

POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master's Degree Thesis

Automated Optimization of DNN Models for

People Counting with Infrared Sensors Using

NAS

Candidate

Seyed Morteza MOLLAEI

Supervisors

Prof. Daniele JAHIER PAGLIARI

Dr. Chen XIE

Dr. Matteo RISSO

Dr. Francesco DAGHERO

Dr. Alessio BURRELLO

Academic Year 2022-2023

October 2023

II

Summary

The growing popularity of Neural Architecture Search (NAS) is changing

optimization strategies in Deep Learning (DL). While NAS has typically been

utilized for tasks such as image classification and object detection, this study

investigates its application in improving DL models for people counting

applications based on ultra-low-resolution infrared (IR) array sensors. These

sensors are well-known for their low cost, energy efficiency, and privacy

protection, given by the fact that they only gather low-resolution thermal maps,

not revealing private information such as facial details of people. This makes

them ideal for applications such as people counting in public spaces.

In our work, we perform a thorough examination of several DL architectures,

using them as seed models for an efficient NAS tool, with the goal of finding

several tradeoff points between accuracy and model size, both critical for low-

power devices. The core of this study is the development of a new and purpose-

driven NAS paradigm targeted at optimizing architectural characteristics directly

related to worldwide usage of ultra-low-resolution IR array sensors.

Thanks to NAS technique, our findings show that DL models not only improve

accuracy but also efficiency, even with simple model architectures. In particular,

we are able to achieve up to 85.55% balanced accuracy on an open-source

infrared dataset, improving by +2.85% with respect to a previous work that

applied manually designed DL models on the same dataset, while also reducing

the model memory by 44%. Importantly, these enhanced DL models can function

in real time on low-power Internet of Things (IoT) nodes.

III

Acknowledgements

I would like to express my deepest appreciation to everyone who helped me

make this research project feasible. My heartfelt gratitude goes to all my

supervisors specially Prof. Pagliari for their important advice, unshakable

support, and insightful feedback that lighted the way for me along my trip.

I am grateful to the volunteers who willingly offered their time and skills,

allowing me to collect the necessary data and insights for this project. Their

contributions constitute the foundation for my study.

Last but not least, I want to thank my family, friends, and loved ones for their

unfailing encouragement, patience, and understanding, which have served as

pillars of strength during this difficult yet gratifying journey.

IV

Table of Contents

List of Tables VI

List of Figures VII

Acronyms X

1. Introduction 1

2. Related Works 4

3. Background 8

3.1 Overview…………………..……………………...………………... 8
 3.2 Neural Network Layers………………………..………………….10

 3.3 Neural Network Training………………………..………………..12

 3.4 Neural Architecture Architecture………………….……………..15

 3.4.1 Feed-Forward Networks……………………………….. 15

 3.4.2 Convolutional Neural Networks………………………. 15

 3.4.3 Recurrent Neural Networks ………………...……..….. 18

 3.4.4 Temporal Neural Networks ………………………..….. 18

 3.5 Neural Architecture Search ………………………………..……..20

 3.6 Metrics……………………………………………………….…….26

 3.6.1 Accuracy………………………..……………………….. 26

 3.6.2 Balanced Accuracy…………..…………………………. 26

 3.6.3 F1 Score…………………………...…………………….. 27

 3.6.4 Mean Square Error………………………...…………... 28

3.6.5 Mean Absolute Error…………………………………... 28
3.7 Infrared Sensors and Machine Learning …….…..……….…..... 30

4. Materials and Methods 32

4.1 Motivation………………………………..………………………..32
4.2 Dataset………………………..………………………..…………..33

V

4.3 Pruning in Time……………………………………………….…..36
4.3.1 Channel Search………………………………...………..37
4.3.2 Receptive Field Search…………………………...…….. 38
4.3.3 Dilation Search………………………………...……….. 39

 4.3.4 Joint Search…………………………………………….. 40

 4.3.5 Regularization…….…………………………………….. 40

4.4 SuperNet……………………………………….....………………..42
4.5 Model Architectures………………….…………..……………….43

4.5.1 Single-frame CNN………………….……………..……..43
4.5.2 Multi-frame CNN………………...…………………….. 44
4.5.3 Majority Voting CNN…………..……………..……….. 45

 4.5.4 CNN-TCN……………………………………………….. 46

4.6 Training Procedure……….………….…………..………………..48
5. Experiments and Results 50

5.1 Setup…………………..………………………………….…..……50
5.2 Seed Model Selection…………………………………………... ...50
5.3 PIT Architectures……………………..………………………...…54

 5.3.1 Multi-Frame Convolutional Neural Networks …...….. 54

 5.3.2 Temporal Convolutional Network ……………….……. 55

 5.3.3 Majority-Voting ……………………………........…..…..56

 5.3.4 SuperNet Models …………...……………………....….. 57

5.4 Architecture Comparison ………………………………….......…58
5. Conclusion 62

6. References 63

VI

List of Tables

Table 2.1 Advance People Counting Methods Based on Infrared Arrays

Table 3.1 Advanced NAS (Values: ↑ = large, ↗ = medium, ↓ = small)

Table 4.1 Dataset Statistics and Cross Validation Strategy

Table 5.1 Summary of visual representation notations

Table 5.2 Results of different seed models: C, P and FC denote as

Convolutional Layer, Pooling Layer and Fully Connected Layer,

respectively, and each value after them represents the number of

channels

Table 5.3 Selected seed models to apply PIT

Table 5.4 Selected SuperNet models to apply PIT

VII

List of Figures

Fig. 3.1 Three main layers in deep learning algorithms

Fig. 3.2 A depiction of a Convolutional Neural Network (CNN) with multiple

layers for extracting distinctive characteristics from an input image.

Fig. 3.3 An example of average pooling method.

Fig. 3.4 An example of unrolled RNN.

Fig. 3.5 Comparisons between a conventional convolutional network (a), a

causal convolutional network (b), and a dilated causal convolutional

network (c).

Fig. 3.6 Major components of the landscape of NAS algorithms.

Fig. 3.7 Selecting suitable architecture as optimum network architecture.

 Fig. 3.8 DNAS overview

Fig. 3.9 The Proxyless NAS approach learning process for both weight

parameters and architectural parameters.

Fig. 3.10 Problem formulation for counting people using IR array sensors.

Depending on the task, the prediction function f̂(X) can be produced

using a rule-based deterministic approach or learnt from data using

ML/DL, and the predicted person count yt can be either a scalar or a

class label.

VIII

Fig. 4.1 Sensor attachment with an example of an infrared frame.

Fig. 4.2 Illustration of PIT search space.

Fig. 4.3 ΘA,m = 0 causes the m-th convolutional filter to be deactivated,

thereby setting a section with dimensions K × Cin inside the weights

tensor W to zeros.

Fig. 4.4 A receptive field search is demonstrated by setting each value ΘB,i =

0, which results in the elimination of one input time-step from the

convolution output. This is accomplished by canceling out a particular

portion of the weight tensor W with dimensions Cout × Cin,

essentially eliminating its influence on the output.

Fig. 4.5 Dilation search works by doubling the value of parameter 'd' for each

case when Γi is set to 0.

Fig. 4.6 Single-frame CNN.

Fig. 4.7 An example of an IR frame sequence related to two persons moving

in close proximity to each other.

Fig. 4.8 Multi-frame CNN.

Fig. 4.9 Majority voting CNN.

Fig. 4.10 CNN-TCN.

Fig. 5.1 Pareto-Optimal curves of three different seed models obtained by

applying SuperNet with different α.

IX

Fig. 5.2 Pareto-Optimal curve of CNN models applying PIT with different λ.

Fig. 5.3 Pareto-Optimal curve of TCN applying PIT with different λ.

Fig. 5.4 Pareto-Optimal curve of Majority-Voting applying PIT with different

λ.

Fig. 5.5 Pareto-Optimal curve of CNN-SuperNet applying PIT with different

λ.

Fig. 5.6 Pareto-Optimal curves of different CNN seed models obtained by

applying PIT.

Fig. 5.7 Pareto-Optimal curves of different SuperNet seed models obtained

by applying PIT.

Fig. 5.8 Comparison between best-performing Pareto-Optimal front of the

seed models without applying SuperNet and the ones with applied

SuperNet.

X

Acronyms

DL
 Deep Learning

IoT
 Internet of Things

MCU
 Microcontroller

NAS
 Neural Architecture Search

LNAS
 Lightweight NAS

CNN
 Convolutional Neural Network

PIT
 Pruning In Time

ML
 Machine Learning

AI
 Artificial Intelligent

FPS
 Frames Per Second

LSTM
 Long-Short Term Memory

GRU
 Gated Recurrent Unit

XI

IR
 Infrared

KNN
 K-Nearest Neighbors

SVM
 Support Vector Machines

RF
 Random Forest

FNN
 Feedforward Neural Network

CPU
 Central Processing Unit

TCN
 Temporal Convolutional Network

FC
 Fully Connected

FLOP
 Floating Point Operation

DNAS
 Differentiable Neural Architecture Search

LINAIGE
 Low-resolution INfrared-array data for AI on the edGE

MSE
Mean Square Error

MAE
Mean Absolute Error

1

Chapter 1
Introduction

Recently, there has been a spike in demand for the use of Deep Learning (DL)

in the Internet of Things (IoT) world due to its remarkable performances in a wide

range of IoT applications, such as embedded computer vision and time series

forecasting [1], [2], [3], [4], [5]. Although, cloud-based computing centralizes

data processing in remote data centers, allowing for scalability but occasionally

resulting in latency issue, edge computing moves processing closer to data

sources, performing the inference of the DL model directly on the IoT device [1],

[6], [7].

Dropping the need for a constant connection or simply reducing the amount of

data transmitted can bring several benefits. First, increased security, as no

sensitive data is transmitted over a possibly insecure connection [1], [6]. Second,

predictable and possibly lower latencies, leading to real-time applications being

available on IoT end-nodes. Finally, lower energy footprints, as the data

transmission is generally less optimized than performing computations locally.

This last point is crucial for battery-operated IoT devices, that have to be

operational for as long as possible.

However, while running the inference on IoT nodes can lead to several

benefits, DL models are generally designed to run on powerful high-end

hardware. These algorithms consume a lot of energy and need a lot of processing

power, making them unsuitable for deployment on IoT nodes. These nodes, which

are often powered by batteries and have limited memory and resources, rely on

Microcontrollers (MCUs) to work properly. It is critical to choose appropriate

models and hyper-parameters for successful DL deployment in energy-

constrained IoT edge devices, a complex and time-consuming challenge due to

the constrained hardware of MCUs.

Neural Architecture Search (NAS) has become increasingly popular,

performing in an automatic process of the search for the optimal architectures and

determining ideal network layouts. Several of these NAS approaches, in

particular, have been specially optimized for edge devices, where resource

restrictions are much more severe [8], [9], [10], [11], [12]. The importance of

2

using NAS tools derives from their capacity to efficiently explore a large search

space of potential network configurations which enables researchers and

engineers to focus on other areas of the machine learning pipeline. Existing NAS

tools for 2D CNNs frequently employ a coarse-grained approach, making

multiple copies of network layers for different designs, resulting in excessive

memory and time consumption [12]. Lightweight NAS (LNAS) solutions, on the

other hand, provide more efficient exploration of architectural space by focusing

on certain model properties, such as channel numbers in layers, which are critical

for computer vision [9], [10].

In this work, we leverage a lightweight NAS approach named Pruning In Time

(PIT) [13], utilizing a single seed model as a basis to generate a diverse array of

Pareto optimal architectures, achieving a finest balance between the number of

operations/parameters and accuracy. The approach employs use of structural

weight pruning, which involves increasing weights with trainable masks that

reflect architectural settings. During training, these masks are improved using

regularizers to reduce model complexity while retaining accuracy. Two inner

regularizers collaborate: one decreases parameters and the other performs

inference methods. This facilitates Neural Architecture Search (NAS),

successfully revealing various Pareto architectures.

In particular, we apply PIT for an increasingly popular task of IoT applications,

that is, people counting. The importance of people counting arises from its vast

range of uses in public safety, urban planning, and commercial situations [14].

The practical applications of this technology range from monitoring the

occupancy levels of indoor workspaces, museums, and hospitals to conducting

in-depth assessments of people flow data at the doors of stores, supermarkets, and

other public locations. Furthermore, in the context of the COVID-19 pandemic,

people counting technology has played a critical role in monitoring and

implementing social distancing standards and safety norms [15], [16], [17].

In the realm of Internet of Things (IoT), there is a vast variety of technical

solutions for people counting, which may be generally classified into two primary

types: instrumented and un-instrumented techniques [18]. The former makes use

of transceivers that are already present in devices that users own or are given,

such as smartphones, smartwatches, or tags [19]. However, since they rely on

voluntary contributions and specialized technology, these techniques have

substantial constraints that make them difficult to deploy in many real-world

settings, particularly in public spaces. Un-instrumented solutions, on the other

3

hand, do not rely on person active participation and instead rely on external

sensors such as proximity sensors, optical cameras, and infrared arrays [18], [20],

[21], [22]. In particular, Infrared beam sensors and passive infrared sensors are

the least expensive and easiest to deploy, however they have significant

limitations. They rely on object motion and may fail to discriminate between

many people in close proximity [23]. However, thanks to the significant

improvement in computer vision and video analysis brought by Deep Learning

(DL) models, these technologies are becoming increasingly appealing. Many of

today vision-based techniques use optical cameras and Machine Learning (ML)

algorithms to detect and locate people inside each frame [24], [25], [26]. While

these technologies have shown to be efficient, they create serious privacy issues

since they acquire and process sensitive information about individuals, such as

face features and physical characteristics.

In this case, the use of low-resolution infrared (IR) array sensors is a viable

choice that offers various benefits. These sensors are capable of capturing small

thermal pictures (often 8x8 or 16x16 pixels) at around 10 frames per second (FPS)

[27]. While they can detect basic forms, they do not record details such as facial

characteristics, clothes, or hairstyles, allowing them to be used in a private setting.

Furthermore, their low power consumption, low-cost, and low-resolution make

them ideal in an IoT setting, where battery-powered devices need to be

operational for long periods of time [13], [28], [29], [30], [31].

In this work, we benchmark several DL architectures on an infrared dataset

with a resolution of 8x8. In particular, we select 8 state-of-the-art models on the

task, using them as seed model for the NAS to generate a wide set of models,

spawning accuracies between 81.38% and 92.74% and number of parameters

between 575 and 18124. We show that NAS approaches are suitable also for IR

data and can outperform hand-crafted models by up to 2.85%, while reducing the

memory by 44%.

4

Chapter 2
Related Works

In this chapter, we present a review of the literature on people counting with

multi-pixel infrared arrays. Table 2.1 highlights several studies, including sensor

model, resolution, location, target dataset, counting methods, and IoT devices

utilized for deployment. Previous works integrating low-resolution infrared

sensors with Machine Learning (ML) have mostly focused on human activity

identification [32], [33], [34], [35], [36], [37], [38], [39], [40], [41]. Some of these

studies use traditional algorithms [32] - [35] while others offer Deep Learning

(DL) methodologies such as Convolutional Neural Networks (CNNs), Long-

Short Term Memory (LSTMs), Gated Recurrent Units (GRUs), or a mix of these

(e.g., CNN-LSTM) [36] - [41]. The number and location of IR sensors utilized,

the preprocessing methods performed on thermal pictures before feeding them to

ML models, and the identified activities change depending on the work. These

activities vary from everyday behaviors like walking, sitting, and standing

identification [32], [34], [36], [38], [40] to more particular scenarios like

detecting falls in older people [33], [35] epilepsy-induced convulsions [41], and

even yoga position recognition [37]. As far as we know, the only work available

for counting people using low-resolution IR sensors (8x8 pixels) is the method

put forward in reference [42], [43].

Some studies used deterministic algorithms [17], [42], [44], [45], [46], [47]

traditional ML models [48], or deep learning [30], [31], [49], [50]. For instance,

in [17], the authors described a real-time pattern recognition method that uses

data from low-resolution IR array sensors placed on entrances to detect the

number of persons in a room. Similarly, [44] used a doorway sensor in

conjunction with body extraction and localization algorithms, as well as the

background assessment for people counting. [45] suggested a lightweight

deterministic approach that uses a single array sensor mounted on a door to record

item trajectories entering and departing a room, allowing calculation of the

number of people. These techniques are intriguing because they make use of a

single, low-resolution sensor but are confined to counting individuals entering

and departing a room through a doorway, solving a simplified version of the

generic people counting problem.

5

Table 2.1

Advance People Counting Methods Based on Infrared Arrays

Work Sensor Positioning Dataset Algorithm Deployment

Target

Perra et al. [17] Grid EYE

(8x8) Door Private Deterministic Z-Uno

Mohammadmoradi

et al. [44]
Grid EYE

(8x8) Door Private Deterministic Raspberry Pi

Zero

Wang et al. [45] MLX90641

(12x16) Door Private Deterministic ESP8266

Rabiee et al. [46] Grid EYE

(8x8) Ceiling
Private/Nagoya-

OMRON

Dataset [29]
Deterministic -

Singh et al. [47] MLX90621

(16x4)
Ceiling/Side

Wall Private Deterministic Arduino Uno

Chidurala et al.

[48]

Grid EYE

(8x8)
MLX90640

(32x24)
Lepton

(80x60)

Ceiling Private

Naive Bayes
KNN
SVM
RF

Raspberry Pi

3

Bouazizi et al. [49] MLX90640

(32x24) Ceiling Private CNN Raspberry Pi

3

Gomez et al. [30] Lepton

(80x60) Wall Private CNN NXP

LPC54102

Metwaly et al. [31] MLX90640

(32x24) Ceiling Private
FNN
CNN
GRU

STM32F4/F7

Kraft et al. [50] MLX90640

(32x24) Ceiling Thermo

Presence [24] CNN Raspberry Pi

4

Xie et al. [16] Grid EYE

(8x8) Ceiling LINAIGE [31] CNN (2 variants) STM32L4

Xie et al. [51] Grid EYE

(8x8) Ceiling LINAIGE [31] Wake-up Trigger

+ CNN STM32L4

Xie et al. [43] Grid EYE

(8x8) Ceiling LINAIGE [31]
CNN (4 variants)

CNN-LSTM
CNN-TCN

STM32L4

This work Grid EYE

(8x8) Ceiling LINAIGE [31] CNN (3 variants)
CNN-TCN -

(*) All of these entries relate to the deployment of the approach described in [42] in [43].

In [42], the authors present a more general deterministic technique with a

ceiling-mounted sensor. Smoothing, linear interpolation, and hot area labeling

and clustering are used to identify moving thermal objects from the background

in this approach. Following that, each recognized thermal item is subjected to a

threshold-based human detection to determine if it represents a person. To

preserve accuracy, the reference backdrop image is regularly updated to

continually filter out stationary heated objects.

6

Furthermore, researchers have looked into multi-sensor deterministic

techniques. A people counting technique, for example, was described in [46] for

effectively tracking population in smart constructions. Several low-resolution

sensors strategically positioned at connecting points between different regions of

the building are used by the algorithm to count the number of persons travelling

between neighboring zones. Similarly, [47] presents a system for indoor people

counting based on two deterministic algorithms. This approach entails the

placement of three 16x4 thermal sensors at various sites, each sensor is orientated

in the x, y, and z axes, respectively. The combination of these sensors provides

precise and dependable indoor people counting.

The authors of [48] investigates people counting using three infrared (IR)

arrays attached to the ceiling, each with a different resolution (8x8, 32x24, and

80x60). Various preprocessing and feature extraction approaches are used in the

study, including active pixel and active frame detection, connected components

analysis, and statistical features. To compare the performance, they use several

Machine Learning models, such as Naive Bayes, K-Nearest Neighbors (KNN),

Support Vector Machines (SVM), and Random Forests (RFs). The RFs produces

the greatest score for the 8x8-resolution array based on their results from a private

dataset.

Various deep learning (DL) algorithms for indoor people location and counting

utilizing infrared (IR) sensors have been developed recently. In [49], for example,

the authors propose a method based on a Convolutional Neural Network (CNN)

with 9 convolutional layers and 1 dense layer. This CNN analyzes data from a

32x24 pixel IR sensor positioned on the ceiling. Notably, they propose the option

of collecting lower-resolution samples (down to 8x6 pixels) with the use of a

separate 8-layer CNN for frame upscaling to decrease sensor costs.

In [30], another people counting algorithm is introduced. This method relies

on wall-mounted sensors and leverages a small-sized CNN model designed

particularly for a low-memory, low-power platform. In this scenario, the IR array

has a greater resolution of 80x60 pixels. Similarly, in reference [31], the authors

investigate several DL approaches for indoor occupancy estimates, such as

Feedforward Neural Networks (FNNs), CNNs, and Gated Recurrent Units

(GRU). Their investigations are based on a ceiling-mounted infrared array with a

resolution of 24x32 pixels. In contrast, [50] employs a ceiling-mounted IR array

with the same resolution (24x32 pixels) and a U-Net-inspired encoder-decoder

7

CNN architecture. This method effectively recreates people positions in the

recorded frame.

In [16], another DL algorithm based on an ultra-low-resolution (8x8) array is

proposed. It should be noted, however, this study focused on a reduced form of

the people counting problem. The major goal was to determine whether the sensor

region contained two or more persons, especially in the context of social distance

monitoring to limit COVID-19 spread. A similar method was used in a prior study

[51], where an additional deterministic wake-up-trigger was included to prevent

extra CNN invocations when no people were present in the frame. This change

considerably lowered the overall energy usage of the system.

Existing data-driven (ML or DL) research for IoT end-nodes using low-

resolution infrared arrays are scarce. For example, studies [48] and [49] focus

primarily on person counting deployment on high-end mobile Central Processing

Units (CPUs), but fail to give extensive information on critical deployment

features such as memory utilization, inference delay, and model utilization of

energy. Second, [30] and [31] emphasize the use of expensive and power-

intensive high-resolution arrays, which may compromise user privacy.

Furthermore, [49] supports low-resolution sensors but depends on an additional

CNN model for frame upscaling, increasing total inference complexity. In

addition, publications such as [30], [31] and [48] use unreasonable data splitting

approaches, such as arbitrarily choosing individual frames or sliding windows,

which improperly simplifies the process. Only [49] uses a reasonable data

separation at the session level, on the other hand, both [16] and [51] concentrate

on a simpler task variation. In [43], the authors study the new application of Deep

Learning (DL) approaches to a people counting task utilizing a single, ceiling-

mounted, ultra-low-resolution IR array with just 8x8 pixels. The results of an

exhaustive investigation of six families of efficient DL models and various hyper-

parameter settings show that DL not only surpasses deterministic algorithms in

regards to counting accuracy, but also in terms of energy consumption and

latency.

In this work, we also utilized a single, ceiling-mounted, ultra-low resolution IR

array with just 8x8 pixels data, [43], as the sensor configuration in the

investigation. Our main objective is to study several deep learning (DL) models

for people counting applying Neural Architecture Search (NAS) approach

presented in [5] with an extensive search of hyper-parameter space.

8

Chapter 3
Background
3.1 Overview

Deep Learning has become increasingly popular due to its outstanding

performances in a wide range of fields, such as Computer Vision and Speech

Recognition. As opposed to traditional Machine Learning it does not rely on

complex hand-crafted features, but instead extracts them automatically directly

from the data. An advantage of DL lies in its capability to learn non-linear

functions, allowing it to possibly approximate any function. In contrast, however,

it usually requires large amounts of data, often underperforming for datasets of

limited size. In order to further improve the performance of DL models, several

architectures have been proposed, with the most popular being:

• Feed-Forward Neural Networks (FNNs): also known as Multilayer

Perceptrons (MLPs), are a basic type of artificial neural network. Data

in FNNs flows unidirectionally from input to output layers, with no

feedback loops. They are adaptable and commonly used for

classification and regression applications.
• Convolutional Neural Networks (CNNs): they are designed to analyze

grid-like data, such as photos and movies. They use convolutional layers

to learn spatial feature hierarchies automatically, making them crucial

for tasks like image classification and object recognition.
• Recurrent Neural Networks (RNNs): are specialized for sequential data,

such as time series and natural language processing, where the sequence

of items is important. RNNs use recurrent connections to allow

information to propagate across time steps. They are crucial in

applications such as language modeling and speech recognition since

they excel at capturing temporal relationships.

While these three neural network architectures are the fundamental building

blocks of deep learning, it is worth noting that several other specialized

architectures and hybrid models have arisen to address specific tasks.

9

In the context of the learning process, Machine Learning (and thus DL as well)

can be divided into three main categories: supervised, unsupervised, and

reinforcement learning.

Supervised learning, that is used in this work, is a fundamental machine learning

approach that is widely employed in a variety of applications. An algorithm is

trained on a labeled dataset, with each data point consisting of input

characteristics and associated output labels or target values. The basic purpose of

the algorithm is to learn a mapping from the input characteristics to the output

labels, allowing it to make predictions or classifications on new, previously

unseen data.

Unsupervised learning is another type of a machine learning paradigm in which

the algorithm learns patterns and structures in data without explicit supervision

or labeled outputs. Unsupervised learning algorithms, rather than producing

predictions, seek to find intrinsic patterns, groups, or correlations in data.

Unsupervised learning is commonly used for clustering and dimensionality

reduction.

Finally, Reinforcement learning is a sort of machine learning in which an agent

learns to make decisions in a given environment in order to maximize a

cumulative reward. In this context, there is no explicit dataset of labeled samples.

Instead, the agent interacts with the environment, performs actions, receives

feedback in the form of incentives or penalties, and gradually learns to optimize

its activities. Reinforcement learning is frequently employed in applications such

as game play and autonomous robots.

10

3.2 Neural Network Layers
Deep Neural Networks (DNNs) are composed of various layers, each playing

an important role in data processing and transformation. Before we delve into the

details of these layers, it is important to comprehend two key concepts: overfitting

and underfitting.

• Overfitting happens when a model learns the training data, including

noise and random fluctuations, exceedingly well. As a result, the model

becomes highly specialized to the training data while failing to

generalize successfully on unseen or new data. Overfitting occurs when

a model is overly complicated in comparison to the data on which it is

trained.
• Underfitting occurs when a model is too simplistic to capture the

underlying patterns in the data. It does not sufficiently learn the training

data, leading in low performance on both the training and test data.

Underfitting occurs when a model is too shallow or lacks the ability to

describe the intricacies in the data.

With these definitions in mind, we can now explore the various layers of neural

networks, shown in Figure 3.1, understanding their roles and how they can impact

overfitting and underfitting.

Fig. 3.1. Three main layers in deep learning algorithms.

11

1. Input Layer: The input layer serves as the first point of contact between the

neural network and the input data. It is made up of neurons that correlate

to the dimensions of the incoming data. This layer just receives input data

and passes it on to the first intermediate layer. The dimensionality of the

input data determines the size of the input layer.

2. Intermediate (Hidden) Layer: Intermediate layers are in charge of

performing complex data transformations and extracting essential

characteristics and patterns. Each hidden layer receives input from the

previous layer and sends its output to the next layer. A node is a

computational unit that contains one or more weighted input connections,

a transfer function that combines the inputs in a certain manner, and an

output connection. The nodes are then grouped into layers to form a

network. The number and size of hidden layers can have a big impact on

whether the network is vulnerable to overfitting or underfitting.

Underfitting can occur when there are too few or too small layers, and

overfitting can occur when there are too many or overly large layers.

3. Output Layer: The ultimate outcome of the neural network's calculations is

produced by the output layer. The output layer size is normally defined by

the distinctive problem requirements.

12

3.3 Neural Network Training
The process of teaching a neural network to produce correct predictions or

classifications based on input data is known as training. This process includes

several critical steps, including as the neural network design, the selection of a

loss function, the employment of an optimization technique (often gradient

descent), and the tuning of hyperparameters such as the learning rate.

Backpropagation is also an important approach for updating the network weights

and biases during training. In the following, we provide brief explanation of the

most important steps:

Neural Network Architecture: The architecture of neural networks can vary

depending on the scenario at hand, with different types of layers and activation

functions utilized. We already discussed common designs, which are made up of

layers of interconnected nodes. Weighted interconnections connect each node in

a layer to every node in the subsequent layers. The equation of a neuron is the

following:

𝑧𝑖 = ∑ 𝑤𝑖𝑗 × 𝑎𝑗 + 𝑏
𝑗

 (3.1)

where:

• 𝑧𝑖 is the output to neuron 𝑖.
• 𝑤𝑖𝑗 is the weight of the connection between neuron 𝑗 in the previous

layer and neuron 𝑖 in the current layer.
• 𝑎𝑗 is the output (activation) of neuron 𝑗 in the previous layer.
• 𝑏 is the bias term.

 Loss Function: A loss function (also known as a cost or objective function)

calculates the difference between the neural network's predicted output and the

actual target values. The nature of the problem influences the choice of a loss

function. During training, the aim is to reduce the value of the loss function,

which indicates that the network predictions are approaching closer to the real

goals. The general formula of a loss function can be expressed as follows:

𝐿(𝜃) =
1

𝑁
∑ ℓ(𝒻(𝑥𝑖; 𝜃), 𝑦𝑖)

𝑁

𝑖=1
 (3.2)

13

where,

• 𝐿(𝜃) denotes the overall loss or cost as a function of the model

parameters (𝜃). The aim of training a neural network is to minimize this

loss by modifying the model parameters.
• N is the number of training examples in the dataset.
• ℓ(𝒻(𝑥𝑖; 𝜃), 𝑦𝑖) is the specific loss for a single training example. This

term measures the error or difference between the predicted output

𝒻(𝑥𝑖; 𝜃) of the neural network for input 𝑥𝑖 and the actual target output

𝑦𝑖 . The precise loss function (ℓ) chosen depends on the task.

Activation Function: In a neural network layer, activation functions are applied

to the output of each neuron. They add non-linearity to the model, which allows

it to learn complicated patterns. Sigmoid, Hyperbolic Tangent (tanh), Rectified

Linear Unit (ReLU), Leaky ReLU, and Exponential Linear Unit (ELU) are

examples of common activation functions. The activation function adopted can

have a considerable influence on network performance and training speed,

however, their choice is often problem-dependent.

Forward Pass: During the forward pass, input data is fed into the neural

network, and layer-by-layer computations are performed to create an output

prediction. Each neuron output is decided by applying an activation function to

the weighted sum of its inputs as 𝑎𝑖 = 𝜎(𝑧𝑖) in which 𝜎(𝑧𝑖) is the activation

function applied to the input 𝑧𝑖 of neuron 𝑖.

Backpropagation: Backpropagation is a supervised learning method that is

used to update the neural network weights and biases in order to minimize loss.

It consists of computing the gradient of the loss for each layer, starting from the

output one. Weights are then updated by a small multiple of the partial derivative,

repeating the process until a specific stopping criterion is met. The small

multiplier is called learning rate, playing a major role on the final accuracy of the

model. A high learning rate can cause overshooting of the ideal weights, whereas

a slow learning rate can cause slow convergence. To increase training stability,

techniques such as learning rate schedules and adaptive learning rates (e.g., Adam

optimizer) can be applied. The general formula for updating a neural network

weight (W) during backpropagation, which incorporates the learning rate (𝛼), is

as follows:

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝛼.▽ 𝐿(𝑊𝑜𝑙𝑑) (3.3)

14

Where:

• 𝑊𝑛𝑒𝑤 and 𝑊𝑜𝑙𝑑 are the new and old values for a given weight parameter.
• 𝛼 is the learning rate controling the step size of the weight update.
• ▽ 𝐿(𝑊𝑜𝑙𝑑) is the gradient of the loss function regarding the weights at

their current values. This gradient is computed through backpropagation.

15

3.4 Neural Network Architectures

3.4.1 Feed-Forward Networks
The most basic type of neural network, feed-forward neural networks, have a

single objective: to approximate a target function indicated by 𝑓∗. These networks

create a connection between an input x and an output y, denoted as 𝑦 − 𝑓(𝑥; 𝜃) ,

with the role of the fully connected layers being pivotal in this process. These

layers, also known as dense layers, form the backbone of the network, facilitating

the transformation of input data through weighted connections and activation

functions. Adjusting the parameter 𝜃 to achieve the best accurate approximation

of the target function is part of the learning process. These models are referred as

"feed-forward" because they lack feedback links that allow outputs from various

stages to be sent back into the network. They are instead referred to as "networks"

since they are often built by merging various functions in a certain way. This

structure can be represented as a directed acyclic graph, which shows how various

functions are interrelated and combined.

3.4.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a type of neural network that is

designed to handle grid-structured input, as seen in Figure 3.2. Due to its intrinsic

capacity to capture both spatial and temporal dependencies within grid-structured

data, CNNs have shown to be incredibly successful in a variety of applications,

including image classification, voice analysis, and video processing. CNNs have

evolved into an essential tool in current machine learning as a result of their

capacity to automatically learn and discover meaningful patterns from raw data.

As research and development in this field continues, CNNs are anticipated to

make even more astounding advances, allowing them to address increasingly

difficult and real-world problems.

16

Fig. 3.2. A depiction of a Convolutional Neural Network (CNN) with multiple layers for extracting distinctive

characteristics from an input image. (Image from [52])

At the heart of CNNs lies the convolutional layer, which employs learnable

parametric filters to transform the input into multiple small receptive fields [53].

During the forward pass, a dot product operation is performed between the input

data and the filters, resulting in activation maps for each filter that represent

distinct features or patterns [53]. This convolution operation facilitates the

extraction of diverse features or activation maps through parameter sharing,

granting CNNs the desirable quality of translation invariance. In Eq. 3.4, the 𝑖

and 𝑗 represent input data positions, whereas 𝑚 and 𝑛 indicate filter positions.

The formula implements the convolution process, computing each element in the

output feature map 𝑦 as the sum of element-wise products of the filter ℎ and

corresponding parts of the input data 𝑋. Convolution provides various benefits to

machine learning models, including lower memory usage, reduced computational

effort, and the ability to handle inputs of various sizes.

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 = 𝑦[𝑖, 𝑗] = 𝑖𝑛𝑝𝑢𝑡 ⊗ 𝑘𝑒𝑟𝑛𝑒𝑙 = ∑∑𝑋[𝑖 − 𝑚, 𝑗 − 𝑛]. ℎ[𝑚, 𝑛] (3.4)

Concat layers, also known as concatenation layers, play an important role in

CNNs by concatenating feature maps. This is critical for a number of reasons,

including combating the vanishing gradient problem by enabling information to

flow from earlier layers to later ones, allowing for the simultaneous learning of

low-level and high-level characteristics. Concat layers are especially useful in

multi-modal networks for fusing outputs from several input modalities, which

improves the network capacity to handle complicated data interactions and

produce thorough predictions.

17

CNNs use pooling layers to reduce the dimensionality of the feature maps,

grouping values together and performing a reduction process. Among the several

reduction functions, the most common are the maximum and the average [53],

average pooling is shown in Figure 3.3. The goal of pooling is to condense the

information while limiting the loss of information.

Fig. 3.3. An example of average pooling method. (Image from [54])

The batch normalization layer is used to improve the stability of input data

distributions by altering their mean and variance. This technique improves the

predictiveness of gradients utilized during training, increasing accuracy while

decreasing training time. The dropout layer, on the other hand, is used during

training to prevent overfitting of the network, but it is inactive during inference.

It enables the termination of certain neurons to prevent co-adaptation, thus

boosting the network's generalization capacity.

At the final stages of the CNN, fully-connected (FC) layers come into play. In

contrast to the convolution and pooling layers, which act locally, the FC layers

implement a global operation. These layers, which are typically positioned at the

end of the network, connect every neuron in one layer to every neuron in the next

layer [53].

18

3.4.3 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are a type of neural network that is

designed to process sequential data. They can handle sequences of values

indicated as x(1),..., x(𝜏), and these sequences can be larger and more flexible in

length than other non-specialized networks. RNNs, similar to feed-forward

networks, assess the input sequence one element at a time. RNNs, on the other

hand, have a "memory" vector that stores information about all previous items in

the sequence. It is crucial to notice that the index t in the series of items x(t),

shown in Figure 3.4, does not always correlate to real-world time. Instead, it

represents the place in the sequence. As long as the complete sequence is

accessible for the network to execute, this location might travel backward in real-

world time or have no direct link to it.

Fig. 3.4. An example of unrolled RNN. (Image from [55])

3.4.4 Temporal Convolutional Networks

Temporal Convolutional Networks (TCNs) have emerged as a prominent

variation of 1-dimensional (1D) Convolutional Neural Networks (CNNs),

outperforming classical RNNs, LSTM, and GRU models in different time-series

processing applications [29], [56], [57]. TCNs have a significant benefit over

RNN-based models in that they are less susceptible to training-time difficulties

such as disappearing or raising gradients, which might hinder learning. TCNs also

require less training memory when dealing with extended input sequences, which

is a typical difficulty for RNN-based designs. They also provide computational

advantages during inference, making them more efficient in terms of latency and

energy usage. This benefit arises from their ability to use traditional CNNs data

localization and arithmetic intensity properties [58]. TCNs and regular CNNs

have the same essential building pieces, notably Convolutional, Pooling, and

19

Fully Connected layers. TCN convolutional layers, on the other hand, have two

separate properties: causality and dilation, shown in Figure 3.5, which make them

suited for processing temporal inputs. This innovative design enables TCNs to

attain cutting-edge performance while resolving training-time issues and

delivering computational efficiency during inference

Fig. 3.5. Comparisons between a conventional convolutional network (a), a causal convolutional network (b),

and a dilated causal convolutional network (c). (Image from [59])

To retain the natural sequence of cause and effect in occurrences, TCN

convolutional layers impose causality. In practice, this implies that the output at

time step t (denoted as 𝑦𝑡) in a TCN convolution is only dependent on a finite

number of previous inputs (𝑥[𝑡 − 𝐹, 𝑡]). However, dilation is a strategy used in

TCNs to extend the receptive field of convolutions along the time axis without

introducing extra trainable parameters or increasing the number of operations

necessary for inference. This is accomplished by introducing a fixed step (d)

between the input samples processed by each convolutional filter. Eq. 3.5

represents the 1D dilated convolution operation in TCN layers, where x and y are

input and output activations, T is the output sequence length, W is the array of

filter weights, Cin and Cout are the number of input and output channels, K is the

filter size, s is the stride, and F is the layer receptive field, which is determined

by the dilation factor (d) and the filter size (K) as 𝐹 = 𝑑 ∗ (𝐾 − 1) + 1.

𝑦𝑡
𝑚 = ∑ ∑ 𝑥𝑡𝑠−𝑑𝑖

𝑙 . 𝑊𝑖
𝑙,𝑚

𝐶𝑖𝑛−1

𝑖=0

𝐾−1

𝑖=0

, ∀𝑚 ∈ [0, 𝐶𝑜𝑢𝑡 − 1], ∀𝑡 ∈ [0, 𝑇 − 1] (3.5)

20

3.5 Neural Architecture Search (NAS)
The development of efficient and compact convolutional neural network

architectures suitable for edge devices has recently accelerated. For instance,

early MobileNets [60], ShuffleNets [61], EfficientNet [62], and SqueezeNet [63]

are some famous cases. In terms of efficiency, these models have shown

considerable potential, making them perfect alternatives for edge computing

applications. However, their development required challenging hand

modifications of hyperparameters, which took a substantial amount of time and

effort. Furthermore, each time a new target job or deployment platform was

considered, the tuning procedure had to be restarted from the beginning.

To solve this issue, researchers have developed a number of automated or semi-

automated approaches for optimizing neural network topologies. These

approaches are known as Neural Architecture Search (NAS) algorithms. The

major purpose of NAS algorithms is to relieve designer workloads by automating

the process of determining the best architecture for a specific job or deployment

target. NAS techniques generally operate as shown in Figure 3.6. The NAS

explores the architecture search space, selecting a subset of the candidates. An

evaluation strategy will then determine the "goodness" of the found architectures

and a control mechanism will decide whether the process can stop or should

continue. NAS algorithms can be categorized mainly on three factors:

a) Search space in which the search is undertaken,
b) How the search is performed, including the controller strategy and the

evaluation of possible applicants
c) How this candidate performance is assessed.

Fig. 3.6. Major components of the landscape of NAS algorithms. (Image from [64])

21

NAS methods operate by exploring a large design space that includes various

combinations of network layers and hyperparameter values. During this

investigation, they evaluate the performance of each design using a cost metric.

This cost measure often takes into account both the network accuracy and its

computational efficiency, which may be defined by factors such as the number of

parameters or inference operations.

Fig. 3.7. Selecting suitable architecture as optimum network architecture. (Image from [65])

Table 3.1 presents a qualitative comparison of key works in this field,

concentrating on search time, memory needs during training (Mem.), search

space size, and the possibility to alter the resultant neural network architecture

(number and type of layers). Smaller numbers are preferred for Time and

Memory, but bigger values are desired for Search Space. Early NAS tools relied

on Reinforcement Learning (RL) [8], [11], [66], [67], or Evolutionary Algorithms

(EA) [68]. These approaches entail sampling structures from the search space and

training them to convergence in order to evaluate their accuracy (and optionally

cost), which then drives the next sample iteration. The repeated training in each

iteration, on the other hand, is a substantial disadvantage, resulting in

considerable GPU hours (thousands) even for relatively basic jobs, resulting in

longer search times, as seen in Table 3.1.

22

Table 3.1
Advanced NAS (Values: ↑ = large, ↗ = medium, ↓ = small)

 Time Mem. Search Space Topology
Reinforcement Learning

Zoph et al. [8] ↑ ↓ ↗ Variable*
MNASNET [11] ↑ ↓ ↑ Variable
NASNET [66] ↑ ↓ ↗ Variable
MetaQNN [67] ↑ ↓ ↑ Variable

Evolutionary
Real et al. [68] ↑ ↓ ↑ Variable

DifferentiableNAS
DARTS [69] ↗ ↑ ↓ Variable

ProxylessNAS [12] ↗ ↗ ↗ Variable
DmaskingNAS

FBNetV2 [9] ↓ ↓ ↑ Fixed
MorphNet [10] ↓ ↓ ↗ Fixed

S.-Path NAS [70] ↓ ↓ ↗ Fixed
PIT [5] ↓ ↓ ↑ Fixed

*Deploy only

To solve the time-consuming search problem of Reinforcement Learning (RL)

and Evolutionary Algorithms (EA) techniques, more modern approaches, such as

Differentiable Neural Architecture Search (DNAS), Fig. 3.8, have added

supernets [69]. Supernets are Deep Neural Networks (DNNs) that include all

conceivable alternative layers to be examined during the optimization process.

For example, a single supernet layer may comprise many Convolutional layers

with differing kernel sizes running in parallel. The challenge of choosing a certain

architecture is therefore changed into the task of selecting a path inside the

supernet [69]. The choice between multiple paths is represented by binary

variables that are jointly learned with the conventional network weights using

gradient-based learning. DNAS tools enhance the standard training loss function

with an extra differentiable regularization term that captures the network cost to

successfully search for correct and efficient designs. The number of parameters

and the number of Floating Point Operations (FLOPs) per inference are two

common cost metrics [10].

DNAS use a unique optimization approach in mathematics that includes

looking for the minimum of a function written as follows:

𝑚𝑖𝑛
𝑊,𝜃

= ℒ(𝑊; 𝜃) + 𝜆ℛ(𝜃) (3.6)

The function in this case is made up of two major components. The

conventional loss function, indicated by ℒ, evaluates the model performance

using regular trainable weights W (such as convolutional filters). Second, there is

23

a set of extra NAS-specific trainable parameters that are in charge of encoding

distinct supernet pathways.

Fig. 3.8. DNAS overview: (a) At first, the operations applied to the neural network edges are not preset or known.

(b) By adding a mix of candidate operations on each edge, the search space is continually extended. (c) The

technique entails solving a bilevel optimization problem while concurrently optimizing the mixing probabilities

(weights) of these candidate operations and the weights of the neural network. (d) The architecture is established

using the learnt mixing probabilities, which show the significance of certain processes. (Image from [69])

A regularization loss R, which measures the total cost of the network, is also

included to reach an ideal solution. To manage the effects of this regularization

term, a hand-tuned parameter is applied, successfully balancing its impact against

the principal loss term. The trade-off between model performance and

regularization may be fine-tuned to obtain the best configuration.

Despite the improved efficiency of DNAS algorithms over earlier RL/EA-

based methods, training the complete supernet still necessitates a significant

amount of computing resources in terms of both training time and memory

utilization. As a result of this constraint, the investigated search space for practical

DNASs like the one indicated in reference [69] is reduced. To keep memory

limitations manageable, these algorithms are limited to exploring only a few

choices per layer during the search. However, the authors of reference [12] offer

a more complex DNAS called ProxylessNAS, which tackles this issue by

lowering memory needs. It provides this by maintaining no more than two

supernet pathways in memory for each batch of inputs.

24

ProxylessNAS has a two-phase training strategy. The path parameters are fixed

in the first phase, and one sub-architecture of the supernet is randomly sampled

depending on their present values. Following that, the weights of the sampling

architecture are updated using the training set. In the second phase, the normal

weights are frozen, and the architectural parameters are learned using the

validation set. This second step updates two pathways at the same time, sampling

them from a multinomial distribution. ProxylessNAS may successfully explore a

substantially broader search field than other DNAS tools due to this clever

method, as seen in Figure 3.9.

Fig. 3.9. The Proxyless NAS approach learning process for both weight parameters and architectural parameters.

(Image from [12])

Advances in techniques such as DMaskingNAS [9], fine-grain NAS [10], and

Single-Path NAS [70] have contributed to the progress of lightweight Neural

Architecture Search (NAS). These approaches replace the old SuperNet with a

single large, architecture with one route. Finding optimal architectures entails

altering this initial seed model through hyper-parameter tweaking, namely the

number of channels in each layer [10]. Trainable masks are used to prune sections

of the network to perform this tweaking effortlessly during regular training. The

goal of DMaskingNAS tools is the same as that of DNAS (as stated in [71]), with

now representing the set of trainable masks.

FBNet-V2 [9], for example, employs a collection of specialized masks, each

storing a distinct number of output channels or spatial resolutions and weighted

with trainable parameters. The mask associated with the biggest parameter is

picked after the search to establish the final architectural setting. MorphNet [10]

25

similarly use the pre-existing multiplicative terms of batch normalization layers

as masking parameters [72]. If these parameters drop below a particular level,

the preceding related channels of Convolutional layer or feature maps are

removed. When compared to SuperNet-based techniques, these methods are more

limited in terms of neural network structure. They do not, for example, allow you

to select between different layers, such as a regular convolution and a depthwise

plus point-wise convolution.

These restricted techniques, however, offer two key advantages. First, they are

substantially more efficient in terms of memory utilization and search time while

still identifying high-quality designs. Notably, the search time of a

DMaskingNAS is comparable to the training time of a normal network. Second,

some DMaskingNAS variations have the ability to explore the search space with

considerably finer granularity. MorphNet [10], for instance, may simply choose

between 1 and 32 output channels in a Convolutional layer with a precision of 1

by starting with a 32-channel seed layer and deleting channels with the smallest

batch normalization multiplicative parameters. To achieve the same level of fine-

grained selection with a standard DNAS, an extremely large supernet consisting

of 32 parallel convolutional layers would be required. Additionally, the masking

and supernet techniques may be used to overcome the constraints of

DMaskingNAS [73].

The mentioned literature on NAS focuses mostly on 2D-CNNs for computer

vision problems. Surprisingly, few of these techniques have been adapted for

time-series data processing, despite the fact that many real-world activities

include one-dimensional time-dependent signals, such as bio-signals, audio,

energy-traces, and sensor readings from industrial equipment. In [5], they

introduce a unique technique called PIT, which is particularly developed to

optimize 1D networks. The method ideas are adaptable and might serve as the

foundation for a more thorough NAS that investigates temporal hyperparameters

of N-dimensional Convolutional layers, including 3D-CNNs, for spatial-temporal

data processing.

26

3.6 Metrics

3.6.1 Accuracy
Accuracy Score is a measure used to assess a classification model performance.

It calculates the fraction of correctly predicted occurrences in the dataset as a

percentage of the total number of instances. In other words, it measures the

model's ability to predict outcomes correctly across all classes. The accuracy

score is determined mathematically using the formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (3.7)

Where:

• "Number of Correct Predictions" is the number of times the model

predictions match the actual class labels.
• "Total Number of Predictions" is the total number of predictions produced

by the model.

It is a popular statistic for evaluating the overall performance of classification

models, particularly when the classes in the dataset are balanced (equally frequent

in the dataset). In the presence of imbalanced datasets, when one class

outnumbers the others greatly, accuracy may not offer a whole picture of a model

performance, and alternative measures like as precision, recall, F1 score, or

balanced accuracy may be more helpful.

3.6.2 Balanced Accuracy
Balanced Accuracy (Bal. Acc.) is a performance indicator used in classification

model assessment, particularly when dealing with datasets that are imbalanced.

It is defined as the average of the per-class recall, where recall (also known as

sensitivity or true positive rate) for each class is a measure of the model's ability

to correctly identify instances of that class among all occurrences of that class. In

such scenarios, since a model that merely predicts the majority class for all

occurrences might obtain high accuracy while performing poorly on minority

classes, Balanced Accuracy provides a fair assessment of a model performance

across all classes.

27

The formula for Balanced Accuracy can be expressed as:

𝐵𝑎𝑙. 𝐴𝑐𝑐 =
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖

𝑁

𝑖=1
 (3.8)

Where:

• 𝑁 is the total number of classes.
• 𝑇𝑃𝑖 represents the number of true positives (correctly predicted instances)

for class 𝑖.
• 𝐹𝑁𝑖 represents the number of false negatives (instances of class 𝑖

incorrectly predicted as a different class or not predicted as class 𝑖 at all)

for class 𝑖.

3.6.3 F1 Score
The harmonic mean of precision and recall is used to calculate the F1 Score.

The following describes the way precision and recall are calculated:

• Precision is the ratio of true positive predictions to the total number of

positive predictions generated by the model (also known as Positive

Predictive Value). It determines how many of the model's positive

predictions are accurate.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (3.9)

• Recall (also known as Sensitivity or True Positive Rate) is the ratio of true

positive predictions to total positive outcomes in the dataset. It assesses the

model's ability to recognize all positive events properly.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 Negatives
 (3.10)

The F1 Score is then derived through calculating the harmonic mean of

precision and recall by following formula which spans a range of 0 to 1, with

higher values signifying greater model performance:

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3.11)

28

3.6.4 Mean Square Error
Mean Squared Error (MSE) indicates the average of the squared differences

between predicted outcomes (commonly written as 𝑦) and actual observed values

(denoted as �̂�) for an n-point dataset. It is determined as follows:

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦�̂� − 𝑦𝑖)2 (3.12)

Where:

• 𝑀𝑆𝐸: Mean Squared Error
• 𝑛: The total number of data points in the dataset
• 𝑦�̂�: The predicted value for the 𝑖-th data point
• 𝑦𝑖: The actual observed value for the 𝑖-th data point
• ∑: The summation symbol, indicating that you calculate the squared

difference for each data point and then sum them all up.

Squaring the differences serves several goals, including making all errors

positive (negative errors are not cancelled out by squaring) and penalizing larger

errors more strongly than smaller ones.

3.6.5 Mean Absolute Error
The absolute difference between each estimated value (denoted as �̂�) and its

corresponding actual or observed value (denoted as 𝑦) in a dataset is used to

compute the Mean Absolute Error. The MAE is calculated by averaging these

absolute differences across all data points. The MAE formula is stated

mathematically as:

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦�̂� − 𝑦𝑖|𝑛

𝑖=1 (3.13)

Where:

• 𝑀𝐴𝐸 represents the Mean Absolute Error.
• 𝑛 is the total number of data points or observations in the dataset.
• 𝑦�̂� is the predicted value for the 𝑖-th data point.
• 𝑦𝑖 is the actual or observed value for the 𝑖-th data point.
• |𝑦�̂� − 𝑦𝑖| calculates the absolute difference between the predicted and

actual values for each data point.

29

• The summation symbol ∑ represents the sum of these absolute

differences across all data points.

MAE measures the average disparity between model predictions and actual

values, with lower MAE indicating more predictive accuracy and equal weighting

of errors regardless of direction.

30

3.7 Infrared Sensors and Machine Learning
In the realm of Infrared (IR) sensor arrays, a "pixel" is the essential building

unit of an Infrared (IR) sensor array, similar to a pixel in a normal digital picture

but specialized for recording infrared radiation. These pixels are arranged in a

grid or array to create an IR sensor array. Their principal duty is to detect and

quantify infrared radiation produced by objects in their field of view. As each

pixel detects the intensity of heat radiation at a given position, they work

collaboratively to create a picture or data set that varies in resolution depending

on the size of the array. Heatmaps are frequently generated using this data to

display the distribution of temperatures throughout the scene. Colors or shades

are used to depict thermal fluctuations in heatmaps, with warmer colors

representing greater temperatures and colder hues suggesting lower temperatures.

These heatmaps are useful tools for thermal imaging, industrial monitoring,

building diagnostics, and other applications that need an intuitive knowledge of

temperature patterns.

Let us represent the most recent Infrared (IR) frame as 𝑥𝑡 at any given time,

instance t, which effectively acts as an "image". This single frame 𝑋𝑡 = 𝑥𝑡 is sent

into the identification model, as is a window of subsequent frames 𝑋 =

 {𝑥𝑡−𝑊+1 , . . . , 𝑥𝑡}, where W denotes the window size (W = 3 in Fig. 3.10). The

ultimate aim is to estimate the number of persons 𝑦𝑡 = 𝑓(𝑋𝑡). This projected

number can be produced as a continuous scalar (regression formulation) or as a

categorical value matching to one of many potential counts (classification

formulation).

The procedure of calculating the input/output connection 𝑓(𝑋) can be

accomplished in two ways. The first method includes using deterministic rule-

based algorithms to create a link between the input data and the related people

count. Alternatively, using Machine Learning (ML) or Deep Learning (DL)

methodologies, the connection can be discovered from a properly chosen training

dataset. These ML/DL approaches allow the model to recognize complex patterns

and variances in visual input, resulting in more accurate people counting results.

31

Fig. 3.10. Problem formulation for counting people using IR array sensors. Depending on the task, the prediction

function 𝑓(𝑋) can be produced using a rule-based deterministic approach or learnt from data using ML/DL, and

the predicted person count 𝑦𝑡 can be either a scalar or a class label. (Image from [43])

32

Chapter 4

Materials and Methods

4.1 Motivation
The goal of this study is to explore the applications of NAS to a novel field,

that is, ultra-low-resolution infrared sensor arrays. The advantage of NAS

techniques is the ability to explore a wide set of architectures in negligible time,

as opposed to hand-crafted models, requiring considerable efforts and expertise

from the developers. Starting from a single seed architecture, we are able to

spawn several models, representing different trade-offs between memory and

accuracy.

In this work, we use 8x8 IR sensors as they have several advantages w.r.t higher

resolution ones. These benefits include improved privacy preservation, cheaper

system costs, and decreased power consumption, which is especially important

for systems that rely on battery power and must function over extended periods

of time. The fundamental motivation for this work stems from the lack of a

comprehensive comparison of deep learning models specialized to this type of

data in the literature. As a result, our activity serves two interrelated functions. To

begin, it provides useful information to system designers who desire to use such

sensors, supporting them in selecting a suitable family of deep learning models

depending on their desired accuracy and hardware memory limits. Second, it

provides as a practical instance of how deep learning may attain higher accuracy

while simultaneously being more efficient than traditional approaches.

33

4.2 Dataset
In this work, we utilize a new dataset called LINAIGE (Low-resolution

INfrared-array data for AI on the edGE). The major focus of LINAIGE dataset is

on tasks related to counting individuals and recognizing their presence in indoor

situations. The first version of this dataset was introduced in a prior study [16].

This collection consists of infrared (IR) samples collected with a Panasonic Grid-

EYE (AMG8833) sensor [42]. At a rate of 10 frames per second (FPS), the sensor

generates an 8 by 8 array of data. Each of these frames is tagged with the number

of individuals present.

The sensor was put on the ceiling during the data gathering procedure and it

was used in a variety of interior settings, including offices, labs, and hallways. A

lens with a viewing angle of 60° was employed on the sensor. During repeated

data collecting sessions, volunteers moved inside the sensor range of vision,

doing actions such as walking, standing, and running. Figure 4.1 shows examples

of gathered frames and their corresponding persons counts. In diverse contexts,

the maximum distance between humans within the sensor vision varied (between

1.53 and 2.04 meters), as detailed in [16]. The space for counting persons was

roughly 2 square meters in size. People counting is possible in bigger regions by

combining the results of many sensors that are strategically placed.

Fig. 4.1. Sensor attachment with an example of an infrared frame. (Image from [43])

34

To label IR frames, a semi-automatic technique was applied. This entailed

configuring a data gathering system with a Raspberry Pi 3B single-board

computer that featured both an infrared sensor and an optical camera facing in the

same direction. The synchronized frames obtained from this configuration were

processed. To begin, the optical frames were analyzed using a pre-trained object

identification model (particularly, Mask R-CNN [74]) to automatically count the

number of persons and this count was then applied to the associated IR frame.

Human verification was employed to fix any errors produced by the object

detection model in order to assure accuracy. Each frame was additionally assigned

a confidence level (binary) by the human annotator. This level identifies frames

where determining the precise persons count was difficult due to a small

mismatch between the IR sensor and the optical camera angles.

In this work, we follow the pre-processing described in [43]. Notably, frames

with more than three persons are removed, as they were exceedingly infrequent

(constituting 0.66% of total data) and were only seen in one data collecting

session. These frames hamper machine learning and deep learning model training

and cross-validation. In addition, the smallest session (session 4 in [16]) with only

196 frames (approximately 20 seconds of data) was eliminated. This measure was

done to ensure that performance metrics for recognition were reasonable.

Following these changes, the updated dataset now contains 25,110 samples

spread over 5 sessions. To each session is assigned a timestamp, the name of the

environment, and the temperature of the room.

As done in [43], we purposefully eliminated difficult-to-label frames from both

the training and testing stages. We apply the same per-session Cross-Validation

(CV) technique detailed in [43], and Table 4.1 outlines its specifics. Notably, due

to its large size compared to the other sessions (17958 frames vs a maximum of

2202 frames for other sessions, accounting for 71% of total data), we kept Session

1 in the training set across all rounds. Sessions 2, 3, 4, and 5 were utilized as the

test set in various folds, while the remaining data was used for training. This

approach resulted in four unique CV folds. The main benefit of this "leave-one-

session-out" CV method is that it provides impartiality when evaluating model

performance. This is accomplished by ensuring that the test frames are generated

from environments, date-time combinations, and room temperature settings that

differ from those seen during training. This simulation, in essence, closely

resembles a real-world scenario in which the system is evaluated under conditions

different from its training environment. A strictly random allocation of frames to

35

training and testing, on the other hand, would risk compromising the integrity of

the evaluation process by enabling information to leak between the two phases,

resulting in an oversimplified problem representation.

Table 4.1

Dataset Statistics and Cross Validation Strategy
Train Fold Test Fold

Session Sample

N.
People Counts Statistics [%] Session Sample

N.
People Counts Statistics [%]

0 1 2 3 0 1 2 3
1,3,4,5 23529 26.07 43.49 23.61 6.83 2 1581 14.86 30.68 54.46 0
1,2,4,5 23591 22.37 44.03 26.84 6.77 3 1519 71.89 21.72 5.66 0.72
1,2,3,5 22908 25.3 41.85 26.17 6.67 4 2202 26.02 51.27 19.16 3.54
1,2,3,4 23260 24.69 43.02 26.08 6.20 5 1850 33.78 38.38 18.92 8.92

36

4.3 Pruning in Time
Pruning in Time (PIT), is intended for networks that handle time-series data,

focusing mainly on convolutional and fully-connected layers, as they are the most

memory and computationally intensive. PIT explores a wide range of sub-

architectures produced from a seed model by modifying three critical

hyperparameters. PIT can choose to reduce the number of output channels (Cout)

or the filter size (F) while raising the dilation factor (d) in comparison to the

default setup. These adjustments lead to reduced layer complexity and memory

usage. Each convolutional/fully connected (FC) layer in the fundamental CNN is

changed into a function 𝐿𝑛(𝑊(𝑛), 𝜃(𝑛)) that depends on its original weight tensor

𝑊(𝑛) and a new set of architectural parameters 𝜃(𝑛) to achieve this goal. The

search space of PIT for a CNN with N layers is therefore described as the set:

𝑆 = {𝐿𝑛(𝑊(𝑛), 𝜃(𝑛))}𝑛=0
𝑁−1 (4.1)

The elements of 𝜃(𝑛)are merged in an appropriate manner throughout the

search phase to generate a binary mask 𝛩(𝑛). This mask is then used to remove

portions of the layer weights. In each iteration of the search, an architecture �̂� is

randomly picked from S using the Hadamard product of 𝑊(𝑛) and 𝛩(𝑛), denoted

as �̂� = {𝐿𝑛(𝑊(𝑛) ⊙ 𝜃(𝑛))}𝑛=0
𝑁−1. The sections of 𝑊(𝑛) that correspond to 0-valued

mask elements are removed by this procedure. As a result, the seed layer can

provide the same output as if it had fewer channels, a smaller receptive field, or

even a bigger dilation. When working with slices of 𝑊(𝑛), binary masks are

required for the Hadamard product procedure. During architectural sampling,

these masks decide whether a slice is fully eliminated (set to 0) or maintained as

is (set to 1). In practice, this assures that only acceptable designs with whole-

number Cout, F, and d values are examined. To do this, during the forward pass of

search or training, 𝛩(𝑛) is transformed into binary form. This is accomplished

through the use of a Heaviside step function with a constant threshold of 0.5.

37

Fig. 4.2. Illustration of PIT search space. (Image from [5])

A differentiable technique is required to seamlessly incorporate the 𝜃(𝑛) →

𝛩(𝑛) transformation into the gradient-based training of the network, allowing

simultaneous learning of both the weights 𝑊(𝑛) and architectural parameters

𝜃(𝑛). However, when dealing with the Heaviside function, which has difficulties

with its derivative being practically everywhere equal to 0 and non-existent in 𝛿,

the Straight-Through Estimator (STE) approach provided in BinaryConnect [75]

is used. During the backward pass, the step function is replaced by a simple

identity function.

The authors divide the 𝜃(𝑛) parameters in their model into three different sets:

𝛼(𝑛)for altering the number of channels, 𝛽(𝑛) for fine-tuning the receptive field,

and 𝛾(𝑛) for affecting the dilation factor.

4.3.1 Channel search
The authors of [5] take inspiration from prior research referred to as [10] in

order to examine the best number of channels in each convolutional layer. Binary

masks were constructed using batch normalization (BN) layer settings in that

study [72], allowing for the pruning of whole output channels. This method

allows for the examination of numerous sub-layers with a 𝐶𝑜𝑢𝑡 < 𝐶𝑜𝑢𝑡,𝑠𝑒𝑒𝑑

condition. The necessity for a BN layer after each convolutional layer limits the

application of the approach suggested in [10], while ubiquitous in recent

2DCNNs.

38

To alleviate this shortcoming, the PIT technique detaches channel search from

batch normalization. Instead, they employ a specific set of trainable parameters

labeled as 𝛼. These parameters are used to zero-out complete convolutional layer

filters from the W tensor. They can effectively explore the space of channel

configurations without being bound by the presence of BN layers after each

convolution since they handle each output channel individually.

In practical implementation, the procedure is taking a binary mask and

multiplying each element of the mask by all of the weights of a certain

convolutional filter. This affects the whole slice of the W tensor along the output

channels axis. When a filter is multiplied by a 0-mask element, the associated

output channel from that layer is effectively removed. Figure 4.3 shows how the

𝛩𝐴 parameters are applied to a simple layer with 𝐶𝑜𝑢𝑡,𝑠𝑒𝑒𝑑 = 4.

Fig. 4.3. 𝛩𝐴,𝑚 = 0 causes the m-th convolutional filter to be deactivated, thereby setting a section with

dimensions K × Cin inside the weights tensor W to zeros. (Image from [5])

Additionally, thanks to the binary masks used by PIT, any combination of

channel can be removed, while previous approaches were limited to the last ones.

4.3.2 Receptive Field Search
The receptive field F, which describes the range of input time-steps involved

in a convolution, is the second crucial hyperparameter. F is equivalent to the filter

size in ordinary convolutions (F = K). For CNNs with dilation factors (d) higher

than one, the connection changes, and the general formula turns into: 𝐹 =

(𝐾 − 1) ∗ 𝑑 + 1. PIT additionally considers the dilation factor and investigate

both F and d, which indirectly enhances the filter dimension K.

39

PIT employs an array of extra trainable parameters 𝛽 with a length of Fseed to

explore the receptive field. In contrast to the output channels, the parameters 𝛽

must be united further to define the matching binary differentiable masks. This

extra step is required because just masking any collection of time-slices in the

weights tensor will not effectively imitate the impact of a narrower receptive field

in a causal CNN convolution. The receptive field should exclusively extend into

the past, therefore, they eliminate the "oldest" time-slices, those multiplied with

input time-steps that are the uttermost in the past, to achieve the desired effect of

a reduced receptive field.

Fig. 4.4. A receptive field search is demonstrated by setting each value 𝛩𝐵,𝑖 = 0 resulting in the elimination of

one input time-step from the convolution output. This is accomplished by canceling out a particular portion of the

weight tensor W with dimensions Cout × Cin, eliminating its influence on the output. (Image from [5])

4.3.3 Dilation Search
The PIT algorithm additionally examines the dilation factor in the same way

as it studies the receptive field. Certain constraints are set on the weight tensor

portions that NAS should trim by adding the search for dilatation. They must

specifically ensure the creation of only normal dilation factors, which means that

the time-step intervals between consecutive convolution inputs are all uniform

for a given layer.

They begin with an array of adjustable parameters denoted as 𝛾, which are used

to generate differentiable binary masks. The technique is restricted to supporting

dilation factors with powers of two. These unique elements are not only

extensively used in numerous applications, but they also help in the simple

40

creation of masks. As a consequence, len(γ) = [𝑙𝑜𝑔2(Fseed)] determines the

number of parameters in the array. Figure 4.5 depicts an example of how the

tensor is created and its influence on dilation.

Fig. 4.5. Dilation search works by doubling the value of parameter 'd' for each case when 𝛤𝑖 is set to 0. (Image

from [5])

4.3.4 Joint Search

They apply their respective masks on the weight tensor of a layer to maximize

the three hyperparameters described above. When compared to sequential

hyperparameter optimization, this collaborative technique yields superior results.

As a result, the PIT is able to examine complicated interconnections, notably

between F and d, resulting in better performance.

4.3.5 Regularization

The PIT method seeks designs that are both accurate and simple, which it is

required by combining the task-specific loss function (L) with a regularization

term (R), Eq. 4.2.

𝑚𝑖𝑛
𝑊,𝜃

= ℒ(𝑊; 𝜃) + 𝜆ℛ(𝜃) (4.2)

41

This regularization term offers a distinct component that leverages past

knowledge of the loss landscape, encouraging the optimization process to prefer

solutions with lower computational costs.

The number of parameters (or model size) and the number of operations (OPs)

required for inference are two cost metrics studied. Rsize and Rops, two separate

regularizers, are employed to manage them. These regularizers are differentiable

functions whose values are determined by the pre-binarization masks without

Heaviside binarization. These masks are associated with the trainable

architectural parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝛾, and the use of pre-binarization masks, as in

prior research [10], produces a smoother loss landscape, which enhances

optimization convergence.

42

4.4 SuperNet
An approach to further expand the search space of the NAS is to chain different

methods in cascade. In particular, in this work, we use first a SuperNet and then

apply PIT on the output of this method. In this way, with SuperNet, we can

choose between multiple convolutional types, ranging from basic convolutions to

Depthwise-Separable convolutions, or even exclude some layers entirely.

Following that, with PIT, we can explore a wide range of sub-architectures

produced from previous stage.

A vital step in clarifying the process of building and deploying a SuperNet

utilizing the pit_supernet technique is the development of a pivotal object known

as the PITSuperNetModule. This module is distinguished by a collection of layers

that strictly adhere to the PIT-SuperNet criteria. A SuperNet, for example, might

have a variety of possibilities, such as 2D convolutions with various kernel sizes,

Depthwise-Separable convolutions, and even the exciting potential of altogether

skipping a layer by using nn.Identity. The selections for each convolutional layer

are the main focus of this project.

It is critical to follow a methodical sequence of actions before embarking on

the adventure of creating a network suitable to search, conducting the search

itself, and eventually exporting the detected neural architecture:

1. The first stage entails utilizing the capabilities of the PITSuperNet

conversion module, which effortlessly changes the model into an

optimized format. This conversion procedure necessitates three main

components: the model itself, the form of the input tensor (excluding batch

size), and the selection of a chosen regularizer, which serves as a guiding

principle for the optimization measure.
2. An important computation occurs as the training loop progresses, in which

the regularization loss is computed and harmoniously coupled with the task

loss. This collaboration strives to maximize both performance dimensions

sustainably. A scaling factor is wisely used to the regularization loss to

finely manage the equilibrium between these two losses.
3. The precisely optimized model is then exported as the last stage. Following

the conversion, a prudent method would require submitting the exported

model to an additional step of fine-tuning. This additional layer of

refinement improves the model overall performance and resilience.

43

4.5 Model Architectures
We take the architectures from [43] as they represent the state-of-the-art

models on the LINAIGE dataset. Afterward, we use PIT on each architecture,

systematically assessing various levels of regularization strengths to identify

distinct trade-off points. In the subsequent sections, we provide a comprehensive

breakdown of each architectural variant.

4.5.1 Single-frame CNN
Single-frame CNNs, as suggested by their name, use a single frame as input,

thus having no knowledge of the past number of people in the view of the IR

sensor. This CNN design is crucial to our analysis, and Figure 4.6 depicts its basic

structure. This architecture comprises Convolutional layers with ReLU

activation, optional Max Pooling, and Fully Connected layers.

An extensive and methodical examination of various architectural

modifications was carried out using this core design template as a starting point.

This investigation entails the selective retention or destruction of certain levels

within the design, shown in Figure 4.6 by the dashed boxes. Some of the

architectural arrangements that have been considered are as follows:

1. One or two initial convolutional layers, each followed by Batch

Normalization.
2. An optional additional Fully Connected layer before the output one.
3. Including or excluding a single Max Pooling layer.

Fig. 4.6. Single-frame CNN. (Image from [43])

In order to broaden our architectural explorations, we performed experiments

with changing the amount of feature maps (also known as channels) within each

Convolutional layer. This entails a methodical investigation of various channel

44

counts from the set 8, 16, 32, 64. It is also worth noting that the Convolutional

and Max Pooling kernel dimensions stay constant at 3x3 and 2x2, respectively. A

single frame generated from an infrared (IR) array is processed as input data for

the CNN model.

4.5.2 Multi-frame CNN
The previous model technique relied on a single infrared (IR) frame as input to

address the problem of people counting. Multi-frame technique, on the other

hand, tries to improve the precision of this job by using the temporal refinements

contained in a series of sequential frames. The key concept involves using a

sliding window setup of infrared frames as input. This approach has the potential

to uncover important information about how individual movement patterns work.

This intentional integration of temporal information becomes highly effective in

improving prediction accuracy, especially in complex and diverse settings.

Having a look at Figure 4.7 to get a better understanding of this topic, the final

picture draws attention to a unique location generating higher thermal signals,

represented by a noticeable purple box. The multi-frame approach advantage

resides in its ability to accurately recognize not just one person in this hot zone,

but rather the presence of two closely positioned persons. This differentiation is

made possible by studying the trajectory of motion displayed by these two people,

as indicated by the emphasized trajectories in prior frames, captured by the red

and orange cycles.

Fig. 4.7. An example of an IR frame sequence related to two persons moving in close proximity to each

other. (Image from [43])

In basic terms, each frame inside a W-length sliding window is handled as an

independent input channel. To elaborate, suppose the sliding window has a length

given by W. Under this premise, a stacking method is used to assemble IR frames

45

along the channel dimension Xt = {xt-W +1,...,xt}. This fusion leads in the formation

of a tensor of dimensions (W, 8, 8). This tensor is then inextricably coupled with

the people count label corresponding to the last frame, designated as yt, and used

for both training and testing.

Considering the architecture seen in Figure 4.8, fittingly named the Multi-

Frame CNN model. During the design of this model, an equivalent was drawn

with hyper-parameter configurations similar to those used in Single-frame CNNs.

This translates into characteristics like the number of layers and the number of

convolutional channels.

Fig. 4.8. Multi-frame CNN. (Image from [43])

Furthermore, an in-depth investigation focuses on the dimensions of the sliding

window, designated as W. The experiments cover a range of numbers including

3, 5, 7, and 9. The inherent value here is in recognizing that an excessively

shortened window may insufficiently leverage the reservoir of previous frame

information. In contrast, an overly large window may mistakenly include

insignificant previous data into the study. Finding an ideal balance in terms of

window size emerges as a critical concern, since this element has a significant

influence on both the computational demands and the memory complexities of

the first Convolutional layer.

4.5.3 Majority Voting CNN
Majority voting, a technique used in ensemble learning, stands out as a

straightforward and fast strategy that uses several categorization outputs to

provide decisive predictions, lowering variability. There exist multiple

possibilities for applying this method, including the use of different classifiers,

the deployment of several versions of the same model with different training

46

approaches, or even the use of a single trained model supplied with various inputs.

The latter technique is used in our present investigation, [76].

Our method includes applying majority voting, commonly known as mode

inference, to predictions generated by applying a Single-frame Convolutional

Neural Network (CNN) to individual frames in a sliding window. Figure 4.9

depicts this procedure schematically. This approach has a significant benefit,

especially in the context of edge inference. It has a memory requirement that is

identical to that of a single-frame CNN, and voting process of W predictions

might lead to better prediction accuracy by efficiently filtering out rare

mispredictions. It should be noted, however, this gain comes at the cost of

increased inference latency and energy consumption, which is about W times

more than that of a single-frame model. In our particular example, we set W to 5.

Fig. 4.9. Majority voting CNN. (Image from [43])

In this work, we benchmark the majority voting approach on all the Pareto

optimal models on the accuracy versus parameters front of single-frame CNNs.

By taking this strategy, we leverage the potential of ensemble learning while

remaining mindful of the trade-offs between the accuracy and model complexity

and computing efficiency.

4.5.4 CNN-TCN
Although majority voting has the benefit of being simple since it does not

require any additional trainable parameters, it has a significant drawback: the

inability to assign different weight to each individual infrared (IR) frame inside

the sliding window. It is accepted to assume that more recent frames should have

47

played a more significant part in calculating the persons count, especially when

dealing with a larger sliding window (denoted as W). While weighted voting

might be used to alleviate this problem, it brings the obstacle of manually fine-

tuning the weights provided to each frame, which can be a complex and time-

consuming job. With this goal in mind, we use a combination of CNNs and TCNs,

as they dynamically incorporate the relevance of recent frames.

In light of these benefits, our architectural design consists of a complex

merging of outputs from normal 2D CNN feature extraction processes, each

independently applied to a frame of infrared (IR) data. This collection of feature

extractors is paired with a single TCN layer to produce a full representation of the

data temporal and spatial properties, Figure 4.10 shows an example of this design.

Fig. 4.10. CNN-TCN. (Image from [43])

Specifically, a window of frames is fed to feature extractor block, the produced

output is flattened, changing it into a one-dimensional array that captures the

essence of the data progression through time. This flattened representation then

passes through one or two fully connected (FC) layers, each of which contributes

to the complex process of creating predictions and capturing detailed patterns

within the data.

We keep the 1D Convolutional kernel size at a small 3x1 to ensure consistency

and control within the architectural framework, while using a dilation factor of 1

to guide the convolutional strides. We also increased the TCN layer output

channel count to 32, a systematic and thorough search can produce a variety of

architectural configurations that combine the strengths of 2D CNN feature

extraction and TCN processing, allowing us to successfully describe the

complicated dynamics of the data, if the output channel is different.

48

4.6 Training Procedure
The models are trained using the leave-one-session-out cross-validation

technique described in Section 4.2. First, we train basic floating-point models in

PyTorch. This training can last up to 500 epochs per fold. We use the ADAM

optimizer with a categorical cross-entropy loss function for our optimization, and

we start with a learning rate of 10e-3. After finding no progress for 5 consecutive

epochs, we utilize a learning rate reduction of 0.3 to solve training loss stagnation.

Early stopping is applied if there is no improvement for 10 consecutive epochs.

We integrate class-dependent weights into the loss during training due to the

considerable class imbalance in the LINAIGE dataset (refer to Table 4.1). The

inverses of the class frequencies are used to determine these weights. In this stage,

we collect the first seed model results in order to start the NAS procedure.

The following algorithm describes the basic phases of a PIT architecture

search. The first step entails warming up for a set number of Stepswu repetitions.

All parameters (𝛼, 𝛽 and 𝛾) are set to 1 and remain constant during this phase that

is the same for binary masks 𝛩. As a result, warming step is equivalent to regular

training of the base network with the primary goal of decreasing the task loss

function L, and the number of warmup iterations is set by the user. It is worth

noting that we choose session 1 for this step and also search loop phase to

generalize the process and avoid impacting of other sessions on optimization

procedure or possible data leakage.

Algorithm 4.1

1: for 𝑖 ← 1, …, Stepswu do #warmup loop

2: Update 𝑊 based on ▽𝑊 𝐿(𝑊)

3: end for

4: while not converge do #search loop

5: Update 𝑊 and 𝜃 based on ▽𝑊,𝜃 (𝐿(𝑊; 𝜃) + 𝜆𝑅(𝜃))

6: end while

7: for 𝑖 ← 1, …, Stepsft do #fine-tune loop

8: Update 𝑊 based on ▽𝑊 𝐿(𝑊)

9: end for

49

The second stage comprises the application of NAS. During the search loop,

both the model weights (W) and the architectural parameters (𝜃) are tuned. The

major goal of this phase is to minimize the total value of the task-specific loss (L)

and one of the two regularization losses (R) outlined in Section 4.3. This is

weighted by a regularization strength parameter (𝜆). The duration of the search

phase is governed by an early-stop mechanism. If there is no improvement in this

performance after 10 consecutive epochs, the search phase is terminated.

The parameters 𝜃 and their associated binary masks 𝛩 are reset to their most

recent values and stay unaltered in the final step. This entails picking from the

search space the architecture that PIT recognized as the best in the previous step.

Following that, the chosen network weights W are either fine-tuned or totally

retrained, with the sole goal of reducing the L loss. During this phase, we perform

leave-one-out cross-validation while keeping session 1 always in the training set

to compute the balanced accuracy of the selected model.

It is sufficient to execute Algorithm 4.1 numerous times while modifying the

regularization strength parameter (𝜆) to obtain unique Pareto points on the graph

that balances accuracy versus cost (measured by the number of parameters)

50

Chapter 5
Experiments and Results
5.1 Setup

To evaluate the performance of our model we use the metrics reported in

section 3.6, mainly focusing on the balanced accuracy. When performing cross-

validation, we report the mean and the standard deviation of the metrics across

each fold. The contribution of each fold is weighted depending on the number of

test samples it contributes in relation to the overall number of test samples. We

utilize the number of parameters as a proxy for model size to assess the

computational complexity of each model in a hardware-independent manner. The

code is written in Python (v3.8) based on Pytorch (v2.0), and all experiments are

performed on a server equipped with a 32-cores CPU.

5.2 Seed Model Selection
As the seed model selection plays a crucial role on PIT, we refer to the hand-

crafted state-of-the-art architectures reported in [43], re-training them using the

procedure detailed in Section 4. This selection covers various architectural

families on purpose, a deliberate choice to avoid the suboptimal restriction of

focusing solely on a single architectural template. In our visual representation,

marker shapes represent the family architecture with their corresponding window

size, while colors represent the specific architecture. In particular, as shown in

Table 5.1, "cross" shape indicates that the model belongs to normal CNN, on the

other hand, "square" and "diamond" shapes are used for Majority Voting-CNN

and CNN-TCN models, respectively. Concerning the networks, we describe them

following the notation introduced in Section 3, denoting convolutional, pooling

and fully-connected layers respectively with C, P and FC. For CNN-TCN, the

number 32 after TCN indicates the output channels of TCN layer. For instance,

the model labeled as [×3]C64-P-C64-FC-FC represents a CNN using 3 frames as

input and composed by one convolutional layer with 64 output channels, one

pooling layer, one convolutional layer with 64 channels and two Fully-Connected

layers. Note that in this work, pooling layers always use square kernel and stride

51

of dimension 2, while FC have either 64 or 4 (in case of the last layer) output

neurons.
Table 5.1

Summary of visual representation notations.

Symbol Definition
× CNN Architecture
♦ CNN-TCN Architecture
■ CNN-Majority Voting Architecture
C Convolutional Layer
P Pooling Layer

FC Fully Connected Layer

Table 5.2 reports the scores of each model that we re-train in this work. Thanks

to the proposed training approach, we outperform the baseline in most cases, with

increases in terms of balanced accuracy ranging from 2.38% to 11.96%. The only

exception is represented by the TCN-based architecture, where we obtain a drop

in terms of balanced accuracy by 0.54%. It is imperative to underscore a couple

of critical insights from our analysis. First, the reduction of the window size leads

to a corresponding decrease in performance, and conversely, enlarging the

window size creates an overfitting challenge, particularly when coupled with an

increased number of convolutional layer channels. For instance, the balanced

accuracy of [×3]C8-P-C16-FC-FC is 82.77% that is higher the one of [×3]C64-

P-C64-FC-FC with 76.49%, however, the latter has more channel numbers.

When we shift our focus to cost-effective models, with parameters as a key

criterion, "Majority Voting" models (represented by squares) emerge as strong

competitors. This result is consistent with expectations, as multi-channel

Convolutional Neural Networks (CNNs) frequently require a greater number of

parameters, particularly in the first Convolutional layer, when the window size

(W) exceeds 1. These models have a much greater computational cost, but they

provide balanced accuracy advancements, especially when dealing with larger W

values. In contrast, "Majority Voting" CNNs attain comparable performance

levels while incurring a relatively minor increase in model size.

52

Table 5.2
Results of different seed models: C, P and FC denote as Convolutional Layer, Pooling Layer and Fully

Connected Layer, respectively, and each value after them represents the number of channels.

Model Bal. Acc. Acc. F1 MSE MAE
No. of

Parameters

[×3]C8-P-C16-FC
 [43]

0.7762 ±
0.598

0.7804 ±
0.818

0.80 ±
0.07

0.27 ±
0.11 0.24 ± 0.09

1484
This work

0.8027 ±
0.03

0.8487 ±
0.02

0.8583 ±
0.02

0.1707 ±
0.02

0.1576 ±
0.02

[×3]C8-P-C16-FC-
FC

 [43]
0.7778 ±
0.0898

0.8008±
0.0707

0.8173 ±
0.0540

0.2802 ±
0.1973

0.2259 ±
0.1117

2764
This work 0.8277 ±

0.05
0.8616 ±

0.04
0.8665
±0.04

0.1587 ±
0.03

0.1450 ±
0.04

[×3]C64-P-C64-FC-
FC

 [43]
0.6948 ±

0.152
0.6903 ±
0.2412

0.6919 ±
0.2530

0.4609 ±
0.4306

0.3566 ±
0.298

43268
This work 0.7649 ±

0.05
0.8168 ±

0.05
0.82 ±
0.04

0.2106 ±
0.05

0.1921 ±
0.05

[♦3]C8-P-C16-
TCN32-FC

 [43]
0.8018 ±

0.05
0.8448 ±

0.01
0.8503 ±

0.015
0.2005 ±

0.06 0.17 ± 0.02
3036

This work 0.7964 ±
0.21

0.8207 ±
0.03

0.8272 ±
0.03

0.2005 ±
0.038

0.1862 ±
0.035

[■5]C8-P-C8-FC-
FC-Majority

 [43]
0.7797 ±

0.098
0.7976 ±
0.0703

0.8117 ±
0.0563

0.3268 ±
0.2707

0.2388 ±
0.1233

1516
This work 0.8190 ±

0.0646
0.8686 ±
0.0362

0.8699 ±
0.0359

0.1445 ±
0.033

0.1357 ±
0.0348

[×1]C8-P-C8-FC-
FC

 [43]
0.7413 ±
0.0967

0.7309 ±
0.0948

0.7559 ±
0.0719

0.5233 ±
0.4744

0.3407 ±
0.1954

1516
This work 0.7707 ±

0.64
0.7815 ±

0.04
0.7983 ±

0.04
0.2938 ±

0.078
0.2818 ±

0.056

[×5]C8-P-C16-FC
 [43]

0.6747 ±
0.0875

0.7708 ±
0.1456

0.7804 ±
0.1269

0.3043 ±
0.2071

0.2525 ±
0.1646

1628
This work 0.7942 ±

0.0621
0.7945 ±
0.0807

0.8076 ±
0.0729

0.2773 ±
0.132

0.2294 ±
0.0959

[×5]C8-P-C16-FC-
FC

 [43]
0.7773 ±
0.0723

0.8332 ±
0.0642

0.8424 ±
0.0578

0.2019 ±
0.0834

0.1777 ±
0.0687

2908
This work 0.8011 ±

0.0494
0.8407 ±
0.0425

0.8467 ±
0.0393

0.1902 ±
0.0588

0.1691 ±
0.0458

[×5]C64-P-C64-FC-
FC

 [43]
0.6820 ±
0.1507

0.6009 ±
0.2854

0.6093 ±
0.2891

0.6979 ±
0.8350

0.4978 ±
0.4663

44420
This work

0.7555 ±
0.0758

0.8389 ±
0.0408

0.8367 ±
0.0341

0.1775 ±
0.0381

0.1664 ±
0.0397

In order to enhance NAS search, we chose blue and orange models due to their

highest performances, and the green model was selected for its substantial

architecture size. We also included the CNN-TCN and CNN-Majority models to

ensure the diversity in architectures while maintaining strong performance. Table

5.3 displays these models alongside their associated performance metrics.

53

Table 5.3
Selected seed models to apply PIT.

Seed Model Name Balanced Accuracy [%] No. of Parameters
[×3]C8-P-C16-FC CNN-small 80.27 1484

[×3]C8-P-C16-FC-FC CNN-medium 82.77 2764
[×3]C64-P-C64-FC-FC CNN-large 76.49 43268

[♦3]C8-P-C16-TCN32-FC TCN 79.64 3036
[■5]C8-P-C8-FC-FC-Majority Majority-Voting 81.90 1516

As a further contribution, we select the top three most accurate models of Table

5.3 and we use them as seed for the SuperNet NAS, detailed in Section 4.4.

Specifically, the SuperNet algorithm will select among normal convolutions with

kernel 3 or 5 and depthwise separable convolutions with kernel 3. In this regard,

we use the model_size_regularizer, which represents the total number

of parameters in the layer as a function of α parameters. For each seed

architecture, we repeat the experiments with alpha (α) in the interval [1e-10, 9e-

01].

As shown in Figure 5.1, across all scenarios, we succeed to exceed the

maximum balanced accuracy score achieved by the CNN seed models, which was

82.77%. Notably, this improvement comes with spanning more than one order of

magnitude in terms of number of parameters. The most accurate result is obtained

with the CNN-medium configuration, achieving a stunning 92.74% balanced

accuracy with 18,124 parameters and the α value of 3e-06.

Fig. 5.1. Pareto-Optimal curves of three different seed models obtained by applying SuperNet with different

α.

54

Therefore, we have opted to include three SuperNet architectures from its

spectrum for the purpose of conducting PIT. Table 5.4 displays these models

alongside their associated performance metrics. Our rationale for this choice lies

in the fact that the top two configurations of CNN-small exhibit nearly identical

accuracy when compared to Majority-Voting, but with a reduced number of

parameters. Additionally, when comparing these two top-performing CNN-small

variants with the two lowest-performing configurations of CNN-medium, we

observe only a marginal difference in accuracy despite a significant reduction in

number of parameters, approximately 75% reduction in size. As a result, we have

exclusively selected the top-performing CNN-medium configuration due to its

superior accuracy.

Table 5.4

Selected SuperNet models to apply PIT.

Seed Model Name Balanced Accuracy [%] No. of Parameters α
CNN-small SuperNet-small-α1 86.26 2444 5e-05
CNN-small SuperNet-small-α2 87.02 4492 1e-07

CNN-medium SuperNet-medium 92.74 18124 3e-06

5.3 PIT Architectures
In this section we report the detailed results obtained when applying the PIT-

NAS on the architectures reported in Tables 5.3 and 5.4. In particular, we applied

a wide range of regularization strength parameters (λ) for all seed models from

1e-10 to 9e-01, with step of 0.1. Regarding following graphs in this sub-section,

the blue curves are the Pareto-Optimal of PIT networks and the red cross is the

single initial seed model.

5.3.1 Multi-Frame Convolutional Neural Networks
Figure 5.2 reports the Pareto-optimal models for Convolutional Neural

Network seed models. Concerning the models found using CNN-small as seed,

we achieve up to 80.2% accuracy, the same as the seed model, but with a

reduction in size of 41%. If we allow a drop of 4.85% accuracy w.r.t the seed, the

reduction reaches 57%, with an accuracy of 75.42%. Regarding CNN-medium,

while the spawned architectures do not reach iso-accuracy with the seed model,

55

we find two points that introduce only slight drops (1.7% and 2.37%), while

reducing the size by 5% and 6.3%, respectively. Allowing smaller reduction of

2.7% of accuracy w.r.t seed model, we obtain a size reduction of 41.4% (fourth

most-accurate point). As far as CNN-large is concerned, the first interesting point

is related to the knee point where we achieved a balanced accuracy of 78.3%,

which is 1.8% higher than that of initial seed model. This improvement came

alongside a remarkable reduction in size, with only 550 parameters, constituting

98.7% reduction in size. Furthermore, there are several points beyond this knee

point that surpass the seed model performance, where the top point reached to

80.1% of balanced accuracy with 15% decrease in size.

Fig. 5.2. Pareto-Optimal curve of CNN models applying PIT with different λ.

56

5.3.2 Temporal Convolutional Network
In this particular scenario, PIT did not manage to reach the same balanced

accuracy as that of the seed model. Regarding the highest point of the curve in

Figure 5.3, this size reduction of 42% came at a cost of 3.2% decrease in balanced

accuracy (76.43%) w.r.t the seed. However, if we allow an accuracy drop of 3.6%

at the second highest point, we achieve 50% reduction in size. These findings

imply that further investigation or alternative optimization approaches may be

needed to better understand and enhance the inherent architecture or setup of

CNN-TCN.

Fig. 5.3. Pareto-Optimal curve of TCN applying PIT with different λ.

5.3.3 Majority-Voting
The fifth highest point of Majority Voting design obtains iso-accuracy with the

seed model while introducing a reduction of nearly 62% in size. Another

interesting achievement by this model is to exceed the seed model balanced

accuracy by 3.65% with 14.4% decrease in size (highest point). Figure 5.4 shows

that there are 4 Pareto-Optimal points with higher balanced accuracy than the

seed, with a reduction in terms of size ranging from 14.4% to 41.2%.

57

Fig. 5.4. Pareto-Optimal curve of Majority-Voting applying PIT with different λ.

5.3.4 SuperNet Models
Using SuperNet-small-α1 as the seed model, PIT does not achieve results as

accurate as the seed models, as shown in Figure 5.5. The most favorable

configuration reached the balanced accuracy of 77.52% which is 8.74% lower

than that of seed model. Furthermore, the model size was almost identical, with

2329 parameters compared to the 2444 parameters. Regarding SuperNet-small-

α2, however, we observe a noticeable disparity between the highest point on the

Pareto curve and the performance of the seed model. The best result we attained

was a balanced accuracy of 78.9%, which is 8.1% lower than that of the seed

model, but it came with a 53% reduction in size. The final architecture is

SuperNet-medium configuration that exhibits the highest balanced accuracy

among all the seed models. According to Figure 5.5, while we did not quite reach

the performance of the seed model (82.63% compared to 92.74%), we managed

to achieve a 90.5% reduction in the number of parameters at the highest point on

the Pareto curve.

58

Fig. 5.5. Pareto-Optimal curve of CNN-SuperNet models applying PIT with different λ.

5.4 Architecture Comparison
Figure 5.6 illustrates the outcomes of PIT applied to our initial seed models.

Notably, the points spawned for the Majority-Voting outperform the others, with

the most accurate point achieving 85.55% balanced accuracy with 1298

parameters. TCNs instead underperform w.r.t the other seeds, with the top point

achieving 3.2% less accuracy w.r.t its seed model with size reduction of 42% and

9.1% less accuracy w.r.t the Majority-Voting top point while introducing 26%

increase in model size.

59

Fig. 5.6. Pareto-Optimal curves of different CNN seed models obtained by applying PIT.

In the context of SuperNet seeds, as shown in figure 5.7, we achieve the best

results with SuperNet-medium, achieving a balanced accuracy of 82.63% with

1720 parameters. However, we are unable to reach similar accuracy w.r.t the

seeds, we introduce a reduction of up to 90.5% in the number of parameters. In

addition, the top point of the lowest curve reaches almost 5% less accuracy w.r.t

the highest point of top curve requiring 26% more parameters.

Fig. 5.7. Pareto-Optimal curves of different SuperNet seed models obtained by applying PIT.

60

To enhance our comparison analysis, we extracted the best-performing Pareto-

Optimal front from Figure 5.6 including one point of CNN-small (light blue

point), two points of CNN-large (green curve) and all the points of Majority-

Voting (purple curve). We next compared these points to the best SuperNet curve

from Figure 5.7. As shown in Figure 5.8, the Pareto fronts spawned from the

hand-crafted models clearly outperform those generated by the SuperNet

technique, except for one outlier with a balanced accuracy of 75.4% and 468

parameters. This could be attributed to the necessity for a broader range of options

in terms of layer alternatives and α selection provided by the SuperNet approach.

We also used other state-of-the-art DL approaches [43] for people counting as

our baseline for comparison, where top balanced accuracy achieved is 82.7% with

2320 parameters. As shown in Figure 5.8, when comparing our results with

mentioned baseline, we achieved up to 2.85% improvement in balanced accuracy

by Majority-Voting, while reducing the total number of parameters by up to 44%.

Besides, the same balanced accuracy as the baseline is obtained only with 891

parameters (reduction of 61.6%). Although models spawned from SuperNet

perform worse at iso-accuracy w.r.t their seeds, the most accurate of orange curve

obtains the same accuracy as the baseline requiring 25.8% less parameters.

Furthermore, Figure 5.8 highlights the presence of several data points with

balanced accuracy greater than that of baseline (black circle) spanning diverse

number of parameters. This variety provides valuable possibilities for selecting

an architecture tailored to specific task requirements.

Precise inspection of these graphs reveals that PIT provides a diverse spectrum

of Pareto-optimal structures. Across all studied scenarios, PIT-generated

networks display great effectiveness in both exceeding and matching the accuracy

levels achieved by the seed models while concurrently requiring fewer

parameters for model deployment. These findings illustrate PIT adaptability and

efficacy in obtaining higher performance while optimizing model complexity,

demonstrating its potential for improving neural architecture design and

implementation.

61

Fig. 5.8. Comparison between best-performing Pareto-Optimal front of the seed models with and without

applying SuperNet.

62

Conclusion
In this work, we explore the effectiveness of neural architectural search (NAS)

on ultra-low-resolution infrared (IR) data, with the goal of finding accurate yet

small models that can be deployed on the IR sensors collecting the data.

Specifically, we apply two NAS algorithms, Pruning-in-Time (PIT) and

SuperNet, on an open-source IR dataset for people counting. We use as seed

models 8 state-of-the-art hand-crafted models, showing that we can achieve an

improved balanced accuracy of up to 2.85%, while also reducing the size of the

model by 44%. At iso-accuracy, we are instead able to reduce the memory

footprint of the model by 61.6%, effectively showing the validity of NAS

techniques on non-common kind of data such as IR frames.

63

References

[1] J. Chen et al., , "Deep learning with edge computing: A review," Proceedings of the

IEEE, pp. vol. 107, no. 8, pp. 1655–1674, 2019.

[2] B. Jiang et al., "Wearable vision assistance system based on binocular sensors for

visually impaired users," IEEE Internet of Things Journal, pp. vol. 6, no. 2, pp. 1375–

1383, 2019.

[3] K. Muhammad et al., "Cost-effective video summarization using deep cnn with

hierarchical weighted fusion for iot surveillance networks," IEEE Internet of Things

Journal, pp. vol. 7, no. 5, pp. 4455–4463, 2020.

[4] A. Burrello et al., "Bioformers: Embedding transformers for ultra-low power semg-

based gesture recognition," in 2022 Design, Automation & Test in Europe Conference &

Exhibition (DATE), p. pp. 1443–1448, 2022.

[5] M. Risso et al., "“Lightweight neural architecture search for temporal convolutional

networks at the edge," IEEE Transactions on Computers, p. pp. 1–1, 2022.

[6] Z. Zhou et al., "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With

Edge Computing," Proceedings of the IEEE, pp. vol. 107,no. 8, pp. 1738–1762, 2019.

[7] W. Shi et al., "Edge Computing: Vision and Challenges," IEEE Internet of Things

Journal, pp. vol. 3, no. 5, pp. 637–646, 2016.

[8] B. Zoph et al., "Neural architecture search with reinforcement learning," arXiv preprint

arXiv:1611.01578, 2016.

[9] A. Wan et al., "Fbnetv2: Differentiable neural architecture search for spatial and

channel dimensions," Proc. IEEE/CVF CVPR, p. pp. 12 965–12 974, 2020.

[10] A. Gordon et al., "Morphnet: Fast & simple resource-constrained structure learning of

deep networks," Proc. of the IEEE CVPR, p. pp. 1586–1595, 2018.

[11] M. Tan et al., "Mnasnet: Platform-aware neural architecture search for mobile," Proc.

IEEE CVPR, p. pp. 2820–2828, 2019.

[12] H. Cai et al., "Proxylessnas: Direct neural architecture search on target task and

hardware," arXiv preprint arXiv:1812.00332, 2018.

[13] M. Risso et al., "Pruning in time (pit): A light-weight network architecture optimizer for

temporal convolutional networks," Proc. 58th DAC, p. pp. 1–6, 2021.

[14] Y.-L. Hou et al., "People counting and human detection in a challenging situation,"

IEEE transactions on systems, man, and cybernetics-part a: systems and humans, pp.

vol. 41, no. 1, pp. 24–33, 2010.

64

[15] P.-R. Tsou et al., "Counting people by using convolutional neural network and a pir

array," 2020 21st IEEE International Conference on Mobile Data Management (MDM),

p. pp. 342–347, 2020.

[16] C. Xie et al., "Privacy-preserving social distance monitoring on micro-controllers with

low-resolution infrared sensors and cnns," Proceedings of the 2022 IEEE International

Symposium on Circuits and Systems (ISCAS), ser. ISCAS 2022, 2022.

[17] C. Perra et al., "Monitoring indoor people presence in buildings using low-cost infrared

sensor array in doorways," Sensors, pp. vol. 21, no. 12, p.4062, 2021.

[18] C. Raghavachari et al., "A comparative study of vision based human detection

techniques in people counting applications," Procedia Computer Science, pp. vol. 58,

pp. 461–469, 2015.

[19] W. Xi et al., "Electronic frog eye: Counting crowd using wifi," IEEE INFOCOM 2014-

IEEE Conference on Computer Communications, p. pp. 361–369, 2014.

[20] K. Hashimoto et al., "People count system using multi-sensing applicaapplication,"

Proceedings of International Solid State Sensors and Actuators Conference

(Transducers’ 97), pp. vol. 2. IEEE, pp. 1291–1294, 1997.

[21] I. Udrea et al., "New research on people counting and human detection," 2021 13th

International Conference on Electronics, Computers and Artificial Intelligence (ECAI),

p. pp. 1–6, 2021.

[22] M. B. Shami et al., "People counting in dense crowd images using sparse head

detections," IEEE Transactions on Circuits and Systems for Video Technology, pp. vol.

29, no. 9, pp. 2627–2636, 2018.

[23] A. D. Shetty et al., "Detection and tracking of a human using the infrared thermopile

array sensor—“grid-eye”," 2017 International Conference on Intelligent Computing,

Instrumentation and Control Technologies (ICICICT), p. pp. 1490–1495, IEEE, 2017.

[24] S. Basalamah et al., "Scale driven convolutional neural network model for people

counting and localization in crowd scenes," IEEE Access, pp. vol. 7, pp. 71 576–71 584,

2019.

[25] V. Nogueira et al., "Retailnet: A deep learning approach for people counting and hot

spots detection in retail stores," 2019 32nd SIBGRAPI Conference on Graphics,

Patterns and Images (SIBGRAPI), p. pp. 155–162, IEEE, 2019.

[26] S. D. Khan et al., "Person head detection based deep model for people counting in

sports videos," 2019 16th IEEE International Conference on Advanced Video and

Signal Based Surveillance (AVSS), p. pp. 1–8, IEEE, 2019.

[27] Panasonic, "Panasonic High Performance Grid-EYE Sensors Reference Specification,"

2019.

65

[28] F. Daghero et al., "Ultra-compact binary neural networks for human activity recognition

on risc-v processors," ACM CF’21, p. p. 3–11, 2021.

[29] M. Risso et al., "Robust and energy-efficient ppg-based heart-rate monitoring," IEEE

ISCAS, p. pp. 1–5, 2021.

[30] A. Gomez et al., "Thermal image-based cnn’s for ultra-low power people recognition,"

ACM CF’18, p. p. 326–331, 2018.

[31] A. Metwaly et al., "Edge computing with embedded ai: Thermal image analysis for

occupancy estimation in intelligent buildings," ACM INTESA, pp. pp. 1015-–1020,

2019.

[32] S. Mashiyama et al., "Activity recognition using low resolution infraredarray sensor,"

IEEE ICC, p. pp. 495–500, 2015.

[33] A. Hayashida et al., "The use of thermal ir array sensor for indoor fall detection," IEEE

SMC, p. pp. 594–599, 2017.

[34] L. Tao et al., "Home activity monitoring using low resolution infrared sensor," arXiv

preprint arXiv:1811.05416, 2018.

[35] Z. Liu et al., "Fall detection and personnel tracking system using infrared array

sensors," IEEE Sensors Journal, pp. vol. 20, no. 16, pp. 9558–9566, 2020.

[36] T. Kawashima et al., "Action recognition from extremely low-resolution thermal image

sequence," 14th IEEE AVSS, p. pp. 1–6, 2017.

[37] M. Gochoo et al., "Novel IoT-based privacy-preserving yoga posture recognition

system using low-resolution infrared sensors and deep learning," IEEE Internet of

Things Journal, pp. vol. 6, no. 4, pp. 7192–7200, 2019.

[38] L. Tao et al., "3d convolutional neural network for home monitoring using low

resolution thermal-sensor array," 3rd IET TechAAL, p. pp. 1–6, 2019.

[39] C.-S. Shih et al., "Multiple-image super-resolution for networked extremely low-

resolution thermal sensor array," IEEE SenSys-ML, p. pp. 1–6, 2020.

[40] I. M. a. W.-N. Lie, "Two-stream deep learning architecture for action recognition by

using extremely low-resolution infrared thermopile arrays," SPIE IWAIT 2020, p. pp.

164–169, 2020.

[41] O. Hanosh et al., "Convulsive movement detection using low-resolution thermopile

sensor array," IEEE/CVF CVPR Workshops, p. pp. 300–301, 2020.

[42] P. Industry, "Grid-eye application note on social distancing. people detection and

tracking with ceiling mounted sensors," 2020.

66

[43] C. Xie et al., "Efficient Deep Learning Models for Privacy-Preserving People Counting

on Low-Resolution Infrared Arrays," IEEE Internet of Things Journal, pp. vol. 10, no.

15, pp. 13895-13907, 2023.

[44] H. Mohammadmoradi et al., "Measuring people-flow through doorways using easy-to-

install ir array sensors," in 2017 13th International Conference on Distributed

Computing in Sensor Systems (DCOSS), p. pp. 35–43, IEEE, 2017.

[45] H. Wang et al., "A lightweight people counting approach for smart buildings,” in 2021

13th International Conference on Wireless Communications and Signal Processing

(WCSP)," p. pp. 1–5, IEEE, 2021.

[46] R. Rabiee et al., "Multi-bernoulli tracking approach for occupancy monitoring of smart

buildings using low-resolution infrared sensor array," Remote Sensing, pp. vol. 13, no.

16, p. 3127, 2021.

[47] S. Singh et al., "Non-intrusive presence detection and position tracking for multiple

people using low-resolution thermal sensors," Journal of Sensor and Actuator

Networks, pp. vol. 8, no. 3, p. 40, 2019.

[48] V. Chidurala et al., "Occupancy estimation using thermal imaging sensors and machine

learning algorithms," IEEE Sensors Journal, pp. vol. 21,no. 6, pp. 8627–8638, 2021.

[49] M. Bouazizi et al., "Low-resolution infrared array sensor for counting and localizing

people indoors: When low end technology meets cutting edge deep learning

techniques," Information, pp. vol. 13, no. 3, p. 132, 2022.

[50] M. Kraft et al., "Low-cost thermal camera-based counting occupancy meter facilitating

energy saving in smart buildings," Energies, pp. vol. 14,no. 15, 2021.

[51] C. Xie et al., "Energy-efficient and Privacy-aware Social Distance Monitoring with

Low-resolution Infrared Sensors and Adaptive Inference," 2022 17th Conference on

Ph.D Research in Microelectronics and Electronics (PRIME), p. pp. 181–184, Jun.

2022.

[52] Khalifa et al., "Imperceptible Image Steganography Using Symmetry-Adapted Deep

Learning Techniques," Symmetry 14, p. no. 7: 1325, 2022.

[53] I. Goodfellow et al., "Deep learning," MIT press Cambridge, p. Vol. 1, 2016.

[54] Gholamalinezhad et al., "Pooling methods in deep neural networks, a review," arXiv

preprint arXiv:2009.07485, 2020.

[55] A. a. T. S. Saxena, "Predicting bitcoin price using lstm And Compare its predictability

with arima model," 2018.

[56] S. Choi et al., "Temporal convolution for real-time keyword spotting on mobile

devices," arXiv preprint arXiv:1904.03814, 2019.

67

[57] P. Tsinganos et al., "Improved gesture recognition based on semg signals and tcn," Proc.

IEEE ICASSP, p. pp. 1169–1173, IEEE, 2019.

[58] S. Bai et al., "An empirical evaluation of generic convolutional and recurrent networks

for sequence modeling," arXiv:1803.01271, 2018.

[59] Lara-Benítez et al., "Temporal Convolutional Networks Applied to Energy-Related

Time Series Forecasting," Applied Sciences 10, p. no. 7: 2322, 2020.

[60] M. Sandler et al., "Mobilenetv2: Inverted residuals and linear bottlenecks," Proc. IEEE

CVPR, p. pp. 4510–4520, 2018.

[61] N. Ma et al., "Shufflenet v2: Practical guidelines for efficient cnn architecture design,"

Proc. ECCV, p. pp. 116–131, 2018.

[62] M. Tan et al., "Efficientnet: Rethinking model scaling for convolutional neural

networks," ArXiv, vol. abs/1905.11946, 2019.

[63] F. N. Iandola et al., "Squeezenet: Alexnet-level accuracy with 50x fewer parameters and

< 1mb model size," ArXiv, vol. abs/1602.07360, 2016.

[64] S. Karagiannakos, "Neural Architecture Search (NAS): basic principles and different

approaches," https://theaisummer.com/, 2021.

[65] A. Adam, "Neural Architecture Search — Limitations and Extensions," Towards Data

Science, 2019.

[66] B. Zoph et al., "Learning transferable architectures for scalable image recognition,"

Proc. IEEE/CVF CVPR, p. pp. 8697–8710, 2018.

[67] B. Baker et al., "Designing neural network architectures using reinforcement learning,"

ArXiv, vol. abs/1611.02167, 2017.

[68] E. Real et al., "Large-scale evolution of image classifiers," Proc. ICML. PMLR, p. pp.

2902–2911, 2017.

[69] H. Liu et al., "Darts: Differentiable architecture search," arXiv:1806.09055, 2019.

[70] D. Stamoulis et al., "Single-path mobile automl: Efficient convnet design and nas

hyperparameter optimization," IEEE J. Sel. Topics Signal Process, pp. vol. 14, no. 4,

pp. 609–622, 2020.

[71] M. Zanghieri et al., "Robust real-time embedded emg recognition framework using

temporal convolutional networks on a multicore iot processor," IEEE Trans. Biomed.

Circuits Syst, 2019.

[72] S. Ioffe et al., "Batch normalization: Accelerating deep network training by reducing

internal covariate shift," Proc. ICML.PMLR, p. pp. 448–456, 2015.

68

[73] S. R. Chaudhuri et al., "Fine-Grained Stochastic Architecture Search,"

arXiv:2006.09581, 2020.

[74] K. He et al., "Mask r-cnn,," p. [Online]. Available: https://arxiv.org/abs/1703.06870,

2017.

[75] M. Courbariaux et al., "Binarized neural networks: Training deep neural networks with

weights and activations constrained to+ 1or-1," arXiv preprint arXiv:1602.02830, 2016.

[76] A. Yazdizadeh et al., "Ensemble convolutional neural networks for mode inference in

smartphone travel survey," IEEE Transactions on Intelligent Transportation Systems,

pp. vol. 21, no. 6, pp. 2232–2239, 2020.

