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Abstract

Drones are nowadays used in many scenarios, from air surveillance and
search-and-rescue missions to agriculture and cinematography. Drones’ minia-
turisation led to light nano-drones that fit the palm of a hand. Despite some
downsides like the battery life of the order of minutes and limited compu-
tational power of the onboard microcontroller unit (MCU) belonging to the
sub-100 mW power envelope, such systems can navigate in narrow spaces and
being harmless around humans can be used in many scenarios. Over the last
decade, autonomous drone racing (ADR) competitions have fostered research
and provided an opportunity for scientists to create cutting-edge perception
and control algorithms meant to operate directly onboard the drones. In such
competitions, drones have to pass through a predefined set of gates as fast
as possible while avoiding obstacles without human intervention. Recently,
nano-drones faced ADR competitions.
In this thesis, our focus centres on the Crazyflie 2.1, a nano-drone with only
a 10 cm diameter and a weight of just 27g, within the context of a drone
racing scenario featuring square gates. Such a drone is equipped with an
ultra-low-power monochrome camera, sensors to estimate the drone’s state,
and the GAP8 MCU, which enables the execution of deep learning work-
loads directly onboard. To solve the gate-based navigation, i.e., the task of
identifying and crossing the gate, we employ the image-based visual servoing
(IBVS), a vision-based control aimed at aligning extracted image features
with predefined objectives by issuing velocity commands to the drone.
We develop and compare two detection modules that extract the features
required by IBVS, in the gate-based navigation case, the four corners of the
gate. One consists of traditional computer vision (CV) algorithms, while the
other relies on deep learning (DL) exploiting a convolutional neural network.
Webots, a robotic simulator, is used to gather synthetic images to tune the
CV module and to train the DL one. The synthetic training dataset is col-
lected by randomly spawning the drone around the gate, taking care that
each corner falls inside the image, and varying the background during the
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collection. Two testing datasets of increasing difficulty are collected in the
same fashion without the background variation. Data augmentation is used
to increase the number of training images and to mimic the real images.
Overall, detection modules are tested on the two synthetic test sets and one
of the actual camera images. The DL module error is 44% up to 77% lower
than the CV one. To jointly test a detection module and the IBVS, we exploit
Webots and define a flight task consisting of take-off, gate-based navigation,
and landing. The same task is carried on in three worlds of increasing dif-
ficulty. The background increases in difficulty while the drone and relative
position of the gate are the same in all the worlds. While the CV module
succeeds only in the simplest of the worlds with a mean completion time of
84 seconds, the DL module outperforms it by completing it in 72 seconds.
Moreover, it completes the task in all the worlds, showing the generalisation
ability of the trained network.
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“I was an ordinary person
who studied hard. There
are no miracle people. It
happens they get
interested in this thing and
they learn all this stuff,
but they’re just people.”

Richard Feynman
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Chapter 1

Introduction

In drone racing competitions, professional players control their drones to
fly through a predefined set of gates in the fastest way possible. The players
control the drones in First Person View (FPV), which means that they receive
real-time images from the drone’s front camera. They see what the drones
see. Years of training are required to achieve great results in terms of control
and navigation skills. Drones are nowadays used in many fields, and being
able to move rapidly in complex scenarios by matching human skills in terms
of navigation and control skills can be very useful, for example, in search-
and-rescue tasks.

Autonomous drone racing competition is a domain in which researchers
can challenge each other to gauge their progress in perception, planning, and
control algorithms, which are necessary for autonomous drones. The increas-
ing interest in such a field is reported in [34], where a remarkable increase in
drone racing papers in the last years is shown in Fig. 1.1

Figure 1.1: Number of drone racing papers by year [34].
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1 – Introduction

In autonomous flying robotics, algorithms must be efficient, lightweight, and
provide optimal decision and control behaviours in real time [34]. To en-
courage the research, many competitions like the IROS Autonomous Drone
Racing Series [22] and projects like the European Research Council’s Agile-
Flight [25] have been launched in the last few years.

Figure 1.2: Image from [34], showing the architecture of an autonomous
drone system.

Autonomous systems architectures feature a hardware part and a software
one, as shown in Fig. 1.2. This project focuses on the development of two
perception modules paired with visual servoing to control the drone. The
control module is a cascaded PID controller. More in detail, we compare
the perception modules where one relies on classic Computer Vision (CV)
algorithms, and the other exploits a Neural Network (NN).

Perception modules estimate the vehicle state and perceive the environ-
ment using onboard sensors [34].
The most common solution for state estimation is the visual-inertial odom-
etry (VIO), in which both the camera and the Inertial Measurement Unit
(IMU) measurements are used to estimate the position, orientation, and ve-
locity of the drone. Camera and IMU are used altogether to overcome the
issues of one another. The former is affected by environmental conditions,
poor illumination and motion blur are some examples, whilst the latter suffers
from large drift in the measurements. This happens because IMU measure-
ments are integrated over time, and the more time passes, the larger the
accumulation of the drift. Since these two sensors complement each other
in the state estimation task, they’re commonly used jointly in flying vehicles
[23].

Most of the VIO algorithms feature a front end and a back end. The
former exploits camera images to estimate the motion of the sensors, whilst
the latter fuses the output of the front end with the inertial measurements
[34].
The front end is characterised by two main approaches, direct methods and
feature-based methods. The latter is where the thesis fits. Direct methods
use raw pixel intensities, extract image patches and track them to estimate
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1 – Introduction

the camera trajectory [17], [13]. Instead, feature-based methods extract key
points from camera images and track them to estimate the aforementioned
trajectory [10], [14], [18].
The back end is devoted to fusing the output of the front end with the
inertial measurements. The sensor fusion task relies on filtering methods
and fixed-lag smoothing methods. The former is based on the Extended
Kalman Filter (EKF) and its derivations. In these methods, the state of
the system is broadcast with the inertial measurements and fused with the
camera measurements in the update step [34]. Fixed-lag smoothing methods
[14], [18] accumulate less linearisation error but are more computationally
demanding since they aim to solve a non-linear optimisation problem that
takes into account visual, inertial, and past states marginalisation residuals
[34].

Learning-based approaches have been increasingly used extensively since
they can deal with both high and low-dimensional input data. The replace-
ment of some of the modules seen in Fig. 1.2 with a Neural Network is
widely popular nowadays. The main problem of these approaches concerns
the amount of data required to properly train the neural network. Data
gathering can be performed in the real world with the labelling performed
by humans or automated processes or using simulators. Using simulations
to collect data has become popular in recent years [34].
The goal of a learned-perception module is to use camera images to detect
landmarks and output useful representations like waypoints or the location
of the gates [34]. It mainly replaces the front end in the VIO algorithm.
In [21], given the input image, the network outputs the gate location along
with its uncertainty. Such predictions are then fused with a EKF to estimate
the position of the drone. [30] uses a Convolutional Neural Network (CNN)
to detect gate corners, a Perspective-n-Point (PnP) algorithm to find the
coordinate image of the corners, and again a EKF to estimate the drone’s
location.
To consume less onboard resources, lightweight CNNs like GateNet [26] and
PencilNet [32] use optimised architectures for gate detection, still detecting
gate centre locations, distance, and orientation relative to the drone.

Simulators are powerful tools that help researchers to test their algorithms
and pipelines before deployment. Simulations are easier to set up, less ex-
pensive, and faster than tests in the real world. Moreover, the ease of data
collection to train learning-based algorithms accelerated the progress of re-
search in autonomous drone flight.
Many simulators have been developed over the years. Gazebo, the widely
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1 – Introduction

popular simulation engine, was extended in 2016 to deal with multi-rotors,
resulting in RotorS [15]. Such a simulator supports the physics to simulate
the drone dynamics and has many easy-to-use plugins, but lacks of pho-
torealistic details, which are necessary to simulate vision-based perception
pipelines.
AirSim [19] is a photorealistic simulator built on Unreal Engine, which was in-
troduced by Microsoft in 2018. With its impressive photorealism, it becomes
feasible to replicate the entire perception and estimation pipeline. Moreover,
thanks to its high-fidelity images, it also becomes feasible to transfer to real-
world drone systems [34].
FlightGoggles [20] and Flightmare [28] are two other photorealistic simula-
tors. The former uses Unity3D as the photorealistic engine and a dynamic
simulation implemented in C++. Even the latter uses the Unity engine but
has various physics engines that can be swapped to achieve the desired sim-
ulation fidelity. Both provide hardware-in-the-loop simulation functions.

Nowadays, drones miniaturisation has grown, making pocket-sized drones
widely available. Being able to navigate in narrow spaces and inherently
safe near humans, they can be deployed in many useful tasks like gas seek-
ing or search-and-rescue in adversity environments. With a lower size come
challenges in terms of onboard computation, power, and payload capabil-
ity. Recently, nano-drones, which fit the palm of a hand, are being consid-
ered to compete in both autonomous and manual competitions. The first
autonomous nano-drone competition was held in 2022 at the International
Micro Air Vehicles (IMAV) conference at Delft. Sponsored by Bitcraze AB1,
their Crazyflie 2.1, equipped with the AI deck and the Flow deck, was the
nano-drone at hand. Teams were asked to make the drone fly autonomously
as far as possible through an indoor obstacle field, performing a vision-based
obstacle avoidance to prevent collisions with obstacles such as pillars and
panels. The field also featured square gates, which gave extra points if the
drone flew through. Two rounds of 5 minutes each were performed, where
the score was given by the amount of space covered during the round, mean-
ing that going faster results in covering more space. Additional points were
assigned to teams who achieved passing through gates and whose computa-
tions were performed onboard. For each team, only the best flight out of two
was considered. To develop the vision-based obstacle avoidance, teams were
provided with a robotic simulator, Webots [8], with a world mimicking the

1https://www.bitcraze.io
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actual field and the model of Crazyflie 2.1.
Considering such a scenario, the thesis work focuses on developing a vision-

based control pipeline to command the Crazyflie 2.1 nano-drone to cross a
gate. Image-based Visual Servoing (IBVS) is the core of such a pipeline.
Given a set of features and a set of desired positions in the image space,
the control law minimises the difference between the two sets by supplying
velocity commands to the drone at hand. At convergence, the set of features
and the desired ones match, leading the drone in front of the gate. The
four inner corners of the gate were chosen as the set of input features to
the IBVS. To do that, two detection modules were developed and compared.
One is based on classic CV algorithms (the CV detector), while the other one
is learning-based, in particular, an adapted version of the PULP-Frontnet
[27] CNN (the Deep Learning (DL) detector). The whole pipeline is then
composed of:

• The detection module, which, given an input camera image, outputs the
coordinates of the four corners, namely the set of features required by
IBVS.

• The IBVS that, given the set of input features, provides the velocity
commands to the drone to minimise the difference between the input
features and the desired position of those features.

Tests were conducted on Webots, the open-source photorealistic robotics
simulator used during the IMAV 2022 competition, because of the presence
of both the Crazyflie 2.1 model and the indoor field.

The thesis is organised as follows: Chapter 2 presents the theory required
to understand how the whole pipeline works. Chapter 3 explains how de-
tection modules work, as well as the data collection and the description of
the flight tests performed in the simulator. The comparison of detection
modules on three test sets is presented in Chapter 4. Two are composed of
synthetic images collected in Webots. The other was collected at the ID-
SIA Robotics Laboratory of Lugano, which features real images captured by
an actual Crazyflie 2.1. The same chapter also presents the analysis of the
flight tests performed in three different worlds of increasing difficulty in the
amount of textures. In particular, the toughest is the one used for the IMAV
2022 competition. Finally, Chapter 5 concludes the work with a discussion
on future works.
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Chapter 2

Background and Related
Works

The following sections are devoted to diving into the concepts and the theory
behind this project work. Starting with a presentation of the considered
drone system, the Crazyflie 2.1 by Bitcraze AB and two of its expansion
decks: the AI deck and the Flow deck, then the focus is put into presenting
the theory behind the visual servoing control, with an in-depth presentation
of the image-based variety. The following section concerns the Computer
Vision and the algorithms used to develop the traditional CV pipeline. After
that, a brief presentation of some concepts concerning the Machine Learning
field is given to introduce the algorithms used in both pipelines. A description
of the adopted robotic simulator, Webots, ends the chapter.

2.1 The quadcopter
To better understand the following, this section starts with an introduction
to some geometry concepts.
Figure 2.1 shows the fixed origin frame coordinate system (X, Y, Z) and the
rigid body frame coordinate system (x, y, z). In this case, the rigid body is
the quadcopter, namely a drone. In the 3D space, the position is defined as
the point (X ′, Y ′, Z ′) in the space relative to the origin, and the orientation
(or attitude) is the triplet of angles (φ, θ, ψ). Such angles are relative to the
origin coordinate system and denote the rotation around, respectively, the
axes x, y, and z of the drone. More in detail, φ is defined as the roll angle,
θ as the pitch angle, and ψ as the yaw angle.
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2 – Background and Related Works

Figure 2.1: Being x the forward direction, y the left one, and z the upward
direction, the rotations around the three axes are: φ, namely the roll; θ, the
pitch; and ψ the yaw. Image from Bitcraze AB [36].

The quadcopter design is now very popular for indoor Unmanned Aerial Ve-
hicle (UAV) applications. Quadcopters feature four propellers, namely the
motors, used to control their position and attitude. The combination of the
two, position (X, Y, Z) and orientation (φ, θ, ψ), defines the pose of the drone
(X, Y, Z, φ, θ, ψ), namely its configuration. The six independent parameters
of the pose denote the number of Degrees of Freedom (DOF) of the drone
system. All the feasible combinations of parameters compose the configura-
tion space C. Actuators are the physical components in a robotic system that
converts energy into physical motion. These components convert electrical,
hydraulic, pneumatic, or other forms of energy into mechanical motion. In
a robotic system, the number of actuators usually corresponds to the num-
ber of DOF that can be actively controlled. In a quadcopter, the number
of DOF is six, but the number of actuators (the propellers) is four. Such a
system is defined as underactuated and cannot directly access some points
of the configuration space C. More in detail, the propellers develop a thrust
able to lift the drone and let it perform rotational motion. A movement
in the forward or backward direction requires the drone to change its pitch
angle. Instead, to move sideways, the roll angle has to be changed. Hence,
movement in both forward and sideways directions requires variations of roll
and pitch angles. In this sense, the system is underactuated. Having fewer

24



2.1 – The quadcopter

actuators can be advantageous in terms of cost, complexity, and weight [33].
In the quadcopter system, to achieve balance, adjacent propellers must

counter-rotate, and by varying the thrust produced by each propeller, the
drone can move.

With small-sized drones, having fewer actuators is even more beneficial,
where complexity, weight, and energy consumption must be optimal. The
miniaturisation of Unmanned Aerial Vehicle (UAV)s, namely drones, has
grown over the years, leading to pocket-sized drones being widely commer-
cially available. With a lower size come challenges in terms of onboard com-
putation, power, and payload capability. This project focuses on a nano-sized
quadcopter named Crazyflie 2.1, developed and manufactured by Bitcraze
AB1.

2.1.1 The Crazyflie 2.1

Figure 2.2: The Crazyflie 2.1 with the AI-deck on top. Image from Bitcraze
AB [35].

Released in 2019, the Crazyflie 2.1 is a light (27g) nano-quadcopter of 10
cm diameter with up to 7 minutes of flight using stock batteries. Through
the addition of expansion decks, its hardware can be enhanced in terms of
sensing, positioning, and vision. Its basic hardware components are:

• The Micro Controller Unit STM32F405, which handles the low-level and
high-level controls. High-level control updates the set point (the desired
position) used by the low-level control, which updates the drone’s state

1https://www.bitcraze.io
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estimation and applies cascaded PID controllers to reach the set point
defined by the high-level control.

• The nRF51822, another MCU designated for radio and power manage-
ment.

Two widely used expansion decks are:

• The Flow deck, for visual odometry navigation. It allows the drone to
detect the motion in any direction thanks to:

– The VL53L1x Time of Flight (ToF), a laser-based sensor which mea-
sures the distance from the ground (the altitude) with high precision.

– The PMW3901 optical flow sensor, which measures the displacement
in the x, y direction as long as the altitude is at least 80mm.

• The AI deck, which comes with the Himax HM01B0, an Ultra-Low Power
(ULP) 320x320 grayscale mono-camera, and the GAP8 System-On-Chip
(SoC), which enables AI-based applications to run onboard thanks to the
Parallel Ultra-Low Power (PULP) paradigm.

Figure 2.3: GAP8 SoC [27]

Being the "brain" of Crazyflie’s AI deck, the GAP8 is an IoT application
processor that enables the onboard execution of miniaturised neural networks
thanks to the PULP paradigm.
Produced by GreenWaves Technologies2, this ultra-low power processor fea-
tures a total of nine identical RISC-V cores. One is called Fabric Controller

2https://greenwaves-technologies.com
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(FC) and is devoted to being the main core in the Micro Controller Unit
(MCU), controlling all the GAP8 operations. It enables and dispatches the
workload to the Cluster (CL). The remaining eight cores compose the CL,
the parallel general-purpose accelerator, which can be programmed to com-
pute efficiently highly parallel workloads. The CL receives from the FC high
computational workload in order to speed up the execution by exploiting the
parallelism.
Fig. 2.3 depicts the architecture of GAP8. The two main regions are:

• The left one presents a shared L2 memory (512kB), which can be ac-
cessed from both FC and CL, the FC paired with the micro-DMA
(µDMA) manage the external communications. Each interface is im-
plemented as a separate and independent µDMA channel. The µDMA
is a programmable subsystem connected directly to the L2 memory that
can move data from memory to I/O and vice versa without involving
the core.

• The other region contains the CL. It has an ultra-fast, tightly coupled
data memory (64kB) organised in banks that directly communicates
with an optimised DMA to move data between the two regions without
limiting the core’s execution. Moreover, the eight cores share a single
instruction cache, optimised for the Single Instruction Multiple-Data
(SIMD) paradigm.

2.2 Visual Servoing
To let the drone move towards our goal, the proposed vision-based pipeline
relies on visual servoing, a well-known technique used to control robots by
using the information coming from camera sensors. In this kind of control,
visual features of the goal object, such as the inner corners of the gate, are
extracted from the camera image and used to guide the drone towards the
target position. In doing this, such a control system involves continuous
measurement of the target, leading to robustness to possible errors [33].

Two possible configurations are:
• Eye-to-hand, where the camera is fixed in the world and looks at the

target. In this case, the observed object is the one who moves.

• Eye-in-hand, where the camera is mounted on the robotic system, which
can move. Hence, the camera is moving while the observed object is
fixed. This is the configuration considered in this project.
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Figure 2.4: Eye-to-hand (left), and eye-in-hand (right) configurations. Image
from [31].

The control aims to minimize the following error:

e(t) = p(t)− p∗. (2.1)

Such an error is the difference between the vector of the extracted features
p and the vector containing the desired values of the features p∗. The con-
sidered setting focuses on a non-moving target, e.g. the gate, and the goal
poses to be fixed. This means that p∗ is constant, and the changes in the
feature vector p are due to camera motion. Depending on how p and p∗

are characterised, two main approaches to visual servoing are possible: the
position-based and the image-based. The former requires estimating the pose
of the target through image features, which is computationally expensive and
requires an accurate calibration of the camera, whilst the latter doesn’t re-
quire direct pose estimation but uses directly the image-plane information.
To develop a pipeline relying only on vision, the image-based visual servoing
fits the problem at hand.

The visual servoing control law is obtained in the following way. Consider
a point in real space and a moving camera with spatial velocity

ν = (v,ω) = (vx, vy, vz, ωx, ωy, ωz) ∈ R6

The point in the real space will move in the image space of the camera frame
because of the camera motion, as shown in Fig. 2.4. The relationship between
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the time variation of the feature vector, namely the 2D vector describing the
point in the image space, p and the velocity of the camera is

ṗ = Lpν (2.2)

where Lp is the interaction matrix [9].
The time variation of the visual servoing error is obtained by using Eq. 2.1
and Eq. 2.2. Remembering that p∗ is constant, which leads to ṗ∗ = 0, the
equation is:

ė = Leν (2.3)

with Le = Lp.
As discussed in [9], to ensure an exponential decoupled decrease of the error
and have stable error dynamics, the derivative of the error is ė = −λe. Using
Eq. 2.3:

ν = −λLe
+e = −λLe

+(p− p∗) (2.4)

Where λ > 0 is the control gain, Le
+ ∈ R6×n is the Moore-Penrose pseudo-

inverse of Le, and n is the number of extracted features. In this case, for a
3D point feature, only two coordinates are in the image plane.
Since it’s difficult to know perfectly Le or Le

+, an approximation or an
estimation can be done [9].

2.2.1 The Image-based Visual Servoing (IBVS)
This type of visual servoing does not require estimating the relative pose of
the target as the counterpart position-based. The relative pose of the target
is implicit in the image features. Here, the control problem is expressed in
terms of image coordinates. It aims to move the extracted features p towards
the desired features p∗, this movement in the 2D image plane is reflected by
a movement in the 3D space of the camera, hence of the drone.

From 3D to 2D: Camera projection

An object in the 3D space is described by three coordinates, namely X, Y ,
and Z. In a picture of the same object, the depth dimension is lost, leaving
only two coordinates to describe its position. Such a 2D space is called image
space, and the coordinates used are u and v as in Fig. 2.5 In the following,
considering Fig. 2.7 as a reference, the relation between these two spaces,
namely the projection of a 3D point into the 2D image space, is presented
considering a frontal pinhole camera model. The pinhole camera is a camera
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Figure 2.5: Evolution of the visual features in the image space, starting from
the initial view (red circles) to the goal view (blue stars). Image from [33]

Figure 2.6: The camera obscura. An example of the pinhole camera.

featuring no lenses but only a tiny hole. The light passes through the hole,
projecting an inverted image on the opposite side of the hole. In such a
camera, there is no focus. Every object is in focus. The camera obscura
shown in Fig. 2.63 is an example of a pinhole camera.

Considering a 3D point P = (X, Y, Z) whose position is relative to the

3Image from ResearchGate.
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Figure 2.7: Camera projection schema from [33]. {C} is the coordinate
system of the camera.

camera, the perspective projection is:

x = f
X

Z
, y = f

Y

Z
(2.5)

where x, y are the image-plane coordinates and f is the focal length of the
camera. Considering the normalized image-plane coordinates where f = 1,
Eq. 2.5 can be rewritten as

x = X/Z, y = Y/Z

Taking into account a moving camera with body velocity ν = (v,ω) =
(vx, vy, vz, ωx, ωy, ωz) ∈ R6, the velocity of P relative to the camera frame is

Ṗ = −ω ×P− v ⇒


Ẋ = −ωyZ + ωzY − vx

Ẏ = +ωxZ − ωzX − vy

Ż = +ωyX − ωxY − vz

(2.6)

The relation between the feature velocity ṗ = [ẋ, ẏ]T , and the camera
spatial velocity ν is obtained by computing the temporal derivative of Eq.
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2.5 and substitute it in Eq. 2.6:

C
ẋ
ẏ

D
=

C
−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

D
ü ûú ý

Lp



vx

vy

vz

ωx

ωy

ωz


(2.7)

or, more concisely:
ṗ = Lpν (2.8)

Where Lp ∈ R2×6 is the interaction matrix related to ṗ.
The feature vector velocity ṗ can be expressed by exploiting the relationship
between the image space coordinates (u, v) and the normalised image plane
coordinates (x, y): u = f x

σw
+ u0

v = f y
σh

+ v0

Where:

• f is the focal length of the camera,

• σi, i ∈ {w, h} is the pixel length in terms of width (w) and height (h),

• u0, v0 is the central point of the camera.

With ū = u − u0 and v̄ = v − v0 being the pixel coordinates relative to
the central point of the camera, Eq. 2.2.1 can be rearranged into:

x = σw

f
ū, y = σh

f
v̄ (2.9)

with relative temporal derivative:

ẋ = σw

f
˙̄u, ẏ = σh

f
˙̄v (2.10)

Since the central point of the camera is fixed, it follows that ˙̄u = u̇ and
˙̄v = v̇. Starting from Eq. 2.7, the point velocity in terms of pixel coordinates
is obtained by exploiting Eq. 2.9 and Eq. 2.10 finally having the relationship
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between the velocity of a point feature ṗ in terms of u, v, and the camera
velocity:

C
u̇
v̇

D
=

− f
σwZ 0 ū

Z
σhūv̄

f −f2+(σwū)2

σwf
σhv̄
σw

0 − f
σhZ

v̄
Z

f2+(σhū)2

σhf −σwūv̄
f −σwv̄

σh





vx

vy

vz

ωx

ωy

ωz


(2.11)

The interaction matrix Lp(u, v, Z) related to p depends only on u, v of
the 2D image space and Z, the point’s depth relative to the camera frame,
in the 3D space. Such a depth varies at each iteration, requiring ongoing
estimation. A simpler approach is to fix it to a chosen depth value. Without
loss of convergence, approximating such interaction matrix by fixing Z to
be the Z at convergence, where extracted features and desired ones match,
namely when e = 0 [33].

Using the interaction matrix of Eq. 2.11 in Eq. 2.4, the velocity commands
needed to move the camera towards the goal position are finally obtained.

Until now, only one feature point in the 2D image space was considered,
but one point is not enough to determine the pose of the camera at conver-
gence. For example, to control the 6 DOF of a camera in the 3D space at least
three points are required. In our case study, dealing with four points of the
corners allows the pose estimation of the camera by stacking the interaction
matrices of each point as shown in Eq. 2.12:

ṗ0
ṗ1
ṗ2
ṗ3

 =


Lp0(u0, v0, Z0)
Lp1(u1, v1, Z1)
Lp2(u2, v2, Z2)
Lp3(u3, v3, Z3)

 ν (2.12)

Finally, as shown above, the desired velocity of the camera to match all
four points is obtained by exploiting Eq. 2.12 and Eq. 2.4:

ν = −λ


Lp0(u0, v0, Z0)
Lp1(u1, v1, Z1)
Lp2(u2, v2, Z2)
Lp3(u3, v3, Z3)


+

(p− p∗) (2.13)

This section concludes with the IBVS control considered in the quadcopter
case. Such a robotic platform is underactuated and has a coupling between
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velocity on the x axis and the pitch and on the y axis and the roll. This means
that the drone cannot go forward without pitching forward, and the same
happens with the horizontal movement and the roll. Due to such a system,
the rolling rate ωx and the pitching rate ωy are not taken into consideration,
meaning that only vx, vy, vz and ωz velocity commands are used.

2.3 Computer Vision

Vision is one of the fundamental senses that let humans perceive the world
through light reflection. Starting in the late 60s with the aim to mimic the
human visual system, the field of Computer Vision grew exponentially. Lots
of algorithms were developed, from classic approaches like edge detection
to Deep Learning approaches that nowadays outperform many classic CV
algorithms for tasks like image classification or image segmentation. Classic
CV algorithms are less computationally expensive with respect to the training
of DL approaches. Their focus is on extracting specific features, and to solve
a specific problem, it’s often necessary to combine different algorithms to
build a pipeline, resulting in plenty of parameters to be tuned. Instead,
DL approaches for computer vision rely on task-specific datasets to train
Convolutional Neural Network to solve the task at hand. These approaches
are more computationally intensive, concerning the training part, but more
flexible since the same architecture can be trained to solve different tasks by
supplying custom datasets.

This section is devoted to presenting the classic CV algorithms employed
in the project, while Sec. 2.4.3 will focus on the DL architecture adopted to
solve the corner detection task.

2.3.1 Edge detection: the Canny edge detector

Presented in the mid-80s, the Canny edge detector [5] is a multi-stage algo-
rithm that extracts reliable edges from grayscale images, whose output is a
binary image.
The steps of such an algorithm are:

1. Edge detectors are sensitive to noise, hence a Gaussian filter is applied
to smooth the input image.
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2. The Sobel operator [2] is exploited to compute the approximated gradi-
ent in both directions x and y:.

Gx =


+1 0 −1
+2 0 −2
+1 0 −1

 ∗ I, Gy =


+1 +2 +1
0 0 0
−1 −2 −1

 ∗ I

Where I is the image and ∗ is the convolution operation.
The resulting gradient magnitude is given by G =

ñ
Gx

2 + Gy
2, and the

relative orientation of the gradient is θ = tan−1(Gy/Gx).
The angles are rounded to be in one of the following cases:

– horizontal: θ = 0°
– diagonal: θ ∈ [45°, 135°]
– vertical: θ = 90°

3. Non-maximum suppression is performed in each pixel along the direc-
tions found during the previous step. The purpose is to keep only the
pixels with maximum gradient value along the gradient direction. This
is useful to keep only the candidate edges and remove the pixels that
are not considered to be part of the edge. This is an edge-thinning
technique.

4. A double threshold [t1, t2], t1 < t2 is used to classify pixels by their
gradient intensity. If its intensity is greater than t2, then the pixel is
kept and labelled as "strong". Instead, if its intensity falls inside the
interval [t1, t2], it is labelled as "weak", and a further study is conducted.
In the final case in which the intensity is below the lowest threshold t1,
the pixel is no longer considered to be part of an edge.
The thresholds [t1, t2] are empirically defined and depend on the image
under study.

5. In the final step, "weak" pixels are studied to choose whether to keep
or discard them. Only those which are connected to "strong" pixels are
kept. Otherwise, they are discarded.

2.3.2 Contour detection: the Suzuki Abe algorithm
A contour is defined as a curve joining all continuous points along a boundary
having the same intensity.
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(a) Canny input image. (b) Canny output image.

Figure 2.8: Canny example. Given the input image (a), the output of the
Canny edge detector is shown in (b).

The contour detection algorithm proposed by Suzuki and Abe [4] works on
binary images and is able to extract the hierarchy of the contours in the
image.

Working with binary images, it considers 1-connected components, com-
posed of pixels value equal to 1, and 0-connected components, the same
as 1-components but with 0-value pixels, to extract the boundaries. The
algorithm works in a TV-raster way, from left to right and from top to bot-
tom. It starts scanning horizontally from the top left corner of the image.
Considering 0-value pixels as the background, when the scanning finds a 1-
value pixel, the computation of the contour starts following a clockwise and
counter-clockwise manner. To keep the hierarchy of the contours, it sets in-
teger indexes to the boundary values, and whenever it reaches the starting
point of the boundary, it proceeds with the scanning. The process stops
when the scanning reaches the bottom right pixel of the image.

2.3.3 Corner detection: the Harris detector

A corner is a point of interest where two edges of different directions meet
each other. Since an edge can be defined as a sudden change in the image
brightness, a corner features a variation in intensity.

The Harris corner detector [6] was introduced by Harris and Stephens in
the late 80s. It is a gradient-based corner detection that works on grayscale
images.
Considering an image I, an image patchW and its shifted version by (∆x,∆y)
is used to compute the sum of squared differences, which, using the Taylor
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expansion, is the following:

f(∆x,∆y) =
Ø

(xk,yk) ∈ W

(I(xk, yk)− I(xk + ∆x, yk + ∆y))2 ≈üûúý
Taylor

è
∆x ∆y

é
M

C
∆x
∆y

D

Where
M =

Ø
(x,y) ∈ W

C
I2

x IxIy

IxIy I2
y

D

is a 2× 2 matrix, namely the second-moment matrix. This matrix is used to
compute the Harris corner response score R = det(M)− k tr(M)2, where k
is an empirically determined constant. Both the trace and the determinant
of M depend on the eigenvalues α, β of M . This means that based on the
eigenvalues, R assumes different values. Based on such a value, a point is
classified as a corner or not. More specifically:

• |R| small represents a flat region.

• R >> 0 denotes a corner. Both the eigenvalues are large.

• R < 0, the pixel belongs to an edge. One eigenvalue is greater than the
other.

Figure 2.9: Harris eigenvalue response

To get an optimal value, a threshold of R is set to select the corners.

2.4 Machine Learning
Machine Learning (ML) is a sub-field of Artificial Intelligence (AI) that covers
a large pool of algorithms able to solve task-specific problems by learning
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from given data. In this sense, they mimic human behaviour.
A more formal and operational definition is given by T. Mitchell:

A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P if its perfor-
mance at tasks in T, as measured by P, improves with experience
E.

According to the adopted learning approach, algorithms can be classified
into different classes like supervised learning, unsupervised learning, self-
supervised learning, reinforcement learning, etc. Throughout the project,
the detection modules take advantage of algorithms belonging to supervised
and unsupervised learning. A brief explanation is given in the following.

2.4.1 Supervised Learning

This approach relies on labelled datasets, which means that both the inputs
and expected outputs are known. The aim of the learning algorithm is to
build a mathematical model that maps the input to the right output through
an optimisation process, the training.
The labelled dataset is divided into training and testing datasets. While the
former is used to train the algorithm, the latter is used to test the trained
algorithm on unseen data, hence giving a measure of how well the algorithm
generalises. The training is performed through the optimisation of an objec-
tive function in an iterative way.

Models depend on some specific parameters, called hyperparameters, that
change the resulting behaviour. Tuning such parameters is necessary to
achieve the desired outputs. When a model learns "by heart" the training
data, it "overfits" because it lacks generalisation capability. In this case, bet-
ter tuning of the hyperparameters or regularisation techniques can mitigate
this behaviour.

Most common algorithms belonging to the supervised learning category
solve the task of classification or regression. In the former case, the model
learns to map the input to a set of categorical values, while in the latter, the
output of the model will be a value belonging to the set of real numbers.

Some algorithms, belonging to this category are SVM, Random Forests,
Neural Networks, k-Nearest-Neighbor, and many others.
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2.4.2 Unsupervised Learning
In contrast to the supervised case, in the unsupervised one, there are no
labels in the data, and the aim is to find patterns in the data. Some ap-
plications are grouping/clustering and anomaly detection. The computer
vision pipeline, described in Sec. 3.1, relies on a clustering algorithm named
K-Means, presented in the following section.

K-Means

Belonging to the unsupervised learning approach, K-Means is a clustering
algorithm that aims to partition the unlabelled data into K clusters by min-
imising the within-cluster sum-of-squares. Every cluster has a centroid, and
each observation of the dataset is assigned to the cluster with the closest
centroid.

This is an iterative algorithm originally proposed by Lloyd for signal pro-
cessing [1]. Starting with a random initialisation of the k clusters, it it-
eratively assigns the data to the closest centroid and then computes the
mean of each cluster, namely the new centroids. The process ends when the
differences between the new centroids and previous ones are below a given
threshold.

More in details, given a dataset X = (x1, . . . ,xn) the steps are:
1. Initialize the K centroids.

2. Assign the samples to the nearest centroid following

arg min
S

KØ
i=1

Ø
x∈Si

||x− µi||2 (2.14)

With S the set of K clusters,

µi = 1
|Si|

Ø
x∈Si

xi (2.15)

being the centroid of the i-th cluster, and |Si| its size.

3. Compute the new centroids using Eq. 2.15.

4. Iterate over steps 2 and 3 and stop whenever the differences between the
new centroids and the previous ones are below a given threshold or the
maximum number of iterations is reached.

When the algorithm stops, all the input data will be associated with one
of the K clusters.
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2.4.3 Deep Learning

Deep Learning concerns a subset of ML algorithms: the Artificial Neural
Networks ANN with three or more layers. Such architectures mimic the bi-
ological neural networks of animals by stacking layers of artificial neurons
connected to one another. By providing task-dependent data, such algo-
rithms can be trained to solve the corresponding task without programming
it explicitly. Deep learning refers to ANN with many layers of neurons where
features are extracted from the input data throughout the architecture.
Graphic Processing Units are well suited to perform matrix and vector com-
putations, which are fundamental in DL, and thanks to the evolution of
GPUs, DL has been gaining interest in recent years. This led to a lot of
research in this field. Thus, many architectures have been developed to solve
different tasks. The next section presents PULP-Frontnet, the chosen archi-
tecture to solve our feature extraction task.

PULP-Frontnet

The neural network used in the DL pipeline, described in Sec. 3.2, is an
adapted version of PULP-Frontnet, introduced by Palossi et al. [27]

Running fully onboard on the Crazyflie device, this network was developed
to assess the relative pose estimation of the drone with respect to a moving
human subject using 160× 96 grayscale images.

Figure 2.10: PULP-Frontnet architecture [27]

As reported in Fig. 2.10, PULP-Frontnet is a convolutional neural net-
work. It features convolution, batch normalisation, ReLU, and max-pooling
layers, reducing the input image by 4× thanks to the stride of 2. The three
inner blocks are composed of convolution, batch normalisation and ReLU
layers. The architecture ends with a dropout layer followed by a fully con-
nected layer. To solve the pose estimation task, the network outputs the 3D
coordinates x, y, z and the rotational angle θ.
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2.5 Webots
Webots [37] is an open-source, deterministic, and updated professional mobile
robot simulator developed by Cyberbotics Ltd.
Webots is used to simulate many kinds of robots in 3D virtual worlds with
physics properties relying on the ODE (Open Dynamics Engine) library. It
allows the user to prototype robotics simulations in interactive environments
with low effort. It features a large pool of robots, sensors, actuators, objects
and materials. On the robot side, there are flying drones, modular robots,
aerospace vehicles, and many others. The behaviour of a robot during a
simulation is described via programming a Webots controller. Other than
that, such a controller can also be used to read and collect data from the
sensors of the robots. This can be done in plenty of programming languages:
C, C++, Python, Java, and MATLAB. Moreover, it can interact with ROS
using specific topics.

To start a simulation, the following is required:

• A Webots world file, which contains the description of every object,
like textures, position, orientation, appearance, and physical properties.
Worlds are organised hierarchically. Hence, objects can contain other
objects. For example, a mobile robot containing a set of sensors like a
GPS, an IMU, and a camera. Such sensors are the children of the robot.
Figure 2.11 shows an extract of the world file, which describes the robot,
its properties, and its children.

• A robot can have at most one controller program. In this file, the user
programs the behaviour of the robot during the simulation.
A robot can be set as a supervisor and execute operations that normally
can not be done by a real robot. For example, set its pose or the position
of objects.
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(a) Extract of the world file concerning
the CRAZYFLIE robot.

(b) Hierarchy visualization of the world
description reported on the left.

Figure 2.11: In (b), the hierarchy visualisation of the code in (a) is reported.
Rounded corners refer to robots, while square corners denote sensors. The
filling colour goes from darker to lighter as the depth of the hierarchy in-
creases. Both GPS and IMU are attached to the camera sensor of the drone.
The GPS sensor outputs the x, y, and z displacement with respect to the
origin of the world, while the IMU outputs the angular velocity with respect
to the world frame.
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Chapter 3

Methods

Figure 3.1: Desired output of the pipelines. Ground truths are shown in lime
colour.

This chapter is devoted to presenting the core of the thesis work. In Sec.
3.1 and Sec. 3.2, a thorough presentation about the corner detection pipelines
is given. These are necessary to extract and label the four inner corners of
the gate, as shown in Fig. 3.1. The former pipeline relies on classic CV
algorithms, while the latter exploits a CNN to perform the corner detection.
The CV-based pipeline detects the corners by extracting edges from the
input image and searching for contours (continuous and closed regions) on
those edges. Then, corner detection on the extracted contours is performed.
Instead, the DL-based pipeline relies on an adapted version of the PULP-
Frontent CNN. Such pipelines are the core of the feature extraction module
shown in Fig. 3.2. Both pipelines take their ground on the concepts presented
in Chapter 2.

Both pipelines take as input grayscale images. The CV-based one takes as
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input 320x320 images, native from the camera. Instead, the DL-based one
takes as input a binned version, 160x160, of the input images. In the input
image, a square of 2× 2 pixels is read out as just one pixel. In the first case,
the images are processed without taking care of a possible future deployment,
whilst in the other case, starting from the PULP-Frontnet architecture that
receives 160x96 grayscale images, the adapted version is extended to work
with 160x160.

Figure 3.2: Structure of the feature extraction module. The input is fed to
the pipeline, which extracts the four corners of the gate. The order is the
top-left (TL), the bottom-left (BL), the bottom-right (BR), and the top-right
(TR).

Section 3.3 dives deep into the details concerning the simulations where the
corner detection pipeline feeds the extracted features to the visual servoing
control. Finally, in Sec. 3.4, the setup adopted to collect some real data is
presented.

3.1 CV-based pipeline
The following pipeline is labelled as CV-based since it relies on traditional
CV algorithms with a pinch of Machine Learning. The main steps of the
pipeline are shown in Fig. 3.3. The goal of the pipeline is to extract the
image coordinates of the four inner corners. Using only corner detection
algorithms like Harris [6] or FAST [11] is not sufficient since all the corners
in the image are taken into consideration. This leads to the necessity of
identifying the gate. To do that, the first step is to extract all the edges
recognised by the Canny detector. The following consists of applying the
contour detection algorithm of Suzuki and Abe to extract all the feasible
contours. Out of all the extracted contours, only those which have a shape
referable to a square are kept. The adopted discriminant is to consider the
aspect ratio and keep only the contours with an aspect ratio near one. From
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Figure 3.3: CV-based pipeline. Our goal is to extract the four corners of the
gate, hence for the K−Means, K = 4.

those contours, the Harris detector extracts clusters of points whose centroids
are computed by the K−Means and will be considered as the corners of the
gate. A pseudocode of such a pipeline is reported in Alg. 1 where most of
the parameters are not shown to lighten the reading.

Algorithm 1 CV-based pipeline pseudocode.
Require: Grayscale image I ∈ N320×320, AR thresholds, selection method
I ← GaussianBlur(I)
I ← Dilation(Canny(I))
if Contour(I) ∈ AR thresholds then

ContoursList← Contour(I)
end if
for c ∈ ContoursList do

H ← Harris(c)
D ← createDataset(H)
CornerMatrix ← ClassifyCorners(K−Means(D))
BestCorners ← CornerMatrix

end for
BestCornerMatrix ← selection method(BestCorners)
return BestCornerMatrix

After a presentation of the pseudocode, a detailed explanation of the work-
ing pipeline is provided. It is worth noting that the pipeline has many pa-
rameters that can be tuned, and it is very susceptible to the image. First of
all, the input image is smoothed by the Gaussian blur filter, which can vary
in kernel size and standard deviation. Then, the Canny detector requires two
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thresholds that depend on the image at hand. After applying the contour
detection algorithm, an AR interval near one is chosen to discard contours
that do not fit the squared form. Concerning the Harris detector, the size
of the window W to take into account in the second-moment matrix com-
putation is chosen along with the size of the Sobel operator (introduced in
Sec. 2.3.1 while presenting Canny detector), and the constant k. Finally, the
K-Means clustering algorithm has some parameters that have to be tuned,
starting from the number of clusters K, the threshold used to check the dif-
ferences between centroids of two subsequent iterations, as stopping criteria,
and the number of maximum iterations. Canny is the first CV algorithm
of the pipeline, and being sensitive to images, whenever conditions change,
the pipeline has to be tuned accordingly to perform well. This pipeline was
tested on an empty Webots’ world, presenting a black floor, a plain light blue
background, and the gate. Fig. 3.4 shows a picture of the empty world in
Webots.

Figure 3.4: Empty world used to develop and test the CV-based pipeline.
Purple lines are the camera frustum. They represent what the drone sees.

Gaussian blur filter is the first step. Given the kernel dimension, its standard
deviation is computed as, according to OpenCV1 implementation,

σ = 0.3 ∗ ((ksize− 1) ∗ 0.5− 1) + 0.8

where ksize is the kernel size. The resulting kernel is a matrix whose entries
values are defined by Eq. 3.1:

G(x, y) = 1
2πσ2e

−(x2+y2)
2σ2 (3.1)

1https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html.
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With (x, y) being, respectively, the horizontal and vertical displacements with
respect to the central entry of the kernel matrix. Such a kernel matrix is then
convolved with the input image, aiming to remove the noise from the image.
This first step has to be tuned carefully. The main parameters to tune are
the size of the kernel and the standard deviation. If the kernel dimension
is too high or the standard deviation is not tuned correctly, the result is an
image too smoothed. Then, when we apply the Canny detector, there will
be no extracted edges. An example of how the blurring affects the Canny’s
output is reported in Figure 3.5.

(a) (b) (c) (d)

Figure 3.5: Input and output of the Canny edge detector. Figure (a) and
Figure (c) show two blurred images of Figure 3.1 obtained with, respectively,
7×7 and 19×19 kernel sizes. Figure (b) and Figure (d) show detected edges.
While in the former case, there are edges, in the latter, none are recognised.
Canny’s thresholds are set to 100 and 200.

For the Canny detector, recalling from Sec. 2.3.1, the low and the high
threshold are parameters to be tuned. Edges below the low one will be
discarded, so it cannot be set too high. On the Canny’s output, a dilation
operation to enlarge the extracted edges since they would be too thin.

Then, the contour extraction algorithm presented in Sec. 2.3.2 is per-
formed. In this case, only the contours with an Aspect Ratio (AR) falling
into a given interval are taken into consideration for the next steps. The AR
is the ratio between the width and height of the extracted contour. Even
in this case, such an interval must be studied because if no constraints are
considered, namely AR = [0,+∞), every contour will be taken into consider-
ation in the next step. Knowing that the gate has a square form, an interval
near to 1 is a good choice. Tolerating ARs, which are not exactly 1, skewed
versions of the gate can be processed. This is required since the drone won’t
be facing the gate every time. Degenerate cases like the drone seeing the gate
from the side are not taken into account. Moreover, with such an interval,
the amount of contours to be processed in the following steps can be reduced.
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(a) (b)

(c) (d)

Figure 3.6: Output of the contour extraction given the Canny’s output as
input. The light blue crosses show the points used to compute the Aspect
Ratio (AR), which are the extremity points of the contour. In this case, the
given AR interval is [0.6,1.25]. Red contours are the discarded ones, whilst
the white ones are kept for the next step.

The Harris detector is then applied to the selected contours. In this case,
the parameters to tune are the block size (the window W , Sec. 2.3.3) over
which the displacement is computed, the dimension of the Sobel operator
(the one that computes the derivatives), the k in the score function, and the
threshold used to label a pixel as a corner or not. The resulting output is a
binary image with clusters of pixels.
The final step is to perform the K−Means to compute the centroids of K = 4
clusters. Such centroids will be the image coordinates of the gate’s corners.
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To compute them, a temporary dataset is built. Such a dataset consists of
all pixels labelled as corners. Each row denotes a pixel, and its features are
the u, v coordinates of the pixel. On this temporary dataset, K−Means is
run, and then, the four centroids are extracted and classified into:

0. Top-Left (TL)

1. Bottom-Left (BL)

2. Bottom-Right (BR)

3. Top-Right (TR)

This classification is necessary since the correspondence between extracted
features and the desired position is a must in IBVS. Fig. 3.8 shows the
importance of the correspondence.

(a) (b)

Figure 3.8: The order of the feature points is fundamental. In (a), feature
points correspond point-wise with the desired ones. In (b), reversing order is
considered, e.g., the order is TR, BR, BL, and TL. In this case, the velocity
commands sent to the controller lead the feature points outside the image
without convergence.

The last step is to select one set among all the sets of extracted corners.
To do that, one out of two simple heuristics is considered. One is called
highest, the other central point. The former selects the set of corners with
the highest gate centre (GC), namely the mean of the corners’ coordinates.
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(a) (b)

(c) (d)

Figure 3.7: To the selected contours, we first apply the Harris corner detec-
tor (which gives the white clusters) and then compute the K−Means. The
centroids are then labelled as TL, BL, BR, and TR. The GC label (which
stands for ’Gate Centre’) is the mean of the centroids and is used to select
the set of corners according to a given heuristics. In this case, the set of
corners with the highest gate centre is selected and shown in (c).

The idea is that in simple worlds featuring only the gates and no background,
the contour to be extracted will always be the highest one. Instead, the latter
selects the set with the nearest gate centre to the central point of the camera.
In this case, the idea behind this is that, considering that the drone is flying
at the gate level, the set of correct corners is the nearest to the central point
of the camera. In both cases, only the v coordinate of the image space is
taken into consideration since the gate can be located anywhere in the u
direction.
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To conclude the description of the CV-based pipeline, Fig. 3.9 provides a
visualisation of the working pipeline.

(a) Input image (b) Canny

(c) Contour extraction (d) Harris

(e) K−Means (f) Output

Figure 3.9: A visualization of how the CV-based pipeline works inside.
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3.2 DL-based pipeline

Figure 3.10: DL-based pipeline.

This pipeline exploits a Convolutional Neural Network (CNN) to solve the
corner detection task. With the aim of being deployed onboard the Crazyflie
2.1, the used architecture is the well-tested PULP-Frontnet introduced in
Sec. 2.4.3. The original network processes grayscale images of size 160 ×
96, producing the relative position and angle displacement of the person
in front of the drone. Considering the use case of this thesis work, the
network is adapted to work with 160× 160 grayscale images and output the
coordinates of the four corners, resulting in eight image-space coordinates.
The rearranged structure is reported in Tab. 3.1 with an order of trainable
parameters of 300k. The training set was composed of 75k synthetic 160×160
images collected in Webots, which became 750k after augmentation. The
training was performed on such a dataset using batches of 64 samples, the
L1−loss and the Adam optimizer [12] with a learning rate of 0.001. L1−
loss, or Mean Absolute Error (MAE), is defined as follows:

MAE =
qn

i=1 |yi − ŷi|
n

(3.2)

where yi are the predictions, and ŷi are the desired values. An early stopping
criteria of 10 epochs was adopted to check validation loss improvements.
After ten epochs, if the validation loss doesn’t improve, the training stops.
On a training of 30 epochs, the 20th was the most performing one.

Both validation and test sets feature never-seen images during the training.
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The following sections further describe the dataset collection and augmenta-
tion processes.

Input Size Layer Stride Filter Shape Output Size
160x160x1 Conv 2 5x5x32 80x80x32
80x80x32 BatchNorm + ReLU 80x80x32
80x80x32 MaxPooling 2 40x40x32
40x40x32 Conv 2 3x3x32 20x20x32
20x20x32 BatchNorm + ReLU 20x20x32
20x20x32 Conv 1 3x3x32 20x20x32
20x20x32 BatchNorm + ReLU 20x20x32
20x20x32 Conv 2 3x3x64 10x10x64
10x10x64 BatchNorm + ReLU 10x10x64
10x10x64 Conv 1 3x3x64 10x10x64
10x10x64 BatchNorm + ReLU 10x10x64
10x10x64 Conv 2 3x3x128 5x5x128
5x5x128 BatchNorm + ReLU 5x5x128
5x5x128 Conv 1 3x3x128 5x5x128
5x5x128 BatchNorm + ReLU 5x5x128
5x5x128 Dropout 5x5x128
5x5x128 Fully Connected 1x3200 8

Table 3.1: Network architecture used to solve the corner detection task. It
is an adapted version of PULP-Frontnet [27].

3.2.1 Dataset collection

To properly train the network, a lot of time was devoted to collecting suitable
data. To let the network know how to extract the four corners, the dataset
must be composed of grayscale images showing the gate along with its cor-
ners’ coordinates. Hence, given an image input, the output consists of eight
coordinates, two for each corner. The following paragraphs are devoted to
presenting the collection of the training dataset.
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Corner u v
Top-Left (TL) 65 6

Bottom-Left (BL) 62 110
Bottom-Right (BR) 131 103

Top-Right (TR) 125 39

Table 3.2: Image space coordinates of the corners shown in Fig. 3.11 (b).

(a) (b)

Figure 3.11: Example of dataset image in (a). (b) shows the position of the
ground truths.

Images along with the corresponding corners’ coordinates were collected
in Webots. An example image along with the corners is shown in Fig. 3.11
and Table 3.2. The setup was the following: the gate is fixed and rotates
in place. Its colour can change, and some lights are turned on and off and
changed in intensity to change the luminosity of the scene. The scene is
surrounded by panels in which background images are put to mimic different
scenes. These images change in colour and scale. After a while, those walls
are randomly spawned and changed in scale around the gate. The images
are picked randomly from a pool of background images. Some images are
realistic, others are not. Moreover, when the walls are spawned randomly,
they can overlap each other. The aim is to create random backgrounds to
make the network robust and just focus on the gate shape. In the same way,
the floor panel is spawned randomly, and its image is randomly picked.

The drone is randomly spawned between the gate and the wall panels. To
always have the four corners in the Field of View (FOV) of the camera, as
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the first thing, x and y coordinates are computed by uniformly sampling a
radius and the angle in polar coordinates. Then, the height, the pitch, and
the yaw are sampled to have the four corners in the FOV of the camera.
Some images of the resulting dataset are shown in Fig. 3.12.

(a) (b) (c) (d)

Figure 3.12: Example of training dataset images.

All of this is done via the Webots controller of the Crazyflie robot set with
the supervisor property (see Sec. 2.5).

The dataset needs to have images of the gate seen from different angles
and distances, and since the drone will move towards the gate, a considerable
number of images near the gate is required. An analysis of the resulting
dataset is reported in the following:

• Area and Aspect Ratio distributions, shown in Fig. 3.13. In this case,
the area and the AR concern the polygon formed by the four corners of
the gate. Considering the former distribution, most of the images results
with area values close to zero. This happens because of the distance and
relative orientation of the drone concerning the gate position. This is
something that should be further studied and improved. The latter
distribution, instead, shows that in most images, the polygon formed
by the corners is regular. Moreover, there is a remarkable number of
pictures showing skewed images of the gate. These skewed perspectives
are crucial for gate detection when the camera is not positioned directly
in front of it.

• The corners’ distribution on the image in Fig. 3.14. These images show
that each corner is well distributed in the image space. Some areas are
not explored at all, as all corners are required to be within the image.

• The drone’s pose distribution in the 3D space around the gate in Fig.
3.15. The plots show the space distribution of the drone’s position. The
X − Y plane provides the space in which the drone is spawned. The
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(a) Area distribution (b) Aspect Ratio distribution

Figure 3.13: Distribution of the area and the AR.

Figure 3.14: Corners’ distribution

radius limits are [0.3,2.5] meters. An oversampling of the area near the
gate was required to increase the amount of images close to the gate.
In the X − Z and Y − Z planes, the hourglass form in the centre is
remarkable due to the height, pitch, and yaw selection to have all the
corners falling inside the image.
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Figure 3.15: Drone position distribution

In total, three datasets of 320×320 grayscale images were collected. The
train one is collected as described above. The test and the validation ones are
collected in the empty world used to test the CV-based pipeline. The test one
is collected without changing anything but the gate and drone poses. Such a
test set is labelled as Simple. What differs from the test and the validation
is the colour of the background, the floor, the gate, and the lightning. In any
case, in the validation set, there are no images with the same configuration as
the test set. Table 3.3 shows the number of images per dataset, and Figure
3.16 shows images from the training, the validation, and the testing set.
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(a) Train (b) Validation (c) Test

Figure 3.16: Example images of train, validation, and test dataset. The (c)
reports an image from the Simple test set.

Dataset Number of images
Training 75k
Validation 10k
Test 7.5k

Table 3.3: Number of images per dataset.

To take a step towards testing the network in the real world, the Laboratory
test set was collected. Featuring never-before-seen real images taken at the
IDSIA Robotics Laboratory in Lugano and taking advantage of the four wall
panels, the IDSIA Robotics Laboratory was recreated in Webots. Fig. 3.17
shows a representative example.

Figure 3.17: Example image from the Laboratory test set.
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3.2.2 Data Augmentation
Data augmentation is a good technique to increase the amount of available
training data. Starting from the simulator images, some photometric and
geometric transformations are applied. With the goal of testing on in-field
data, some photometric transformations are used to mimic the real behaviour
of the Himax HM01B0, the available camera on the AI deck (see Sec. 2.1.1).
This augmentation pipeline, named Himax augmentation, is achieved with
the following transformations:

• Motion blur

• Gaussian blur

• Gaussian noise

• Vignetting

• Exposure change
Other adopted augmentations are the horizontal random flip, changes in

scale, rotations, shift, shearing (geometry distortion), and perspective. More-
over, random erasure [16] (also known as cutout) was used to make the net-
work more robust. This augmentation consists of covering parts of the image
with random patches of plain colour. From the original training dataset com-
posed of 75k images, each image was ten times, resulting in a dataset of 750k
samples. Some examples of augmented images are shown in Fig. 3.18.

(a) (b) (c) (d)

Figure 3.18: Some augmentation examples. (a) shows the initial image, (b)
the augmented image after Himax augmentation, (c) random erasure, (d)
Himax, rotation, and scale-increasing augmentation.

In applying all those augmentations, it’s fundamental to take into account
the corners’ coordinates. As long as the augmentations only concern photo-
metric changings, corners’ coordinates are not affected. Problems arise with
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geometric transformations like horizontal flip, scale, rotation and so on. All
geometric augmentations, but horizontal random flip, are resolved by the
Albumentations library [24]. By supplying corners’ coordinates as key points
along with their label, such a library applies the same transformations to
the key points. It also supports the horizontal random flip transformation,
but in this case, the transformation to the key points should not be applied
because the aim is to have a detection invariant to the position of the gate.
Whether the gate is seen from the front or the back, no distinction is made.
Hence, after the random horizontal flip transformation, a relabelling of the
corners is needed.

As said above, for each collected image in the simulator, ten augmented
images are produced. Each augmentation is randomly performed. In this
way, the resulting dataset has both images simulator-like and others that
mimic the actual camera. Augmentations are performed in the following
way:

1. Himax augmentation

2. Horizontal flip

3. Scale

4. Rotate

5. Shift

6. Shear

7. Perspective

8. Random erasure

During the augmentation process, some of the features may fall outside the
image. In this case, augmented images are generated until ten proper images
are produced, namely with all the features fitting the image.

3.3 Simulation
This section is devoted to describing the methods adopted in the simulation
regarding the fusion of the corner detection module, both CV-based and
DL-based, with the visual servoing one.
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Figure 3.19: Full pipeline

Figure 3.19 reports the overall working pipeline. Given an image, the
detection module predicts eight scalars, namely the image coordinates of the
gate’s four corners: TL, BL, BR, TR. Such features feed the visual servoing
module that outputs four velocities to move the drone in the desired position.
These velocities are then sent to the stock controller of the Crazyflie 2.1 that
outputs four PWM to the motors to move the drone. Inputs to the control
module are the velocities and positions computed by the state estimation
module. In the real drone, it is computed by an EKF using the IMU and the
Flow deck measurements. The Flow deck measures the optical flow and the
altitude measurement thanks to the ToF. In the simulator, GPS and IMU
measurements of the drone are retrieved to compute its velocity and pose.

To test the whole pipeline, composed of perception and control, a flight
task to pass through the gate is defined as the following:

(a) (b) (c) (d)

Figure 3.20: Visualization of the flight task in the Laboratory world (see
Sec. 4.2) using the DL-based detection module. Take-off (a), gate-based
navigation (b), pass through the gate (c), landing (d).

1. Take-off

2. IBVS
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3. Pass through the gate

4. Landing

An example is reported in Fig. 3.20.
More in detail, start the drone in a position such that it can see the gate

and perform the take-off step (Fig. 3.20 (a)). It doesn’t involve any per-
ception pipeline yet. The height desired is provided as an altitude setpoint.
Following such a setpoint, the drone reaches the desired height, then the
IBVS task, namely the gate-based navigation (Fig. 3.20 (b)) is triggered.
During this step, the drone will move towards the gate thanks to the fea-
tures from the detector and supplied to the IBVS. By matching the features
with the desired ones, the drone will move in the 3D space ending in front of
the gate. Hence, a state machine sets a forward velocity command of 0.1 m/s
for 10 s, resulting in a forward motion of one meter (Fig. 3.20 (c)). Landing
is the last step and is achieved by supplying an altitude setpoint near zero
and then switching off the motors (Fig. 3.20).

Both pipelines were tested on images without temporal consistency, i.e.,
provided images do not show consecutive moments. When used in the simula-
tion with the visual servoing module, both corner detection modules showed
a noisy behaviour. This led to the failure of the drone flight, but the noisy
behaviour was not the only source of such a failure. More in detail, noisy
predictions lead to different velocity commands to the controller, resulting
in unstable movements. Another problem concerns the output velocity com-
mands of the IBVS module. This is associated with the IBVS error e of the
first iterations. To give a scalar value to such an error, defined in Eq. 2.1,
the Frobenius norm [7] is applied to measure the magnitude or size of the
error matrix. It is the square root of the sum of the squares of each element
of the matrix. Namely, given the error matrix e ∈ Rm×n, the Frobenius norm
of such a matrix is the following:

||e||F =
öõõô mØ

i=1

nØ
j=1
|ei,j|2 (3.3)

From now on, the referred IBVS error is actually its Frobenius norm.
As stated above, the first iterations of the gate-based navigation are the
toughest due to large errors resulting in larger velocity commands in out-
put. To deal with it, we implemented the smooth start to increase the error
exponentially [33]. Hence, the image-plane error 2.1 is replaced by:

e′ = e− e0e
−µt (3.4)
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3.4 – In-Field dataset collection

Where e0 is the error e at t = 0. This adjustment mitigated the problem.
The drone dynamic was still very noisy. To further alleviate the problem,
exponential smoothing was applied to both velocities commands and corner
extraction pipelines. The implemented exponential smoothing is the sim-
plest: s0 = x0

st = αxt + (1− α)xt−1, t > 0
(3.5)

Where st is the smoothed output at timestep t and α ∈ [0,1] is the smoothing
factor. By varying α, past states are weighted more or less. A manual tuning
was performed for both detections and velocities, resulting in α = 0.9 for
both. Lower values of α led the drone to fail the gate-based navigation.
These expedients allowed the drone to fly.

Unfortunately, the more the drone is near the gate, the more the noise
increases (remarkably in the CV-based one), making it impossible to reach
a very low IBVS error. An error threshold is empirically set to be 15.6% of
the image size. In the 320× 320 case, it corresponds to 50 pixels and halved
in the 160× 160. When the IBVS error reaches such a threshold, the drone
is already in front of the gate, and the pocket-size dimension of the drone
allows it to pass through. Moreover, to make sure the error is below such
a threshold, the first time the error reaches the threshold, errors start to be
collected for three seconds. Then, the median of the errors is computed and
if the median value is below the threshold, the drone switches to the ’Pass
through the gate’ task. Otherwise, the error collection and median value
computation don’t stop until the median value of the last three seconds is
below the threshold presented above.

3.4 In-Field dataset collection
The ultimate goal is to test both pipelines in the real world. Hence, in the
IDSIA Robotics Laboratory of Lugano, a dataset of real images and poses
using a Crazyflie 2.1 nano-drone was collected. The images were streamed via
Wi-Fi to a workstation and collected along with the drone and the corners’
poses with ROS. All the poses were collected with the OptiTrack motion
capture system. For the event, a black gate was built. The drone was
controlled by an operator who made it fly near the gate for three minutes
straight. With a camera frequency of 20 Hz, a total of 4k 160× 160 frames
were collected. Almost half of the frames were discarded because of tracking
errors in the corners. Moreover, most of the time, the gate was in the centre
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of the camera. Fig. 3.21 reports an image from such a dataset. This test set
is labelled as Real.

Figure 3.21: Example image from the Real test set.
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Chapter 4

Results

This chapter reports and presents the results obtained.
Starting with the setup, the Python version used is the 3.8 with the follow-

ing libraries and versions: albumentations 1.3.1, imgaug 0.4.0, machinevision-
toolbox-python 0.9.6, numpy 1.24.4, opencv-python 4.8.0.74, pandas 1.2.4,
scikit-learn 0.24.1, scipy 1.10.1, torch 1.4.0, torchsummary 1.5.1, torchvision
0.5.0. Concerning the simulator, the Webots version is the 2023a.

A presentation of the overall working pipeline behind the drone’s control
is conducted. Sec. 4.1 presents the performance of the detection modules on
three test sets: the Simple, the Laboratory and the Real presented in Sec.
3.2.1 and Sec. 3.4.
Finally, in Section 4.2, the results of the simulations are presented, evaluating
the entire pipeline that incorporates the joint utilization of both the detection
and visual servoing modules.

4.1 Detection
Detection modules are tested on the test sets presented in Sec. 3.2.1 and Sec.
3.4, where two are composed of synthetic images and one by real ones. In
addition to the CV and DL, a Dummy classifier is defined to always output
the mean position of the corners of the testing dataset at hand.

At first, the CV-based module was tuned to work on the Simple dataset,
resulting in the working setup of parameters reported in Tab. 4.1. Then,
such a module was tuned to work with the Laboratory and the Real dataset.
The label working setup denotes a set of parameters used to accomplish the
flight task. Mainly, the kernel size of the Gaussian blur and the thresholds
of the Canny detector were touched to retrieve proper edges. To work on
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Figure 4.1: Feature extraction modules.

the Simple dataset, the AR interval was set to [0.6,1.25] to recognise skewed
figures. In the Simple world, the drone was spawned around the gate on a
spherical shell to collect a dataset of gate images from different angles to
perform a qualitative study to choose the low threshold. Different thresholds
were used, starting from 0.8 and lowering it by 0.1 each time until reaching
0.1. It resulted that at 0.6, the module detects the gate from a relative angle
of almost ±50°. Going further is not required, and in the same conditions,
lowering the threshold to 0.1 increases the computation time up to 1.34 times
the one having 0.6 as the lower threshold. Figure 4.2 shows an example image
in which a low threshold of 0.7 fails while succeeding at 0.6.

Figure 4.2: AR interval comparison in extracting corners with a low threshold
of 0.7 in lime and a low threshold of 0.6 in white.
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4.1 – Detection

The other parameters of the CV-based detector were slightly changed to
deal with the increment of the textures in the Laboratory and Real datasets.

Dataset Blur Canny AR Harris Heuristic

Simple 7× 7 100, 200 0.6, 1.25
W = 10× 10,

Sobel k. = 3× 3,
k = 0.1

Highest

Laboratory 3× 3 50, 150 0.6, 1.25
W = 10× 10,

Sobel k. = 3× 3,
k = 0.1

Highest

Real 7× 7 100, 200 0.8, 1.25
W = 10× 10,

Sobel k. = 3× 3,
k = 0.1

Central point

Table 4.1: CV-based module configurations for each dataset.

Table 4.1 reports the configuration used for the CV-based module in each
dataset. The table reports the kernel shapes and the various thresholds
adopted. Concerning the Harris column, such a table reports the shape of
the window, the kernel of the Sobel operator, and the parameter k used to
compute the Harris score.

Concerning the other module, the training procedure is presented in Sec.
3.2.

Full dataset
Detector Norm MAE % Fail
Dummy 0.159 0

CV 0.095 16.52
DL 0.053 0

Samples with AR ∈ [0.6,1.25]
Detector Norm MAE % Fail
Dummy 0.156 0

CV 0.077 6.4
DL 0.047 0

Table 4.2: Simple dataset. Left-most table, the whole dataset of 7.5k images.
The right-most table shows the left-most table depurated from samples with
AR outside of the range. Only 5030 samples were left.

The results on the Simple dataset of the three detection modules are re-
ported in Table 4.2. On the left, the whole dataset is considered, whilst on
the right, it is reduced to the samples with an AR that matches the one
adopted in the CV-based module. In the tables, the % Fail column reports
the percentage of samples where no corners were detected. Since the CV-
based detector and the DL-based one work on images of different shapes,
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the normalized MAE of the four corners is considered. The normalization
concerns the MAE with respect to the image size, meaning that the error is
divided by the image size, resulting in a pure number. The DL-based module
is the best-performing one with the lowest MAE and zero failures because it
always outputs some coordinates. This is because the training dataset con-
tains only images with corners and none without. Hence, the network cannot
learn to output null values. It will always output the eight coordinates, even
if the gate is not seen. Instead, the CV module fails the detection in 16.52%
of the cases. Such errors are due to the edge and contour extraction but also
to the discarded contours that fall outside the considered AR interval. This
leads us to analyse the aforementioned smaller part of the dataset, where the
results are shown on the right portion of Table 4.2. Here, the percentage of
failed detections of the CV-based module decreases substantially along with
its MAE, which is almost 20% lower. A slight MAE reduction of both the
Dummy and the DL-based detector can be noticed. Considering the normal-
ized MAE, the CV module is 0.6 times lower than the Dummy counterpart
and almost twice the DL detector. In this case, the Dummy is the worst,
whilst the DL module is the best. Such a module achieves an error 0.3 times
the Dummy one and 0.56 times the CV-based detector counterparts.

Considering the full dataset, Fig. 4.3 (a) shows the normalized MAE per
each corner and reports in (b) the normalized MAE distribution with respect
to the area and in (c) with respect to the AR of the three detectors in the
Simple dataset. It can be noticed that the CV-based module achieves its
best performance at great areas, namely near the gate, and in the given AR
interval.

Full dataset
Detector Norm MAE % Fail
Dummy 0.159 0

CV 0.237 2.57
DL 0.055 0

Samples with AR ∈ [0.6,1.25]
Detector Norm MAE % Fail
Dummy 0.156 0

CV 0.235 2.39
DL 0.049 0

Table 4.3: Laboratory dataset.

Table 4.3 reports the results of the Laboratory test set. Now, the MAE
of the CV module is pretty high in both cases. This shows the limit of the
CV-based module. In the Simple dataset, the world featured only the gate
and a plain background, whilst, in Laboratory one, the number of features in-
creased, hindering the detection. In a textured environment, the abundance
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(a)

(b) (c)

Figure 4.3: Simple dataset. (a) shows the normalized MAE performance
concerning each corner. Figures (b) and (c) show the same metric with
respect to area and aspect ratio.

of viable contours results in a low failure rate, even across the entire dataset.
The MAE of the Dummy predictor in the Simple and the Laboratory dataset
are exactly alike. This is because the dataset collection is deterministic and
was performed in the same fashion. Hence, the corner distribution is equiv-
alent because of the spawning pattern of the drone and gate orientation.
Referring to the errors, the CV module with 1.5 and 4.3 times the Dummy,
and the DL errors, results being the worst one. Once again, the DL module
is the best, with an error of 0.35 times the Dummy and 0.23 with the CV
detector.
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(a)

(b) (c)

Figure 4.4: Laboratory dataset. (a) shows the normalized MAE performance
concerning each corner. Figures (b) and (c) show the same metric with
respect to area and aspect ratio.

Full dataset
Detector Norm MAE % Fail
Dummy 0.073 0

CV 0.185 2.14
DL 0.058 0

Samples with AR ∈ [0.8,1.5]
Detector Norm MAE % Fail
Dummy 0.068 0

CV 0.182 1.41
DL 0.056 0

Table 4.4: Real dataset. The full dataset consists of 1867 samples, while the
reduced version has 1559 samples.

Results on the Real dataset are shown in Table 4.4. Since the gate is
rectangular, a change in the AR interval of the CV module to [0.8,1.5], as
stated in Table 4.1, was conducted. Even in this case, the reduced dataset
shows only a slight improvement for the CV module. The Dummy detector
performs pretty well compared to the previous tests. The reason behind this
is the distribution of the corners in the dataset. This is due to the fact that
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4.1 – Detection

most of the time, the drone was facing the centre of the gate. Figure 4.5
shows the gate centre distribution.
Even in this case, the winning detector is the DL-based one, with an error of
20% lower than the dummy, and of almost 70% lower than the CV one. Con-
sidering the CV module, its performance, with an error of 0.185, is slightly
better than the one of the Laboratory dataset.

Figure 4.5: Real dataset. Gate center distribution with a mean value
(µu, µv) = (76, 59) and standard deviation (σu, σv) = (17,12).
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Figure 4.6: Real dataset. (a) shows the normalized MAE performance con-
cerning each corner. Figures (b) and (c) show the same metric with respect
to area and aspect ratio.
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Figure 4.7: Normalized mean MAE in each dataset for every detector.

To conclude and visualize the performance of each detector in the datasets,
Fig. 4.7 reports the results of Tab. 4.2, Tab. 4.3, and Tab. 4.4. In each case,
the DL module outperforms the others except for the Real case because of
the dataset collection. The CV module suffers environments rich in textures,
leading to poor performance in the Laboratory and the Real test sets where
the MAE is respectively 4.3 and 1.97 times DL counterpart. Thanks to the
data augmentation, the NN manages to achieve a lower error on the Real
dataset, while it has never seen real images during the training phase. The
network reaches an error of 0.071 without data augmentation, while the error
lowers to 0.058 with the network trained with augmentations, reducing the
error by almost 20%.

4.2 Simulation
For what concerns the simulation part, a test of the whole pipeline reported
in Fig. 3.19 on the flight task presented in Sec. 3.3 is conducted. The drone
starts with the take-off, then detection and IBVS take over in the gate-based
navigation, and once the IBVS error is below the threshold, the drone crosses
the gate and finally lands.

Both predictions of the detection modules are filtered by exploiting the
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exponential smoothing introduced in Sec. 3.3 with a α = 0.9. Such a high
value weighs current prediction very low with respect to previous predictions,
leading to a smoothed prediction.

(a) 320× 320 image, CV-based detector (b) 160× 160 image, DL-based detector

Figure 4.8: The corners of the square are the IBVS goal positions

In the IBVS, the goal positions in the image space are the corners of a
centred 200 pixels wide square in the case of the 320×320 image size and 100
pixels in the 160× 160 case. This means that at convergence, the drone will
be at the same height as the gate centre. Figure 4.8 shows the goal positions
(the corners of the big square) along with the output of the detectors (the
corners of the small polygon).
The Z parameter of Eq. 2.7 is set to be 0.34 m and was obtained by exploiting
the camera projection of the position of the corners, namely the ground
truths (GTs), at convergence of IBVS where GTs match the goal positions
and e = 0. Following [33], the λ of Eq. 2.4 was set to 0.08. In Table 4.5, all
the parameters used in Eq. 2.11 for the 320× 320 case are reported. In the
160× 160 case, the σw,h is doubled.

f [mm] σh,w [µm] Z [m]
0.6 3.6 0.34

Table 4.5: IBVS parameters of Eq. 2.11 in the 320× 320 image case.

Concerning the control part of Fig. 3.19, the IBVS output velocities were
filtered to avoid turbulent flight behaviour. The same filtering adopted for
the predictions was applied here, the exponential smoothing, using α = 0.9.

To test the pipeline, three different worlds of increasing difficulty were used.
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The first two are those in which the Simple and the Laboratory test sets were
collected. While the first features only the gate with a light blue background
and black floor, the other presents the gate surrounded by four walls showing
real images of the IDSIA Robotics Laboratory. These worlds are referred to
by the names of the correspondent testing sets. The third world, labelled
as Competition, imitates the arena used in the IMAV 2022 nano-quadcopter
competition. In this arena, there are 3D objects and not only images or a
plain background, as in the other two cases. This is the most challenging
condition. Figure 4.9 shows the Crazyflie in a white circle and the gate in
the worlds.

(a) Simple (b) Laboratory (c) Competition

Figure 4.9: Simulation worlds

Ten runs, with the drone’s position relative to the gate kept constant, are
conducted in every world. The drone is spawned 2 m away from the gate
with an orientation angle θ of 30° relative to the gate. The bottom corners’
height is 0.8 m, while the top ones are at 1.2 m, and the gate centre is 1 m
high. In the flight task, all the output velocities are tested. Forward and
sideways velocities (vx, vy) are tested by shifting the drone with respect to
the gate centre, thanks to the angle displacement, the yaw rate (ωz) is tested,
and finally, by setting the take-off height to 0.5 m, the drone has to reach
the 1 m height of the gate centre supplying height velocity vz > 0.
If the drone completes the flight task, the run is labelled as successful or failed
otherwise. During the simulation, the position of the ground truths is taken
into account, and if GTs fall out of the image, the gate-based navigation is
taken over by the landing task, labelling the run as failed.

Out of ten runs, the ratio between successes and failures with the average
completion time of the flight task is reported in Table 4.6.
The ideal case is using GTs as input to the IBVS. The trajectory is the same
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World Detector µCT ± σCT [s] S/F

Simple
GT 74.8± 0.0 1
CV 84.2± 12.7 1
DL 72.7± 0.8 1

Laboratory
GT 74.8± 0.0 1
CV 17.8± 0.6 0
DL 74.2± 2.5 0.9

Competition
GT 74.8± 0.0 1
CV 15.6± 1.4 0
DL 82.8± 6.5 1

Table 4.6: For each world and each detector, the table reports the average
completion time µCT with its standard deviation σCT , and the ratio between
the number of successful and failed runs (column S/F).

in all the worlds because of the relative positioning of the drone and the gate.
This is reflected by the same completion time in all the worlds. In this case,
only the IBVS part is exploited. The resulting trajectory will be considered
as the optimal one, and in Sec. 4.2.2, a comparison with the resulting ones
of CV and DL modules will be discussed.
The CV detector succeeds only in the Simple world. With a σCT,CV =
0.15 µCT,CV , it shows that the detection can be imprecise sometimes but still
completes the task. In the other two worlds, the detection fails, leading the
drone to a position where it cannot see the gate, ending with the landing
taking over.
Concerning the DL detector, it succeeds every run in each world, except the
Laboratory one. In this case, it fails one run out of ten, in particular when the
drone gets too near the gate without being able to correctly detect the cor-
ners. This is due to the low quantity of training images in such a condition.
Being too near, the corners fall outside the image space, and the landing sup-
plants the gate-based navigation. In the Simple world, σCT,DL = 0.8 shows
the robustness in such an environment. In the Competition world, with an
increasing amount of textures and 3D objects, the detection is challenged.
The detection becomes more challenging with a higher time to completion
reaching a µCT,DL = 82.8s and σCT,DL = 6.5s. Overall, given the same start-
ing conditions, the DL module is able to complete the task, at least once, in
every world. Moreover, such a module achieves a 100% success ratio in the
Competition world.
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The following sections are devoted to presenting the results of the errors
computed during the gate-based navigation and resulting trajectories.

4.2.1 Errors

(a) (b)

Figure 4.10: Example frame showing GTs in green, detection outputs in blue,
and the features’ goal position in white.

To introduce the errors, Figure 4.10 (a) shows an example of a frame
taken during the gate-based navigation. Three kinds of labels are reported:
white T s, green Gs, and blue Ds. The former are the target positions of the
IBVS, while the second and third are, respectively, the GTs and the detected
features.

During each simulation, detected features and GTs, along with the IBVS
error, are collected to compute the following errors:

• eDG, namely the normalized MAE between detected features and GTs.

• eT D, this is the normalized IBVS error of Eq. 2.1.

• eT G, this is the normalized IBVS error using the GTs. It tells what the
error would be if the detection was perfect.

Fig. 4.10 provides a visualization of such errors. To be compared, all the
errors are normalized with respect to the image size.

Table 4.7 reports the values of the aforementioned errors during the last
iteration of the gate-based navigation, considering only successful runs.
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World Detector eDG eT D eT G

CV 0.044± 0.021 0.130± 0.014 0.153± 0.029Simple DL 0.031± 0.006 0.122± 0.014 0.169± 0.006
Laboratory DL 0.034± 0.006 0.151± 0.017 0.214± 0.009
Competition DL 0.067± 0.036 0.130± 0.015 0.185± 0.021

Table 4.7: Mean and standard deviation of the errors during the last iteration
of the gate-based navigation. Only successful runs were considered.

In the Simple world, CV and DL modules reach comparable eDG, with the
former showing a high variability. Since the last IBVS iteration is taken into
account, the high variability of the eDG denotes how far the CV detection
is from being robust, even close to the gate with an empty background. In
this setting, the DL detector shows less variability. IBVS errors, eT D, of
both detectors are well below the requested median error threshold of 0.156
to cross the gate. While the eT G of the CV-based module is still below the
threshold, this is not the case for the DL one. This is due to the fact that
the network tends to output bigger corners, leading to a lower eT D.
Successful runs on the Laboratory and the Competition worlds were achieved
only by the DL detector. On the latter, the MAE is almost double of the
former, evidencing the detection hindering due to the higher world’s com-
plexity. This can be noticed by the variability rising. Concerning eT D and
eT G, Laboratory values are higher than the competition ones. eT G shows, in
particular, that the drone crosses the gate before being actually in the goal
position because of the network’s output discussed earlier.

An example of a simulation for each world and each detector is provided
in the remaining part of this section.
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Figure 4.11: Simple world. The normalized eT D for each detector.

Figure 4.11 reports the three eT D errors concerning the use of GTs in
black, the CV module in red, and the DL in green. The time window refers
only to the gate-based navigation, meaning that it shows the time required
to get closer to the gate. As shown in Tab. 4.6, DL accomplishes the flight
task with the lowest time, followed by the GT and the CV module. This fits
the analysis concerning eT G discussed earlier. Both DL and CV IBVS errors
show noisy trends. This is the direct consequence of the prediction problem.
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Figure 4.12: Errors distribution for each detector. CV module in (a), DL
module in (b).

More in details, Fig. 4.12 show eDG, eT D, and eT G for both detection
modules. From Fig. 4.10 (b), the relation between the three errors is, at the
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high level, eT D = eDG + eT G explaining why the peaks in eDG are reflected
in eT D.
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Figure 4.13: Normalized eT D in the Laboratory world in (a) and in the
Competition world in (b).

Likewise, Fig. 4.13 shows the eT D trends and the errors of both detectors
for the Laboratory and the Competition cases. In both runs, the CV module
fails to detect the gate, leading to high eT D errors and followed by a prema-
ture landing. Instead, the DL module completes the task in both cases, with
a faster convergence in the Laboratory world than the Competition one.
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Figure 4.14: Trend of the errors in the Laboratory world.
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Figure 4.15: Trend of the errors in the Competition world.

Fig. 4.14 and Fig. 4.15 report the Laboratory and the Competition anal-
ogous cases of Fig. 4.12.

4.2.2 Trajectories
Within this section, a comparison of the resulting trajectories using CV and
DL modules with respect to the optimal one is conducted. The optimal
trajectory is defined as the resulting one using GTs as input to the IBVS
module. Note that in this context, the term "optimal" serves as a label
rather than an absolute definition, as there may exist alternative paths that
satisfy the criteria for gate-based navigation.

Following [29], the Dynamic Time Warping (DTW) [3] score is chosen to
assess the similarity between two trajectories. A trajectory is a sequence of
coordinates in the 3D space, namely a time series. DTW matches the point
near in the space of two time series of different lengths. The matching is
performed according to the Euclidean distance.
Given two time series X ∈ Rm,k and Y ∈ Rn,k, where k is the time series’
number of features, andm and n denote their length. A cost matrix C ∈ Rm,n

is computed as Cu,v = f(Xu, Yv), with 1 ≤ u ≤ m, 1 ≤ v ≤ n, and f as the
Euclidean distance

f(Xu, Yv) =

öõõõô kØ
i=1

(Xu,i − Yv,i)2 (4.1)

In this case, each time series is a temporal sequence of made of 3D coordinates
expressed in meters. Hence, the unit of measure of the Euclidean distance is
meters.
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Figure 4.16: Graphical representation of DTW between two time series X
and Y .

A warping path is then defined as the sequence p = (p1, . . . , pS) satisfying
the following constraints:

• ∀s ∈ {1, . . . , S}, ps = (us, vs) ∈ {1, . . . ,m} × {1, . . . , n};

• p1 = (1,1) (starting point) and pS = (m,n) (finish point);

• ∀s ∈ {1, . . . , S − 1}, ps+1 − ps ∈ {(0,1), (1,0), (1,1)}

The cost associated with a warping path p is defined as the sum of the costs
of the states visited by the path as

Cp(X, Y ) =
SØ

s=1
Cus,vs (4.2)

Finally, the Dynamic Time Warping score is defined as the minimum cost
among all the warping paths p ∈ P :

DTW(X, Y ) = min
p∈P

Cp(X, Y ) (4.3)

A graphical representation of the warping path associated with the minimum
cost and the relative DTW is presented in Figure 4.16.
The DTW score of two identical trajectories achieves the lowest value since
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World Detector DTW score [m]

Simple CV 4.26± 0.85
DL 3.6± 0.13

Laboratory CV 52.77± 1.68
DL 15.59± 0.67

Competition CV 61.31± 7.82
DL 14.90± 0.78

Table 4.8: The table reports the mean and standard deviation of the DTW
score of the ten runs performed by each detector in every world.

all the Euclidean distances are zeroed. The resulting graphical representation
of the matches is a diagonal (Fig. 4.17 (a)).

For each world and detector, Table 4.8 reports the mean and standard
deviation of the DTW score of the ten runs. The lower the score, the more
similar the trajectory is to the optimal one. In the Simple world, both de-
tectors accomplish the gate-based navigation task with low DTW scores,
meaning trajectories are not so different. This is not true for the Laboratory
and the Competition cases where the DTW scores of the CV module are the
highest due to the lack of completion. Due to the challenging environments,
even the DL scores are higher.

(a) (b) (c)

Figure 4.17: DTW scores and visualization of the path. From a run in the
Simple world.

Figure 4.17 shows the DTW scores, along with the visualisation of the
matching of a run in the Simple world. In (a), the DTW score of the same
trajectory is shown to denote the perfect matching and the zero score.
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(a) (b)

Figure 4.18: DTW scores and visualization of the path. From a run using
the DL detector in the Laboratory world (a) and in the Competition world
(b).

Figure 4.18 shows only the results of the DL module because both runs
of the CV failed. To be exhaustive, these are reported in Fig. A.1 of the
appendix.

In the remainder of this section, a run trajectory is shown for each detector,
along with the optimal one obtained using GTs in the IBVS. DL-based nav-
igation completes the task in each world, while the CV one succeeds only in
the simplest.
Fig. 4.19, Fig. 4.21, and Fig. 4.23 show the distance and the orientation
changing of the drone through time concerning the gate pose.
Instead, Fig. 4.20, Fig. 4.22, and Fig. 4.24 show the trajectory in both 3D
and 2D space.
Worth mentioning is that the GT-based navigation trajectory is identical in
every world since it does not rely on images.
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Figure 4.19: Simple world. Distance and orientation of the drone with respect
to the gate.
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Figure 4.20: Simple world. Trajectory is shown in 2D and 3D. It focuses on
the gate-based navigation and crossing of the gate.
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Figure 4.21: Laboratory world. Distance and orientation of the drone with
respect to the gate.
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Figure 4.22: Laboratory world. Trajectory is shown in 2D and 3D. It focuses
on the gate-based navigation and crossing of the gate.
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Figure 4.23: Competition world. Distance and orientation of the drone with
respect to the gate.
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Figure 4.24: Competition world. Trajectory is shown in 2D and 3D. It focuses
on the gate-based navigation and crossing of the gate.
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Chapter 5

Conclusions and future
work

This thesis project puts the focus on developing a vision-based control pipeline
to make the Crazyflie 2.1 nano-quadcopter cross a gate successfully. The
gate-based navigation exploits the IBVS to identify and approach the gate.
Such a control requires a detection module to extract the corners of the gate.
Hence, two modules based on different approaches were proposed. One relies
on classic CV algorithms, while the other is learning-based, taking advantage
of a CNN. Both detection modules were tested on both synthetic and real
images, with the DL-module always outperforming the CV one. Synthetic
images were collected in Webots, an open-source robotic simulator in which
the training set used to train the CNN was collected. To deal with real
images, data augmentation mimicking the actual Himax camera images was
employed, reducing the error by almost 20% compared with a model trained
without augmentations. The CV-based detector performed well in a simple
environment with a plain background and nothing else except for the gate.
Whenever the amount of textures increases, e.g., no more plain background,
the detection hinders, leading to poor performance. Moreover, such a detec-
tor relies on many classic CV algorithms like the Canny edge detector, the
Suzuki-Abe contour detection, and the Harris corner detector, and heuristics
to choose the corresponding gate shape and the set of corners. In this sense,
such a pipeline has many parameters to be tuned according to the environ-
ment in which it is deployed. Moreover, it is more computationally intensive
than the DL counterpart.

The whole control pipeline, featuring both detection and IBVS modules,
was then tested in three Webots worlds of increasing difficulty, having the
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IMAV 2022 competition world as the most challenging. Having the IBVS
module fixed, ten runs for each detection module were conducted in every
world, always in the same starting position. As expected, and following the
performance obtained during the detection testing, the DL detector outper-
formed the CV one by completing all the runs in each world except for one
case in which the drone was too near the gate, and could not be able to pre-
cisely outputs the four corners because few training data of such a position
were present. Instead, the CV detector achieved to complete all the runs
only in the simplest of the worlds, the one featuring nothing else than the
gate and a plain background. During the detection test, both detectors were
tested on images without temporal consistency. Instead, in this case, images
are subsequent, and both detectors showed noisy behaviour during the de-
tection. Exponential smoothing weighing more past states than the current
reduced such a behaviour. In addition, the same smoothing was performed
to the output velocities of the IBVS module because, without it, the drone
couldn’t accomplish the task.

Future works will involve the deployment of the CNN-based IBVS control
pipeline on the actual Crazyflie 2.1 to work fully onboard. To this purpose,
the adopted CNN is an adjusted version of the PULP-Frontnet, which was al-
ready proven to be working onboard. More thorough data collection could be
assessed to pursue better predictions and avoid wrong predictions whenever
the drone is too close. Concerning the noisy behaviour, time consistency
can be considered during the training, and other than that, different loss
functions can be studied, like the L2−loss rather than the simple L1−loss.
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Appendix A

Results

(a) (b)

Figure A.1: DTW scores and visualization of the path. From a run using the
CV detector in the Laboratory world (a) and in the Competition world (b).
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