and each student receives their report by email.

This situation, however, presents some flaws and room for improvement. When
students are presented with the concept of unit testing, they are encouraged to
write unit tests using JUnit, to check the validity of their solution. Nevertheless
writing such tests is not strictly part of the laboratories, and therefore several
students either do not write them or write low-quality tests. In addition to this,
due to the elective nature of the laboratories, some students opt not to participate
in them.

Unit Brawl is an attempt to address these problems by introducing the unit
tests as part of the requirements for each laboratory and providing the students
with a platform to gamify the testing activity, promoting participation and the

14

Design

production of high-quality tests.

3.2 Overview of the gamified process
This section aims to illustrate how the gamified process takes place during a session.
This happens in two steps: first, the students develop and submit a solution that
satisfies the requirements of the assignment, and second, after the expiration of the
deadline for the session, the free-for-all competition takes place.

3.2.1 Phase 1: Developing and submitting a solution for
the assignment

To achieve the main goal of the project, which is to promote students’ engagement
in the testing activity, the main catalyst that has been employed is competition
among students. The majority of the mechanics that were introduced or reworked
are aimed, directly or indirectly, to support this factor.

As previously mentioned, the goal for Unit Brawl is to create a platform to
gamify the testing phase of the laboratories, concurrently promoting participation
in the laboratory activities, which will last now two weeks instead of one. The
gamified process will have the students write unit tests for the Java application they
produce for each lab, using JUnit as a unit testing framework. The repositories for
each student will be created on GitLab, whose Continuous Integration will also be
used to generate intermediate reports. Finally, the students will be presented with
a web platform they will be able to interact with to perform various operations,
such as monitoring their progress in the laboratories.

From the publishing of the assignment, students have two weeks to implement
the required classes and methods, which must have the signature specified in the
assignment, and to produce unit tests for their solution, with a maximum number
of tests allowed. The tests will be used not only by the students themselves to
check the correctness of their solution, but they will also play a fundamental role
in the competition that will take part after the deadline for the assignment expires.

After joining the assignment and providing a link to their repository, students
will be able to access the “Progress” tab on the assignment page, which will allow
them to check their progress so far, displaying a button. By pressing it, the students
can trigger a progress check, in which the ideal tests are run on the last pushed
submission, cloning it from the repository at the link that was provided upon
joining the assignment. This check is designed to provide feedback to the students
while they’re carrying out the assignment and can be used even before the student
has provided any unit test. After the check, the student is presented with the
results:

15

Design

• if something went wrong, for example, if the pushed solution does not compile,
or the link they provided is invalid, an error message is displayed, explaining
what happened

• If the tests were completed, a table containing the requirements is shown. For
each requirement, the student can see whether it is completed, meaning that
all the required methods for it have been implemented and have passed their
tests, or if there are issues with it, such as missing methods or methods that
fail their tests.

Figure 3.1: Requirements table displayed upon checking progress.

If the check is performed successfully (even in case of test failures), the student
can proceed by checking the coverage of their tests. This check is designed to be
used after the student has provided a significant amount of tests: if performed
when no tests have been provided yet, or with a small number of them, the test will
of course return a very low coverage, which would not be a significant result. By
pressing the corresponding button, the coverage check is performed, running the
student’s tests on their solution and parsing the JaCoCo report that is generated.
The results are then presented to the student as circular progress bars, showing the
coverage percentage for classes, methods, and single instructions, to provide the
student with more contextualized information than simply the instructions covered.

16

Design

Since this check is performed on the student’s tests, their number is also checked,
notifying the student if it exceeds the limit specified for the assignment.

By visualizing the students’ progress using progress bars and tables we are
exploiting the Achievement core drive in the Octalysis framework: the visualization
of the progress is a powerful tool that allows the student to have a more concrete
idea of their accomplishments, and also a more precise feedback for where they
need to improve.

Figure 3.2: Coverage dashboard presenting, from left to right, instruction coverage
percentage, method coverage percentage, and class coverage percentage.

3.2.2 Phase 2: Free-for-all
When the deadline for the assignment expires, the laboratory session is closed,
and the free-for-all competition is carried out. The idea for this phase is to have
students compete against each other on the quality of their solutions and tests. To
do so, the application first collects the solutions and test suites submitted by all
the participants in the session. Then it filters them according to several criteria:

• the solution must compile with the tests submitted by the student. A submis-
sion that does not compile cannot be admitted to the competition, because it
would not be possible to run other students’ tests on it

• The submitted tests must pass on the student’s solution. This criteria is
designed in conjunction with the following one, to prevent students from
submitting tests that are specifically designed to fail, to get points from them
failing on other students’ submissions

17

Design

• the number of submitted tests must be lower than or equal to the maximum
number, specified in the assignment. This criterion is aimed at preventing
students from submitting a large number of tests designed to fail, which would
net them a high score by failing on all other students’ submission

• The ideal solution for the session must compile correctly with the tests sub-
mitted by the student.

• the submitted tests must pass on the ideal solution used as a reference

As for the ideal tests that are part of the ideal solution, it has been deemed
appropriate to assign a malus to the student if the submitted solution does not
pass them, but still admit them to the final competition. After the filtering phase
is complete, the remaining submissions are elaborated and a collective test suite is
assembled by putting together the tests produced by all the students. This suite
is then run on all the submissions, skipping, for each one, the tests written by
the author of the submission. This is because each student’s tests have already
been executed on their own submission as part of the filtering phase. The score
for each student is then computed from the results of the tests: each student gets
points every time their submission passes an opponent’s test and is, therefore, free
from the flaw the test is designed to detect, and every time one of their tests fails
on an opponent’s solution, therefore identifying a flaw in the opponent’s solution.
As previously mentioned, failing the ideal tests results in a malus assigned to the
student, which lowers the final score by 30%.

Figure 3.3: Example of a session with three players

18

Design

Leaderboards are then assembled with the computed scores: a session leader-
board shows the rankings for the present session, while a global leaderboard shows
the overall scores for all sessions.

3.3 Gamification mechanics
The goal of this section is to illustrate the various gamification mechanics used in
the development of the application and the ratio for their design.

3.3.1 Requirements List and Coverage Dashboard
The requirement list and a progress bar that students see when checking their
progress in the laboratory session leverages the Accomplishment core drive from
the Octalysis frameworks: it is a sort of quest list, that visualizes the progress of
the student in the assignment, showing them both their accomplishments, in the
form of completed requirements, and where they need to improve, displaying a list
of required methods that present issues (i.e. that fail their ideal tests). This helps
the student have a more precise idea of where they made a mistake, and therefore
where they need to improve. In case of incomplete requirements, the student can
also click on the faulty method to see a message indicating the type of error that
occurred in the test, to contextualize the mistake and get useful information about
it.

19

Design

Figure 3.4: Requirements table showing a problem with the first requirement.

Figure 3.5: Coverage dashboard presenting, from left to right, instruction coverage
percentage, method coverage percentage, and class coverage percentage.

20

Design

Similarly to the requirement list, the coverage progress bars also exploit the
Accomplishment core drive: they are produced by extracting and distilling data
from the JaCoCo report produced when running the student’s tests, allowing
the student to have a clear idea of the level of coverage obtained by their tests.
Students will see three coverage progress bars, showing the coverage percentage
obtained for instructions, methods, and classes respectively. The idea is to provide
students with a reasonable subset of information that will allow them to assess the
quality of their tests, and intuitively present such information. A first iteration only
showed the coverage percentage for instructions, but while such data might be the
most significant, it could also be misleading, in case for example of missed classes
or methods that have a small number of instructions, and that therefore would
still grant a high instruction coverage percentage even if completely overlooked.
Therefore the combination of the three percentages was considered to provide a
more holistic view of the overall coverage.

3.3.2 Scarcity of Time
A deadline is needed to precisely constrain the students and give everyone the
same time to complete the assignment. In addition to this, deadlines can be used
in relation to the Scarcity core drive from the Octalysis framework as a black-hat
mechanic that stimulates players to action. It is also used to trigger the free-for-all
process.

3.3.3 Avatars and Customization
Students receive virtual money upon submitting assignments and participating in
the free-for-all process. They can use such currency to purchase customization
items for their avatar, exploiting core drives such as Social Influence & Relatedness,
letting best-performing students “brag” about their achievements by sporting rare
and expensive items, but also Ownership & Possession, driving them to try and
obtain all possible virtual goods.

3.3.4 Free-for-all, Scores and Leaderboards
The second phase of the process, which starts when the deadline expires, implements
a competition between students based on the quality of their submissions and tests.
By nature of competition, this mechanic hinges on the Accomplishment core drive:
students are scored and ranked based on their work, receiving rewards such as
virtual money (to purchase customization items for their avatar, see later) and
badges for their efforts.

21

Design

The choice to provide two different forms of leaderboards, a global one and
another restricted to a given session, is based on the following: only displaying a
single, global leaderboard that encompasses all the laboratory sessions could end
up demoralizing the students who are in the lower rankings, which could give up
the laboratory sessions, while only producing single-session leaderboards would not
allow students to learn from their mistakes and improve themselves. Including both
leaderboards therefore requires some expedients to mitigate the discouragement for
lower-ranked players: leaderboards have been designed to show only the top three
ranked players and the ones ranked immediately above and below the current user.
This narrows the match only to the immediate competitors, as well as showing the
ones that are topping the charts. The idea behind this is to have students think
that they have a concrete possibility to overcome their competitors, even if they
happen to have a low overall score.

Mechanic Core Drive
Left/
Right
Brain

Purpose

Requirements
Table and
Coverage Dash-
boards

Development & Accom-
plishment Left

Quantify progress and
provide a sense of pro-
gression to players

Real-time feed-
back

Empowerment of Cre-
ativity & Feedback Right

Provide players with
feedback about their re-
sults

Leaderboards Development & Accom-
plishment Left Implement competition

among students

Scores Development & Accom-
plishment Left Assign numerical val-

ues to results

Virtual currency Ownership & Posses-
sion Left Purchasing customiza-

tion items

Avatar Ownership and Posses-
sion Left Self-expression and

bragging rights

Scarcity of Time Scarcity & Impatience Left Stimulate players to ac-
tion

Developing
assignment
solutions and
Unit tests

Empowerment of Cre-
ativity & Feedback Right Letting the player con-

trol the outcome

Table 3.1: Gamification mechanics

22

Design

Figure 3.6: Octalysis analysis of the gamification features

23

Chapter 4

Implementation

The goal of this chapter is to analyze in detail the architecture of the application
and its implementation, also illustrating how it has been deployed on Docker. The
core of the application is constituted by four elements interacting with each other:

• the server, acting as the middle point connecting everything

• the player front-end, accessible by the students, from where they can interact
with the application

• the admin front-end, accessible by the course faculty only, used to set up
and monitor the laboratory sessions

• the GitLab Continuous Integration tool, which interacts with the server
to produce intermediate reports for the students

The structure of the application is represented in Figure 4.1.

4.1 Server
The back-end of the application has been implemented, building on the existing
infrastructure, using the Node.js runtime environment. Node.js is an open-source,
JavaScript runtime environment commonly used to build web servers and real-time
applications, providing an event-driven, non-blocking I/O model. A peculiarity
of Node.js that makes it extremely pliant and versatile is the vast ecosystem of
packages and libraries available on it using its packet manager, called npm. Some
of these libraries have been used to implement the backbone of the system, starting
from the Express library. Such a library provides a straightforward, minimal way
to implement routes, middlewares, and handlers for HTTP requests, making it
extremely suitable for this application. Notably, its support for middleware allowed

24

Implementation

Figure 4.1: UML diagram representing the core application structure

the use of libraries to handle critical parts of the application, such as the Passport
library to handle user authentication.

4.1.1 Database
Another important component of the back-end of the application consists of the
database, used to store persistent information and data such as the registered
users and their credentials, scores, avatar items, and so on, but also data about
the laboratory sessions, links to the repositories, etc. The framework chosen to
implement the database is sqlite3, a Node.js library that provides an interface
allowing to manage a SQL database in JavaScript, performing CRUD (Create,
Read, Update, Delete) operations on entries to manage the application data.

4.2 Front-ends
As previously mentioned, two different front-ends have been developed, one for
the players (i.e. the students) and one for the admin. The framework used to
develop both front-ends is React, an open-source JavaScript library used to build
user interfaces in a declarative way. It has been chosen for its lightweight nature
and the way it easily integrates with different libraries and frameworks, providing
freedom in the development process.

The two front-ends have different purposes: the player front-end allows students
to sign up and log in to the application. Once logged in, they can monitor the
laboratory sessions and access the application’s main features, consisting of the
monitoring of their progress during the sessions as well as browsing the results. In

25

Implementation

addition to this, it is also possible to view and customize the player’s avatar.
The admin front-end, conversely, is destined to be accessed by faculty only. It

allows them to set up laboratory sessions by providing the needed information,
stop and delete ongoing sessions browse the results, as well as generating and
downloading reports (in the .xls format) on the laboratory activity.

4.2.1 Player front-end
When signing up, the student is prompted to input some required information, such
as their username, full name, and password. Once the form has been submitted,
they can log in with the specified credentials.
Note on usernames: Since the back-end needs to work with the student’s
submitted solution, and they have the option to name the folders as they like,
students have been asked to register using their student ID as their username, in
the format sXXXXXX, X being a digit, and to use the same ID as the name for
the test folder in their submissions. Test classes can be arranged freely inside such
folders. Using this convention, the back-end can look for the correct folder when
running the students’ tests or the ideal tests, as well as assemble a comprehensive
test battery during the free-for-all while also keeping track of the author of each
test, to know whom to assign the points.

Once logged in, the students can navigate various sections of the application
using a Navigation bar, provided with a series of tabs.

Figure 4.2: Navigation bar

Labs tab

In the Labs tab, students can browse the various existing laboratory sessions, and
join the active one if they haven’t already. By clicking on the join button, they
will be asked to input the link to the GitLab repository they have been provided
for the session, which will be stored and used to clone their solution during the
various checks and the free-for-all.

On the active lab view, the student can browse the laboratory requirements,
check the deadline, and trigger the progress check. On the Progress tab, clicking
on the Check progress button triggers the check. If the check fails, a card with an
error message is displayed, along with a button to retry the check. A different error
message is displayed if the check fails because of a compilation error.

26

Implementation

Figure 4.3: Initial view of the Progress tab

During the check, the ideal tests are cloned in the student’s submission and
executed on it. The templates given to the students are set up with the Maven
Surefire plugin, and executing the tests using Maven (i.e. using the command
mvn clean test -Dtest="PathToTests") generates a test report, both as a .txt
file and a .xml file. The XML file is parsed to aggregate the test results in a
suitable data structure, which is then used in the front-end to build the following
requirement table:

Figure 4.4: Requirement table

To correctly parse the test results, the ideal tests are named using the format
rX_testName, where X is the number of the requirement. This way it is possible
to parse the report, checking for each requirement if all the compulsory methods

27

Implementation

have passed their tests. If any test for a requirement fails or produces an error, the
error message returned is displayed to the student upon clicking on the defective
method, as in the following image:

Figure 4.5: Requirement table
with errors

After a successful check of the progress, the student can also require a coverage
check by pressing the Check coverage button. Such a button is displayed only
after a successful progress check, i.e. a check in which there are no server or
compilation errors. Faulty or missing required methods do not prevent the student
from checking the coverage, although they are encouraged to check the coverage
only after submitting a suitable number of tests to get significant information.
During a coverage check, the student’s own tests are executed on their submission.
The template provided to the students is set up with the JaCoCo plugin, which
produces coverage reports for Java tests. The report is generated only if there
are tests to be executed (i.e. if the student has written them, placed them in the
correct folder, and pushed them to the remote repository) and if they succeed. If
any of those conditions are not met, a message informs the student, also reminding
them of the correct folder location and name where to put the tests. If the report is
correctly generated, it is parsed to assemble a dashboard for the student, displaying
the coverage percentage for the instructions, methods, and classes in the form of
circular progress bars. A message is shown if the number of tests submitted by the
student exceeds the maximum threshold set for the laboratory session.

If the laboratory session is expired, the student can access the My Results tab,
where they can check the leaderboard for the session.

28

Implementation

Figure 4.6: Coverage dashboard

0.4

Figure 4.7: Global leaderboard displaying the complete ranking, with the top
user highlighted in gold and the current user in green

Leaderboard tab

The Leaderboard tab contains two distinct leaderboards. The first one is a local
leaderboard, which only displays the student’s position and the opponents immedi-
ately above and below them, or the second and third-ranked if the student ranked
first. The idea behind this is to employ urgent optimism, a powerful dynamic
where the player feels as if they have the actual and concrete opportunity to obtain
immediate results: in this instance by reaching and surpassing their immediate
competitors, while fending off pursuers. Showing only the complete leaderboard can
be discouraging for players who have struggled in a given session, possibly causing
them to abandon the laboratory sessions altogether. Nevertheless, a complete
leaderboard is a valuable piece of information and is therefore included in the

29

Implementation

Leaderboard tab as well.

0.4

Figure 4.8: Local leaderboard displaying only the user and the opponents imme-
diately above and below them

Shop tab

The Shop tab allows the user to browse available avatar items and purchase them
using the money earned from the laboratory sessions. There are items with prices
ranging from free to quite expensive, to offer both customization options even at
early stages and the “bragging rights” associated with boasting a rare and valuable
item earned through good results in the sessions.

Profile tab

The Profile section lets the user browse their profile, check their information, browse
their results for the sessions they took part in, select their avatar from the ones
they own, and check the achievement list.

4.2.2 Admin front-end
Faculty can access their reserved front-end to set up and manage laboratory sessions,
and download reports regarding the activities on the application.

After logging in, the administrator can view the existing laboratory sessions or
create a new one in the Labs tab. When creating a session the admin is prompted
to input the needed information, such as the title, deadline, requirements, link
to the ideal solution, and the maximum number of tests. The link to the ideal
solution is immediately tested upon submitting the session form by attempting to
clone the ideal solution and returning an error message should the operation fail.
Nevertheless, the link is editable at a later time as well.

If there is an active session, the admin can view the number of participants (i.e.
the number of students who have joined it), stop it manually, or delete it. If there

30

Implementation

is no active session, the admin can start the free-for-all process for any sessions in
which it has not been performed already, and browse the results.

The Leaderboard and Profile tabs in the navigation bar are the same as the
player front-end.

The Report tab allows the admin to download reports, in .xls format, about
various aspects of the laboratory activity, organized into four types of report:

• the general report contains the aggregate numbers of laboratory sessions and
players and the average number of participants and points per lab

• the users report contains, for each registered user, the credentials, the number
and percentage of sessions joined, and the average and best score

• the labs report contains, for each session, the number of participants, the
percentage of participants in relation to the total number of users, and the
average score

• the userLabs report offers a more detailed analysis of the performance of each
student in each session they took part in, including the score, number of
submitted tests, how many of their tests failed on an opponent’s submission,
and how many tests by an opponent passed on theirs.

4.3 Dockerization
To deploy it and make it accessible to the students from the Politecnico di Torino
website, Docker was used as the tool to encapsulate the application environment,
including its dependencies and configuration. This approach allows to streamline
the process of integrating the tool on the institution’s website, eliminating potential
compatibility issues.

I approached the task of Dockerizing the application first by creating a Docker
container for each part of the core application itself, i.e. the server and the two
front-ends. The server Docker image was created using the latest Alpine Linux
distribution available at the time, and then installing the needed libraries for the
server. Crucially, the server requires the installation of Node and npm to run the
Node Express server, Git to clone the students’ and ideal solutions, and Maven to
run the tests. In addition to this, the content of the package.json folder was copied
into the container and the command npm install was run to install all the needed
dependencies. Lastly, port 3001 was exposed to be able to send API requests to
the server. The content of the Dockerfile for the server is as follows:

1 FROM alpine : latest
2 RUN apk update
3 RUN apk add git

31

Implementation

4 RUN apk add --update nodejs npm
5 RUN apk add maven
6 WORKDIR / server
7 COPY package *. json ./
8 RUN npm install
9 COPY . .

10 EXPOSE 3001
11 CMD ["node", "index.js"]

Listing 4.1: Server Dockerfile

For both front-ends the starting point was a Node base image, then the content
of the respective package.json folders was copied into the containers, and the npm
install command was run, as follows:

1 FROM node: latest
2 WORKDIR / admin_frontend
3 COPY package *. json ./
4 RUN npm install
5 COPY . .
6 EXPOSE 3000
7 CMD ["npm", "start"]

Listing 4.2: Admin front-end Dockerfile

1 FROM node: latest
2 WORKDIR / player_frontend
3 COPY package *. json ./
4 RUN npm install
5 COPY . .
6 EXPOSE 3000
7 CMD ["npm", "start"]

Listing 4.3: Player front-end Dockerfile

As reported in the two Dockerfiles, port 3000 was exposed on both containers
to have them communicate with the server. At this point, the Docker stack was
organized as shown in Figure 4.9.

32

Implementation

Figure 4.9: Initial Docker stack structure for the core containers of the application

From here, Nginx has been used as a proxy to comply with Politecnico’s firewall
policy. This was necessary because, while the communication between the front-
ends and the server happens internally within the Docker stack and would work
correctly with the exposed ports specified in the Dockerfiles, requests coming from
the outside (e.g. from a student’s computer) would be blocked by the University’s
firewall, which prevents connections to such ports.

To address this, a proxy has been set up as a single access point for users,
granting access to the services provided by the Docker stack by exposing a port
that is accepted by the firewall and redirecting requests to the correct container
depending on the URL. Nginx is the tool used for this purpose. It is a simple,
open-source server, reverse proxy server, and load balancer, which has proved
suitable for the task at hand given its capability to handle a large number of
simultaneous connections.

The overall Docker structure is depicted in Figure 4.10.

33

Implementation

Figure 4.10: Complete Docker stack structure, including the Nginx proxy con-
tainer

The resulting Docker stack has then been deployed on the Politecnico server,
granting students access to the platform.

4.3.1 GitLab Continuous Integration
In addition to the functionalities offered by Unit Brawl, students can also access
the full JUnit reports in XML format on GitLab. This is because the templates
they’re provided with are set up with GitLab’s Continuous Integration (CI) tool, a
part of the GitLab platform that allows developers to automate the testing and
integration of software changes on a project. By placing a .gitlab-ci.yml file in
the root folder of the project, we can specify a script to be executed every time a
change is pushed to the repository. In our case, we can automate the execution of
the JUnit tests present in the student’s pushed solution and collect the resulting

34

Implementation

XML files containing the test report. This way, should a student want to access the
full original reports for their files they can, while Unit Brawl offers a more concise
and gamified representation of the same information.

The content of the .gitlab-ci.yml is as follows:
1 variables :
2 MAVEN_OPTS : >-
3 -Dhttps . protocols =TLSv1 .2
4 -Dorg.slf4j. simpleLogger . showDateTime =true
5

6 MAVEN_CLI_OPTS : >-
7 --batch -mode
8 --fail -at -end
9 --show - version

10

11 verify :
12 stage: test
13 tags:
14 - oop
15 script :
16 - ’DISPLAY =:1 mvn $MAVEN_CLI_OPTS test ’
17 artifacts :
18 when: always
19 reports :
20 junit:
21 - target /surefire - reports /TEST -*. xml
22

23

Listing 4.4: Script in the .gitlab-ci.yml file

This script specifies options to be used when executing the tests using Maven.
Specifically, the following options are present:

• –batch-mode specifies to run Maven in non-interactive mode, avoiding asking
for manual intervention or user interaction. This mode is usually used in CI
tools, where user interaction is not feasible and the goal is to have processes
run automatically

• –fail-at-end specifies that the execution should continue even in case of
failures, which should be reported at the end. This way all tests will be
executed even in case of test failures, which will be included in the final report,
rather than causing the execution to stop

• –show-version displays the Maven version being used

The verify job contains a single stage, named test, that is set to execute the
content of the script section, which is DISPLAY=:1 mvn $MAVEN_CL_OPTS test.

35

Implementation

The meaning of such a script is to run the command mvn test using the previously
defined options, to produce the test reports. The final section, artifacts, specifies
which files should be saved at the end of the process. Here we specify that the
files to be saved are .xml files whose name starts with TEST- located in the folder
target/surefire-reports. We also specify the files should be collected regardless
of the job’s success or failure, using the when: always option.

36

Chapter 5

Results

This chapter aims to analyze the results of the gamification experiment, as well as
discuss the feedback gathered from students.

5.1 Experiment organization
The experiment involved the last three laboratory sessions for the Object-Oriented
Programming course for the Bachelor’s Degree in Computer Engineering at Politec-
nico di Torino for the 2022-2023 academic year, during May and June 2023. The
selected sessions are the ones in which the students start to apply the concepts of
unit testing firsthand, after being introduced to them in class. The sessions will be
referred to in the following as Session 1, Session 2, and Session 3 respectively.

5.1.1 Session 1: Control group (No platform)
The first session was utilized as a control group to gather preliminary data regarding
the students’ normal behavior and approach to the laboratory activities, without the
use of the platform. For this session, students were not given any specific indication
other than to submit an implementation that satisfied the requirements of the
assignment and that included unit tests to verify its correctness. To submit their
implementation, students simply had to push it to the remote GitLab repository
they were provided with. There were 112 active participants in this session out of the
213 students officially enrolled in the course. To be considered active participants,
students had to have pushed at least one commit to the remote repository they
were assigned. Of these 112 participants, 59 submitted a solution that managed to
pass the acceptance tests provided by teachers, while the remaining 53 provided
a submission that failed at least one acceptance test. Data from session 1 are
presented in Table 5.1:

37

Results

Table 5.1: Participation and test quality data for Session 1

% on enrolled stu-
dents

% on active partici-
pants

Enrolled students 213 - -
Active participants 112 52.58% -
Submissions pass-
ing acceptance tests

59 27.69% 52.67%

Submissions failing
acceptance tests

53 24.88% 47.32%

The bar chart in Figure 5.1 presents the test result distribution considering only
the active participants in Session 1:

Figure 5.1: Test result distribution in Session 1

5.1.2 Session 2: Platform Version 1
For the second session, students were provided with an initial version of the platform,
which included the following features:

• Students could sign up and log in to the application.

38

Results

• They could check the requirements for the session.

• They could monitor their progress throughout the session by checking which
of the requirements were satisfied and which were not, while also getting
information about the type of error, if any.

• They could assess the coverage of their tests in terms of instructions covered,
methods covered, and classes covered, to gauge the quality of their tests.

This session recorded an overall decrease in student participation: as reported
in Table 5.2, the number of active participants for this session was 100. However,
the data showed an increase in the percentage of students’ submissions that passed
the acceptance tests relative to the total number of active participants: 55 students
provided a solution that passed the acceptance tests, while 45 submissions failed
the acceptance tests.

Table 5.2: Participation and test quality data for Session 2

% on enrolled stu-
dents

% on active partici-
pants

Enrolled students 213 - -
Active participants 100 46.95% -
Submissions pass-
ing acceptance tests

55 25.82% 55.00%

Submissions failing
acceptance tests

45 21.13% 45.00%

Figure 5.2 presents the test result distribution in Session 2:

39

Results

Figure 5.2: Test result distribution in Session 2

The test result distribution is aligned with the distribution in the Session 1.

5.1.3 Session 3: Platform Version 2
The version of the platform that was deployed for the last session included the
free-for-all feature in addition to the previous ones. For this session, the recorded
data presented 83 active participants out of the 213 officially enrolled students,
with 24 submissions successfully passing the acceptance tests and 59 submissions
failing the acceptance tests. The data are presented in Table 5.3:

Table 5.3: Participation and quality data for the Session 3

% on enrolled stu-
dents

% on active partici-
pants

Enrolled students 213 - -
Active participants 83 38.96% -
Submissions pass-
ing acceptance tests

24 11.26% 28.91%

Submissions failing
acceptance tests

59 27.69% 71.08%

40

Results

The test results distribution for Session 3 is presented in Figure 5.3:

Figure 5.3: Test result distribution in Session 3

5.2 Results and students’ feedback analysis
The experiment’s results have highlighted areas for improvement. A first aspect is
laboratory attendance: taking part in the laboratory sessions is of course highly
beneficial for the students’ learning since it allows them to experiment with the
concepts they have been taught in a firsthand fashion, without being guided by
the teacher, and therefore gaining a much clearer understanding of the notions
they’re presented. Moreover, they are bound to run into some issues and errors in
their implementation, which can prove a valuable source of knowledge and insight.
Nevertheless, the non-mandatory nature of the laboratories entails a percentage of
students not taking part in them. This is even further enhanced by the progressively
increasing difficulty of the laboratories throughout the course, which may discourage
students who have been struggling with earlier ones. Additionally, the deadlines
that are placed on each session might also cause some students’ participation not
to be recorded, if they happen to be catching up with the laboratories after they
have expired.

However, the recorded data can also support a more positive analysis: while the
percentage of active participants during the sessions has gone down throughout

41

Results

the experiment, laboratory session 5 has shown a slight increase in the percentage
of students who have managed to produce a solution that passed all the accep-
tance tests, in comparison with the control group session. This can indicate the
effectiveness of the requirement tracking feature of the platform: being able to see
clearly when a requirement has been completed can act as a powerful motivator
for students, who can see a visual representation of their progress. Moreover, being
able to see which of the required methods present issues, as well as the possibility
to read the error messages for each one, can help students pinpoint the problem in
their code, especially in the case of submissions that compile correctly but fail the
tests. Having an initial indication of "where to look" can ease the burden of having
to go over the code again to find the problem, and therefore increment the number
of students who do not give up in case of failed tests.

The participation percentage dropped significantly from session 5 to session
6. This can be dependent on several factors: from the increased difficulty of the
session to its proximity to the exam session, which might cause some students
to set the sessions aside and return to them later on, possibly after taking other
exams. In this context, assigning points as a participation bonus of sorts would
prove a powerful incentive for students to take part in all the sessions. Additionally,
a further bonus could be assigned to the students who have performed best across
the various sessions and have topped the leaderboards, to stimulate students to
produce quality submissions and tests.

Another way to increase students’ participation would be the implementation of
additional gamification mechanics: from customizable avatars, to allow students to
personalize their own and express themselves, to a list of achievements to obtain
during the course, such as participating in the first session, all of them, as well as
obtaining a given coverage percentage in one or more sessions, and more, which
would prove a good way to provide students with long-term goals and objectives
that would keep them going.

42

Chapter 6

Conclusions

This thesis work revolves around the design, implementation, and deployment
of a gamification platform whose main purpose is to promote the learning of
concepts of unit testing for Java applications to students enrolled in the Object-
Oriented Programming course for the Bachelor Degree in Computer Engineering in
Politecnico di Torino. The platform is designed to support the laboratory sessions
carried out throughout the course, in which students can apply the concepts learned
in class.

The platform leverages gamification mechanics to promote students’ engagement.
The main features of the application are two: the first one is a tracking feature,
that allows users to check whether the various requirements defined in the session’s
assignment are completed, and, if not, what type of error has risen. It is also
possible for users to check the coverage percentage of their tests, in terms of
instructions covered, methods covered, and classes covered, through a dashboard.

The second main feature of the platform is a form of competition based on the
students’ submissions and tests. When the deadline for a given session expires,
submissions are filtered according to specific criteria, and the ones that fit all of
them take part in the competition, in which the tests submitted by all students are
executed on each other’s submissions, assigning points accordingly. The resulting
scores are used to build a session-specific leaderboard, rewarding students with
virtual currency based on their position, and a global leaderboard, spanning all the
various sessions, implementing a championship of sorts among students.

The overall goal of promoting unit testing stems from the fact that this activity
is often overlooked and disregarded. By gamifying it, this work intends to improve
both the quantity and quality of unit tests produced by students.

43

Conclusions

6.1 Possible future developments
Upon analysis of the platform and its usage by students, some areas for improvement
have emerged.

A first aspect worth considering is an extension of the requirement tracking
feature, especially on the messages being displayed when a requirement is not
completed. Currently, the user is presented with the same error messages they
would get on an IDE when running the tests. While being able to see exactly which
errors refer to which requirement is indubitably useful, it would be beneficial to
provide the students with more specific information: in case of successful compilation
but unsatisfied requirement, for instance, a message with some information about
the type of error encountered, with an explanation of what typically causes such
an error, could be beneficial to help the students understand better the nature of
their mistakes.

Another possible useful change would be allowing students to use the tracking
features after the expiration of the deadline for a session. It is not uncommon for
students to delay tackling a laboratory session in favor of more pressing matters,
such as an imminent exam, to come back to them later on. Preventing them from
utilizing what is effectively one of the core features of the application after the
deadline would cut off these students altogether while allowing them to make use
of the platform anyway would let them benefit from the gamification approach to
their learning, even if it deferred. Of course, this cannot be done for the free-for-
all aspects, for reasons of fairness of competition, but since the tracking feature
provides a purely individual service, it could be reasonable to extend its availability
past the deadline.

Other future developments can be directed to features that are only in their
early stages of development, such as the achievement features. These achievements
are objectives that students can complete on a medium-to-long term, and include
goals such as taking part in their first session, or all of the sessions for the course,
ranking in the top 10 for a session, clearing all requirements for a session, and so
on. This mechanic can be motivating for students and can be integrated with the
competition aspect, by assigning points based on the achievements of students.
The avatar customization feature can be expanded as well, possibly also broadening
the customization to other areas, such as a user profile of sorts for students.

Lastly, the next possible step may be allowing students to use the application
for more sessions, possibly all of the sessions in the course. This would allow
for gathering more data about the application’s usage by students, but it would
require planning a restriction of the features initially accessible by users: since
they are presented with the concept of unit testing only after a few weeks in the
course, initially restricting the accessible features to only the requirement tracking
would be reasonable. This would allow them to still be guided throughout the first

44

Conclusions

assignments, without exposing them to concepts that have not been introduced in
class, which may cause confusion among the students and undermine the purpose
of the application itself. Then, once the needed concepts have been presented,
additional features such as the coverage tracker and the free-for-all can be unlocked,
also giving the students a sense of progression.

45

Bibliography

[1] SolarWinds Worldwide, LLC. 2009. url: https://www.pingdom.com/blog/
10-historical-software-bugs-with-extreme-consequences/ (visited
on 10/05/2023).

[2] Agile Alliance. 2023. url: https://www.agilealliance.org/glossary/tdd
(visited on 07/24/2023).

[3] Sebastian Deterding et al. «From Game Design Elements to Gamefulness:
Defining Gamification». In: vol. 11. Sept. 2011, pp. 9–15. doi: 10.1145/
2181037.2181040.

[4] Alexander S. Gillis. What is acceptance testing? 2021. url: https://www.
techtarget.com/searchsoftwarequality/definition/acceptance-test
(visited on 07/24/2023).

[5] «IEEE Standard Glossary of Software Engineering Terminology». In: IEEE
Std 610.12-1990 (1990), pp. 1–84. doi: 10.1109/IEEESTD.1990.101064.

[6] D. Janzen and H. Saiedian. «Test-driven development concepts, taxonomy,
and future direction». In: Computer 38.9 (2005), pp. 43–50. doi: 10.1109/
MC.2005.314.

[7] Yu kai Chou. Actionable Gamification: Beyond Points, Badges and Leader-
boards.

[8] Vincent Massol and Ted Husted. JUnit in Action. USA: Manning Publications
Co., 2003. isbn: 1930110995.

[9] Deepak Parmar. Exploratory testing. 2023. url: https://www.atlassian.
com/continuous- delivery/software- testing/exploratory- testing
(visited on 07/24/2023).

[10] pppankaj. Software Testing Life Cycle (STLC). 2023. url: https://www.
geeksforgeeks.org/software-testing-life-cycle-stlc/ (visited on
07/24/2023).

[11] Karen Robson et al. «Is it all a game? Understanding the principles of
gamification». In: Business Horizons (Apr. 2015). doi: 10.1016/j.bushor.
2015.03.006.

46

https://www.pingdom.com/blog/10-historical-software-bugs-with-extreme-consequences/
https://www.pingdom.com/blog/10-historical-software-bugs-with-extreme-consequences/
https://www.agilealliance.org/glossary/tdd
https://doi.org/10.1145/2181037.2181040
https://doi.org/10.1145/2181037.2181040
https://www.techtarget.com/searchsoftwarequality/definition/acceptance-test
https://www.techtarget.com/searchsoftwarequality/definition/acceptance-test
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/MC.2005.314
https://doi.org/10.1109/MC.2005.314
https://www.atlassian.com/continuous-delivery/software-testing/exploratory-testing
https://www.atlassian.com/continuous-delivery/software-testing/exploratory-testing
https://www.geeksforgeeks.org/software-testing-life-cycle-stlc/
https://www.geeksforgeeks.org/software-testing-life-cycle-stlc/
https://doi.org/10.1016/j.bushor.2015.03.006
https://doi.org/10.1016/j.bushor.2015.03.006

BIBLIOGRAPHY

[12] Wikipedia contributors. Stress testing (software) — Wikipedia, The Free
Encyclopedia. [Online; accessed 24-July-2023]. 2023. url: https://en.wi
kipedia.org/w/index.php?title=Stress_testing_(software)&oldid=
1143328664.

47

https://en.wikipedia.org/w/index.php?title=Stress_testing_(software)&oldid=1143328664
https://en.wikipedia.org/w/index.php?title=Stress_testing_(software)&oldid=1143328664
https://en.wikipedia.org/w/index.php?title=Stress_testing_(software)&oldid=1143328664

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Software Testing
	Software Testing Life Cycle
	Test-Driven Development
	Test Classification

	Gamification
	The Octalysis framework
	Gamification in Software Testing

	Design
	Context of the application
	Overview of the gamified process
	Phase 1: Developing and submitting a solution for the assignment
	Phase 2: Free-for-all

	Gamification mechanics
	Requirements List and Coverage Dashboard
	Scarcity of Time
	Avatars and Customization
	Free-for-all, Scores and Leaderboards

	Implementation
	Server
	Database

	Front-ends
	Player front-end
	Admin front-end

	Dockerization
	GitLab Continuous Integration

	Results
	Experiment organization
	Session 1: Control group (No platform)
	Session 2: Platform Version 1
	Session 3: Platform Version 2

	Results and students' feedback analysis

	Conclusions
	Possible future developments

	Bibliography

