
Master’s Degree Course in
Computer Engineering

Thesis

A Gamified Learning Tool for Conceptual
Modeling with UML Class Diagrams

Supervisors Candidate
Prof. Marco Torchiano Christian Damiano Cagnazzo
Prof. Riccardo Coppola
Doct. Giacomo Garaccione

Academic Year 2022-2023

Summary

Conceptual modeling is a crucial part of software engineering’s information system design phase,
allowing the abstraction of real-world concepts and the translation of complex requirements
into a coherent system representation. The Unified Modeling Language (UML) is particularly
relevant in this context, with the Class Diagram being a widely recognized and adopted UML
diagram type. Teaching and learning conceptual modeling, especially with UML class diagrams,
can be challenging due to theoretical and practical complexities. Teachers play a crucial role
in conceptual modeling education, but challenges arise when dealing with a large number of
students. Also, traditional teaching methods may lack the ability to engage students effectively.
In recent years, gamification has emerged as a strategy in software engineering education: it
consists of ’the use of game design elements in non-game contexts’ to increase motivation and
engagement. The main goal of this thesis was to create a gamified educational tool for teaching
conceptual modeling with UML class diagrams. First, an in-depth analysis was carried out
of the main aspects of gamification and the benefits that its application in various contexts
can bring. In particular, the Octalysys framework was analyzed and used as a tool for the
application of gamification. After that, the main features and rules of conceptual modeling
using UML class diagrams were explored. Based on this, the design and implementation of a
gamified web tool for teaching conceptual modeling was carried out. The key feature of the
tool is an automatic evaluation system for diagrams created by students. The system performs
two different types of analysis: a syntactical one, based on verifying that the syntax rules
about UML class diagram modeling are followed, and a semantical one based on a solution
that aims to verify the completeness and correctness of the diagram modeled by the students.
The gamification mechanics selected and implemented are the following: a system of gaining
levels through the acquisition of experience obtainable by completing exercises correctly; an
avatar that can be customized with items that can be unlocked by leveling up; a system
of immediate feedback after the evaluation of an exercise through highlighting with different
colors and description of errors made in a diagram. To evaluate the implemented tool two types
of analyses were conducted. The first analysis focused on the automatic diagram evaluation
system: a total of 30 diagrams created by students were analyzed by the tool, which generated a
list of errors reviewed by a human evaluator to determine the accuracy of the tool’s identification
of errors and warnings. The analysis revealed that the system is able to correctly detect a very
high percentage of violations, in a manner very similar to the evaluation of a human being.
For the second analysis, a score expressing the completeness of the gamified environment was
calculated using the method provided by the Octalysis Framework. The analysis showed that
the gamified experience appears to have a balance between the different core drives defined in
the framework. However, it becomes apparent that some core drives are not well-represented
at present. For this reason, future development should expand the tool’s features with other
gamified mechanics that are suited for long-term usage, such as competition mechanisms like
leaderboards and quest-line mechanics based on the exercises.

1

Contents

List of Figures 3

List of Tables 5

1 Introduction 7
1.1 Goal . 8

2 Background and Related Work 11
2.1 Unified Modeling Language . 11

2.1.1 UML for concepts modeling 12
2.2 Gamification . 17

2.2.1 The Octalysis Framework for Gamification 18
2.2.2 Gamification in Education 21
2.2.3 Gamification in Conceptual Modeling learning 23

3 Tool Implementation 25
3.1 Diagram Evaluation . 25

3.1.1 Syntax Checking . 26
3.1.2 Semantics Checking . 27
3.1.3 Progress and Error Score . 34

3.2 Gamified Mechanics . 36
3.2.1 Progress, Levels, and Experience 36
3.2.2 Avatars . 37
3.2.3 Feedback . 39

3.3 Web Application Design . 41
3.3.1 Diagram Editor . 42
3.3.2 Administrator Functionalities 43
3.3.3 Software Architecture . 45

4 Tool Evaluation 51
4.1 Diagram Analyzer Evaluation . 51
4.2 Octalysis score . 55

5 Conclusion and Future Work 59

2

List of Figures

2.1 Visual representation of classes . 13
2.2 Visual representation of attributes 13
2.3 Visual representation of associations 14
2.4 Visual representation of reflexive association 14
2.5 Visual representation of cardinalities 15
2.6 Visual representation of an association class 16
2.7 Visual representation of an intermediate class 16
2.8 Visual representation of generalization and specialization 17
2.9 The Octalysis Framework . 18
2.10 Candy Crush Octalysis Score - 432 21
2.11 Facebook Octalysis Score - 448 . 22

3.1 Example of an exercise solution (diagram) 30
3.2 Exercises List . 36
3.3 Summary of the completed exercise 38
3.4 Progress and XP . 38
3.5 Avatar Customization Section . 39
3.6 Diagram Evaluation Feedback . 40
3.7 Diagram Errors Description . 40
3.8 Avatar Expressions . 41
3.9 Use Case Diagram . 41
3.10 Apollon Editor . 42
3.11 Exercise Description in the editor 43
3.12 Diagrams Admin Panel . 44
3.13 Students Admin Panel . 44
3.14 Passord Updating Panel . 45
3.15 Exercises Admin Panel . 45
3.16 Solution Elements Tabs . 46
3.17 Software Architecture . 46

4.1 Exercises Solution . 52

3

4.2 Percentages of syntax errors, semantic errors, and pragmatic quality
warnings correctly identified by the tool 54

4.3 Distribution of syntax error classification 55
4.4 Distribution of pragmatic quality warning classification 56
4.5 Distribution of semantics error classification 57
4.6 Percentages of syntax errors, semantic errors, and pragmatic quality

warnings correctly identified by the tool after the tool evaluation
and improvement . 57

4.7 Tool Ocatlysis Score - 113 . 58

4

List of Tables

3.1 List of allowed attributes types . 27
3.2 List of cardinalities allowed . 27
3.3 Example of an exercise description 29
3.4 Example of an exercise solution (table) 29
3.5 List of available APIs - Exercises 47
3.6 List of available APIs - Diagrams 48
3.7 List of available APIs - Avatars . 48
3.8 List of available APIs - Users . 49
3.9 List of available APIs - Authentication 49

5

6

Chapter 1

Introduction

In software engineering, conceptual modeling plays an essential role in the design
phase of an information system. A correct and accurate design model is crucial to
abstract concepts from reality and to translate complex requirements into a clear
and coherent representation of the system.

In this context, the use of the Unified Modeling Language (UML), a graphical
representation language for visualizing, specifying, constructing, and documenting
the artifacts of distributed object systems [1], emerges with particular relevance.
Among the most recognized and widely adopted types of UML diagrams is the
Class Diagram, which provides a clear and structured way to express the relation-
ships and interactions between various class objects within a system.

Modeling concepts with UML class diagrams is a common topic covered in
software engineering university courses, as it is a crucial method for the require-
ments formulation phase. Learning and teaching concepts modeling, especially
using UML class diagrams, can be complex due to related theoretical and practi-
cal difficulties [2]. The conceptual modeling process requires a clear understanding
of the methods involved to accurately capture the concepts of the system to be
developed. In addition, using UML tools requires familiarity with representational
conventions and the ability to translate abstract ideas into meaningful diagrams.
Therefore, conceptual modeling requires practice and teaching that pays atten-
tion to the theoretical and practical challenges it presents. However, the benefits
of mastering this field are significant, as it allows software engineers to translate
complex ideas into innovative solutions effectively.

Teachers, in conceptual modeling education, play an important role in help-
ing students understand the reasons for their mistakes and guiding them towards
more correct modeling practices. However, it can be challenging for teachers when
dealing with a large number of students, because it is difficult to provide individ-
ualized assistance to each student. In addition, the traditional teaching approach,
which relies on textbooks and theoretical lectures, may be boring and insufficient

7

Introduction

to stimulate students’ interest. Overcoming these challenges is important to en-
sure that software engineers acquire solid skills in conceptual modeling with UML
class diagrams, as this directly impacts the quality of the software developed and
the understanding of requirements specifications.

In recent years, a new strategy in software engineering to increase student
engagement has emerged: gamification of learning. Gamification is the practice
of using elements, strategies, and mechanics that are typically found in games
in non-recreational contexts [3]. The benefits of gamification include increased
engagement in unattractive activities and interest in unappealing topics thanks to
games’ features like competitiveness and collaboration designed to capture players’
curiosity and motivations.

Applying gamification as a teaching strategy can make conceptual modeling
learning more interesting and effective. This allows students to experience theo-
retical concepts more practically, enhancing their ability to model complex software
systems correctly. Additionally, utilizing dedicated education tools with detailed
feedback mechanisms embedded in a playful environment may be more successful
in capturing students’ attention than traditional teacher feedback.

1.1 Goal
The main goal of this thesis is to develop a prototype gamified tool that can assist
in teaching the principles of conceptual modeling using UML class diagrams in
educational settings.

The intended final result is an application that includes an automatic evaluation
system for diagrams created by students, along with gamification features that
encourage greater engagement in learning the subject material. To achieve this,
a set of syntactic rules about creating UML models must be defined, in addition
to a semantic rule evaluation system for every exercise, capable of identifying any
rule violations and assigning scores accordingly.

For these reasons, theoretical aspects of conceptual modeling and the UML
representation language will be explored, while also examining the challenges that
students face while learning this discipline.

Furthermore, the main principles of gamification and how it can offer various
benefits in different settings if executed efficiently will be explored. Specifically, the
Octalysis Framework’s application for gamification will be examined in greater de-
tail. This will enable the identification and selection of the most effective gamified
approaches and strategies that are suitable for the development of the tool.

The prototype tool implementation will be explained in detail, and two initial
evaluations will be conducted. The first evaluation will test the automatic dia-
gram correction engine for accuracy, while the second evaluation will examine the

8

1.1 – Goal

effectiveness and completeness of the gamified environment. These evaluations will
help determine the potential impact of the tool and provide guidance for future de-
velopment. Indeed, the plan is to use the tool in an academic environment because
using gamification could make learning conceptual modeling easier by increasing
students’ interest.

The remainder of the thesis is structured in the following way: Chapter 2 intro-
duces relevant background information and the state of the art about gamification
and concept modeling with UML class diagrams, while Chapter 3 describes the
process of implementation of the tool. In Chapter 4 two different types of eval-
uation of the tool are presented, and Chapter 5 details the conclusions, current
limitations, and plans for future usage of the tool.

9

10

Chapter 2

Background and Related
Work

In this section, an overview of the thesis context will be provided. The concepts and
key features of the Unified Modeling Language, with a specific emphasis on its use
in concept modeling, will be defined. Additionally, the gamification technique and
a framework for its implementation will be described. Lastly, various scenarios in
which gamification can be applied and some examples of its practical applications
will be examined.

2.1 Unified Modeling Language
The increasing complexity of modern software solutions presents significant chal-
lenges in the analysis, design, and deployment of applications and information
systems. In this context, conceptual modeling has become an essential element in
achieving success in software projects.

Modeling helps developers and stakeholders to represent complex concepts more
understandably through a visual representation that provides a simplified, abstract
description of the system. It is simplified because it typically represents only a
specific point of view about the system, and it is abstract because only describes
a restricted set of elements considered relevant to the scope of the model.

Conceptual modeling offers a significant advantage in defining requirements
more comprehensively and efficiently. It enables users’ needs and key functionali-
ties of the system to be identified more effectively, providing a strong foundation
for design and development.

Moreover, the use of modeling promotes effective and coherent communication
among project team members and stakeholders through visual representations un-
derstandable to all, which leads to improved collaboration and better teamwork.

11

Background and Related Work

In this context, the Unified Modeling Language (UML) has emerged as one
of the most widely used tools for information system concept modeling. The
main characteristic of UML is its well-defined graphical notation, which allows
concepts and relationships within a system to be represented visually. It follows
a set of syntax and semantics rules to ensure the model is legal and has meaning.
It is independent of the scope of the project, the development process, and the
programming language.

The term "unified" refers to the incorporation of various types of diagrams,
each designed to analyze a specific perspective or aspect of the system. The most
common are [4]:

• Class diagrams: they represent classes in the system with their attributes and
relationships between each class;

• Use case diagrams: they give a graphic overview of the actors involved in a
system and how they interact;

• Sequence diagrams: they describe how objects interact with each other and
the order those interactions occur;

• Activity diagrams: they show workflows in a graphical way;

• Deployment diagrams: they define the hardware of the system and the soft-
ware in that hardware.

2.1.1 UML for concepts modeling
In this thesis, we will focus on using UML Class Diagrams for concept modeling, as
described in section 1.1. While there are other languages available for constructing
concept information models, such as Entity-Relationship notation [5], UML was
chosen due to its ease of use and comprehensiveness, as well as a requirement for
the university course of study.

Creating a concept model is crucial during the initial phases of analyzing the
requirements for an information system, which involves gathering data and in-
formation to establish a clear concept model. The goal is to create a concept
model that captures and illustrates the essential abstract concepts (represented
by classes) that define the domain of the addressed problem, their characteris-
tics (represented by attributes), and the relationship among them (represented by
associations).

Classes

The main concepts of the domain of the problem addressed are illustrated in a
UML model with classes. A class is a component of the model that describes a

12

2.1 – Unified Modeling Language

set of objects with shared characteristics. It must have a non-empty name which
by convention is a singular noun and it must be unique in the model. A class is
depicted as a rectangle divided into two parts with the name appearing in the first
block, as illustrated in Figure 2.1.

Customer Order

CityBank

Figure 2.1. Visual representation of classes

Attributes

In a model, every class has its own set of characteristics describing each instance
of it. These characteristics are called attributes. An attribute includes a name and
a type representing the type of data it can hold. This is shown in Figure 2.2. Each
instance of the classes will have its values for each attribute.

Customer

name: string

surname: string

Order

code: string

date: Date

City

name: string

surface: double

Bank

address: string

code: string

Figure 2.2. Visual representation of attributes

13

Background and Related Work

Associations

In a concept model classes alone do not provide enough information. That’s why it
is necessary to represent logical connections between them. Relationships between
classes are illustrated through the concept of associations. The idea of association
is based on the concept of a mathematical relationship, which is a subset of the
Cartesian product between the sets of objects of the classes connected by the
association. The graphic representation of an association consists of a line with a
name that joins two classes (Figure 2.3).

Customer

name: string
surname: string

Order

code: string
date: Date

City

name: string
surface: double

Bank

address: string
code: string

makes

isIn

Figure 2.3. Visual representation of associations

It is possible to link a class with itself through an association, which is known
as a reflexive association. To differentiate the ends of the association, a role name
can be specified at each end as shown in Figure 2.4.

Employee

name: string

supervise

- manager
- employee

Figure 2.4. Visual representation of reflexive association

When defining an association it is necessary to include the cardinality (or car-
dinality) of it, which specifies the minimum and maximum number of links each

14

2.1 – Unified Modeling Language

instance of a class can have for that particular relationship. Both sides of the as-
sociation must have a valid cardinality specified at the end of the link as in Figure
2.5.

Customer
name: string
surname: string

Order
code: string
date: Date

City
name: string
surface: double

Bank
address: string
code: string

makes

isIn 10..*

1..*1

Figure 2.5. Visual representation of cardinalities

The following values can be used to indicate the minimum cardinality:

• 0: Optional occurrence

• 1: Mandatory occurrence

The following values can be used to indicate the maximum cardinality:

• 1: At most an instance

• *: Many instances

The concept of maximum cardinality enables the identification of three distinct
types of associations.

1. One to one: an instance of a class is linked with exactly one instance of
another class;

2. One to many: an instance of a class can be linked with more than one instance
of another class;

3. Many to many: more instances of a class can be linked with more than one
instance of another class.

15

Background and Related Work

Employee
name: string
surname: string

Company
code: string
address: string

workFor 0..*1..*

workFor
fee: Currency

Figure 2.6. Visual representation of an association class

Association classes

In cases where many-to-many associations are defined, it is possible for some infor-
mation to not belong to either of the two classes. The association classes enable
the definition of attributes that are assigned to the association and it is illustrated
as a normal class linked with a dotted line to the association, as in Figure 2.6.

Identifying an association class can be a complex task. Indeed, while teaching
at Turin Polytechnic, professors observed that students often struggle with un-
derstanding how and when to use association classes, leading to frequent errors.
To avoid this complexity, intermediate classes can be used instead of association
classes as they serve as a feasible alternative.

An intermediate class is a standard class placed in between the two classes
of the association. This replaces the original connection between the two classes
with two separate associations without a name, as illustrated in Figure 2.7. It is
important to take note of the new position of the cardinalities, which have now
been swapped in comparison to the previous figure.

Employee

name: string
surname: string

Company

code: string
address: string

Contract

fee: Currency

1 11..*0..*

Figure 2.7. Visual representation of an intermediate class

The use of intermediate classes offers two benefits over association classes.
Firstly, intermediate classes are standard classes that can be linked to other classes,
which is not possible with association classes. Secondly, association classes can
only represent relationships where instances of a first class can be linked to the

16

2.2 – Gamification

same instance of a second class once, whereas intermediate classes do not have this
limitation.

Generalizations and Specializations

When we model classes that share many attributes and relationships, such as a
class that represents a specific case of another class, we can use the concepts of
generalization and specialization to prevent redundancy and maintain a clear and
concise model. By using generalization, it is possible to define common attributes
and associations once in a general class called parent and inherit them in the
more specific classes called children that specialize the parent by adding additional
attributes and associations.

The graphical representation (Figure 2.8) of generalization consists of an arrow
with a large triangular tip, going from the most specific class to the most general
class.

Employee

salary: Currency

Student

ID: int

Person

name: string
surname: string

Figure 2.8. Visual representation of generalization and specialization

2.2 Gamification
Gamification is a concept that impacts various aspects of our lives, including ed-
ucation, marketing, business, and even personal wellness. As explained in the
introduction section, gamification can be defined as the use of game design ele-
ments in non-game contexts [3, 6] to increase motivation and engagement. This
thesis will explore how gamification can be implemented in different contexts, es-
pecially in the educational field, and how it has the potential to increase students’

17

Background and Related Work

motivation, stimulate their interest in the topics covered, and encourage them to
develop deeper skills through the use of playful elements, such as prizes, badges,
leaderboards, and challenges.

To successfully implement gamification, it’s important to carefully design it and
continuously evaluate the results. It’s also crucial to maintain a balance between
the fun elements of gamification and the seriousness of the training objectives to
ensure that the learning is both meaningful and long-lasting.

2.2.1 The Octalysis Framework for Gamification
One of the most commonly used frameworks for assessing how well gamification is
implemented in a gamified system is called Octalysis [7]. As explained by the au-
thor, the framework prioritizes a Human-Focused design over a Functional-Focused
design, recognizing that individuals in a system have emotions, concerns, and mo-
tivations that impact their engagement. By optimizing these factors, gamification
can improve user engagement and motivation.

The framework outlines eight Core Drives, which are represented in an octagon
shape (Figure 2.9), and define various aspects of human behavior that are moti-
vated by gamification. These core drives are summarized below.

Figure 2.9. The Octalysis Framework

18

2.2 – Gamification

Epic Meaning & Calling This drive is about the need to feel part of something
bigger, to have a sense of purpose and meaning in the action taken. Users are
motivated when they feel involved in an activity that has an impact and leaves
a meaningful legacy. Narrative, elitism, and humanity heroes can influence this
drive.

Development & Accomplishment Users are motivated to achieve goals, de-
velop skills, make progress, and overcome challenges. They are driven by the
challenge and the sense of personal growth that comes with accomplishing tasks
and overcoming obstacles. Elements such as rewards, badges, status points, leader-
board rankings, progress bars, and boss fights are all part of this core drive.

Empowerment of Creativity & Feedback People are more encouraged when
they can see the fruits of their work and creativity and when they receive immediate
feedback to respond in turn. Milestones unlock, dynamic feedback, chain combos,
and boosters are examples of elements belonging to this drive.

Ownership & Possession The desire to own and improve something can be a
powerful motivator. Users tend to be more motivated when they feel a sense of
ownership. This is particularly true in gaming, where players who have customized
their profiles or avatars are more likely to feel a stronger attachment to them
and aim to improve them even further. Fall under this core, functionalities as
exchangeable points, virtual goods, and avatars.

Social Influence & Relatedness This drive is based on motivation from social
interactions and the need to belong to a community. Users are driven to participate
in activities when they can share and compete with others, gain recognition, and
feel part of a social network.

Scarcity & Impatience It is about the motivation generated by the feeling of
wanting something you can’t have or having to act quickly. Users are stimulated
when they perceive the scarcity of resources or the time limit to obtain a reward
or achieve a goal. Appointment dynamics and countdown timers can increase
people’s encouragement.

Unpredictability & Curiosity Novelty, unpredictability, and curiosity can
generate incentives in users, which are stimulated when there are surprise ele-
ments and secrets to be discovered like easter eggs, glowing choices, and random
rewards.

19

Background and Related Work

Loss & Avoidance Fear of missing something or not taking advantage of an
opportunity encourages users to participate to avoid negative consequences like
for example progress loss.

Octalysis categorizes its Core Drives into two groups. The right side in Figure
2.9 contains the Right Brain Core Drives, which are connected to creativity, self-
expression, and social interaction. Meanwhile, the Left Brain Core Drives are
situated on the left and are linked to logic, calculations, and ownership [7].

Left Brain Core Drives are extrinsic motivators. They are the things that
motivate participants to achieve something, such as a goal or any object that they
desire. On the other hand, Right Brain Core Drive are intrinsic motivators. These
motivators do not require a specific goal or reward to be achieved. Activities such
as being creative, spending time with friends, and experiencing unpredictability
can be rewarding in and of themselves. It is important not to underestimate this
aspect, as numerous studies have demonstrated that when extrinsic motivators are
removed, user motivation can drop significantly lower than it was prior.

The Core Drives can be further classified into two distinct categories: White
Hat Drives, located at the top of Figure 2.9 and Black Hat Drives, located at the
bottom. White Hat Drives aim to make users feel powerful, in control of their
actions, and satisfied with themselves. Meanwhile, Black Hat Drives exploit neg-
ative feelings in users, making them feel anxious, addicted, obsessed, or generally
worried, to motivate them to participate in the gamified system.

The Octalysis Framework [7] also provides a way to assign a score to the gami-
fied environment in order to express its completeness and quality: each of the eight
Core Drives is assigned a number between 0 and 10 based on personal judgment,
data, and experience flows. These numbers are then squared and added together
to calculate the final Octalysis Score and represent it in an octagon.

Here are two examples of Octalisys Score calculations, one from the popular
game Candy Crush (Figure 2.10) and the other from the social network Facebook
(Figure 2.11) [7].

Looking at Candy Crush, we can see that all the motivational factors are present
in a balanced way, leading to a high final score. However, the Meaning drive is
assigned a lower score since the game is a simple puzzle game, making it difficult to
incorporate elements like narrativity and heroes. Instead, mechanics like finding
combos and boosters, passing levels, rewards, and sharing scores with friends are
more prevalent, increasing the scores assigned to the Empowerment, Accomplish-
ment, and Social Influence drives. The Scarcity, Avoidance, and Unpredictability
drives are also highly rated due to game mechanics like countdowns, random score
combos, and a limited number of moves.

It is often easy to associate specific elements and scores with pre-existing games,
but it’s important to note that gamification through the Octalysis Framework can

20

2.2 – Gamification

Figure 2.10. Candy Crush Octalysis Score - 432

be applied to a wide range of contexts. Even in analyzing Facebook’s Octalysis
Score, we can see that many game mechanics are present, resulting in a higher
score than that of Candy Crush. While analyzing the octagon, we observe that
the mechanics related to the Meaning, Accomplishment, and Scarcity drives were
fewer in number, whereas the remaining drives had very high scores. For in-
stance, the mechanics of showing information to selected people, posting photos
and memories, etc. create a sense of belonging that aligns with the Ownership
drive. Since the platform is a social network, the Social Influence drive had the
highest score as users can interact with friends, share ideas, and create groups or
communities. Additionally, features such as the automatic refresh of content and
immediate feedback through likes and comments also contribute to high scores for
the Empowerment and Unpredictability drives.

2.2.2 Gamification in Education

In recent years, gamification has been increasingly used as an effective strategy for
increasing student motivation and participation in educational contexts [8]. Typ-
ical elements found in gamified systems in this context include rewarding players
for their actions, using unknown and unexpected events to increase motivation,
competition with other participants, and features that make the experience more

21

Background and Related Work

Figure 2.11. Facebook Octalysis Score - 448

enjoyable. It has proven to be a successful technique for simplifying complex sub-
jects and motivating students to complete tasks in the classroom.

Gamification has been most successful in the area of software engineering. This
is because the topics covered in software engineering can often be complex or may
require monotonous and repetitive tasks and gamifying the educational material
can improve comprehension of difficult topics and help to better understand these
areas [9].

An example of gamification being used in an educational context, in particular
in the field of software engineering, is given by the CleanGame platform imple-
mented by dos Santos et al. [10] and used to assist with the process of refactoring,
which is a common practice during software development. Refactoring involves
changing the internal structure of code to make it easier to understand and main-
tain, without altering its functionalities. During this practice, developers need
to identify and correct code smells, which are instances of poor design and imple-
mentation choices that can affect code maintainability and understandability. The
CleanGame platform implements a quiz that helps students identify code smells
and presents examples of code that contains code smells to fix. According to the
authors, the results of the study were mostly positive, with a 50% improvement
in correcting code smells. However, the study was limited and conducted with a
small sample of participants, so further experimentation is necessary to conclude
that gamification can benefit the refactoring process.

22

2.2 – Gamification

In the context of software development, more precisely about software testing,
another example of the application of gamification is provided by the CodeDe-
fenders platform [11]. This is an online game where attackers and defenders can
compete. Attackers use a code editor to introduce artificial faults. Every "attack"
creates a mutant, which is a version of the Java class being tested that may con-
tain one or more faults. Defenders use a code editor to write JUnit tests. These
tests are executed on the mutants created by the attackers. If a test passes on
the class under test but fails on a mutant, that mutant is considered detected or
"killed" and is removed from the game [12]. A preliminary assessment on gami-
fying a software testing course with the Code Defenders game [13], showed that
its application brought very positive results: students enjoyed the experience and
were well engaged, mainly due to the leaderboard and the scoring system to which
they paid much attention.

Although gamification can provide benefits like improved student engagement
and motivation, creating a gamified environment that also produces educational
outcomes is not an easy task. It’s essential to recognize that gamification alone
cannot solve all educational problems and that other aspects of teaching cannot
be ignored. Depending entirely on gamification can result in drawbacks, such as
superficial learning or oversimplification.

2.2.3 Gamification in Conceptual Modeling learning
As described in the previous section, gamification has been applied to different
fields within computer engineering, such as mutation testing [11], refactoring [10],
and requirements definition [14]. In this case, as specified in Section 1.1, the goal
of this thesis is to implement a gamified tool for teaching conceptual modeling
using UML.

In the literature, there are some examples of gamification applied to concept
modeling. One of these is a plugin called Papygame [15], created for Papyrus 1, a
tool that allows the creation of UML class diagrams and other modeling languages
based on UML. With this plugin, students can complete assignments made up of
different exercises, each with its own difficulty level. These exercises can either
be played as a game of Hangman, where a new piece of the hanged man is drawn
for every mistake made, or without any game elements at all. If you complete
an exercise without drawing the full hangman picture, you’ll unlock new exercises
and rewards. If you fail, however, you won’t unlock any new exercises and the
full hangman picture will be displayed. The plugin’s usability and user experience
were tested with students, and the results were promising. The authors plan to

1https://www.eclipse.org/papyrus/

23

https://www.eclipse.org/papyrus/

Background and Related Work

improve the plugin and use it more in the future.
Another example of usage is LearnER [16]. It features a gamified editor that

allows users to create UML class diagrams and Entity-Relationship diagrams. The
tool uses common elements such as points awarded for correctly solved exercises,
leaderboards, progress indicators, and hints toward the correct solution expected
for the model. According to the authors, the tool has been in continuous use since
2017, and gamification and feedback have been identified as effective and beneficial
for the learning process.

One additional related work is by Cosentino et al. [17] where authors defined
a gamified system for teaching Unified Modeling Language that includes a game
model composed of levels with increasing difficulty. Their work is noteworthy be-
cause it focuses on aspects that are often overlooked in-game tools, such as cheating
prevention (by encrypting the game status) and user privacy (by allowing users to
decide whether or not their in-game progress can be collected by developers).

Jurgelaitis et al. [18] conducted a study that supports the benefits of using gam-
ification in the context of concept modeling. The study involved undergraduate
students who were taking a UML modeling course. The gamification mechan-
ics that were applied included levels, gradual unlocking of course content, points,
coins, items, badges, and leaderboard.

The study found that the gamification application had a positive effect on the
student’s grades [19]. The student’s average grade for the gamified course was
higher by 0.3 points in comparison to the previous year’s non-gamified course.
Moreover, a student questionnaire confirmed the positive impact of gamification
on student motivation.

The previously described use cases demonstrated encouraging results and served
as inspiration for the development of the tool discussed in this thesis. The subse-
quent sections will elaborate on its detailed description.

24

Chapter 3

Tool Implementation

In this chapter, the key elements and processes involved in creating the applica-
tion subject of this thesis will be discussed. The aim is to develop a gamified
prototype tool for teaching conceptual modeling with UML Class Diagrams in a
university environment that incorporates an automatic evaluation system of the
students’ diagrams and various gamification features to make learning more en-
joyable for students. The first two sections will provide a detailed explanation of
these two components, while the third section will give a general overview of the
tool, including the technologies employed and its various functionalities.

3.1 Diagram Evaluation
In order to implement a tool that can effectively assist students in learning correct
modeling practices in a classroom environment, a way to assess the accuracy of
their diagrams is needed. Therefore, the initial stage was to establish a correctness
check within the tool, which examines the students’ diagrams and generates a list
of all violations present.

Following commonly used specifications regarding conceptual modeling [20], the
possible violations were divided into three different categories:

• Syntax Errors: violations of the syntax rules defined for UML class diagrams;

• Semantics Errors: violations that are specific to the exercise for which the
student is modeling a class diagram;

• Pragmatic Quality Warnings: violations that are not considered errors, but
still represent something that can be modeled in a more correct way.

25

Tool Implementation

3.1.1 Syntax Checking
When creating a conceptual model, the initial step is to ensure that the language
rules are followed. This guarantees that the resulting diagram is valid and proposes
the intended meaning. The list of syntax rules to be observed implemented in the
tool is demonstrated below.

1. Each class must have a non-empty name and it must be unique in the model.

2. Each class must have at least one valid attribute.

3. Each class must have at least one valid association.

4. Each attribute must have a non-empty name and a valid type, separated by a
colon, and it must be unique in the class.
The types of attributes used in this context correspond to the principal vari-
able types defined in the Java language; these attributes are presented in
Table 3.1.

5. Each association must have a non-empty name. 1

6. Each association must have a non-empty valid cardinality on both sides.
The cardinalities allowed are listed in Table 3.2.

7. In the case of recursive associations, a role name must be specified on both
sides.

8. An intermediate class can be only between two classes.
The implemented check is to verify that a class indicated as intermediate is
associated with only two other classes through two unnamed associations.

9. Foreign key as attributes are not allowed.
The implementation of the check ensures that none of the attributes contains
the word "id" along with the name of any associated classes.

Any violation of the rules previously described will correspond to a syntax
error. In case the syntax evaluation finds missing relevant information (e.g. a
class without attributes, an association without a name, an attribute without a
type) the semantic check is performed with placeholder values, with the affected
elements not being considered in the subsequent evaluation.

1Unless its source or destination is an intermediate class

26

3.1 – Diagram Evaluation

Type Description
int integer number

float real number (with decimal part) in single precision
double real number (with decimal part) in double precision
String character string, text
boolean logical value, true/false, yes/no
Date date in terms of year, month, day
Time time (hours, minutes, seconds, ...)

Currency denaro (value and currency)
enum data type that can only take a list of values

LatLong geographical coordinates

Table 3.1. List of allowed attributes types

0
1
*

0..1
0..*
1..1
1..*

Table 3.2. List of cardinalities allowed

3.1.2 Semantics Checking
Semantic errors are specific to each exercise and depend on its solution since they
are related to how well a diagram models the specific context of the exercise, both
in terms of completeness and correctness.

The solution of an exercise includes the elements described below.

• A list of classes with:

– A name;
– A list of synonyms for the name;
– A weight that can be STRONG or WEAK ;
– An optional message to be displayed in case of errors related to the class;
– A list of attributes;
– A list of attribute names not allowed for the class.

27

Tool Implementation

• Each attribute is represented by:

– A name;
– A list of synonyms for the name;
– A type;
– A boolean indicating if the attribute can be modeled as a class or not.

• A list of associations with:

– The source class and the destination class
– a list of allowed cardinalities for the source side and the destination side;
– A name;
– A list of synonyms for the name;
– An optional message to be displayed in case of errors related to the as-

sociation.

• A list of intermediate classes associations including:

– The two classes that are part of the association;
– The intermediate class between the two classes of the association.

• A list of generalizations and specializations represented by:

– The parent class;
– The list of the children classes.

• Other options are:

– A list of names that are not allowed for naming classes;
– A list of names that are not allowed for naming associations;
– A list of pairs of classes that are not allowed to be associated with each

other;
– A maximum percentage of the errors made compared to the possible

errors not to be exceeded to consider the exercise passed.

Every exercise also includes a title, a description, the maximum experience that
can be earned by completing it, and the level that it is appropriate for. Here is
an example of an exercise (Table 3.3) with its solution (Table 3.4)2. The diagram
corresponding to the solution described in the table is presented in Figure 3.1.

28

3.1 – Diagram Evaluation

Title Ethical Purchasing Group
Description A km-zero store plans to create a management system for

an Ethical Purchasing Group. The system includes a product
catalog with photos, prices, and order quantities. Farmers can
add their available products with prices. Customers, as rep-
resentatives of buying groups, can place orders via the web.
Minimum quantities are checked, and orders are confirmed
once sufficient quantities are available. If not, orders are mod-
ified or canceled based on precedence rules. Customers receive
a summary email once their order is completed

Level 1
Experience 500

Table 3.3. Example of an exercise description

Classes Name Weight Synonyms Not allowed attributes
Customer STRONG Client id
Order STRONG
Availability STRONG
Week WEAK
Product STRONG quantity
OrderElement STRONG

Attributes Name Type Synonyms Class Can be a class
name string Customer false
surname string Customer false
wallet int score Customer true
state string Order false
price currency Availability false
date Date Week false
description string Product false
quantity int OrderElement false

Associations Name Src - Card Dst - Card Synonyms
make Customer - 1 Order - *, 0..* generate,produce
for Week - 1 Availability - *, 0..*
type Product - 1 Availability - 0..*
OrderElement Order - 0..* Availability - 1..*

N.A. Associations Src Class Dst Class
Product Order

Intermediate Classes Class Src Dst
OrderElement Order Availability

Generalization Classes Parent Class Children classes

N. A. class names store
N. A. association names see,show
Error Threshold 15

Table 3.4. Example of an exercise solution (table)

29

Tool Implementation

Figure 3.1. Example of an exercise solution (diagram)

Whenever students desire, they can have their diagrams evaluated. The diagram
is thoroughly checked for any possible violation. For every violation discovered in
the diagram evaluation, there will be either a semantic error (referred to as SE)
or a pragmatic quality warning (referred to as PQW).

The process of evaluating the exercise is explained below.

Classes and Attributes The initial stage of the evaluation involves verifying
the presence of all required classes. For each non-intermediate class in the solution,
the closest corresponding class in the student diagram is identified and mapped to
the desired class. If no match is found, two potential violations may occur.

1. A class with a strong weight is absent (SE).

2. A class with a weak weight is absent (PQW).

2A custom error message can be indicated for each element in the solution, which is not shown
in the table due to limited space

30

3.1 – Diagram Evaluation

3. A class is probably misnamed (PQW).

Listing 3.1. Class Search Pseudocode
1 for (solutionClass in solutionClasses){

if (solutionClass is not intermediate){
3 foundedClass = findTheClosestClass(solutionClass, diagramClasses)

5 if (foundedClass){
solutionClass −> foundedClass

7 add foundedClass in presentClasses
} else {

9 if (solutionClass weight is STRONG)
add solutionClass in strongAbsent

11 else
add solutionClass in weakAbsent

13 }
}

15 }

Spelling errors are very common and sometimes there may not be an exact
match between a word predicted by the solution and one thought up by a student.
Therefore, to avoid considering absent concepts that are actually represented due
to a spelling error, the Levenshtein distance between each class in the diagram
and the name (including synonyms) of the desired class is calculated to find the
closest matching class.

Levenshtein distance is a measure introduced by Russian scientist Vladimir
Levenshtein that determines how similar two strings are. It is often applied to
perform spell-checks or to do similarity research between texts and represents the
minimum number of elementary changes to transform the first word into the sec-
ond, where elementary change means the deletion of a character, the replacement
of one character by another, or the insertion of a character.

In this context, the distance calculation is also normalized to the length of the
strings, and the class with the highest match value that is equal to or greater than
75% is selected in order to detect possible spell checks such as "costumer" instead
of "customer".

The next step is to examine the attributes of the classes. Given every class
in the solution that has a corresponding class in the diagram the existence of
its attributes is assessed by comparing their names and synonyms with those of
the class in the diagram, checking that these are not part of the list of forbidden
attributes. If a match is discovered and a type for the attribute is specified in the
solution, it is checked that the type also corresponds.

When an attribute is not identified, an additional check is performed to ensure
that it’s truly absent. The evaluation algorithm checks if the attribute is absent

31

Tool Implementation

because it was modeled as a class. In this case, it is checked whether this type of
modeling was allowed or not, otherwise, the attribute is marked as missing.

As a result, the following violations may be identified through attribute analysis:

4. An attribute name is not allowed (SE).

5. An attribute of an existing class is absent (SE).

6. An attribute founded has the wrong type (SE).

7. An attribute modeled as a class can be an attribute of the related class (PQW).

8. An attribute modeled as a class must be an attribute of the related class (SE).

Intermediate classes The intermediate class check consists of an iteration per-
formed to verify that all intermediate classes provided in the solution have been
modeled. For each intermediate class, the two classes between which it is to be
modeled are also given by the solution and the check that is described below is per-
formed only if these two classes are present and have been modeled in the diagram
by the student.

For each intermediate class predicted by the solution, it is checked that there
exists in the model a class designated as "intermediate" that has a relationship to
the two associated classes with the intermediate. No checks are made on the class
name, only on the presence and correctness of the predicted attributes.

If no matching class is found among those modeled as intermediate, a new
iteration is performed by searching among the normal classes in the diagram that
have not been mapped to any class predicted by the solution and are therefore
apparently unnecessary. Among these, a search is made if there is a class that
has a relationship with the two classes associated with the intermediate class. If
it is found, a further check is made on the attributes of this class to check if they
match those predicted by the initial intermediate class. If the attributes match, it
is highly probable that the intermediate class initially searched for, was modeled as
a normal class by the student and consequently is marked as found, while reporting
the inaccuracy as a pragmatic warning.

Violations that may be found as a result of these checks are as follows:

9. An intermediate class between two existing classes in the model is absent (SE).

10. A class should be indicated as ’intermediate’ class (PQW).

For each class left in the diagram that has not been mapped to a class or an
intermediate class in the solution, it is checked that its name is not among the
forbidden names for classes. If the name is not forbidden, the class is considered
unnecessary. Violations in this case can be:

32

3.1 – Diagram Evaluation

11. A class name is not allowed (SE).

12. A class is not necessary (PQW).

13. An intermediate class is not necessary (SE).

Generalization and Specialization The last check for classes is to verify that
generalization and specialization relationships have been correctly represented.
The check is done only if the classes provided by the solution have been represented
in the diagram; in case of incorrect modeling between parent class and children
classes, the following violation is found:

14. A class should be a child class of another existing parent class (PQW).

Associations Once all the class checks are completed, it’s necessary to ensure
that the associations between them are existent and correct. Only if the source
and destination classes are modeled in the diagram, it is checked that the asso-
ciation between them is represented correctly. For each association provided by
the solution, if a relation between the source and destination class of the searched
association is found in the diagram, additional checks are performed. Firstly, the
name of the association is verified similar to how the names of the classes were
checked (Levenshtein normalized distance). Then, if the name passes the check,
it is checked that the source and destination cardinalities of the association fall
within the correct cardinality list predicted by the solution.

Before considering them unnecessary, all associations in the diagram that have
not been mapped to an expected association in the solution in the solution undergo
further checks. These checks include checking that the association name is not
forbidden and that the association does not fall between those forbidden between
two specific classes.

Violations that may be found during the association analysis are as follows:

15. An association between two existing strong classes is absent (SE).

16. An association between one existing strong class and one existing weak class
is absent (PQW).

17. An association between two existing classes is not necessary (PQW).

18. An association name is not allowed (SE).

19. An association between two existing classes is not allowed (PQW).

20. An association found has the wrong cardinalities (PQW).

33

Tool Implementation

3.1.3 Progress and Error Score
Each time a student’s diagram is analyzed, a progress percentage based on the
number of correct elements present in comparison to the total number of elements
in the solution (classes, attributes, and associations) is calculated. This provides
the student with an idea of the completeness of their diagram.

To determine whether an exercise is passed or not, an error score is calculated
taking into account the different types of violations as described earlier. For syntax
violations, a fixed penalty is assigned, while each semantic violation previously
described is assigned a weight that is used to calculate the total error score. If
the percentage of the accomplished error score compared to the total minimum
possible error score is lower than the threshold provided in the solution, then the
exercise is considered passed.

34

3.1 – Diagram Evaluation

Listing 3.2. Error Score Computation Pseudocode

1 fun computeErrorScore() {
let tot = 0

3

tot += strongAbsentClasses.length ∗
5 PENALTY.STRONG_CLASS_ABSENT

tot += weakAbsentClasses.length ∗
7 PENALTY.WEAK_CLASS_ASBENT

tot += notAllowedClasses.length ∗
9 PENALTY.NOT_ALLOWED_CLASS

tot += absentAttributes.length ∗
11 PENALTY.ABSENT_ATTRIBUTE

tot += notAllowedAttributes.length ∗
13 PENALTY.NOT_ALLOWED_ATTRIBUTE

tot += absentStrongAssociations.length ∗
15 PENALTY.ABSENT_STRONG_ASSOCIATION

tot += absentWeakAssociations.length ∗
17 PENALTY.ABSENT_WEAK_ASSOCIATION

tot += notAllowedAssociationsNames.length ∗
19 PENALTY.NOT_ALLOWED_NAME_ASSOCIATION

tot += notAllowedAssociations.length ∗
21 PENALTY.NOT_ALLOWED_ASSOCIATION

tot += wrongCardinalityAssociations.length ∗
23 PENALTY.WRONG_CARDINALITY

tot += unnecessaryClasses.length ∗
25 PENALTY.UNNECESSARY_CLASS

tot += unnecessaryAssociations.length ∗
27 PENALTY.UNNECESSARY_ASSOCIATION

tot += attributesAsClassWrong.length ∗
29 PENALTY.ATTRIBUTES_AS_CLASS_WRONG

tot += attributesAsClassOk.length ∗
31 PENALTY.ATTRIBUTES_AS_CLASS_OK

tot += attributeErrorType.length ∗
33 PENALTY.ATTRIBUTES_ERROR_TYPE

tot += absentInheritance.length ∗
35 PENALTY.ABSENT_GENERALIZATION

tot += absentAssociationClasses.length ∗
37 PENALTY.ABSENT_ASSOCIATION_CLASS

39 return tot
}

35

Tool Implementation

3.2 Gamified Mechanics
Designing a gamified environment is not a trivial task and it requires a thorough
analysis of which mechanics would be most effective in a particular context to fully
utilize the benefits of gamification.

Several gamification mechanics such as levels, points and rewards, badges,
leaderboards, quests, and stories, are commonly used to capture attention and
incentivize user engagement. These elements can effectively engage users and en-
courage them to interact with the gamified environment.

To evaluate their impact in an academic setting with the goal of expanding and
applying new ones, some of these mechanics were selected for the prototype tool
being developed in this thesis. These mechanics are described below.

3.2.1 Progress, Levels, and Experience
Levels are a popular feature in gamified environments; in this context, they provide
a numerical and direct indication of a student’s conceptual modeling skills. Stu-
dents start at level 1 and can raise it by earning experience points by completing
exercises of increasing difficulty (Figure 3.2).

Figure 3.2. Exercises List

The amount of experience gainable decreases every time a student performs a
check of his diagram, according to the number of syntax errors and the percentage
of semantic error score calculated as shown in the section 3.1.3. However, each
exercise has a minimum experience value that cannot be decreased by penalties.

36

3.2 – Gamified Mechanics

Once the exercise is completed (that is, as previously described, the percentage
of errors committed is lower than the threshold established), the final experience
is assigned after having applied some multipliers to it. These multipliers are:

• Level Multiplier : There is no specific order in which students must complete
exercises. This means that they are free to try solving more advanced exercises
first for greater rewards. If the exercise is at a higher level than the student’s
current level, they will receive a multiplied amount of experience. However,
this comes at the cost of facing a more difficult challenge;

• Checks Multiplier : Every time students perform a check on their diagram,
they receive feedback on mistakes that progressively guide them toward the
correct solution. If they complete the exercise with only a few checks, it
means that they have successfully arrived at the solution independently, and
are rewarded by increasing their gained experience. However, if they use a
higher number of checks, the experience gained will be slightly reduced;

• Progress Multiplier : After each check of a diagram, a progress percentage is
calculated to show how close the diagram is to the optimal solution. When
a student completes the exercise for the first time, the higher the progress
percentage, the greater the multiplier applied.

After completing the exercise, students can continue to work on their diagrams
without losing experience points until they achieve 100% progress. Figure 3.3
shows an example of a completed exercise message with a summary of the calcu-
lation of the experience obtained.

According to the Core Drives outlined in the Octalysis framework (section
2.2.1), mechanics such as progress, levels, and experience are categorized under
the Development and Accomplishment drive. They serve as typical indicators of
a user’s advancement within a gamified system, and unlocking new levels with
corresponding rewards can provide a fulfilling experience.

Furthermore, the potential reduction of experience points for repeated failures
aligns with the Loss and Avoidance drive.

3.2.2 Avatars
Avatars offer a way for students to customize their experience and express their
own individuality inside the tool.

Initially, students have access to a limited set of avatar props, but they can
unlock new ones by completing exercises and advancing to higher levels.

A dedicated tool section offers the chance to customize the avatar by changing
every single prop in detail; the section also shows the props that are yet to be

37

Tool Implementation

Figure 3.3. Summary of the completed exercise

Figure 3.4. Progress and XP

unlocked, together with the needed level. An example of the avatar customization
page is shown in Figure 3.5.

Avatars are implemented with a web-based implementation of the Avataaars
Sketch library 3: the library allows for the customization of a human avatar by

3http://avataaars.com

38

http://avataaars.com

3.2 – Gamified Mechanics

Figure 3.5. Avatar Customization Section

changing different components such as its clothes, its hairstyle and hair color,
presence of facial hair, and accessories.

Using customizable avatars refers to Octalysis’s concept of Ownership: students
are more motivated in using the tool if they feel a close connection with something
personal that lets them express their individuality.

3.2.3 Feedback
To improve student learning, feedback is given after each correctness check. Any
errors found in a diagram are highlighted by coloring the part that contains the
error. This helps students identify where they need to focus to improve their
model. The color used reflects the type of error: orange for syntax errors, red for
semantic errors, and blue for pragmatic quality warnings (Figure 3.6).

In addition, a list of all violations found is available for students to consult and
correct as shown in Figure 3.7.

An additional feedback mechanism, directly tied to the student’s Avatar, con-
sists of a visual change of the avatar itself after too many experience points are
lost: the student’s avatar will change its facial expression, changing from a happy
emotion to a progressively sadder one the more mistakes the student makes (Fig-
ure 3.8). This kind of negative feedback is used to motivate the student to think
carefully and avoid making mistakes.

39

Tool Implementation

Figure 3.6. Diagram Evaluation Feedback

Figure 3.7. Diagram Errors Description

The feedback in the form of error messages and coloring parts of the diagram can
be connected to Octalysis’s Empowerment of Creativity and Feedback Core Drive:
students can easily identify the incorrect parts of their diagrams and understand

40

3.3 – Web Application Design

Figure 3.8. Avatar Expressions

the reasons behind the errors. This motivates them to take corrective actions, such
as changing the model and checking again, to overcome the errors.

Additionally, the visual effects on the student’s avatar can be thought of as an
example of Loss and Aversion drive: students who see the change in the avatar’s
status will be more motivated in future modeling tasks, in order to spare the avatar
further "suffering".

3.3 Web Application Design
Once the core functionalities of the tool, including an automatic exercise evaluation
system and gamification techniques, were defined, it was necessary to design the
final application accessible to the users. The use case diagram in Figure 3.9 shows
the two user roles planned for the use of the tool and the main functionalities that
will be implemented.

Figure 3.9. Use Case Diagram

41

Tool Implementation

3.3.1 Diagram Editor
The basic necessary functionality of a tool for teaching conceptual modeling is
precisely to provide an editor where diagrams can be implemented. After a search
for some possible libraries that offered this possibility, the choice fell to Apollon 4,
a UML modeling editor written in React and TypeScript.

The editor provided by Apollon is user-friendly and equipped with flexible lay-
out features. It also offers convenient shortcuts for copying, pasting, deleting, and
moving elements around the canvas. Additionally, the infinite canvas ensures that
students will never run out of space, while the grid provides a helpful reference for
placing elements precisely (Figure 3.10).

This library was chosen cause of its completeness and ease of use for users.
However, a few adjustments to accommodate certain features for the specific en-
vironment where the tool will be used were needed.

Figure 3.10. Apollon Editor

Additional features have also been added to enhance the experience of using
the editor: they include the possibility for users to export the diagram in JSON,
SVG, or PDF format, as well as import a previously exported JSON file.

Students using the editor can save the progress of their diagram at any time
without the need for an evaluation check. They can also retrieve the last saved
diagram or clear the entire canvas using the toolbar at the bottom of the page.
The exercise description can also be accessed at any time through a pop-up menu
that is designed to optimize the page space for editor use, as shown in Figure 3.11.

Furthermore, there is a dedicated section that provides a free editor for students

4https://github.com/ls1intum/Apollon

42

3.3 – Web Application Design

to practice and become familiar with the tool. They can apply only syntactic
checks without consequence on experience and levels; this should help in preventing
trivial mistakes while working on real exercises.

Figure 3.11. Exercise Description in the editor

3.3.2 Administrator Functionalities
In addition to the student features mentioned previously, such as an editor, avatar
customization, diagram evaluation, etc., the tool also implements a specific section
accessible only to administrators that offer three main functionalities.

One of these features is the ability to access the most recent diagram saved by
searching by the student or by exercise, and the option to export it at any time
(Figure 3.12).

The administrator panel provides also the feature to manage student accounts.
The administrator can add new accounts or import multiple accounts from a CSV
file, remove an account or reset a student’s password to its original state as shown
in Figure 3.13. Upon adding a student, they are given a username and password
that corresponds to their academic ID. The system prompts students to customize
their password when they do the first login, as shown in Figure 3.14. Password
reset functionality is utilized when students forget their password and need to
create a new one.

Finally, administrators have the ability to add, edit, or delete exercises (Figure
3.15) as well as manage their corresponding solutions.

43

Tool Implementation

Figure 3.12. Diagrams Admin Panel

Figure 3.13. Students Admin Panel

All the elements that make up a solution, which are described in Section 3.1.2,
can be added one by one using the panel shown in Figure 3.16, or the administrator
can draw a diagram and all the elements will be automatically imported.

44

3.3 – Web Application Design

Figure 3.14. Passord Updating Panel

Figure 3.15. Exercises Admin Panel

3.3.3 Software Architecture
The tool was implemented as a web application to enable multiple users to access
the same version of the app from various platforms, including desktops, laptops,
and mobile devices, without requiring installation.

The software architecture of the web application consists of 2 tiers, the client
and the server, and it is illustrated in Figure 3.17.

Typescript is the programming language used for both the client and server.

45

Tool Implementation

Figure 3.16. Solution Elements Tabs

React Web Application

CLIENT

SERVER

Express Rest API

DB
PostgresSQLDiagram Evaluation System

Game Engine

Figure 3.17. Software Architecture

The front end was developed by using the React 5 library, an open-source
JavaScript framework and library developed for building interactive user interfaces
and web applications. React was used together with React-bootstrap 6, a library
taking the CSS framework of Bootstrap and replacing any existing JavaScript with

5https://react.dev
6https://react-bootstrap.github.io

46

3.3 – Web Application Design

strictly React components.
Within the client tier, there are two extra modules. The first is the Diagram

Evaluation System, which can parse diagrams and assess them based on a given
solution. The second is the Game Engine, responsible for managing the experience,
levels, scores, and other gamification features.

To communicate with the server, the client can use a Rest API built with
Express 7, a Node.js framework that offers advanced features like HTTP utility
methods and middleware. This makes it simple and fast to create an API.

The list of available APIs is shown in Tables 3.5, 3.6, 3.7, 3.8, and 3.9.
The data is stored in a SQL database that is managed by Postgres 8, a powerful

and open-source object-relational database system.

URI (/api/exercises) Method Description
/ POST Insert a new exercise
/ GET Get all exercises
/{exerciseId} GET Get exercise by id
/{exerciseId} PUT Modify exercise by id
/{exerciseId} DELETE Delete exercise by id
/{exerciseId}/solution GET Get exercise solution by ex-

ercise id
/{exerciseId}/solution PUT Modify exercise solution by

exercise id
/{exerciseId}/solution DELETE Delete exercise solution by

exercise id

Table 3.5. List of available APIs - Exercises

7https://expressjs.com
8https://www.postgresql.org

47

Tool Implementation

URI (/api/diagrams) Method Description
/{exerciseId}/students POST Insert a new status log for

the logged student diagram
with the actual progress and
experience

/{exerciseId}/students PUT Update the last logged stu-
dent diagram saved

{exerciseId}/students GET Get all logs or only the last
log for the logged student
diagram

/{exerciseId}/students DELETE Delete all logs for the logged
student diagram

/{exerciseId}/students/completed POST Insert the exercise com-
pleted summary for the
logged student diagram

/{exerciseId}/students/completed GET Get the exercise completed
summary for the logged stu-
dent diagram

{exerciseId}/admin/{studentId} GET Get all logs or only the last
log for the student diagram
by student id (only for ad-
min)

Table 3.6. List of available APIs - Diagrams

URI (/api/avatars) Method Description
/ PUT Modify avatar props of the

logged student
/ GET Get avatar props of the

logged student

Table 3.7. List of available APIs - Avatars

48

3.3 – Web Application Design

URI (/api/users) Method Description
/ GET Get all users (optionally

with a specific role)
/{userId} GET Get user by id
/students/xp PUT Update the experience of

the logged student
/students POST Insert a new student
/students/{username} DELETE Delete student by username
/students{username}/reset PUT Reset a student password to

the initial value
/students/updatePassword PUT Update the logged student

password

Table 3.8. List of available APIs - Users

URI (/api/sessions) Method Description
/ POST Perform login
/current GET Get current logged user
/current DELETE Perform logout

Table 3.9. List of available APIs - Authentication

49

50

Chapter 4

Tool Evaluation

Two analyses were conducted to evaluate the implemented tool. The first analysis
focused on the automatic diagram evaluation system, while the second analysis
focused on the gamification mechanics that were introduced.

4.1 Diagram Analyzer Evaluation
The main goal of the tool is to assist students in learning correct modeling practices
by providing detailed feedback directly on the diagrams produced by the students
themselves. To achieve this, the tool should evaluate the diagrams as accurately
as possible. To verify the correctness of the automatic diagram correction system,
the following analysis was conducted.

Procedure An exercise proposed to students from the previous edition of the
course was selected. The text of the exercise required to model a management
system for an Ethical Purchasing Group (EPS). This EPS connects customers
with farmers, emphasizing a conscious approach to purchasing, including knowl-
edge of product origin, quality, and types. The EPS operates on a weekly cy-
cle, involving product estimates from farmers, customer orders, confirmation of
product availability, automated payments, and product pickups. The information
system includes a product catalog with descriptions, photos, pricing, and units
of measurement. Customers can place orders directly through the web or with
store employees, with the group representative responsible for entering group or-
ders. Orders move through different states (entered, confirmed, modified) based
on product availability. The system handles payments and allows customers to
schedule pickups. It also tracks fair play scores for customers, which influence
precedence in case of limited product availability. Unpicked orders are marked as
"forfeited," and the fair play score is updated accordingly.

51

Tool Evaluation

The solution of the exercise, shown in Figure 4.1, has been inserted within
the tool and included the following classes considered mandatory, thus weighted
STRONG: Customer, Order, Availability, Farmer and Product. The class Week,
on the other hand, was considered a WEAK class. For each class name or attribute
name of each class, the possible synonyms have also been entered. The solution
also provided an association class between the classes Order and Availability. In
addition to the information represented in the figure, a list of forbidden class names
or attributes and a list of forbidden associations between certain classes were also
included. An alternative way to model the system provided by the solution was
to represent the association class as an intermediate class and the representation
of the attribute fairPlayScore of the class Customer, as a class by itself.

Figure 4.1. Exercises Solution

Once entered into the tool the exercise with its description and its solution,

52

4.1 – Diagram Analyzer Evaluation

30 diagrams created by students of the course for the exercise were anonymously
selected. Starting from their PDF representation, they were modeled one by one in
the tool’s editor taking an average of 10 minutes per exercise. This made it possible
to run the automatic evaluation done by the evaluation engine and retrieve the
list of violations found by the tool.

The list of violations of each exercise was reviewed by a human evaluator to
determine the accuracy of the tool’s identification of errors and warnings. Each vi-
olation found was analyzed and classified by the evaluator into one of the following
categories:

• Correctly identified syntax error ;

• Correctly identified semantic error ;

• Correctly identified pragmatic quality warnings;

• Should be error : violations reported as warnings that a human evaluator
would more likely have reported as errors;

• Should be warning: violations reported as errors that a human evaluator
would more likely have reported as warnings;

• Debatable error : errors that could be ignored by a human evaluator (such as
a multiplicity entered as * where a 0..* was expected);

• Debatable warning: warnings that could be ignored by a human evaluator
(such as a class that is not included in the solution and therefore flagged as
unnecessary, but which might be fine with a human evaluator);

• Wrongly identified error : violations found that are totally incorrect.

Results The chart in Figure 4.2 shows the overall distribution of accurately
identified errors and warnings.

However, as described above, the evaluator not only defined whether an error
or warning was correct or incorrect but also identified several categories of error in
the violation found by the tool. This allowed a more in-depth analysis described
below to be conducted.

Two main causes were identified for the erroneous syntax violations that were
found. The first is spelling errors made by students, such as using ’strig’ instead of
’string’ as an attribute type. The second cause involves attribute types that are not
provided by the tool but are still acceptable to a human evaluator, such as using
’integer’ instead of ’int’. In the first case, there is little room for improvement other
than calculating the distance between the expected and entered attribute types to
avoid reporting errors (assuming the spelling error is minor). In the second case,

53

Tool Evaluation

Figure 4.2. Percentages of syntax errors, semantic errors, and pragmatic quality
warnings correctly identified by the tool

expanding the list of attribute types provided by the tool would prevent these
types of errors from being reported. By analyzing these causes, percentages of
incorrect syntactic error violations were adjusted as shown in Figure 4.3. As a
result, the percentage of completely incorrect syntactic violations was reduced to
0.93%.

Analyzing warnings was easier as most of the incorrect ones were due to a
violation being treated as a semantic error rather than a warning. This issue
can be resolved by making a minor fix to the source code, making certain errors
that were previously classified as warnings as semantic errors, such as using an
unnecessary intermediate class. As a result, the percentage of warnings that a
human evaluator would not have detected decreases to 2.30%, as illustrated in
Figure 4.4.

In the first round of evaluation, a high percentage of semantic errors were
correctly identified. However, there were two categories of semantic violations that
were found incorrectly. The first category included semantic errors that a human
evaluator would have considered as warnings. The second category included errors
reported as semantic, but they would be more accurately considered as syntax.
Errors in both of these categories can be corrected through quick and easy code

54

4.2 – Octalysis score

Figure 4.3. Distribution of syntax error classification

fixes. As a result, considering a small percentage of violations found not wrong
but that a human would have allowed, the percentage of semantic errors found to
be completely wrong was 0,77%, as illustrated in Figure 4.5.

Based on this analysis and the necessary improvements to enhance the au-
tomatic evaluation system, it can be concluded that the tool has the ability to
detect errors in a way that is comparable to a human evaluator, as illustrated in
Figure 4.6. Moreover, it is important to highlight that the accuracy of the au-
tomatic evaluation increases as the solution the administrators provide becomes
more comprehensive with synonyms, messages, and lists of elements that compose
it.

4.2 Octalysis score

A successful gamified system doesn’t necessarily require all the Core Drives out-
lined in Section 2.2.1, but it must excel in the ones it does incorporate. To evaluate
the tool from this point of view the Ocatlysys Score was calculated as explained
by the framework. The evaluation results can be viewed in Figure 4.7.

55

Tool Evaluation

Figure 4.4. Distribution of pragmatic quality warning classification

Based on the analysis, the gamified experience appears to have a balance be-
tween White Hat and Black Hat drives, as well as left-brain and right-brain drives,
even if there was a slightly higher score given to the Ownership drive. However,
upon visually examining the figure, it becomes apparent that some core drives
are not well-represented at present. This outcome is not surprising since the tool
is still in its prototypical stage. Despite this, the balance on both vertical and
horizontal sides is a promising initial achievement.

56

4.2 – Octalysis score

Figure 4.5. Distribution of semantics error classification

Figure 4.6. Percentages of syntax errors, semantic errors, and pragmatic quality
warnings correctly identified by the tool after the tool evaluation and improvement

57

Tool Evaluation

Figure 4.7. Tool Ocatlysis Score - 113

58

Chapter 5

Conclusion and Future
Work

In the field of software engineering, conceptual modeling plays a key role as it
serves as the foundation for designing and creating advanced software systems
that are of high quality. However, it demands a detailed understanding of the do-
main and the skill to transform abstract concepts into structured representations,
which can be an ability difficult to teach or learn. By incorporating gamification,
which is the implementation of game elements and principles in a non-gaming en-
vironment, software engineering education can become more engaging, motivating,
and effective because provides students with a stimulating and interactive learning
environment.

The goal of this thesis was to implement a gamified prototype tool to assist
students in learning correct modeling practices by providing detailed feedback
directly on the diagrams produced by the students themselves.

Firstly, a thorough exploration of the key concepts of conceptual modeling
with UML Class Diagrams was conducted. Next, an analysis was carried out to
determine the advantages and disadvantages of applying gamification. Specifically,
the Octalysis Framework for Gamification was examined in detail to identify the
required elements for a correct application of gamification.

Once the thesis context was defined and explored in depth, the tool has been
designed and implemented. It includes an evaluation engine that assesses the
accuracy of the diagrams produced by the students. The primary gamification
mechanics used are:

• Levels and experience points obtainable through completing exercises

• Immediate feedback received on students’ diagrams, which helps them under-
stand their mistakes and correct them

59

Conclusion and Future Work

• Avatars customizable through features unlockable by passing levels

The tool’s graphical user interface, the software architecture, and other features
were then explained.

Finally, two separate analyses were carried out to evaluate the goodness of the
implemented tool. The first analysis aimed to evaluate the accuracy and efficiency
of the students’ diagrams correction engine. It showed that the diagram correc-
tion system, with certain modifications, can be compared to a human evaluator in
terms of accurately reporting violations. However, there is still room for improve-
ment. The second analysis aimed to evaluate the completeness of the gamification
elements implemented through the calculation of the Octalysis Score. The anal-
ysis showed a balance in the gamification elements applied and at the same time
the absence of other mechanics that could bring greater benefits. For this rea-
son, an important future development could be to expand the tool’s features with
other gamified mechanics that are suited for long-term usage, such as competition
mechanisms like leaderboards and quest-line mechanics based on the exercises.

A minor limitation of the tool is that the library for implementing the editor to
draw diagrams did not provide the possibility to support the graphical represen-
tation of association classes as described in Section 2.1.1. The limitation can be
partially overcome by using intermediate classes as an alternative to association
classes, though they are not entirely equivalent.

The tool implemented is planned to encourage students to solve modeling ex-
ercises independently. The presence of in-game rewards for solving exercises in
a correct way and other gamified mechanisms is something that can act as an
effective motivator for students. Future plans include the usage of the tool in an
academic environment with a longitudinal experiment, where students’ progress
can be tracked during the course.

60

Bibliography

[1] Object Management Group. OMG, Unified Modeling Language (UML) 2.5.1
Superstructure Specification. 2017.

[2] John Erickson and Keng Siau. “Theoretical and practical complexity of mod-
eling methods”. In: Communications of the ACM 50.8 (2007), pp. 46–51.

[3] S. Deterding et al. “From game design elements to gamefulness: defining"
gamification"”. In: Proceedings of the 15th international academic MindTrek
conference: Envisioning future media environments. 2011, pp. 9–15.

[4] UML Diagram Types Guide: Learn About All Types of UML Diagrams with
Examples. https://creately.com/blog/diagrams/uml-diagram-types-
examples/. Accessed: 2023-09-21.

[5] Peter Pin-Shan Chen. “The entity-relationship model—toward a unified view
of data”. In: ACM transactions on database systems (TODS) 1.1 (1976),
pp. 9–36.

[6] Navid Memar et al. “Investigating information system testing gamification
with time restrictions on testers’ performance”. In: Australasian Journal of
Information Systems 24 (2020).

[7] Y.k. Chou. Actionable Gamification: Beyond Points, Badges, and Leader-
boards. Createspace Independent Publishing Platform, 2015. isbn: 9781511744041.
url: https://books.google.it/books?id=jFWQrgEACAAJ.

[8] Michael Sailer et al. “How gamification motivates: An experimental study of
the effects of specific game design elements on psychological need satisfac-
tion”. In: Computers in human behavior 69 (2017), pp. 371–380.

[9] Mantas Jurgelaitis, L Ceponiene, and Vaidotas Drungilas. “Using Gamifica-
tion for Teaching UML in Information System Design Course”. In: CEUR-WS
2145 (2018), pp. 88–94.

61

https://creately.com/blog/diagrams/uml-diagram-types-examples/
https://creately.com/blog/diagrams/uml-diagram-types-examples/
https://books.google.it/books?id=jFWQrgEACAAJ

BIBLIOGRAPHY

[10] H. M. dos Santos et al. “CleanGame: Gamifying the Identification of Code
Smells”. In: Proceedings of the XXXIII Brazilian Symposium on Software
Engineering. SBES 2019. Salvador, Brazil: Association for Computing Ma-
chinery, 2019, pp. 437–446. isbn: 9781450376518. doi: 10.1145/3350768.
3352490. url: https://doi.org/10.1145/3350768.3352490.

[11] José Miguel Rojas et al. “Code Defenders: Crowdsourcing Effective Tests and
Subtle Mutants with a Mutation Testing Game”. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). 2017, pp. 677–
688. doi: 10.1109/ICSE.2017.68.

[12] Gordon Fraser, Alessio Gambi, and José Miguel Rojas. “A preliminary re-
port on gamifying a software testing course with the code defenders testing
game”. In: Proceedings of the 3rd European Conference of Software Engineer-
ing Education. 2018, pp. 50–54.

[13] G. Fraser et al. “Gamifying a Software Testing Course with Code Defenders”.
In: Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. SIGCSE ’19. Minneapolis, MN, USA: Association for Computing
Machinery, 2019, pp. 571–577. isbn: 9781450358903. doi: 10.1145/3287324.
3287471. url: https://doi.org/10.1145/3287324.3287471.

[14] W. Prasetya et al. “Having fun in learning formal specifications”. In: 2019
IEEE/ACM 41st International Conference on Software Engineering: Soft-
ware Engineering Education and Training (ICSE-SEET). IEEE. 2019, pp. 192–
196.

[15] A. Bucchiarone et al. “Gamifying model-based engineering: The PapyGame
tool”. In: Science of Computer Programming 230 (2023), p. 102974. issn:
0167-6423. doi: https://doi.org/10.1016/j.scico.2023.102974.

[16] Olav O. Dæhli et al. “Exploring Feedback and Gamification in a Data Model-
ing Learning Tool.” In: Electronic Journal of e-Learning 19.6 (2021), pp. 559–
574.

[17] Valerio Cosentino, Sébastien Gérard, and Jordi Cabot. “A Model-based Ap-
proach to Gamify the Learning of Modeling”. In: Nov. 2017.

[18] Mantas Jurgelaitis et al. “Implementing gamification in a university-level
UML modeling course: A case study”. In: Computer Applications in Engi-
neering Education 27.2 (2019), pp. 332–343. doi: https://doi.org/10.
1002/cae.22077. eprint: https://onlinelibrary.wiley.com/doi/pdf/
10.1002/cae.22077. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/cae.22077.

[19] Vacius Jusas, Dominykas Barisas, and Mindaugas Jančiukas. “Game ele-
ments towards more sustainable learning in object-oriented programming
course”. In: Sustainability 14.4 (2022), p. 2325.

62

https://doi.org/10.1145/3350768.3352490
https://doi.org/10.1145/3350768.3352490
https://doi.org/10.1145/3350768.3352490
https://doi.org/10.1109/ICSE.2017.68
https://doi.org/10.1145/3287324.3287471
https://doi.org/10.1145/3287324.3287471
https://doi.org/10.1145/3287324.3287471
https://doi.org/https://doi.org/10.1016/j.scico.2023.102974
https://doi.org/https://doi.org/10.1002/cae.22077
https://doi.org/https://doi.org/10.1002/cae.22077
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.22077
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.22077
https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.22077
https://onlinelibrary.wiley.com/doi/abs/10.1002/cae.22077

BIBLIOGRAPHY

[20] Narasimha Bolloju and Felix SK Leung. “Assisting novice analysts in de-
veloping quality conceptual models with UML”. In: Communications of the
ACM 49.7 (2006), pp. 108–112.

63

	List of Figures
	List of Tables
	Introduction
	Goal

	Background and Related Work
	Unified Modeling Language
	UML for concepts modeling

	Gamification
	The Octalysis Framework for Gamification
	Gamification in Education
	Gamification in Conceptual Modeling learning

	Tool Implementation
	Diagram Evaluation
	Syntax Checking
	Semantics Checking
	Progress and Error Score

	Gamified Mechanics
	Progress, Levels, and Experience
	Avatars
	Feedback

	Web Application Design
	Diagram Editor
	Administrator Functionalities
	Software Architecture

	Tool Evaluation
	Diagram Analyzer Evaluation
	Octalysis score

	Conclusion and Future Work

