
POLITECNICO DI TORINO
Master Degree course in Computer Engineering

Master Degree Thesis

Enhancing Crowd-Monitoring
Through WiFi Fingerprint

Analysis

Supervisors
Prof. Claudio Ettore Casetti
Prof. Paolo Giaccone
PhD. Riccardo Rusca

Candidato
Diego Gasco

Academic Year 2022-2023



Acknowledgements

I would like to thank my supervisors, Claudio Ettore Casetti and Paolo Giaccone,
and my mentor Riccardo Rusca for their availability, enthusiasm, and professional-
ism, they put into each part of this work. Also, a special thanks go to my parents,
my girlfriend, and all my friends, who have supported and encouraged me all these
years.

ii



Abstract

The proliferation of smartphones, IoT devices, and other modern technologies has
transformed cities into interconnected ecosystems, generating vast amounts of data.
Accurately estimating crowds and counting people has become crucial for urban
planners, transportation managers, and security agencies. By leveraging real-time
data from various sources, decision-makers can optimize resource allocation, en-
hance security measures, improve customer experiences, and create more efficient
urban environments. Capturing and analyzing network traffic has emerged as a
valuable method for accurately estimating people’s presence in specific areas. WiFi
and Bluetooth are the two main types of signals that can be inspected, with WiFi
being the preferred option for privacy reasons. WiFi Probe Requests, emitted by
devices when they search for available WiFi networks, provide valuable data on the
number and movement of people in specific areas. The main focus of this thesis
is on estimating people counts through capturing, processing, and analyzing these
kinds of messages. Firstly, a synthetic Probe Requests generator was developed
to replicate Probe Requests sent by a customizable number of different devices.
The generator is designed to simulate realistic Probe Request traces, based on data
from real case scenarios. By leveraging this simulator, it is possible to provide a
precise ground truth reference for the number of devices present in a given area.
This approach enhances both the evaluation phase of counting methods and the
training phase for machine learning techniques. Secondly, crowd-monitoring tech-
niques have been employed to address the challenge of people counting. Since the
probe requests’ MAC address is randomized by modern operating systems, counting
based solely on different addresses is not feasible. Instead, the focus has shifted to
handling complex data patterns and extracting meaningful insights from messages.
Based on an in-depth understanding of probe request fields and time features, two
advanced frameworks have been successfully developed. The parameters of the al-
gorithms have undergone rigorous training using vast amounts of data generated by
the Probe Requests generator, ensuring optimal performance and accuracy. Draw-
ing inspiration from clustering methodologies, our systems adopt a similar approach
to analyze probe requests. By leveraging the power of these techniques, the frame-
works can categorize and group probe requests based on their source device or
vendor model. For one of the two implemented systems, the messages’ time fea-
tures have been taken into account to estimate the number of devices present. The
developed methods provide a good approximation for estimating the crowd in a
given area, demonstrating that these approaches closely align the retrieved number
of people with the ground truth provided by the generator. The outcomes of this
research have practical applications across various domains. In retail analytics, ac-
curate people counting and flow estimation provide insights into customer behavior,



optimizing store layouts, staffing, and marketing strategies. Another important as-
pect is to enhance safety in public environments such as events, pedestrian traffic in
urban areas, and emergencies. Additionally, the development of a synthetic Probe
Requests generator contributes to the advancement of crowd-estimation techniques,
providing a valuable tool for evaluating and improving counting methods based on
WiFi probe requests.

ii



Contents

List of Figures v

List of Tables vi

1 Introduction 1

2 Crowd-monitoring 5
2.1 Video camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Computer vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Infrared sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 LiDAR scanners . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Probe requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 WiFi probe requests . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.2 People fingerprint and privacy . . . . . . . . . . . . . . . . . 14
2.5.3 Computer network sniffers . . . . . . . . . . . . . . . . . . . 16
2.5.4 Systems for people counting . . . . . . . . . . . . . . . . . . 18

3 Probe request generator 23
3.1 Lack of ground truth . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Generator state machine . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Environment characteristics . . . . . . . . . . . . . . . . . . 27
3.3.2 Time features management . . . . . . . . . . . . . . . . . . . 27
3.3.3 Event list . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.4 New device creation . . . . . . . . . . . . . . . . . . . . . . 30
3.3.5 Device phases . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.6 Probe request creation . . . . . . . . . . . . . . . . . . . . . 33
3.3.7 Messages collisions . . . . . . . . . . . . . . . . . . . . . . . 35

iii



4 Proposed crowd-monitoring frameworks 37
4.1 Euclidean distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 DBSCAN clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Decoupling neural network . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Training phase . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Test phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Clustering and time features of probe requests . . . . . . . . . . . . 45
4.4.1 Main capabilities and device models . . . . . . . . . . . . . . 45
4.4.2 Framework algorithm . . . . . . . . . . . . . . . . . . . . . . 47

5 Experimental and numerical evaluation 53
5.1 Probe Request Generator . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Proposed crowd monitoring framework . . . . . . . . . . . . . . . . 59
5.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Future works 71

7 Conclusion 73

Bibliography 75

iv



List of Figures

2.1 Example of a multi-camera surveillance system. . . . . . . . . . . . 6
2.2 Computer vision with Deep Learning technique. . . . . . . . . . . . 7
2.3 An example of Passive Infrared (PIR) sensor (reproduced from [24]). 8
2.4 An example of LiDAR sensor (reproduced from [14]). . . . . . . . . 10
2.5 Structure of probe request frame (reproduced from [25]). . . . . . . 11
2.6 Reproduction of the MAC address structure. . . . . . . . . . . . . . 15
2.7 A Raspberry Pi board with a WiFi dongle. . . . . . . . . . . . . . . 17
2.8 Data points spatial representation, before and after clustering labeling. 20

3.1 Finite-state machine of the probe request generator. . . . . . . . . . 26
3.2 Event list of the probe request generator. . . . . . . . . . . . . . . . 29
3.3 Probability transition values in the generator basic configuration. . 31

4.1 Data points before DBSCAN clustering. . . . . . . . . . . . . . . . 40
4.2 Data points after DBSCAN clustering. . . . . . . . . . . . . . . . . 41
4.3 Encoder neural network architecture. . . . . . . . . . . . . . . . . . 42
4.4 Flow chart for the developed framework. . . . . . . . . . . . . . . . 45

5.1 Emulated Apple iPhone11 trace as a function of time, for different
device phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 An example of a generated probe request packet. . . . . . . . . . . 60
5.3 Accuracy in recognizing probe requests from the same device or not. 63
5.4 Probe requests’ spatial distance during the training phase. . . . . . 63
5.5 Comparison between ground truth and results obtained from the

datasets collected in room 14 at Politecnico di Torino, on the first
day of the 2023/2024 academic year. . . . . . . . . . . . . . . . . . 69

5.6 Relation between the outcomes and the time windows used. . . . . 70

v



List of Tables

3.1 Devices Examined for Database Population . . . . . . . . . . . . . . 25

5.1 Locked phase Apple iPhone 11: (mean, coefficient of variation) . . . 58
5.2 Awake phase Apple iPhone 11: (mean, coefficient of variation) . . . 58
5.3 Active phase Apple iPhone 11: (mean, coefficient of variation) . . . 59
5.4 Crowd-monitoring results for different frameworks. . . . . . . . . . . 67

vi



Chapter 1

Introduction

Nowadays, the proliferation of Internet-of-Things (IoT) and smart devices, offers
the possibility to track and estimate the number of people in a certain area. For the
activities and situations that can be regulated by the knowledge of the number of
individuals, crowd-monitoring is a key aspect. When considering the largest cities
globally, it becomes evident that they are home to a substantial number of smart
devices, primarily due to their high population density and industrial activity. In
recent years, the proliferation of smart and IoT devices has become a necessity for
individuals, not just for professional reasons but also for personal interests and ev-
eryday convenience. As a result, the emergence of these interconnected urban envi-
ronments, commonly referred to as smart cities, has become increasingly prevalent.
The result of this transformation leads to population movements through various
information systems and infrastructures. In this sense, people flow estimation could
become very useful for a better quality of life in cities. Examples of real-world sit-
uations include improving safety in public settings like events, pedestrian traffic
in cities, and emergencies, as well as optimizing energy usage in enclosed spaces.
Accurate crowd monitoring can also prove beneficial for other purposes, such as
analyzing customer behavior to inform marketing strategies. Understanding and
managing crowd dynamics within smart cities can be the right way to exploit the
potential of these new urban environments.

Before 2014-2015, tracking mobile devices was a simple task due to the little
importance given to the protection and privacy of user data. At that time the
estimation of the number of people present in a certain urban area, such as train
stations, public gardens, streets, and offices, could be done simply by collecting net-
work messages that smart devices send periodically. There was some information
inside the captured traffic that permitted the identification of the source devices
inside a certain area. Very few masking techniques were used with the result that
these messages might be collected in groups, one for each device. Fortunately, in
recent years, companies and organizations have been becoming more aware of this
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Introduction

topic and a lot of measures have been developed for the protection of users’ pri-
vacy. Within the European Union Area, a significant and pivotal stride towards
bolstering data protection and safeguarding individual privacy materialized in the
year 2018, marked by the establishment of the General Data Protection Regulation
(commonly referred to as GDPR [8]). This legislative enactment has given individ-
uals greater control over their personal information and imposed strict ethical and
responsible data management obligations on organizations. This regulatory frame-
work is meticulously crafted rules governing the spectrum of data-related activities,
from data collection, through utilization, and finally sharing. All the regulation is
surrounded by a rigorous system of penalties designed to deter and penalize any
infractions or non-compliance.

The purpose of this thesis work is to find a solution for two problems related to
crowd-monitoring: the difficulty of collecting fingerprint traces and a solid method
to estimate the presence of people in a specific area. The first step was the con-
struction of a precise and easy-to-use system, able to create synthetic data for the
emulation of the real probe request messages that devices periodically send. This
information could be used to train and test counting algorithms for crowd-tracking.
The effort required to collect real data is not indifferent. It involves the usage of
sensors that need to be programmed and installed with the risk of bumping into
poor crowded situations, where data collected can not be many. In addition, an-
other issue encountered in the traditional collecting methods is the difficulty of
knowing the precise number of devices that produce the messages, in particular
for situations where the number of people is very high. To solve these problems, a
WiFi traces generator was devised, representing a valuable improvement as it offers
realistic message traces without the need to collect them in a real-world environ-
ment. The generator also resolves the issue of determining the precise number of
devices present, as it produces traces with user-controlled settings for the active
number of devices. The second goal of this thesis work is a solution for actual
crowd-monitoring through the knowledge acquired from the message composition.
The older methods based on collecting data and dividing messages through sen-
sitive information are not possible anymore, new methods must be investigated
and, most importantly, they must be privacy conscious as well. Thanks to the
traces provided by the generator, we can emulate different types of devices, whose
behavior is accurately modeled. The measurement of the counting frameworks’
effectiveness becomes simple since the synthetic data provides the precise number
of devices present in the environment. In our specific case, the development of
the generator required deep knowledge of the message’s fields and time features.
These two domains offer the potential for the development of robust systems ca-
pable of categorizing messages into groups and implementing counting techniques
based on rigorous mathematical formulations. This was the second main contribu-
tion of this thesis, the development of two frameworks for people counting. There
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Introduction

exist other crowd-tracking methods, such as computer vision systems, LiDAR and
infrared sensors, and security cameras. All of them pose challenges related to hard-
ware equipment, since the data collection and processing may require expensive
components. Another crucial aspect is the sensitivity of these methods in indi-
vidual privacy reservations. All of these issues make the proposed WiFi messages
methodologies an attractive alternative for this research field.

3



4



Chapter 2

Crowd-monitoring

This chapter will provide an overview of the state of the art for people tracking
methods, describing different systems and the theory behind them. All the tech-
niques covered will be analyzed for the effort and costs in the development phase,
and compliance with the privacy requirements. The technical explanation will be
coupled with a detailed insight into the strengths and weaknesses of each system.
A deep focus will be on WiFi probe request messages 2.4, broadly used for this
thesis work. The chapter is structured as follows: Section 2.1 covers the video
camera surveillance systems, Section 2.2 describes the modern systems that exploit
computer vision technologies, Section 2.3 and 2.3.1 offer an overview about recent
systems based on infrared and LiDAR scanners, and lastly, Sections 2.4 and 2.5
provides the description of how WiFi probe requests can be used for these pur-
poses.

2.1 Video camera

Video camera systems are widely used for crowd-monitoring and surveillance pur-
poses, they consist of multiple cameras strategically positioned in areas where crowd
activity is expected or needs to be monitored. The main goal is to capture and
record visual information from specific locations or areas. Video cameras are strate-
gically placed to cover a wide area or specific locations where crowd-monitoring is
required. They can be mounted on buildings, poles, or other structures to achieve
optimal coverage as can be seen in Figure 2.1

The strength of these systems is the continuous capture of images and videos
about crowd movements, behavior, and interactions in real time. This allows op-
erators or automated systems to monitor and analyze people’s movements and
dynamics. One important issue is the generation of vast amounts of visual data,
which has to be stored and retrieved for analysis.
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An example of the usage of video camera surveillance systems for people track-
ing is described in [5]. A human partial body detector is used to detect upper
body images in the overlapping area captured by two cameras. Next, a partial
identification network is involved to classify these images and record the number
of upper-body image pairs with a high matching degree. This process involves
complex algorithms to compute and extract low-level features of the video frames.
Lastly, the total number of people in the captured sequence is calculated as the
sum, taking into account the presence of duplicates.

Despite the good results obtained, this method presents some problems, such
as the need for complex hardware to be managed, and, more importantly, the
manipulation of human-sensitive data, like face or body pictures. The difficulty
of acting in outdoor places might become problematic for a good generalization of

Figure 2.1. Example of a multi-camera surveillance system.
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2.2 – Computer vision

this solution. In addition, is important to consider that this system can be very
expensive due to the particular hardware used.

2.2 Computer vision
Computer vision is a multi-disciplinary field that aims to give computers a high-level
understanding of multimedia resources, such as images and videos. It involves sys-
tems for collecting data, engineering processes to transform information, algorithms
to extract main features, and mathematical procedures to reach a comprehension
of the resource content. Computer vision methodologies include scene reconstruc-
tion, video tracking, object recognition, motion estimation, and object detection.
It became relevant in the last decade due to the diffusion of Machine Learning (in
particular the sub-field of Deep Learning) usage that permits the treatment of this
kind of data more efficiently and in a more standard and automatic way. Machine
learning is a field of Artificial Intelligence (AI), that strictly connects computer sci-
ence and statistics. The focus is on developing algorithms that enable a computer
to learn from data and make predictions or decisions without human supervision.
It involves the creation of mathematical models that analyze and extract patterns
from large collections of data (called datasets) to identify relationships and make
predictions. Typically, machine learning requires a training phase as a means to
find the optimal model parameters for the task. Deep Learning is a branch of
machine learning that exploits the potential of particular structures composed of
interconnected nodes that mimic the behavior of human neurons, called neural net-
works. In recent years, deep learning’s popularity has increased a lot due to the
growth of computing power, which allows the collection and processing of huge
datasets. Computer vision systems are often built on top of deep learning models
so that they can recognize particular patterns in luminance and colors of the im-
ages provided. Figure 2.2 shows how deep learning can be applied to images. Some

Figure 2.2. Computer vision with Deep Learning technique.
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works employ computer vision for crowd-monitoring, starting from data collected
with the support of a multi-camera system. In [19], the developed method focuses
on overhead view-based detection through two different types of feature extraction.
Data processing is one of the more difficult steps in the system because images need
a background subtraction to extract the foreground object. The research of the op-
timal parameters of the mathematical model could be very difficult and may require
a very long and difficult training process. At the end an algorithm is employed to
classify image contents in a binary fashion: as a person or non-person.

Nowadays, computer vision is a very active research field, and the frameworks
developed are achieving good results. In the context of people tracking systems,
unfortunately, these processes involve the collection of people’s images that surely
contain sensitive information. Furthermore, the need for complex algorithms, such
as neural networks and classifiers, forces the usage of high-performance hardware.
Since GDPR ( [8]) aims to preserve people’s privacy inside the collected data, these
kinds of solutions may not be appropriate. Images collected contain human details
such as clothes, objects, and, more importantly, faces. For this reason, computer
vision could be not privacy-compliant.

2.3 Infrared sensors

Infrared sensors are a class of devices that detect and measure infrared radiation
emitted or reflected by nearby objects. Infrared radiation is a form of electromag-
netic radiation with longer wavelengths w.r.t. those of visible light but shorter
w.r.t. microwaves. We can find this technology in various fields, including indus-
trial, military, medical, consumer electronics, and environmental monitoring. The

Figure 2.3. An example of Passive Infrared (PIR) sensor (reproduced from [24]).
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2.3 – Infrared sensors

energy carried by infrared radiation causes molecules in materials to vibrate, lead-
ing to temperature changes. These temperature variations can be harnessed by
special sensors to detect and measure the radiation. There are two main types of
infrared sensors:

• Thermal Infrared Sensors: also known as Passive Infrared (PIR) sensors, are
based on the principle that all objects with a temperature above absolute
zero emit infrared radiation. These sensors typically consist of an infrared
detector element that converts the incoming radiation into an electrical signal.
In Figure 2.3 there is an example of a passive infrared sensor.

• Active Infrared Sensors: they use an infrared light source to emit radiation,
which is then reflected to the sensor. This latter measures the time taken for
the emitted radiation to return, allowing the calculation of the distance to the
object. One of the main uses of this type of sensor is in the LiDAR systems.

There are many cases of applications that exploit the use of thermal infrared
sensors for people tracking systems. One example is described in [6] where the
proposed system combines a PIR sensor and a video camera. PIR sensors provide
additional information about human motion in the area w.r.t. multi-camera surveil-
lance systems [5,19] so that the flow of people can be studied and analyzed. Thanks
to the collected data about temperature changes, they can classify different types
of human motion, specifically entry/exit motions and ordinary activities. Camera-
based face detection is taken into account to combine it with the aforementioned
system. This approach reduces false negatives and false positives generated by the
camera-only systems and avoids heavy image processing.

Another example of crowd-monitoring through PIR sensors was done in [22].
The device used is an infrared sensor to detect people’s direction and occupancy in
various spaces of a building while respecting privacy. The sensor captures thermal
images and temperature gradients, and the data is processed using a particular
pattern recognition algorithm. This latter generates output based on the detected
behaviors, corresponding to events such as entry, exit, or hold.

In both presented works, there are some limitations associated with these tech-
nologies. Firstly, the expensive hardware involved in the systems, since infrared
sensors may have a high cost and the developed algorithms for processing the
information require high-performance systems to be applied. Then, as for other
solutions, in [6] and more in general in multi-camera systems, the collection and
manipulation of highly sensitive data is a problem because these systems risk to
be not compliant with GDPR. The images and videos captured probably contain
some people’s personal information like objects owned and faces.
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2.3.1 LiDAR scanners
LiDAR (Light Detection and Ranging) scanners are remote sensing devices that
use laser light to measure distances and create high-resolution 3D representations of
the surrounding environment. This technology has reached significant popularity in
various fields due to its precise measurements and ability to capture detailed spatial
data. The basic principle employed in time-of-flight measurement is as follows: the
device emits laser pulses toward the target area, and the time taken for the light
to bounce back to the sensor is recorded. In this way, the distance between the
sensor and the object can be accurately calculated. The output of these systems is
a 3D point cloud that represents the surfaces and objects in the scanned area. In
Figure 2.4 there is an example of the structure of a LiDAR scanner.

Recent works [3,11] employed LiDAR sensors for crowd-monitoring. In particu-
lar, in [11] the authors discuss a system for detecting people in video streams. The
system aims to address privacy concerns with traditional camera-based methods
and would like to overtake the limitations brought by illumination variances. The
proposed system uses a LiDAR sensor to capture coarse human shapes by concate-
nating multiple two-dimensional range scans. All the framework is designed to work
under dynamically illuminated conditions. One of the most important innovations
w.r.t. old infrared sensor systems, is that this technique provides enough data for
object classification without revealing individual identities. The implementation
involves data preprocessing and an object classification algorithm that is used for
two binary classification tasks: first distinguishing humans from non-humans and
then determining the walking direction of humans.

Talking about [3], the system presented is designed for corridors. A single LiDAR

Figure 2.4. An example of LiDAR sensor (reproduced from [14]).
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scanner is coupled with a mirror reflection device, enabling the counting of passing
pedestrians and the detection of their direction. Subsequently, a technique is used
to identify individuals.

The main contribution of LiDAR scanners is privacy management: in this case,
there is no collection of sensitive data. The main problems are, once again, the
environmental use cases that remain too restrictive, the hardware cost, and man-
agement.

2.4 Probe requests
One of the main characteristics of smart devices is the possibility to establish a
connection with other devices or with the internet network through an Access Point
(AP). In this context, the specific type of messages exchanged inside the network
are called Probe Requests (PRs) and, depending on the type of communication,
they can be WiFi or Bluetooth.

2.4.1 WiFi
When a WiFi-enabled device is not presently linked to a network, there are two
primary methods through which mobile devices can uncover available networks:

• Passive scanning: involves devices constantly listening for beacons sent by APs
to identify known networks.

• Active scanning: involves devices actively searching for APs by transmitting a
particular type of management frames, called probe requests, on 802.11b/g/n
channels.

Passive scanning is not particularly efficient, so proactive scanning has become
the preferred approach nowadays. With active scanning a device periodically sends
out probe request frames to scan the surrounding environment for available APs.
These messages are typically sent in groups composed of one, two, three, or four
packets, called bursts. Typically, messages are transmitted across a total of 13
channels, compliant with the 802.11 standard. These channels enable nearby access

Figure 2.5. Structure of probe request frame (reproduced from [25]).
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points to both receive and reply using probe response frames. By analyzing the
probe responses, the device can assess the available networks and determine the
best access point to connect to, based on multiple factors like signal quality and
security. The client will not receive any response in one of these possible cases:
there are no APs in proximity or the APs are in passive mode. In Figure 2.5 there
is an example of a probe requests frame.

Probe Requests contain certain data that may reveal users’ personal information,
thereby violating their privacy. Examples of these fields include the MAC address,
sequence number, and the list of SSIDs. In the following sections, we will delve
into the details of each of these fields and the privacy concerns they pose.

2.4.2 Bluetooth

Bluetooth devices operate in the globally unlicensed frequency range of 2.4 GHz,
enabling short-range wireless communication. When a Bluetooth-enabled device
has its Bluetooth interface activated, it can be in one of two states:

• Discoverable/visible.

• NOT discoverable/NOT visible.

If a target device is not in visible mode, the only way to initiate the pairing
process is by knowing its MAC address which serves as a unique identifier for each
Bluetooth device. In a very similar way to WiFi probe requests, the Bluetooth
protocol utilizes a specific mode called inquiry to discover other devices: a device
sends out inquiry packets, and other devices within range and in inquiry scan mode
can respond with inquiry replies. In this way, the devices have information that
gathers the necessary details to establish a connection. According to the Bluetooth
specification [1], the inquiry procedure has a maximum duration of 10.24 seconds,
during which the inquiring device should be capable of detecting all devices within
its range.

Talking about privacy issues, Bluetooth protocol presents an important problem
due to the sensitive information exchanged during the inquiry mode. By watching
the discovering phase it can be seen that the custom Bluetooth device names (e.g.,
”Device of ...”) are visible to the other participants of the communication. This
is the main issue in collecting and processing this particular network data. Spe-
cial methodologies should be applied to keep the cited information to be GDPR-
compliant [8].

12



2.5 – WiFi probe requests

2.5 WiFi probe requests

2.5.1 Overview
WiFi probe request headers are composed of different fields, according to the 802.11
standard. Each one of these fields has a specific role in the communication between
the client and the AP, they all bring information about settings and characteristics
that the two parties must take into account to establish a working exchange of
messages. Here is a list of the main fields in probe request frames:

• MAC (Media Access Control) Address: this address refers to a unique identifier
assigned to a network interface controller (NIC). It is a six-byte address that
distinguishes a device on the network. MAC addresses are assigned by the
vendor which must ensure that they are globally unique. This address is
mainly used for communication within a local area network (LAN).

• Sequence Number: a unique identifier assigned to each packet sent over a
network connection. It is a value attached to the packet header that helps
in the proper ordering and reconstruction of the packets at the receiving end.
Probe request messages have sequence numbers of 12 bits, so the possible
values go from 0 to 4096.

• SSID (Service Set Identifier): a string of characters that serves as the name
of a wireless network. It is used to identify and differentiate wireless networks
in an area. When devices scan for available networks, they can detect and
display the SSIDs of nearby networks. Clients announce the list of knowing
SSIDs to try to connect with a specific wireless network.

• VHT (Very High Throughput) Capabilities: refer to the capabilities of a WiFi
device that supports the IEEE 802.11ac standard, also known as Wi-Fi 5. This
particular field in a probe request brings information about the device’s sup-
port for various features, such as supported channel widths, spatial streams,
and modulation schemes. These capabilities enable higher data rates and im-
proved throughput in wireless communications. The throughput in particular
refers to the quantity of data that can be effectively conveyed across a network
within a specific timeframe.

• HT (High Throughput) Capabilities: pertain to the capabilities of a WiFi de-
vice that supports the IEEE 802.11n standard, also known as Wi-Fi 4. The
information brought by this particular field, includes channel bonding, MIMO
(Multiple-Input Multiple-Output) configurations, and supported data rates.
These capabilities enhance the data transmission speed and overall perfor-
mance of the wireless network.
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• Extended Capabilities: in a WiFi probe request refer to additional features and
capabilities supported by the WiFi device. These data go beyond the basic
capabilities specified in the VHT and HT fields. The extended capabilities
provide information about advanced features such as beamforming, spatial
reuse, or other proprietary extensions implemented by specific vendors. It
allows devices to communicate their enhanced functionalities to other devices
in the network.

• WPS (Wi-Fi Protected Setup): a network security standard that simplifies the
process of connecting devices to a Wi-Fi network. It allows users to easily
establish a secure connection by using a PIN, a push-button, or NFC (Near
Field Communication). The WPS field in a probe request message indicates
whether the device supports Wi-Fi Protected Setup and provides information
about the supported methods for establishing a connection.

• UUID-E (Universally Unique Identifier-Extended): is used to differentiate be-
tween different devices. Within this field lies an exclusive identifier allocated
to the device, enabling the recognition and differentiation of this particular
device from others by fellow devices or network systems. The UUID-E may
be generated by the device or assigned by the network administrator.

2.5.2 People fingerprint and privacy
Studies from both [30] and [16] underline that the management of MAC addresses
is an important security point for all device vendors. The MAC address is a unique
identifier assigned to a device’s network interface controller (NIC). Figure 2.6 re-
ports the basic structure of MAC address, it is composed of 6 octets (i.e., 6 Bytes)
that are divided into two halves:

• The most significant half refers to the Organisationally Unique Identifier (OUI),
a globally unique identifier that IEEE assigns to a vendor.

• The least significant half refers to NIC-specific fields.

The second least significant bit of a MAC address is the Globally/Locally bit iden-
tifier which determines whether the MAC address is globally unique or locally
administered. If this bit is set to 0, it indicates that the MAC address is globally
unique. These addresses are assigned by the Institute of Electrical and Electronics
Engineers (IEEE) and are unique worldwide. Otherwise, if the bit is set to 1, it in-
dicates that the MAC address is locally administered. In this case, the address can
be assigned by network administrators to devices within a local network, but they
are not guaranteed to be globally unique. In the probe request use case, the MAC
address can have both the Globally/Locally bit identifier configuration. Since the
probe requests are sent periodically by a device to discover available access points,
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Figure 2.6. Reproduction of the MAC address structure.

the MAC address becomes a possible way for hackers to perform attacks inside
the wireless communication. For this reason, the GDPR [8] considers this iden-
tifier as sensitive data for user privacy. Nowadays, almost all operating systems
adopt a particular procedure to avoid possible malicious actions: MAC address
randomization. Vendors started randomizing the second least significant half and
keeping the OUI’s part unmodified. In recent years the randomization process is
increasingly been applied to the whole address, except for Globally/Locally and
Unicast/Multicast bit identifiers. In [30], it was observed that each burst produced
by a device, uses a different MAC address w.r.t. the previous and next ones. By
applying randomization, user privacy reaches a higher level of safety.

Another interesting aside that can be done is the management of sequence num-
bers. This element of packet headers is also exposed to a series of possible network
attacks since it can become an important fingerprint element. As for the MAC
address, the operating systems started to adopt a particular behavior, clearly ex-
plained in [16]: inside each burst, the sequence numbers are growing from one
packet to the next, but the starting one is randomly chosen (i.e., it has no relation
with the ones used in previous bursts or that will be used in next bursts).
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The observations and experiments done in [30] demonstrate also that the admin-
istration of the SSIDs is crucial for a good privacy-conscious system. The clients
use the SSID fields in probe requests to connect to a specific wireless network. In
particular, devices may search for a known AP with which they connected in the
past, so they could share their list of SSIDs. This information might be used to
retrieve some information about private places visited by the user. For this reason,
nowadays the use of SSIDs inside the probe request frames is not so widespread in
the APs searching phase.

The WPS and UUID-E management is a key point for what regards sensitive
data. The UUID-E is a unique identifier that enables other devices or network
systems to identify and differentiate it from other devices. It is important to re-
member that the UUID-E field is present only in case WPS is set within the probe
request. Even in this situation, we are in the presence of a possible weak point for
user privacy. The behavior of vendors is to not use them if not needed as it was
observed in [2], where only the 10% of PRs analyzed use this specific type of data.

Important works, such as [30], underline the possibility that WiFi probe requests
can give useful user’s fingerprints, in particular the time features. These latter could
be crucial for crowd-monitoring since they depend on vendor and model design.
They highlight the behavior of each device model in sending single messages or
bursts. There are three main fields in probe request time and burst characteristics:

• Inter-packet time: the time between messages inside the same burst.

• Inter-burst time: the time between two consecutive bursts.

• Number of packets within one burst.

These types of fingerprints can be an effective method for people tracking analysis.
They give valid and non-intrusive data that could be employed inside frameworks
remaining within privacy-conscious usage.

2.5.3 Computer network sniffers
The term sniffer, in the computer networks field, refers to the action of captur-
ing the traffic flowing through a network, allowing an observer to discover and
inspect the data exchanged between different devices or systems. Sniffers are com-
monly used for network troubleshooting, monitoring, and security analysis, provid-
ing valuable insights into network behavior, potential vulnerabilities, and perfor-
mance issues. One of the most commonly used frameworks for network analysis
is the Wireshark software suite [35], which permits capturing, filtering, analyzing,
and monitoring all the information exchanges and traffic through a computer net-
work. The most used file extension for these captures is .pcap, all the Wireshark
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software suite is based on this particular file format. Tshark, a command-line in-
terface tool, offers the option to use a lightweight version of Wireshark for network
packet analysis. This can be useful since the majority of use cases foresee the use
of small single-board computers. The most famous of these devices is the fam-
ily of Raspberry Pi (Figure 2.7), developed by the Raspberry Pi Foundation [29].
This product has gained immense popularity as a cost-effective and versatile single-
board computer, making it a popular choice for various projects and applications.
Its compact size, low power consumption, and versatile Input/Output modalities
make it an ideal candidate for network analysis tasks, including sniffing and captur-
ing Wi-Fi traffic. The use of Raspberry Pi-based sniffers offers several advantages.
Their small form factor allows for easy deployment in various locations, making
them suitable for mobile crowd-monitoring applications. For example, they can be
strategically placed in public areas, event venues, or transportation hubs to collect
and analyze data related to crowd movements. Network sniffing can be done with
appropriate software configuration and a WiFi dongle. This latter is a small device
that allows a computer to connect to a wireless network, it is typically plugged into

Figure 2.7. A Raspberry Pi board with a WiFi dongle.
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a USB port of the device, providing it with access to Wi-Fi networks and wireless
communication.

2.5.4 Systems for people counting
This section will give an overview of the main crowd-monitoring systems based on
WiFi probe requests, starting from outdated methods, employed before the MAC
address randomization, to the newest ones. These letters became harder than the
previous ones due to privacy improvements applied by vendors. All the presented
systems aim to estimate the presence of devices in a certain area by counting them.
For all the described methods, the assumption is that each person owns a single
device, simplifying the estimation of the number of people present to be equal to
the number of devices detected. It is essential to acknowledge certain corner cases,
such as the elderly and babies who might not possess smart devices and some
individuals who may own multiple devices. However, this is a valuable assumption
for cases like crisis management or urban traffic. In these situations, it is important
to estimate a number that must be close, but not necessarily equal, to the real one.
That is the reason why the one-device-one-person assumption can be kept as the
most effective one.

Outdated frameworks

The adoption of MAC address randomization in smart devices has not always ex-
isted but started around 2014, as reported in [16]. From that year, gradually, all
vendors began to embrace this method to guarantee more security features in their
products. Before 2014, tracking people through PR sniffing was straightforward,
both in case devices’ addresses have the Globally/Locally bit set to zero or one.
In the first situation, it is sure that the address is globally unique, on the other
hand, in the second situation, the MAC address is locally administered, so there is
no guarantee that it is worldwide unique. A possible solution for crowd-monitoring
would include the usage of a list of MAC addresses extracted from the PRs. When
a new address arrives there could be two situations:

• The MAC address is already registered in the list ⇒ do not add it to the list.

• The MAC address is not already registered in the list ⇒ add it to the list.

With the iteration of this simple method through all the capture, the number of
devices detected could be easily obtained by counting the elements present in the
list of MAC addresses. Given that, there is the possibility that some devices may
use a locally administered address. In this case, two devices might use the same
MAC address and this would lead to an underestimate of individuals. It can be
said with a high degree of certainty that, even in very crowded environments, the
probability of this happening would be very low. A possible implementation for
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these outdated systems is reported with the pseudo-code provided in Algorithm 1.

Algorithm 1 Algorithm to compute the device counting before MAC address
randomization
Require: .pcap file with the capture

MAC list← empty list
for packet in capture do

MAC address← getMACaddress(packet)
if MAC address is not already in MAC list then

MAC list← insert(MAC address)
end if

end for
number of devices← length(MAC list)

After the introduction of MAC address randomization, these simple methods
could no longer be used. This was an essential improvement for user privacy but,
on the other hand, it has complicated a lot the possibility of monitoring through
probe requests.

Conventional algorithms and de-randomization methods

The randomization process is not only exploited in WiFi probe requests but also in
several other fields, for example in almost all the ones related to security and privacy
problems. We can find randomization in bank transactions, message systems, and
in the cybersecurity world. Some specific processes may be built to overcome the
randomization and back to the original data. In the particular domain of probe
requests, there have been efforts to address the randomization of these messages.
The main focus is not to retrieve the original MAC addresses, since this would
require a lot of computational power. The aim is to find a method that permits
to understand which MAC addresses are more likely to be associated with the
same device. The algorithms employed for this goal are based on simple computer
science constructions, such as if-then-else statements, loop cycles, and recursion.
The particularity is that the MAC address is not considered, but other fields are
taken into account (i.e., the capabilities present in the other header’s parts). With
these methods, it is possible to group PRs sent by the same device with a certain
accuracy. An example of work that uses a specific capabilities-oriented method
is [20]. The system developed employs a recursive algorithm that explores the
header’s fields and classifies a probe request with a random MAC address as sent
by a certain device. At the end of the process, it can count the number of devices
present in the capture environment. This work has been used in [9] for the specific
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crowd-monitoring task on bus lines.

The methods based on conventional algorithms and capabilities fields have demon-
strated good accuracy in device counting, but they present some limitations. Firstly,
the computational power required, especially where recursion is employed. In this
case, if the message trace contains a huge number of PRs, there is the risk of sat-
urating the memory of the devices where the algorithms run. Another problem is
the accuracy evaluation since the captured messages do not provide the number
of devices present in the environment (i.e., a ground truth) to ascertain the effec-
tiveness of the developed method. In controlled scenarios, manually tallying the
current devices and assessing the system’s accuracy might be feasible. Conversely,
in highly congested settings, such a process would be impractical.

Clustering methods

Clustering is a technique in the field of machine learning whose aim is to group
similar objects or data points based on their inherent characteristics or attributes.
The goal is to identify patterns, structures, or natural groupings within a dataset.
This process is done without any pre-defined labels, for this reason, it is considered
as a part of the unsupervised methods (i.e., machine learning techniques that aim to
train a model without giving any information about elements’ groups). Clustering
helps in gaining insights, identifying similarities or dissimilarities between data
points, and organizing large datasets into more manageable groups. An example of
clustering schema is represented in Figure 2.8, where data are represented as points
on the plane both before and after the clustering transformation. It can be seen

Figure 2.8. Data points spatial representation, before and after clustering labeling.
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that data points before clustering are all represented with the same color since they
are not labeled in groups, instead, after the clustering process, a label is assigned
to each data point.

The process of clustering typically involves the following steps:

1. Data representation: the data is represented in a suitable format that allows
the algorithm to understand the relationships between data points.

2. Choice of distance measurement: a distance metric is used to determine how
close two data points are to each other. With this measurement, it is possible to
aggregate data points in groups. Common metrics include Euclidean distance,
Manhattan distance, and cosine similarity.

3. Choice of the number of clusters: determining the number of clusters to create.
This can be specified beforehand (in this case referred to as hard clustering)
or determined automatically by the algorithm (in this other case referred to
as soft clustering).

4. Determine clustering algorithm: there are various clustering algorithms avail-
able, each with its strengths and weaknesses. Some popular clustering al-
gorithms include k-means, hierarchical clustering, density-based clustering,
Gaussian Mixture Models (GMM), and more.

5. Clustering process: the clustering algorithm is applied to the data, and it
iteratively assigns data points to clusters based on their similarity, aiming to
maximize the homogeneity within clusters and heterogeneity between clusters.

6. Evaluation: after the clustering process is complete, the resulting clusters are
evaluated to assess their quality and coherence. Different evaluation metrics
can be used depending on the nature of the data and the goal of the task.

Clustering can be used in crowd-monitoring systems with a very simple mech-
anism: group the probe requests as each one represents a device, and then count
the number of formed groups to extrapolate the quantity of devices.

Among the various clustering algorithms, we can identify a specific family that
is part of the soft clustering group: density-based clustering. Density-based clus-
tering aims to identify regions in a dataset where data points are densely packed
together, separated by regions of lower density. Unlike hard clustering algorithms,
like K-Means, this type of clustering does not require specifying the number of clus-
ters beforehand. Two popular density-based clustering algorithms are DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) and OPTICS (Or-
dering Points To Identify the Clustering Structure). DBSCAN may struggle with
datasets containing clusters of varying densities and irregular shapes. OPTICS ad-
dresses these issues by creating a hierarchical representation of the data, allowing for
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more flexible and robust cluster identification. In the context of crowd-monitoring
systems, density-based clustering like DBSCAN and OPTICS can efficiently group
probe requests based on their spatial density. Each formed group represents a de-
vice so that it is sufficient to count the number of clusters to extrapolate the total
number of devices. Studies like [32] and [34] have leveraged these algorithms to
achieve accurate device counting and crowd analysis in various scenarios.

In particular, in [32], the authors first divide probe requests with global MAC
addresses from the ones with locally administered MAC addresses. Then they
consider only the frames with locally administered MAC addresses and extract
the main fields and capabilities of the frames. After that, they perform clustering
methods (both DBSCAN and OPTICS) to assign the PRs to different groups. As
the final step, the formed groups pass from a matching algorithm that tries to
associate a group with one of the global MAC addresses encountered, if no matches
are found, the group is left on its own.

Differently, in [34], authors decide to not consider the fields’ values, but their
lengths (i.e., the number of digits or characters that compose the values). Based
on the previously described work, they initially categorize PRs into two groups:
one based on globally administered MAC addresses and the other based on locally
administered MAC addresses. Subsequently, they further group the PRs within
the second category based on bursts. From these burst-based groups, some time
information is extracted, like burst rate and inter-packet time. The group of PRs
with global MAC addresses follows a counting method very similar to the one de-
scribed before in 2.5.4. Instead, the burst-based groups are processed by clustering
algorithms (such as DBSCAN and OPTICS) taking into account PRs fields and
time information extracted.

The systems for crowd-monitoring based on probe request frames are more
privacy-conscious than the others, but they still present some problems:

• The time required to compute huge mathematical calculations may be a lot
due to the usage of machine learning algorithms like cluster-based ones. These
solutions may require high-power computation systems that not always are
present on the network sniffers or can not always be reached by them (with a
wireless connection for example).

• The evaluation of these approaches is not simple, because the captured traces
do not bring any sort of ground truth, i.e., the actual number of devices present
in the environment is not embedded inside the capture done. A possible way
would be to count the number of people present during the capture’s time
window, but it is clear that in very crowded environments this method would
be not feasible. So the lack of ground truth is a huge problem in the evaluation
processes for these types of systems.
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Chapter 3

Probe request generator

One of the main contributions of this thesis is the development of a Probe request
generator, built thanks to a solid knowledge of probe request messages and the
802.11 standard. This chapter will describe the motivations that led us to the
development of this system, then it will provide all the technical details of the
implemented solution. The chapter is divided as follows: Section 3.1 explains the
reason why the generator has been developed, Section 3.2 describes the process of
data collection necessary to build the generator, and finally, Section 3.3 reports the
steps for the development of the generator of probe requests.

3.1 Lack of ground truth
One of the main problems in crowd monitoring systems that leverage probe requests
is the difficulty in checking if the solutions implemented are effective or not. Once an
algorithm is developed, the most important step is to evaluate the results obtained.
Data used for tests must have a precise ground truth, i.e., a digit representing the
number of devices inside the environment. The more closely the outcome provided
by the framework and the ground truth are, the more successful the solution is.
To evaluate the success of the system’s performance is necessary to recover this
number from the capture, but this task is not easy at all. One possibility to get
the precious ground truth is to manually find the number of people present in the
environment, with a person or a group of people that directly counts the single
individuals. This method can only be applied in low-crowded situations, on the
other hand, in cases such as big emergencies, outside a stadium, within the streets,
or buildings of a city, it would be impossible to detect the actual number of devices.
Another important aspect of having datasets with ground truth is the possibility
of training machine learning algorithms. This latter is needed to find the best
parameters of the mathematical model that compose the algorithm. Without a
large number of huge datasets, it would be impossible to perform good training
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for machine learning models. PRs are typically collected inside files with extension
.pcap, where it is possible to read the packets’ values with specific tools. These
kinds of files represent the datasets for crowd-monitoring systems that leverage on
PRs messages.

After a detailed analysis of message behavior, a Probe Request Generator has
been developed, to tackle the problem of Lack of Ground Truth. The works done
in [16], [30] and [9] provided a deep knowledge of the 802.11 standard, in particular
for probe requests. To create realistic traces (i.e., files with .pcap extension) it is
necessary to understand how PRs behave both in terms of fields’ values and time
characteristics.

3.2 Data acquisition
Section 2.5.1 discussed the main fields that compose a probe request and the time
characteristics that can be extrapolated from a communication. As the first step
in the creation of the generator, a series of captures have been done with different
device models. A sniffer was configured to capture, within the network, only the
probe request packets to analyze them in a series of .pcap files, one for each model.
The method followed was equal to the one used in [30]: the captures were made
in an isolated environment, where every device was turned off, except for the one
under examination and the sniffer. Inside a single capture, the device switched its
state in one of the three possible phases:

• Locked: it means that the device is secured or restricted from certain actions
or access. This state is commonly used in mobile devices like smartphones or
tablets when the user activates a security feature such as a PIN, password,
fingerprint, or facial recognition lock.

• Awake: refers to the moment when the device is tapped by the owner, so when
the screen lock is presented. It is not already actively used, but the user may
be ready for the usage.

• Active: this state indicates that a device or application is currently in use and
performing tasks or processing data actively.

Collecting packets transmitted by the device at various stages is crucial to observe
how time-related characteristics evolve during different instances of device usage.
After the collection step, all the .pcap files have been analyzed to extract the
information relative to the following fields: VHT capabilities, Extended capabilities,
and HT capabilities. Each of this information is collected inside a database where
they are associated with the specific device model. Other fields, such as WPS,
UUID-E, and SSID, are treated differently, the applied method will be explained
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later in 3.3.6. After this first analysis, the .pcap files have been used to extract
time and burst features such as inter-packet time, inter-burst time, and the number
of packets per burst. Also in this case the features are associated with each device
model inside the database.

Below is a table of devices tested and studied for the database population. For
each one is reported the information about the type (i.e., if the device is a smart-
phone, a tablet, or a laptop), the vendor, the model, the operating system (OS),
and the production year:

Type Vendor Model OS Year

SmartPhone OnePlus Nord 5G Android 11.0 2021

SmartPhone Samsung Note 20 Ultra Android 12.0 2020

SmartPhone Apple iPhone 11 iOS 15.0.1 2019

SmartPhone Xiaomi Redmi Note 8T Android 10.0 2019

SmartPhone Huawei P9 Lite Android 7.0 2016

SmartPhone Apple iPhone 6 iOS 12.5.5 2014

Tablet Apple iPad 8 iPadOS 14.8.1 2020

Laptop Lenovo ThinkPad X13 Gen1 Windows 11 2021

Laptop Apple MacBookAir M1 macOS 12.1 2020

SmartPhone Apple iPhone 7 iOS 15.2 2016

SmartPhone Apple iPhone 11 iOS 16.3.1 2019

SmartPhone Apple iPhone 13 Pro iOS 16.3 2021

SmartPhone Apple iPhone 14 Pro iOS 16.4 2022

SmartPhone Xiaomi Mi9 Lite Android 10.0 2020

Laptop Apple MacBookPro macOS 11.6.2 2015

Table 3.1. Devices Examined for Database Population
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Database creation permits to have the necessary setup information, it represents
the starting point of the system development. It is important to remember that the
generator could be extended with the addition of new models inside the database,
this may be an important part of some future works.

3.3 Generator state machine
The probe request generator structure is a state machine. This latter, also known as
a Finite-State Machine (FSM), is a computational model used in computer science
and engineering to represent the behavior of systems that can exist in a finite
number of states. It is an abstract machine that transitions from one state to
another in response to external inputs, internal conditions, or a combination of
both. A state machine is characterized by the following components:

• States: distinct conditions or configurations that a system can assume at any
given moment. Each state encapsulates a particular behavior or operational
mode, delineating how the system will respond and function under specific
circumstances.

• Transitions: define the conditions under which the state machine moves from
one state to another. Transitions are triggered by events or input signals, and
they determine the next state of the system.

Figure 3.1. Finite-state machine of the probe request generator.
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• Events: external stimuli or signals that cause the state machine to transition
from one state to another. Events can be user inputs, sensor readings, or any
other trigger that affects the system’s behavior.

• Actions: represent the activities performed when moving from one state to
another, they are linked with the transitions. They define what changes occur
in the system’s state or the environment during a transition.

Starting from this computational model, the PRs generator was developed fol-
lowing the environmental conditions and the system characteristics regarding probe
request sending and sniffing. Every device is meticulously represented and simu-
lated, encompassing the various states it can adopt and the corresponding actions it
can execute. A schema of the finite-state machine created for building the generator
is reported in Figure 3.1. Each part that composes the diagram will be explained
in the sections below.

The whole generator implementation has been done with the Python program-
ming language [27] and with some associated libraries that will be analyzed later.

3.3.1 Environment characteristics
A realistic simulation of probe request messages requires the construction of traces
as captured in a real-world scenario. Packets built and sent by devices inside the
simulated network are saved in files with extension .pcap to be processed later with
the most important packet analysis systems (e.g., Wireshark). Throughout some
parameters inside the simulator it can be possible to build a realistic environment
for different use cases:

• Script time: permits to set the amount of real-time the simulation lasts.

• Average device number: the number of active devices, on average, inside the
environment.

• Average permanence time: the average period during which a device stays
operational before powering down or exiting from the given environment.

It is important to notice that the simulation and script times are unequal. So
it is possible to set a simulation of some minutes and have the time window of
captured packets of some hours. The difference between the two times depends
on the number of devices present and simulated within the environment. With a
small number of items to manage, the simulation time can be much higher than
the script (i.e., real) one, and vice versa in more crowded situations.

3.3.2 Time features management
Each device analyzed during data acquisition has been saved in a database. Each
time and burst feature (i.e., inter-packet time, inter-burst time, and the number
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of packets per burst) are not expressed by one number only, but with a series
of numbers and probabilities. This approach enables the assignment of specific
weights to individual values during the process of selection. In particular, a Python
library called Numpy [21] offers the possibility of doing a random choice from a
set of values by associating each of them with a weight (in our case weight is
the probability registered, and associated to the value). With this approach, the
system can faithfully replicate the device’s time and burst behaviors in sending
probe requests. For instance, consider the inter-packet time of the Apple iPhone 6
during the locked phase. An illustration of the pair comprising a value and weight
is as follows:

0.02:0.833 - 0.06:0.167

The device is expected to have around an 83% chance of displaying an inter-packet
time of 0.02 seconds, while there remains a 17% probability of having an inter-
packet time of 0.06 seconds.

3.3.3 Event list
Each device can be in different states and can undertake different actions, some of
them can bring it to a new state. All the actions that a device can do are managed
with a priority queue that is named Event List. A priority queue in computer
science is a particular type of data structure that ensures that elements with the
highest priority (this depends on the specific task) can be accessed and removed
quickly. The main cases where it is used are the ones where tasks or items need
to be processed in order of their importance. In this specific situation, the priority
key is the execution time of the events. Each action has a specific time when it has
to be managed and then executed. The timing is set inside the generator based on
the current situation and the information taken from the models’ database. The
possible events inside the queue are listed below:

• CreateDevice: event that creates a new device. The initial phase (i.e., locked,
awake, or active) of the device is decided with an experimentally chosen prob-
ability distribution (for more details see Section 3.3.5). The same event is
responsible for the creation of other related events, such as DeleteDevice,
ChangePhase, CreateBurst, and CreateDevice. To determine the vendor and
model of the device to generate with this latter event, a specific website was
consulted [18]. This resource provides regularly updated statistics on device
sales and usage.

• DeleteDevice: event that deletes the device from the environment.

• ChangePhase: event that chooses the next device phase, based on the afore-
mentioned probabilistic distribution and the current one. Then the next events
ChangePhase and CreateBurst for the device are scheduled.
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• CreateBurst: creates several events of type SendPacket according to the device
number of packets per burst value, obtained from the generator’s database.
Then a new event of type CreateBurst is created.

• SendPacket: it contains the built probe request packet and saves it to the
output .pcap file.

When a new event is created, the execution time is set based on the specific
task (e.g., the consecutive events SendPacket are spaced by the inter-packet time
chosen, while two CreateBurst events are spaced by the inter-burst time). Upon
the creation of a new event, it is added to the queue. Following this, the event
list is sorted based on the execution times of the events, positioning the one with
the nearest execution time at the beginning of the list. An example of how the
event list works is reported in Figure 3.2. It is important to specify that each event
inside the list has its execution time, reported in round brackets. Although some
of these values coincide with those in Figure 3.1, it is important to note that they
represent different events despite all being related to execution times. They are all
execution times, but they refer to different events. In this case, the generator has
created a new event of type CreateDevice, with execution time equal to t3. The
event list must insert the new item in the right position according to the other
execution times. Since in the example t3 is greater than t2 and smaller than t4,
the new event is placed between the third and the fourth ones. After that, the list
continues to be processed by the system and the next event handled will be the
CreateDevice with time t1.

Figure 3.2. Event list of the probe request generator.
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Event list cleaning

The occurrence of the ChangePhase event not only triggers a transition of the
device’s phase but also generates a new event of the same type, along with a new
CreateBurst event. This latter will start a new sending packet chain, while the old
one (derived from the past phase) is still inside the queue. For this reason, it is
necessary to clean the event list every time a ChangePhase event is handled. In
particular, it is sufficient to remove from the queue the device’s CreateBurst events,
apart from the one that has just been created by the ChangePhase one.

3.3.4 New device creation
To replicate use cases with utmost realism, it is necessary to account for the dy-
namic nature of individuals entering and exiting the captured area. In this context,
the two main parameters to handle are the average permanence time and the av-
erage number of devices. By configuring these two values, it becomes feasible to
plan the upcoming event of the CreateDevice type, thus creating a sort of frequency
for generating the next device creations. The execution time for the next Creat-
eDevice is not fixed but is calculated when a device creation event is needed. The
mathematical law employed is Little’s Law [15]:

L = λW (3.1)

Where:
L represents the average number of customers in a system at any given time

(i.e., the average number of devices present in the environment).
λ represents the average arrival rate of customers into the system (customers

per unit of time).
W represents the average time a customer spends in the system (i.e., the average

permanence time).

In other words, the average number of entities in the system is equal to the
product of the average arrival rate and the average permanence time. Little’s Law
is a fundamental principle in queue theory, a branch of operations research and
applied mathematics that deals with the study of waiting lines (queues) and the
analysis of systems involving entities waiting for service. Following this law, we
can schedule the next device creation and maintain a roughly constant average
number of devices in our generator environment. The death of the devices (i.e.,
the creation of the event DeleteDevice) has always the execution time equal to the
average permanence time set as a system’s parameter (as seen in 3.3.1). The main
consequence of Little’s law is the possibility of having a controlled environment,
where the number of devices is aligned to the parameter set as desired. As observed,
the timing for death and creation of devices are closely related to the inherent
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dynamic dictated by the law, making it a key tool for keeping the system well-
behaved and under control.

An important step in the creation of new devices is the decision of which model
to create inside the environment. Each model inside the database is associated with
its vendor so that it is possible to select the best-selling brands. The information
about the market trends has been taken from a specific website [18]. Data collected
from this source are then used every time a new device has to be created inside the
generator. Specifically, as demonstrated in section 3.3.2, the Numpy library [21]
provides the capability to make a random selection from a set of values while as-
signing each value a weight. These weights are sourced from the referenced website,
enabling the recreation of a more realistic environment.

In Figure 3.1 the labels t6, t7, and t8 represent the scheduled time for the event
DeleteDevice which puts an end to the activity of a device. Given that the latter can
be stopped at any phase it is in, the execution times are reported on three different
arcs, even if death naturally only occurs once and its termination scheduling is
established when the device is created.

Figure 3.3. Probability transition values in the generator basic configuration.
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3.3.5 Device phases

A device can send probe requests in all three main phases: locked, awake, and
active. For this reason, time and burst features have been collected separately for
each phase (as seen in 3.2). In addition, it is important not only to know how a
device acts within a specific phase but also when it switches from the current phase
and the next one. It is necessary to set a timing for each phase and a likelihood of
moving to one phase rather than another. All of these tasks have to be managed
within the generator, in particular, they are administered inside the handling of
ChangePhase events.

The duration of each phase is controlled by introducing a new event called
ChangePhase into the queue. This event is scheduled to execute at a time calculated
as the sum of a base time (equal to the current time when the event is generated)
and a specific number of seconds, equivalent to the phase’s predetermined duration.
The objective is to simulate human behavior, so the duration allotted to each
phase is not fixed but instead follows a probability distribution. Specifically, a
negative exponential distribution is employed for this purpose. This particular
mathematical function possesses the characteristic that, with a roughly consistent
rate of occurrence of the referenced event, it serves as a reasonable approximation
for the time until the next event takes place.

The transition between phases for a device occurs quite frequently, which is why
this distribution is chosen. The Python standard library’s random [28] allows for
the generation of random values adhering to a negative exponential distribution,
with the possibility to set the average of the distribution. These average times
are contingent on the specific use case and context in question, underscoring the
importance of adjusting them as needed.

For instance, in a train station scenario, it is more likely that devices remain in
the active phase for longer durations since people use them while awaiting trains.
Conversely, in other scenarios, such as traffic monitoring on a street, it is more
probable for devices to remain in the locked phase for extended periods. In the
generator, estimates of the average phase durations have been initially set to 5
minutes for the locked phase, 30 seconds for the awake phase, and 3 minutes for
the active phase.

A probabilistic model has been developed to represent the chances of moving
from the current phase to various other phases, presenting a spectrum of probabili-
ties for these transitions. Moreover, it should be noted that these probability values
can vary among different usage cases, emphasizing the need for precise configura-
tion. In the default setup of the generator, the values are established as depicted in
Figure 3.3. In particular, the arcs represent the transitions and the labels on them
report the chances to pass from one phase to another.
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In Figure 3.1 the labels t1, t2, t3, t4, and t5 represent the execution times of the
ChangePhase events, when the device passes from one phase to another. The labels
p1, p2, and p3 are the chances that a device will start its life in one phase rather
than another. In the initial implementation of the generator, these parameters
were set to the following values: 35% for commencing in the locked phase, 15%
for commencing in the awake phase, and 50% for commencing in the active phase.
It is important to note that these values can be adjusted to accommodate various
environmental conditions and requirements.

3.3.6 Probe request creation

The CreateBurst event has the main function of creating two other types of events:

• A certain number of SendPacket events all interspersed with time intervals
equal to the device’s inter-packet time in the specific phase.

• A new CreateBurst for the next burst creation that will be executed in a time
interval equal to the device’s inter-burst time in the specific phase.

The number of SendPacket created is equal to the number of packets chosen to
compose the burst, this number can vary according to the probability distribution
of the number of packets per burst, specific for each device. Each one of the
SendPacket events has the task of generating a probe request packet with certain
characteristics. Notably, the first SendPacket event of the series, has the same
execution time as the CreateBurst event (i.e., the first packet of the burst created
has the arrival time equal to the CreateBurst execution time). A useful Python
library for building network packets is Scapy [31]. This tool permits to be compliant
with the 802.11 standard so that building network messages becomes easier. Crowd-
monitoring frameworks that exploit the use of probe requests, focus the attention
on the header section of the transmitted messages and in some cases on a part of
the message payload (such as the list of SSIDs). In networking, the header refers
to the initial segment of a data packet, containing essential information about the
message itself and its intended destination. In the context of probe requests, this
header typically encompasses different features. On the other hand, the payload
refers to the main content of the message, carrying the actual information that users
need to transmit. Studies on PR frames (such as [16] and [30]) have demonstrated
that nowadays the sequence number management in the messages has a precise
schema. In particular, the first packet of each burst has a random sequence number
(untied from the previous packets), and the following frames of the same burst have
sequence numbers that progressively increase by one.

The following paragraphs will discuss the management of the other fields of the
probe request header and the SSID.
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MAC address

Each device inside the generator’s database has a flag that indicates if it does the
MAC address randomization. If the device does not implement randomization, its
MAC address is built by taking the specific vendor’s OUI for the first 24 Bytes,
and for the other ones it uses random Bytes. It is important to underline that each
packet sent by this device will have the same MAC address. For models that use
randomization, every time a burst is created, a new random MAC address is used
for that burst (i.e., for all packets inside the burst). This random MAC address has
always the Globally/Locally bit set to 1, so it is a locally administered address, and
the 8th bit of the first octet is set to 0, meaning that it is sent in unicast form. This
latter transmission method involves directing the data (in this case would be the
response of the found access point) specifically to a single intended recipient within
the network and not to a group of systems as in the case of multicast. Every packet is
transmitted with a destination MAC address of FF:FF:FF:FF:FF:FF. Frames with
this specific destination address are sent to all hosts within a particular network
domain and are commonly referred to as broadcast frames.

802.11 main fields

Probe request headers contain a lot of fields, some are different between mod-
els, others depend only on environmental factors while still others have roughly a
fixed value. The ones that exhibit variations across different device models are col-
lected during the process of data acquisition 3.2 and subsequently stored within the
database. They are VHT capabilities, Extended capabilities, and HT capabilities.
For the fields that depend on environmental conditions, such as the signal power,
their values are randomly set inside the packets. Finally, for the ones that never
change across different PRs, a default value is always used.

Special fields: WPS, UUID-E and SSID

Probe requests occasionally contain the WPS with the UUID-E in the header and
the SSID within the payload. Following the studies done in [2] it is clear that only
a small part of messages have these three fields, in particular, the couple WPS and
UUID-E appear only in the 11% of the analyzed cases, while for the SSID field,
we do not have precise statistics. Hence, within the CreateDevice event, an extra
choice is available when generating a new device: there is an 11% chance that the
device will be assigned randomly generated WPS and UUID-E values. If these
values are assigned to a particular device, they are subsequently included in the
packet creation process, specifically within the SendPacket event, where they are
placed in its packets’ headers. The procedure for handling the SSID within the
payload remains consistent: inside the CreateDevice function, a decision is made
whether the device will display a roster of its SSIDs or not. In the affirmative
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scenario, an SSID list will be added to the device. Given the absence of definitive
data regarding the inclusion of SSID in a probe request, the likelihood governing
the possibility that a device shows its SSID list can be manually adjusted. In the
initial version of the generator, approximately 20% of devices reveal their respective
SSIDs.

3.3.7 Messages collisions
One of the main problems in packet trace generation is the management of the
messages’ arrival times. Especially in a very crowded environment, the probability
that two probe requests sent by different devices arrive at the same time to the
sniffer could not be ignored. Inside the generator, the .pcap file would have two
messages with the same sniffing time. In real systems, these situations are called
collisions and are managed through specifically designed recovery processes or with
network segmentation.

Inside the probe request generator, when created, each packet is directly written
inside the .pcap file. To address the potential for collisions and ensure that synthetic
packets are not lost, an additional feature has been integrated into the system.
Specifically, when a new event of type SendPacket, is going to be added to the list
of events, the other ones with the same type are examined to check for potential
time overlaps. If no collision is detected, the event is normally added to the list.
Otherwise, a mechanism is triggered to adjust their timing. In particular, every
time a collision is detected, the execution time of the new event to be added is
shifted forward by 0.001 seconds. This small value has been chosen to have the
slightest possible influence on the packet’s original scheduled arrival time. After
that, the new event is normally inserted inside the event list. The cumulative time
by which the new event has been advanced is provided as the return value. This
facilitates the synchronization of the subsequent packets within the ongoing burst
to the revised arrival time established for the preceding packet. Once the necessary
time adjustments are made, the event is appended to the simulator’s list of events.

Once these necessary time adjustments are made, the event is appended to the
simulator’s list of events. As mentioned previously, this list is sorted based on the
execution times of the events, with additional logic in place to handle cases where
two events occur with overlapping time intervals. Specifically, when a SendPackets
event (event B) and a CreateBurst event (event A) overlap in time, event A will
create a new burst with its first packet. This packet will be scheduled to overlap in
time with the packet related to event B. Ordering event B after event A ensures that
the queue first processes event A and its subsequent SendPackets events according
to the previously described logic. Conversely, if the ordering were reversed, with
event A placed after event B, the packet related to event B would be written to
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the .pcap file without considering the future burst generated by event B. The first
packet of that burst would be written to the .pcap file with the same arrival time
as the packet from event A, even though event A is no longer present in the event
list.
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Chapter 4

Proposed crowd-monitoring
frameworks

This chapter will present a series of frameworks developed to perform crowd-
monitoring, exploiting different technologies such as neural networks and clustering
algorithms. These frameworks were developed to find a valid replacement for the
outdated methods that became useless after MAC address randomization. All the
methodologies and details involved in the creation of these frameworks will be
provided. Their primary suitability lies in scenarios where devices remain predom-
inantly stationary within a specific area, rather than in environments characterized
by the continuous movement of people in and out of the capture zone. The chapter
is organized as follows: Section 4.1 explains the reasons for adopting the Euclidean
distance metric in the algorithms, Section 4.2 contains a detailed explanation about
the type of clustering used, Section 4.3 describes an attempt to help traditional
clustering algorithms with a neural network, and finally, Section 4.4 presents the
framework developed by merging clustering methods with information obtained
from the PRs studies.

4.1 Euclidean distance
For each of the implemented crowd-monitoring methods, it was necessary to find
a reliable method to evaluate the distance between different probe requests. For
comparing the PRs, it is possible to utilize the data contained within their fields
by applying the mathematical concept of Euclidean distance. Each probe request
can be thought of as a point in an N-dimensional space, with its features defining
its coordinates along each dimension. To measure the likeness or disparity between
two probe requests within this feature space, the Euclidean distance metric is a
viable choice. It is essentially the straight-line distance between two points and it
is calculated using the Pythagorean theorem, extending the basic two-dimension
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distance formula to N dimensions.
Mathematically, the Euclidean distance between two points P and Q in an N-

dimensional space is given by:

EuclideanDistance =
√︂

(q1 − p1)2 + (q2 − p2)2 + . . . + (qn − pn)2 (4.1)

Where:
q1, q2, . . . , qn are the coordinates of point Q along each dimension.
p1, p2, . . . , pn are the coordinates of point P along each dimension.

Thanks to this metric, complex feature data can be evaluated with a measure of
proximity so that the difference and similarity between messages can be quantified.

4.2 DBSCAN clustering
The advanced crowd-monitoring systems seek to classify probe requests into sepa-
rate categories based on criteria related to device or model distinctions. Clustering
is a set of machine learning techniques that groups similar data points together
based on certain features or characteristics. These algorithms work by analyzing
the patterns and relationships within the data to identify clusters, which are col-
lections of data points that exhibit high similarity to each other and are distinct
from other clusters. They follow unsupervised learning techniques, which consist
of training models on unlabeled data. In particular, the algorithms do not have
access to explicit target values or predefined categories for the input. Instead, they
aim to uncover patterns and relationships inside the data sets. In the thesis, the
focus was on a particular subgroup of these techniques: density-based clustering.
This latter focuses on identifying clusters based on the density of data points in the
feature space. Unlike some traditional clustering methods, density-based clustering
is capable of handling noise effectively. This latter refers to data points that do
not meet the density criteria required to be considered part of a cluster. The main
components and parameters of these types of algorithms are the following:

• Epsilon (ϵ): is the radius of the clusters.

• Min samples: is the minimum amount of points to consider a cluster as such.

• Metric: the measure to calculate the distance between points.

• Core points: a data point is considered a core point if there are at least a
specified number of other data points (this number is specified with the min
samples parameter) within a certain radius (epsilon) of it. These are the
central points of clusters.

• Border points: a data point is considered a border point if it is not a core
point but falls within the radius of a core point.
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• Noise points: data points that are neither core points nor border points are
considered noise points or outliers.

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm was proposed in 1996 as a new density-based clustering method [7]. The
basic concept is to group data points in a dataset based on their density distribution.
DBSCAN does not require you to specify the number of clusters in advance, this is
a key point since the number of present devices or models is not known in advance.
Instead, it identifies densely packed regions and labels points as core points, border
points, or noise points.

The workflow of the DBSCAN is structured in six steps:

1. Start with an arbitrary point in the dataset that has not been explored yet.

2. Find all the data points within ϵ-distance of the selected point.

3. If the number of points found is greater or equal to min samples, the selected
point is labeled as a core point.

4. If the selected point is a core point, a new cluster is formed. All reachable
points from the selected point (i.e., within ϵ-distance) are added to the cluster
and they are labeled as border points. This process continues until no more
reachable points are found.

5. The algorithm continues by selecting the next not-yet-visited point in the
dataset, and the process is repeated from 2.

6. After all points are visited, any remaining unlabeled points inside the dataset
are signed as noise points.

Figure 4.1 and Figure 4.2 represent an example of data points before and after
the DBSCAN clustering process. At the end of the algorithm, core and border
points are shaded with their respective cluster-specific colors, while noise points
are depicted in black.

Due to its comprehensive set of machine learning tools and user-friendly APIs,
the DBSCAN algorithm was implemented with the support of scikit-learn library [33].
This latter provides a reliable and well-optimized algorithm that can be included
within Python code.

4.3 Decoupling neural network
Crowd-monitoring systems that exploit clustering methods, often base their work
on the similarity between PRs sent by different devices. The problem is that probe
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Figure 4.1. Data points before DBSCAN clustering.

requests are very hard to separate into groups based on device-specific features.
Most of the time their fields are more effective when trying to separate them by
models and not by a single device. Starting from this problem a method for decou-
pling PRs before the clustering process has been studied. A neural network was
developed to process probe request fields and perform the task of pattern recog-
nition. The final goal is to find a new representation for the messages that can
be more effective in dividing them into groups, each one representing a specific
device. The starting point of the structure creation was the concept of encoder-
decoder neural networks. These are architectures designed to transform input data
into a different and compressed representation, often referred to as a latent space
or encoding. The encoding produced captures the most important features of the
input data, which can then be used for various purposes like classification, genera-
tion, or further processing. The decoder part attempts to reconstruct the original
input starting from this new representation provided by the encoder. If this recon-
struction process brings an outcome close to the original input, it seems that the
encoding is representative of the starting data. The reconstructed input and the
original one are compared to evaluate the quality of the work done by the network.
From this concept, the decoupling neural network was designed to find an inner
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Figure 4.2. Data points after DBSCAN clustering.

representation of PRs that permits distinguishing a message sent from one device
to another sent by a different device. The decoder part is not used since the goal
is not to reconstruct a probe request starting from its latent representation so only
the encoder part was developed. To evaluate the effectiveness of the encoding, a
new method was implemented. This latter will be explained when the training
phase will be treated. The developed neural network architecture is reported in
Figure 4.3.

4.3.1 Training phase
During the training phase, the neural network aims to learn how to perform the
pattern recognition described above. The learning process has the goal of setting
the correct parameters for the specific task in the network’s neurons. Probe request
fields are processed to obtain a dataset where each row represents a probe request
and each column represents the value of one field. After that, the tabular data is
organized in batches (i.e., subsets of data) that are then passed through a series of
layers (i.e., groups of neurons that do specific activities) that compose the encoder:

• Linear: a fundamental layer that performs a linear transformation on the input
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Figure 4.3. Encoder neural network architecture.

data, often followed by an activation function. It is commonly used for linear
mappings and feature transformations.

• Batch normalization: this layer normalizes the activations of layers across a
mini-batch of data, helping to stabilize and accelerate training.

• ReLU: the Rectified Linear Unit (ReLU) layer applies the ReLU activation
function, which replaces all negative values with zero and leaves positive values
unchanged. It is important because it introduces non-linearity to the network,
making it more similar to natural processes.

• Dropout: is a regularization technique that randomly sets a fraction of input
units to zero during each forward pass. This prevents overfitting (i.e., the
scenario in which a machine learning model achieves outstanding performance
on its training data but experiences a notably diminished performance when
tested on unseen or new data) by reducing the reliance of the network on
specific neurons and encourages the network to learn more robust features.

The sequential process, spanning from input data to the outcome, is commonly
referred to as the forward pass. This series of steps collectively yields an encoding for
the PRs. After that, the network has to know if the work done can lead to positive
results for the task or not. The grade of success (or failure) is determined by a
loss function, which serves as a cost function, quantifying the disparity between the
predicted output of a model and the actual ground truth labels in the training data.
The goal of training a machine learning model is to minimize this loss function,
thereby improving the model’s performance and predictive accuracy. After the
evaluation is done with the loss function, the neurons’ parameters are updated to
minimize the function, this process is called backward pass.
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It is important to set a good evaluation function for the model to make the
neural network work well for the task. All the encoders produced inside a batch are
compared with each other using the Euclidean distance paired with a threshold.
This latter is decided at the beginning of the training phase and has the function of
separating encodings in the space. In particular, given two encodings of two probe
requests:

• If the probe requests come from the same device, the Euclidean distance should
be under the threshold (i.e., the encodings are very similar because the two
points they formed in the space are close to each other);

• If the probe requests come from different devices, the Euclidean distance
should be over the threshold, meaning that the two encodings are properly
different.

Starting from this assumption, every element within a batch is compared with
the others using the Euclidean distance. Each probe request is labeled with the
identifier of the device that sent it, so it is simple to know if two juxtaposed en-
codings come from the same device or different ones. A label is allocated to all the
comparisons as outlined below:

• The comparison has the flag 1 if:

– The two encoders derive from two PRs sent by the same device and their
distance is under the threshold;

– The two encoders derive from two PRs sent by different devices and their
distance is over the threshold.

• The comparison has the flag 0 if:

– The two encoders derive from two PRs sent by the same device and their
distance is over the threshold;

– The two encoders derive from two PRs sent by different devices and their
distance is under the threshold.

This method aims to force the latent space representations to be similar (i.e., with
Euclidean distance under the threshold) for probe requests that come from the same
device and different (i.e., with Euclidean distance over the threshold) for probe re-
quests sent by different devices. To create a proper loss function, all the flags
obtained from encodings are compared with the real ones, which simply proceed
from the ground truth labels. The two sets of labels are compared with a specific
metric called Binary Cross-Entropy Loss (BCELoss) [4]. This function calculates
the difference between the predicted probability distribution and the true distribu-
tion of binary outcomes, penalizing the model more for incorrect predictions and
less for accurate ones. This loss function is particularly useful for tasks like binary
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classification, where the goal is to categorize instances into one of two classes based
on predicted probabilities. In mathematical form, the BCELoss can be expressed
as follows:

BCELoss(y, ŷ) = − (y · log(ŷ) + (1− y) · log(1− ŷ)) (4.2)

Where:
y: represents the true binary labels, obtained from the ground truth.
ŷ: represents the predicted labels.

After the loss function evaluation, the training phase pursues the optimization of
the neural network following the results obtained from the BCELoss. The optimizer
adopted for this step is the Adaptive Moment Estimation algorithm better known as
ADAM [13], which is commonly used in deep learning. In particular, this method is
based on the fundamental optimization algorithm in deep learning, the Stochastic
Gradient Descent (SGD). The process begins with an initial guess for the model’s
parameters, which are typically initialized randomly or with small values. In each
training iteration, the dataset is shuffled randomly to prevent the model from being
biased by the order of data samples. Then, SGD selects a small, random subset of
the training data known as a mini-batch. In the chosen mini-batch, SGD calculates
the gradient of the model’s loss function using all the network’s parameters. This
gradient represents the direction in which the loss function decreases the most.
However, it is important to note that the gradient is calculated from this subset
of data rather than the entire dataset, introducing a degree of randomness. The
model’s parameters are then updated based on the computed gradient. The step
size in the parameter space is controlled by a hyperparameter known as the learning
rate. It determines how much the parameters are adjusted in each iteration. The
parameter update is performed for each mini-batch, and this process continues for
a fixed number of iterations (referred to as epochs) or until a convergence criterion
is met.

4.3.2 Test phase

For the test phase, the selected data must never been seen by the network be-
cause this ensures an unbiased evaluation of the model’s generalization ability. The
forward pass is performed, but no loss evaluation is done (in this phase there is
no need for updating the network). After obtaining the encodings, the DBSCAN
clustering algorithm is performed to group the messages. In particular, each group
should represent a device, so that the total number of devices present in the system
represents the number of clusters generated.
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4.4 Clustering and time features of probe requests
In this section, an alternative crowd-monitoring system is introduced, which relies
on clustering algorithms and incorporates insights gained from the probe request
generator investigations. The flow-chart of the described method is reported in
Figure 4.4
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Figure 4.4. Flow chart for the developed framework.

4.4.1 Main capabilities and device models
Distinguishing between probe requests based on devices’ features is challenging be-
cause header fields often contain information that is shared across all devices of a
particular model. Clustering algorithms struggle to find a way to do pattern recog-
nition. Even if all devices sent a similar number of PRs, it is a common occurrence
for a part of generated clusters to have a substantial number of associated probe
requests, while others contain only a small amount of messages. These results may
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lead to the creation of multiple clusters, closely matching the ground truth in terms
of the number of detected devices, but the message grouping is highly inaccurate.
In subsequent tests and applications, the monitoring systems might struggle to
accurately count the number of devices present.

Given that clustering is more effective when the objective is to distinguish probe
requests solely by model. This framework focuses on leveraging model-oriented
capabilities, in particular, the features that have been considered are VHT, HT,
and Extended capabilities. While reading a packet from the .pcap file, the tools used
present multiple subfields that compose one of the above-cited fields. The goal is
to represent each capability with a number that can then be used as a dimension of
probe request data points. The chosen technique to merge all the subfields referring
to a specific field involves summing them to create an identifier. This results in a
distinct numerical value being generated for each capability. Pseudo-code of the
method to generate model identifiers is reported in Algorithm 2.

Algorithm 2 Algorithm to compute the probe requests model identifiers
Require: .pcap file with the capture

ids list← empty list
for packet in capture do

HT counter ← 0
V HT counter ← 0
Extended counter ← 0
for field in packet do

if field contains HT info then
HT counter ← HT counter + value

else if field contains VHT info then
V HT counter ← V HT counter + value

else if field contains Extended info then
Extended counter ← Extended counter + value

end if
end for
ids list← insert(HT counter, V HT counter, Extended counter)

end for

The result of this algorithm is the creation of an identifier for each probe request
which recognizes its model. It is important to underline that the three capabilities
are kept separate. The decision not to aggregate these values into a single identi-
fier is intentional due to a potential concern. After the merging process, distinct
messages sent by different models might share the same identifier, despite having
different values for their three individual capabilities. Therefore, it is more prudent
to keep the trio of capabilities separate.
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4.4.2 Framework algorithm

All the probe requests analyzed must be inside the designed capture area, so they
must be near enough to the sniffer. In some cases, messages that come from devices
outside the desired region may be received. To solve this issue, the signal powers of
PRs are compared with a threshold set to -70 dB. This value was chosen according
to the experiments done in [30]. They demonstrated that this value permits filtering
probe requests outside an area of about 10 meters radius around the sniffer. This
threshold can be changed based on the desired capture area. Particularly, if this
latter has to be extended, it is sufficient to set smaller values (e.g., -80/-90 dB)
otherwise, greater values must be used (e.g., -60/-50 dB).

Before dividing probe requests by model thanks to clustering procedures, it is
important to manage all the devices that do not use MAC address randomization
(i.e., devices that provide directly their original MAC address). To distinguish
globally unique MAC addresses from locally administered ones it is sufficient to
see the Globally/Locally unique bit: if it is set to 1 it means that the address
is locally administered (i.e., the device uses the randomization), otherwise, it is
globally unique. Counting the number of these items is straightforward since it is
sufficient to memorize their MAC address inside a Python set. This latter represents
an unordered collection of unique elements. The key characteristic of a set is that
it does not allow duplicate values. This makes it particularly useful when you need
to work with a collection of items without worrying about repetitions. In this case,
the set is perfect because, once a probe request with a globally unique MAC address
is detected, it is possible to directly add the address to the set without processing
the header fields. This approach ensures that duplicates are automatically avoided,
allowing an easy device count. At the end of the .pcap file parsing it is sufficient
to retrieve the length of the set to discover the number of devices that do not
randomize the MAC address. For the other probe requests, a model identifier is
calculated as described in 4.4.1.

Subsequently, these triplets become the data points that represent the probe
requests. The entire set of these points is then provided to a clustering algorithm,
in particular to the DBSCAN. At the end of the process, the aim is to have probe
requests grouped according to the model of the devices that sent them. Before
performing the clustering process, an additional check is done to verify that at least
a certain percentage (set by default to 2% of the entire capture) of probe requests
have a locally administered MAC address. This is done because it is important
and makes more sense to apply the DBSCAN to a substantial part of messages
received. In the case where this part of probe requests is under the threshold, only
the messages with a globally unique MAC address are taken into account for the
counting process.

DBSCAN algorithm assigns by default the label -1 to every item that results
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in the noise group. Since it may contain probe requests deriving from different
models, this group is not representative of the crowd-monitoring method. The PRs
associated with that label are automatically discarded. Starting from model groups
formed with the clustering algorithm, it is necessary to count how many devices are
present for every single model (i.e., for every single cluster). To obtain this estimate
inside each group, it is important to consider the probe requests’ rates. Each model
sends probe requests with a certain frequency, depending on the phase in which it
is. Since it would be very hard and not so accurate to divide clusters per phase, it
was decided to consider only the average sending rate for a model. In situations in
which crowd-monitoring would be performed in particular environments, where a
certain phase would prevail in time over the others, the messages’ rates separate for
each phase may be useful. Hence, calculations have been performed for both the
average sending rate across the entire capture and the average sending rate specific
to each phase.

The formula exploited in this particular framework is the following:

N = K · L · T (4.3)

Where:
N: total number of probe requests sent by devices of a certain model.
K: number of devices belonging to the model.
L: average probe requests’ rate for the model.
T: time window in which the packets were sent.

This formula expresses the relation that elapses between these four parameters,
the number of packets sent is directly proportional to the number of devices present,
assuming a constant probe request rate and time window.

Particularly, in this case, the interest is in the parameter K so that the equation
becomes:

K = N

L · T
(4.4)

While parameters N and T are easily obtainable, the rate L has to be extracted
from a source. A possibility would be possible to use 4.4 directly to the whole
dataset of probe requests that use a randomized MAC address. All elements present
inside the generator’s database were tested to measure their probe request rates.
These trials demonstrated that it is necessary to find a specific L value for each
formed cluster since each model presented a significantly different rate.

Frequency association and counting by model

Each probe request has its model identifier which serves as a data point for the
Euclidean distance inside the DBSCAN algorithm. All three capabilities used inside
the identifier (i.e., VHT, HT, and Extended capabilities) bring information about
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the Throughput of the system. This latter refers to the amount of data that can be
successfully transmitted over a network in a given amount of time. The identifier
can serve the dual purpose of grouping PRs into model clusters and assessing the
proximity of these clusters to the generator’s database models. The basic concept
is that when two models share similar identifiers, there’s a higher probability that
their probe request rates will also be similar. Inside the generator’s database,
a certain number of models can be studied to obtain their identifiers and rates.
This approach allows each created cluster to be compared with all the models in
the database using their identifiers, enabling the identification of the most similar
model, whose rate can then be utilized as the L parameter.

To collect these values, the probe request generator allows simulations with just
one device from the database, making it possible to calculate the message rate
associated with that specific model.

Particularly, a simple mathematical formula can be employed:

Frequency = Number of packets in the .pcap file
Simulation time (4.5)

For each model present inside the generator’s database, two types of information
are computed: the triplet used for model identification and its probe request rates.
All the data is stored within a file having the extension .json, structured similarly
to the provided example:

”Apple iPhone14Pro ” : {
”number ” : 1 ,
” l o c k e d r a t e ” : 0 . 08 ,
” awake rate ” : 0 . 44 ,
” a c t i v e r a t e ” : 0 . 38 ,
” mean rate ” : 0 . 22 ,
” probe mode l id ” : [ 0 , 149 , 16981 ]

} ,
”Apple iPhone13Pro ” : {

”number ” : 2 ,
” l o c k e d r a t e ” : 0 . 11 ,
” awake rate ” : 0 . 67 ,
” a c t i v e r a t e ” : 0 . 84 ,
” mean rate ” : 0 . 39 ,
” probe mode l id ” : [ 0 , 147 , 16981 ]

} ,
”OnePlus Nord5G ” : {

”number ” : 3 ,
” l o c k e d r a t e ” : 0 . 22 ,
” awake rate ” : 3 . 90 ,
” a c t i v e r a t e ” : 0 . 54 ,
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” mean rate ” : 0 . 43 ,
” probe mode l id ” : [4052911066 , 142 , 972 ]

} ,
”Xiaomi Mi9Lite ” : {

”number ” : 4 ,
” l o c k e d r a t e ” : 0 . 25 ,
” awake rate ” : 0 . 28 ,
” a c t i v e r a t e ” : 0 . 24 ,
” mean rate ” : 0 . 26 ,
” probe mode l id ” : [2442297858 , 141 , 843 ]

} ,
. . .

JSON (JavaScript Object Notation) [12] is a lightweight data-interchange format
that is easy for humans to read and write, and easy for machines to parse and
generate. JSON data is represented as key-value pairs, where keys are strings
enclosed in double quotation marks, followed by a colon, and then the corresponding
value.

With this new database of models, it is possible to find and exploit probe request
rates to associate a parameter L to each model cluster. Before searching for a
model inside the database, each cluster passes through a normalization process. In
particular, not all the probe requests collected inside a cluster could have the same
identifiers, they are expected to be similar due to the utilization of a density-based
clustering algorithm within the framework, but there is no guarantee that they are
identical. For this reason, inside each group, all identifiers are averaged to find a
unique cluster identifier for the pairing process with the models inside the database.

Another important parameter in 4.4 is T. It represents the time window in which
the probe requests are sent. As said before, our use cases are almost all related to
situations where the devices are mainly stationary in the examined area. Therefore,
the time window can be set as the total time of capture, equal for all clusters.

There are situations where a device may send a lot of probe requests during
the capture window so that the ratio calculated in 4.4 becomes too high. To
avoid clusters with an overestimated number of items, the relationship between
the parameters N and T is monitored for each cluster. In particular, a parameter
called MAX RATIO is set properly inside the framework. The user determines the
appropriate value for this parameter, taking into account the characteristics of the
environment in which the capture is conducted.

This number serves as a threshold for an inequality performed for each cluster:

N

T
< MAX RATIO (4.6)

If the condition is satisfied, the Equation 4.4 is normally applied to the content
of the cluster, otherwise, it seems that the cluster is probably formed by a small
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number of devices that send a lot of messages. In this particular case, the number
of items associated with the cluster is automatically set with a default value that
must be small, like 1, 2, or 3.

The counting process is performed inside each cluster and the obtained results
are summed together. The retrieved number is then summed again with the length
of the set (the data structure used for messages with globally unique MAC ad-
dresses), and the outcome obtained is the estimated number of devices inside the
environment.

Problem with multiple database matches

Triplets composed of VHT, HT, and Extended Capabilities are almost always differ-
ent from each other inside the database. However, there are some cases where they
coincide, in particular for some models of the same vendor. This poses a problem
when a cluster identifies its closest match among these models, as the framework
needs to make a singular decision. To solve this issue, it was decided to take all the
rates of these selected models and average them to obtain the L parameter for 4.4.
Since there is no certainty that the model represented by the cluster coincides with
one or the other matches found, the average was considered a good choice.
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Chapter 5

Experimental and numerical
evaluation

This chapter will present a series of comprehensive tests about the two main the-
sis contributions: firstly the generator of probe requests, and then the crowd-
monitoring frameworks. The effectiveness, efficiency, and performance of the pro-
posed approaches will be proved with experiments, insights, and numerical out-
comes. The exploration of empirical data and results will offer the necessary point
of view into the real-world implications of these research efforts. The chapter is
divided into two main sections: Section 5.1 for the probe request generator, and
Section 5.2 for the crowd-monitoring frameworks. Each section will present the
methodologies adopted to perform the tests and the results obtained from them.

5.1 Probe Request Generator
This section will explain the methodologies employed in the evaluation of the probe
request generator described in chapter 3. All the experiments have been done with
the support of the Python library PyShark [26] which provides a useful tools suite
to analyze .pcap files and extract network packets’ field values.

5.1.1 Methodology
The experiments done to validate the probe request generator have been conducted
with a series of simulations inside a realistic environment with some characteristics:

• Fixed duration in terms of simulated time.

• Controlled environment with one only active device within the generator.

• Comparison between real traces and simulated ones.
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• Separate analysis for each phase (i.e., locked, awake, and active).

• The observation window for all the statistics has been established at a duration
of 30 seconds.

The generator’s purpose is to replicate genuine traces by mimicking the behavior
of a device in a manner consistent with real traces. For this reason, various metrics
have been extracted from both the real traces (obtained from [30]) and the simulated
ones. Specifically, these metrics are:

• The number of packets generated in the observation window.

• The time between packets inside the same burst (i.e., the inter-packet time).

• The difference between the arrival time of the last and first packets of the same
burst (i.e., the burst duration).

• The number of packets per burst.

• The time between the capture of the last packet of a burst and the capture of
the first packet in the next burst (i.e., the inter-burst time).

To compare real traces with simulated ones, it is necessary to measure the five
values extracted from the .pcap files. In particular, two mathematical tools are
used: the mean and the coefficient of variation.

The mean refers to the average of a set of numbers. It is often used to represent
the central tendency or typical value of a data set. The mean is calculated by
adding up all the values in the data set and then dividing by the total number of
values:

x̄ =
∑︁n

i=1 xi

n
(5.1)

To understand what is the coefficient of variation, it is first necessary to introduce
the concept of standard deviation. The standard deviation is a statistical measure
that quantifies the amount of variation or dispersion in a set of values. It indicates
how spread out the values are around the mean:

σ =
√︄∑︁n

i=1(xi − x̄)2

n
(5.2)

The coefficient of variation represents the ratio of the standard deviation to the
mean of a dataset. It is often used to assess the relative variability of a data set,
taking into account the scale of the data:

CV = σ

x̄
(5.3)
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The coefficient of variation is useful, especially in situations where it is necessary
to compare the variability of different datasets or measurements that have different
units or scales. It provides a more standardized measure that aids in meaningful
comparisons and decision-making across different contexts. Regarding the valida-
tion of the generator, it enables the comparison of all five metrics, even if they have
vastly different units of measurement and scales.

5.1.2 Numerical results
For the comparison between real and simulated traces, a specific device model was
considered, the Apple iPhone 11. Figure 5.1 shows a simulated trace relative to only
one simulation instance. Employing three distinct color bands, the differentiation
of phases is visually represented. The yellow band designates the Locked phase,
the green band pertains to the Awake phase, and the purple band characterizes
the Active phase. Each row of the figure represents one of the five metrics used in
the evaluation. The whole simulation represents a time frame of 40 minutes. It is
important to highlight that the complete trace was generated in under 6 seconds,
showcasing the scalability of the proposed method.

From the top down, the initial graph illustrates the count of packets generated
inside the observation window. During the Locked phase, the device tends to
transmit more packets at the start compared to the end. On the contrary, within
the Awake and Active phases, there is an increase in packet count. The second
plot demonstrates that the inter-packet time remains relatively consistent across
all bursts. The values of the third plot are strictly correlated with the ones of
the second plot and it is noteworthy to mention that the instances of zero values
correspond to bursts containing only a single packet. Also for the fourth plot, the
number of packets per burst constantly assumes fixed values. Finally, in the fifth
plot, it can be seen that the inter-burst time has a high grade of variability as
measured inside the real traces.

The validation is extended with more traces from our generator. For each one,
the five metrics were extracted and the mean and coefficient of variation were
computed. The outcomes of these comparisons are summed up in Tables 5.1, 5.2,
and 5.3, reporting the real trace metrics and the simulated ones for all three phases.
The measures inside tables are written with a series of acronyms, below is the list
of them and their correspondences:

• PO: Packet Occurrences.

• IPT: Inter Packet Time.

• BL: Burst Length.
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Figure 5.1. Emulated Apple iPhone11 trace as a function of time, for
different device phases.
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• PpB: Packets per Burst.

• IBT: Inter Burst Time.

The metrics are accompanied by the respective unit of measurement written in
square brackets. Each of the four simulations conducted spans a simulated time of
three hours, with one hour allocated to each phase. The choice to conduct these
comprehensive simulations was deliberate, aimed at showcasing a robust correla-
tion between the simulated behavior of the device and its real-world counterpart.
This remarkable alignment owes its success to an internal simulator process that
generates messages using empirical distributions gleaned from actual traces. If
shorter traces had been used, it is possible that the reliability and consistency of
the extracted metrics might not have been as strong, making it less indicative of
the quality of management of the probabilistic distributions within the system.

From the results obtained, it is clear that the traces produced by the probe
request generator and the real ones produce metrics that have very similar values
for mean and coefficient of variation. This means that both the average value and
its variation are successfully emulated.

57



Experimental and numerical evaluation

Table 5.1. Locked phase Apple iPhone 11: (mean, coefficient of variation)

Metric Real
PO [occurrences] (3.11, 2.52)

IPT [ms] (20.38, 0.02)
BL [ms] (16.3, 0.52)

PpB [occurrences] (1.8, 0.23)
IBT [s] (16.49, 1.62)

Metric Simulation 1 Simulation 2 Simulation 3 Simulation 4
PO [occurrences] (3.42, 1.33) (3.32, 1.36) (3.29, 1.29) (3.25, 1.34)

IPT [ms] (20.0, 0.0) (20.0, 0.0) (20.0, 0.0) (20.0, 0.0)
BL [ms] (16.73, 0.44) (16.5, 0.46) (16.76, 0.44) (16.85, 0.43)

PpB [occurrences] (1.84, 0.2) (1.83, 0.21) (1.84, 0.2) (1.84, 0.2)
IBT [s] (16.07, 1.59) (16.48, 1.57) (16.74, 1.56) (17.01, 1.55)

Table 5.2. Awake phase Apple iPhone 11: (mean, coefficient of variation)

Metric Real
PO [occurrences] (7.54, 1.46)

IPT [ms] (20.33, 0.02)
BL [ms] (17.94, 0.37)

PpB [occurrences] (1.88, 0.17)
IBT [s] (7.2, 2.32)

Metric Simulation 1 Simulation 2 Simulation 3 Simulation 4
PO [occurrences] (7.46, 1.15) (7.74, 1.18) (7.79, 1.13) (7.42, 1.11)

IPT [ms] (20.0, 0.0) (20.0, 0.0) (20.0, 0.0) (20.0, 0.0)
BL [ms] (16.68, 0.45) (16.55, 0.46) (16.66, 0.45) (16.5, 0.46)

PpB [occurrences] (1.83, 0.2) (1.83, 0.21) (1.83, 0.2) (1.83, 0.21)
IBT [s] (7.35, 2.26) (7.06, 2.33) (7.04, 2.3) (7.36, 2.27)
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Table 5.3. Active phase Apple iPhone 11: (mean, coefficient of variation)

Metric Real
PO [occurrences] (11.16, 1.06)

IPT [ms] (20.27, 0.02)
BL [ms] (16.6, 0.47)

PpB [occurrences] (1.82, 0.21)
IBT [s] (4.81, 2.41)

Metric Simulation 1 Simulation 2 Simulation 3 Simulation 4
PO [occurrences] (10.47, 0.89) (10.85, 0.91) (10.87, 0.89) (10.71, 0.85)

IPT [ms] (20.0, 0.0) (20.0, 0.0) (20.0, 0.0) (20.0, 0.0)
BL [ms] (16.4, 0.47) (16.85, 0.43) (16.62, 0.45) (16.61, 0.45)

PpB [occurrences] (1.82, 0.21) (1.84, 0.20) (1.83, 0.2) (1.83, 0.21)
IBT [s] (5.2, 2.39) (5.08, 2.42) (5.03, 2.38) (5.11, 2.27)

Figure 5.2 presents an example of a generated packet from a simulation. Wire-
shark visualization tools permit to read the .pcap file contents. It is possible to
control if the fields are present and were correctly set by the generator. An impor-
tant verification is the existence of malformed packets inside the capture, that are
signaled with a red error message. This happens in particular when the message’s
fields do not respect the protocol’s standards, such as their values are too short or
too long. The correctness of generated packets was checked so that Wireshark does
not detect any malformed packets.

5.2 Proposed crowd monitoring framework
This section will present all the experiments done for the crowd-monitoring frame-
works. The tests have been done with multiple datasets representing different
environments. In particular, both the main frameworks were subjected to a strict
comparison of each other and with an outdated system developed with the same
methodology reported with Algorithm 1. Again, the section will present the method-
ologies employed for the experiments and the numerical results achieved by the
systems.

5.2.1 Methodology
The procedure used involves conducting a series of tests to evaluate the performance
and effectiveness of the frameworks in various scenarios or situations. These exper-
iments are designed to mimic and represent different real-world usage scenarios for
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Figure 5.2. An example of a generated probe request packet.
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the systems. The datasets employed cover a range of environments, starting from
scenarios where there is only one device present, to others with multiple devices.

The models’ distribution may be different, there can be situations where the
majority of devices belong to few models as well as situations where models are
more diversified. Another aspect to consider is the different sources of the analyzed
traces. They can be from the generator or real captures. In this work, both types
are used.

It is important to underline that the captures from the generator have the same
types of devices stored inside the database presented in 4.4. So the matching
process between formed clusters and the database is straightforward in this case
since each cluster will find the exact model and not only one with the closest
identifier. In real captures, there is certainly a higher variability of models so the
matching process may be less precise. This is the reason why it was decided to
measure the effectiveness of the frameworks not only with synthetic data but also
with real captures. Below is an in-depth explanation of the methodologies employed
for each of the used frameworks. Some of the methods presented require setting
parameters to specific values, so for each test done, these values will be reported in
the explanation.

Outdated framework

Methods used before the MAC address randomization required just a simple Python
set to save the MAC addresses. Before the implementation of privacy-conscious
techniques, each device sent its probe requests with the original MAC address,
which is globally unique. It is sufficient to store all the captured addresses inside the
set and retrieve the length at the end of the analysis. Since this data structure does
not allow element repetitions, it is sure that all the single MAC addresses are stored
so that it is very easy to obtain the number of devices present. The experiments
done with these old techniques have been performed as described above, simply
with the use of a set. The results obtained are compared with the ones obtained
from the two frameworks to highlight the importance of developing these alternative
solutions.

Decoupling neural network

The decoupling neural network has been trained with a simulation that comprises
all the devices present inside the generator’s database. The probe request encod-
ing performed by the network reduces to a quarter of the original length of the
message fields. This dimensionality reduction was chosen after some trials that
demonstrated the possibility of having a smaller representation of PRs without los-
ing information, but it can be arbitrarily set. The learning rate necessary for the
ADAM optimizer is set to a default value of 1 × 10−4. This parameter essentially
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controls the speed at which the optimization converges to a minimum (or maxi-
mum) point in the loss landscape. Later we show how the network learns the task
assigned very quickly, this is the reason why the learning rate has not been passed
through a validation process. An important parameter to choose for the training
phase is the threshold on which the algorithm works to differentiate the probe re-
quests sent by distinct devices. Fundamentally, this parameter must be kept equal
in the test phase. After conducting several trials to comprehend the values taken
by the Euclidean distances between probe requests and how they change following
the encoding transformation, the decision was made to establish the threshold at
3. It has been shown that the network can effectively distinguish messages sent by
different devices with a relatively small number of iterations. This conclusion has
been validated through a training phase conducted using a dataset containing 55
devices of various models.

Figure 5.3 reports the accuracy in probe request differentiation over the training
iterations. In particular, this metric is measured based on the distance between
two PRs:

• If they come from different devices, they must have an Euclidean distance at
least equal to the threshold.

• If they come from the same device, they must have an Euclidean distance
under the threshold.

If the majority of juxtapositions between messages follow the above cases, the accu-
racy rapidly grows since it is measured as the percentage of successful comparisons.
The graph illustrates the rapid increase in accuracy after a few initial iterations,
followed by a relatively stable performance between 100 and 200 iterations. Fig-
ure 5.4 presents the trend of the Euclidean distance for both couples of messages
from the same device and different devices. The blue line represents the distance
between probe requests sent from different devices, while the green line shows the
distance between messages sent from the same device. The red line stands for
the threshold value. It can be seen that, after a few iterations, the algorithm can
distinguish well message sources based on the training done with the threshold.
Both graphs indicate that the number of iterations needed to achieve stability in
the system’s results trend is relatively low, especially when compared to the effort
typically required during the training phase of neural networks for tasks such as
computer vision.

In machine learning algorithms, a fundamental practice for dataset management
involves the partitioning of data. Specifically, it is a common approach to split the
dataset into two segments, with one comprising 80% and the other 20% of the entire
collection. The first subset is used for training, while the second is for testing. It
is important to not give the test data to the model before testing so that the
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Figure 5.3. Accuracy in recognizing probe requests from the same device or not.

Figure 5.4. Probe requests’ spatial distance during the training phase.

algorithm can not learn about these items and the evaluation can be done with
unknown elements. For the decoupling neural network, the 80/20 approach (this is
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the name by which it is known) was adopted, so the probe requests from the dataset
used were divided into two groups. During the test phase, the neural network is
used with the parameters learned during the training phase. The probe requests
are transformed into encodings and then processed with the DBSCAN clustering
method. To be compliant with the training phase, the parameters of the algorithm
must be set properly. The scikit-learn library [33] permits easily to assign values
to these parameters. They have been set as follows:

• Metric = Euclidean distance.

• Epsilon = threshold (i.e., 3).

Inside the DBSCAN definition, there is also the Min samples parameter whose
value depends on how crowded is the environment and how many seconds the
capture last. For example, when dealing with traces characterized by narrow time
windows, certain devices, and, consequently, the formed clusters, might be linked to
a limited number of messages. Therefore, within these smaller groups, the sample
size may not be particularly high. This underscores the importance of adjusting
this parameter to suit the specific use case.

Clustering and time features framework

The clustering framework uses also the DBSCAN algorithm for the set of probe
requests that have a locally administered MAC address. In this case, the parameters
are configured in the following manner:

• Metric = Euclidean distance.

• Epsilon = 4.

• Min samples parameter depends on the environment and the duration of cap-
ture, as discussed in the paragraph above.

After conducting a series of trials, the decision was made to set the epsilon pa-
rameter to 4. The primary objective behind these trials was to gain insights into
the spatial relationships among the triplets composed of VHT, Extended, and HT
Capabilities, as measured by the Euclidean distance metric.

There are two other parameters to set for this framework, MAX RATIO and
DEFAULT VALUE. The first aims to monitor the ratio between variables N and T
so that it remains under a certain threshold. The goal is to avoid situations where
the count would be wrong due to devices that send a lot of messages or when the
time window is too small. The tests done have shown that for low or medium-
crowded environments, the threshold for the ratio can be set to values close to 1,
such as 0.8, 0.9, or 1 itself.
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The DEFAULT VALUE parameter determines the number of devices to assign
to a cluster if the condition associated with the MAX RATIO is not respected (i.e.,
the ratio between N and T is over the threshold). The value is chosen arbitrarily,
but in most cases, it has been set to a small natural number, like 1.

Datasets used

The goal of these studies is to analyze the performances of crowd-monitoring sys-
tems under different environments. The datasets used for the tests are all .pcap
files. Thanks to the generator of probe requests, it is possible to generate various
situations. Some with more emphasis on having a few devices but many different
models, some others with the opposite case, and still others with mixed conditions.
The algorithms have been tested also with real .pcap traces, even if in these cases
another problem takes over: the difficulty in having a precise ground truth. This
latter was obtained with an estimate done by the person who collected data, based
on the average number of people or devices believed to be there. Below is the
complete list of datasets used during the experiments:

• Simulated traces:

– Dataset A: 60 devices all belonging to one model only.
– Dataset B: 6 devices each one representing a different model.
– Dataset C: contains only one device.
– Dataset D: medium-crowded situation, with 70 devices of various models.
– Dataset E: large-crowded situation, with 120 devices of various models.

• Real traces:

– Dataset F: contains only one device.
– Dataset G: capture done inside a home, 9 smart devices detected.
– Dataset H: contains the captures conducted within an anechoic chamber

as part of the research detailed in [23].
– Dataset I: comprises a collection of 10 two-minute captures performed

within room 14 at Politecnico di Torino, on the first day of the 2023/2024
academic year.

As told before, each dataset represents a different environment with its character-
istics. With these traces, it has been possible to properly evaluate the developed
systems. Dataset I presents a ”dynamic” use case, where the environment was
captured a few minutes before the start of a lesson and continued recording for a
few minutes afterward. This recording scenario allowed us to simulate the gradual
entry of people into the room, reflecting a real-world situation. Starting from the
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the beginning of the scenario, where a few individuals were already present in the
room, and continuing over the next twelve minutes. Gradually, more people entered
the room, and in the final three capturing windows, the lesson began, with only a
small amount of additional individuals arriving.

5.2.2 Numerical results
This section presents a collection of tests done with the datasets presented above.
Each of the developed frameworks was tested by inputting the .pcap files and
obtaining the number of identified devices.

The outcomes of the experiments have been documented in Table 5.4, with each
row corresponding to a particular series of tests conducted using a .pcap file that
simulates an environment. The columns furnish various details, including dataset
identifier, ground truth, the detected device count, and accuracy for each frame-
work. The accuracy was computed with a methodology that takes into account the
distance between the result and the ground truth. More specifically, the counting
error was calculated as the absolute difference between the ground truth and the
outcome, then the result was normalized by the ground truth. The accuracy can
easily be retrieved as one minus the error obtained. The two equations for the
calculus are reported below:

Err = |GT −R|
GT

(5.4)

Acc = 1− Err (5.5)

Where Err is the error, GT is the ground truth, R is the result obtained, and Acc
is the accuracy. The value of the latter is reported near the number of devices
detected in round brackets and the best result for each dataset is written in bold.
To maintain the table simple to read, it was decided to assign to the frameworks a
set of acronyms:

• Outdated: Outdated method.

• DNN + C: Decoupling Neural Network with Clustering.

• C + T: Clustering with Time features.

While Equation 5.5 provides a feasible metric for measuring framework perfor-
mance, it overlooks a crucial aspect: the diversity in the number of devices within
the environments. Some datasets have many devices, while others do not. Dataset
E has over 100 simulated elements, while Dataset C has only one device. It is
clear that an error of, for example, 1 device has a more pronounced impact in a less
crowded environment but could be regarded as negligible in a highly populated one.
That is the reason why it is important to not evaluate the accuracy on its own but
coupled with the simulation context. Dataset I consists of several recordings, so
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that the resultant accuracies from the tests performed are averaged and presented
within the table.

Table 5.4. Crowd-monitoring results for different frameworks.

Dataset Ground truth Outdated DNN + C C + T

A 60 329 (18%) 50 (83.33%) 52 (86.66%)

B 6 709 (0.84%) 4 (66.66%) 7 (83.33%)

C 1 793 (0.12%) 2 (50%) 1 (100%)

D 70 5189 (1.35%) 58 (82.85%) 58 (82.85%)

E 120 6180 (1.94%) 107 (89.16 %) 110 (91.66%)

F 1 179 (0.55%) 3 (33.33%) 2 (50%)

G 9 45 (15%) 14 (64.28%) 14 (64.28%)

H 22 3194 (< 0%) 17 (77.27%) 23 (95.45%)

I up to 121 overall 1.5% overall 71.5% overall 91.48%

The outdated framework demonstrated its poor performance in all the tests done.
Since almost all devices nowadays use MAC address randomization, counting the
single addresses seen in the capture is not precise anymore. The other two methods
have achieved good results in almost all cases. For Dataset F both the systems did
not give excellent outcomes in terms of accuracy, and this is the perfect example
of what was explained above, the importance of the context. Dataset F has one
device only, so an error of 1 extra counted device drastically drops the accuracy
down to 50%, even if an estimation of 2 devices instead of 1 should be considered
outstanding.

Particular results derive from the use of the decoupling neural network. In some
tests, the number of devices obtained is very close to the ground truth. Accuracy
is an important strategy to measure the effectiveness of the frameworks, but there
are cases where it is not the only metric to take into account. Another aspect to
take into account is the composition of the formed groups, especially whether the
majority of elements within each cluster are correctly assigned. For the DBSCAN
results after the decoupling neural network, it was shown that the groups formed
(i.e., the probe requests containers for each device) were very inhomogeneous. On
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one hand, one aspect highlights substantial clusters that contain an unusually high
number of messages compared to the actual quantity of probe requests sent by in-
dividual devices. On the other hand, there are smaller clusters with only a limited
number of messages, which falls short of the genuine number transmitted by de-
vices. This analysis was possible thanks to the information that the probe request
generator stores and gives to the user during and after the simulation. The number
of clusters formed to divide messages after the decoupling phase may be equal to
the actual number of devices. However, this cannot be regarded as indicative of
the framework performing well, as the content does not accurately represent the
genuine distribution of probe requests.

Better results both in terms of accuracy and cluster nature were obtained from
the DBSCAN clustering method coupled with the time features extracted from
the domain knowledge. It has been demonstrated that forming groups to cate-
gorize probe requests based on the model, rather than individual devices, proves
to be more efficient. The analysis of clusters was done and showed their genuine
nature. Specifically, the algorithm accurately separated the majority of probe re-
quests based on their device models, achieving a correct assignment rate of 98%.
The crowd estimation reached a high level of precision w.r.t. the ground truth,
as demonstrated by the high accuracy obtained. A small error persists because
Equation 4.4 uses a general probe request rate which includes all phases of devices.
The rate is computed through simulation in which the devices change phases (and
consequently, also rates) following the probabilistic distribution. In other traces,
devices may act differently, due to a more varied use, in particular in real-case
scenarios.

Figure 5.5 presents the specific outcomes derived from the data collected in room
14 at Politecnico di Torino, on the first day of the 2023/2024 academic year. In
this context, the results produced by the framework combining clustering and time
features have been selected for comparison with the detected ground truth because
they exhibit the highest performance. The experiments involved conducting 10
two-minute captures during the transition between lessons to have a picture of the
evolving trend of identified devices. This trend, both in terms of the ground truth
and counting performed by the framework, is reported in the graph. The two lines
illustrate the framework’s ability to accurately estimate the number of devices in a
given area and its capacity to track the changes in the number of individuals within
the same environment.

The framework that combines clustering and time-related features has exhibited
the most impressive performance. However, another aspect related to the capture
time window requires attention. All the datasets used for tests reported in Table 5.4
have a time window inside which the present devices can send an acceptable number
of probe requests. In real use case scenarios there can be the necessity to perform
small captures, so that the parameter T in Equation 4.4, representing the time
window of the capture, becomes very small. This problem could potentially narrow
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Figure 5.5. Comparison between ground truth and results obtained from the
datasets collected in room 14 at Politecnico di Torino, on the first day of the
2023/2024 academic year.

the flexibility of the framework. These considerations brought to another set of
tests done with specially designed datasets.

Particularly, each simulation:

• Contains the same number of devices, set to 5.

• Has devices of different models.

• Has a different capture time w.r.t. the others.

In environments with a lot of devices and a small time window, there is the risk of
the sniffer not capturing any packet for certain devices. This happens because the
number of probe requests sent is too high for the sniffing time set. The selection
of a smaller ground truth was made to ensure that, in the shortest simulations,
the sniffer could capture a sufficient number of packets (at least one) for each
device. The comparisons between the ground truth and the outcomes for different
time windows should give information about the smallest capture time that makes
effective this solution.

Image 5.6 reports a graph presenting the results of the tests for the smallest time
window search.

69



Experimental and numerical evaluation

Figure 5.6. Relation between the outcomes and the time windows used.

The various time windows (i.e., the different simulation times that generated the
datasets) are represented on the abscissa axis, while the count outcomes are found
on the ordinate axis. The dotted line represents the ground truth.

Even if the time window gradually decreases, the results of the framework still
maintain a high precision grade. With the shortest capture of just 15 seconds, the
accuracy calculated with Formula 5.5 is still 60%. This result may appear not too
satisfying compared with the accuracies of 80% and 100% obtained with bigger time
windows. Again, in this case, the environments of the tests are all low-crowded,
so a not-too-high accuracy is not a synonym for bad performance. With these
considerations, the outcome retrieved with a time window of 15 seconds can be
considered very satisfying. With shorter simulations, not all 5 devices were able to
send at least one probe request, so it was decided to set 15 seconds as the inferior
limit of the possible time windows.

These experiments have demonstrated that the framework that combines clus-
tering techniques with time-related features proves to be effective across various
use-case scenarios and with varying capture times.
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Chapter 6

Future works

The domain of monitoring individuals within a particular area continues to have
numerous challenges yet to be resolved. The necessity of various systems and
frameworks over the years has underlined the profound significance of this research
domain. Following the results achieved by this master’s thesis, more extensive
works can be carried forward. A primary initial stride would be enhancing the
probe request generator’s scope and capabilities.

A first release was published on GitHub [10] and it can be a good starting point
to improve the quality of the generated traces. The project was released open
source under MIT license [17] so that the research community can participate in
future expansions. By updating the generator with new versions, the environments
simulated would always be closer to real cases, both in terms of different situations
and the behavior of devices.

The developed frameworks for crowd-monitoring were tested with synthetic
datasets and real traces. More extensive work can be done by deploying the en-
tire chain, starting from the data acquisition, to the final estimation. With the
implementation of a working system that contains all the steps to elaborate input
messages and supply the counting result, other analyses can be done. An addi-
tional assessment between the two frameworks could be conducted, along with an
evaluation of the efficiency of clustering in combination with frequency features
using various time windows. In general, the main future work should have the goal
of bringing the developed systems into real scenarios to test their accuracy and
performance.
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Chapter 7

Conclusion

The proliferation of IoT and smart devices in today’s world enables tracking and
estimating the number of people in specific areas, making crowd-monitoring cru-
cial for regulating various activities. This transformation allows for better quality
of life through improved population movement management, including safety en-
hancements at events, managing pedestrian traffic, optimizing energy usage, and
understanding customer behavior for marketing.

Chapter 1 provides a brief introduction to the main goals of the thesis, which
involve examining the movement of individuals and exploring potential alternative
approaches. In this particular scenario, the central focus is around the WiFi probe
request signals emitted by smart devices owned by pedestrians passing by. Despite
the other possible methods treated in Chapter 2, these specific types of messages
usually exchanged through computer networks, are crucial for crowd-monitoring.
An overview of the main features and problems related to probe requests is re-
ported. This includes an in-depth analysis of the MAC address structure and its
randomization adopted by vendors to increase people’s privacy. The analysis delves
into obsolete crowd-monitoring techniques involving probe requests and shows the
reason why they are no longer used.

The first contribution brought by this thesis work is the development of a probe
request traces generator, described in Chapter 3. The system has been modeled as
a state machine where all possible environmental events are handled to build realis-
tic traces. A set of models has been analyzed to extract the features and behaviors
of their messages. This approach enables the generator to faithfully replicate the
chosen devices with precision. With the development of this system, the lack of
ground truth is not a problem anymore for the crowd-monitoring frameworks. Ma-
chine learning models could have a wide range of synthetic datasets to use for the
training. Also, the validation becomes easier for the implemented systems, since the
precise number of devices can be accurately managed within the generator settings.
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Chapter 4 reports the second contribution of this thesis work, the development
of two frameworks for crowd-monitoring. The first method involved an encoder-
decoder neural network, a particular kind of deep learning architecture. The aim
is to find a representation of probe requests that facilitates the division of these
into device-oriented groups. The second system employs traditional clustering al-
gorithms coupled with a heuristic derived from domain knowledge. The message
groups are created by exploiting model-oriented features rather than device-oriented
ones. After that, to derive the number of devices present for each model (i.e., for
each cluster), the framework uses information about the frequency behavior of
probe requests.

Both contributions have been evaluated with a series of tests, whose results are
shown and explained in Chapter 5.

The probe request generator displayed a significant capability to emulate real
device behavior. To validate this, we compared the generated traces with real ones
using a set of collected metrics. The outcomes indicate a high degree of similarity
between the synthetic and real data.

The testing phase on the two crowd-monitoring frameworks aimed to measure
their accuracy in retrieving a precise counting result, comparable with the actual
ground truth. Despite some challenges with the first method’s results, the second
system consistently demonstrated remarkable versatility and accuracy across all
the datasets it was applied to.
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