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Summary 

The growing popularity of Neural Architecture Search (NAS) is changing 

optimization strategies in Deep Learning (DL). While NAS has typically been 

utilized for tasks such as image classification and object detection, this study 

investigates its application in improving DL models for people counting 

applications based on ultra-low-resolution infrared (IR) array sensors. These 

sensors are well-known for their low cost, energy efficiency, and privacy 

protection, given by the fact that they only gather low-resolution thermal maps, 

not revealing private information such as facial details of people. This makes 

them ideal for applications such as people counting in public spaces.  

In our work, we perform a thorough examination of several DL architectures, 

using them as seed models for an efficient NAS tool, with the goal of finding 

several tradeoff points between accuracy and model size, both critical for low-

power devices. The core of this study is the development of a new and purpose- 

driven NAS paradigm targeted at optimizing architectural characteristics directly 

related to worldwide usage of ultra-low-resolution IR array sensors.  

Thanks to NAS technique, our findings show that DL models not only improve 

accuracy but also efficiency, even with simple model architectures. In particular, 

we are able to achieve up to 85.55% balanced accuracy on an open-source 

infrared dataset, improving by +2.85% with respect to a previous work that 

applied manually designed DL models on the same dataset, while also reducing 

the model memory by 44%. Importantly, these enhanced DL models can function 

in real time on low-power Internet of Things (IoT) nodes. 
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Chapter 1 
Introduction 

Recently, there has been a spike in demand for the use of Deep Learning (DL) 

in the Internet of Things (IoT) world due to its remarkable performances in a wide 

range of IoT applications, such as embedded computer vision and time series 

forecasting  [1], [2], [3], [4], [5]. Although, cloud-based computing centralizes 

data processing in remote data centers, allowing for scalability but occasionally 

resulting in latency issue, edge computing moves processing closer to data 

sources, performing the inference of the DL model directly on the IoT device [1],  

[6], [7]. 

Dropping the need for a constant connection or simply reducing the amount of 

data transmitted can bring several benefits. First, increased security, as no 

sensitive data is transmitted over a possibly insecure connection [1], [6]. Second, 

predictable and possibly lower latencies, leading to real-time applications being 

available on IoT end-nodes. Finally, lower energy footprints, as the data 

transmission is generally less optimized than performing computations locally. 

This last point is crucial for battery-operated IoT devices, that have to be 

operational for as long as possible. 

However, while running the inference on IoT nodes can lead to several 

benefits, DL models are generally designed to run on powerful high-end 

hardware. These algorithms consume a lot of energy and need a lot of processing 

power, making them unsuitable for deployment on IoT nodes. These nodes, which 

are often powered by batteries and have limited memory and resources, rely on 

Microcontrollers (MCUs) to work properly. It is critical to choose appropriate 

models and hyper-parameters for successful DL deployment in energy-

constrained IoT edge devices, a complex and time-consuming challenge due to 

the constrained hardware of MCUs. 

Neural Architecture Search (NAS) has become increasingly popular, 

performing in an automatic process of the search for the optimal architectures and 

determining ideal network layouts. Several of these NAS approaches, in 

particular, have been specially optimized for edge devices, where resource 

restrictions are much more severe [8], [9], [10], [11], [12]. The importance of 
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using NAS tools derives from their capacity to efficiently explore a large search 

space of potential network configurations which enables researchers and 

engineers to focus on other areas of the machine learning pipeline. Existing NAS 

tools for 2D CNNs frequently employ a coarse-grained approach, making 

multiple copies of network layers for different designs, resulting in excessive 

memory and time consumption [12]. Lightweight NAS (LNAS) solutions, on the 

other hand, provide more efficient exploration of architectural space by focusing 

on certain model properties, such as channel numbers in layers, which are critical 

for computer vision [9], [10].  

In this work, we leverage a lightweight NAS approach named Pruning In Time 

(PIT) [13], utilizing a single seed model as a basis to generate a diverse array of 

Pareto optimal architectures, achieving a finest balance between the number of 

operations/parameters and accuracy. The approach employs use of structural 

weight pruning, which involves increasing weights with trainable masks that 

reflect architectural settings. During training, these masks are improved using 

regularizers to reduce model complexity while retaining accuracy. Two inner 

regularizers collaborate: one decreases parameters and the other performs 

inference methods. This facilitates Neural Architecture Search (NAS), 

successfully revealing various Pareto architectures. 

In particular, we apply PIT for an increasingly popular task of IoT applications, 

that is, people counting. The importance of people counting arises from its vast 

range of uses in public safety, urban planning, and commercial situations [14]. 

The practical applications of this technology range from monitoring the 

occupancy levels of indoor workspaces, museums, and hospitals to conducting 

in-depth assessments of people flow data at the doors of stores, supermarkets, and 

other public locations. Furthermore, in the context of the COVID-19 pandemic, 

people counting technology has played a critical role in monitoring and 

implementing social distancing standards and safety norms [15], [16], [17].  

In the realm of Internet of Things (IoT), there is a vast variety of technical 

solutions for people counting, which may be generally classified into two primary 

types: instrumented and un-instrumented techniques [18]. The former makes use 

of transceivers that are already present in devices that users own or are given, 

such as smartphones, smartwatches, or tags [19]. However, since they rely on 

voluntary contributions and specialized technology, these techniques have 

substantial constraints that make them difficult to deploy in many real-world 

settings, particularly in public spaces. Un-instrumented solutions, on the other 
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hand, do not rely on person active participation and instead rely on external 

sensors such as proximity sensors, optical cameras, and infrared arrays [18], [20],  

[21], [22]. In particular, Infrared beam sensors and passive infrared sensors are 

the least expensive and easiest to deploy, however they have significant 

limitations. They rely on object motion and may fail to discriminate between 

many people in close proximity [23]. However, thanks to the significant 

improvement in computer vision and video analysis brought by Deep Learning 

(DL) models, these technologies are becoming increasingly appealing. Many of 

today vision-based techniques use optical cameras and Machine Learning (ML) 

algorithms to detect and locate people inside each frame [24], [25], [26]. While 

these technologies have shown to be efficient, they create serious privacy issues 

since they acquire and process sensitive information about individuals, such as 

face features and physical characteristics. 

In this case, the use of low-resolution infrared (IR) array sensors is a viable 

choice that offers various benefits. These sensors are capable of capturing small 

thermal pictures (often 8x8 or 16x16 pixels) at around 10 frames per second (FPS)   

[27]. While they can detect basic forms, they do not record details such as facial 

characteristics, clothes, or hairstyles, allowing them to be used in a private setting. 

Furthermore, their low power consumption, low-cost, and low-resolution make 

them ideal in an IoT setting, where battery-powered devices need to be 

operational for long periods of time [13], [28],  [29], [30], [31]. 

In this work, we benchmark several DL architectures on an infrared dataset 

with a resolution of 8x8. In particular, we select 8 state-of-the-art models on the 

task, using them as seed model for the NAS to generate a wide set of models, 

spawning accuracies between 81.38% and 92.74% and number of parameters 

between 575 and 18124.  We show that NAS approaches are suitable also for IR 

data and can outperform hand-crafted models by up to 2.85%, while reducing the 

memory by 44%. 
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Chapter 2 
Related Works 

In this chapter, we present a review of the literature on people counting with 

multi-pixel infrared arrays. Table 2.1 highlights several studies, including sensor 

model, resolution, location, target dataset, counting methods, and IoT devices 

utilized for deployment. Previous works integrating low-resolution infrared 

sensors with Machine Learning (ML) have mostly focused on human activity 

identification [32], [33], [34], [35], [36], [37], [38], [39], [40], [41]. Some of these 

studies use traditional algorithms [32] - [35] while others offer Deep Learning 

(DL) methodologies such as Convolutional Neural Networks (CNNs), Long-

Short Term Memory (LSTMs), Gated Recurrent Units (GRUs), or a mix of these 

(e.g., CNN-LSTM) [36] - [41]. The number and location of IR sensors utilized, 

the preprocessing methods performed on thermal pictures before feeding them to 

ML models, and the identified activities change depending on the work. These 

activities vary from everyday behaviors like walking, sitting, and standing 

identification [32], [34], [36], [38], [40] to more particular scenarios like 

detecting falls in older people [33], [35] epilepsy-induced convulsions [41], and 

even yoga position recognition [37]. As far as we know, the only work available 

for counting people using low-resolution IR sensors (8x8 pixels) is the method 

put forward in reference [42], [43].  

Some studies used deterministic algorithms  [17], [42], [44], [45], [46], [47] 

traditional ML models  [48], or deep learning [30], [31],  [49], [50]. For instance, 

in  [17], the authors described a real-time pattern recognition method that uses 

data from low-resolution IR array sensors placed on entrances to detect the 

number of persons in a room. Similarly, [44] used a doorway sensor in 

conjunction with body extraction and localization algorithms, as well as the 

background assessment for people counting.  [45] suggested a lightweight 

deterministic approach that uses a single array sensor mounted on a door to record 

item trajectories entering and departing a room, allowing calculation of the 

number of people. These techniques are intriguing because they make use of a 

single, low-resolution sensor but are confined to counting individuals entering 

and departing a room through a doorway, solving a simplified version of the 

generic people counting problem. 
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Table 2.1 

Advance People Counting Methods Based on Infrared Arrays 

Work Sensor Positioning Dataset Algorithm Deployment 

Target 

Perra et al.  [17] Grid EYE 

(8x8) Door Private Deterministic Z-Uno 

Mohammadmoradi 

et al. [44] 
Grid EYE 

(8x8) Door Private Deterministic Raspberry Pi 

Zero 

Wang et al. [45] MLX90641 

(12x16) Door Private Deterministic ESP8266 

Rabiee et al. [46] Grid EYE 

(8x8) Ceiling 
Private/Nagoya-

OMRON 

Dataset [29] 
Deterministic - 

Singh et al. [47] MLX90621 

(16x4) 
Ceiling/Side 

Wall Private Deterministic Arduino Uno 

Chidurala et al.  

[48] 

Grid EYE 

(8x8) 
MLX90640 

(32x24) 
Lepton 

(80x60) 

Ceiling Private 

Naive Bayes 
KNN 
SVM 
RF 

Raspberry Pi 

3 

Bouazizi et al.  [49] MLX90640 

(32x24) Ceiling Private CNN Raspberry Pi 

3 

Gomez et al. [30] Lepton 

(80x60) Wall Private CNN NXP 

LPC54102 

Metwaly et al. [31] MLX90640 

(32x24) Ceiling Private 
FNN 
CNN 
GRU 

STM32F4/F7 

Kraft et al. [50] MLX90640 

(32x24) Ceiling Thermo 

Presence [24] CNN Raspberry Pi 

4 

Xie et al. [16] Grid EYE 

(8x8) Ceiling LINAIGE [31] CNN (2 variants) STM32L4 

Xie et al. [51] Grid EYE 

(8x8) Ceiling LINAIGE [31] Wake-up Trigger 

+ CNN STM32L4 

Xie et al. [43] Grid EYE 

(8x8) Ceiling LINAIGE [31] 
CNN (4 variants) 

CNN-LSTM 
CNN-TCN 

STM32L4 

This work Grid EYE 

(8x8) Ceiling LINAIGE [31] CNN (3 variants) 
CNN-TCN - 

(*) All of these entries relate to the deployment of the approach described in [42] in [43]. 
 

In  [42], the authors present a more general deterministic technique with a 

ceiling-mounted sensor. Smoothing, linear interpolation, and hot area labeling 

and clustering are used to identify moving thermal objects from the background 

in this approach. Following that, each recognized thermal item is subjected to a 

threshold-based human detection to determine if it represents a person. To 

preserve accuracy, the reference backdrop image is regularly updated to 

continually filter out stationary heated objects. 



 

6 
 

Furthermore, researchers have looked into multi-sensor deterministic 

techniques. A people counting technique, for example, was described in  [46] for 

effectively tracking population in smart constructions. Several low-resolution 

sensors strategically positioned at connecting points between different regions of 

the building are used by the algorithm to count the number of persons travelling 

between neighboring zones. Similarly, [47] presents a system for indoor people 

counting based on two deterministic algorithms. This approach entails the 

placement of three 16x4 thermal sensors at various sites, each sensor is orientated 

in the x, y, and z axes, respectively. The combination of these sensors provides 

precise and dependable indoor people counting. 

The authors of  [48] investigates people counting using three infrared (IR) 

arrays attached to the ceiling, each with a different resolution (8x8, 32x24, and 

80x60). Various preprocessing and feature extraction approaches are used in the 

study, including active pixel and active frame detection, connected components 

analysis, and statistical features. To compare the performance, they use several 

Machine Learning models, such as Naive Bayes, K-Nearest Neighbors (KNN), 

Support Vector Machines (SVM), and Random Forests (RFs). The RFs produces 

the greatest score for the 8x8-resolution array based on their results from a private 

dataset. 

Various deep learning (DL) algorithms for indoor people location and counting 

utilizing infrared (IR) sensors have been developed recently. In  [49], for example, 

the authors propose a method based on a Convolutional Neural Network (CNN) 

with 9 convolutional layers and 1 dense layer. This CNN analyzes data from a 

32x24 pixel IR sensor positioned on the ceiling. Notably, they propose the option 

of collecting lower-resolution samples (down to 8x6 pixels) with the use of a 

separate 8-layer CNN for frame upscaling to decrease sensor costs. 

In [30], another people counting algorithm is introduced. This method relies 

on wall-mounted sensors and leverages a small-sized CNN model designed 

particularly for a low-memory, low-power platform. In this scenario, the IR array 

has a greater resolution of 80x60 pixels. Similarly, in reference [31], the authors 

investigate several DL approaches for indoor occupancy estimates, such as 

Feedforward Neural Networks (FNNs), CNNs, and Gated Recurrent Units 

(GRU). Their investigations are based on a ceiling-mounted infrared array with a 

resolution of 24x32 pixels. In contrast, [50] employs a ceiling-mounted IR array 

with the same resolution (24x32 pixels) and a U-Net-inspired encoder-decoder 
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CNN architecture. This method effectively recreates people positions in the 

recorded frame. 

In  [16], another DL algorithm based on an ultra-low-resolution (8x8) array is 

proposed. It should be noted, however, this study focused on a reduced form of 

the people counting problem. The major goal was to determine whether the sensor 

region contained two or more persons, especially in the context of social distance 

monitoring to limit COVID-19 spread. A similar method was used in a prior study 

[51], where an additional deterministic wake-up-trigger was included to prevent 

extra CNN invocations when no people were present in the frame. This change 

considerably lowered the overall energy usage of the system. 

Existing data-driven (ML or DL) research for IoT end-nodes using low-

resolution infrared arrays are scarce. For example, studies [48] and [49] focus 

primarily on person counting deployment on high-end mobile Central Processing 

Units (CPUs), but fail to give extensive information on critical deployment 

features such as memory utilization, inference delay, and model utilization of 

energy. Second, [30] and [31] emphasize the use of expensive and power-

intensive high-resolution arrays, which may compromise user privacy. 

Furthermore, [49] supports low-resolution sensors but depends on an additional 

CNN model for frame upscaling, increasing total inference complexity. In 

addition, publications such as [30], [31] and [48] use unreasonable data splitting 

approaches, such as arbitrarily choosing individual frames or sliding windows, 

which improperly simplifies the process. Only [49] uses a reasonable data 

separation at the session level, on the other hand, both  [16] and [51] concentrate 

on a simpler task variation. In [43], the authors study the new application of Deep 

Learning (DL) approaches to a people counting task utilizing a single, ceiling-

mounted, ultra-low-resolution IR array with just 8x8 pixels. The results of an 

exhaustive investigation of six families of efficient DL models and various hyper-

parameter settings show that DL not only surpasses deterministic algorithms in 

regards to counting accuracy, but also in terms of energy consumption and 

latency. 

In this work, we also utilized a single, ceiling-mounted, ultra-low resolution IR 

array with just 8x8 pixels data, [43], as the sensor configuration in the 

investigation. Our main objective is to study several deep learning (DL) models 

for people counting applying Neural Architecture Search (NAS) approach 

presented in  [5] with an extensive search of hyper-parameter space.  
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Chapter 3 
Background 
3.1 Overview 

Deep Learning has become increasingly popular due to its outstanding 

performances in a wide range of fields, such as Computer Vision and Speech 

Recognition. As opposed to traditional Machine Learning it does not rely on 

complex hand-crafted features, but instead extracts them automatically directly 

from the data. An advantage of DL lies in its capability to learn non-linear 

functions, allowing it to possibly approximate any function. In contrast, however, 

it usually requires large amounts of data, often underperforming for datasets of 

limited size. In order to further improve the performance of DL models, several 

architectures have been proposed, with the most popular being: 

• Feed-Forward Neural Networks (FNNs): also known as Multilayer 

Perceptrons (MLPs), are a basic type of artificial neural network. Data 

in FNNs flows unidirectionally from input to output layers, with no 

feedback loops. They are adaptable and commonly used for 

classification and regression applications. 
• Convolutional Neural Networks (CNNs): they are designed to analyze 

grid-like data, such as photos and movies. They use convolutional layers 

to learn spatial feature hierarchies automatically, making them crucial 

for tasks like image classification and object recognition. 
• Recurrent Neural Networks (RNNs): are specialized for sequential data, 

such as time series and natural language processing, where the sequence 

of items is important. RNNs use recurrent connections to allow 

information to propagate across time steps. They are crucial in 

applications such as language modeling and speech recognition since 

they excel at capturing temporal relationships. 

While these three neural network architectures are the fundamental building 

blocks of deep learning, it is worth noting that several other specialized 

architectures and hybrid models have arisen to address specific tasks. 
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In the context of the learning process, Machine Learning (and thus DL as well) 

can be divided into three main categories: supervised, unsupervised, and 

reinforcement learning. 

Supervised learning, that is used in this work, is a fundamental machine learning 

approach that is widely employed in a variety of applications. An algorithm is 

trained on a labeled dataset, with each data point consisting of input 

characteristics and associated output labels or target values. The basic purpose of 

the algorithm is to learn a mapping from the input characteristics to the output 

labels, allowing it to make predictions or classifications on new, previously 

unseen data.  

Unsupervised learning is another type of a machine learning paradigm in which 

the algorithm learns patterns and structures in data without explicit supervision 

or labeled outputs. Unsupervised learning algorithms, rather than producing 

predictions, seek to find intrinsic patterns, groups, or correlations in data. 

Unsupervised learning is commonly used for clustering and dimensionality 

reduction. 

Finally, Reinforcement learning is a sort of machine learning in which an agent 

learns to make decisions in a given environment in order to maximize a 

cumulative reward. In this context, there is no explicit dataset of labeled samples. 

Instead, the agent interacts with the environment, performs actions, receives 

feedback in the form of incentives or penalties, and gradually learns to optimize 

its activities. Reinforcement learning is frequently employed in applications such 

as game play and autonomous robots. 
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3.2  Neural Network Layers  
Deep Neural Networks (DNNs) are composed of various layers, each playing 

an important role in data processing and transformation. Before we delve into the 

details of these layers, it is important to comprehend two key concepts: overfitting 

and underfitting. 

• Overfitting happens when a model learns the training data, including 

noise and random fluctuations, exceedingly well. As a result, the model 

becomes highly specialized to the training data while failing to 

generalize successfully on unseen or new data. Overfitting occurs when 

a model is overly complicated in comparison to the data on which it is 

trained. 
• Underfitting occurs when a model is too simplistic to capture the 

underlying patterns in the data. It does not sufficiently learn the training 

data, leading in low performance on both the training and test data. 

Underfitting occurs when a model is too shallow or lacks the ability to 

describe the intricacies in the data. 

With these definitions in mind, we can now explore the various layers of neural 

networks, shown in Figure 3.1, understanding their roles and how they can impact 

overfitting and underfitting. 

 

 
Fig. 3.1. Three main layers in deep learning algorithms. 
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1. Input Layer: The input layer serves as the first point of contact between the 

neural network and the input data. It is made up of neurons that correlate 

to the dimensions of the incoming data. This layer just receives input data 

and passes it on to the first intermediate layer. The dimensionality of the 

input data determines the size of the input layer. 
 

2. Intermediate (Hidden) Layer: Intermediate layers are in charge of 

performing complex data transformations and extracting essential 

characteristics and patterns. Each hidden layer receives input from the 

previous layer and sends its output to the next layer. A node is a 

computational unit that contains one or more weighted input connections, 

a transfer function that combines the inputs in a certain manner, and an 

output connection. The nodes are then grouped into layers to form a 

network. The number and size of hidden layers can have a big impact on 

whether the network is vulnerable to overfitting or underfitting. 

Underfitting can occur when there are too few or too small layers, and 

overfitting can occur when there are too many or overly large layers. 
 

3. Output Layer: The ultimate outcome of the neural network's calculations is 

produced by the output layer. The output layer size is normally defined by 

the distinctive problem requirements. 
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3.3  Neural Network Training 
The process of teaching a neural network to produce correct predictions or 

classifications based on input data is known as training. This process includes 

several critical steps, including as the neural network design, the selection of a 

loss function, the employment of an optimization technique (often gradient 

descent), and the tuning of hyperparameters such as the learning rate. 

Backpropagation is also an important approach for updating the network weights 

and biases during training. In the following, we provide brief explanation of the 

most important steps:  

Neural Network Architecture: The architecture of neural networks can vary 

depending on the scenario at hand, with different types of layers and activation 

functions utilized. We already discussed common designs, which are made up of 

layers of interconnected nodes. Weighted interconnections connect each node in 

a layer to every node in the subsequent layers. The equation of a neuron is the 

following: 

𝑧𝑖 = ∑ 𝑤𝑖𝑗 × 𝑎𝑗 + 𝑏
𝑗

  (3.1) 

where: 

• 𝑧𝑖 is the output to neuron 𝑖. 
• 𝑤𝑖𝑗 is the weight of the connection between neuron 𝑗 in the previous 

layer and neuron 𝑖 in the current layer. 
• 𝑎𝑗 is the output (activation) of neuron 𝑗 in the previous layer. 
• 𝑏  is the bias term. 

 Loss Function: A loss function (also known as a cost or objective function) 

calculates the difference between the neural network's predicted output and the 

actual target values. The nature of the problem influences the choice of a loss 

function. During training, the aim is to reduce the value of the loss function, 

which indicates that the network predictions are approaching closer to the real 

goals. The general formula of a loss function can be expressed as follows: 

𝐿(𝜃) =
1

𝑁
∑ ℓ(𝒻(𝑥𝑖; 𝜃), 𝑦𝑖)

𝑁

𝑖=1
  (3.2) 
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where, 

• 𝐿(𝜃) denotes the overall loss or cost as a function of the model 

parameters (𝜃). The aim of training a neural network is to minimize this 

loss by modifying the model parameters.  
• N is the number of training examples in the dataset. 
• ℓ(𝒻(𝑥𝑖; 𝜃), 𝑦𝑖) is the specific loss for a single training example. This 

term measures the error or difference between the predicted output 

𝒻(𝑥𝑖; 𝜃) of the neural network for input 𝑥𝑖 and the actual target output 

𝑦𝑖 . The precise loss function (ℓ) chosen depends on the task. 

Activation Function: In a neural network layer, activation functions are applied 

to the output of each neuron. They add non-linearity to the model, which allows 

it to learn complicated patterns. Sigmoid, Hyperbolic Tangent (tanh), Rectified 

Linear Unit (ReLU), Leaky ReLU, and Exponential Linear Unit (ELU) are 

examples of common activation functions. The activation function adopted can 

have a considerable influence on network performance and training speed, 

however, their choice is often problem-dependent. 

Forward Pass: During the forward pass, input data is fed into the neural 

network, and layer-by-layer computations are performed to create an output 

prediction. Each neuron output is decided by applying an activation function to 

the weighted sum of its inputs as 𝑎𝑖 = 𝜎(𝑧𝑖) in which 𝜎(𝑧𝑖) is the activation 

function applied to the input 𝑧𝑖 of neuron 𝑖. 

Backpropagation: Backpropagation is a supervised learning method that is 

used to update the neural network weights and biases in order to minimize loss. 

It consists of computing the gradient of the loss for each layer, starting from the 

output one. Weights are then updated by a small multiple of the partial derivative, 

repeating the process until a specific stopping criterion is met. The small 

multiplier is called learning rate, playing a major role on the final accuracy of the 

model. A high learning rate can cause overshooting of the ideal weights, whereas 

a slow learning rate can cause slow convergence. To increase training stability, 

techniques such as learning rate schedules and adaptive learning rates (e.g., Adam 

optimizer) can be applied. The general formula for updating a neural network 

weight (W) during backpropagation, which incorporates the learning rate (𝛼), is 

as follows: 

𝑊𝑛𝑒𝑤 = 𝑊𝑜𝑙𝑑 − 𝛼.▽ 𝐿(𝑊𝑜𝑙𝑑) (3.3) 
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Where: 

• 𝑊𝑛𝑒𝑤 and 𝑊𝑜𝑙𝑑  are the new and old values for a given weight parameter. 
• 𝛼 is the learning rate controling the step size of the weight update. 
• ▽ 𝐿(𝑊𝑜𝑙𝑑) is the gradient of the loss function regarding the weights at 

their current values. This gradient is computed through backpropagation. 
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3.4  Neural Network Architectures 

3.4.1 Feed-Forward Networks  
The most basic type of neural network, feed-forward neural networks, have a 

single objective: to approximate a target function indicated by 𝑓∗. These networks 

create a connection between an input x and an output y, denoted as 𝑦 − 𝑓(𝑥; 𝜃) , 

with the role of the fully connected layers being pivotal in this process. These 

layers, also known as dense layers, form the backbone of the network, facilitating 

the transformation of input data through weighted connections and activation 

functions. Adjusting the parameter 𝜃 to achieve the best accurate approximation 

of the target function is part of the learning process. These models are referred as 

"feed-forward" because they lack feedback links that allow outputs from various 

stages to be sent back into the network. They are instead referred to as "networks" 

since they are often built by merging various functions in a certain way. This 

structure can be represented as a directed acyclic graph, which shows how various 

functions are interrelated and combined. 

 

3.4.2 Convolutional Neural Networks  
Convolutional Neural Networks (CNNs) are a type of neural network that is 

designed to handle grid-structured input, as seen in Figure 3.2. Due to its intrinsic 

capacity to capture both spatial and temporal dependencies within grid-structured 

data, CNNs have shown to be incredibly successful in a variety of applications, 

including image classification, voice analysis, and video processing. CNNs have 

evolved into an essential tool in current machine learning as a result of their 

capacity to automatically learn and discover meaningful patterns from raw data. 

As research and development in this field continues, CNNs are anticipated to 

make even more astounding advances, allowing them to address increasingly 

difficult and real-world problems. 
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Fig. 3.2. A depiction of a Convolutional Neural Network (CNN) with multiple layers for extracting distinctive 

characteristics from an input image. (Image from  [52]) 
 

At the heart of CNNs lies the convolutional layer, which employs learnable 

parametric filters to transform the input into multiple small receptive fields [53]. 

During the forward pass, a dot product operation is performed between the input 

data and the filters, resulting in activation maps for each filter that represent 

distinct features or patterns [53]. This convolution operation facilitates the 

extraction of diverse features or activation maps through parameter sharing, 

granting CNNs the desirable quality of translation invariance. In Eq. 3.4, the 𝑖 

and 𝑗 represent input data positions, whereas 𝑚 and 𝑛 indicate filter positions. 

The formula implements the convolution process, computing each element in the 

output feature map 𝑦 as the sum of element-wise products of the filter ℎ and 

corresponding parts of the input data 𝑋. Convolution provides various benefits to 

machine learning models, including lower memory usage, reduced computational 

effort, and the ability to handle inputs of various sizes.  

 

𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 = 𝑦[𝑖, 𝑗] = 𝑖𝑛𝑝𝑢𝑡 ⊗ 𝑘𝑒𝑟𝑛𝑒𝑙 = ∑∑𝑋[𝑖 − 𝑚, 𝑗 − 𝑛]. ℎ[𝑚, 𝑛] (3.4) 

 

Concat layers, also known as concatenation layers, play an important role in 

CNNs by concatenating feature maps. This is critical for a number of reasons, 

including combating the vanishing gradient problem by enabling information to 

flow from earlier layers to later ones, allowing for the simultaneous learning of 

low-level and high-level characteristics. Concat layers are especially useful in 

multi-modal networks for fusing outputs from several input modalities, which 

improves the network capacity to handle complicated data interactions and 

produce thorough predictions. 
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CNNs use pooling layers to reduce the dimensionality of the feature maps, 

grouping values together and performing a reduction process. Among the several 

reduction functions, the most common are the maximum and the average [53], 

average pooling is shown in Figure 3.3. The goal of pooling is to condense the 

information while limiting the loss of information. 

 

 
Fig. 3.3. An example of average pooling method. (Image from [54]) 

 

The batch normalization layer is used to improve the stability of input data 

distributions by altering their mean and variance. This technique improves the 

predictiveness of gradients utilized during training, increasing accuracy while 

decreasing training time. The dropout layer, on the other hand, is used during 

training to prevent overfitting of the network, but it is inactive during inference. 

It enables the termination of certain neurons to prevent co-adaptation, thus 

boosting the network's generalization capacity. 

At the final stages of the CNN, fully-connected (FC) layers come into play. In 

contrast to the convolution and pooling layers, which act locally, the FC layers 

implement a global operation. These layers, which are typically positioned at the 

end of the network, connect every neuron in one layer to every neuron in the next 

layer [53].  
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3.4.3 Recurrent Neural Networks 
Recurrent Neural Networks (RNNs) are a type of neural network that is 

designed to process sequential data. They can handle sequences of values 

indicated as x(1),..., x(𝜏), and these sequences can be larger and more flexible in 

length than other non-specialized networks. RNNs, similar to feed-forward 

networks, assess the input sequence one element at a time. RNNs, on the other 

hand, have a "memory" vector that stores information about all previous items in 

the sequence. It is crucial to notice that the index t in the series of items x(t), 

shown in Figure 3.4, does not always correlate to real-world time. Instead, it 

represents the place in the sequence. As long as the complete sequence is 

accessible for the network to execute, this location might travel backward in real-

world time or have no direct link to it. 

 
Fig. 3.4. An example of unrolled RNN. (Image from [55]) 

 
3.4.4 Temporal Convolutional Networks 

Temporal Convolutional Networks (TCNs) have emerged as a prominent 

variation of 1-dimensional (1D) Convolutional Neural Networks (CNNs), 

outperforming classical RNNs, LSTM, and GRU models in different time-series 

processing applications [29], [56], [57]. TCNs have a significant benefit over 

RNN-based models in that they are less susceptible to training-time difficulties 

such as disappearing or raising gradients, which might hinder learning. TCNs also 

require less training memory when dealing with extended input sequences, which 

is a typical difficulty for RNN-based designs. They also provide computational 

advantages during inference, making them more efficient in terms of latency and 

energy usage. This benefit arises from their ability to use traditional CNNs data 

localization and arithmetic intensity properties [58]. TCNs and regular CNNs 

have the same essential building pieces, notably Convolutional, Pooling, and 
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Fully Connected layers. TCN convolutional layers, on the other hand, have two 

separate properties: causality and dilation, shown in Figure 3.5, which make them 

suited for processing temporal inputs. This innovative design enables TCNs to 

attain cutting-edge performance while resolving training-time issues and 

delivering computational efficiency during inference 

 

Fig. 3.5. Comparisons between a conventional convolutional network (a), a causal convolutional network (b), 

and a dilated causal convolutional network (c). (Image from  [59]) 

To retain the natural sequence of cause and effect in occurrences, TCN 

convolutional layers impose causality. In practice, this implies that the output at 

time step t (denoted as 𝑦𝑡) in a TCN convolution is only dependent on a finite 

number of previous inputs (𝑥[𝑡 − 𝐹, 𝑡]). However, dilation is a strategy used in 

TCNs to extend the receptive field of convolutions along the time axis without 

introducing extra trainable parameters or increasing the number of operations 

necessary for inference. This is accomplished by introducing a fixed step (d) 

between the input samples processed by each convolutional filter. Eq. 3.5 

represents the 1D dilated convolution operation in TCN layers, where x and y are 

input and output activations, T is the output sequence length, W is the array of 

filter weights, Cin and Cout are the number of input and output channels, K is the 

filter size, s is the stride, and F is the layer receptive field, which is determined 

by the dilation factor (d) and the filter size (K) as 𝐹 = 𝑑 ∗ (𝐾 − 1) + 1. 

 

𝑦𝑡
𝑚 = ∑ ∑ 𝑥𝑡𝑠−𝑑𝑖

𝑙 . 𝑊𝑖
𝑙,𝑚

𝐶𝑖𝑛−1

𝑖=0

𝐾−1

𝑖=0

, ∀𝑚 ∈ [0, 𝐶𝑜𝑢𝑡 − 1], ∀𝑡 ∈ [0, 𝑇 − 1] (3.5) 
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3.5  Neural Architecture Search (NAS) 
The development of efficient and compact convolutional neural network 

architectures suitable for edge devices has recently accelerated. For instance, 

early MobileNets [60], ShuffleNets [61], EfficientNet [62], and SqueezeNet [63] 

are some famous cases. In terms of efficiency, these models have shown 

considerable potential, making them perfect alternatives for edge computing 

applications. However, their development required challenging hand 

modifications of hyperparameters, which took a substantial amount of time and 

effort. Furthermore, each time a new target job or deployment platform was 

considered, the tuning procedure had to be restarted from the beginning. 

To solve this issue, researchers have developed a number of automated or semi-

automated approaches for optimizing neural network topologies. These 

approaches are known as Neural Architecture Search (NAS) algorithms. The 

major purpose of NAS algorithms is to relieve designer workloads by automating 

the process of determining the best architecture for a specific job or deployment 

target. NAS techniques generally operate as shown in Figure 3.6. The NAS 

explores the architecture search space, selecting a subset of the candidates. An 

evaluation strategy will then determine the "goodness" of the found architectures 

and a control mechanism will decide whether the process can stop or should 

continue. NAS algorithms can be categorized mainly on three factors: 

a) Search space in which the search is undertaken, 
b) How the search is performed, including the controller strategy and the 

evaluation of possible applicants 
c) How this candidate performance is assessed. 

 

Fig. 3.6. Major components of the landscape of NAS algorithms. (Image from  [64]) 
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NAS methods operate by exploring a large design space that includes various 

combinations of network layers and hyperparameter values. During this 

investigation, they evaluate the performance of each design using a cost metric. 

This cost measure often takes into account both the network accuracy and its 

computational efficiency, which may be defined by factors such as the number of 

parameters or inference operations. 

 

Fig. 3.7. Selecting suitable architecture as optimum network architecture. (Image from  [65])  

Table 3.1 presents a qualitative comparison of key works in this field, 

concentrating on search time, memory needs during training (Mem.), search 

space size, and the possibility to alter the resultant neural network architecture 

(number and type of layers). Smaller numbers are preferred for Time and 

Memory, but bigger values are desired for Search Space. Early NAS tools relied 

on Reinforcement Learning (RL) [8], [11], [66], [67], or Evolutionary Algorithms 

(EA) [68]. These approaches entail sampling structures from the search space and 

training them to convergence in order to evaluate their accuracy (and optionally 

cost), which then drives the next sample iteration. The repeated training in each 

iteration, on the other hand, is a substantial disadvantage, resulting in 

considerable GPU hours (thousands) even for relatively basic jobs, resulting in 

longer search times, as seen in Table 3.1.  
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Table 3.1 
Advanced NAS (Values: ↑ = large, ↗ = medium, ↓ = small) 

 Time Mem. Search Space Topology 
Reinforcement Learning 

Zoph et al.  [8] ↑ ↓ ↗ Variable* 
MNASNET  [11] ↑ ↓ ↑ Variable 
NASNET  [66] ↑ ↓ ↗ Variable 
MetaQNN  [67] ↑ ↓ ↑ Variable 

Evolutionary 
Real et al.  [68] ↑ ↓ ↑ Variable 

DifferentiableNAS 
DARTS  [69] ↗ ↑ ↓ Variable 

ProxylessNAS  [12] ↗ ↗ ↗ Variable 
DmaskingNAS 

FBNetV2 [9] ↓ ↓ ↑ Fixed 
MorphNet  [10] ↓ ↓ ↗ Fixed 

S.-Path NAS  [70] ↓ ↓ ↗ Fixed 
PIT  [5] ↓ ↓ ↑ Fixed 

*Deploy only 

To solve the time-consuming search problem of Reinforcement Learning (RL) 

and Evolutionary Algorithms (EA) techniques, more modern approaches, such as 

Differentiable Neural Architecture Search (DNAS), Fig. 3.8, have added 

supernets [69]. Supernets are Deep Neural Networks (DNNs) that include all 

conceivable alternative layers to be examined during the optimization process. 

For example, a single supernet layer may comprise many Convolutional layers 

with differing kernel sizes running in parallel. The challenge of choosing a certain 

architecture is therefore changed into the task of selecting a path inside the 

supernet [69]. The choice between multiple paths is represented by binary 

variables that are jointly learned with the conventional network weights using 

gradient-based learning. DNAS tools enhance the standard training loss function 

with an extra differentiable regularization term that captures the network cost to 

successfully search for correct and efficient designs. The number of parameters 

and the number of Floating Point Operations (FLOPs) per inference are two 

common cost metrics [10]. 

DNAS use a unique optimization approach in mathematics that includes 

looking for the minimum of a function written as follows: 

𝑚𝑖𝑛
𝑊,𝜃

= ℒ(𝑊; 𝜃) + 𝜆ℛ(𝜃) (3.6) 

The function in this case is made up of two major components. The 

conventional loss function, indicated by ℒ, evaluates the model performance 

using regular trainable weights W (such as convolutional filters). Second, there is 
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a set of extra NAS-specific trainable parameters that are in charge of encoding 

distinct supernet pathways. 

 

Fig. 3.8. DNAS overview: (a) At first, the operations applied to the neural network edges are not preset or known. 

(b) By adding a mix of candidate operations on each edge, the search space is continually extended. (c) The 

technique entails solving a bilevel optimization problem while concurrently optimizing the mixing probabilities 

(weights) of these candidate operations and the weights of the neural network. (d) The architecture is established 

using the learnt mixing probabilities, which show the significance of certain processes. (Image from  [69])

A regularization loss R, which measures the total cost of the network, is also 

included to reach an ideal solution. To manage the effects of this regularization 

term, a hand-tuned parameter is applied, successfully balancing its impact against 

the principal loss term. The trade-off between model performance and 

regularization may be fine-tuned to obtain the best configuration. 

Despite the improved efficiency of DNAS algorithms over earlier RL/EA-

based methods, training the complete supernet still necessitates a significant 

amount of computing resources in terms of both training time and memory 

utilization. As a result of this constraint, the investigated search space for practical 

DNASs like the one indicated in reference [69] is reduced. To keep memory 

limitations manageable, these algorithms are limited to exploring only a few 

choices per layer during the search. However, the authors of reference [12] offer 

a more complex DNAS called ProxylessNAS, which tackles this issue by 

lowering memory needs. It provides this by maintaining no more than two 

supernet pathways in memory for each batch of inputs. 
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ProxylessNAS has a two-phase training strategy. The path parameters are fixed 

in the first phase, and one sub-architecture of the supernet is randomly sampled 

depending on their present values. Following that, the weights of the sampling 

architecture are updated using the training set. In the second phase, the normal 

weights are frozen, and the architectural parameters are learned using the 

validation set. This second step updates two pathways at the same time, sampling 

them from a multinomial distribution. ProxylessNAS may successfully explore a 

substantially broader search field than other DNAS tools due to this clever 

method, as seen in Figure 3.9. 

Fig. 3.9. The Proxyless NAS approach learning process for both weight parameters and architectural parameters. 

(Image from  [12])

 

Advances in techniques such as DMaskingNAS [9], fine-grain NAS [10], and 

Single-Path NAS [70] have contributed to the progress of lightweight Neural 

Architecture Search (NAS). These approaches replace the old SuperNet with a 

single large, architecture with one route. Finding optimal architectures entails 

altering this initial seed model through hyper-parameter tweaking, namely the 

number of channels in each layer [10]. Trainable masks are used to prune sections 

of the network to perform this tweaking effortlessly during regular training. The 

goal of DMaskingNAS tools is the same as that of DNAS (as stated in  [71]), with 

now representing the set of trainable masks. 

FBNet-V2 [9], for example, employs a collection of specialized masks, each 

storing a distinct number of output channels or spatial resolutions and weighted 

with trainable parameters. The mask associated with the biggest parameter is 

picked after the search to establish the final architectural setting. MorphNet [10] 
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similarly use the pre-existing multiplicative terms of batch normalization layers 

as masking parameters  [72]. If these parameters drop below a particular level, 

the preceding related channels of Convolutional layer or feature maps are 

removed. When compared to SuperNet-based techniques, these methods are more 

limited in terms of neural network structure. They do not, for example, allow you 

to select between different layers, such as a regular convolution and a depthwise 

plus point-wise convolution. 

These restricted techniques, however, offer two key advantages. First, they are 

substantially more efficient in terms of memory utilization and search time while 

still identifying high-quality designs. Notably, the search time of a 

DMaskingNAS is comparable to the training time of a normal network. Second, 

some DMaskingNAS variations have the ability to explore the search space with 

considerably finer granularity. MorphNet [10], for instance, may simply choose 

between 1 and 32 output channels in a Convolutional layer with a precision of 1 

by starting with a 32-channel seed layer and deleting channels with the smallest 

batch normalization multiplicative parameters. To achieve the same level of fine-

grained selection with a standard DNAS, an extremely large supernet consisting 

of 32 parallel convolutional layers would be required. Additionally, the masking 

and supernet techniques may be used to overcome the constraints of 

DMaskingNAS [73]. 

The mentioned literature on NAS focuses mostly on 2D-CNNs for computer 

vision problems. Surprisingly, few of these techniques have been adapted for 

time-series data processing, despite the fact that many real-world activities 

include one-dimensional time-dependent signals, such as bio-signals, audio, 

energy-traces, and sensor readings from industrial equipment. In [5], they 

introduce a unique technique called PIT, which is particularly developed to 

optimize 1D networks. The method ideas are adaptable and might serve as the 

foundation for a more thorough NAS that investigates temporal hyperparameters 

of N-dimensional Convolutional layers, including 3D-CNNs, for spatial-temporal 

data processing.  
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3.6  Metrics 

3.6.1 Accuracy 
Accuracy Score is a measure used to assess a classification model performance. 

It calculates the fraction of correctly predicted occurrences in the dataset as a 

percentage of the total number of instances. In other words, it measures the 

model's ability to predict outcomes correctly across all classes. The accuracy 

score is determined mathematically using the formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (3.7) 

Where:  

• "Number of Correct Predictions" is the number of times the model 

predictions match the actual class labels. 
• "Total Number of Predictions" is the total number of predictions produced 

by the model. 

It is a popular statistic for evaluating the overall performance of classification 

models, particularly when the classes in the dataset are balanced (equally frequent 

in the dataset). In the presence of imbalanced datasets, when one class 

outnumbers the others greatly, accuracy may not offer a whole picture of a model 

performance, and alternative measures like as precision, recall, F1 score, or 

balanced accuracy may be more helpful. 

 

3.6.2 Balanced Accuracy 
Balanced Accuracy (Bal. Acc.) is a performance indicator used in classification 

model assessment, particularly when dealing with datasets that are imbalanced. 

It is defined as the average of the per-class recall, where recall (also known as 

sensitivity or true positive rate) for each class is a measure of the model's ability 

to correctly identify instances of that class among all occurrences of that class. In 

such scenarios, since a model that merely predicts the majority class for all 

occurrences might obtain high accuracy while performing poorly on minority 

classes, Balanced Accuracy provides a fair assessment of a model performance 

across all classes. 

 



 

27 
 

The formula for Balanced Accuracy can be expressed as: 

𝐵𝑎𝑙. 𝐴𝑐𝑐 =  
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖

𝑁

𝑖=1
  (3.8) 

Where: 

• 𝑁 is the total number of classes. 
• 𝑇𝑃𝑖 represents the number of true positives (correctly predicted instances) 

for class 𝑖. 
• 𝐹𝑁𝑖 represents the number of false negatives (instances of class 𝑖 

incorrectly predicted as a different class or not predicted as class 𝑖 at all) 

for class 𝑖. 

 

3.6.3 F1 Score 
The harmonic mean of precision and recall is used to calculate the F1 Score. 

The following describes the way precision and recall are calculated: 

• Precision is the ratio of true positive predictions to the total number of 

positive predictions generated by the model (also known as Positive 

Predictive Value). It determines how many of the model's positive 

predictions are accurate. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 (3.9) 

 
• Recall (also known as Sensitivity or True Positive Rate) is the ratio of true 

positive predictions to total positive outcomes in the dataset. It assesses the 

model's ability to recognize all positive events properly. 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 Negatives
 (3.10) 

 

The F1 Score is then derived through calculating the harmonic mean of 

precision and recall by following formula which spans a range of 0 to 1, with 

higher values signifying greater model performance: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (3.11) 
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3.6.4 Mean Square Error 
Mean Squared Error (MSE) indicates the average of the squared differences 

between predicted outcomes (commonly written as 𝑦) and actual observed values 

(denoted as �̂�) for an n-point dataset. It is determined as follows: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦�̂� − 𝑦𝑖)2  (3.12) 

Where: 

• 𝑀𝑆𝐸: Mean Squared Error 
• 𝑛: The total number of data points in the dataset 
• 𝑦�̂�: The predicted value for the 𝑖-th data point 
• 𝑦𝑖: The actual observed value for the 𝑖-th data point 
• ∑: The summation symbol, indicating that you calculate the squared 

difference for each data point and then sum them all up. 

Squaring the differences serves several goals, including making all errors 

positive (negative errors are not cancelled out by squaring) and penalizing larger 

errors more strongly than smaller ones.  

 

3.6.5 Mean Absolute Error 
The absolute difference between each estimated value (denoted as �̂�) and its 

corresponding actual or observed value (denoted as 𝑦) in a dataset is used to 

compute the Mean Absolute Error. The MAE is calculated by averaging these 

absolute differences across all data points. The MAE formula is stated 

mathematically as: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦�̂� − 𝑦𝑖|𝑛

𝑖=1  (3.13) 

 

Where: 

• 𝑀𝐴𝐸 represents the Mean Absolute Error. 
• 𝑛 is the total number of data points or observations in the dataset. 
• 𝑦�̂� is the predicted value for the 𝑖-th data point. 
• 𝑦𝑖  is the actual or observed value for the 𝑖-th data point. 
• |𝑦�̂� − 𝑦𝑖| calculates the absolute difference between the predicted and 

actual values for each data point. 
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• The summation symbol ∑ represents the sum of these absolute 

differences across all data points. 

MAE measures the average disparity between model predictions and actual 

values, with lower MAE indicating more predictive accuracy and equal weighting 

of errors regardless of direction. 
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3.7  Infrared Sensors and Machine Learning 
In the realm of Infrared (IR) sensor arrays, a "pixel" is the essential building 

unit of an Infrared (IR) sensor array, similar to a pixel in a normal digital picture 

but specialized for recording infrared radiation. These pixels are arranged in a 

grid or array to create an IR sensor array. Their principal duty is to detect and 

quantify infrared radiation produced by objects in their field of view. As each 

pixel detects the intensity of heat radiation at a given position, they work 

collaboratively to create a picture or data set that varies in resolution depending 

on the size of the array. Heatmaps are frequently generated using this data to 

display the distribution of temperatures throughout the scene. Colors or shades 

are used to depict thermal fluctuations in heatmaps, with warmer colors 

representing greater temperatures and colder hues suggesting lower temperatures. 

These heatmaps are useful tools for thermal imaging, industrial monitoring, 

building diagnostics, and other applications that need an intuitive knowledge of 

temperature patterns.  

Let us represent the most recent Infrared (IR) frame as 𝑥𝑡 at any given time, 

instance t, which effectively acts as an "image". This single frame 𝑋𝑡 =  𝑥𝑡 is sent 

into the identification model, as is a window of subsequent frames 𝑋 =

 {𝑥𝑡−𝑊+1 , . . . , 𝑥𝑡}, where W denotes the window size (W = 3 in Fig. 3.10). The 

ultimate aim is to estimate the number of persons 𝑦𝑡  = 𝑓(𝑋𝑡). This projected 

number can be produced as a continuous scalar (regression formulation) or as a 

categorical value matching to one of many potential counts (classification 

formulation). 

The procedure of calculating the input/output connection 𝑓(𝑋) can be 

accomplished in two ways. The first method includes using deterministic rule-

based algorithms to create a link between the input data and the related people 

count. Alternatively, using Machine Learning (ML) or Deep Learning (DL) 

methodologies, the connection can be discovered from a properly chosen training 

dataset. These ML/DL approaches allow the model to recognize complex patterns 

and variances in visual input, resulting in more accurate people counting results. 
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Fig. 3.10. Problem formulation for counting people using IR array sensors. Depending on the task, the prediction 

function 𝑓(𝑋) can be produced using a rule-based deterministic approach or learnt from data using ML/DL, and 

the predicted person count 𝑦𝑡  can be either a scalar or a class label. (Image from  [43]) 

 
 
 
 
 
 
 
 



 

32 
 

Chapter 4 

Materials and Methods 
 

4.1  Motivation 
The goal of this study is to explore the applications of NAS to a novel field, 

that is, ultra-low-resolution infrared sensor arrays. The advantage of NAS 

techniques is the ability to explore a wide set of architectures in negligible time, 

as opposed to hand-crafted models, requiring considerable efforts and expertise 

from the developers. Starting from a single seed architecture, we are able to 

spawn several models, representing different trade-offs between memory and 

accuracy. 

In this work, we use 8x8 IR sensors as they have several advantages w.r.t higher 

resolution ones. These benefits include improved privacy preservation, cheaper 

system costs, and decreased power consumption, which is especially important 

for systems that rely on battery power and must function over extended periods 

of time. The fundamental motivation for this work stems from the lack of a 

comprehensive comparison of deep learning models specialized to this type of 

data in the literature. As a result, our activity serves two interrelated functions. To 

begin, it provides useful information to system designers who desire to use such 

sensors, supporting them in selecting a suitable family of deep learning models 

depending on their desired accuracy and hardware memory limits. Second, it 

provides as a practical instance of how deep learning may attain higher accuracy 

while simultaneously being more efficient than traditional approaches. 
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4.2  Dataset 
In this work, we utilize a new dataset called LINAIGE (Low-resolution 

INfrared-array data for AI on the edGE). The major focus of LINAIGE dataset is 

on tasks related to counting individuals and recognizing their presence in indoor 

situations. The first version of this dataset was introduced in a prior study [16]. 

This collection consists of infrared (IR) samples collected with a Panasonic Grid-

EYE (AMG8833) sensor  [42]. At a rate of 10 frames per second (FPS), the sensor 

generates an 8 by 8 array of data. Each of these frames is tagged with the number 

of individuals present. 

The sensor was put on the ceiling during the data gathering procedure and it 

was used in a variety of interior settings, including offices, labs, and hallways. A 

lens with a viewing angle of 60° was employed on the sensor. During repeated 

data collecting sessions, volunteers moved inside the sensor range of vision, 

doing actions such as walking, standing, and running. Figure 4.1 shows examples 

of gathered frames and their corresponding persons counts. In diverse contexts, 

the maximum distance between humans within the sensor vision varied (between 

1.53 and 2.04 meters), as detailed in [16]. The space for counting persons was 

roughly 2 square meters in size. People counting is possible in bigger regions by 

combining the results of many sensors that are strategically placed. 

 

 
Fig. 4.1. Sensor attachment with an example of an infrared frame. (Image from  [43]) 
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To label IR frames, a semi-automatic technique was applied. This entailed 

configuring a data gathering system with a Raspberry Pi 3B single-board 

computer that featured both an infrared sensor and an optical camera facing in the 

same direction. The synchronized frames obtained from this configuration were 

processed. To begin, the optical frames were analyzed using a pre-trained object 

identification model (particularly, Mask R-CNN [74]) to automatically count the 

number of persons and this count was then applied to the associated IR frame. 

Human verification was employed to fix any errors produced by the object 

detection model in order to assure accuracy. Each frame was additionally assigned 

a confidence level (binary) by the human annotator. This level identifies frames 

where determining the precise persons count was difficult due to a small 

mismatch between the IR sensor and the optical camera angles.  

In this work, we follow the pre-processing described in [43]. Notably, frames 

with more than three persons are removed, as they were exceedingly infrequent 

(constituting 0.66% of total data) and were only seen in one data collecting 

session. These frames hamper machine learning and deep learning model training 

and cross-validation. In addition, the smallest session (session 4 in [16]) with only 

196 frames (approximately 20 seconds of data) was eliminated. This measure was 

done to ensure that performance metrics for recognition were reasonable. 

Following these changes, the updated dataset now contains 25,110 samples 

spread over 5 sessions. To each session is assigned a timestamp, the name of the 

environment, and the temperature of the room.  

As done in [43], we purposefully eliminated difficult-to-label frames from both 

the training and testing stages. We apply the same per-session Cross-Validation 

(CV) technique detailed in [43], and Table 4.1 outlines its specifics. Notably, due 

to its large size compared to the other sessions (17958 frames vs a maximum of 

2202 frames for other sessions, accounting for 71% of total data), we kept Session 

1 in the training set across all rounds. Sessions 2, 3, 4, and 5 were utilized as the 

test set in various folds, while the remaining data was used for training. This 

approach resulted in four unique CV folds. The main benefit of this "leave-one-

session-out" CV method is that it provides impartiality when evaluating model 

performance. This is accomplished by ensuring that the test frames are generated 

from environments, date-time combinations, and room temperature settings that 

differ from those seen during training. This simulation, in essence, closely 

resembles a real-world scenario in which the system is evaluated under conditions 

different from its training environment. A strictly random allocation of frames to 
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training and testing, on the other hand, would risk compromising the integrity of 

the evaluation process by enabling information to leak between the two phases, 

resulting in an oversimplified problem representation. 

 
Table 4.1 

Dataset Statistics and Cross Validation Strategy 
Train Fold Test Fold 

Session Sample 

N. 
People Counts Statistics [%] Session Sample 

N. 
People Counts Statistics [%] 

0 1 2 3 0 1 2 3 
1,3,4,5 23529 26.07 43.49 23.61 6.83 2 1581 14.86 30.68 54.46 0 
1,2,4,5 23591 22.37 44.03 26.84 6.77 3 1519 71.89 21.72 5.66 0.72 
1,2,3,5 22908 25.3 41.85 26.17 6.67 4 2202 26.02 51.27 19.16 3.54 
1,2,3,4 23260 24.69 43.02 26.08 6.20 5 1850 33.78 38.38 18.92 8.92 
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4.3  Pruning in Time 
Pruning in Time (PIT), is intended for networks that handle time-series data, 

focusing mainly on convolutional and fully-connected layers, as they are the most 

memory and computationally intensive. PIT explores a wide range of sub-

architectures produced from a seed model by modifying three critical 

hyperparameters. PIT can choose to reduce the number of output channels (Cout) 

or the filter size (F) while raising the dilation factor (d) in comparison to the 

default setup. These adjustments lead to reduced layer complexity and memory 

usage. Each convolutional/fully connected (FC) layer in the fundamental CNN is 

changed into a function 𝐿𝑛(𝑊(𝑛), 𝜃(𝑛)) that depends on its original weight tensor 

𝑊(𝑛) and a new set of architectural parameters 𝜃(𝑛) to achieve this goal. The 

search space of PIT for a CNN with N layers is therefore described as the set:  

 

𝑆 = {𝐿𝑛(𝑊(𝑛), 𝜃(𝑛))}𝑛=0
𝑁−1    (4.1)  

 

The elements of 𝜃(𝑛)are merged in an appropriate manner throughout the 

search phase to generate a binary mask 𝛩(𝑛). This mask is then used to remove 

portions of the layer weights. In each iteration of the search, an architecture �̂� is 

randomly picked from S using the Hadamard product of 𝑊(𝑛) and 𝛩(𝑛), denoted 

as �̂� = {𝐿𝑛(𝑊(𝑛) ⊙ 𝜃(𝑛))}𝑛=0
𝑁−1. The sections of  𝑊(𝑛) that correspond to 0-valued 

mask elements are removed by this procedure. As a result, the seed layer can 

provide the same output as if it had fewer channels, a smaller receptive field, or 

even a bigger dilation. When working with slices of 𝑊(𝑛), binary masks are 

required for the Hadamard product procedure. During architectural sampling, 

these masks decide whether a slice is fully eliminated (set to 0) or maintained as 

is (set to 1). In practice, this assures that only acceptable designs with whole-

number Cout, F, and d values are examined. To do this, during the forward pass of 

search or training, 𝛩(𝑛) is transformed into binary form. This is accomplished 

through the use of a Heaviside step function with a constant threshold of 0.5.  
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Fig. 4.2. Illustration of PIT search space. (Image from  [5])

 

A differentiable technique is required to seamlessly incorporate the 𝜃(𝑛) →

𝛩(𝑛) transformation into the gradient-based training of the network, allowing 

simultaneous learning of both the weights 𝑊(𝑛) and architectural parameters 

𝜃(𝑛). However, when dealing with the Heaviside function, which has difficulties 

with its derivative being practically everywhere equal to 0 and non-existent in 𝛿, 

the Straight-Through Estimator (STE) approach provided in BinaryConnect [75] 

is used. During the backward pass, the step function is replaced by a simple 

identity function. 

The authors divide the 𝜃(𝑛) parameters in their model into three different sets: 

𝛼(𝑛)for altering the number of channels, 𝛽(𝑛) for fine-tuning the receptive field, 

and 𝛾(𝑛) for affecting the dilation factor. 

 

4.3.1 Channel search 
The authors of  [5] take inspiration from prior research referred to as [10] in 

order to examine the best number of channels in each convolutional layer. Binary 

masks were constructed using batch normalization (BN) layer settings in that 

study [72], allowing for the pruning of whole output channels. This method 

allows for the examination of numerous sub-layers with a 𝐶𝑜𝑢𝑡 < 𝐶𝑜𝑢𝑡,𝑠𝑒𝑒𝑑 

condition. The necessity for a BN layer after each convolutional layer limits the 

application of the approach suggested in [10], while ubiquitous in recent 

2DCNNs. 
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To alleviate this shortcoming, the PIT technique detaches channel search from 

batch normalization. Instead, they employ a specific set of trainable parameters 

labeled as 𝛼. These parameters are used to zero-out complete convolutional layer 

filters from the W tensor. They can effectively explore the space of channel 

configurations without being bound by the presence of BN layers after each 

convolution since they handle each output channel individually. 

In practical implementation, the procedure is taking a binary mask and 

multiplying each element of the mask by all of the weights of a certain 

convolutional filter. This affects the whole slice of the W tensor along the output 

channels axis. When a filter is multiplied by a 0-mask element, the associated 

output channel from that layer is effectively removed. Figure 4.3 shows how the 

𝛩𝐴 parameters are applied to a simple layer with 𝐶𝑜𝑢𝑡,𝑠𝑒𝑒𝑑 = 4. 

 
Fig. 4.3. 𝛩𝐴,𝑚 = 0 causes the m-th convolutional filter to be deactivated, thereby setting a section with 

dimensions K × Cin inside the weights tensor W to zeros. (Image from  [5]) 

Additionally, thanks to the binary masks used by PIT, any combination of 

channel can be removed, while previous approaches were limited to the last ones. 

 

4.3.2 Receptive Field Search 
The receptive field F, which describes the range of input time-steps involved 

in a convolution, is the second crucial hyperparameter. F is equivalent to the filter 

size in ordinary convolutions (F = K). For CNNs with dilation factors (d) higher 

than one, the connection changes, and the general formula turns into: 𝐹 =

(𝐾 − 1) ∗ 𝑑 + 1. PIT additionally considers the dilation factor and investigate 

both F and d, which indirectly enhances the filter dimension K. 
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PIT employs an array of extra trainable parameters 𝛽 with a length of Fseed to 

explore the receptive field. In contrast to the output channels, the parameters 𝛽 

must be united further to define the matching binary differentiable masks. This 

extra step is required because just masking any collection of time-slices in the 

weights tensor will not effectively imitate the impact of a narrower receptive field 

in a causal CNN convolution. The receptive field should exclusively extend into 

the past, therefore, they eliminate the "oldest" time-slices, those multiplied with 

input time-steps that are the uttermost in the past, to achieve the desired effect of 

a reduced receptive field. 

 

 
Fig. 4.4. A receptive field search is demonstrated by setting each value 𝛩𝐵,𝑖 = 0 resulting in the elimination of 

one input time-step from the convolution output. This is accomplished by canceling out a particular portion of the 

weight tensor W with dimensions Cout × Cin, eliminating its influence on the output. (Image from  [5]) 

 

4.3.3 Dilation Search 
The PIT algorithm additionally examines the dilation factor in the same way 

as it studies the receptive field. Certain constraints are set on the weight tensor 

portions that NAS should trim by adding the search for dilatation. They must 

specifically ensure the creation of only normal dilation factors, which means that 

the time-step intervals between consecutive convolution inputs are all uniform 

for a given layer.  

They begin with an array of adjustable parameters denoted as 𝛾, which are used 

to generate differentiable binary masks. The technique is restricted to supporting 

dilation factors with powers of two. These unique elements are not only 

extensively used in numerous applications, but they also help in the simple 
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creation of masks. As a consequence, len(γ) = [𝑙𝑜𝑔2(Fseed)] determines the 

number of parameters in the array. Figure 4.5 depicts an example of how the 

tensor is created and its influence on dilation. 

 

 
Fig. 4.5. Dilation search works by doubling the value of parameter 'd' for each case when 𝛤𝑖  is set to 0. (Image 

from  [5]) 

 
4.3.4 Joint Search 

They apply their respective masks on the weight tensor of a layer to maximize 

the three hyperparameters described above. When compared to sequential 

hyperparameter optimization, this collaborative technique yields superior results. 

As a result, the PIT is able to examine complicated interconnections, notably 

between F and d, resulting in better performance. 

 
4.3.5 Regularization   

The PIT method seeks designs that are both accurate and simple, which it is 

required by combining the task-specific loss function (L) with a regularization 

term (R), Eq. 4.2.  

𝑚𝑖𝑛
𝑊,𝜃

= ℒ(𝑊; 𝜃) + 𝜆ℛ(𝜃) (4.2) 
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This regularization term offers a distinct component that leverages past 

knowledge of the loss landscape, encouraging the optimization process to prefer 

solutions with lower computational costs. 

The number of parameters (or model size) and the number of operations (OPs) 

required for inference are two cost metrics studied. Rsize and Rops, two separate 

regularizers, are employed to manage them. These regularizers are differentiable 

functions whose values are determined by the pre-binarization masks without 

Heaviside binarization. These masks are associated with the trainable 

architectural parameters 𝛼, 𝛽 𝑎𝑛𝑑 𝛾, and the use of pre-binarization masks, as in 

prior research [10], produces a smoother loss landscape, which enhances 

optimization convergence. 
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4.4 SuperNet 
An approach to further expand the search space of the NAS is to chain different 

methods in cascade. In particular, in this work, we use first a SuperNet and then 

apply PIT on the output of this method.  In this way, with SuperNet, we can 

choose between multiple convolutional types, ranging from basic convolutions to 

Depthwise-Separable convolutions, or even exclude some layers entirely. 

Following that, with PIT, we can explore a wide range of sub-architectures 

produced from previous stage. 

A vital step in clarifying the process of building and deploying a SuperNet 

utilizing the pit_supernet technique is the development of a pivotal object known 

as the PITSuperNetModule. This module is distinguished by a collection of layers 

that strictly adhere to the PIT-SuperNet criteria. A SuperNet, for example, might 

have a variety of possibilities, such as 2D convolutions with various kernel sizes, 

Depthwise-Separable convolutions, and even the exciting potential of altogether 

skipping a layer by using nn.Identity. The selections for each convolutional layer 

are the main focus of this project. 

It is critical to follow a methodical sequence of actions before embarking on 

the adventure of creating a network suitable to search, conducting the search 

itself, and eventually exporting the detected neural architecture: 

1. The first stage entails utilizing the capabilities of the PITSuperNet 

conversion module, which effortlessly changes the model into an 

optimized format. This conversion procedure necessitates three main 

components: the model itself, the form of the input tensor (excluding batch 

size), and the selection of a chosen regularizer, which serves as a guiding 

principle for the optimization measure. 
2. An important computation occurs as the training loop progresses, in which 

the regularization loss is computed and harmoniously coupled with the task 

loss. This collaboration strives to maximize both performance dimensions 

sustainably. A scaling factor is wisely used to the regularization loss to 

finely manage the equilibrium between these two losses. 
3. The precisely optimized model is then exported as the last stage. Following 

the conversion, a prudent method would require submitting the exported 

model to an additional step of fine-tuning. This additional layer of 

refinement improves the model overall performance and resilience. 
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4.5  Model Architectures 
We take the architectures from [43] as they represent the state-of-the-art 

models on the LINAIGE dataset. Afterward, we use PIT on each architecture, 

systematically assessing various levels of regularization strengths to identify 

distinct trade-off points. In the subsequent sections, we provide a comprehensive 

breakdown of each architectural variant. 

 

4.5.1  Single-frame CNN 
Single-frame CNNs, as suggested by their name, use a single frame as input, 

thus having no knowledge of the past number of people in the view of the IR 

sensor. This CNN design is crucial to our analysis, and Figure 4.6 depicts its basic 

structure. This architecture comprises Convolutional layers with ReLU 

activation, optional Max Pooling, and Fully Connected layers.  

An extensive and methodical examination of various architectural 

modifications was carried out using this core design template as a starting point. 

This investigation entails the selective retention or destruction of certain levels 

within the design, shown in Figure 4.6 by the dashed boxes. Some of the 

architectural arrangements that have been considered are as follows: 

1. One or two initial convolutional layers, each followed by Batch 

Normalization. 
2. An optional additional Fully Connected layer before the output one. 
3. Including or excluding a single Max Pooling layer. 

 

 
Fig. 4.6. Single-frame CNN. (Image from  [43]) 

 

In order to broaden our architectural explorations, we performed experiments 

with changing the amount of feature maps (also known as channels) within each 

Convolutional layer. This entails a methodical investigation of various channel 
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counts from the set 8, 16, 32, 64. It is also worth noting that the Convolutional 

and Max Pooling kernel dimensions stay constant at 3x3 and 2x2, respectively. A 

single frame generated from an infrared (IR) array is processed as input data for 

the CNN model.  

 

4.5.2  Multi-frame CNN 
The previous model technique relied on a single infrared (IR) frame as input to 

address the problem of people counting. Multi-frame technique, on the other 

hand, tries to improve the precision of this job by using the temporal refinements 

contained in a series of sequential frames. The key concept involves using a 

sliding window setup of infrared frames as input. This approach has the potential 

to uncover important information about how individual movement patterns work. 

This intentional integration of temporal information becomes highly effective in 

improving prediction accuracy, especially in complex and diverse settings. 

Having a look at Figure 4.7 to get a better understanding of this topic, the final 

picture draws attention to a unique location generating higher thermal signals, 

represented by a noticeable purple box. The multi-frame approach advantage 

resides in its ability to accurately recognize not just one person in this hot zone, 

but rather the presence of two closely positioned persons. This differentiation is 

made possible by studying the trajectory of motion displayed by these two people, 

as indicated by the emphasized trajectories in prior frames, captured by the red 

and orange cycles. 

 
Fig. 4.7. An example of an IR frame sequence related to two persons moving in close proximity to each 

other. (Image from  [43]) 
 

In basic terms, each frame inside a W-length sliding window is handled as an 

independent input channel. To elaborate, suppose the sliding window has a length 

given by W. Under this premise, a stacking method is used to assemble IR frames 
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along the channel dimension Xt = {xt-W +1,...,xt}. This fusion leads in the formation 

of a tensor of dimensions (W, 8, 8). This tensor is then inextricably coupled with 

the people count label corresponding to the last frame, designated as yt, and used 

for both training and testing. 

Considering the architecture seen in Figure 4.8, fittingly named the Multi-

Frame CNN model. During the design of this model, an equivalent was drawn 

with hyper-parameter configurations similar to those used in Single-frame CNNs. 

This translates into characteristics like the number of layers and the number of 

convolutional channels. 

 

 
Fig. 4.8. Multi-frame CNN. (Image from  [43]) 

 

Furthermore, an in-depth investigation focuses on the dimensions of the sliding 

window, designated as W. The experiments cover a range of numbers including 

3, 5, 7, and 9. The inherent value here is in recognizing that an excessively 

shortened window may insufficiently leverage the reservoir of previous frame 

information. In contrast, an overly large window may mistakenly include 

insignificant previous data into the study. Finding an ideal balance in terms of 

window size emerges as a critical concern, since this element has a significant 

influence on both the computational demands and the memory complexities of 

the first Convolutional layer. 

 

4.5.3  Majority Voting CNN 
Majority voting, a technique used in ensemble learning, stands out as a 

straightforward and fast strategy that uses several categorization outputs to 

provide decisive predictions, lowering variability. There exist multiple 

possibilities for applying this method, including the use of different classifiers, 

the deployment of several versions of the same model with different training 
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approaches, or even the use of a single trained model supplied with various inputs. 

The latter technique is used in our present investigation,  [76]. 

Our method includes applying majority voting, commonly known as mode 

inference, to predictions generated by applying a Single-frame Convolutional 

Neural Network (CNN) to individual frames in a sliding window. Figure 4.9 

depicts this procedure schematically. This approach has a significant benefit, 

especially in the context of edge inference. It has a memory requirement that is 

identical to that of a single-frame CNN, and voting process of W predictions 

might lead to better prediction accuracy by efficiently filtering out rare 

mispredictions. It should be noted, however, this gain comes at the cost of 

increased inference latency and energy consumption, which is about W times 

more than that of a single-frame model. In our particular example, we set W to 5. 

 

 
Fig. 4.9. Majority voting CNN. (Image from  [43]) 

 

In this work, we benchmark the majority voting approach on all the Pareto 

optimal models on the accuracy versus parameters front of single-frame CNNs. 

By taking this strategy, we leverage the potential of ensemble learning while 

remaining mindful of the trade-offs between the accuracy and model complexity 

and computing efficiency. 

 

4.5.4 CNN-TCN 
Although majority voting has the benefit of being simple since it does not 

require any additional trainable parameters, it has a significant drawback: the 

inability to assign different weight to each individual infrared (IR) frame inside 

the sliding window. It is accepted to assume that more recent frames should have 
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played a more significant part in calculating the persons count, especially when 

dealing with a larger sliding window (denoted as W). While weighted voting 

might be used to alleviate this problem, it brings the obstacle of manually fine-

tuning the weights provided to each frame, which can be a complex and time-

consuming job. With this goal in mind, we use a combination of CNNs and TCNs, 

as they dynamically incorporate the relevance of recent frames. 

In light of these benefits, our architectural design consists of a complex 

merging of outputs from normal 2D CNN feature extraction processes, each 

independently applied to a frame of infrared (IR) data. This collection of feature 

extractors is paired with a single TCN layer to produce a full representation of the 

data temporal and spatial properties, Figure 4.10 shows an example of this design. 

 

 
Fig. 4.10. CNN-TCN. (Image from  [43]) 

 

Specifically, a window of frames is fed to feature extractor block, the produced 

output is flattened, changing it into a one-dimensional array that captures the 

essence of the data progression through time. This flattened representation then 

passes through one or two fully connected (FC) layers, each of which contributes 

to the complex process of creating predictions and capturing detailed patterns 

within the data. 

We keep the 1D Convolutional kernel size at a small 3x1 to ensure consistency 

and control within the architectural framework, while using a dilation factor of 1 

to guide the convolutional strides. We also increased the TCN layer output 

channel count to 32, a systematic and thorough search can produce a variety of 

architectural configurations that combine the strengths of 2D CNN feature 

extraction and TCN processing, allowing us to successfully describe the 

complicated dynamics of the data, if the output channel is different. 

 

 



 

48 
 

4.6 Training Procedure 
The models are trained using the leave-one-session-out cross-validation 

technique described in Section 4.2. First, we train basic floating-point models in 

PyTorch. This training can last up to 500 epochs per fold. We use the ADAM 

optimizer with a categorical cross-entropy loss function for our optimization, and 

we start with a learning rate of 10e-3. After finding no progress for 5 consecutive 

epochs, we utilize a learning rate reduction of 0.3 to solve training loss stagnation. 

Early stopping is applied if there is no improvement for 10 consecutive epochs. 

We integrate class-dependent weights into the loss during training due to the 

considerable class imbalance in the LINAIGE dataset (refer to Table 4.1). The 

inverses of the class frequencies are used to determine these weights. In this stage, 

we collect the first seed model results in order to start the NAS procedure. 

The following algorithm describes the basic phases of a PIT architecture 

search. The first step entails warming up for a set number of Stepswu repetitions. 

All parameters (𝛼, 𝛽 and 𝛾) are set to 1 and remain constant during this phase that 

is the same for binary masks 𝛩. As a result, warming step is equivalent to regular 

training of the base network with the primary goal of decreasing the task loss 

function L, and the number of warmup iterations is set by the user. It is worth 

noting that we choose session 1 for this step and also search loop phase to 

generalize the process and avoid impacting of other sessions on optimization 

procedure or possible data leakage.  

Algorithm 4.1 

1: for 𝑖 ← 1, …, Stepswu do #warmup loop 

2:  Update 𝑊 based on ▽𝑊 𝐿(𝑊) 

3: end for 

4: while not converge do #search loop 

5:  Update 𝑊 and 𝜃 based on ▽𝑊,𝜃 (𝐿(𝑊; 𝜃) + 𝜆𝑅(𝜃)) 

6: end while 

7: for 𝑖 ← 1, …, Stepsft do #fine-tune loop 

8:  Update 𝑊 based on ▽𝑊 𝐿(𝑊) 

9: end for 



 

49 
 

 

The second stage comprises the application of NAS. During the search loop, 

both the model weights (W) and the architectural parameters (𝜃) are tuned. The 

major goal of this phase is to minimize the total value of the task-specific loss (L) 

and one of the two regularization losses (R) outlined in Section 4.3. This is 

weighted by a regularization strength parameter (𝜆). The duration of the search 

phase is governed by an early-stop mechanism. If there is no improvement in this 

performance after 10 consecutive epochs, the search phase is terminated.  

The parameters 𝜃 and their associated binary masks 𝛩 are reset to their most 

recent values and stay unaltered in the final step. This entails picking from the 

search space the architecture that PIT recognized as the best in the previous step. 

Following that, the chosen network weights W are either fine-tuned or totally 

retrained, with the sole goal of reducing the L loss. During this phase, we perform 

leave-one-out cross-validation while keeping session 1 always in the training set 

to compute the balanced accuracy of the selected model. 

It is sufficient to execute Algorithm 4.1 numerous times while modifying the 

regularization strength parameter (𝜆) to obtain unique Pareto points on the graph 

that balances accuracy versus cost (measured by the number of parameters) 
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Chapter 5 
Experiments and Results 
5.1  Setup  

To evaluate the performance of our model we use the metrics reported in 

section 3.6, mainly focusing on the balanced accuracy. When performing cross-

validation, we report the mean and the standard deviation of the metrics across 

each fold. The contribution of each fold is weighted depending on the number of 

test samples it contributes in relation to the overall number of test samples. We 

utilize the number of parameters as a proxy for model size to assess the 

computational complexity of each model in a hardware-independent manner. The 

code is written in Python (v3.8) based on Pytorch (v2.0), and all experiments are 

performed on a server equipped with a 32-cores CPU. 

 

5.2  Seed Model Selection 
As the seed model selection plays a crucial role on PIT, we refer to the hand-

crafted state-of-the-art architectures reported in  [43], re-training them using the 

procedure detailed in Section 4. This selection covers various architectural 

families on purpose, a deliberate choice to avoid the suboptimal restriction of 

focusing solely on a single architectural template. In our visual representation, 

marker shapes represent the family architecture with their corresponding window 

size, while colors represent the specific architecture. In particular, as shown in 

Table 5.1, "cross" shape indicates that the model belongs to normal CNN, on the 

other hand, "square" and "diamond" shapes are used for Majority Voting-CNN 

and CNN-TCN models, respectively. Concerning the networks, we describe them 

following the notation introduced in Section 3, denoting convolutional, pooling 

and fully-connected layers respectively with C, P and FC. For CNN-TCN, the 

number 32 after TCN indicates the output channels of TCN layer. For instance, 

the model labeled as [×3]C64-P-C64-FC-FC represents a CNN using 3 frames as 

input and composed by one convolutional layer with 64 output channels, one 

pooling layer, one convolutional layer with 64 channels and two Fully-Connected 

layers. Note that in this work, pooling layers always use square kernel and stride 
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of dimension 2, while FC have either 64 or 4 (in case of the last layer) output 

neurons. 
Table 5.1  

Summary of visual representation notations. 

Symbol Definition 
× CNN Architecture 
♦ CNN-TCN Architecture 
■ CNN-Majority Voting Architecture 
C Convolutional Layer 
P Pooling Layer 

FC Fully Connected Layer 
 

Table 5.2 reports the scores of each model that we re-train in this work. Thanks 

to the proposed training approach, we outperform the baseline in most cases, with 

increases in terms of balanced accuracy ranging from 2.38% to 11.96%. The only 

exception is represented by the TCN-based architecture, where we obtain a drop 

in terms of balanced accuracy by 0.54%. It is imperative to underscore a couple 

of critical insights from our analysis. First, the reduction of the window size leads 

to a corresponding decrease in performance, and conversely, enlarging the 

window size creates an overfitting challenge, particularly when coupled with an 

increased number of convolutional layer channels. For instance, the balanced 

accuracy of [×3]C8-P-C16-FC-FC is 82.77% that is higher the one of [×3]C64-

P-C64-FC-FC with 76.49%, however, the latter has more channel numbers.  

When we shift our focus to cost-effective models, with parameters as a key 

criterion, "Majority Voting" models (represented by squares) emerge as strong 

competitors. This result is consistent with expectations, as multi-channel 

Convolutional Neural Networks (CNNs) frequently require a greater number of 

parameters, particularly in the first Convolutional layer, when the window size 

(W) exceeds 1. These models have a much greater computational cost, but they 

provide balanced accuracy advancements, especially when dealing with larger W 

values. In contrast, "Majority Voting" CNNs attain comparable performance 

levels while incurring a relatively minor increase in model size.  
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Table 5.2  
Results of different seed models: C, P and FC denote as Convolutional Layer, Pooling Layer and Fully 

Connected Layer, respectively, and each value after them represents the number of channels. 

Model  Bal. Acc. Acc. F1 MSE MAE 
No. of 

Parameters 

[×3]C8-P-C16-FC 
 [43] 

0.7762 ± 
0.598 

0.7804 ± 
0.818 

0.80 ± 
0.07 

0.27 ± 
0.11 0.24 ± 0.09 

1484 
This work 

0.8027 ± 
0.03 

0.8487 ± 
0.02 

0.8583 ± 
0.02 

0.1707 ± 
0.02 

0.1576 ± 
0.02 

[×3]C8-P-C16-FC-
FC 

 [43] 
0.7778 ± 
0.0898 

0.8008± 
0.0707 

0.8173 ± 
0.0540 

0.2802 ± 
0.1973 

0.2259 ± 
0.1117 

2764 
This work 0.8277 ± 

0.05 
0.8616 ± 

0.04 
0.8665 
±0.04 

0.1587 ± 
0.03 

0.1450 ± 
0.04 

[×3]C64-P-C64-FC-
FC 

 [43] 
0.6948 ± 

0.152 
0.6903 ± 
0.2412 

0.6919 ± 
0.2530 

0.4609 ± 
0.4306 

0.3566 ± 
0.298 

43268 
This work 0.7649 ± 

0.05 
0.8168 ± 

0.05 
0.82 ± 
0.04 

0.2106 ± 
0.05 

0.1921 ± 
0.05 

[♦3]C8-P-C16-
TCN32-FC 

 [43] 
0.8018 ± 

0.05 
0.8448 ± 

0.01 
0.8503 ± 

0.015 
0.2005 ± 

0.06 0.17 ± 0.02 
3036 

This work 0.7964 ± 
0.21 

0.8207 ± 
0.03 

0.8272 ± 
0.03 

0.2005 ± 
0.038 

0.1862 ± 
0.035 

[■5]C8-P-C8-FC-
FC-Majority 

 [43] 
0.7797 ± 

0.098 
0.7976 ± 
0.0703 

0.8117 ± 
0.0563 

0.3268 ± 
0.2707 

0.2388 ± 
0.1233 

1516 
This work 0.8190 ± 

0.0646 
0.8686 ± 
0.0362 

0.8699 ± 
0.0359 

0.1445 ± 
0.033 

0.1357 ± 
0.0348 

[×1]C8-P-C8-FC-
FC 

 [43] 
0.7413 ± 
0.0967 

0.7309 ± 
0.0948 

0.7559 ± 
0.0719 

0.5233 ± 
0.4744 

0.3407 ± 
0.1954 

1516 
This work 0.7707 ± 

0.64 
0.7815 ± 

0.04 
0.7983 ± 

0.04 
0.2938 ± 

0.078 
0.2818 ± 

0.056 

[×5]C8-P-C16-FC 
 [43] 

0.6747 ± 
0.0875 

0.7708 ± 
0.1456 

0.7804 ± 
0.1269 

0.3043 ± 
0.2071 

0.2525 ± 
0.1646 

1628 
This work 0.7942 ± 

0.0621 
0.7945 ± 
0.0807 

0.8076 ± 
0.0729 

0.2773 ± 
0.132 

0.2294 ± 
0.0959 

[×5]C8-P-C16-FC-
FC 

 [43] 
0.7773 ± 
0.0723 

0.8332 ± 
0.0642 

0.8424 ± 
0.0578 

0.2019 ± 
0.0834 

0.1777 ± 
0.0687 

2908 
This work 0.8011 ± 

0.0494 
0.8407 ± 
0.0425 

0.8467 ± 
0.0393 

0.1902 ± 
0.0588 

0.1691 ± 
0.0458 

[×5]C64-P-C64-FC-
FC 

 [43] 
0.6820 ± 
0.1507 

0.6009 ± 
0.2854 

0.6093 ± 
0.2891 

0.6979 ± 
0.8350 

0.4978 ± 
0.4663 

44420 
This work 

0.7555 ± 
0.0758 

0.8389 ± 
0.0408 

0.8367 ± 
0.0341 

0.1775 ± 
0.0381 

0.1664 ± 
0.0397 

 

In order to enhance NAS search, we chose blue and orange models due to their 

highest performances, and the green model was selected for its substantial 

architecture size. We also included the CNN-TCN and CNN-Majority models to 

ensure the diversity in architectures while maintaining strong performance. Table 

5.3 displays these models alongside their associated performance metrics. 
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Table 5.3  
Selected seed models to apply PIT. 

Seed Model Name Balanced Accuracy [%] No. of Parameters 
[×3]C8-P-C16-FC CNN-small 80.27 1484 

[×3]C8-P-C16-FC-FC CNN-medium 82.77 2764 
[×3]C64-P-C64-FC-FC CNN-large 76.49 43268 

[♦3]C8-P-C16-TCN32-FC TCN 79.64 3036 
[■5]C8-P-C8-FC-FC-Majority Majority-Voting 81.90 1516 

 

As a further contribution, we select the top three most accurate models of Table 

5.3 and we use them as seed for the SuperNet NAS, detailed in Section 4.4. 

Specifically, the SuperNet algorithm will select among normal convolutions with 

kernel 3 or 5 and depthwise separable convolutions with kernel 3. In this regard, 

we use the model_size_regularizer, which represents the total number 

of parameters in the layer as a function of α parameters. For each seed 

architecture, we repeat the experiments with alpha (α) in the interval [1e-10, 9e-

01].  

As shown in Figure 5.1, across all scenarios, we succeed to exceed the 

maximum balanced accuracy score achieved by the CNN seed models, which was 

82.77%. Notably, this improvement comes with spanning more than one order of 

magnitude in terms of number of parameters. The most accurate result is obtained 

with the CNN-medium configuration, achieving a stunning 92.74% balanced 

accuracy with 18,124 parameters and the α value of 3e-06. 

 

 
Fig. 5.1. Pareto-Optimal curves of three different seed models obtained by applying SuperNet with different 

α. 
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Therefore, we have opted to include three SuperNet architectures from its 

spectrum for the purpose of conducting PIT. Table 5.4 displays these models 

alongside their associated performance metrics. Our rationale for this choice lies 

in the fact that the top two configurations of CNN-small exhibit nearly identical 

accuracy when compared to Majority-Voting, but with a reduced number of 

parameters. Additionally, when comparing these two top-performing CNN-small 

variants with the two lowest-performing configurations of CNN-medium, we 

observe only a marginal difference in accuracy despite a significant reduction in 

number of parameters, approximately 75% reduction in size. As a result, we have 

exclusively selected the top-performing CNN-medium configuration due to its 

superior accuracy.  

 
Table 5.4  

Selected SuperNet models to apply PIT. 

Seed Model Name Balanced Accuracy [%] No. of Parameters α 
CNN-small SuperNet-small-α1 86.26 2444 5e-05 
CNN-small SuperNet-small-α2 87.02 4492 1e-07 

CNN-medium SuperNet-medium 92.74 18124 3e-06 

 

 

5.3  PIT Architectures 
In this section we report the detailed results obtained when applying the PIT-

NAS on the architectures reported in Tables 5.3 and 5.4. In particular, we applied 

a wide range of regularization strength parameters (λ) for all seed models from 

1e-10 to 9e-01, with step of 0.1. Regarding following graphs in this sub-section, 

the blue curves are the Pareto-Optimal of PIT networks and the red cross is the 

single initial seed model.  

 

5.3.1 Multi-Frame Convolutional Neural Networks 
Figure 5.2 reports the Pareto-optimal models for Convolutional Neural 

Network seed models. Concerning the models found using CNN-small as seed, 

we achieve up to 80.2% accuracy, the same as the seed model, but with a 

reduction in size of 41%. If we allow a drop of 4.85% accuracy w.r.t the seed, the 

reduction reaches 57%, with an accuracy of 75.42%.  Regarding CNN-medium, 

while the spawned architectures do not reach iso-accuracy with the seed model, 
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we find two points that introduce only slight drops (1.7% and 2.37%), while 

reducing the size by 5% and 6.3%, respectively. Allowing smaller reduction of 

2.7% of accuracy w.r.t seed model, we obtain a size reduction of 41.4% (fourth 

most-accurate point). As far as CNN-large is concerned, the first interesting point 

is related to the knee point where we achieved a balanced accuracy of 78.3%, 

which is 1.8% higher than that of initial seed model. This improvement came 

alongside a remarkable reduction in size, with only 550 parameters, constituting 

98.7% reduction in size. Furthermore, there are several points beyond this knee 

point that surpass the seed model performance, where the top point reached to 

80.1% of balanced accuracy with 15% decrease in size.  

 

  

 
Fig. 5.2. Pareto-Optimal curve of CNN models applying PIT with different λ. 
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5.3.2 Temporal Convolutional Network 
In this particular scenario, PIT did not manage to reach the same balanced 

accuracy as that of the seed model. Regarding the highest point of the curve in 

Figure 5.3, this size reduction of 42% came at a cost of 3.2% decrease in balanced 

accuracy (76.43%) w.r.t the seed. However, if we allow an accuracy drop of 3.6% 

at the second highest point, we achieve 50% reduction in size. These findings 

imply that further investigation or alternative optimization approaches may be 

needed to better understand and enhance the inherent architecture or setup of 

CNN-TCN. 

 

 
Fig. 5.3. Pareto-Optimal curve of TCN applying PIT with different λ. 

 

5.3.3 Majority-Voting 
The fifth highest point of Majority Voting design obtains iso-accuracy with the 

seed model while introducing a reduction of nearly 62% in size. Another 

interesting achievement by this model is to exceed the seed model balanced 

accuracy by 3.65% with 14.4% decrease in size (highest point). Figure 5.4 shows 

that there are 4 Pareto-Optimal points with higher balanced accuracy than the 

seed, with a reduction in terms of size ranging from 14.4% to 41.2%. 
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Fig. 5.4. Pareto-Optimal curve of Majority-Voting applying PIT with different λ. 

 

 

5.3.4 SuperNet Models 
Using SuperNet-small-α1 as the seed model, PIT does not achieve results as 

accurate as the seed models, as shown in Figure 5.5. The most favorable 

configuration reached the balanced accuracy of 77.52% which is 8.74% lower 

than that of seed model. Furthermore, the model size was almost identical, with 

2329 parameters compared to the 2444 parameters. Regarding SuperNet-small-

α2, however, we observe a noticeable disparity between the highest point on the 

Pareto curve and the performance of the seed model. The best result we attained 

was a balanced accuracy of 78.9%, which is 8.1% lower than that of the seed 

model, but it came with a 53% reduction in size. The final architecture is 

SuperNet-medium configuration that exhibits the highest balanced accuracy 

among all the seed models. According to Figure 5.5, while we did not quite reach 

the performance of the seed model (82.63% compared to 92.74%), we managed 

to achieve a 90.5% reduction in the number of parameters at the highest point on 

the Pareto curve.  
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Fig. 5.5. Pareto-Optimal curve of CNN-SuperNet models applying PIT with different λ. 

 
 
 

5.4  Architecture Comparison 
Figure 5.6 illustrates the outcomes of PIT applied to our initial seed models. 

Notably, the points spawned for the Majority-Voting outperform the others, with 

the most accurate point achieving 85.55% balanced accuracy with 1298 

parameters. TCNs instead underperform w.r.t the other seeds, with the top point 

achieving 3.2% less accuracy w.r.t its seed model with size reduction of 42% and 

9.1% less accuracy w.r.t the Majority-Voting top point while introducing 26% 

increase in model size.  
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Fig. 5.6. Pareto-Optimal curves of different CNN seed models obtained by applying PIT. 

In the context of SuperNet seeds, as shown in figure 5.7, we achieve the best 

results with SuperNet-medium, achieving a balanced accuracy of 82.63% with 

1720 parameters. However, we are unable to reach similar accuracy w.r.t the 

seeds, we introduce a reduction of up to 90.5% in the number of parameters. In 

addition, the top point of the lowest curve reaches almost 5% less accuracy w.r.t 

the highest point of top curve requiring 26% more parameters. 

 
Fig. 5.7. Pareto-Optimal curves of different SuperNet seed models obtained by applying PIT. 
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To enhance our comparison analysis, we extracted the best-performing Pareto-

Optimal front from Figure 5.6 including one point of CNN-small (light blue 

point), two points of CNN-large (green curve) and all the points of Majority-

Voting (purple curve). We next compared these points to the best SuperNet curve 

from Figure 5.7. As shown in Figure 5.8, the Pareto fronts spawned from the 

hand-crafted models clearly outperform those generated by the SuperNet 

technique, except for one outlier with a balanced accuracy of 75.4% and 468 

parameters. This could be attributed to the necessity for a broader range of options 

in terms of layer alternatives and α selection provided by the SuperNet approach.  

We also used other state-of-the-art DL approaches [43] for people counting as 

our baseline for comparison, where top balanced accuracy achieved is 82.7% with 

2320 parameters. As shown in Figure 5.8, when comparing our results with 

mentioned baseline, we achieved up to 2.85% improvement in balanced accuracy 

by Majority-Voting, while reducing the total number of parameters by up to 44%. 

Besides, the same balanced accuracy as the baseline is obtained only with 891 

parameters (reduction of 61.6%). Although models spawned from SuperNet 

perform worse at iso-accuracy w.r.t their seeds, the most accurate of orange curve 

obtains the same accuracy as the baseline requiring 25.8% less parameters. 

Furthermore, Figure 5.8 highlights the presence of several data points with 

balanced accuracy greater than that of baseline (black circle) spanning diverse 

number of parameters. This variety provides valuable possibilities for selecting 

an architecture tailored to specific task requirements. 

Precise inspection of these graphs reveals that PIT provides a diverse spectrum 

of Pareto-optimal structures. Across all studied scenarios, PIT-generated 

networks display great effectiveness in both exceeding and matching the accuracy 

levels achieved by the seed models while concurrently requiring fewer 

parameters for model deployment. These findings illustrate PIT adaptability and 

efficacy in obtaining higher performance while optimizing model complexity, 

demonstrating its potential for improving neural architecture design and 

implementation. 
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Fig. 5.8. Comparison between best-performing Pareto-Optimal front of the seed models with and without 

applying SuperNet. 
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Conclusion 
In this work, we explore the effectiveness of neural architectural search (NAS) 

on ultra-low-resolution infrared (IR) data, with the goal of finding accurate yet 

small models that can be deployed on the IR sensors collecting the data. 

Specifically, we apply two NAS algorithms, Pruning-in-Time (PIT) and 

SuperNet, on an open-source IR dataset for people counting. We use as seed 

models 8 state-of-the-art hand-crafted models, showing that we can achieve an 

improved balanced accuracy of up to 2.85%, while also reducing the size of the 

model by 44%. At iso-accuracy, we are instead able to reduce the memory 

footprint of the model by 61.6%, effectively showing the validity of NAS 

techniques on non-common kind of data such as IR frames. 
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