
Davide Aimar

Extraction, indexing and analysis of Ethereum
smart contracts data

Master’s Thesis in Computer Engineering
Supervisor: Prof.ssa Valentina Gatteschi
Co-supervisor: Prof. Mariusz Nowostawski
Academic Year 2022/2023

Politecnico di Torino

In collaboration with
Norwegian University of Science and Technology

ABSTRACT

Blockchain technology has gained popularity in the last decade. New protocols
allow developers to build decentralized applications thanks to the usage of smart
contracts. Ethereum is one of the most popular blockchain networks of this kind.
Every twelve seconds, a new block is appended to this chain. Each block contains
information that describes a market worth billions of dollars. Since Ethereum is
a permissionless blockchain, this data is publicly available to anyone, but without
proper tools, it is not easy to analyse.

This master’s thesis focuses on extracting semantics from raw Ethereum data
and making it easily available to users by indexing it with Dgraph, an open-source
distributed graph database.

A review of the state-of-the-art tools showed that relevant work in this field
has been done by private companies whose source code and methodology are not
available. Many open-source and public projects resulted in being outdated or
slow. This poses the risk of centralizing access to blockchain data in the hands of
a few companies.

Part of this master’s thesis was dedicated to analyzing the semantics that can
be extracted from the blockchain and building a data schema around it that is
optimized for graph databases. A custom software, called eth2dgraph, was devel-
oped to perform the extraction of data. It is an open-source tool written in Rust
that maps Ethereum data to Dgraph format. It integrates a decompiler to extract
and index the ABI of smart contracts. Eth2dgraph was developed with a focus on
performance. This was done to scale the extraction process to the history of the
Ethereum blockchain. At the end of the thesis, the data indexed in Dgraph has
been analyzed to show the current state of the Ethereum blockchain.

This work provides a novel solution to the problem of blockchain data analysis.
The open-source nature of the project allows other developers to build on top of it.
Performing the actual extraction and indexing came close to hitting the limit of
what can be done on a single machine. This highlights the fact that, in the future,
distributed approaches will be the only possible way of handling the increasing
amount of data that comes from the Ethereum blockchain. This is already evident
with layer 2 protocols, which are generating data at a faster pace than Ethereum.

i

ACKNOWLEDGEMENT

I would like to express my deepest thanks to Prof. Nowostawski for giving me the
opportunity to work on these topics and for his constant and valuable support.
Additionally, I would like to thank NTNU for hosting me during the final year of
my university studies.

My sincere thanks also go to Prof. Gatteschi for her precious availability to
assist me in this thesis work.

Thanks to all the people who have supported me during these university years,
including my classmates, colleagues from the Policumbent team, Erasmus friends,
and lifelong friends.

A big thank you goes to my parents, who always believed in me and gave me
all possible means to pursue my dreams.

Finally, thanks to Greta, with whom I shared this challenging yet beautiful
university journey.

ii

RINGRAZIAMENTI

Desidero esprimere un profondo ringraziamento al Prof. Nowostawski per avermi
offerto l’opportunità di lavorare su questa tesi e per il suo costante e prezioso
sostegno. Inoltre, ringrazio la NTNU per avermi accolto durante l’ultimo anno del
mio percorso universitario.

Un sentito grazie anche alla Prof.ssa Gatteschi per la sua preziosa disponibilità
nel seguirmi in questo lavoro di tesi.

Grazie di cuore a tutte le persone che mi hanno accompagnato in questi anni
di università. I miei compagni di corso, i colleghi del team Policumbent, gli amici
con cui ho condiviso l’Erasmus in Norvegia e gli amici di una vita.

Un grosso grazie va ai miei genitori, che hanno sempre creduto in me e mi
hanno dato tutti i mezzi possibili per perseguire i miei sogni.

Infine, grazie a Greta, la mia compagna di viaggio in questi difficili, ma bellis-
simi, anni universitari.

iii

CONTENTS

Abstract i

Acknowledgement ii

Ringraziamenti iii

Contents vi

List of Figures viii

List of Tables ix

Abbreviations x

1 Introduction 1
1.1 Motivation . 1
1.2 Research questions . 2
1.3 Contribution . 2
1.4 Outline . 2

2 Background 5
2.1 Cryptographic background . 5

2.1.1 Hash Functions . 5
2.1.2 Hash chains . 5
2.1.3 Merkle trees . 6
2.1.4 Digital signatures . 8

2.2 The blockchain . 8
2.2.1 The double-spending problem 9
2.2.2 Blockchain properties . 10
2.2.3 Consensus layer . 11
2.2.4 51% attack . 12

2.3 Ethereum . 13
2.3.1 Ethereum as a state machine 13
2.3.2 Ethereum Smart Contracts 14
2.3.3 Ethereum clients . 19

2.4 Graph databases . 20
2.4.1 Dgraph . 20

iv

CONTENTS v

3 Previous work 23
3.1 Etherscan . 23
3.2 The Graph . 24
3.3 Ethereum-ETL . 26

3.3.1 Google BigQuery public dataset 27
3.4 Dune Analytics . 30

3.4.1 Data architecture . 31
3.4.2 Available data . 33

3.5 XBlock-ETH . 33
3.6 Data-ether . 34
3.7 Web3 providers . 34
3.8 Comparison . 35

4 Methods 37
4.1 Data flow . 37
4.2 Data model . 38
4.3 Data extraction . 41

4.3.1 Blocks and transactions . 41
4.3.2 Logs . 42
4.3.3 Smart contracts . 42
4.3.4 Error propagation in traces 43
4.3.5 Accounts . 45

4.4 Semantics extraction . 45
4.4.1 ABI extraction . 46
4.4.2 Contracts skeleton and metadata 47
4.4.3 Verified source code . 48
4.4.4 Token transfers . 48

4.5 Software architecture . 49
4.5.1 Decompilation cache . 50

4.6 Similarity calculation . 52

5 Results 55
5.1 Infrastructure used . 55

5.1.1 Benchmark of the Erigon’s RPC interface 56
5.2 Optimal number of concurrent tasks 59
5.3 Extraction of data . 60

5.3.1 Extraction and Transformation 60
5.3.2 Import in Dgraph . 62

5.4 Querying data . 65
5.4.1 Query performance . 66

5.5 Comparison with Ethereum-ETL 68

6 Analysis of data 71
6.1 General data overview . 71
6.2 Skeleton clusters . 73

6.2.1 Most deployed skeletons . 74
6.2.2 New skeletons over time . 76

6.3 Metamorphic contracts . 78
6.3.1 Overview of metamorphic contracts usage 79

vi CONTENTS

6.3.2 Similarity between metamorphic deployments 82
6.4 Gas tokens . 84

6.4.1 Identification of gas reserves 84
6.4.2 Quantification of eth saved 86

6.5 Most deployed functions and events 88
6.6 Contracts metadata . 90

6.6.1 Hash of metadata . 90
6.6.2 Experimental compilations 90
6.6.3 Solc versions . 91

7 Discussion 93
7.0.1 Dgraph for Ethereum data 93
7.0.2 Challenges of blockchain data management 93
7.0.3 Domain-specific data analysis 94
7.0.4 Future work . 94

8 Conclusions 97

References 99

Appendices: 101

B - Complete schema of indexed data 102

B - Data returned from RPCs 109

LIST OF FIGURES

2.3.1 Ethereum visualized as a state machine [12]. 13
2.3.2 Ethereum World State visualized [12]. 14
2.3.3 The Architecture of the Ethereum Virtual Machine (EVM) [12]. . . 17
2.4.1 The architecture of a Dgraph cluster with three Zeros and seven

Alphas. Taken from Dgraph official documentation. 21

3.2.1 The Graph data flow . 25
3.4.1 Parquet storage format structure 32
3.4.2 Parquet ColumnIndex on Dune Analytics 32

4.1.1 First attempt of data ingestion into Dgraph 37
4.1.2 Second and final data flow . 38
4.2.1 Schema of Ethereum indexed data in Dgraph 39
4.3.1 Example of the structure of traces in a transaction. 43
4.4.1 Heimdall-rs integration into eth2dgraph 46
4.5.1 Software architecture of eth2dgraph 49
4.5.2 Storage of contracts’ information 52

5.1.1 Success rate of eth_getLogs. After 1200 requests/s, Erigon starts
to fail handling some requests. At 5k requests/s half of the requests
fail. 56

5.1.2 Throughput of eth_getLogs. After 1200 requests/s Erigon can’t
keep the requests rate. 57

5.1.3 Success rate of eth_getBlockByNumber. Erigon shows perfect per-
formance on this RPC. It can successfully reply to 5k requests/s.
. 57

5.1.4 Throughput of eth_getBlockByNumber. Erigon can keep the through-
put even at 5k requests/s. 58

5.1.5 Success rate of trace_block. Erigon starts to degrade after 1200
requests/s. At 5k requests/s, just 40% of the requests are success-
fully handled. 58

5.1.6 Throughput of trace_block. It reaches the maximum of around
1200 responses/s at 2400 requests/s. 59

5.2.1 Extraction time varying the number of concurrent tasks. 59
5.3.1 CPU usage of the server during data extraction. 61
5.3.2 Memory used by the server during data extraction 62

vii

viii LIST OF FIGURES

5.3.3 RAM allocated by Dgraph with jemalloc during the MAP phase of
the bulk import. 63

5.3.4 RAM allocated by Dgraph with jemalloc during the REDUCE phase
of the bulk import. 64

5.4.1 Visualization of Contract’s ABI in Ratel. 66
5.4.2 Visualization of Accounts linked by Transactions in Ratel. 66

6.1.1 Ethereum smart contracts by usage, note the log scale on both axes. 72
6.1.2 Smart contract deployments over time grouped by month. 73
6.2.1 Deployments of new skeletons over time, grouped by month 77
6.2.2 Ratio of deployments to new skeletons over time, grouped by month.

High values imply more duplicates deployed. 77
6.3.1 First deployments of the metamorphic smart contracts. 80
6.3.2 First deployments of the metamorphic smart contracts without the

three outliers. 80
6.3.3 Cumulative sum of all the metamorphic deployments. 81
6.3.4 Similarity values of all metamorphic deployments. 82
6.3.5 Similarity values of metamorphic deployments excluding a pattern

that occurred identically multiple times. 83
6.4.1 Average daily Ethereum gas price over time. 85
6.4.2 Deployments and destructions of gas reserves over time. 86
6.6.1 Deployments over time divided by major Solidity compiler versions.

Each data entry represents the daily amount of deployments found
per version. Keep in mind the log scale. 91

LIST OF TABLES

3.3.1 Google BigQuery Blocks table . 28
3.3.2 Google BigQuery Logs table . 28
3.3.3 Google BigQuery Contracts table 29
3.3.4 Google BigQuery Traces table . 29
3.3.5 Google BigQuery Token_transfers table 30
3.3.6 Google BigQuery Transactions table 30
3.8.1 State of the art tools comparison 35

4.5.1 Precision of the decompilation caching logic 51

5.1.1 Specification of the server used for the work 55
5.3.1 Statistics about extraction and transformation process. 60
5.3.2 Size of extracted data divided by folders. 61
5.3.3 Cardinalities and sizes of entries stored in Dgraph1. 65
5.4.1 Processing time of DQL queries. 68
5.5.1 Results of performance comparison between Ethereum-ETL and

eth2dgraph. 69

6.1.1 Top 10 smart contracts per logs emitted. 73
6.2.1 Clusters formed by grouping top 10 skeletons with their similars. . . 76
6.4.1 Gas reserves found on Ethereum. 86
6.5.1 Top 20 functions by number of deployments. 88
6.5.2 Top 20 events by number of deployments. 89
6.6.1 Numbers of deployments found per major version of the Solidity

compiler. 91

ix

ABBREVIATIONS

List of all abbreviations in alphabetic order:

• ABI Application Binary Interface

• CFG Control Flow Graph

• CHF Cryptographic hash function

• CRHF Cryptographic Resistant hash function

• dApp Decentralized Application

• DQL Dgraph Query Language

• ECDSA Elliptic Curve Digital Signature Algorithm

• EIP Ethereum Improvement Proposal

• EOA Externally Owned Account

• ERC Ethereum Request for Comment

• EVM Ethereum Virtual Machine

• GDB Graph Database

• IPC Inter-Process Communication

• NFT Non Fungible Token

• OWHF One Way Hash Function

• p2p Peer to Peer

• SC Smart Contract

• SHA Secure Hash Algorithm

• RPC Remote Procedure Call

x

CHAPTER

ONE

INTRODUCTION

1.1 Motivation
Since the publication of the Bitcoin [1] whitepaper by the pseudonym Satoshi
Nakamoto in 2008, the concept of blockchain has gained widespread use in various
domains. The technology has evolved and has become more sophisticated, allow-
ing for more complex use cases than just preventing double spending in money
transfers. This was allowed by the use of Smart Contracts, immutable1 and de-
terministic pieces of code that rule the outcome of transactions based on the logic
written in the code.

Smart Contracts were first implemented in 2015 by the Ethereum blockchain [2],
the first of many Blockchain 2.0 that allowed developers to build decentralized ap-
plications.

Ethereum is a permissionless blockchain, it can be seen as a digital public
ledger. It can be modified just through append operations and is immutable. One
of the main strengths of this kind of blockchain is the fact that the public ledger
is transparent, so everyone can independently download and access and verify the
data.

Reading and understanding this public ledger can bring huge value, since it
describes the entire history of a market that, as of now, is valued hundreds of
billions of dollars. Apart from the economical aspects, the knowledge of on-chain
data is an essential building block for Decentralised Applications (dApps), that
are, by definition, applications which interact with Smart Contracts.

Unfortunately, as noted also in other works [3, 4, 5], extracting and analyzing
data from the Ethereum blockchain is not an easy task. The reason is that the
amount of data is huge and Ethereum nodes store it for optimizing storage instead
of the ease of access.

It is possible to query the Ethereum nodes by just a few parameters, such as
transaction hashes, block numbers and indexed log topics. Without an external
index, it is impossible to search data based on any other attribute.

My work aims to ease access to on-chain data and describes a way to do it
using Dgraph [6], an open-source distributed database.

1The theoretical immutability of smart contracts is analyzed more in-depth in chapter 6.

1

2 CHAPTER 1. INTRODUCTION

1.2 Research questions
Two research questions were defined:

• RQ1: What kind of information is possible to extract from EVM blockchains
without relying on centralized services?

• RQ2: What computational resources are required to independently extract
and index the entire history of the Ethereum blockchain in August 2023?

1.3 Contribution
This thesis provides multiple contributions to the topic of data mining from the
Ethereum blockchain:

• A research on the main state-of-the-art tools, highlighting their strengths
and shortcomings.

• The definition of a schema for Ethereum data optimized for graph databases.
This schema includes both raw data and the semantics that can be built from
it.

• The release of eth2dgraph, an open-source software written in Rust that
efficiently extracts data from the Ethereum blockchain to be indexed and
queried with Dgraph, a distributed graph database.

• An analysis of the Ethereum data, both in terms of infrastructure and time
needed to perform extraction and indexing and in terms of what semantics
can be extracted.

1.4 Outline
The next chapters of this thesis as structured as follows:

• Chapter 2 - Background: this chapter introduces the technical details of
how a blockchain works, with a focus on Ethereum. It also includes a section
about Dgraph.

• Chapter 3 - Previous work: in this chapter, each section describes a work
done in the field of data extraction and/or indexing of blockchain data.

• Chapter 4 - Methods: here it is described in details how eth2dgraph
works. It is shown how each piece of information has been extracted.

• Chapter 5 - Results: this chapter shows the outcome of running eth2dgraph
using a local Ethereum node to extract and index all the history of the chain.

• Chapter 6 - Analysis of data: in this chapter there are six independent
analysis on the data extracted that show the state of the chain.

CHAPTER 1. INTRODUCTION 3

• Chapter 7 - Discussion: in this chapter are discussed the results of this
research, the future work and more generally the upcoming challenges of the
sector.

• Chapter 8 - Conclusions: the last chapter summarizes the main findings
and gives answers to the research questions

4 CHAPTER 1. INTRODUCTION

CHAPTER

TWO

BACKGROUND

2.1 Cryptographic background

2.1.1 Hash Functions

A Hash Function is a deterministic function that maps an input message m into
an output O = H(m) that has a fixed length. O is often called digest or simply
the hash of m.

Cryptographic hash functions (CHF) is a family of hash functions used in many
information security applications, such as digital signatures. They are defined as
hash functions that satisfy the following properties:

1. Efficiency: given a message m it is computationally quick to calculate its
digest H(m).

2. Pre-image resistance: given the digest H(m) it is computationally infeasible
to find m. H is a one way function.

3. Second pre-image resistance: given a message m and its digest H(m) it is
computationally infeasible to find another message m′ such that H(m) =
H(m′).

This is also the formal definition of One Way Hash Function (OWHF) given
by Merkle [7].

In addition to these three properties, a CHF can also be collision resistant.
This last property implies that it is computationally infeasible to find two messages
(m,m′) – with m ̸= m′ – such that H(m) = H(m′). A hash function that satisfy
this property is called Collision Resistant Hash Function (CRHF).

Hash functions are one of the foundation layers of the concept of blockchain.
Typically, each protocol decides a cryptographic hash function that is used every
time hashing is needed. Bitcoin uses SHA-256, while Ethereum uses KECCAK-
256, a more recent alternative [1, 2].

2.1.2 Hash chains

A hash chain is the sequential application of a cryptographic hash function to a
message m. For example, H(H(H(H(H(m))))) is a hash chain of length five ap-

5

6 CHAPTER 2. BACKGROUND

plied to the string m using the cryptographic hash function H, it can be shortened
as H5(m). Image 2.1.1 visualizes this idea.

Figure 2.1.1: Example of a hash chain of length five.

This concept was proposed by Lamport as a way to securely store passwords
on servers [8]. In his proposed protocol, the server just stores Hn(p), where p is
the password and n is relatively big number (e.g. 1000). When the user wants to
authenticate, she sends Hn−1(p) and the server computes H(Hn−1(p)) and checks
if it corresponds to Hn(p). If this check succeeds, the user is authenticated and the
server replaces the stored value with Hn−1(p). Next time she wants to authenticate
again, she needs to send Hn−2(p) and this value is checked against the previously
sent digest Hn−1(p). In this protocol, even if the transmission or the storage is
not secure, the password is safe.

Blockchain technology uses this idea to form the immutable chain of blocks:
each block contains the hash of the previous one. Modifying a block would result
in changing its hash, this would break the chain since all the following blocks
would have to be recomputed, changing each digest. As shown in Figure 2.1.2, it
is a slightly different concept than the plain hash chain, since on each step, the
hashing is done on the previous digest linked to raw data of the current block, so
dn = H(bn || dn−1)

Figure 2.1.2: Example of how the hash chain concept is used in a blockchain.

2.1.3 Merkle trees

A Merkle tree is a data structure that generalizes the hash chain to efficiently
prove membership of data. It is a binary tree in which each leaf node represents
the hash of data, while intermediate nodes are computed as the hash of the two
child nodes. Figure 2.1.3 is an example of a Merkle tree with 4 leaf nodes.

CHAPTER 2. BACKGROUND 7

Figure 2.1.3: Example of a Merkle Tree with four leaf nodes.

Proving membership of data to a tree with 2n leaves just requires n steps and n
intermediate nodes. The algorithm simply reconstructs the tree starting from the
node that must be checked, recalculating again the root node, also called Merkle
proof. Data is proved to be part of the tree if the recalculated root node is equal
to the given root node of the tree.

This exact concept is used in Bitcoin to prove membership of transactions to a
block. Each block uses a Merkle tree where the leaf nodes are made by the hash of
transactions. Inside each block it is stored the root of the Merkle tree. To prove
that a particular transaction has been included in that block and not modified,
it is necessary to rebuild the root node starting from the leaf of the transaction
considered. This is particularly efficient for light clients. They do not store all
the transactions, but just the block headers. If they need to prove that a certain
transaction has been included in a block and not modified, they need to ask a
full client just the intermediate hashes needed to rebuild the tree and not all the
transactions of that block.

Ethereum uses a similar concept to store and verify membership of three dif-
ferent kind of information per block:

• State trie: it is a description of each account state used and modified at the
current block.

• Transactions trie: similarly to Bitcoin, it describes each transaction included
in the block.

• Receipts trie: it contains the receipts of the transactions included in the
block.

All this data is stored in three different Merkle Patricia Tries. It is similar to
a plain Merkle tree but it is faster to edit, does not depend on the order of data
and has a limited depth.

8 CHAPTER 2. BACKGROUND

2.1.4 Digital signatures

A digital signature is the digital counterpart of a handwritten signature in the
physical world. It uses asymmetric cryptography to securely prove that a certain
entity created a piece of digital data and did not modify it since signing.

This is achieved through the use of two keys:

• Private key: it is a random sample of bytes used by the signer to sign
messages and, as the name suggests, is kept secret.

• Public key: it is obtained from the private key and shared to the verifier
to check if the signature is valid.

The process of signing a message m works as follows:

1. The signer calculates d = H(m).

2. The digest d is encrypted using the private key resulting in the generation
of the signature σ, that is included in the message to prove authenticity.

To check if the signature is valid, the verifier needs the message m, the signature
σ and the public key of the signer. Anyone with this data can independently check
that the signature is authentic and thus that the entity who owns the private key
related to the signature is the creator of the message.

There are multiple algorithms that make the public-key cryptography possible.
In the sector of blockchain, the most used algorithm is ECDSA [9]. It is based
on the discrete logarithm problem on elliptic curves over finite fields. On these
curves, the problem of finding a k such that P = kG, where P is a known point
on the curve and G is a generator point, has an exponential complexity.

Both in Bitcoin and in Ethereum, the addresses are obtained from ECDSA
public keys in slightly different ways. Both networks use the same elliptic curve
called secp256k1.

2.2 The blockchain
The concept of blockchain was first introduced by the pseudonym Satoshi Nakamoto
when he/them presented Bitcoin, back in 2008. It makes use of a p2p network
and the previously cited cryptographic technologies to create a distributed digital
ledger without the presence of a centralized authority. Blockchain refers to an
abstract concept that is implemented in a lot of different protocols, but Bitcoin
and Ethereum remain by far the two most important implementations.

In all the blockchains, the distributed ledger is represented in form of blocks
secured together as a hashchain. Data can be added to this ledger by anyone
trough transactions. To include a transaction in a block, and so to write to the
ledger, users must send it to the p2p network and pay a fee. The payment is done
trough a cryptocurrency that has value just inside a specific network (e.g. Ether
in Ethereum and Bitcoin in the Bitcoin network). The distributed ledger keeps
track of the holdings of the cryptocurrency.

The consistency and the validity of what is written on the blockchain is based
on the consensus. What is written in the ledger is correct if the majority of

CHAPTER 2. BACKGROUND 9

the people participating in the network agrees on it. There are multiple ways of
achieving so that are discussed in the next sections, but all these methods share the
fact that they are computationally not efficient. All the computers participating in
the network must perform the same calculations in parallel to check the data they
receive and eventually agree on its correctness. This is expensive since millions
of computers are performing the same calculations instead of working on different
tasks in parallel.

This very inefficient computational pattern has become popular for the problem
it solves: preventing double-spending without a central authority.

2.2.1 The double-spending problem

In the world of digital payments, the double-spending problem refers to the pos-
sibility, by malicious actors, to use the same unit of value more than once. Given
the nature of digital money or assets, it is very easy to duplicate them and use
them multiple times.

The traditional and easy way of solving this problem is by introducing a central
authority that controls all the transactions. To make a payment, users need to
go trough a central authority that guarantees the validity of the transaction. The
central authority stores internally a list of holdings. This solution introduces the
bottleneck of having a single point of failure. The central authority must be always
online, must always behave honestly and must guarantee the security of the data
it stores.

There were multiple historical attempts to remove, at least partially, this de-
pendency from a central authority. A relevant attempt was ECash by David
Chaum using RSA blind signatures in 1982 [10]. This protocol did not remove the
concept of a central authority, but tried to reduce their power. Here the central
authority, or bank, issues coins to users signing them with blind signatures. The
peculiarity of this type of signature is that the signer does not know the message
it is signing, so the coins are anonymous and untraceable. Users can send these
digital coins between each other even if the bank is offline. The receiver then pro-
ceeds to send these coins to the bank to deposit the money into his bank account.
In this protocol, double spending is prevented completely just if the bank is online
but can also be detected offline if the same coin is sent multiple times to the same
receiver.

In the concept of blockchain this problem is solved by letting all the participants
of the network know and agree on who owns what and which transactions are
taking place. If a user tries to submit a transaction that is spending money that
she had already spent, the other participants of the network will not agree on
including it into the blockchain and the money transfer will never occur.

For technical reasons it would be possible to encounter double spending also
in blockchain transactions due to temporary forks. It is a situation in which there
are two new blocks to include on the top of the chain at the exact same moment.
This event will result in having two different chains, both valid. The blockchain
protocols usually work in a way to always follow the longest available chain, so it
is necessary to wait for the inclusion of new blocks and see which of the available
chains outgrows the others. This is the reason why in blockchain transactions it
is needed to wait for confirmations. A common heuristic in Bitcoin is to wait for

10 CHAPTER 2. BACKGROUND

6 new blocks to be added on top of the desired one to be sure that it is final, this
means waiting for around one hour. In Ethereum, with the recent migration to
Proof of Stake, it is required a maximum of around 15 minutes to be sure that a
block is finalized and can not be replaced.

2.2.2 Blockchain properties

The word blockchain is often accompanied with many adjectives to describe its
properties. I here try to summarize and explain the most common ones:

• Decentralized: there is not a central authority that rule and control the
network. No-one in the network has the power to control or change the rules.
All the actors follow the protocol and have the same power.

• Distributed: the computation is performed by multiple distinct computers
that interacts with each other through a p2p network. The failure of a
machine does not interrupt the protocol.

• Immutable: it is not possible to alter the history of what has been written
on the blockchain. Once a block is included and finalized it is not possible
to modify it.

• Permissionless: everyone can actively participate in all the roles of the
network without asking for permissions.

• Permissioned: in contrast to permissionless, permissioned blockchains re-
quires that the actors receive explicit authorization to operate on the net-
work. The most used example of this kind is Hyperledger Fabric1.

• Transparent: everyone can independently download and read blockchain
data. The only things needed are a computer and an internet connection.
It is possible to get the data using specific software called clients, that are
specific for each protocol.

• Pseudoanonymous: users that participate in the network does not need to
prove their real identity. Every activity on the chain is linked to an address
and not to a real person.

• Account-based: data is saved based on account. Each account has a bal-
ance that can be spent. In order to spend this balance, users need to prove
they have a private key related to the account’s address.

• UTXO-based: contrary to account-based blockchains, the model of UTXO
just has the concept of transactions. Users need to prove they have the
private key for unlocking the output of a transaction to spend its money.
The balance of a user is simply the sum of the values of the outputs he can
potentially unlock and spend.

1Hyperledger Fabric is a modular framework for enterprise blockchains: https://www.
hyperledger.org/projects/fabric.

https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric

CHAPTER 2. BACKGROUND 11

2.2.3 Consensus layer

As said in the previous sections, the fundamental concept in the blockchain tech-
nology is that the validity of the data stored is based on the consensus between
the majority of the actors participating in the network. This section explains how
this is achieved trough different types of consensus layer.

All public blockchains need to have a consensus layer to make the users agree
on what is correct. There are many different types that have been invented in the
years, but the two most important layers are Proof of Work (PoW) and Proof of
Stake (PoS).

2.2.3.1 Proof of Work

The Proof of Work consensus mechanism is the one introduced with Bitcoin back
in 2008. It has been used also by Ethereum until the switch to Proof of Stake
happened in September 2022.

The core concept in Proof of Work is that users need to solve complicated
puzzles in order to write data on the blockchain. The solution to the puzzle
shows that the user who found it has performed a lot of work and grants him the
permission to write on the chain. All the other actors, that were not able to solve
the puzzle, limit themselves to check the validity of the solution.

The PoW layer has a mechanism to algorithmically adjust the difficulty of the
puzzles. Each blockchain protocol sets a fixed amount of time in between blocks,
called inter-block time. In case of Bitcoin it is of 10 minutes. If the solutions to
the puzzles are found faster than the expected inter-block time, the next puzzles
will become more complicated. On the other hand, if the inter-block time is higher
than the expected one, the following puzzles will be easier to solve.

The puzzle that must be solved in Bitcoin is the following: find a (double) hash
of the data contained in the block’s header such that is is lower than a threshold
that depends on the current difficulty. It can be summarised as the following
equation: H(H(header)) < difficulty threshold. The output of a hash function is
a fixed amount of bits, so it can also be said that the puzzle is finding a digest
that starts with a certain amount of zeros (and so that is a small number).

There is a field in block headers called nonce that is used for solving these
puzzles. It is a 32 bits fields that can be freely set by the miners to cause the
hash to change and meet the requirements of the puzzle.

The word miner comes from this concept. The users that try to find the
solution to the challenge are called miners since they continuously try to find
valid hashes that would provide them a precious reward.

Miners are economically incentivized to perform the hard work of mining since
they receive a reward for each block mined and also all the transaction fees of the
transactions included in the mined block.

In Bitcoin, these are the steps to follow to mine a block with PoW:

1. Choose the block’s content. Include transactions, coinbase transaction and
compute the Merkle root.

2. Choose a random 32 bit nonce and include it in the block’s header.

12 CHAPTER 2. BACKGROUND

3. Compute the double hash of the block’s header. If the result is lower than
the difficulty target the block is successfully mined. If not (and not all nonces
has been tried), go to step 2.

4. If all nonces has been tried, go back to step 1.

PoW has proven to work well with Bitcoin, but it suffers of some limitations:

• High energy consumption: Bitcoin alone is estimated to use around 45.8
TWh per year for running the computers that perform mining. This is
between the levels produced by the nations of Jordan and Sri Lanka [11].

• Risks of centralization: the hardware used for mining is becoming more and
more expensive and it is a big entry barrier for small players. There is the
risk that few big players together can take control of the blockchain. This
happened in 2014, when the GHash.io mining pool had more than 51% of
the hashing power of Bitcoin.

2.2.3.2 Proof of Stake

Proof of Stake is the most popular alternative introduced to reduce the drawbacks
of Proof of Work. Here, the permission to append data to the blockchain is granted
randomly between a set of validators.

To become a validator, a normal user has to stake a certain amount of coins.
These coins are kept locked in a smart contract and can be used by the protocol as
a warranty that the validator will behave correctly. If the validator fails to do his
work, the coins staked can be slashed, like a fine to disincentive bad behaviours.

The idea is that miners, instead of spending money in computers and energy,
spend their money by locking the coins. This has the advantage of not wasting
energy and also gives more value to the coins themselves.

The most popular blockchain that uses this consensus layer is Ethereum. It
switched from Proof of Work to Proof of Stake in September 2022, reducing emis-
sions from 78 TWh/yr to just 0.0026 TWh/yr2. In Ethereum, users are required
to stake 32 ETH, equivalent to 52,402 USD, to become validators.

2.2.4 51% attack

The 51% attack is the nature consequence of how the blockchain works. Everything
is based on consensus, this attack simply gains the majority of it. It consists in
the case in which a single entity owns more than half of the hashing power (in
case of PoW) or more than half of the staked coins (in case of PoS).

In these cases, this single entity has the control of more than half of the network.
In case of PoW, he can mine block faster that anyone else and so he can create
a fork that will outgrow the current chain that in the meantime can be used
to double spend money. In case of PoS, he has the control of the majority of
attestations, so he can vote his own fork to be the preferred fork and again double
spend money.

2More details about this can be found on the Ethereum website: https://ethereum.org/
en/energy-consumption/.

https://ethereum.org/en/energy-consumption/
https://ethereum.org/en/energy-consumption/

CHAPTER 2. BACKGROUND 13

The security of a blockchain against the 51% attack is related to how much it
would cost to perform such an attack. It would cost billions of dollars to buy the
infrastructure to perform a 51% attack against Bitcoin. The more a blockchain is
used and the more it is secure against 51% attacks.

2.3 Ethereum
Ethereum is a decentralized, permissionless and account-based blockchain. It is
the second blockchain in terms of market capitalization3 and popularity. It was
designed and developed by Vitalik Buterin and Gavin Wood since 2013. It went
live in 2015. It was the first of many Blockchain 2.0, so a blockchain that allows
users to create smart contracts using a Turing-complete programming language.

It was introduced to generalize the potentiality of the blockchain technology
and make it available to other use cases than just money transfers. Thanks to
the Turing-complete scripting language, it is possible to create applications that
can implement any kind of logic that could benefit of a blockchain. Previously
to Ethereum, it was common to create ad-hoc protocols for each use case. This
created fragmentation and caused low adoption.

As stated by Vitalin Buterin in the announce post on the Bitcoin forum4, the
goal of Ethereum was to "to provide a platform for decentralized applications - an
android of the cryptocurrency world, where all efforts can share a common set of
APIs, trustless interactions and no compromises".

2.3.1 Ethereum as a state machine

The Ethereum blockchain can be seen as a state machine. There is a global state,
called World State, that stores data related to each ever-used account. This state
is modified trough transactions, after their inclusion in each block. Figure 2.3.1
visualizes this concept clearly.

Figure 2.3.1: Ethereum visualized as a state machine [12].

The World State is a mapping between account address and account state.
There are two types of account: Externally Owned Account (EOA) and Contract

3Market capitalization refers to the total value of all the cryptocurrency emitted.
4The thread can be found at the following link: https://bitcointalk.org/index.php?

topic=428589.0

https://bitcointalk.org/index.php?topic=428589.0
https://bitcointalk.org/index.php?topic=428589.0

14 CHAPTER 2. BACKGROUND

Account (CA). EOA is the traditional account based on a private key, used to
generate transaction on the chain. It needs to store on the World State just two
pieces of data: a nonce and its balance. The Contract Account refers to smart
contracts, they can not generate transactions, they can just react to them. On top
of nonce and balance, it needs to store on the World State also the storage hash
and the code hash. These two hashes are used as pointers to retrieve the storage
of the smart contract, so the place in which the software stores variable values,
and the actual code to run when invoked from a transaction. Figure 2.3.2 shows
the division of the World State.

Figure 2.3.2: Ethereum World State visualized [12].

This World State needs to describe the state of millions of accounts and update
it every 12 seconds, the average inter-block time in Ethereum. To do so, it uses a
Merkle Patricia Trie that is optimized for this use case.

2.3.2 Ethereum Smart Contracts

Smart contracts are pieces of code that can be invoked trough transactions and
that can modify the World State following a custom logic. They are written
in high-level programming languages compiled to a stack-based bytecode called
Ethereum Virtual Machine code or EVM code.

Smart contracts can do many things, such as:

• Store data on the blockchain: each smart contract has a storage in which it
can store persistent data represented by state variables. Storing persistent
data has a cost and is paid through gas.

• Interact with other smart contracts: during its execution, a smart contract
can call other smart contracts and use their return values.

• Emit events that are indexed: it is possible to use the LOG opcode to store
persistent data that is indexed by the Ethereum clients. This indexed data
can be easily retrieved by traditional software through fast RPC calls.

CHAPTER 2. BACKGROUND 15

• They can handle failures: it is possible for a smart contract to gracefully
handle failures both totally or partially. Everything that is done in a failed
branch of a transaction is not persistently stored on the blockchain.

• Access context data: it is is possible to access block and transaction data
inside the execution of the code. It is very common to use the address of
the transaction’s sender to manage access to certain restricted functions.

But at the same time, smart contracts on Ethereum have some limitations that
limit their applicability to real-world scenarios:

• No access to external data: from the code of a smart contract it is impossible
to know everything that is outside of the blockchain. It is not possible to call
a REST API to get information such as stock prices, weather or any other
data. This is partly solved by oracles, that are specific smart contracts that
can be queried to get these kind of information. These smart contracts are
updated by transactions sent periodically by an external entity. It is an
expensive operation and creates a potential single point of failure.

• Cannot connect to any other software: as said before, it is not possible for
a smart contract to interact with other software that are not other smart
contracts on the same chain. The link between traditional systems and
smart contracts is always asynchronous, e.g. they can not cooperate during
the execution of a transaction.

• No infinite loops: smart contracts can not execute endless loops. This is an
obvious limitation, since the execution of a transaction must finish in order
to include its outcomes in the World State.

• Hard to upgrade: it is not possible to change the code of a smart contract
once it is deployed on the blockchain. There are some ways of doing it as
explained in Chapter 6 but it is not trivial.

• Cannot initiate transactions: smart contracts are passive entities on the
blockchain that can be invoked by external users. They can not create
transactions by their own.

• Cannot accept randomness: the execution of a smart contract must be com-
pletely deterministic. It must be reproduced on each node participating in
the network to attest its correct execution and so it can not accept any real
randomness.

• Cannot store sensitive or private data: since Ethereum is a permissionless
blockchain, everything stored there is public. Smart contracts can not hide
anything.

2.3.2.1 Gas

The concept of gas has been introduced in Ethereum to have a unit of measure for
pricing smart contract executions. Miners involved in the protocol must run the
smart contracts’ code on their machines to calculate the World State differences.

16 CHAPTER 2. BACKGROUND

Malicious users could potentially send computationally intense transactions to
congest the network. This is avoided in Ethereum using gas, which makes this
kind of attack economically not convenient.

Each EVM opcode has an associated price that indicates how much gas it
burns when it is executed. The amount of gas each transaction can burn is finite,
so it is impossible to encounter infinite loops. If a user tries to code an infinite
loop or even just an expensive code execution, the transactions will fail with the
error out of gas.

Ethereum gas has a variable price that changes based on the congestion of the
network. It is paid in Ethers by the sender of the transaction. Before EIP-11595,
the price of gas was set by each user when he built the transaction. The fee that
the transaction sender had to pay was simply gasPrice ∗ gasUsed. Transactions
with higher gasPrice were prioritized by miners since they rewarded more money
for the same computational effort.

After EIP-1159, since August 2021, the gas fee has been split into two parts:
base fee and priority fee. The base fee is a gas price calculated by the network
based on congestion. The priority fee is an additional value given per unit of gas
used to incentivize miners to include a specific transaction. For each transaction,
baseFee ∗ gasUsed Wei6 are burnt and priorityFee ∗ gasUsed Wei are given to
the miner.

2.3.2.2 EVM

EVM stands for Ethereum Virtual Machine and is the virtual architecture of the
computer that runs the smart contracts’ bytecode. The EVM is a stack based
machine composed of a stack, a volatile memory and a program counter. It can
access the World State both to read and to write persistent data. Figure 2.3.3
shows the schema of the EVM.

The whole Ethereum network can be seen as a single instance of an EVM
machine that runs the code of smart contracts invoked in transactions. In practice,
this is done by every single node connected to the network, using a potentially
different EVM implementation.

2.3.2.3 Solidity

Ethereum smart contracts can be programmed in many high-level programming
language. Historically, two languages have been relevantly used: Viper and So-
lidity. Nowadays almost every smart contract is developed in Solidity, it is by far
the most common language used for this purpose.

Solidity is a statically-typed programming language. The syntax is very sim-
ilar to popular languages such as JavaScript. It works like an object oriented
language: a contract is defined as a class that has a constructor and public or
private attributes and methods.

It is compiled to EVM bytecode using solc, a compiler written in C++. After
the compilation with the --bin flag, solc produces as an output the EVM bytecode
that can be deployed to the Ethereum blockchain.

5EIP-1159 is an Ethereum Improvement Proposal that changed the fee market. It can be
read here: https://eips.ethereum.org/EIPS/eip-1559.

6Wei is a fraction of a Ether. 1 Wei is 10−18 ETH.

https://eips.ethereum.org/EIPS/eip-1559

CHAPTER 2. BACKGROUND 17

Figure 2.3.3: The Architecture of the Ethereum Virtual Machine (EVM) [12].

This bytecode includes both the runtime code and the deployment code. The
first one is the actual code that is stored on the chain, while the second part is
the code needed to initialise the contract. Listing 2.1 shows an example of a basic
smart contract taken from the Ethereum documentation. Listing 2.2 shows the
result of the compilation of this contract. These are the 541 bytes that implement
the logic of the Solidity code and that are stored on the blockchain.

1 // SPDX-License-Identifier: MIT
2 pragma solidity ^0.8.20;
3

4 contract SimpleStorage {
5 // State variable to store a number
6 uint public num;
7

8 constructor(uint _num) {
9 num = _num;

10 }
11

12 // You need to send a transaction to write to a state
variable.

13 function set(uint _num) public {
14 num = _num;
15 }
16

17 // You can read from a state variable without sending a
transaction.

18 function get() public view returns (uint) {
19 return num;
20 }

18 CHAPTER 2. BACKGROUND

21 }

Listing 2.1: Example of a simple Solidity smart contract that stores a variable
on the blockchain and allows edits to it.

1 0x608060405234801561000f575f80fd5b5060405161021d38038061021d83
2 398181016040528101906100319190610074565b805f819055505061009f56
3 5b5f80fd5b5f819050919050565b61005381610041565b811461005d575f80
4 fd5b50565b5f8151905061006e8161004a565b92915050565b5f6020828403
5 12156100895761008861003d565b5b5f61009684828501610060565b915050
6 92915050565b610171806100ac5f395ff3fe__608060405234801561000f57
7 5f80fd5b506004361061003f575f3560e01c80634e70b1dc14610043578063
8 60fe47b1146100615780636d4ce63c1461007d575b5f80fd5b61004b61009b
9 565b60405161005891906100c9565b60405180910390f35b61007b60048036

10 038101906100769190610110565b6100a0565b005b6100856100a9565b6040
11 5161009291906100c9565b60405180910390f35b5f5481565b805f81905550
12 50565b5f8054905090565b5f819050919050565b6100c3816100b1565b8252
13 5050565b5f6020820190506100dc5f8301846100ba565b92915050565b5f80
14 fd5b6100ef816100b1565b81146100f9575f80fd5b50565b5f813590506101
15 0a816100e6565b92915050565b5f60208284031215610125576101246100e2
16 565b5b5f610132848285016100fc565b9150509291505056__fea264697066
17 7358221220ed271d25e577fb9fa9b0b77e93485c035d8fc87f28d3c0247cff
18 80d69910e46064736f6c63430008150033

Listing 2.2: EVM bytecode derived from compiling the contract shown in
Listing 2.1. There are three parts divided by two underscores (__). The first
part is the deployment code, the second part is the runtime code and the last part
is the CBOR-endoded metadata. This is what is stored on the blockchain and
what can be retrieved.

2.3.2.4 Token contracts, ERC20 and ERC721 standards

The most frequent use case of smart contracts are tokens. Tokens can be of two
types: fungible or non-fungible. Fungible tokens are divisible, like money, while
non-fungible tokens can not be split, like a piece of art.

At low level, fungible tokens are simply a mapping from account to the balance
of the token that the account can spend. Non-fungible tokens, on the opposite,
are simply a mapping from the token id to its owner. Those mappings are stored
on the blockchain, and specific functions allow the owners of the tokens to transfer
them.

Since the usage of tokens was so popular, the Ethereum community stan-
dardized them in two standards: ERC207, for fungible tokens, and ERC-7218 for
non-fungible tokens.

ERC20 specifies nine functions and two events that allows users to transfer
their tokens or allow other users to spend them. Famous ERC20 smart contracts
are stable coins (e.g. USDT, USDC) or DAO tokens (e.g. Uniswap, Lido DAO,
Aave).

7Link to the EIP-20 official page: https://eips.ethereum.org/EIPS/eip-20.
8Link to the ERC-721 official page: https://eips.ethereum.org/EIPS/eip-721.

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721

CHAPTER 2. BACKGROUND 19

The same applies to ERC721, which specifies nine functions and three events
that allows users to safely manage their non-fungible tokens. Popular ERC721
tokens includes CryptoPunks, CryptoKitties and the Ethereum Name Service.

The usage of standards allows developers to build applications that can interact
with any token. For example, it is possible to develop decentralized exchanges and
wallets that work with any smart contract that correctly implements one of the
two standards.

2.3.3 Ethereum clients

Ethereum is just a definition of a protocol. It defines in details how participants
of the network must behave. All the logic is implemented by complex software
called clients. A computer that runs a client and is connected to the network is
called an Ethereum node.

There are multiple different practical implementations of the Ethereum proto-
col, all the different kind of software interact with each other thanks to the protocol
definition. It is actually very important for the network to have a diversity of the
type of clients running simultaneously. This ensures that the network will still
work in case a specific client receives a wrong update. Imagine the scenario in
which there is only one client version in all the network and it receives a wrong
update. The blockchain would stop to work correctly and it would be very hard
to bring it back up with the correct state.

After the switch to PoS, clients are divided into two: execution and consensus
clients. The execution client is responsible for managing transactions, executing
smart contracts and updating the world state. The consensus client is responsible
for running the proof-of-stake logic. These two clients interacts with each other
with the Engine API 9.

Clients can be used in three different configurations:

• Light node: these nodes do not download blocks’ data, they just download
the headers. They can ask full or archive nodes other data if needed (trans-
actions or world state). The purpose of light nodes is to give users the
possibility to access blockchain data without the need of powerful machines.
Light nodes do not participate in blocks validation.

• Full node: when run as a full node, the client download and validates all
the history of the blockchain block-by-block. They can both start from the
genesis block (block zero) or from a more recent block. After the verification,
full nodes do not store all the data they download, they just keep in memory
the most recent blocks that can be useful for maintaining the network. Full
nodes can participate in blocks validation.

• Archive node: this is the most complete type of node. It behaves similarly
to a full node but it does not delete data after verification. To run an archive
node, very powerful machines are needed. To sync and store the history of
Ethereum using Geth, it is estimated to take around 12TB of disk space

9The specification of the Engine API can be found here: https://github.com/ethereum/
execution-apis/blob/main/src/engine/common.md.

https://github.com/ethereum/execution-apis/blob/main/src/engine/common.md
https://github.com/ethereum/execution-apis/blob/main/src/engine/common.md

20 CHAPTER 2. BACKGROUND

(July 2023) and more than a week of time. There are clients optimized for
storing all the history of the chain, such as Erigon, that takes just 3TB.

It is possible to interact with Ethereum clients through Inter-Process Commu-
nication (IPC) using JSON-RPC10. This is a protocol that defines how data must
be sent to the clients and how clients should reply. All the communication is made
with stateless network calls in which data is serialized as JSON. There are many
libraries that implement this protocol in different programming languages, easing
the process of communication with clients.

According to Ethernodes.org11, 54.9% of the execution clients are running with
Geth, followed by Nethermind (24.21%) and Erigon (10.48%). For the consensus
clients, the most used is Prysm (45.79%) followed by Lighthouse (32.94%) and
Teku (14.82%)12.

2.4 Graph databases
Graph databases (GDBs) are databases optimized for storing and retrieving data
structured as a graph. A graph is represented as nodes connected trough edges.
Typically, graph data is highly connected, so moving between nodes by follow-
ing edges is what graph databases optimize. In contrast, relational databases
(RDBMS) needs to perform expensive joins to achieve so. It is possible to store
graph data also with other kind of databases, but in graph databases, the storage
level is optimized to perform graph traversal.

2.4.1 Dgraph

Dgraph [6] is an open-source distributed graph database written in Go. It features
horizontal scalability while offering the benefits of ACID transactions.

Internally, a Dgraph cluster is composed of multiple processes that can be
run on different machines. There are two types of nodes in a Dgraph cluster:
Alphas and Zeros. A Zero instance is responsible for coordinating the cluster,
managing distributed transactions and re-balancing data across the servers. An
Alpha instance is responsible for storing data and indices. A cluster must have at
least one Zero instance and one Alpha instance. To get the data, users can query
directly the Alpha instances. Figure 2.4.1 shows an example of the composition
of a cluster. Inside the cluster, consensus between the nodes is ensured using the
RAFT Consensus Algorithm [13]. This protocol uses periodical elections to ensure
that at any given time just one entity of the cluster is the leader and all the others
are followers13.

Data in Dgraph is stored using the concept of posting list. In Dgraph, the unit
of data is stored as a composition of three values: <subject> <predicate> <object>.

10The specification of the execution API can be found here: https://ethereum.github.io/
execution-apis/api-documentation/ and the one for the consensus API can be found here:
https://ethereum.github.io/beacon-APIs/.

11Data has been obtained from this dashboard: https://ethernodes.org/.
12Data retrieved from: https://github.com/sigp/blockprint/blob/main/docs/api.md.
13An interactive visualization of how the RAFT consensus algorithm works can be found here:

https://raft.github.io/

https://ethereum.github.io/execution-apis/api-documentation/
https://ethereum.github.io/execution-apis/api-documentation/
https://ethereum.github.io/beacon-APIs/
https://ethernodes.org/
https://github.com/sigp/blockprint/blob/main/docs/api.md
https://raft.github.io/

CHAPTER 2. BACKGROUND 21

Figure 2.4.1: The architecture of a Dgraph cluster with three Zeros and seven
Alphas. Taken from Dgraph official documentation.

Every node receives an unique integer id used as the subject. So, for example, a
node representing a person with uid 1 and name "John" is stored as: <1> <name>
<John>. The actual storage is done by Badger, a key-value database. Each unique
<subject> <predicate> is stored as a key with the list of corresponding <object> as
values. So, to complete the example, the person would be stored in the underlying
key-value DB as key: <name, 0x1> and value: <"John">. Each value is a posting
and is stored together with other values sharing the same subject and predicate,
effectively forming a posting list.

Sharding in Dgraph is based on tablets : a tablet can not be split into multiple
servers. A tablet groups data based on predicates. So, reusing the previous ex-
ample, all the values of the predicate name form a tablet and so are stored in the
same server. Having all the same predicates stored in a single machine allows to
perform faster queries since the data to filter is all in one place and there is no
need to perform network calls.

Indexes are implemented using the same concept of posting lists. The only
difference is that indices are stored using <predicate, token> as keys instead of
<predicate, subject>. Token is the piece of indexed data and depends on the type.
For example, supposing a string "Davide Aimar" must be indexed using the term
index, two posting lists will be defined: one with key: <name,"Davide"> and one
with key: <name,"Aimar"> containing as values the references to all the uids that
have that word in the name.

22 CHAPTER 2. BACKGROUND

CHAPTER

THREE

PREVIOUS WORK

Data extraction and indexing from various blockchains is an essential topic for
making Web3 and dApps working, there are different projects that have tried to
address this problem. A lot of work has been done by companies, whose source
code and methodology are not publicly available. There are also some open source
or academic attempts that I use as a comparison with my work.

These projects target three main categories:

• Web3 and dApps developers, that need data to feed their applications.

• Data analysts, that need to analyse historical blockchain data.

• Blockchain users, that need to see the results of transactions.

In the next sections I list the state of the art tools available.

3.1 Etherscan
In the world of blockchain, explorers play an important role. They are web-based
tools that allow users to see every kind of information with a user-friendly and
interactive interface.

Etherscan1 is the reference point for accessing data about the Ethereum blockchain.
It is the most used Ethereum explorer that lets people browse historical data
through a web interface. Here users can easily explore transactions, internal calls,
token transfers and everything else related to the Ethereum protocol. It is useful
for inspecting singular operations, but it can not be used for large-scale analysis.

One of the most important services they offer is the verification of smart con-
tracts, they host 461,2612 source codes (as of 17 May 2023) that have been verified
to match exactly the deployed bytecode on the Ethereum chain.

The process of verification consists in providing Etherscan the exact source
code of a Smart Contract, the version of the compiler used, the license selected and

1Online blockchain explorer available at https://etherscan.io/
2This data was calculated using the CSV file exported from https://etherscan.io/chart/

verified-contracts

23

https://etherscan.io/
https://etherscan.io/chart/verified-contracts
https://etherscan.io/chart/verified-contracts

24 CHAPTER 3. PREVIOUS WORK

the contract address to verify. With this information, Etherscan tries to compile
the given data and check if the resulting bytecode equals the one deployed on the
blockchain. If the check succeeds, then the source code correctly describes the
bytecode of the smart contract. There are plugins for the most used development
tools like Remix3 or Hardhat4 that ease this process of verification.

This data is helpful for understanding the semantics of the code deployed,
since it is hard to get valuable insights by just looking at the raw bytecode. Many
studies are based on these verified contracts.

Etherscan has evolved from being just an Ethereum explorer. Etherscan de-
velopers use the Ethereum blockchain data and created API endpoints and offer
these data to users for a fee. These API endpoints include the standard Ethereum
JSON-RPC interface. There are also other more advanced indexes not supported
by the standard RPC, e.g. transactions by address, ABI of contracts, token trans-
fers.

On top of that, they also provide live and interactive charts5 about historical
Ethereum data.

The same company that is behind the Ethereum Etherscan explorer applied
the same logic and technology to other EVM-compatible chains, like Polygon6 or
BNB Smart Chain7.

It is important to note that, although they provide almost all the possible
available Ethereum data, they have not shared technical details about how this
data is extracted or how it is indexed. Users need to trust the company. Another
problem is that the data they offer is not easy to get and manipulate for large-scale
analysis. Their API service is meant to be used by developers for building dApps.
It would be too expensive to use it for data analysis on all the history of the chain.

3.2 The Graph
The Graph [14] is a decentralized indexing protocol for blockchain data. It allows
users to get structured on-chain data from other users via a GraphQL8 interface.

All the data is organized in so-called subgraphs, which are independent data
collections that index a small subset of a blockchain network. A common pattern
is that a subgraph indexes data from one or a set of few smart contracts all part
of a common protocol, like Uniswap9. All the available subgraphs can be found

3Remix is an online IDE to develop Ethereum smart contracts. It is
possible to verify contracts using the Etherscan Contract Verification plu-
gin. A detailed guide can be found here: https://medium.com/@ezeamaka2/
how-to-verify-smart-contracts-on-etherscan-in-remix-ide-92f6354933b4.

4Hardhat is a popular Ethereum development environment. It has the hardhat-verify plu-
gin that allows to verify contracts easily: https://hardhat.org/hardhat-runner/plugins/
nomicfoundation-hardhat-verify.

5Interactive charts are available at https://etherscan.io/charts
6Explorer for the Polygon network https://polygonscan.com/
7Explorer for the BNB Smart Chain https://bscscan.com/
8GraphQL is an open source query language managed by Linux Foundation, originally cre-

ated by Facebook.
9Uniswap is a decentralized cryptocurrency exchange https://uniswap.org/

https://medium.com/@ezeamaka2/how-to-verify-smart-contracts-on-etherscan-in-remix-ide-92f6354933b4
https://medium.com/@ezeamaka2/how-to-verify-smart-contracts-on-etherscan-in-remix-ide-92f6354933b4
https://hardhat.org/hardhat-runner/plugins/nomicfoundation-hardhat-verify
https://hardhat.org/hardhat-runner/plugins/nomicfoundation-hardhat-verify
https://etherscan.io/charts
https://polygonscan.com/
https://bscscan.com/
https://uniswap.org/

CHAPTER 3. PREVIOUS WORK 25

on the Graph Explorer 10.
The underlying protocol is composed of multiple actors:

• Developers: people with technical knowledge that develop the needed code
for creating and maintaining the indexes. As of now, the most important
pieces of code needed are the mappings from Ethereum events to the stored
data, written in AssemblyScript11, and the subgraph manifest, a structured
description of all the parts needed by the subgraph in YAML format.

• Indexers: they are responsible for operating a node. This implies indexing
the data following a subgraph specification and serving queries to users.

• Curators: they are in charge of finding the best subgraphs to be indexed.

• Delegators: they secure the network by locking economical value to certain
indexers they choose, giving them the possibility to serve more queries.

Figure 3.2.1: Data flow of The Graph indexing protocol12.

All these actors are economically motivated to perform well. This is achieved
via a token economy where the GRT is the currency. It is implemented on the
Ethereum chain with an ERC-20 smart contract13.

10The Graph Explorer collects all the subgraphs of the protocol, it is available at: https:
//thegraph.com/explorer

11AssemblyScript is a Typescript-like language that is compiled to WebAssembly.
12Source: https://thegraph.com/docs/en/about/
13https://etherscan.io/token/0xc944e90c64b2c07662a292be6244bdf05cda44a7

https://thegraph.com/explorer
https://thegraph.com/explorer
https://thegraph.com/docs/en/about/
https://etherscan.io/token/0xc944e90c64b2c07662a292be6244bdf05cda44a7

26 CHAPTER 3. PREVIOUS WORK

In order to index and serve queries, indexers have to stake at least 100,000 GRT
tokens (roughly equal to 12K USD with the current change). These tokens can
be slashed in case the indexer behaves maliciously. The more tokens the indexer
stakes and the more queries it can serve. At the same time, indexers are rewarded
with GRT tokens in two ways: query fees and annual rewards based on amount
of queries served.

According to the specification of the subgraph file14, the only allowed source
of data are Ethereum contracts and mappings are restricted to logs. Figure 3.2.1
shows the flow of data in the protocol. In most cases, this is enough for dApps,
since typically all the smart contracts are written in such a way that they emit
meaningful events when things happen.

On the other hand, it is not possible to index all the other kind of information
for performing other analysis, such as block data, contract deployments, transac-
tions, contracts destruction, etc. It is also not possible to extract data that was
not meant to be extracted, since the emitted events are pieces of information that
the developers of the smart contracts explicitly wanted to expose and index.

As of today, the protocol continues to rely on a centrally hosted service that
uses the subgraphs’ logic and code to index data, but queries are served from this
centralized server for free. This should change later in 2023, the network should
slowly migrate from this centralized service to the decentralized protocol once the
quality of the service will be comparable15.

The Graph is the first attempt to decentralize indexing of blockchain data, it
is still a project with a lot of work behind the scene. It is the most promising
mechanism to make Web3 and dApps not dependent on centralized data ingestion
services.

3.3 Ethereum-ETL
Ethereum-ETL [15] is an open-source tool for extracting data from the Ethereum
blockchain following the Extract-Transform-Load pattern. It is written in
Python and can be used through a CLI.
Raw data can be extracted to CSV or JSON files using these commands:

• export_blocks_and_transactions: it calls eth_getBlockByNumber RPC
and maps the response to two files containing blocks and transactions.

• export_token_transfers: it calls eth_getFilterlogs applying a filter
with the first topic set to the Keccak-256 hash of the Transfer event sig-
nature. Transfers are stored in a single file without distinction between
ERC20 or ERC721.

• export_traces: it stores the internal transactions calling the trace_block
method.

14Specification available at: https://github.com/graphprotocol/graph-node/blob/
master/docs/subgraph-manifest.md#15-data-source

15This transition is explained in details here: https://thegraph.academy/developers/
sunsetting-the-hosted-service/

https://github.com/graphprotocol/graph-node/blob/master/docs/subgraph-manifest.md#15-data-source
https://github.com/graphprotocol/graph-node/blob/master/docs/subgraph-manifest.md#15-data-source
https://thegraph.academy/developers/sunsetting-the-hosted-service/
https://thegraph.academy/developers/sunsetting-the-hosted-service/

CHAPTER 3. PREVIOUS WORK 27

All other kind of data can be extracted starting from the files that these previous
commands store. It is possible to further extract:

• Transaction receipts and logs starting from transaction hashes exported from
export_blocks_and_transactions.

• Contracts data, starting from the traces stored with export_traces.

• Token contracts with metadata, starting from contracts (this requires two
previous steps of extraction).

Ethereum-ETL also provides the command export_all to perform extrac-
tion of all the common data in a single step (blocks, transactions, receipts, logs,
contracts, token transfers and token metadata). However, this command is not
present in the documentation and it can not extract contracts deployed by other
contracts, just the ones deployed by Externally Owned Accounts.

3.3.1 Google BigQuery public dataset

Ethereum-ETL also allows for streaming data from an Ethereum node to the
console. This functionality is used to ingest data into the popular Ethereum
Google BigQuery public dataset16. This dataset is organized in six tables that I
report here in Tables 3.3.1 to 3.3.6 since it is a good representation of the raw
data that can be extracted from an Ethereum node.

16The Google’s BigQuery dtaset can be explored here: https://cloud.google.com/blog/
products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

28 CHAPTER 3. PREVIOUS WORK

Attribute Type Required

timestamp Timestamp Yes
number Integer Yes
hash String Yes
parent_hash String No
nonce String Yes
sha3_uncles String No
logs_bloom String No
transaction_root String No
state_root String No
receipt_root String No
miner String No
difficulty Numeric No
total_difficulty Numeric No
size Integer No
extra_data String No
gas_limit Integer No
gas_used Integer No
transaction_count Integer No
base_fee_per_gas Integer No
withdrawals_root String No
withdrawals Record Repeated

- index - Integer - No
- validator_index - Integer - No
- address - Integer - No
- amount - Integer - No

Table 3.3.1: Schema of table Blocks on the Google BigQuery public dataset.
Taken from the official docs.

Attribute Type Required

log_index Integer Yes
transaction_hash String Yes
transaction_index Integer Yes
address String No
data String No
topics String Repeated
block_timestamp Timestamp Yes
block_number Integer Yes
block_hash String Yes

Table 3.3.2: Schema of table Logs on the Google BigQuery public dataset. Taken
from the official docs.

CHAPTER 3. PREVIOUS WORK 29

Attribute Type Required

address String Yes
bytecode String No
function_signature String repeated
is_erc20 Boolean No
is_erc721 Boolean No
block_timestamp Timestamp Yes
block_number Integer Yes
block_hash String Yes

Table 3.3.3: Schema of table Contracts on the Google BigQuery public dataset.
Taken from the official docs.

Attribute Type Required

transaction_hash String No
transaction_index Integer No
from_address String No
to_address String No
value Numeric No
input String No
output String No
trace_type String Yes
call_type String No
reward_type String No
gas Integer No
gas_used Integer No
subtraces Integer No
trace_address String No
error String No
status Integer No
block_timestamp Timestamp Yes
block_number Integer Yes
block_hash String Yes
trace_id String No

Table 3.3.4: Schema of the Traces table on the Google BigQuery public dataset.
Taken from the official docs.

30 CHAPTER 3. PREVIOUS WORK

Attribute Type Required

token_address String Yes
from_address String No
to_address String No
value String No

Table 3.3.5: Schema of table Token_transfers on the Google BigQuery public
dataset. Taken from the official docs.

Attribute Type Required

hash String Yes
nonce Integer Yes
transaction_index Integer Yes
from_address String Yes
to_address String No
value Numeric No
gas Integer No
gas_price Integer No
input String No
receipt_cumulative_gas_used Integer No
receipt_gas_used Integer No
receipt_contract_address String No
receipt_root String No
receipt_status Integer No
block_timestamp Timestamp Yes
block_number Integer Yes
block_hash String Yes
max_fee_per_gas Integer No
max_priority_fee_per_gas Integer No
transaction_type Integer No
receipt_effective_gas_price Integer No

Table 3.3.6: Schema of table Transactions on the Google BigQuery public
dataset. Taken from the official docs.

It is possible to query these tables using SQL syntax, they can be joined on
equal fields. There is the possibility to query this database for free up to a certain
monthly limit of processing storage and amount of data extracted.

3.4 Dune Analytics
Dune Analytics17 is a company that provides tools to query and visualize data
from multiple blockchains. They support Bitcoin, Solana, Ethereum and other 8

17Blockchain analytics platform https://dune.com/home

https://dune.com/home

CHAPTER 3. PREVIOUS WORK 31

EVM-compatible chains.

Their application is web-based. With their web-app it is possible to create
queries using SQL syntax and visualize results in interactive charts. Multiple
queries can be collected together to create dashboards18.

3.4.1 Data architecture

Blockchain data was initially managed using PostgreSQL and SparkSQL until
2022, year in which they released their own engine called DuneSQL 19. The mi-
gration to this technology is currently ongoing.

They started storing and indexing data with PostgreSQL. In this DBMS, en-
tries are stored in pages following a row-oriented strategy, which means that all
the attributes of a row are stored adjacently. This strategy is beneficial when it is
necessary to retrieve all the attributes of a row while querying. However, it leads
to poor performances when filtering for specific attributes, since the database has
to load many bytes containing irrelevant data (i.e., all the other attributes of the
row that are not used). To avoid this, it is possible to create indexes on columns.
Indexes avoid the need to read and filter data. They provide direct access to the
location of the requested data. Indexes provide very good query performances, but
can be hard and slow to maintain when the amount of data grows. At Dune Ana-
lytics they tried this approach with traditional relational database (PostgreSQL)
combined with many indexes, but they had to drop it stating that "the size of the
datasets were so huge that the database was struggling to fully support them"20.

They came up with DuneSQL, a query engine built specifically for managing
blockchain data. It is a fork of Trino, an open source distributed SQL query en-
gine designed to query data from heterogeneous sources. The DuneSQL fork is
not open-source, so technical information can only be deducted from their blog
articles or statements on the support community. The main features they added
are varbinary data type for storing addresses and hashes, as well as uint256 sup-
port for EVM data.

Data is physically stored on AWS S3 buckets using the Apache Parquet storage
format21. This storage system is a mix between column and row oriented. Data
is split in files based on rows, inside these files, there are further row groups and
inside these groups data is divided by columns. Figure 3.4.1 visualizes this concept.
Select * from ethereum.transactions
where hash = 0x9ef65fe51 ... ff74219e

Listing 3.1: Shortened simple query on DuneSQL that took 3 minutes to run

18Example of a dashboard about history of Ethereum: https://dune.com/hildobby/
ethereum

19DuneSQL was announced in this blog post: https://dune.com/blog/dune-engine-v2
20Source: https://dune.com/blog/introducing-dune-sql
21Detailed description of Parquet storage format https://github.com/apache/

parquet-format

https://dune.com/hildobby/ethereum
https://dune.com/hildobby/ethereum
https://dune.com/blog/dune-engine-v2
https://dune.com/blog/introducing-dune-sql
https://github.com/apache/parquet-format
https://github.com/apache/parquet-format

32 CHAPTER 3. PREVIOUS WORK

Indexing is done using the Parquet file’s metadata. At the end of each file
there is a part in which are stored min/max values of all the column values inside
a row group, as shown in image 3.4.2. This information allows the database to
skip reading the whole file if values are not in the desired range. While working
great for certain types of data, it is not very useful with strings, especially if they
are not sorted. That is the reason why even very simple queries can take several
minutes to run. Listing 3.1 serves as an example of such a query.

Figure 3.4.1: File structure in the Parquet storage format22.

Figure 3.4.2: Parquet min/max column index structure 23.

22Source: https://github.com/apache/parquet-format
23Source: https://dune.com/docs/query/storage/

https://github.com/apache/parquet-format
https://dune.com/docs/query/storage/

CHAPTER 3. PREVIOUS WORK 33

3.4.2 Available data

On Dune Analytics, blockchain data is available in multiple layers:

• Raw tables : these tables contain raw data as it is stored on the various
blockchains, without modifications. For EVM chains this means Blocks,
Logs, Traces, Transactions and Withdrawals.

• Decoded tables : smart contracts with verified source code receive their own
tables on which data is stored in a more readable way. Each event and func-
tion that is present in the contract’s ABI corresponds to a table on Dune with
the following name pattern: project_chain.contract_[evt/call]_evtOrCallName.
Inside this table there will be columns for each of the event or function at-
tributes, with the relative names. For example, all the cryptokitties Transfer
events are stored in a table called cryptokitties_ethereum.KittyCore_evt_Transfer
that will have, among other contextual information, three columns: from/to
addresses and tokenId.

• Spellbooks : these tables are abstractions over raw and decoded data that
give users an easy way to retrieve information without diving into the tech-
nicalities of complex decentralized protocols. They are open source and the
community can contribute creating new spellbooks on the Github Reposi-
tory24. The main power of spellbooks is to put together data from hetero-
geneous sources to gather useful insights. One of the clearest example is
the dex.trades25 spellbook, that puts together all the trades made on all
decentralized exchanges of all the blockchains present on Dune Analytics.

3.5 XBlock-ETH
Zheng et al. [4] released a dataset containing raw Ethereum data and described the
framework used for getting it, called XBlock-ETH. It was released in 2019. Data
is periodically updated in chunks of 500,000 blocks, it currently covers blocks
from 0 to 16,499,999. It is divided in different smaller datasets: Block, Block
Transaction, Internal Transaction, Contract Info, ERC20 Transaction, ERC721
Transaction, Token Info. Data can be downloaded from their website26 in CSV
format.

This is a useful resource for getting Ethereum data without having the pos-
sibility to run a node; however it lacks important information such as logs and
receipts.

It is not easy to use, since the massive amount of data in the CSV files must
be parsed and cannot be easily queried or indexed, further transformation steps
are needed. There are some Python scripts available on Github27 for downloading

24All the spellbooks can be found on the Github repository: https://github.com/
duneanalytics/spellbook

25Source code of the dex.trades spellbook: https://github.com/duneanalytics/
spellbook/blob/main/models/dex/dex_trades.sql

26Xbloxk website where it is possible to get the data: https://xblock.pro/xblock-eth.
html

27Repository of XBlock-ETH: https://github.com/tczpl/XBlock-ETH

https://github.com/duneanalytics/spellbook
https://github.com/duneanalytics/spellbook
https://github.com/duneanalytics/spellbook/blob/main/models/dex/dex_trades.sql
https://github.com/duneanalytics/spellbook/blob/main/models/dex/dex_trades.sql
https://xblock.pro/xblock-eth.html
https://xblock.pro/xblock-eth.html
https://github.com/tczpl/XBlock-ETH

34 CHAPTER 3. PREVIOUS WORK

and analysing the data, but the code used for the extraction is not open-source,
so it is not possible to replicate the extraction.

3.6 Data-ether
DateEther [3] is a framework presented by Chen et al. for extracting and indexing
Ethereum data. They tried a different approach for executing this task: they
modified a Geth node to record and store data during the initial synchronization
phase. They used ElasticSearch28 for indexing and exploring data, but by the time
of their research the size of data was relatively small compared to now.

While extracting data by modifying a node source code was efficient back in
2019, now Ethereum nodes have evolved and there are different and faster RPCs
for getting internal transactions. Their way of extracting data was compared
against debug_traceTransaction RPC of Geth, claiming to be 18.6x faster, but
it was not compared against debug_traceBlock or trace_block of Erigon. From
my work, using Erigon’s trace_block RPC, I managed to get and loop trough
all the internal transactions in around 7 hours. Doing that while synchronizing a
node would have required at least 3-4 days.

Extracting data by modifying source code has another drawback: maintain-
ability. Just Geth itself received 173 releases29, modifying its source code would
mean having to merge the code and resolving eventual conflicts every time a new
release is published. This is not a problem using Ethereum RPC APIs since they
do not change after upgrades of the nodes.

3.7 Web3 providers
The term Web3 provider is commonly used to refer to companies that offer access
to Ethereum RPC API, avoiding developers of Web3 dApps the costs of running
a node. They are included in this chapter since the majority of them also provide
access to more sophisticated indexed and interpreted data. Some popular web3
providers include Alchemy30, Infura31, Quicknode32 and Chainstack33.

All of them have endpoints for getting NFTs data. It is possible to get all
NFTs owned by an address by just calling an API instead of having to analyze all
the chain. Chainstack also hosts on their servers all the supgraphs of The Graph
protocol, offering users the possibility to use a more stable service instead of the
decentralized alternative.

It is important to note that the web3 providers are profit-oriented companies.
While they provide an important service in the world of dApps, it is essential to
consider their cost implications. Using their services for analyzing historical data
can be very expensive, since billing is done based on number of API requests to
their server.

28ElasticSearch is a search engine based on the Lucene library https://www.elastic.co/
29Data obtained from the Github releases page: https://github.com/ethereum/

go-ethereum/releases
30https://www.alchemy.com/
31https://www.infura.io/
32https://www.quicknode.com/
33https://chainstack.com/

https://www.elastic.co/
https://github.com/ethereum/go-ethereum/releases
https://github.com/ethereum/go-ethereum/releases
https://www.alchemy.com/
https://www.infura.io/
https://www.quicknode.com/
https://chainstack.com/

CHAPTER 3. PREVIOUS WORK 35

Another important aspect to consider is the transparency of these services. As
profit-oriented entities, these web3 providers do not necessarily make their source
code and methodology open-source. This means that developers relying on their
services need to trust the data they receive.

Depending on centralized companies poses also a risk to the actual decentral-
ization of the web3. Access to the blockchain infrastructure is concentrated on a
few companies, as noted by Wang et al. [16].

3.8 Comparison
Table 3.8.1 summarises the main differences between the analyzed tools in terms
of primary target, transparency and price.

Tool Target Open
source Price

Etherscan Blockchain users No Free explorer, paid apis

The Graph Web3 developers Yes Billing based on usage

Ethereum-ETL Data analysts Yes Free

Dune Analytics Data analysts No Based on query credits, it
has free plan

XBlock-ETH Data analysts No* Free

DataEther Data analysts No* Free

Web3 providers Web3 developers No Billing on usage, they have
free plans

* Source code not available, but technical papers describing the software were
released.

Table 3.8.1: Comparison of state-of-the art tools for management of blockchain
data.

My work aims to provide an open-source alternative for accessing Ethereum
data. The main target are data analysts, but thanks to the performance of the
database used, it can also be used by web3 developers. It is mostly inspired by
Ethereum-ETL, but with particular focus on performance and semantics of smart
contracts. Data is indexed using a particular graph database, Dgraph, that was
not used in the other works.

36 CHAPTER 3. PREVIOUS WORK

CHAPTER

FOUR

METHODS

In this chapter, I introduce eth2dgraph, the new open-source software designed
to facilitate the extraction and indexing of Ethereum data in Dgraph.

Eth2dgraph is developed using Rust, a system programming language that pri-
oritizes both speed and safety. Rust was chosen mainly for two reasons. Firstly,
for its emphasis on performance and parallelism, crucial for scaling the data ex-
traction process and achieving good performance. Secondly, Rust benefits from a
rich ecosystem of libraries specifically designed for handling Ethereum data, easing
the process of development.

One of the key features of eth2dgraph is its integration with a decompiler,
enabling the extraction at the scale of the Application Binary Interface (ABI)
from the bytecode stored on the Ethereum blockchain.

The following sections provide details about the architecture of eth2dgraph,
give a comprehensive overview of how the software operates, and how it has been
constructed.

4.1 Data flow
Extracting and indexing Ethereum Smart Contract data is a process of moving
and transforming bytes. Raw data stored in the Ethereum node must be taken,
transformed and ingested into a database, Dgraph in this case, in order to be
indexed.

The first attempt was to do this step through transactions. I ran a Dgraph
cluster and instructed eth2dgraph to add data via DQL mutations. DQL stands for
Dgraph Query Language and it is the language used to write Dgraph queries.
This data flow was working but it was too slow for thinking about applying it
to all the history of the Ethereum chain. I also had problems to parallelize data
insertion, too many concurrent transactions were failing due to read-write conflicts.
Figure 4.1.1 visualizes this data flow.

Erigon node Dgraph cluster
eth2dgraph with ACID transactions

Figure 4.1.1: First attempt of data ingestion into Dgraph

37

38 CHAPTER 4. METHODS

To solve these problems, I changed the approach and followed an ETL (Extract,
Transform, Load) process. Extraction and transformation are done in the same
step by eth2dgraph. The output is stored in JSON files that can be later loaded
into Dgraph using the Bulk Loader.

The Bulk Loader1 is a tool provided by Dgraph. It is designed for performing
the initial load of data into the database. It takes JSON or RDF N-Quads2 data
and stores it directly in Badger, the underlying key-value database used by Dgraph.
This is the fastest way to ingest data into Dgraph. It maximizes concurrency and
avoids problems related to ACID constraints since it is not operating on a live
database. Figure 4.1.2 visualizes the final data flow chosen for eth2dgraph.

Erigon node JSON files Dgraph cluster
eth2dgraph Bulk Loader

Figure 4.1.2: Second and final data flow

4.2 Data model
After seeing how data is indexed in other works, I decided to design the schema in
a slightly different way. In eth2dgraph, raw data is interpreted to create a schema
around the semantics that can be extracted from the blockchain. This semantics
is indexed alongside the raw Ethereum data. Figure 4.2.1 shows the whole schema
that was created. All the edges have the @reverse index, which means they can be
traversed in both directions. Some of the attributes are indexed at load time, but
it is easy to add indexes once the database is running. The complete description
of both DQL and GraphQL schemas are described in Appendix 8.

1Detailed description of the Bulk Loader: https://dgraph.io/blog/post/bulkloader/
2N-Quads is a serialization format for RDF graphs data https://www.w3.org/TR/n-quads/.

https://dgraph.io/blog/post/bulkloader/
https://www.w3.org/TR/n-quads/

CHAPTER 4. METHODS 39

Figure 4.2.1: Schema of Ethereum indexed data in Dgraph

Data is modelled as a graph with many edges. This was done since Dgraph is
designed and optimized to perform joins and traversals.

Entities in yellow (Transaction, TokenTransfer and Log), also called dynamic,
are optional and can be skipped during data extraction. Excluding data about
smart contracts usage allows the creation of a much smaller dataset that provides
a static description of these contracts. The reason of this choice is that the volume
of dynamic data is around 30-40x bigger than static data. Having the option to
extract a smaller dataset enables analysis on less powerful computers, improving

40 CHAPTER 4. METHODS

the accessibility of the research.

Here is a brief description of the schema:

• Transaction and Log are stored as they are retrieved from the Ethereum
node. References to other entities are stored as edges for allowing graph
traversal in queries. A Transaction represents a transfer of value between
two EOAs or an invocation of a Smart Contract from an EOA. A Log is the
result of an invocation of an Event in the code of a Smart Contract.

• TokenTransfer represents both an ERC20 or an ERC721 token transfer be-
tween two accounts. The value is stored as a string since Dgraph does not
handle 256-bit integers.

• Block contains all the information related to a single Ethereum block header.
This entity is connected to many others: ContractDeployment, ContractDe-
struction, Transaction, TokenTransfer and Log.

The indexed attribute datetime is the only reference to time in the database,
so it is possible to query it for specific dates and times and then get all the
connected data from there.

Here, it added a summary of the gas prices of the transactions included.

• Withdrawal represents a withdrawal from a validator. Withdrawals are used
to remove the locked funds and stop being a validator in the proof of stake.

• Account represents an Externally Owned Account or a Contract Account. Its
fundamental attribute is the Address of the account. There is also a boolean
field is_contract indicating whether the account is a contract or not. This
entity is extremely useful for querying data since with the standard Ethereum
RPC interface it is not possible to query data based on account addresses.
So, for example, it is impossible to get all the transactions from/to an address
without having to download and filter all the transactions in the history of
Ethereum.

• ContractDeployment and ContractDestruction represent respectively the birth
and the death of the code of a Smart Contract. I decided to store them in
this way since I found, analyzing the data, that a single Ethereum Address
can receive more than one code deployment, contrary to what it may appear
because of the theoretical immutability of Smart Contracts. An address can
receive both a deployment with the same old code or with a new different
code, in which case it is called morphic or metamorphic [17].

• I introduced the concept of Skeleton directly in the schema since it is a useful
way of aggregating similar contracts together. A Skeleton is the bytecode
of a contract without all the arguments of the PUSH opcodes. Having it
directly in the schema allows us to easily find contracts sharing the same
skeleton.

• Event, Function and Error are the parts that, together, form the ABI of
the contracts. There is just one entity for each signature, so all the con-
tracts implementing the same function/event/error point to the same entity.

CHAPTER 4. METHODS 41

Having them indexed in this way allows to search contracts based on the
functionalities they implement.

4.3 Data extraction
Data is extracted using the Ethereum Remote Procedure Call (RPC) interface3.
Eth2dgraph extracts data block by block. It needs three API calls per block to
get all the data: eth_getBlockByNumber, eth_getLogs and trace_block.

To call these RPCs, I used the Rust library ethers-rs4, which provides,
among other functionalities, a full client implementation that wraps the stan-
dard Ethereum RPC interface and provides easy methods to interact with it in an
asynchronous runtime.

At a high level, data returned from these RPC endpoints is parsed into Rust
structs and later serialized into JSON files using the serde5 crate. To implement
this, all the Rust structs that must be serialized to Dgraph format implement a
trait called SerializeDgraph. In Rust, a trait defines a collection of methods. A
struct that implements a trait is guaranteed to have those methods implemented.
It is a concept similar to the Interfaces in object-oriented programming (OOP)
languages.

The trait SerializeDgraph requires one method to be implemented:
serialize_dgraph. As the name suggests, it is a function that serializes a generic
struct to the JSON format accepted by the Dgraph Bulk Loader.

The entities produced by eth2dgraph are linked together using the Dgraph’s
blank nodes. It is a way of referencing to an entity that has yet to be created.
Dgraph will resolve all the references to a blank node generating and using the
same uid.

The next sections explain how each piece of data is extracted.

4.3.1 Blocks and transactions

Blocks and transactions are both extracted from the data returned by the RPC
eth_getBlockByNumber. This method accepts two parameters:

• Block number specifies the target block that is extracted

• Hydrated transactions is a boolean indicating whether to return or not all
the details of the transactions in that block.

Eth2dgraph calls this RPC sequentially for each block with Hydrated transac-
tions set to true. All raw transaction data is stored without modifications, same
for the withdrawals. For the blocks I added a summary of the gas price, this is
not returned by default from the RPC. These fields have been added:

3Official specification of the Ethereum RPC interface: https://ethereum.github.io/
execution-apis/api-documentation/

4https://docs.rs/ethers/latest/ethers/
5Serde is a Rust framework for easily serializing and de-serializing data structures https:

//github.com/serde-rs/serde

https://ethereum.github.io/execution-apis/api-documentation/
https://ethereum.github.io/execution-apis/api-documentation/
https://docs.rs/ethers/latest/ethers/
https://github.com/serde-rs/serde
https://github.com/serde-rs/serde

42 CHAPTER 4. METHODS

• gas_price_min: the cheapest gas price of all the transactions included in
the block, in Gwei.

• gas_price_max : the maximum amount paid for gas in the transactions
included in the block, in Gwei.

• gas_price_avg : the average price of gas in Gwei of that block.

• gas_price_std_dev : the standard deviation of gas price in that block, in
Gwei.

Gas price varies between each transaction. Sticking to the official RPC docs, it
should be possible to obtain data about it just from the transaction receipts. This
would imply getting more data and slowing down the process of data extraction.

Looking at the data returned from the Erigon node and analyzing its source
code6, I noticed that gas price was present even if not required by the protocol. I
compared it to the data returned from the receipts and it matched, so I decided
to use it and store this information in the database.

4.3.2 Logs

Logs are retrieved using the eth_getLogs RPC. This remote procedure call accepts
an object as a parameter, it can be used as a filter to refine the call and get just
the logs needed. It is possible to filter by topics, contract address and block range.

All the logs are already indexed in the Ethereum nodes by the fields on which
it is possible to filter. It is the standard way to extract semantics from the chain.
When specific conditions happen inside a call to a smart contract, it can emit a
log with up to four indexed 256-bit words that will be stored by all the Ethereum
nodes. These logs can represent any kind of information, e.g. token transfers, and
token swaps.

Eth2dgraph is getting logs and downloading them block by block. The RPC
eth_getLog is called for each block with a filter on the blocks range, with matching
fromBlock and toBlock parameters.

4.3.3 Smart contracts

There are two ways to deploy a smart contract on the Ethereum blockchain:

• From EOAs, with a transaction to the address 0x0 containing as input data
the deployment code of the smart contract.

• From other smart contracts, calling the EVM opcode CREATE or CREATE2,
after having pushed on the stack the deployment code of the smart contract
to deploy.

There is no RPC to directly get the list of contracts. Smart contracts are not
indexed by the Ethereum nodes.

6https://github.com/ledgerwatch/erigon/blob/35422986645832d1c9ce1107a59dbaf4e12f55dd/
turbo/adapter/ethapi/api.go#L450

https://github.com/ledgerwatch/erigon/blob/35422986645832d1c9ce1107a59dbaf4e12f55dd/turbo/adapter/ethapi/api.go#L450
https://github.com/ledgerwatch/erigon/blob/35422986645832d1c9ce1107a59dbaf4e12f55dd/turbo/adapter/ethapi/api.go#L450

CHAPTER 4. METHODS 43

It is relatively easy to extract smart contracts deployed in the first way, it is
enough to loop through transactions and see the ones sent to the address 0x0.
The resulting transactions are potential contract deployments. To confirm this,
it is possible to download their receipts, which contain the address of the newly
created contract in case the deployment is successful. After finding the address,
it is possible to get the deployed bytecode calling the RPC eth_getCode, which
returns the actual code stored on the blockchain.

This way of extracting contracts has two drawbacks: it requires two extra calls
to RPCs for each deployment and it misses all the contracts deployed by other
contracts. Contracts are more likely to be deployed by other contracts rather than
by users [18], so it is clear that this way is not ideal.

To extract all the contract deployments, it is necessary to inspect each indi-
vidual interaction done on the blockchain, both between users and contracts (via
transactions) and between contracts and other contracts (via internal transac-
tions).

Internal transactions (also known as traces) are the result of a call to a smart
contract, they describe each single operation performed in that call. They are not
described in the Ethereum Yellow Paper [19] and they do not need to be stored by
the nodes. They are just a detailed description of a transaction execution. They
can be calculated having the transaction data, the bytecode to be executed and
the state of the blockchain at the time of the transaction execution.

Erigon provides a RPC to collect all the traces of all the transactions in a
block, it is called trace_block. Traces returned can be of four types: Call,
Create, Suicide and Reward. They are structured as a directed graph: an internal
transaction can generate many other internal transactions. To get deployments
and destructions, it is sufficient to go through the traces graph and filter the Create
and Suicide traces, they contain all the needed information.

Eth2dgraph is using the trace_block RPC to collect all the deployments and
destructions of smart contracts.

4.3.4 Error propagation in traces

An Ethereum transaction can be successfully executed even if some of its parts
have failed. An error in one internal transaction implies that all its child traces
have no effect on the blockchain.

Figure 4.3.1: Example of the structure of traces in a transaction.

44 CHAPTER 4. METHODS

Figure 4.3.1 gives an example of the structure of traces in the transaction
0x7b4968c606e...4d941d669777. Supposing that call_1 failed, all its child calls
(call_1_0, staticcall_1_1 and staticcall_1_2) will not change the state of
the blockchain, despite being included in the traces returned by trace_block.
Contracts deployed or destructed in an internal transaction that is part of a failed
branch will not be effectively deployed or destroyed.

The only reference to the error is present in the single trace that failed, with
an error field. To understand if a deployment or a destruction successfully com-
pleted, it is necessary to propagate the error from the failed traces to all its
children. Eth2dgraph does so with the algorithm reported in Listing 4.1. It first
groups traces of a block based on transaction hash. Then, for each transaction,
it gets its failed traces. Then it loops again on all the traces of the transaction
to see if any of them is a child of a failed one. This is done by searching a failed
trace that has a matching starting address, e.g. a trace with address 1, 0, 0 has
a matching starting address of the trace 1, 0, 0, 2.

Contract deployments and destructions found in failed traces are stored in the
output of eth2dgraph with a boolean field indicating it.

1 fn propagate_errors(traces: &mut Vec<Trace>) {
2 // group traces by transaction hash
3 let mut txs: HashMap<TxHash, Vec<&mut Trace>> = HashMap::new

();
4 traces.iter_mut().for_each(|t| {
5 if t.transaction_hash.is_some() {
6 let group = txs
7 .entry(t.transaction_hash.unwrap().clone())
8 .or_insert(vec![]);
9 group.push(t);

10 }
11 });
12 // inside each transaction, mark trace as failed if a parent

trace has failed
13 txs.iter_mut().for_each(|(_, grouped_traces)| {
14 // collect trace addresses of failed traces
15 let failed = grouped_traces
16 .iter()
17 .filter(|t| t.error.is_some())
18 .map(|t| t.trace_address.clone())
19 .collect::<Vec<Vec<usize>>>();
20 // loop again traces to flag ones whose parent failed
21 grouped_traces.iter_mut().for_each(|t| {
22 let address = t.trace_address.as_slice();
23 let parent_failed = failed.iter().any(|f| address.

starts_with(f));
24 if parent_failed {
25 t.error = Some("Parent␣failed".to_string());
26 }

7Full tx hash: 0x7b4968c606e100d05158456d66d620ff6e96f00d68e3b6a426b774d941d66977

CHAPTER 4. METHODS 45

27 });
28 });
29 }

Listing 4.1: Algorithm for errors propagation in traces.

4.3.5 Accounts

As for the smart contracts, there is no RPC to get the list of accounts used on the
Ethereum blockchain. They must be extracted as they are used.

Being a permissionless blockchain implies that there is no initial phase of reg-
istration or an official opening of an account. Users simply generate an address
and start using it.

Eth2dgraph stores accounts every time they are used in the following cases:

• Senders or receivers of transactions.

• Receivers of validator withdrawals.

• Authors of blocks (miners).

• Receivers of SELFDESTRUCT reward.

• Deployers of smart contracts.

• Senders or receivers of token transfers.

• Addresses of contract deployments or destructions, marked as contracts.

• Addresses of contracts emitting logs, marked as contracts.

• Addresses of contracts emitting a token transfer, marked as a contract.

4.4 Semantics extraction
The previous section described how raw Ethereum data is extracted. In this
section, I describe how eth2dgraph extracts semantics from this data.

The semantics extracted are meant to give a more comprehensive description
of the smart contracts stored on the blockchain. The only information that can be
taken from the Ethereum protocol about smart contracts is their EVM bytecode.
The EVM bytecode is the byte representation of the contracts’ compiled code
that can be run by the Ethereum Virtual Machine implemented in all the nodes.
While it is fundamental to the functioning of the protocol, it does not give any
meaningful description of the smart contract for human analysis.

Eth2dgraph tries to put together pieces of information to allow for an easier
analysis of such smart contracts.

46 CHAPTER 4. METHODS

4.4.1 ABI extraction

Smart contracts are described by an Application Binary Interface (ABI) that
lists all the functions and events that are implemented.

Smart contracts can be seen as REST APIs. The application status is stored in
the contract’s state variables, similar to a database. The public functions exposed
by the contract are like the API endpoints that can be used by users to interact
with the application. This is done via stateless transactions (in the blockchain)
and via HTTP calls (in the traditional REST API pattern). The ABI is the
description of the exposed functions and events of a smart contract, similar to the
specification of an API.

It is clear that having the ABI of a smart contract gives many useful insights
about what it does. It can also be used to decode transactions and logs. In the
ABI, there are the types of functions and events arguments. These types can be
used to decode the bytes present in the transactions and logs data. It is possible
to understand if they represent addresses, numbers, strings, raw bytes, etc..

To extract the ABI, eth2dgraph integrates heimdall-rs8, an open-source EVM
decompiler. Heimdall-rs uses symbolic execution to create the control flow graph
(CFG) of the EVM bytecode. This is done via a custom implementation of the
EVM. From the CFG, and looking at the function dispatcher part of the code,
it is possible to locate functions and extract their inputs and outputs parameter
types.

Figure 4.4.1: Heimdall-rs integration into eth2dgraph

It is possible to extract function names using a database of reverse hashes.
Function selectors are stored in the bytecode as the first four bytes of the hash

8EVM decompiler written in Rust, source code available at: https://github.com/
Jon-Becker/heimdall-rs

https://github.com/Jon-Becker/heimdall-rs
https://github.com/Jon-Becker/heimdall-rs

CHAPTER 4. METHODS 47

of the function’s signature. It is possible to read these four bytes and see if there
are matching signatures that were previously reverse-hashed. Heimdall-rs does
this using the public etherface9 database. Unfortunately, it is not possible to
extract parameter names from the bytecode stored on the blockchain. This piece
of information is removed during the compilation of the code.

Heimdall-rs is integrated in eth2graph using separate processes. Each time
there is the need to run the decompiler, eth2dgraph creates a new process. This
is done for isolation. For the nature of how the decompiler works, it can run
in infinite loops during the symbolic execution. To avoid that, eth2dgraph has a
parameter to set the maximum time spent waiting for de-compilation. The default
is five seconds.

The output of the heimdall-rs process is stored in text files. When decompi-
lation is done, these files are de-serialized by eth2dgraph into Rust data structures.
Figure 4.4.1 shows how decompilation in handled in eth2dgraph.

4.4.2 Contracts skeleton and metadata

The skeleton of an EVM bytecode is the bytecode itself with all the arguments
of the PUSH opcode set to zero. It allows to find bytecodes that are functionally
identical between them. The concept of skeleton is used in many studies to reduce
the total number of contracts to analyze [20][21].

Removing the PUSH arguments to the bytecode deployed on the blockchain is
not enough to extract the skeletons. The Solidity compiler can add metadata at
the end of the bytecode that must be removed before getting the skeleton.

Eth2dgraph identifies this part using a regular expression. Metadata is stored
as CBOR10 encoded data. After being split, the runtime part of the bytecode is
processed for the skeleton extraction, while the metadata part is decoded. Meta-
data are also stored in the indexed data, these are the field included:

• storage_protocol : distributed file system protocol where the developer can
eventually store the source code of the contract.

• storage_hash: location on the contract’s data in the distributed file system.

• compiler : the version of the Solidity compiler used.

• experimental : whether the compilation was performed with experimental
features activated.

The skeleton extraction is performed by looping through the bytes of the EVM
bytecode. A byte between 0x60 and 0x7f represents a PUSH instruction. If a byte
is found in that range, the next bytes are replaced with zeros depending on the
kind of PUSH found.

9Etherface is a database of Ethereum functions and event signatures, with related hashes,
available at: https://www.etherface.io/

10CBOR is a binary data serialization format standardized in RFC8949 https://www.
rfc-editor.org/rfc/rfc8949.html

https://www.etherface.io/
https://www.rfc-editor.org/rfc/rfc8949.html
https://www.rfc-editor.org/rfc/rfc8949.html

48 CHAPTER 4. METHODS

4.4.3 Verified source code

It is possible to link contracts to their verified source code using the repository of
Smart Contract Sanctuary [22]. After cloning the repository locally, eth2dgraph
can be run with an option to include the source code of the discovered contracts
in the indexed data.

This allows querying the contracts based on text inside the source code. Dgraph
supports text matching with stemming stop word removal. Data can be queried
with two query functions: anyoftext and alloftext. The first function matches
for any of the term searched for, while the second function matches for all the
search terms.

A query example with anyoftext is searching for all smart contracts that have
in the source code the terms token, erc20 or erc721. To be more precise, it would
be possible to search with alloftext all the smart contracts that have in the
source code the exact signature of the transfer function of either the ERC20 or
ERC721 standards. All of this is doable in a single fast query.

4.4.4 Token transfers

The ERC20 and ERC721 token standards state that when a token ownership is
transferred an event MUST be emitted. Listing 4.2 shows the event emitted for
fungible token transfers, Listing 4.3 shows the one emitted for NFT transfers.
Emitting an event means generating a log that is indexed by Ethereum nodes.
event Transfer(address indexed _from , address indexed _to , uint256

_value)

Listing 4.2: Event emitted for ERC20 token transfer

event Transfer(address indexed _from , address indexed _to , uint256
indexed _tokenId)

Listing 4.3: Event emitted for ERC721 token transfer

Both events share the same name and type. The only difference is in the last
parameter. It is indexed in the case of ERC721 and not indexed in the case of
ERC20. The signature of the event is not influenced by this difference, so all the
logs that describe token transfers share the same signature.

Logs with the first topic matching the keccak256 hash of the Transfer event
signature are treated as token transfers by eth2dgraph.

After finding a matching log, the bytes composing the data field are split into
256-bit words and merged into the 256 words of the indexed topics.

The 256-bit words are then treated and decoded as follows:

• First word is the from address.

• Second word is the to address.

• Third word is the value. It represents the amount in the case of ERC20 or
the token ID in the case of ERC721.

If the decoding succeeds, the log is parsed and later stored as a token transfer.

CHAPTER 4. METHODS 49

The distinction between ERC20 and ERC721 transfers is done based on the
length of the topics array. Since ERC20 has the last parameter not indexed, the
topic length is three words. For the ERC721 the topics length is four. This
information is used to discriminate between storing the third word as value or as
token_id.

The same way of semantics extraction can be used for other kind of logs, e.g.
token swaps. Eth2dgraph implements the code for parsing token transfer since it
is the most common log emitted on the Ethereum chain.

4.5 Software architecture
The Ethereum network stores data in the order of billions of entries. The process
of extraction must be as efficient as possible to be able to get this data in a
reasonable time. At the time of writing, August 2023, Ethereum has 18M blocks.
Performing every single action described in the previous sections sequentially for
each block results in executions that take many days or even weeks.

A lot of time is spent waiting for network data (the calls to the RPCs) or for
the decompiler process to complete the decompilation. While it is not possible to
make these steps faster, it is possible to parallelize them. Eth2dgraph has been
developed to maximize concurrency of the machine where it is ran to minimize
the time needed for data extraction.

This was done using async Rust and the Tokio asyncronous runtime11. Fig-
ure 4.5.1 gives a general overview of how tasks are used and how they communicate.

Figure 4.5.1: Software architecture of eth2dgraph

Here is a more detailed description of each task:

• The generator task loops trough the block range to extract and spawns, using
tokio::spawn, an extractor task for each block that must be processed. It
is also responsible for initializing all the data structures needed, the output
data folders and the writer task.

It is possible to set the limit of parallel extractor tasks to run usign the
–num-jobs option. This is implemented using a semaphore. Each time an
extractor task is created, it acquires a permit from a semaphore with a fixed

11Tokio provides a multi-threaded runtime for executing asynchronous Rust code https:
//tokio.rs/.

https://tokio.rs/
https://tokio.rs/

50 CHAPTER 4. METHODS

capacity. When the task ends, the permit is dropped and, as a consequence,
a new permit is freed in the semaphore. In case the maximum number of
tasks is reached, the generator waits until the semaphore has a free permit
available. This was done to avoid overloading the system with millions of
concurrent tasks.

• The extractor task is the one responsible for the actual extraction. It receives
as an argument the block to process and it collects all the data related to
it. This includes handling the decompilation. All the steps related to data
extraction were described in the previous sections.

When data is ready to be stored, it is sent to the writer task using a bounded
multiple-producer single-consumer (mpsc) channel.

• The writer task is responsible to collect all the data sent by all the extractors
and merge it. It stores data in buffers, one for each data type. When buffers
reach a certain size, that can be set with the –size-output option, they are
sent to a flusher task to be stored to disk. The flusher tasks are spawned
on demand by the writer task using tokio::spawn_blocking. All their join
handles are stored in a vector to wait for their termination at the end of the
extraction.

• The flusher task is responsible for storing and compressing the output of the
extraction. It receives a vector of a generic type T that implements the trait
SerializeDgraph. It compresses this vector using gzip with a compression
level that can be set as an option. Finally, it stores it in an output file. Data
is stored divided by type and with incremental file names.

All these tasks are ran on the multi-threaded Tokio runtime. They are managed
by the Tokio scheduler that implements a non-preemptive, also called cooperative,
scheduling strategy. This means that tasks are switched when they explicitly ask
for it, using .await, giving back the control to the scheduler.

In this way it is possible to maximize the parallelism of the extraction process.
For example, when a task is downloading block’s data, it calls await on the library
function responsible for networking. This call tells the Tokio scheduler that the
task is paused and cannot continue, so it is replaced with another task that has
work to do. The task will be resumed when the network data is ready to be used.

4.5.1 Decompilation cache

One of the biggest bottlenecks of the extraction process was the decompilation
step. Spawning a dedicated process for handling decompilation of all the 60M
contracts takes a lot of time. The main problem is that the decompiler, for how
it is designed, can encounter infinite loops during the building of the control flow
graph. To avoid that, it is ran with a timeout of a few seconds, but even with
that, it was slowing down the process by a lot.

The solution implemented in eth2dgraph is caching the decompilation based
on bytecode skeletons. Two contract deployments sharing the same EVM skeleton
are decompiled only once. The decompiled ABI of a skeleton comes from the
decompilation of the first contract found with that skeleton.

CHAPTER 4. METHODS 51

The reason of this choice is that contracts sharing the same skeleton also share
the same code logic. In theory, there could be a difference in the function names,
since they are stored as arguments of PUSH instructions, but, from the data
analyzed, this almost never happens.

To test the reliability of the caching logic, I compared ABIs extracted from
decompiling each single contract to the ones got using the cache. To make the
test more reliable, I ran it on various block ranges spanning trough the history of
the Ethereum blockchain. Table 4.5.1 reports the results of the tests. Full match
means that the ABI got from the cache is exactly the same as the one got from a
new decompilation run. Partial match indicates that the ABI got from the cache
has the same exact function and event names, but there is at least one difference
between types based on assumptions made by the decompiler (e.g. bytes instead
of address). Mismatch indicates that the ABI got from the cache has at least one
different function or event name.

Blocks range Cache
hits

Full
matches

Partial
matches Mismatches

6000000-
6001000 1373 1373 0 0

10000000-
10001000 596 592 4 0

12008000-
12009000 1296 1295 1 0

15505000-
15506000 101 101 0 0

16001000-
16002000 120 100 19 1

17000000-
17001000 39 39 0 0

Table 4.5.1: Precision of the decompilation caching logic

In total, 99.29% of the cache hits resulted in full matches, 0.68% in partial
matches and just 0.03% in mismatches.

This level of accuracy showed that caching decompilation based on skeletons is
an effective way of reducing the time needed for semantics extraction. The slight
loss of precision is justified by the boost in performance, that made it possible to
scale the extraction of ABIs to all the history of the chain in a single machine. It
allowed to reduce the number of decompilation runs from 60M to 470k.

The cache is implemented in the code with a shared HashMap. The implemen-
tation of the concurrent hashmap used is the one provided by the DashMap12 crate.
The key of the hashmap is the hash of the skeleton’s bytecode and the value is
an atomic unsigned integer. The role of the number in the cache is of indicating
how many failures that specific skeleton has encountered during decompilation. It
is used for trying multiple times to decompile a skeleton that fails to decompile

12DashMap provides a concurrent hashmap that is faster and easier to use that the combina-
tion of RwLock and HashMap. It is available at:https://github.com/xacrimon/dashmap

https://github.com/xacrimon/dashmap

52 CHAPTER 4. METHODS

even with different contracts’ bytecodes. These is an hard limit of ten attempts,
after which the skeleton is stored without the ABI and no more decompilation
processes will be spawned.

This way of extracting semantics has a direct implication on the schema of
data. The ABI extracted by the decompiler is linked to the skeleton and not to
the contract deployment itself. Figure 4.5.2 shows the result of this design choice
in the schema.

Figure 4.5.2: Storage of contracts’ information

4.6 Similarity calculation
Smart contracts’ deployments are clustered based on bytecode skeletons: many
smart contracts share the same skeleton and thus they are linked to the same
skeleton entity in the database. To link these skeleton clusters together, some
similarity metrics are needed. Linking skeleton clusters helps the process of data
analysis; it ease the recognition of patterns and connections.

Eth2dgraph implements two similarity metrics:

• Interface similarity : inspired by Di Angelo and Salzer [23], it calculates
similarity between skeletons as the Jaccard index of the sets of function and
event names. Two skeletons are similar if they have similar ABIs. It is
calculated as

Sim =
|A ∩B|
|A ∪B|

(4.1)

where A and B are the sets containing function and event names. It gives a
number between 1 (identical ABIs) and 0 (non-overlapping ABIs).

• Bytecode similarity : The interface similarity logic works greatly if the smart
contracts implement many functions or events. It does not work very well
if most of the code lies in internal functions and the exposed ones are just
a few, like start() or run(). To face this problem I added a second simi-
larity metric that just considers the contracts’ bytecodes. Inspired by Kiffer
et al. [18], the metric used is the cosine similarity between hypervectors
containing the frequencies of opcodes’ 5-grams. It is computed as follows:

1. The two bytecodes to analyze are decoded to extract the opcodes, with-
out their arguments.

2. From the opcodes, the 5-grams and their frequencies are calculated.
For example these instructions:

CHAPTER 4. METHODS 53

PUSH1
PUSH1
MSTORE
CALLVALUE
DUP1
ISZERO
PUSH2
JUMPI
PUSH1

give these 5-grams with related frequencies as values:
[

("PUSH1 PUSH1 MSTORE CALLVALUE DUP1", 1),
("PUSH1 MSTORE CALLVALUE DUP1 ISZERO", 1),
(" MSTORE CALLVALUE DUP1 ISZERO PUSH2", 1),
(" CALLVALUE DUP1 ISZERO PUSH2 JUMPI", 1),
("DUP1 ISZERO PUSH2 JUMPI PUSH1", 1),

]

3. This results in having two hypervectors, here called A and B, in the
dimension of the 5-grams. A and B are structured as shown in the pre-
vious listing. The cosine similarity is the cosine of the angle θ between
these two vectors. It is possible to compute it as

cos(θ) =
A ·B

||A|| ||B||
=

P
i∈Ω

AiBirP
i∈Ω

A2
i ·

P
i∈Ω

B2
i

In the previous formula, Ω is the set that results from the intersection
of the dimensions of A and B. This gives a number between 0 (com-
pletely dissimilar bytecodes) and 1 (identical bytecodes). The suggested
threshold for considering similarity suggested by Kiffer et al. is of 0.90.

The process of similarity calculation is done on demand after data is loaded
into Dgraph. The same binary that is responsible for the data extraction part also
integrates commands to perform data analysis.

It is possible to run eth2dgraph with the analyse similarity command to
calculate both the previous metrics. Comparing all skeletons with each other is
a heavy calculation, with a quadratic complexity with respect to the number of
skeletons. It is possible to restrict the calculation to a single skeleton, giving as
an argument the address of a contract.

To optimize the performances, calculation of similarity is done in parallel using
the parallel iterators of the Rayon13 crate.

The output of the calculation is a text file containing the RDF triples that
describe the similarities. It is possible to import it into the live database by
running a mutation or using the Dgraph’s live loader.

Similarity values are stored as edge attributes, called facets in Dgraph. It
is possible to query the data filtering by similarity value. Listing 4.4 shows an
example of how to retrieve similar skeletons filtering by similarity value.

13Rayon is a data-parallelism library that easily introduces parallelism into existing sequential
code https://docs.rs/rayon/latest/rayon/

https://docs.rs/rayon/latest/rayon/

54 CHAPTER 4. METHODS

{
q(func: uid(0 x180c753f6)) {

Skeleton.similar_code @facets(gt(similarity , 0.95))
@facets(similarity) {

uid
}
Skeleton.similar_interface @facets(gt(similarity , 0.95))

@facets(similarity) {
uid

}
}

}

Listing 4.4: Example DQL query for getting similar skeletons.

CHAPTER

FIVE

RESULTS

5.1 Infrastructure used
Eth2dgraph was developed and used on a server provided by the Decentralised
Systems Engineering Lab of NTNU University1. The server’s specifications are
reported in Table 5.1.1.

Parameter Value

CPU 64 cores, 256 threads

RAM 1.5 TB

OS Ubuntu 22.04

Disk 16 TB SSD array

Table 5.1.1: Specification of the server used for the work.

On the same machine, there was an archive Ethereum node that was used
to get the data. The RPC calls did not have to go through the network, all the
process was done in a single machine. The client used was Erigon2. It was run with
the command reported in Listing 5.1 and the RPC daemon with the command
reported in Listing 5.2.
erigon \

--datadir="our data location" \
--chain=mainnet \
--authrpc.jwtsecret="JWT secret location"\
--private.api.addr =0.0.0.0:9090 \
--http.api=eth ,debug ,net ,trace ,web3 ,erigon

Listing 5.1: Erigon command

rpcdaemon \
--datadir="our data location" \
--http.addr =0.0.0.0 \

1Decentralised Systems Engineering Lab https://www.ntnu.edu/idi/dse
2Erigon is an Ethereum client written in Go https://github.com/ledgerwatch/erigon

55

https://www.ntnu.edu/idi/dse
https://github.com/ledgerwatch/erigon

56 CHAPTER 5. RESULTS

--http.api=eth ,debug ,net ,trace ,web3 ,erigon

Listing 5.2: RPC daemon command

5.1.1 Benchmark of the Erigon’s RPC interface

To give a clearer overview of the environment in which data extraction was done,
I performed a load test against the Erigon node using a modified version of flood3.
I tested the throughput and the success rate, varying the requests per second, of
the three RPCs used by eth2dgraph: eth_getBlockByNumber, eth_getLogs and
trace_block. Flood was modified to generate RPC calls with the exact same
parameters used by eth2dgraph, spread over random block numbers. The actual
network calls were performed by vegeta4, that is specifically designed to measure
HTTP services with a constant request rate. Each load test was conducted for 30
seconds. Figures 5.1.1 to 5.1.6 show the results of this test. The slowest RPC,
and so the bottleneck of data extraction, resulted to be trace_block.

Figure 5.1.1: Success rate of eth_getLogs. After 1200 requests/s, Erigon starts
to fail handling some requests. At 5k requests/s half of the requests fail.

3Flood is an open-source tool for load testing Ethereum nodes https://github.com/
paradigmxyz/flood

4Vegeta is a tool written in Go for load testing HTTP services https://github.com/
tsenart/vegeta

https://github.com/paradigmxyz/flood
https://github.com/paradigmxyz/flood
https://github.com/tsenart/vegeta
https://github.com/tsenart/vegeta

CHAPTER 5. RESULTS 57

Figure 5.1.2: Throughput of eth_getLogs. After 1200 requests/s Erigon can’t
keep the requests rate.

Figure 5.1.3: Success rate of eth_getBlockByNumber. Erigon shows perfect
performance on this RPC. It can successfully reply to 5k requests/s.

58 CHAPTER 5. RESULTS

Figure 5.1.4: Throughput of eth_getBlockByNumber. Erigon can keep the
throughput even at 5k requests/s.

Figure 5.1.5: Success rate of trace_block. Erigon starts to degrade after 1200
requests/s. At 5k requests/s, just 40% of the requests are successfully handled.

CHAPTER 5. RESULTS 59

Figure 5.1.6: Throughput of trace_block. It reaches the maximum of around
1200 responses/s at 2400 requests/s.

5.2 Optimal number of concurrent tasks

Figure 5.2.1: Extraction time varying the number of concurrent tasks.

Eth2dgraph can be run with a variable amount of concurrent tasks that perform

60 CHAPTER 5. RESULTS

data extraction. This value can be set with the –num-tasks option. Having too
many concurrent tasks can overload the system where eth2dgraph or Ethereum
node run. On the other hand, having just a few tasks makes the extraction process
very slow. The best is to find the best balance point. To find a good value for the
number of tasks, I ran eth2dgraph with different amounts of tasks over one million
blocks, from 10M to 11M. Figure 5.2.1 shows the results of this test. As observed
from the data, the optimal number of tasks for the machine used is around 2048,
which is eight times the amount of available threads.

5.3 Extraction of data

5.3.1 Extraction and Transformation

To perform the extraction and transformation of Ethereum data to Dgraph format,
eth2dgraph was run with the command reported in Listing 5.3. The extraction
was performed from block 0 to block 17, 265, 420, using 2048 concurrent tasks.
eth2dgraph extract \

-o extraction_output \
-f 0 \
-t 17265420 \
--num -tasks 2048 \
--include -tx \
--include -transfers \
--include -logs \
-s smart -contract -sanctuary -ethereum/ \
--size -output 100000 > eth2dgraph_extraction.logs & disown

Listing 5.3: Eth2dgraph extraction command used.

Table 5.3.1 reports general statistics about the extraction process. The detailed
sizes of the output folders are reported in Table 5.3.2.

Figure 5.3.2 and Figure 5.3.1 shows respectively the RAM and CPU usage of
the server during the process of data extraction. Data was obtained using the
command top -bn1 | awk ’/Cpu/ { print $2 }’ for the CPU and free -m
| awk ’/Mem/{print $3}’ for the memory.

Parameter Value

Total time 7h 15m 21s

Block/s 660.97

Contracts 60,016,663

Contract/s 2,297.6

Decompiler failures 508,990

Output size 957 GiB

Table 5.3.1: Statistics about extraction and transformation process.

CHAPTER 5. RESULTS 61

Folder Size

/ 957GiB
/dynamic 934GiB
/static 24GiB

/static/blocks 1.2GiB
/static/events 548KiB
/static/destructions 3.4GiB
/static/deployments 18GiB
/static/skeletons 903MiB
/static/errors 36KiB
/static/functions 8.5MB

/dynamic/transfers 129GiB
/dynamic/logs 263GiB
/dynamic/transactions 543GiB

Table 5.3.2: Size of extracted data divided by folders.

Figure 5.3.1: CPU usage of the server during data extraction.

62 CHAPTER 5. RESULTS

Figure 5.3.2: Memory used by the server during data extraction

5.3.2 Import in Dgraph

Data was imported in Dgraph using the Bulk Loader. I faced a problem during
the import of the complete dataset, the loader kept crashing. Analyzing the logs,
it seemed that the crash was due to a hard limit on the size of local buffers.
Removing this hard-coded limit allowed me to complete the import of data. I
also submitted this fix5 in the open-source codebase of Dgraph. It was accepted,
merged in the main branch and later included in the 23.0.1 release.

To perform the bulk import, I first ran with Listing 5.4 an instance of zero,
the Dgraph’s node responsible of coordinating the distributed cluster. With the
zero running, the bulk import process was started with the command reported in
Listing 5.5.

dgraph zero --my=localhost :5080

Listing 5.4: Command used for running zero.

dgraph bulk -f "<data -location >" \
-s "<dql -schema -location >" \
-g "<graphql -schema -location >" \
--out "./out" \
--map_shards =4 \
--reduce_shards =1 \
--zero=localhost :5080 \
--mapoutput_mb =4096 \
--num_go_routines =64 \
--cleanup_tmp=false

Listing 5.5: Command used for running bulk loader.
5Pull Request can be seen here: https://github.com/dgraph-io/dgraph/pull/8841

https://github.com/dgraph-io/dgraph/pull/8841

CHAPTER 5. RESULTS 63

The import of the complete dataset took 52 hours. Divided into 28 hours for
the MAP phase and 24 hours for the REDUCE phase. It resulted in being the
bottleneck of the process, it took around 7.5 times the amount of time needed for
extracting the data.

For memory heavy operations, Dgraph does not rely on the Go garbage collec-
tor, it uses jemalloc to manually allocate memory. Figures 5.3.3 and 5.3.4 show
the RAM allocated by Dgraph during the phases of MAP and REDUCE of the
bulk import. At least 400GiB of RAM are needed. Both steps have shown a big
spike in memory allocation at around half of the process. The reasons of these
spikes are not clear.

Figure 5.3.3: RAM allocated by Dgraph with jemalloc during the MAP phase
of the bulk import.

64 CHAPTER 5. RESULTS

Figure 5.3.4: RAM allocated by Dgraph with jemalloc during the REDUCE
phase of the bulk import.

The result of the bulk import is a folder called p that contains the actual data
in Dgraph’s binary format. The size of this folder was of 2.5 TiB.

From this folder, alpha, the node responsible for managing the actual data,
was run with the command shown in Listing 5.6. All the process was done with
a locally-compiled version of Dgraph, but it is possible to perform the same steps
using Docker. The details of the imported data, divided by types, are reported in
Table 5.3.3.

In contrast to importing the entire dataset, the import of the static data alone
was completed in 1 hour, with an output of 112 GiB. This smaller dataset statically
describes all the smart contracts of the Ethereum blockchain, without information
on their usage.
dgraph alpha

--my=localhost :7080 \
--zero=localhost :5080 \
--security whitelist =0.0.0.0/0 \
--cache "size -mb =20000; percentage =50 ,30 ,20;" \
--badger="compression=snappy; numgoroutines =64;"

Listing 5.6: Command used for running the alpha instance.

CHAPTER 5. RESULTS 65

Type Entries Disk size Uncompressed size

Transaction 1,967,716,025 1.3TiB 2.8TiB

Log 2,795,971,346 823.6GiB 2.2TiB

TokenTransfer 1,437,470,051 181.1GiB 414.0GiB

ContractDeployment 60,016,663 82.0GiB 161.3GiB

Account 286,391,265 29.7GiB 52.2GiB

ContractDestruction 55,152,100 9.7GiB 22.5GiB

Block 17,265,421 5.7GiB 16.7GiB

Skeleton 467,318 1.5GiB 7.0GiB

Withdrawal 3,688,662 285.7MiB 956.5MiB

Function 139,603 42.1MiB 84.9MiB

Event 9,690 2.1MiB 4.0MiB

Error 545 118.5KiB 228.6KiB

Table 5.3.3: Cardinalities and sizes of entries stored in Dgraph6.

5.4 Querying data
Dgraph exposes two endpoints for querying the data: one for DQL at
/query and one for GraphQL at /graphql.

DQL is the query language built by the Dgraph team to query and mutate
data in this database. It has powerful features such as query variables, math
on attributes, recursive queries and shortest path search. Under the hood, every
GraphQL query is translated to DQL before being executed, so everything that
can be done with GraphQL can be done with DQL, but not the opposite.

To easily perform DQL queries, Dgraph provides a web application called Ra-
tel7. It gives a friendly user interface to get and visualize query results. Fig-
ure 5.4.1 shows an example of query in which it is visualized the ABI of a contract.
Figure 5.4.2 shows accounts linked by transactions.

6Data about sizes was obtained querying the /state endpoint of the alpha instance.
7Ratel is a web application for querying, visualizing and managing Dgraph’s data: https:

//github.com/dgraph-io/ratel

https://github.com/dgraph-io/ratel
https://github.com/dgraph-io/ratel

66 CHAPTER 5. RESULTS

Figure 5.4.1: Visualization of Contract’s ABI in Ratel.

Figure 5.4.2: Visualization of Accounts linked by Transactions in Ratel.

5.4.1 Query performance

In this section, I provide examples of queries with their corresponding execution
times. The processing time mentioned in table Table 5.4.1 is included by the
database in the query responses. It does not include decoding, encoding or network
transfers, just the time needed by Dgraph to get the data.
{

q(func: eq(Account.address , "0
xd8da6bf26964af9d7eed9e03e53415d37aa96045 ")){

~Transaction.from{
expand(_all_)

}

CHAPTER 5. RESULTS 67

}
}

Listing 5.7: Query to get all the transactions sent by a specific address. Response
included 1071 transactions.

{
BOREDAPE as var(func: eq(Account.address , "0
xbc4ca0eda7647a8ab7c2061c2e118a18a936f13d "))

q(func: uid(BOREDAPE)) {
transfers: ~TokenTransfer.contract @filter(eq(

TokenTransfer.token_id , "1020")) {
TokenTransfer.block {

Block.number
Block.datetime

}
TokenTransfer.from {

Account.address
}
TokenTransfer.to {

Account.address
}

}
}

}

Listing 5.8: Query to get all the transfers of BoredApe NFT with id 1020 (686
transfers).

{
var(func: type(Transaction)) {

countVar as count(uid)
}
agg() {

count: max(val(countVar))
}

}

Listing 5.9: Query to count all the transactions in the database.

{
q(func: eq(Function.name , "trade ")) @normalize {

~Skeleton.functions {
~ContractDeployment.skeleton {

ContractDeployment.contract {
address: Account.address

}
}

}
}

}

Listing 5.10: Query to get the addresses of contracts that implement a function
with name trade (554 addresses).

{
var(func: ge(Block.number , 12965000)) {

price as Block.base_fee_per_gas

68 CHAPTER 5. RESULTS

used as Block.gas_used
gasBurnt as math(price * used)

}
q() {

totBurnt as sum(val(gasBurnt))
ethBurnt as math(totBurnt / 1000000000)
usdBurnt: math(ethBurnt * 1870)

}
}

Listing 5.11: Query to compute the ETH burnt after London upgrade.

Query Processing time [ms]

Listing 5.7 1671.46

Listing 5.8 416.70

Listing 5.9 73881.76

Listing 5.10 165.65

Listing 5.11 31868.36

Table 5.4.1: Processing time of DQL queries.

5.5 Comparison with Ethereum-ETL
Eth2dgraph was compared against Ethereum-ETL, one of the most popular open-
source tools to export Ethereum data. The two tools serve the same purpose:
extract and transform Ethereum data to be more usable. Ethereum-ETL does
so by exporting data to CSV files, that can eventually be loaded into relational
databases, while eth2dgraph does so by exporting data to compressed JSON files
that can be imported into Dgraph.

At a high level, the two tools work in a similar way. They both fetch data
using the Ethereum RPC interface. They both can be used through a CLI.

Ethereum-ETL does not integrate a decompiler to get the ABI of the smart
contracts. It simply stores the raw four bytes of the function selectors that can
be found as arguments of the PUSH4 opcode at the beginning of the contracts’
bytecodes.

Another design difference is in the steps needed to get the data. Ethereum-ETL
needs multiple extraction steps to get certain kinds of information. For example,
to get smart contracts data, it first needs to get and store the list of contracts’
addresses, then, for each address, it fetches the contract’s data. Eth2dgraph does
everything in a single extraction step using the traces, to make the process faster.

The comparison was made by extracting data on various block ranges. There
are multiple ways of using Ethereum-ETL. For this comparison, it was run with
the command export_all. This command produces a similar output to the one
of eth2dgraph, with the difference that it includes transaction receipts but it does
not use the traces. The usage of receipts instead of traces means that all the
contracts created by other contracts are not included in the output data.

CHAPTER 5. RESULTS 69

Listings 5.12 and 5.13 shows the commands used to run the tools for the com-
parison. Both tools were run on the same machine and using the same Ethereum
node. For the run on 400k blocks, Ethereum-ETL was run with batch size8 re-
duced to 20. This was done since the default size of 100 caused the program to
crash. The results are reported in Table 5.5.1.
ethereumetl export_all \

-s <from > \
-e <to> \
-p http :// localhost :8545 \
-o <output -folder > \
-w 2048

Listing 5.12: Command for running Ethereum-ETL in the comparison

eth2dgraph extract \
-f <from > \
-t <to> \
--num -tasks 2048 \
--include -tx \
--include -logs \
--include -transfers \
-o <output -folder >

Listing 5.13: Command for running eth2dgraph in the comparison

Blocks range Ethereum-ETL eth2dgraph Speedup

12000000-12001000 1m 57s 8s 14.6x

16000000-16010000 14m 18s 53.48s 16x

17000000-17100000 2h 56m 53s 6m 45s 26.2x

14000000-14400000 13h 30m 21s 31m 10s 48x

Table 5.5.1: Results of performance comparison between Ethereum-ETL and
eth2dgraph.

Overall, eth2dgraph was at least one order of magnitude faster than Ethereum-
ETL in all the extractions performed. This shows the effectiveness of the de-
sign choices taken while developing eth2dgraph. With growing block ranges,
eth2dgraph becomes faster because the caching logic allows it to avoid decom-
piling contracts.

8The batch size indicates how many calls are sent together to the Ethereum node.

70 CHAPTER 5. RESULTS

CHAPTER

SIX

ANALYSIS OF DATA

In this chapter, I analyse the data that have been extracted by eth2dgraph. Each
section describes an independent analysis.

All the results refer to data from block 0 to block 17, 265, 420 of the Ethereum
mainnet. It corresponds to the period of time between July 30 2015 to May 15
2023 (7 years, 9 months, and 15 days).

6.1 General data overview
This analysis is conducted to give a general overview of the data extracted. There
are some interesting analysis results that help to understand the current state of
the Ethereum chain. Here are some interesting points:

• 60,016,663 smart contract deployments, of which 213,406 failed, were found
with 59,429,189 unique addresses. 88% of them (52,343,783) never emitted
logs. 87% of them (51,974,197) never received a single transaction. Just
5.78% (3,435,332) of contracts’ addresses both received at least one trans-
action and emitted at least one log. This shows that the vast majority of
the deployed smart contracts are never actively used. Figure 6.1.1 shows the
distribution of smart contracts based on their active usage.

• There are 2.8B logs emitted. 10 smart contracts alone, reported in Ta-
ble 6.1.1, emitted the 24.25% of all logs. Top 100 contracts emitted 38.83%
of the logs. Top 1,000 contracts emitted 57.53% of the logs. 33,287 smart
contracts (0.056% of the total) emitted 90% of the logs. Most of the activity
on the chain is restricted to a relatively small group of smart contracts.

• Transactions are more evenly distributed compared to logs. There are 165,684,328
distinct EOAs that have sent transactions. Top 10 senders sent 6.96% of all
transactions. 90% of transactions were sent by top 25% addresses.

• There are 286,391,265 distinct addresses that have received transactions.
The top 10 receivers received 18.55% of all the transactions, and there is
just one receiver in the top 10 that is not a contract1. 90% of transactions
were received by the top 57.85% receivers.

1It is an address of the Coinbase exchange 0xa090e606e30bd747d4e6245a1517ebe430f0057e.

71

72 CHAPTER 6. ANALYSIS OF DATA

• 61.92% of transactions are sent to smart contracts. 0.25% are sent to the null
address 0x0. The remaining 37.83% are transactions from EOAs to other
EOAs or unclaimed addresses.

• Figure 6.1.2 shows the history of smart contracts deployments. The growth
in deployments was exponential until the beginning of 2018. After an ini-
tial period in which there were more deployments done by users than by
contracts, now the majority of smart contracts are deployed using the CRE-
ATE or CREATE2 opcodes. This confirms the trend observed by Kiffer et
al. [18]. They observed this phenomenon in data until 2018. The difference
in deployments by users or by contracts has grown since then. Since 2019,
the difference has been of at least one order of magnitude.

Figure 6.1.1: Ethereum smart contracts by usage, note the log scale on both
axes.

CHAPTER 6. ANALYSIS OF DATA 73

Name of contract Contract address Logs emitted

Wrapped Ether 0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2 282,095,104

Tether USD 0xdac17f958d2ee523a2206206994597c13d831ec7 196,788,993

USD Coin 0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48 74,321,927

XEN 0x06450dee7fd2fb8e39061434babcfc05599a6fb8 30,438,737

DAI Stablecoin 0x6b175474e89094c44da98b954eedeac495271d0f 20,283,129

Seaport 0x00000000006c3852cbef3e08e8df289169ede581 16,764,010

ChainLink Token 0x514910771af9ca656af840dff83e8264ecf986ca 16,698,857

Wyvern Exchange 0x7be8076f4ea4a4ad08075c2508e481d6c946d12b 15,735,740

SHIBA INU 0x95ad61b0a150d79219dcf64e1e6cc01f0b64c4ce 12,607,046

Forsage 0x5acc84a3e955bdd76467d3348077d003f00ffb97 12,323,018

Table 6.1.1: Top 10 smart contracts per logs emitted.

Figure 6.1.2: Smart contract deployments over time grouped by month.

6.2 Skeleton clusters
The skeleton of a smart contract is its deployed bytecode without the arguments of
the PUSH opcodes and the eventual metadata appended at the end. Section 4.4.2
describes this concept and explains how eth2dgraph extracts the skeletons from

74 CHAPTER 6. ANALYSIS OF DATA

the Ethereum chain.
Out of the 60M smart contracts deployments in the history of Ethereum, just

467K distinct skeletons were found. This allows us to link smart contracts with
each other based on skeleton equality. On average, each smart contract has 128
semantically identical siblings.

The distribution of smart contracts by skeleton is not uniform. There are
361,546 skeletons (77.4%) that correspond to a single deployed Ethereum smart
contract. At the same time, there are skeletons that correspond to millions of
smart contract deployments. The most frequently used skeleton matched 12.2M
deployments and was related to gas tokens, as shown in Section 6.2.1.

6.2.1 Most deployed skeletons

I analyze the top 10 skeletons found on the Ethereum chain by a number of
deployments. These 10 distinct skeletons correspond together to 44,389,576 smart
contract deployments (73.96% of the total).

• The most used skeleton is related to gas reserves. It is the way gas tokens
store gas when it is bought. The concept of the gas token is analyzed in
Section 6.4. This skeleton has a very simple bytecode that just allows a
particular address, with a length of 14 bytes, to destroy the contract. The
size of this skeleton is 21 bytes. It has been deployed 12,240,689 times.

• The second skeleton is the implementation of the ERC-11672 logic. This
bytecode consists of a minimal proxy that forwards all the calls it receives
to a fixed hard-coded address. The size of this skeleton is of 45 bytes. It has
been used 11,168,872 times.

• The third skeleton is again related to gas tokens. It is the same logic as the
first described skeleton but with the allowed address of 15 bytes instead of
14. It has been used 6,829,142 times. Its size is 22 bytes.

• The fourth skeleton is simply the empty bytecode. It is valid in the Ethereum
protocol to have empty smart contracts. 4,877,139 deployments with no
bytecode were found.

• The fifth skeleton is again related to gas tokens. It is the same logic as
the previous two but with the length of the allowed address of 20 bytes.
2,138,723 deployments matching this skeleton were found with a size of 27
bytes.

• The sixth skeleton represents 1,665,668 user wallets of the Bittrex exchange3.
Each of these smart contracts is a controlled wallet. This means that each
contract represents a user of the exchange, but the control over the Ethers
and tokens remains under the company. The point of having these controlled
wallets is to give users a unique address to send their tokens or Ethers. The
size of this skeleton is of 502 bytes.

2Specification of the ERC-1167 Minimal Proxy Contract: https://eips.ethereum.org/
EIPS/eip-1167

3Bittrex is a crypto exchange platform: https://global.bittrex.com/.

https://eips.ethereum.org/EIPS/eip-1167
https://eips.ethereum.org/EIPS/eip-1167
https://global.bittrex.com/

CHAPTER 6. ANALYSIS OF DATA 75

• The seventh skeleton has been used 1,549,146 times and represents an Own-
ableDelegateProxy. It is a proxy contract, so it simply forwards the re-
ceived calls to another contract that implements the actual logic, using
delegatecall. This specific type of proxy has two additional properties:

– Ownable: it stores the address of the owner and allows it to modify the
implementation address. The ownership can eventually be transferred.

– Upgradable: it is possible to update the address of the implementation,
changing where the proxy is forwarding the calls.

All the previous logic is implemented in a bytecode with a size of 1073 bytes.

• The eighth skeleton has been used 1,542,310 times and represents a for-
warder contract. This skeleton has two main public functions: flush() and
flushTokens(address). They are used to transfer ETH and tokens to a fixed
parent address. The point of this kind of contract is to have multiple receive
addresses for the same wallet. ETH transfers are automatically sent to the
parent address, while tokens can be flushed with a transaction. Bitgo4 uses
this contract in their implementation of the multi-signature wallet5. The
size of this skeleton is of 785 bytes.

• The ninth skeleton is a proxy used for the Ambi Multisig wallet as found by
di Angelo and Salzer [21]. It has been deployed 1,202,291, with a size of 88
bytes.

• The tenth skeleton has been used 1,175,596 times and it is the exact same
forwarding logic of the eighth skeleton. The few small differences are prob-
ably due to the compiler version or optimization level. Its size is 789 bytes.

I calculated cosine and interface similarity of the top 10 skeletons to find sim-
ilarities between them and all the other skeletons. This formed seven clusters
shown in Table 6.2.1.

These 7 clusters describe 75.29% of all the deployments that happened in the
Ethereum blockchain. They can be grouped in just 4 distinct categories: gas
token, proxy, wallet and empty contract.

4Bitgo is a digital asset trust company: https://www.bitgo.com/
5Source code of the multi-signature wallet: https://github.com/BitGo/

eth-multisig-v2/tree/master

https://www.bitgo.com/
https://github.com/BitGo/eth-multisig-v2/tree/master
https://github.com/BitGo/eth-multisig-v2/tree/master

76 CHAPTER 6. ANALYSIS OF DATA

Group Distinct skeletons Deployments Category

1 5 21,787,384 Gas token

2 6 11,169,089 Proxy

3 1 4,877,139 Empty contract

4 31 2,732,644 Wallet

5 5 1,863,898 Wallet

6 20 1,55,2654 Proxy

7 3 1,202,787 Wallet

Table 6.2.1: Clusters formed by grouping top 10 skeletons with their similars.

6.2.2 New skeletons over time

An interesting metric to observe is when the skeletons were first seen on the
blockchain. This is a different indicator to the one shown in Figure 6.1.2, since it
just shows when semantically new smart contracts are deployed, avoiding all the
replicas.

Figure 6.2.1 shows, for each month, the number of new skeletons found on the
Ethereum chain. While the number of monthly deployments has not increased
since 2021, the number of new monthly skeletons has kept increasing. This is
also visible in Figure 6.2.2, especially in the year 2022 in which the ratio between
deployments and new skeletons was low compared to the past. From this data, it
appears that code reuse is dropping.

CHAPTER 6. ANALYSIS OF DATA 77

Figure 6.2.1: Deployments of new skeletons over time, grouped by month

Figure 6.2.2: Ratio of deployments to new skeletons over time, grouped by
month. High values imply more duplicates deployed.

78 CHAPTER 6. ANALYSIS OF DATA

6.3 Metamorphic contracts
Smart Contracts are commonly thought to be immutable: once deployed on the
Ethereum blockchain their code can not be changed. This was true until the
introduction of the CREATE2 opcode in EIP-1014, included in the Constantinople
Upgrade. This new opcode gives developers more control over the deployment
address of the contracts created.

With the CREATE opcode, the new address is calculated as

a = keccak256(RLP (d, nd))[12 :]

in which d denotes the deployer address and nd the deployer nonce. The nonce
is updated by the protocol after every deployment. This prevents the possibility
of deploying twice at the same address.

With CREATE2, the newly created address is computed as

a = keccak256(0xff || d || s || keccak256(c))[12 :]

where 0xff is a constant byte, s is a salt picked by the deployer and c is the
initialization code of the contract. The developer invoking CREATE2 has full control
over all the variables, so it is easy to predict and manipulate the new address.
The address to which the contract is deployed must be empty, this means that no
contracts were ever deployed there or they were all previously destroyed.

With CREATE2 it is possible to deploy a smart contract to a certain address a,
then destroy it and re-deploy it again with the same bytecode at the same address
a. This event is called resurrection by Fröwis and Böhme [17].

Since the initialisation code of a contract can read the blockchain state, it is
possible to use it in a way such that the same initialisation code, run multiple
times, results in different deployed bytecodes. An easy way of doing so is by
instructing it to ask for a third smart contract for the code to deploy. This third
contract can change the code it gives back from time to time. This is one way of
deploying different bytecodes at the same address, creating a metamorphic smart
contract. Listings 6.1 and 6.2 give an example of this pattern with pseudo code.
third_contract = address ("0 xab12 ...5134")
return third_contract.get_code ()

Listing 6.1: Pseudo initialization code that gets the code to deploy from another
contract.

bytes code_to_deploy;

function setCode(bytes calldata _data) public {
code_to_deploy = _data;

}
function getCode () public returns (bytes memory) {

return code_to_deploy;
}

Listing 6.2: Pseudo code of a contract that gives back the code to be deployed.

Another more complicated way to replace the deployed code of a contract is
by combining CREATE and CREATE2 together. CREATE2 is used to reset the nonce
used in CREATE. This can be done with the following steps:

CHAPTER 6. ANALYSIS OF DATA 79

1. A deployer contract D creates a factory contract, here called F , at address Af

using CREATE2. Af is computed as keccak256(0xff ||AD || s || keccak256(c))[12 :
], in which s is any random salt and c is the initialization code of F .

2. Through F , a new contract C1 is created using the CREATE opcode at address
Ac1. Ac1 will be calculated as keccak256(RLP (Af , nd))[12 :], in which nd,
the nonce, is zero.

3. The factory F is destroyed with SELFDESTRUCT and redeployed again by D
at the same address Af and with the same code. This is achieved using
CREATE2 with the same parameters. This step is needed to reset the nonce
of F .

4. The contract C1 is destroyed with SELFDESTRUCT.

5. Now, F can deploy a new contract with arbitrary code using CREATE. The
newly created contract will have the same address Ac1, since it is calculated
as keccak256(RLP (Af , nd))[12 :] with nd equals to zero, as in step 2.

6.3.1 Overview of metamorphic contracts usage

Fröwis and Böhme [17] analyzed metamorphic contracts until July 2021. They
found 41 accounts that received deployments with different bytecodes. From a
manual analysis, they concluded that this phenomena was used by just a few
experienced users. They did not find any malicious use of this pattern. Most of
the cases were about smart contracts related to the front-running infrastructure.

I here analyze the usage of this pattern in the data until May 15 2023, almost
two years of data after the analysis conducted by Fröwis and Böhme.

A total of 267,461 accounts received multiple deployments of the same byte-
code, these are the resurrected accounts. For the metamorphic pattern, there
are 524 distinct accounts that have mutated bytecode over time. Out of these
524, 295 have probably used the pattern with just CREATE2, since all the initial-
ization codes were identical. While the remaining 229 accounts probably used
the pattern combining CREATE and CREATE2 since the deployments used differ-
ent initialization codes. In total, these 524 accounts recorded 1,774 deployments
and received 8,687,083 transactions. A CSV dump with many information re-
lated to metamorphic contracts has been published online at this address: https:
//gist.github.com/davideaimar/e115098af481b16d6755b2e5acc04309.

Figures 6.3.1 and 6.3.2 show the first appearance of metamorphic contracts
over time. Figure 6.3.1 shows all the data, while Figure 6.3.2 filter out three
outliers. These three outliers are three days in which there were more than 100
first appearances of metamorphic smart contracts. These contracts are clearly
correlated with each other.

The cause these outliers were just two addresses6 that performed 852 deploy-
ments to metamorphic smart contracts in just three days. One of the addresses

60x3c3e8ab1e3327f24c917cd28789c9464adcf8198 and
0x6b25909c6141daf60ddf7c0700cedce07a9493d7 with respectively 596 and 256 metamorphic
deployments.

https://gist.github.com/davideaimar/e115098af481b16d6755b2e5acc04309
https://gist.github.com/davideaimar/e115098af481b16d6755b2e5acc04309

80 CHAPTER 6. ANALYSIS OF DATA

Figure 6.3.1: First deployments of the metamorphic smart contracts.

Figure 6.3.2: First deployments of the metamorphic smart contracts without
the three outliers.

CHAPTER 6. ANALYSIS OF DATA 81

Figure 6.3.3: Cumulative sum of all the metamorphic deployments.

is used for MEV7 activity, while the other deployed metamorphic contracts that
were all used to mint the XEN8 token.

Figure 6.3.3 reports the cumulative sum of deployments to the 524 metamor-
phic smart contracts. In general, the usage of the metamorphic pattern has in-
creased in the last period, especially since 2022.

As found by Fröwis and Böhme, many metamorphic contracts use vanity ad-
dresses. These addresses have the peculiarity of having at least 7 leading zeros,
meaning that they are smaller than the typical 20 bytes addresses. They are used
to save on gas fees since it is less data that has to be stored on the blockchain.
Out of the 524 metamorphic smart contracts found, 74 have a vanity address.

Understanding the purpose of metamorphic smart contracts is not easy. All
the deployments do not have verified source code. Most of them have low-level
bytecode with no decompiled functions (1660 out of 1781 deployments).

I manually analyzed the top 110 metamorphic contracts by number of trans-
actions received. I tried to understand their usage and I was able to flag the type
of 98 contracts. 12 contracts were unclear what they were used for. Out of the 98
flagged contracts, 93 (94.89%) contracts were found to be associated with MEV
activity. This means that they were flagged as MEV by Etherscan or by Eigenphi9.
The remaining 5 contracts were all used to mint the XEN token.

This confirms the trend observed by Fröwis and Böhme, the metamorphic

7MEV refers to multiple practices to maximize the extractable value from the block. It
includes frontrunning, arbitrage and liquidations.

8XEN is an ERC-20 token available at https://etherscan.io/token/
0x06450dEe7FD2Fb8E39061434BAbCFC05599a6Fb8

9Eigenphi is a platform that collects and analyse blockchain data related to MEV activity.
It is available at https://eigenphi.io/.

https://etherscan.io/token/0x06450dEe7FD2Fb8E39061434BAbCFC05599a6Fb8
https://etherscan.io/token/0x06450dEe7FD2Fb8E39061434BAbCFC05599a6Fb8
https://eigenphi.io/

82 CHAPTER 6. ANALYSIS OF DATA

Figure 6.3.4: Similarity values of all metamorphic deployments.

smart contracts are still restricted and used by a small number of users. Most
of the metamorphic contracts that are effectively used for, or related to MEV
activity. In many cases, the usage of this pattern is probably done for reusing
vanity addresses, since they are hard to find and can have an impact on the MEV
revenues.

6.3.2 Similarity between metamorphic deployments

To understand how much the code changes in between deployments of metamor-
phic contracts, I computed the cosine similarity between sequential deployments.
For example, if a contract has received 3 deployments, I computed the similarity
between the first and the second bytecodes and then between the second and the
third bytecodes. The calculation of the similarity has been done as described in
Section 4.6.

The resulting values are plotted in Figure 6.3.4. A considerable amount of
deployments completely changed the bytecode, with a similarity value of zero. In-
specting these bytecodes, I observed that most of these deployments were identical
and followed a single pattern:

• The first and the second deployments were empty bytecodes.

• The third deployment was an implementation of the ERC-1167 minimal
proxy contract.

All of the deployments that followed this pattern were done by the same address
and were used to mint XEN tokens.

CHAPTER 6. ANALYSIS OF DATA 83

Figure 6.3.5: Similarity values of metamorphic deployments excluding a pattern
that occurred identically multiple times.

Excluding these deployments from the visualization showed that in the ma-
jority of cases the new bytecode is very similar to the one that is replaced. It is
visible in Figure 6.3.5.

84 CHAPTER 6. ANALYSIS OF DATA

6.4 Gas tokens
The aim of this analysis is to study the impact of the GasToken pattern on
Ethereum.

GasToken is a pattern that was heavily used on the Ethereum blockchain
to save on gas fees. It exploited the concept of refund provided by the op-
codes SELFDESTRUCT and SSTORE. I analyze and focus on the pattern that uses
SELFDESTRUCT. It works by creating and destroying basic smart contracts, used as
gas reserves.

This pattern caused the creation of many fuzzy contracts and state slots that
increased the size of the Ethereum state. It was the main reason for the adoption
of EIP-3529 [24] on August 5th 2021. This EIP removed refunds for SELFDESTRUCT
and reduced SSTORE refunds, effectively killing gas tokens.

The following information explains how this pattern worked before EIP-3529.
These two concepts are the fundamentals of this pattern:

• When a contract is deployed, the creator needs to pay 32000 gas + 200 gas
for each non-zero byte stored.

• When a contract is destroyed, a refund of 24000 gas is provided to the
destroyer, after paying 700 + 5000 gas for calling CALL + SELFDESTRUCT.

So the idea is that users deploy fuzzy contracts when gas is cheap and destroy
them when gas is expensive. Gas from the refunds can cover up to 50% of the
gas used by the calling transaction that triggered the destructions, this is a limit
introduced by the Ethereum protocol.

To make this concept accessible, there are a few smart contracts that abstract
the logic into simple tokens. For each token minted, there are many underlying
smart contracts deployed. This token can easily be transferred between users.
When the token is freed, the underlying smart contracts are destroyed and the
owner of the token gets a discount on the gas of the transaction. The two most
used tokens are CHI10 and GST211.

To be profitable, the price of the gas when tokens are bought must be at least
half of the price of the gas when they are sold.

Gas price has been historically very volatile, so the existence of this pattern
makes sense. Figure 6.4.1 shows the historical fluctuation of gas prices.

6.4.1 Identification of gas reserves

I identified all the smart contracts ever deployed that were used as gas reserves.
The logic of a gas reserve contract is basic. It simply allows one hard-coded address
to destruct the contract. Listing 6.3 shows the code that implements this logic, it
is translated to the EVM bytecode reported in Listing 6.4
if (msg.sender == GAS_TOKEN_ADDRESS) {

SELFDESTRUCT(msg.sender);

10Chi Gastoken on Etherscan: https://etherscan.io/token/
0x0000000000004946c0e9F43F4Dee607b0eF1fA1c

11GST2 token on Etherscan: https://etherscan.io/token/
0x0000000000b3F879cb30FE243b4Dfee438691c04

https://etherscan.io/token/0x0000000000004946c0e9F43F4Dee607b0eF1fA1c
https://etherscan.io/token/0x0000000000004946c0e9F43F4Dee607b0eF1fA1c
https://etherscan.io/token/0x0000000000b3F879cb30FE243b4Dfee438691c04
https://etherscan.io/token/0x0000000000b3F879cb30FE243b4Dfee438691c04

CHAPTER 6. ANALYSIS OF DATA 85

Figure 6.4.1: Average daily Ethereum gas price over time.

}

Listing 6.3: Pseudo code of the gas reserves.

PUSH* <address of token contract >
CALLER
XOR
PC
JUMPI
CALLER
SELFDESTRUCT

Listing 6.4: EVM bytecode of the gas reserves.

The PUSH opcode is represented as "*" because there are different implemen-
tations of the gas reserve contract. Here it is possible to perform optimisations.
The shortest the allowed address is and the fewer bytes are needed to be stored
in the contract bytecode. This results in cheaper deployments and more efficiency
of the pattern.

For example, the GST2 gastoken has this address:
0xb3f879cb30fe243b4dfee438691c04 that has just 15 bytes instead of the stan-
dard 20. The CHI gas token, a more recent and optimized alternative, uses
0x4946c0e9f43f4dee607b0ef1fa1c that is one less byte. Finding these short ad-
dresses is a very resource-intensive computation and requires trillions of iterations
and hashes.

I identified all the gas reserves using the skeletons. There are five distinct
skeletons that were used as gas reserves, with the only difference in the type of
PUSH. Some of the gas reserves were deployed multiple times at the same address.
The data found is reported in Table 6.4.1.

86 CHAPTER 6. ANALYSIS OF DATA

Skeleton PUSH Deployments Distinct addresses

6d00...003318585733ff 14 12,216,500 12,188,707

6e00...003318585733ff 15 6,809,029 6,765,219

6f00...003318585733ff 16 568,116 525,202

7000...003318585733ff 17 9,577 9,577

7300...003318585733ff 20 2,138,608 2,138,608

Table 6.4.1: Gas reserves found on Ethereum.

A total of 21,741,830 successful gas reserve deployments were found, more than
one third of all the deployments of Ethereum. 90.1% of them have been destroyed,
the remaining contracts are still alive. Users should pay gas to destroy them but
without a reward is very unlikely that this will ever happen. There are 2,158,422
contracts that can potentially be stuck there forever since there is no incentive to
remove them from the blockchain. The timeline of deployments and destructions
is shown in Figure 6.4.2. It is clearly visible how the London upgrade successfully
killed this pattern.

Figure 6.4.2: Deployments and destructions of gas reserves over time.

6.4.2 Quantification of eth saved

I estimated the amount of Eth saved using the GasToken pattern. The calculation
is performed on each gas reserve as:

CHAPTER 6. ANALYSIS OF DATA 87

ethsaved = ethrefund − ethmint

where ethrefund and ethmint are calculated as

ethrefund = gasrefunded ∗ gas_pricerefund_time

ethmint = gasmint ∗ gas_pricemint_tine

This is calculated on each gas reserve that was successfully deployed and then
destroyed. This calculation is meant to give an order of magnitude of the amount
saved.

These are the limitations and assumptions made for this calculation:

• The gas spent for the small logic introduced by the token contracts that
manage most of the gas reserves is not considered.

• Gas spent for the transactions that deployed the reserves is not considered. It
highly depends on how many deployments were done in a single transaction.
For example, doing 100 deployments in a single transaction (equivalent to
minting 1 GST2 token) makes the gas of the transaction count for just 0.58%
of the deployment cost. I assume that all deployments were done in batches
greater than 100 so the transaction cost is negligible.

• I assumed that all the destructions were done in such a way to not cover
more than 50% of the transaction gas with the refunds. Not doing so would
mean wasting the refunded gas.

• The gas prices used are the ones related to the blocks, obtained as the
averages of the prices of gas in all the transactions. It is possible that many
reserves were deployed by the miner themselves without paying for the gas.

The obtained value estimated a total saving of around 14K Eth, corresponding
to 22,930,740 USD. The code used for this estimation is reported in Listing 6.5.
df contains all the gas reserves deployments

Type specifies wich PUSH was used (14, 15, ...)
24_000 is the refund
5_700 is the gas price for triggering SELFDESTRUCT + CALL
gas_refunded = 24_000 - 5_700

32_000 is the cost of CREATE
200 is the cost for each byte stored
df[’deploy_gas_used ’] = 32_000 + 200 * (7 + df["type"])
df[’deploy_cost ’] = df[’deploy_price ’] * df[’deploy_gas_used ’]
df[’destroy_reward ’] = gas_refunded * df["destroy_price"]
df[’profit ’] = df[’destroy_reward ’] - df[’deploy_cost ’]
saved = df[’profit ’].sum()

Listing 6.5: Code for computing the total Eth saved with the GasToken pattern.

88 CHAPTER 6. ANALYSIS OF DATA

6.5 Most deployed functions and events
Understanding what are the most commonly used functions and events gives a
hint about what most smart contracts are doing.

I present in Tables 6.5.1 and 6.5.2 the most frequently deployed functions
and events extracted using the Heimdall EVM decompiler. As explained in Sec-
tions 4.4.1 and 4.5.1 the decompilation is performed on the deployed bytecode of
the smart contracts, with a caching logic based on EVM skeletons. This means
that two contracts sharing the same EVM skeleton received just one decompilation
and the linked functions and events are the same. The numbers of this analysis
depend directly on the accuracy of the decompiler.

Function Skeletons Deployments

sweep(address,uint256) -> bool 96 2,794,735

flush() 182 2,775,935

flushTokens(address) 106 2,762,395

owner() -> address 57,643 2,226,240

tokenFallback(address,uint256,bytes) 68 1,897,675

implementation() -> address 1,472 1,688,820

proxyType() -> uint256 96 1,581,439

upgradeTo(address) 1,102 1,577,083

transferProxyOwnership(address) 177 1,556,545

proxyOwner() -> address 185 1,556,297

upgradeabilityOwner() -> address 127 1,554,012

upgradeToAndCall(address,bytes) 8 1,550,005

transferOwnership(address) 46,597 581,149

balanceOf(address) -> uint256 57,144 563,664

name() -> bytes memory 55,842 535,428

symbol() -> bytes memory 54,714 530,246

totalSupply() -> uint256 54,511 529,351

transfer(address,uint256) 46,024 526,022

approve(address,uint256) -> uint256 51,984 515,168

decimals() -> bool 44,682 503,589

Table 6.5.1: Top 20 functions by number of deployments.

CHAPTER 6. ANALYSIS OF DATA 89

Event Skeletons Deployments

TokensFlushed(address,uint256) 14 2,720,369

Upgraded(address) 1,115 1,577,868

ProxyOwnershipTransferred(address,address) 165 1,556,455

OwnershipTransferred(address,address) 41,985 516,317

Transfer(address,address,uint256) 47,380 494,780

Approval(address,address,uint256) 48,499 482,358

OwnerChanged(address) 133 430,676

DeedClosed() 4 430,173

SafeModeActivated(address) 51 231,379

TokenTransfer(address,address,uint256) 11 84,781

Transfer(address,uint256) 64 63,185

TokenReleased(address,uint256) 14 49,736

Burn(address,uint256) 3,136 37,404

OwnershipRenounced(address) 2,408 24,993

ApprovalForAll(address,address,bool) 10,063 22,451

AdminChanged(address,address) 520 20,353

LogSetOwner(address) 196 16,921

DelegateUpgraded(address,address,uint256) 2 14,076

DelegateRolledBack(address,address,uint256) 2 14,076

Table 6.5.2: Top 20 events by number of deployments.

All the functions are related to proxy, wallet, or token contracts. For the
events, it is the same situation. There is the event DeedClosed that is related
to ENS12 and DelegateUpgraded and DelegateRolledBack that are used for the
Rocket Pool13 protocol, but both of these protocols are token-based.

12ENS (Ethereum Name Service) is a decentralized name service https://ens.domains/.
13Rocket Pool is a decentralized staking pool https://rocketpool.net/.

https://ens.domains/
https://rocketpool.net/

90 CHAPTER 6. ANALYSIS OF DATA

6.6 Contracts metadata
Smart contracts deployed using the Solidity compiler have the default option to
include CBOR-encoded data at the end of the deployed bytecode. This piece of
information includes:

• The hash of the contract metadata. The metadata includes any kind of
information related to the smart contract, such as the ABI, the documen-
tation, the settings of the compiler, etc. It also includes the hash of the
source code, so a change in the source code causes a change in the metadata
that consequently changes its hash. This hash can be used as an address to
store and retrieve the actual metadata and source code of the contract on a
decentralized file system.

• The type of the hash (bzzr0, bzzr1 or IPFS).

• A flag stating if the compilation was done with experimental features of the
compiler enabled.

• The version of the Solidity compiler used.

All of this data has been extracted by eth2dgraph with a regex as explained
in Section 4.4.2. Here is an overview of what has been extracted.

6.6.1 Hash of metadata

A total 17,491,909 deployments included the hash of the metadata in the bytecode
stored on the blockchain. Out of these, 1,164,973 (6.66%) used IPFS, 15,636,747
(89.39%) used bzzr0 and 690,189 (3.94%) used bzzr1.

Analyzing the values of the hashes, there were just 770,719 distinct hashes
found. This means that, on average, each smart contract compiled with the Solid-
ity compiler gets deployed 22.7 times, another indicator of the high code reuse in
the Ethereum blockchain. There are five occurrences in which the same metadata
hash has been deployed more than 1M times, all of these deployments were done
by just a few distinct addresses. On the other hand, there are 690,157 occurrences
in which the hash was only used once.

6.6.2 Experimental compilations

The Solidity compiler allows to activate experimental features that are not already
included by default in the decompiler. This can be done at the beginning of the
code writing pragma experimental <feature-name>. Inside the CBOR encoded
data appended at the end of the generated bytecode there is a boolean stating
whether any experimental feature was used or not.

Out of the 17,491,909 deployments that included the CBOR encoded data,
1,113,139 (6.36%) had experimental features activated. These contracts with ex-
perimental features received a total of 5.8M transactions.

CHAPTER 6. ANALYSIS OF DATA 91

6.6.3 Solc versions

2,090,487 smart contracts included the version of the Solidity compiler in the
CBOR-encoded data. The version is included just from Solidity v0.5.9 onward.
There are 1,299 smart contracts that included fake Solidity versions (e.g. 100.67.137,
116.153.33, etc.) and were removed in this analysis. 32 deployments were found to
use pre-releases of the compiler, in these cases Solidity appends the exact commit
used. The total numbers of major versions found are reported in Table 6.6.1.

Major Solidity version Number of deployments

0.5 925,506

0.6 287,552

0.7 215,924

0.8 660,206

Table 6.6.1: Numbers of deployments found per major version of the Solidity
compiler.

Figure 6.6.1 shows the distribution over time of the various major Solidity
versions found. Generally, it is possible to observe how old compiler versions
remain heavily used even after the release of multiple new versions. The versions
0.6 and 0.7 almost never managed to have a higher amount of daily deployments
than the 0.5 version. The latest version, 0.8, managed to overtake the 0.5 after
around one year since its release. Now it is the most used Solidity version.

Figure 6.6.1: Deployments over time divided by major Solidity compiler versions.
Each data entry represents the daily amount of deployments found per version.
Keep in mind the log scale.

92 CHAPTER 6. ANALYSIS OF DATA

CHAPTER

SEVEN

DISCUSSION

7.0.1 Dgraph for Ethereum data

As blockchain technology gains popularity, the challenge of managing data from
these networks becomes increasingly critical. Dgraph proved to be a viable solution
for managing Ethereum data. This kind of data adapts well to graph databases.

However, there are some drawbacks that were encountered when using Dgraph:

• EVM data is often represented using 256-bit integers or raw bytes. Dgraph
does not support these data types. They must be stored as text with all the
related disadvantages, such as more disk space used and the impossibility of
doing math operations in the queries.

• When used with a large dataset, Dgraph encountered some limitations with
the usage of memory. It crashed both during the bulk import and during
the execution of large queries. These problems were solved by modifying the
database source code or tweaking the queries to use less memory. However,
they show that Dgraph is still not well-tested against large datasets.

• Insertion of live Ethereum data into a cluster with all the history of the
blockchain was slower that the production of data from the blockchain. The
underlying Badger database gets stuck periodically logging L0 was stalled.
This made it impossible to keep the dataset updated with the latest blocks.

Dgraph is a relatively new technology. It was born in 2016 and is currently
under active development. The project maintainers showed interest in this use
case and actively helped me to solve the problems I faced with the database.

7.0.2 Challenges of blockchain data management

The process of data extraction using the Ethereum RPC interface worked well
and proved to be an optimal solution. The biggest problem of this process is the
amount of time and computational resources it needs, as described in Chapter 5.

It is important to highlight that these data refer to the Ethereum blockchain.
Layer 2 protocols and other blockchains are even more critical as they are already

93

94 CHAPTER 7. DISCUSSION

producing more data than Ethereum. Polygon1 is producing blocks 6 times faster
than Ethereum, with an average of one new block every two seconds. The BNB
Chain2 is another popular blockchain that is growing at a pace of a new block
every three seconds.

Another relevant concern is that blockchains will grow indefinitely. The size of
an instance of a Geth archive node is growing at around 3.5TB per year3. Soon,
it will not be possible to handle all this data on a single machine, since vertical
scalability is not infinite. A distributed approach will be the only viable way in
the future.

This expensive entry barrier makes it hard to perform such an operation. Peo-
ple interested in analyzing Ethereum data are more likely to use one of the few
centralized services instead of running their infrastructure.

The lack of research and tools in this field could potentially create a gap be-
tween companies and the open-source community. This would reduce the decen-
tralization of the blockchain ecosystem, making an important element such as data
analysis dependent on private companies.

7.0.3 Domain-specific data analysis

If blockchains continue to grow in size indefinitely as they are designed to do, it
will be unfeasible to get and index all the historical data in a single place. Chances
are that it will be a similar challenge of indexing all the history of the World Wide
Web on a single machine or cluster of machines right now.

The potential solution to this problem is reducing the domain of the managed
data. As seen in the analysis reported in Chapter 6, most of the traffic on the chain
is restricted to a relatively small set of smart contracts. These smart contracts
implement different and independent protocols. Information about what happens
in these protocols can be extracted, indexed and analyzed independently from
each other.

The Graph [14] proposes a solution of this kind. As noted in Chapter 3, this de-
centralized indexing protocol gathers together data that is indexed independently
from the various decentralized protocols implemented by smart contracts. This
particular indexing protocol is even more strict in term of amount of data since
it just considers the logs, ignoring transactions and blocks data. This technique
allows for better scalability, but lacks giving a bigger picture of the traffic in a
blockchain network.

7.0.4 Future work

There are some areas of this research that could be explored more in-depth in
future works. In theory, eth2dgraph should work with any EVM-compatible chain,
such as Polygon, since the RPCs used are the same. This has not been tested
because of the lack of available nodes.

1Polygon is a layer 2 EVM blockchain based on Ethereum.
2BNB Chain is a layer 1 EVM compatible blockchain developed by the Binance exchange.
3This graph made by Etherscan shows the historical size of a Geth archive node: https:

//etherscan.io/chartsync/chainarchive.

https://etherscan.io/chartsync/chainarchive
https://etherscan.io/chartsync/chainarchive

CHAPTER 7. DISCUSSION 95

Due to the infrastructure available, Dgraph was used in a single machine. It
would be interesting to test its behaviour with a cluster distributed over multiple
servers. This would test the horizontal scalability of Dgraph.

Another area of improvement is the streaming of live data. Currently, eth2dgraph
supports live data insertion from the Ethereum network to an active Dgraph clus-
ter using ACID transactions. It proved to work well when the database does not
have a lot of data already indexed, but it was slower than the production of data
from the blockchain when the database had all the Ethereum history indexed.
The optimization of this part of the tool was not the priority of this work, so this
could be an area of improvement.

Talking more broadly, the optimal solution to the problem that this research
tries to address would be to have blockchain clients that directly give the option
to freely index data. This would remove the redundancy of having to store data
in two different places: one in the EVM client storage and one in the database
storage. These Blockchain Analytics Clients could specifically target data analysts
and would not need the ability to participate in the consensus layer of the protocol.

96 CHAPTER 7. DISCUSSION

CHAPTER

EIGHT

CONCLUSIONS

This research has investigated a novel solution to the problem of Ethereum data
management using a graph database. Thanks to the release of eth2dgraph, it is
now possible to easily index Ethereum data using Dgraph and query it with DQL
and GraphQL.

To answer research question 1, the schema used to manage data gives a clear
image of what can be extracted from EVM blockchains without relying on cen-
tralized services. It is reported in Figure 4.2.1. The only kind of information that
can not be extracted without relying on centralized services is the source code of
smart contracts. It is possible to extract functions and events implemented by
smart contracts from their bytecodes, even if the data is not perfectly accurate.

Generally, most of the semantics related to on-chain operations can be obtained
from logs. In this work, logs referring to token transfers were parsed to allow faster
and easier queries. The same can be done for other domains, e.g. token swaps,
token approvals, or other protocol-specific use cases.

To answer the second research question, with the solution provided in this
Master’s Thesis, it is possible to estimate that at least 6TB of fast SSDs, 400GB
of RAM, and a CPU of 64 cores are needed to perform independent extraction
and indexing of all Ethereum data as of August 2023.

Although the entry barrier is high, it is still possible to run an archive node,
extract all the historical data, and index it in a database all in the same machine.
Apart from computational resources, it is an operation that also takes time. It
takes at least a few days to sync a node, around seven hours to extract the data
and more than two days to ingest it into the database.

The analysis on the extracted data conducted in Chapter 6 serve as an example
of the potentiality of this data. They show possible ways of using and interpreting
Ethereum data. From these analysis it appeared that most of the traffic on the
network is restricted to a small number of smart contracts. This fact suggested that
more efficient analysis can be done focusing on a specific decentralized protocol,
instead of having to manage all the historical Ethereum data.

97

98 CHAPTER 8. CONCLUSIONS

REFERENCES

[1] Satoshi Nakamoto. Bitcoin: a Peer-to-Peer Electronic Cash System. Tech.
rep. Oct. 2008. url: https://bitcoin.org/bitcoin.pdf (visited on
01/31/2023).

[2] Vitalik Buterin. Ethereum White Paper: A Next Generation Smart Con-
tract & Decentralized Application Platform. Tech. rep. 2013. url: https:
//github.com/ethereum/wiki/wiki/White-Paper.

[3] Ting Chen et al. “DataEther: Data Exploration Framework For Ethereum”.
In: 2019 IEEE 39th International Conference on Distributed Computing Sys-
tems (ICDCS). 2019, pp. 1369–1380. doi: 10.1109/ICDCS.2019.00137.

[4] Peilin Zheng et al. “XBlock-ETH: Extracting and exploring blockchain data
from Ethereum”. In: IEEE Open J. Comput. Soc. 1 (May 2020), pp. 95–106.
doi: 10.1109/OJCS.2020.2990458.

[5] Santiago Bragagnolo et al. “Ethereum query language”. en. In: Proceedings of
the 1st International Workshop on Emerging Trends in Software Engineering
for Blockchain. Gothenburg Sweden: ACM, May 2018, pp. 1–8. isbn: 978-1-
4503-5726-5. doi: 10.1145/3194113.3194114. url: https://dl.acm.org/
doi/10.1145/3194113.3194114 (visited on 02/15/2023).

[6] Jain Manish. Dgraph: Synchronously Replicated, Transactional and Distributed
Graph Database. Tech. rep.

[7] Phillip Rogaway and Thomas Shrimpton. “Cryptographic hash-function ba-
sics: Definitions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance”. In: FSE. Vol. 3017. 1979,
pp. 371–388.

[8] Leslie Lamport. “Password authentication with insecure communication”. In:
Communications of the ACM 24.11 (1981), pp. 770–772.

[9] Don Johnson, Alfred Menezes, and Scott Vanstone. “The elliptic curve digi-
tal signature algorithm (ECDSA)”. In: International journal of information
security 1 (2001), pp. 36–63.

[10] David Chaum. “Blind signatures for untraceable payments”. In: Advances in
Cryptology: Proceedings of Crypto 82. Springer. 1982, pp. 199–203.

[11] Christian Stoll, Lena Klaaßen, and Ulrich Gallersdörfer. “The carbon foot-
print of bitcoin”. In: Joule 3.7 (2019), pp. 1647–1661.

99

https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1109/ICDCS.2019.00137
https://doi.org/10.1109/OJCS.2020.2990458
https://doi.org/10.1145/3194113.3194114
https://dl.acm.org/doi/10.1145/3194113.3194114
https://dl.acm.org/doi/10.1145/3194113.3194114

100 REFERENCES

[12] Takenobu Tani. Ethereum EVM illustrated. Access: 08-09-2023. url: https:
//takenobu-hs.github.io/downloads/ethereum_evm_illustrated.pdf.

[13] Diego Ongaro and John Ousterhout. “In search of an understandable consen-
sus algorithm (extended version)”. In: Proceeding of USENIX annual tech-
nical conference, USENIX ATC. 2014, pp. 19–20.

[14] Jannis Pohlmann Yaniv Tal Brandon Ramirez. The Graph: A Decentral-
ized Query Protocol for Blockchains. Tech. rep. Mar. 2018, p. 12. url:
https://github.com/graphprotocol/research/blob/master/papers/
whitepaper/the-graph-whitepaper.pdf.

[15] Evgeny Medvedev and the D5 team. Ethereum ETL. 2018. url: https:
//github.com/blockchain-etl/ethereum-etl.

[16] Qin Wang et al. Exploring Web3 From the View of Blockchain. 2022. arXiv:
2206.08821 [cs.CR].

[17] Michael Fröwis and Rainer Böhme. “Not all code are create2 equal”. In: 6th
Workshop on Trusted Smart Contracts (WTSC’22). 2022.

[18] Lucianna Kiffer, Dave Levin, and Alan Mislove. “Analyzing Ethereum’s Con-
tract Topology”. In: Oct. 2018, pp. 494–499. isbn: 978-1-4503-5619-0. doi:
10.1145/3278532.3278575.

[19] Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction
ledger”. In: Ethereum project yellow paper 151.2014 (2014), pp. 1–32.

[20] Monika Di Angelo and Gernot Salzer. “Identification of token contracts on
Ethereum: standard compliance and beyond”. In: International Journal of
Data Science and Analytics (Sept. 2021), pp. 1–20. doi: 10.1007/s41060-
021-00281-1.

[21] Monika di Angelo and Gernot Salzer. Wallet Contracts on Ethereum – Iden-
tification, Types, Usage, and Profiles. 2021. arXiv: 2001.06909 [cs.CR].

[22] Martin Ortner and Shayan Eskandari. Smart Contract Sanctuary. url: https:
//github.com/tintinweb/smart-contract-sanctuary.

[23] Monika Di Angelo and Gernot Salzer. “Assessing the Similarity of Smart
Contracts by Clustering their Interfaces”. In: Dec. 2020. doi: 10.1109/
TrustCom50675.2020.00261.

[24] Vitalik Buterin and Martin Swende. EIP-3529: Reduction in refunds. Ethereum
Improvement Proposals, no. 3529, April. 2021. url: https://eips.ethereum.
org/EIPS/eip-3529.

https://takenobu-hs.github.io/downloads/ethereum_evm_illustrated.pdf
https://takenobu-hs.github.io/downloads/ethereum_evm_illustrated.pdf
https://github.com/graphprotocol/research/blob/master/papers/whitepaper/the-graph-whitepaper.pdf
https://github.com/graphprotocol/research/blob/master/papers/whitepaper/the-graph-whitepaper.pdf
https://github.com/blockchain-etl/ethereum-etl
https://github.com/blockchain-etl/ethereum-etl
https://arxiv.org/abs/2206.08821
https://doi.org/10.1145/3278532.3278575
https://doi.org/10.1007/s41060-021-00281-1
https://doi.org/10.1007/s41060-021-00281-1
https://arxiv.org/abs/2001.06909
https://github.com/tintinweb/smart-contract-sanctuary
https://github.com/tintinweb/smart-contract-sanctuary
https://doi.org/10.1109/TrustCom50675.2020.00261
https://doi.org/10.1109/TrustCom50675.2020.00261
https://eips.ethereum.org/EIPS/eip-3529
https://eips.ethereum.org/EIPS/eip-3529

APPENDICES

101

A - COMPLETE SCHEMA OF INDEXED DATA

Here are both the DQL and GraphQL schema of the data extracted. Listing 1
reports the DQL schema and Listing 2 the GraphQL one.
<Account.address >: string @index(hash) @upsert .
<Account.tags >: [string] @index(hash) .
<Account.is_contract >: bool @index(bool) .
<Block.base_fee_per_gas >: float .
<Block.datetime >: datetime @index(hour) .
<Block.difficulty >: string @index(hash) .
<Block.gas_limit >: int .
<Block.gas_used >: int @index(int) .
<Block.gas_price_avg >: float @index(float) .
<Block.gas_price_max >: float .
<Block.gas_price_min >: float .
<Block.gas_price_std_dev >: float .
<Block.number >: int @index(int) @upsert .
<Block.size >: int .
<Block.tx_count >: int .
<Block.miner >: uid @reverse .
<Block.withdrawals >: [uid] @reverse .
<ContractDeployment.block >: uid @reverse .
<ContractDeployment.contract >: uid @reverse .
<ContractDeployment.creation_bytecode >: string .
<ContractDeployment.creator >: uid @reverse .
<ContractDeployment.deployed_bytecode >: string .
<ContractDeployment.experimental >: bool .
<ContractDeployment.failed_deploy >: bool .
<ContractDeployment.skeleton >: uid @reverse .
<ContractDeployment.solc_version >: string .
<ContractDeployment.storage_address >: string .
<ContractDeployment.storage_protocol >: string .
<ContractDeployment.tx_hash >: string @index(hash) .
<ContractDeployment.name >: string @index(trigram) .
<ContractDeployment.verified_source >: bool @index(bool) .
<ContractDeployment.verified_source_code >: string @index(term) .
<ContractDestruction.balance_left >: string .
<ContractDestruction.block >: uid @reverse .
<ContractDestruction.contract >: uid @reverse .
<ContractDestruction.refound_address >: uid .
<ContractDestruction.failed >: bool @index(bool) .
<ContractDestruction.tx_hash >: string @index(hash) .
<Error.inputs >: string @index(trigram) .
<Error.name >: string @index(exact) .
<Error.signature >: string @index(hash) @upsert .

102

<Event.inputs >: string @index(trigram) .
<Event.name >: string @index(exact) .
<Event.signature >: string @index(hash) @upsert .
<Function.inputs >: string @index(trigram) .
<Function.name >: string @index(exact) .
<Function.bytes4 >: string @index(hash) .
<Function.outputs >: string @index(trigram) .
<Function.signature >: string @index(hash) @upsert .
<Skeleton.bytecode >: string @index(hash) .
<Skeleton.erc20_compliancy >: int @index(int) .
<Skeleton.erc721_compliancy >: int @index(int) .
<Skeleton.errors >: [uid] @reverse .
<Skeleton.events >: [uid] @reverse .
<Skeleton.failed_decompilation >: bool .
<Skeleton.functions >: [uid] @reverse .
<Skeleton.similar_code >: [uid] .
<Skeleton.similar_interface >: [uid] .
<TokenTransfer.block >: uid @reverse .
<TokenTransfer.contract >: uid @reverse .
<TokenTransfer.from >: uid @reverse .
<TokenTransfer.to >: uid @reverse .
<TokenTransfer.tx >: uid .
<TokenTransfer.value >: string .
<TokenTransfer.token_id >: string @index(hash) .
<Transaction.block >: uid @reverse .
<Transaction.from >: uid @reverse .
<Transaction.gas >: int .
<Transaction.gas_price >: int .
<Transaction.hash >: string @index(hash) @upsert .
<Transaction.input >: string .
<Transaction.bytes4 >: string @index(hash) .
<Transaction.max_fee_per_gas >: int .
<Transaction.max_priority_fee_per_gas >: int .
<Transaction.nonce >: int .
<Transaction.r>: string .
<Transaction.s>: string .
<Transaction.to >: uid @reverse .
<Transaction.v>: string .
<Transaction.value >: string .
<Log.contract >: uid @reverse .
<Log.block >: uid @reverse .
<Log.tx >: uid @reverse .
<Log.topic_0 >: string @index(hash) .
<Log.topic_1 >: string @index(hash) .
<Log.topic_2 >: string @index(hash) .
<Log.topic_3 >: string @index(hash) .
<Log.data >: string .
<Log.tx_index >: int .
<Log.index >: int .
<Withdrawal.address >: uid @reverse .
<Withdrawal.string >: int .
<Withdrawal.index >: int .
<Withdrawal.validator_index >: int .
<Withdrawal.amount >: int .
type <Account > {

Account.address
Account.tags
Account.is_contract

103

}
type <Block > {

Block.number
Block.datetime
Block.difficulty
Block.tx_count
Block.gas_price_min
Block.gas_price_max
Block.gas_price_avg
Block.gas_price_std_dev
Block.gas_limit
Block.gas_used
Block.base_fee_per_gas
Block.size
Block.miner
Block.withdrawals

}
type <ContractDeployment > {

ContractDeployment.contract
ContractDeployment.block
ContractDeployment.creator
ContractDeployment.tx_hash
ContractDeployment.failed_deploy
ContractDeployment.creation_bytecode
ContractDeployment.deployed_bytecode
ContractDeployment.skeleton
ContractDeployment.storage_protocol
ContractDeployment.storage_address
ContractDeployment.experimental
ContractDeployment.solc_version
ContractDeployment.verified_source
ContractDeployment.verified_source_code
ContractDeployment.name

}
type <ContractDestruction > {

ContractDestruction.contract
ContractDestruction.block
ContractDestruction.tx_hash
ContractDestruction.balance_left
ContractDestruction.refound_address
ContractDestruction.failed

}
type <Error > {

Error.signature
Error.name
Error.inputs

}
type <Event > {

Event.signature
Event.name
Event.inputs

}
type <Function > {

Function.signature
Function.name
Function.inputs
Function.outputs

}

104

type <Skeleton > {
Skeleton.bytecode
Skeleton.functions
Skeleton.events
Skeleton.errors
Skeleton.failed_decompilation
Skeleton.erc20_compliancy
Skeleton.erc721_compliancy
Skeleton.similar_code
Skeleton.similar_interface

}
type <TokenTransfer > {

TokenTransfer.contract
TokenTransfer.from
TokenTransfer.to
TokenTransfer.value
TokenTransfer.block
TokenTransfer.tx
TokenTransfer.token_id

}
type <Transaction > {

Transaction.hash
Transaction.from
Transaction.to
Transaction.block
Transaction.value
Transaction.gas
Transaction.gas_price
Transaction.input
Transaction.bytes4
Transaction.max_fee_per_gas
Transaction.max_priority_fee_per_gas
Transaction.nonce
Transaction.r
Transaction.s
Transaction.v

}
type <Log > {

Log.contract
Log.block
Log.tx
Log.topic_0
Log.topic_1
Log.topic_2
Log.topic_3
Log.data
Log.tx_index
Log.index

}
type <Withdrawal > {

Withdrawal.address
Withdrawal.amount
Withdrawal.index
Withdrawal.validator_index

}

Listing 1: DQL schema of indexed data

105

type Account {
address: String! @id @search(by: [hash])
tags: [String] @search(by: [hash])
is_contract: Boolean @search
token_sent: [TokenTransfer] @dgraph(pred: "~ TokenTransfer.from")
token_received: [TokenTransfer] @dgraph(pred: "~ TokenTransfer.to
")

transactions_sent: [Transaction] @dgraph(pred: "~ Transaction.
from")

transactions_received: [Transaction] @dgraph(pred: "~ Transaction
.to")

created_contracts: [ContractDeployment] @dgraph(pred: "~
ContractDeployment.creator ")

logs: [Log] @dgraph(pred: "~Log.contract ")
deployments: [ContractDeployment] @dgraph(pred :"~
ContractDeployment.contract ")

destructions: [ContractDestruction] @dgraph(pred :"~
ContractDestruction.contract ")

transfers: [TokenTransfer] @dgraph(pred: "~ TokenTransfer.
contract ")

mined_blocks: [Block] @dgraph(pred :"~ Block.miner ")
withdrawals: [Withdrawal] @dgraph(pred :"~ Withdrawal.address ")

}

type Withdrawal {
amount: String! @search
index: Int
validator_index: Int
address: Account! @dgraph(pred:" Withdrawal.address ")
block: [Block] @dgraph(pred :"~ Block.withdrawals ")

}

type Block {
number: Int! @id @search
miner: Account @dgraph(pred:"Block.miner")
datetime: DateTime @search(by: [hour])
difficulty: String @search
tx_count: Int @search
gas_price_min: Float
gas_price_max: Float
gas_price_avg: Float @search
gas_price_std_dev: Float
gas_limit: Int
gas_used: Int
base_fee_per_gas: Float
size: Int
deployments: [ContractDeployment] @dgraph(pred: "~
ContractDeployment.block")

destructions: [ContractDestruction] @dgraph(pred: "~
ContractDestruction.block")

transfers: [TokenTransfer] @dgraph(pred: "~ TokenTransfer.block")
transactions: [Transaction] @dgraph(pred: "~ Transaction.block")
withdrawals: [Withdrawal] @dgraph(pred:"Block.withdrawals ")
logs: [Log] @dgraph(pred: "~Log.block")

}

type Transaction {
hash: String! @id @search(by: [hash])

106

value: String!
gas: Int @search
gas_price: Int @search
input: String
bytes4: String @search(by: [hash])
max_fee_per_gas: Int
max_priority_fee_per_gas: Int
nonce: Int
r: String
s: String
v: String
from: Account! @dgraph(pred:" Transaction.from")
to: Account! @dgraph(pred:" Transaction.to")
block: Block! @dgraph(pred:" Transaction.block")
logs: [Log] @dgraph(pred: "~Log.tx")

}

type Function {
signature: String! @id @search(by: [hash])
name: String @search(by: [exact])
inputs: String @search(by: [trigram])
outputs: String @search(by: [trigram])
skeletons: [Skeleton] @dgraph(pred :"~ Skeleton.functions ")
bytes4: String @search(by: [hash])

}

type Event {
signature: String! @id @search(by: [hash])
name: String @search(by: [exact])
inputs: String @search(by: [trigram])
skeletons: [Skeleton] @dgraph(pred :"~ Skeleton.events ")

}

type Error {
signature: String! @id @search(by: [hash])
name: String @search(by: [exact])
inputs: String @search(by: [trigram])
skeletons: [Skeleton] @dgraph(pred :"~ Skeleton.errors ")

}

type ContractDeployment {
tx_hash: String @search(by: [hash])
failed_deploy: Boolean @search
creation_bytecode: String
deployed_bytecode: String
storage_protocol: String
storage_address: String
experimental: Boolean @search
solc_version: String @search(by: [hash])
verified_source: Boolean @search
verified_source_code: String @search(by: [term])
name: String @search(by: [trigram])
contract: Account! @dgraph(pred:" ContractDeployment.contract ")
block: Block! @dgraph(pred:" ContractDeployment.block ")
creator: Account! @dgraph(pred:" ContractDeployment.creator ")
skeleton: Skeleton @dgraph(pred:" ContractDeployment.skeleton ")

}

107

type ContractDestruction {
tx_hash: String @search(by: [hash])
balance_left: String
refound_address: Account! @dgraph(pred:" ContractDestruction.
refound_address ")

contract: Account! @dgraph(pred:" ContractDestruction.contract ")
block: Block! @dgraph(pred:" ContractDestruction.block ")

}

type Skeleton {
bytecode: String! @search(by: [hash])
erc20_compliancy: Int @search
erc721_compliancy: Int @search
failed_decompilation: Boolean @search
deployments: [ContractDeployment] @dgraph(pred :"~
ContractDeployment.skeleton ")

functions: [Function] @dgraph(pred:" Skeleton.functions ")
events: [Event] @dgraph(pred:" Skeleton.events ")
errors: [Error] @dgraph(pred:" Skeleton.errors ")
similar_code: [Skeleton]
similar_interface: [Skeleton]

}

type TokenTransfer {
value: String!
token_id: String
tx: Transaction
block: Block! @dgraph(pred:" TokenTransfer.block")
contract: Account! @dgraph(pred:" TokenTransfer.contract ")
from: Account! @dgraph(pred:" TokenTransfer.from")
to: Account! @dgraph(pred:" TokenTransfer.to")

}

type Log {
topic_0: String @search(by: [hash])
topic_1: String @search(by: [hash])
topic_2: String @search(by: [hash])
topic_3: String @search(by: [hash])
data: String
tx_index: Int
index: Int
contract: Account! @dgraph(pred:"Log.contract ")
block: Block @dgraph(pred:"Log.block ")
tx: Transaction @dgraph(pred:"Log.tx")

}

Listing 2: GraphQL schema of indexed data

108

B - DATA RETURNED FROM ETHEREUM RPCS

To give more context, Listings 3 to 5 include three examples of data returned from
the RPCs that were used for extracting Ethereum data.

eth_getBlockByNumber

{
"jsonrpc ": "2.0" ,
"id": 1,
"result ": {

"baseFeePerGas ": "0 x1ced5e1e0c",
"difficulty ": "0x0",
"extraData ": "0 x7273796e632d6275696c6465722e78797a",
"gasLimit ": "0 x1c9c380",
"gasUsed ": "0 xd0b9ef",
"hash": "0x...",
"logsBloom ": "0x...",
"miner": "0 x1f9090aae28b8a3dceadf281b0f12828e676c326",
"mixHash ": "0x...",
"nonce": "0 x0000000000000000",
"number ": "0 x1067381",
"parentHash ": "0x...",
"receiptsRoot ": "0x...",
"sha3Uncles ": "0x...",
"size": "0 x135f5",
"stateRoot ": "0x...",
"timestamp ": "0 x6455fe73",
"totalDifficulty ": "0 xc70d815d562d3cfa955",
"transactions ": [

...,
{

"blockHash ": "0x...",
"blockNumber ": "0 x1067381",
"from": "0x...",
"gas": "0 x1725d",
"gasPrice ": "0 x1cf069692b",
"maxPriorityFeePerGas ": "0 x30b4b1f",
"maxFeePerGas ": "0 x1df5b2c880",
"hash": "0x...",
"input": "0x...",
"nonce": "0x8",
"to": "0x...",
"transactionIndex ": "0x9b",
"value": "0x0",

109

"type": "0x2",
"accessList ": [],
"chainId ": "0x1",
"v": "0x1",
"r": "0x...",
"s": "0x..."
},
...

],
"transactionsRoot ": "0x...",
"uncles ": [],
"withdrawals ": [

...,
{

"index": "0 x285032",
"validatorIndex ": "0 x7125d",
"address ": "0

x562ab7dca86f8947f5b066a663d83452954a71a2",
"amount ": "0 xbcd8a1"

},
...

],
"withdrawalsRoot ": "0x..."

}
}

Listing 3: Data returned from eth_getBlockByNumber RPC with hydrated
transactions.

eth_getLogs

{
"jsonrpc ": "2.0" ,
"id": 1,
"result ": [

...,
{

"address ": "0 xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48",
"topics ": [

"0x...",
"0x...",
"0x..."

],
"data": "0x...",
"blockNumber ": "0 xe524e1",
"transactionHash ": "0x...",
"transactionIndex ": "0xb",
"blockHash ": "0x...",
"logIndex ": "0x0",
"removed ": false

},
...

]
}

Listing 4: Data returned from eth_getLogs RPC.

110

trace_block

{
"jsonrpc ": "2.0" ,
"id": 1,
"result ": [
...,
{

"action ": {
"from": "0 xaeec6f5aca72f3a005af1b3420ab8c8c7009bac8",
"callType ": "call",
"gas": "0 x11170",
"input": "0x",
"to": "0 xef86d3164a50df780e24e9226bcddf3c8606e424",
"value": "0 x2b5e3af16b1880000"

},
"blockHash ": "0x...",
"blockNumber ": 5469798 ,
"result ": {

"gasUsed ": "0x0",
"output ": "0x"

},
"subtraces ": 0,
"traceAddress ": [],
"transactionHash ": "0x...",
"transactionPosition ": 0,
"type": "call"

},
...
]

}

Listing 5: Data returned from trace_block RPC.

111

	Abstract
	Acknowledgement
	Ringraziamenti
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Research questions
	Contribution
	Outline

	Background
	Cryptographic background
	Hash Functions
	Hash chains
	Merkle trees
	Digital signatures

	The blockchain
	The double-spending problem
	Blockchain properties
	Consensus layer
	51% attack

	Ethereum
	Ethereum as a state machine
	Ethereum Smart Contracts
	Ethereum clients

	Graph databases
	Dgraph

	Previous work
	Etherscan
	The Graph
	Ethereum-ETL
	Google BigQuery public dataset

	Dune Analytics
	Data architecture
	Available data

	XBlock-ETH
	Data-ether
	Web3 providers
	Comparison

	Methods
	Data flow
	Data model
	Data extraction
	Blocks and transactions
	Logs
	Smart contracts
	Error propagation in traces
	Accounts

	Semantics extraction
	ABI extraction
	Contracts skeleton and metadata
	Verified source code
	Token transfers

	Software architecture
	Decompilation cache

	Similarity calculation

	Results
	Infrastructure used
	Benchmark of the Erigon's RPC interface

	Optimal number of concurrent tasks
	Extraction of data
	Extraction and Transformation
	Import in Dgraph

	Querying data
	Query performance

	Comparison with Ethereum-ETL

	Analysis of data
	General data overview
	Skeleton clusters
	Most deployed skeletons
	New skeletons over time

	Metamorphic contracts
	Overview of metamorphic contracts usage
	Similarity between metamorphic deployments

	Gas tokens
	Identification of gas reserves
	Quantification of eth saved

	Most deployed functions and events
	Contracts metadata
	Hash of metadata
	Experimental compilations
	Solc versions

	Discussion
	Dgraph for Ethereum data
	Challenges of blockchain data management
	Domain-specific data analysis
	Future work

	Conclusions
	References
	Appendices:
	B - Complete schema of indexed data
	B - Data returned from RPCs

