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“Failure taught me things about myself that I could have learned no other way.
I discovered that I had a strong will, and more discipline than I had suspected;

I also found out that I had friends whose value was truly above the price of rubies.
The knowledge that you have emerged wiser and stronger from setbacks means

that you are, ever after, secure in your ability to survive. You will never truly
know yourself, or the strength of your relationships, until both have been tested by
adversity. Such knowledge is a true gift, for all that it is painfully won, and it has

been worth more than any qualification I ever earned.”
– J.K. Rowling
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Summary

In an effort to promote sustainable mobility, electric vehicles have emerged as a
crucial innovation in the global transportation sector. This research, undertaken in
conjunction with Brain Technologies and its innovative Evergrin project, investi-
gates the use of artificial intelligence in electric vehicles, with a specific focus on
the classification of accelerator pedal signals using neural networks. The research
explores the application of Tiny machine learning (TinyML) in the automotive
industry using the Raspberry Pi RP2040 as the microcontroller of choice.
Key research questions include the ability of neural networks to detect anomalies in
pedal signals, performance differences between TinyML models and neural networks,
and the trade-off between model latency and accuracy on microcontrollers.
Using throttle position data collected from an internal combustion vehicle’s OBD-II
system to produce the basic dataset, the study applies several neural network
models, including convolutional neural networks (CNNs), long-short term memory
(LSTM) and gated recurrent unit (GRU), highlighting their potential in time series
classification. The results of the study demonstrate the strong error classification
capabilities of neural networks, with all models achieving at least an accuracy of
0.92. The maximum accuracy of 0.96 was reached by the LSTM model with two
channels of input data.

While the performance of the TinyML models, obtained through conversion from
TensorFlow to TensorFlow lite, is comparable to that of their CNN-based equiv-
alents, the more sophisticated models, such as the LSTM, have problems due to
the lack of adequate quantization techniques for their layers. In particular, the
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accuracy of the LSTM model dropped to around 0.5. On the other hand, for the
two-channel CNN model, the accuracy is the same for both the TensorFlow and
TensorFlow lite versions at 0.95.

The complexity of implementing neural networks on microcontrollers was a signifi-
cant obstacle, especially when considering the safety requirements of the automotive
industry. Even the simplest models required more than two seconds for inference,
significantly longer than the safety threshold of 100 ms; furthermore, advanced
models such as LSTM and GRU exceeded the memory capacity of microcontrollers
such as the RP2040, making it impossible to implement said models on them. Given
the promising potential for integrating these technologies into the automotive in-
dustry, it is believed that neural networks must be implemented on platforms with
computational capacity beyond that of microcontrollers for optimal performance
and feasibility.

In conclusion, this research emphasises the central role that AI could play in the
automotive industry, particularly in the classification of automotive signals. It aims
to highlight the need to improve current technologies for optimising and converting
machine learning models.
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Chapter 1

Introduction

1.1 Scenario

The electric vehicle market is growing and its potential is seemingly endless. Electric
vehicles (EVs) have emerged as a beacon of hope for minimizing environmental
degradation as the world moves toward sustainable solutions. This thesis explores
the technological details of the possibility of using Artificial Intelligence (AI) in
electric vehicles, focusing in particular on classifying accelerator pedal signals
using neural networks (NNs) and implementing it on a microcontroller through the
concept of TinyML.

The worldwide market for electric vehicles is witnessing extraordinary growth.
According to the International Energy Agency [1], by 2030, EVs will account for
more than 10% of the road vehicle fleet. Total EVs sales will exceed 20 million in
2025 and 40 million in 2030, accounting for more than 20% and 30% of total vehicle
sales, respectively (Fig. 1.1). Furthermore, the number of electric car charging
stations in Europe has increased significantly, suggesting robust infrastructure
development to support the expanding EV ecosystem.
The transition from internal combustion engines to EVs is a visible and ongoing
trend in the automotive industry. The European Green Deal, which aims to make
Europe carbon neutral by 2050, emphasizes the need for decarbonization. In line
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Introduction

Figure 1.1: Electric vehicle stock by mode and scenario, 2022-2030 [1]
Notes: STEPS = Stated Policies Scenario; APS = Announced Pledges Scenario; NZE = Net Zero
Emissions by 2050 Scenario; BEV = battery electric vehicle; PHEV = plug-in hybrid electric;

PLDV = passenger light-duty vehicle; LCV = light commercial vehicle.

with this goal, many cities have set limits on cars considered to be major polluters,
with a particular focus on diesel engines. The Po Valley in Italy, for example, has
already introduced limits on the circulation of Euro 5 diesel vehicles, which were
implemented in 2008. Inadvertently, these restrictions have created a huge fleet
of vehicles that can be utilized by converting to electric vehicles. Given the size
of the fleet and the relatively high cost of brand new EVs, the electric conversion
market offers a profitable opportunity.

Enter the Evergrin project, led by Brain Technologies, an innovative Italian company
with which this thesis was carried out. This initiative is further promoted in Italy
by Legislative Decree 219/2015 [2], often known as the ’Retrofit Decree’. This
legislation not only allows the conversion of internal combustion vehicles to fully
electric, but also allows the legal use of these converted vehicles on public roads.

The use of artificial intelligence, particularly through microcontroller implementa-
tions, demonstrates the automotive industry’s convergence with increasing tech-
nological breakthroughs. The conditioning of specific signals that are critical for
optimal vehicle performance has changed significantly as electric vehicle systems
have evolved. Central to this evolution is the concept of control and functional
safety. The need for robust control mechanisms and compliance with functional
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safety standards, such as ISO 26262 [3], is paramount as vehicles become more
electronically sophisticated. These measures ensure that vehicles operate reliably
and safely, even in the presence of potential system failures or malfunctions.
During operation, a modern electric vehicle equipped with sensors and electronic
components creates a large amount of data. If properly processed and evaluated,
this data can provide insight into vehicle performance, prospective maintenance re-
quirements, and even forecast system faults before they occur. With its data-driven
decision-making capabilities, AI is at the forefront of this innovative approach. This
thesis focuses on the signal from the accelerator pedal, which will be addressed in
more detail in subsequent Chapters.

1.1.1 Functional Safety and Control Mechanisms

In the electric vehicle sector, accurate signal monitoring and control are critical
to ensuring both optimal performance and the greatest levels of safety. The
concept of functional safety, a standard defined by ISO 26262, is crucial. In the
automotive context, functional safety refers to the system’s intrinsic capacity to
identify, manage, and mitigate possible faults, ensuring that the vehicle works
safely even when specific components or systems fail. Adherence to the ISO 26262
standard implies a commitment to stringent safety measures that span the whole
life cycle of automotive systems. The importance of functional safety cannot be
overstated. As vehicles become more complex electronically, the potential for
electronic and software failures increases. These failures can pose significant risks
to vehicle occupants and other road users.
The dual-level strategy of primary and secondary controls is an essential part of the
functional safety of EVs and is closely related to this research. The vehicle’s main
interpretive system is the primary control, which immediately translates driver
inputs, such as the position of the accelerator pedal, into operational directives.
By contrast, secondary control, often referred to as redundant control, is for safety.
It runs in parallel, constantly cross-referencing and validating the output of the
primary system. Commonly used secondary control technologies include redundant
sensors, comparators and in-line monitoring systems. Despite the effectiveness of
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traditional approaches, there is growing interest in the use of neural networks for
secondary control due to their ability to recognise patterns and detect irregularities.
However, the widespread use of NNs in this area is still in its early stages, with
challenges related to real-time processing and reliability.

Figure 1.2: Artificial intelligence, machine learning and deep learning paradigm
[4]

1.1.2 Machine Learning and Deep Learning

Machine learning (ML), a subset of artificial intelligence, gives machines the ability
to learn and adapt. ML algorithms can find patterns, anomalies, and trends in
historical and real-time data, enabling proactive intervention to maintain vehicle
safety and efficiency. Deep learning (DL), a subset of machine learning, refines the
learning process by increasing the depth and complexity of the learning environment
[4]. Fig. 1.2 shows the dependencies of AI, ML and DL pictorially.
Deep learning’s neural networks are particularly adept at interpreting complicated
data structures making them valuable for advanced driver assistance systems and
autonomous driving capabilities. Machine learning and deep learning work together
to transform computer systems into expert systems. These systems can make
decisions and predictions on their own, without the need for human intervention.
For example, in the context of accelerator pedal signals in electric cars, these
technologies help ensure that the vehicle responds appropriately to driver input
while monitoring for anomalies that could indicate potential issues.
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In essence, machine learning serves as the framework for implementing decision-
making intelligence, while deep learning optimizes and deepens the learning process.
As the electric car market expands, the symbiotic relationship between these ad-
vanced technologies and automotive engineering will undoubtedly play an important
role in determining the future of transportation.

1.1.3 TinyML

In recent years, there has been a paradigm shift in the field of machine learning
toward deploying models on edge devices, particularly those with limited computa-
tional capabilities. A noteworthy endeavor in this direction was launched in 2014
by a team at Google. Their goal was to run a neural network on a digital signal
processor (DSP), which is found in most cellphones. The primary task of this
neural network was to recognize the password ’OK Google’, a critical feature that
allows users to connect to Google’s virtual assistant by voice. The difficulty of this
task was compounded by a strict constraint: the entire neural network had to fit
into 14 kilobytes of memory. To put this in context, typical deep learning networks
often require tens of gigabytes, making this a massive task. This constraint is
due to the inherent design of DSPs, which typically do not have much internal
memory. This Google effort highlights a broader trend in the machine learning
community: the search for alternative processors capable of delivering substantial,
yet extraordinarily energy-efficient performance. TinyML was conceived as a result
of these efforts. TinyML, defined as machine learning models designed for devices
with power consumption of less than 1 mW, is an important milestone in edge
computing. This seemingly arbitrary power level serves a strategic purpose. Devices
that meet this constraint can run for an entire year on a single coin cell battery,
representing a breakthrough in energy efficiency [5].
The impact of TinyML goes beyond energy savings. TinyML models improve
user privacy by minimizing the need to transmit sensitive information to external
servers by processing data locally on the device. In addition, the compact nature of
TinyML models results in a smaller overall device footprint, enabling more discrete
and portable applications. This feature raises the possibility that TinyML models
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could be adopted by edge computing.
TinyML implementations are still in the early stages of development. While progress
has been made, the field still faces challenges ranging from improving models to
ensuring consistent performance across multiple devices.

1.2 Research Questions

Within the context of AI deployed on microcontroller in the automotive sector, this
thesis aims at answering the following relevant points:

• Effectiveness of neural networks in anomaly detection. How effective
are neural networks in detecting anomalies in accelerator pedal signals?

– To investigate this, several NNs models were developed and trained. The
main objective is to assess their accuracy in classifying accelerator pedal
signals, in particular to distinguish signals without errors from those with
anomalies.

• Performance comparison between TensorFlow Lite and larger models.
What are the performance disparities, if any, between TensorFlow Lite models
and their more extensive neural network counterparts?

– After establishing baseline performance with the initial NNs models, these
models are converted to TensorFlow Lite models. The aim is to compare
the performance metrics of the TensorFlow Lite models with those of
the original, larger NNs models, highlighting any notable changes in
performance.

• Balancing latency and accuracy. Can a balance be achieved between the
latency of neural network models on microcontrollers and their performance
accuracy?

– High latency, which can be a problem for large NN models, is an im-
portant issue that has emerged. Given the stringent safety criteria of
the automotive industry, where real-time responses can be critical, the
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question arises as to whether these models, once translated into TinyML
models, can meet the specified latency or whether further optimization is
required. The problem is to reduce this latency without compromising
the accuracy of the model.

1.3 Contributions

The study has made noteworthy contributions to electric vehicle signal processing
and TinyML, with a notable highlight being the collaboration with Brain Technolo-
gies. In the Evergrin project, this research not only advances academia but also
ensures that the findings have direct real-world application in the fast-developing
EVs conversion industry. Due to data constraints, an innovative method was
developed to replicate EVs pedal signals using throttle position data from conven-
tional internal combustion engine vehicles. This pioneering data collection and
preprocessing approach can serve as a model for other researchers facing similar
challenges.

A substantial portion of this study was dedicated to optimizing advanced NN models
for microcontroller implementation. It represents the intersection of advanced
machine learning and real-world applications with constrained resources. This
thesis emphasizes the feasibility and value of resource-efficient AI solutions in the
automotive sector, providing as a testimonial to TinyML’s capabilities and clearing
the path for its broader adoption in the automotive industry.

The careful selection of appropriate hardware for TinyML in automotive applica-
tions is a crucial aspect of this research. Although TinyML has great potential
in the automobile sector, the study found that its implementation on certain mi-
crocontrollers, such as the RP2040, may fall short of the industry’s safety-critical
latency requirements. Conversely, analysis using the Edge Impulse’s Python SDK
reveals that more capable microcontrollers could obtain inference times closer to the
desired threshold. This emphasizes the importance of selecting the right hardware
platform when deploying TinyML models in safety-critical environments.
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1.4 Thesis Overview

This thesis investigates the applicability of artificial intelligence in the context of
electric vehicles, with a particular emphasis on the classification of accelerator
pedal signals using neural networks. The structure of the thesis is organized as
follows:

• Chapter 1, Introduction: This first Chapter presents an overview of the
electric vehicle market, highlighting its development and future prospects. It
explores the possibilities of applying artificial intelligence in EVs and underlines
the critical importance of functional safety and control mechanisms in the
automotive sector.

• Chapter 2, Literature Review: A brief summary of existing neural network
architectures for signal classification, including convolutional neural networks
and recurrent neural networks, is provided. Furthermore, the Chapter ex-
plores into the complexities of implementing these complex architectures on
microcontrollers using TinyML.

• Chapter 3, Data Acquisition and Preprocessing: the complex method
of generating acceleration signals from throttle valve position data is presented.
A thorough examination of possible errors that can affect the signal is included.

• Chapter 4, Neural Network Architectures for Signal Classification:
This Chapter digs into the details of the implemented CNN and RNN models,
addressing their structures and applications in time series classification.

• Chapter 5, Models Optimization: the optimization of hyperparameters,
input signal normalization, and final optimized architectures for neural network
models are explored.

• Chapter 6, TFLite conversion and Deployment on Microcontroller:
This Chapter covers the step-by-step process of converting a TensorFlow model
to the TensorFlow Lite format, moving from optimization and quantization,
and finally to deployment on a microcontroller.
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• Chapter 7, Discussion and Comparison of Results: This Chapter
rigorously evaluates the performance of the implemented neural network
models in identifying errors in accelerator pedal signals. The performance of
the TFLite models is compared with the results of the TensorFlow counterparts,
showing significant differences. The feasibility of deploying these models on a
microcontroller is then investigated. The balance between model latency and
accuracy is a crucial challenge, especially given the inference time requirements
of this study.

• Chapter 8, Conclusions and Future Work: the final Chapter of the thesis
summarizes the study findings and proposes new topics for future investigation.
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Chapter 2

Literature Review

This chapter provides an overview of the topics explored in this thesis. Neural
networks are frequently employed for signal classification, and a plethora of research
has been conducted in this domain. The decision to classify the signal stems from the
need for the model to determine whether the input is error-free or contains errors.
Concurrently, the deployment of machine learning models on microcontrollers
represents a nascent yet rapidly evolving domain.

2.1 Neural Network Architectures
for Signal Classification

2.1.1 Convolutional Neural Networks

Due to their innate capacity to recognize and capture the complex structures of
time series data, convolutional neural networks (CNNs) have become a crucial
architecture for time series classification. Traditional feature extraction approaches
may fail to capture intrinsic patterns and correlations due to the dynamic nature
of time series data, which is generally characterized by high dimensionality, huge
datasets, and constant updates. In contrast, CNNs can automatically extract
deep features from the input time series through their convolution and pooling
operations.
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A solid starting point for time series classification using deep neural networks is
introduced in research by Zhiguang Wang, Weizhong Yan, and Tim Oates [6]. The
study emphasizes the ability of fully convolutional networks (FCNs) to handle time
series data. Traditional time series classification methods have frequently relied on
distance-based, feature-based, or ensemble-based approaches. These methods often
necessitate extensive data preparation and feature engineering. However, the recent
shift toward deep neural networks, specifically CNNs, has enabled end-to-end time
series classification. On benchmark datasets, the study compares the performance
of various models, including Multilayer Perceptrons (MLPs), FCNs, and residual
networks.
The architecture and efficiency of the FCN model, in particular, stand out. It works
as a feature extractor, with the final output resulting from a softmax layer. The
FCN model’s fundamental building block, studied by Wang, Yan and Oates, is a
convolutional layer, followed by a batch normalization layer and a ReLU activation
layer. Three 1-D kernels (without striding) are used to achieve the convolution. The
network is built by stacking three convolution blocks, each with a filter of size 128,
256, and 128. Following the convolutional blocks, the features are routed through
a global average pooling layer, considerably lowering the amount of weights. A
softmax layer then creates the final label. This study makes a strong case for the use
of deep neural networks, particularly FCNs, in time series classification. The FCN
model, with its own architecture and design, outperforms other state-of-the-art
methods, making it a viable option for real-world applications and a platform for
future studies in the field.
Another CNN framework specifically designed for time series classification is pre-
sented in the research ’Convolutional Neural Networks for Time Series Classification’
by Zhao and Lu [7]. Eight real data sets from various application domains and
two simulated data sets were used by the authors to rigorously assess the proposed
framework. The empirical findings demonstrated that, when compared to con-
temporary time series classification approaches, the suggested CNN architecture
performed better in terms of classification accuracy and noise resistance.
The suggested CNN structure is built around the combination of convolution and
pooling processes, which allows for the extraction of deep features from raw data.
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These features then communicate with a MLP to do classification. This study’s
findings not only support the success of CNNs in time series classification, but also
highlight the potential of deep learning paradigms to supplement, if not replace,
existing feature-based approaches. Zhao and Lu’s empirical results imply that their
CNN framework holds potential as a benchmark technique for future efforts in time
series classification research.

2.1.2 Activation Functions

In neural networks, activation functions are crucial in determining the output of
a neuron given a collection of inputs. They bring nonlinearity into the network,
allowing it to learn from errors and make corrections, which is necessary for learning
complicated patterns. The Rectified Linear Unit (ReLU) and the hyperbolic tangent
(tanh) functions stand out among the numerous activation functions due to their
specific features and applications.
The ReLU activation function, in particular, has received a lot of attention and
is commonly employed in deep learning architectures, particularly convolutional
neural networks. ReLU is denoted mathematically as:

f(x) = max(0, x) (2.1)

The relevance and efficiency of the ReLU activation function in deep neural networks
are comprehensively investigated in the article "Deep Learning using Rectified
Linear Units (ReLU)" by Agarap [8]. Because of its ability to add non-linearity
without suffering from the vanishing gradient problem, ReLU has traditionally
been a popular choice as an activation function in the hidden layers of deep
neural networks. Agarap’s research dives into the mathematical foundations of
the ReLU function, highlighting the qualities that make it suitable for training
deep architectures. The paper stresses the mathematical rationale behind ReLU’s
broad adoption in the deep learning community, as well as its significance in driving
current neural network performance.
On the other hand, the hyperbolic tangent function [9], often known as tanh, is a
mathematical function that appears in hyperbolic trigonometry equations. The
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tanh function is similar to the logistic sigmoid function, however it distinguishes
itself by being zero-centric, making it more balanced around the origin. It is
mathematically defined as:

tanh(x) = ex − e−x

ex + e−x
(2.2)

The function translates any real integer to the interval [−1,1], making it particularly
useful as a neural network activation function. Its S-shaped curve is centered on
zero, which implies that negative or positive inputs will be mapped to strongly
negative or strongly positive, respectively, and zero inputs will be close to zero
in the output. This feature allows for more balanced activations during training,
which can result in faster convergence. Furthermore, the tanh function is always
differentiable, which is useful for the backpropagation algorithm. The tanh function,
along with the logistic sigmoid function, was widely employed in the early days of
neural networks.

The visual representations of the ReLU and tanh activation functions are shown
in Fig. 2.1. Both ReLU and tanh activation functions have particular benefits in
the setting of neural networks and have proven essential in the evolution of deep
learning approaches.

Figure 2.1: ReLU and tanh activation functions.
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2.1.3 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is an artificial neural network that identifies
patterns in data sequences, such as time series or natural language and it can handle
variable-length sequence inputs. Unlike standard feedforward neural networks,
RNNs contain connections that loop back on themselves, enabling information to
be retained. This is achieved through a recurrent hidden state, which is activated
at each time interval and is dependent on the previous time’s activation. This
looping mechanism enables RNNs to maintain a type of memory of former inputs
in their internal state, facilitating the interpretation of data sequences and the
identification of temporal connections. However, the basic RNNs may encounter
problems in preserving long-term dependencies due to the vanishing or exploding
gradients [10]. To overcome these difficulties, more advanced designs of RNN,
such as Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU),
have been developed. This models incorporate gating mechanisms to control the
flow of information through the network. These gates aid in the resolution of the
vanishing gradient problem and enable models to capture long-term dependencies
in sequential data.
Hochreiter and Schmidhuber (1997) [11] introduced the Long Short-Term Memory
architecture, which is designed specifically to retain information over extended
temporal intervals. Traditional techniques, that rely on recurrent backpropagation
to store information, often suffer from prolonged learning periods due to reduced
error backflow. The LSTM model ingeniously overcomes this challenge. As outlined
in their groundbreaking study, LSTMs demonstrate a higher level of proficiency
in comparison to other recurrent neural network architectures. Particularly, they
effectively handle noise, embrace dispersed representations, and manage continu-
ous values in cases with considerable time lags. Furthermore, LSTMs eliminate
the necessity for pre-defined finite state numbers, illustrating their flexibility in
accommodating an unlimited number of states. Within the framework of LSTMs,
there are several mechanisms that play a significant role:

• Input Gate (i): determines how much new data should be stored in the memory
cell. It employs a sigmoid activation function to generate values between 0
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and 1, which represent the amount of information to be allowed through.

• Forget Gate (f): determines whether or not to discard a portion of the current
memory cell content. It also employs sigmoid activation.

• Output Gate (o): determines how much of the current state of the memory
cell should be output to the hidden state. Again, a sigmoid activation function
is used.

• Memory Cell (c): despite not being a gate, is an essential component of LSTMs.
It acts as the LSTM’s ’long-term memory’, maintaining information across
long sequences. In this cell, the input, forget, and output gates collaborate to
regulate and update the information stored.

• New Memory Cell Content (c̃): it is a temporary value calculated from the
current input and the prior memory cell state. This new content may be
added to the current memory cell (c) to update its state, depending on the
decisions made by the input and forget gates. It uses a hyperbolic tangent
function (tanh).

The activation function of the LSTM unit is defined as hj
t = oj

t tanh(cj
t).

In Fig. 2.2 (a) is reported the graphical illustrations for the LSTM model.

Figure 2.2: Illustration of (a) LSTM and (b) GRU [12].

The Gated Recurrent Unit, as explained by Chung et al. (2014) [13] in their seminal
paper ’Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
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Modeling’ uses gating mechanisms to manage information flow inside the network as
LSTM. These gates allow the GRU to capture long-term dependencies in sequential
data more effectively than ordinary RNNs. The study by Chung and colleagues
provides a rigorous empirical evaluation of the GRU’s usefulness in various sequence
modeling tasks, emphasizing its efficiency and potential advantages over other RNN
architectures. The fundamental mechanism inside the GRU model are:

• Update Gate (z): this is similar to a mix of the LSTM’s input and forget
gates. It determines how much of the prior hidden state is to be kept and how
much new information is to be introduced. It employs a sigmoid activation
function.

• Reset Gate (r): this gate specifies how much of the previous concealed state
should be forgotten. It is used to calculate the new candidate activation.

• Activation (h): it represents the GRU’s memory and serves as the unit’s
output for that time step. The activation is the result of a combination of the
prior concealed state and the candidate activation, which is controlled by the
update gate (z).

• Candidate Activation (h̃): this is a possible new memory or state for the GRU.
It is computed using the current input and the prior hidden state, however the
previous hidden state is modulated before being utilized in this computation
by the reset gate (r). The candidate activation suggests what the GRU’s new
memory should be, but whether it is adopted is determined by the update
gate. It uses a hyperbolic tangent function.

In Fig. 2.2(b) is reported the graphical illustrations for the GRU model.

2.2 Deployment on Microcontroller - TinyML

TinyML is a paradigm that enables machine learning on battery-powered embedded
edge devices with minimal processing power and memory and a few milliwatts
of power consumption. It entails the application of architectures, frameworks,
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techniques, tools, and approaches that include machine learning to perform on-
device analytics for a variety of sensing modalities. It offers a wide range of practical
applications, including speech recognition, picture identification, autonomous cars,
anomaly detection, and others [14]. TinyML is made up of three major components:
software, hardware, and algorithms.

1. Software: frameworks, libraries, and tools that allow developers to construct
and deploy machine learning models on low-resource devices. TensorFlow [15],
TensorFlow Lite [16], and the Edge Impulse [17] cloud service were used in
this thesis.

2. Hardware: the physical equipment that operate machine learning models.
Microcontrollers, system-on-chip (SoC), and Internet of Things (IoT) devices
are examples of battery-powered embedded edge devices with limited comput-
ing capability and memory. A Raspberry Pi RP2040 [18] was chosen as the
platform for this thesis.

3. Algorithms: This category comprises machine learning algorithms that are
used to train and execute machine learning models on limited-resource devices.
These algorithms are lightweight and efficient in order to run on devices with
limited processing power and memory. Model compression and quantization
are techniques used to minimize the size of machine learning models while
preserving their accuracy.
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Chapter 3

Data Acquisition and
Preprocessing

3.1 Input Data

Due to the development stage of the Evergrin project, direct access to the accelera-
tion pedal signals fed to the controller was not available. As a result, the inputs
to the neural network models were generated using mathematical transformations
applied to a time series of the throttle valve position of an internal combustion
engine vehicle. The raw time series data was carefully collected by scanning the
throttle position sensor (TPS) through the on-board diagnostic (OBD-II) system.
OBD-II is a sophisticated vehicle diagnostic technology that allows users to retrieve
fault logs and recorded data from various vehicle systems. This retrieval is aided
by an OBD-II reader, also known as a diagnostic scanner or scan tool.
The throttle position sensor is a critical component of the vehicle sensors that
regulates the air intake into the engine. As an integral part of the fuel management
system, the TPS is critical in providing the ideal mixture of fuel and air, both
of which are required for the engine to function. The adjustment of the throttle
opening is the operating element of the TPS.
The pressure that the driver applies to the accelerator pedal has a direct effect
on the position of the throttle valve. When the driver fully depresses the pedal

18



Data Acquisition and Preprocessing

for maximum acceleration, the throttle valve opens completely. Conversely, if the
pedal is not touched and is fully released, the throttle valve remains closed. This
operating paradigm highlights the correlation between the position of the throttle
in a combustion engine vehicle and the signal voltage an electric vehicle sends to
the engine control unit (ECU) when the accelerator is depressed.

3.1.1 Generation of the Acceleration Signal from Throttle
Valve Position Data

The first stage in translating the raw accelerator position information into a
representation of the acceleration signal was pre-processing. The raw data, which
included time stamps corresponding to the accelerator positions, was modified and
the time stamps were changed to a simpler unit of milliseconds. These timelines
were modified to start from zero to ensure a consistent starting point for subsequent
analysis. Given the presence of rapid, transient oscillations or spikes in the raw data,
sometimes caused by sensor errors or external disturbances, it was critical to resolve
these inconsistencies in the accelerator position data. To this end, a smoothing
technique based on a moving average filter with a ten-sample window was used.
This filtering method performed two functions: first, it efficiently smoothed out
these high-frequency transient disturbances, resulting in less jagged and noisy data.
Secondly, by reducing these variations, the filter emphasised the true behaviour
or primary tendency of the throttle position over time, resulting in a clearer and
more accurate representation of the data.
After smoothing, the data was differentiated to determine the rate of change of
throttle valve position over time. The rate at which the throttle valve was activated
or released was effectively measured by the first derivative. A second differentiation
was performed to obtain the acceleration of the throttle valve position to further
investigate the complicated nature of the throttle behaviour. This generated data
which showed how the rate of change of throttle valve position changed over
time. The second derivative was integrated using the trapezoidal rule. Due to
its cumulative nature, this numerical integration produced a signal that provided
a representation of how the throttle valve position has changed over time, given
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the acceleration of the throttle valve position. This integrated signal, rich in
information about the throttle response over time, served as the basis for further
modifications.
The process culminated in the embedded signal being subjected to a series of
modifications and scaling. It was first modified to have a new baseline aligned to a
preset zero point. The zero point varies with each raw data set and is set when
the raw data indicates that the throttle is fully closed. Following this modification,
the signal was scaled to ensure that the required voltage ranges were maintained,
specifically [0,5]V and [0,10]V . This is because the accelerator pedal in Evergrin
is configured to communicate the same information on two similar signals with
different voltage limits. This feature was later used in the construction of the NN
architectures.

Random Gaussian noise has been introduced into both rescaled signals to better
match real-world conditions and provide a sense of authenticity. This feature
not only approximated possible measurement errors, but also ensured that the
synthesized signals corresponded to the characteristics of real, imperfect data.
Given its numerous advantages, Gaussian noise is an excellent choice for research,
with the objective of potentially studying different types of noise in the future
to assess their faithfulness to real-world settings. Gaussian noise is prevalent in
many natural systems, making it an appropriate representation for the plethora of
little random disturbances present in real-world data. The Central Limit Theorem
asserts that a sum of several independent random variables frequently converges to
a Gaussian distribution, confirming the Gaussian distribution as a common noise
model for a wide range of real-world scenarios. Furthermore, adding Gaussian
noise improves the durability of models trained on such data. When exposed to
this noise, these models improve their ability to recognize patterns, increasing their
resistance to real-world variations.

The original data refers to four different car journeys totalling 107.7 minutes for
the whole dataset. The four couple signals obtained from the original data sets are
shown in Figs. 3.1, 3.2, 3.3, and 3.4.
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Figure 3.1: Acceleration signal generated from throttle valve position – first
dataset.

Figure 3.2: Acceleration signal generated from throttle valve position – second
dataset.
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Figure 3.3: Acceleration signal generated from throttle valve position – third
dataset.

Figure 3.4: Acceleration signal generated from throttle valve position – fourth
dataset.
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3.2 Error Analysis

The integrity and precision of input signals create the foundation for trustworthy
and accurate results in the field of neural network-driven system control. The
signals generated thus far in the thesis workflow are meant to be labeled as positive
for neural network classification. These signals describe the essential condition of
a vehicle that has no evidence of functional faults. However, in order to provide
comprehensive and resilient training, it is critical to expand beyond these ideal
conditions and investigate errors and discrepancies that may occur in real-world
contexts. The error analysis performed focused on the incorporation of the conven-
tional functional safety method in the thesis work. The automotive sector follows
tight standards – such as ISO 26262 [3] – to assure the safe operation of electronic
and electrical vehicle systems even in the presence of errors.

Fifteen discrete error types have been established to structurally summarize the
approach used. This results in a combinatorial set of 225 potential error possibilities
in the dual-signal framework. The first signal went through a segmentation process,
producing fifteen different partitions. After that, each of these partitions was
subjected to one of the fifteen error perturbations listed below. Similarly, the
second signal was split into the same fifteen primary segments, with further
subdivisions made inside each of these main segments to accommodate all fifteen
error perturbations consecutively. As a result, each main segment of the second
signal displays the whole error spectrum, with each error happening in its own
temporal segment.

3.2.1 Error Generation and Functional Safety

Sensor redundancy is the foundation of functional safety: traditional vehicles utilize
two sensors to monitor important components such as the accelerator pedal signals.
Divergence in these sensors’ values indicates probable errors. Consequently, when
the duplicate signals of the Evergrin prototype indicate disparity, following the logic
of the duplicate sensor anomalies, an error is identified. The collection includes the
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following error types:

• Signal shifted with positive mean: This error causes the entire signal
segment to be increased by its mean value. It shows circumstances in which
an offset could be introduced to the signal, causing its magnitude to increase.

• Signal shifted with positive mean and random error: Adds Gaussian
noise after the mean shift based on the prior error. It simulates the system’s
combined impacts of offset and unexpected noise.

• Signal shifted with negative mean: Unlike positive shift, this error
subtracts the signal segment’s mean value, resulting in a downward shift. It
represents potential calibration or grounding issues that could cause signal
offset.

• Signal shifted with negative mean and random error: Gaussian noise
is used to simulate the combined negative offsets and system noise as before.

• Signal at voltage extremes: Signals can saturate in certain conditions.
To explore such saturation effects, this error sets the signal to its maximum,
either 5V or 10V .

• Signal cancellation: This error simulates scenarios in which signal trans-
mission is fully lost or halted, resulting in data gaps, by setting the entire
segment to zero.

• Signal scaling: Signals can be attenuated for a variety of reasons, including
resistance or interference. Each signal is rescaled by eight distinct errors
with factors ranging from 0.01 to 0.09 (excluding 0.05 which, given the signal
processing performed to create the database, corresponds to the scaling factor
of the positive label). Each scaling attenuates the signal segment, imitating
varying degrees of signal degradation.

• Random signal cancellation: The transmission is randomly cancelled in
order to examine irregular losses. This replicates occasional signal transmission
losses or drops.
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Starting with the established error types, it is important to understand the broader
implications between the errors generated and the corresponding role of functional
safety functions. It is well established that the usage of redundant signals to detect
a single parameter is critical for fault detection. The signals sent by the vehicle’s
accelerator pedal are typically within predefined voltage ranges. Sudden and unex-
pected variations in signal values can be replicated by introducing Gaussian noise,
emulating fast transitions. The incorporation of this error allows the NN to be
trained to closely monitor both the signal spectrum and its rate of change.
Plausibility evaluation, which includes comparing associated signals to discover
contradictions, is another feature of the security standard. The Evergrin prototype’s
dual signals provide an inherent framework for such analyses. Plausibility discrep-
ancies are inconsistencies that can be reflected as inconsistent scaling coefficients
or shifted means within the voltage domains.
It is important to notice that in vehicle systems malfunctions can pose substantial
risks. This is why emergency mechanisms, or fallback mechanisms, are used, which
are essential to ensure that the system maintains its safety parameters, even in the
presence of adversity. In the absence of an additional system, if an acceleration sen-
sor in a vehicle malfunctions, the vehicle could experience unintended acceleration
or a complete lack of propulsion. Therefore, anomalies such as signal scaling may
be perceived as a simulation of diminished effectiveness and attenuated signals or
excessively accentuated signals.
Furthermore, the ECU is responsible for the consistency of communication with
the sensors. Anomalies in which signal segments are sporadically cancelled can be
interpreted as sporadic communication gaps or interruptions.
To illustrate the error mechanisms introduced, Figure 3.5 shows an example of the
representative signals modified from their original form. The first signal has been
rescaled and its amplitude altered by a factor of 0.07. The second signal shows
a more complex transformation. It has been subjected to the full set of fifteen
different types of error explained above. These errors include mean shifts in both
positive and negative directions, the introduction of Gaussian noise, amplitude
restrictions limited to 10V or cancelled at 0V, scaling by various factors and
random cancellation of certain data points. This example is intended to illustrate
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the robustness and comprehensiveness of the database created, which includes all
225 possible error combinations.

Figure 3.5: Example generated errors from original signals.
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Chapter 4

Neural Network
Architectures for Signal
Classification

The generated data signals and their corresponding errors form the foundation for
the construction of a robust database suitable for further research. A distinctive
feature of the Evergrin project is its dual-signal nature. This useful feature prompted
an investigation into the performance of the neural networks under different data
input methods. To facilitate this, all models were implemented using Python,
utilizing the TensorFlow [15] library and the Keras API [19]. In particular, there
was an interest in understanding the network’s behaviour when the data is presented
as a single signal versus when it’s divided into two separate channels. In order to
systematically evaluate these scenarios, two different databases were formulated.
The first merges the two signals sequentially, effectively doubling the temporal
length of the input data compared to the original. In contrast, the second database
introduces the two signals simultaneously, preserving their individual identities and
presenting them in parallel. This dichotomy applies to almost all neural networks
architectures studied. It provides a comprehensive framework for understanding
the nuances of NNs performance in different data representation paradigms.
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4.1 Convolutional Neural Networks

The initial architecture selected for investigation was the Convolutional Neural
Network (CNN). The initial focus was on its one-dimensional layers (Conv1D) used
for time series data, and the model was tested using both the one-channel and
two-channel databases. In addition, the use of two-dimensional convolutional layers
was explored (Conv2D). This was achieved by transforming the 1D input time
series into 2D inputs using the Gramian Angular Field method.

4.1.1 One-dimensional CNN

The neural network model under investigation is primarily intended for the classi-
fication of accelerator pedal inputs. The architecture starts with an input layer
designed specifically for the needs of the data structure. Data samples with dimen-
sions of batch_size × 30 × 1 are supported for the single-channel model, where
each sample represents a sequence of 30 time-steps, each separated by an average
of 6 ms, with a single feature. As a result of the concurrent processing of the two
signals, the input dimension for the two-channel model is batch_size × 15 × 2.
Beyond this difference in input dimensions, the models’ structures are the same.

The three main processing layers are designed as Conv1D layers. Convolutional
layers are essential for finding local patterns in time series data. Each of these layers
contains a set of hyperparameters, such as the number of filters, kernel size and the
activation function, which will be decided during the future hyperparameter tuning
phase. In addition, each convolutional layer is followed by a batch normalization
layer to ensure stable and fast convergence during training. Batch normalization
modifies neural network activations to have a mean close to 0 and a standard
deviation close to 1. This prevents internal covariate shift by stabilizing the input
distributions to each layer during training. Covariate shift refers to changes in the
distribution of input data between the training and testing phases, whereas internal
covariate shift relates to changes inside the training process itself. Training becomes
quicker, more consistent, and less reliant on weight initialization by reducing these
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fluctuations.

The data is delivered to a Global Average Pooling layer after being transformed
through the convolutional layers. Global Average Pooling (GAP) computes the
average output of each feature map in the preceding layer, as opposed to the
traditional Max Pooling or Mean Pooling layers. This helps to reduce the spatial
dimensions of the feature maps while maintaining their depth, ensuring that the
important temporal characteristics are preserved while minimizing computation
overhead. The GAP layer decreases the number of parameters significantly, making
the model less prone to overfitting and more suited for deployment on resource-
constrained devices such as microcontrollers.

Depending on the optimal outcomes of the hyperparameter optimization, an op-
tional Dropout layer can be added after the GAP layer. Dropout is a regularization
approach in which a portion of the neurons in the layer are ’dropped’ or deactivated
at random during training. This prevents a single neuron from becoming highly
specialized, resulting in a more generic and resilient model.

A Dense layer with two neurons and a softmax activation function performs the final
transformation. The use of two output neurons in conjunction with the categorical
crossentropy loss function is intentional. While a binary classification task might
normally be accomplished with a single neuron and binary crossentropy, this partic-
ular structure facilitates the implementation on microcontrollers via platforms such
as Edge Impulse. The softmax activation guarantees that the output values are
probabilities that sum up to one, indicating the two classes’ confidence evaluations.

To avoid exploding gradients, the model employs the Adam optimizer, a popular
adaptive learning rate optimization algorithm, with a clip value of 1.0, which
means that every component of the gradient vector is clipped to lie between −1.0
and 1.0. So, if a particular value in the gradient vector exceeds this range, it
is set to the maximum or minimum value (i.e. 1.0 or −1.0). The categorical
crossentropy loss function is used to assess the difference between predicted and
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true probabilities, and accuracy is the major metric used to assess the model’s
performance on validation data.

4.1.2 Two-dimensional CNN

The research then extended to convolutional neural networks using two-dimensional
layers (Conv2D). The transition to a two-dimensional representation was achieved
using the Gramian Angular Field (GAF). In essence, the GAF captures the tempo-
ral correlation between different time points in the series and visualizes them in a
2D space.

Once the data is transformed into its 2D representation, it is shaped to support
the one channel structure. The core architecture involves a series of Conv2D layers,
designed to extract patterns and features from these 2D representations. Each
convolutional layer, followed by a Batch Normalization layer, has hyperparameters
set for optimization during the tuning phase.
The network subsequently utilizes a Global Average Pooling 2D layer, which con-
denses the spatial dimensions of each feature map, preserving the depth. Depending
on the results of hyperparameter optimization, a Dropout layer with a rate of 0.2
might be integrated to enhance model regularization.
The architecture culminates in a Dense layer with two neurons, employing a softmax
activation. The model’s optimization strategy hinges on the Adam optimizer, and
its performance is evaluated using the categorical crossentropy loss function, with
accuracy as the primary validation metric.

In addition to the architecture described above, an alternative model that combines
data augmentation techniques immediately after the input layer has been developed.
These augmentation techniques can incorporate variances in the training data to
improve the model’s ability to generalize to new and previously unseen data points.
The model can perform random flips both horizontally and vertically, random
rotations up to a factor of 0.1, and/or a random zooming up to a factor of 0.1, using
the appropriate Keras layers. The hyperparameters chosen during the optimization
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phase determine the use of these data augmentation strategies.
By including these levels, the model can benefit from a more diversified collection
of training examples, thereby increasing its robustness and ability to generalize
across different inputs. When working with restricted datasets, data augmentation
is especially useful since it artificially expands the training data pool, potentially
leading to higher model performance. The purpose was to examine the feasibility
of extracting new information from previously changed data using GAF.

Thus, the general structure of the models is similar to that already used for one-
dimensional CNNs. The two-channel version was not pursued because, as will be
better explained in the Chapter 7, models with 2D input data do not perform
well with the type of time series used in this research. In addition, loading 2D
images into memory is not practical given the limited computational resources of
microcontrollers.
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Figure 4.1: Architectures CNN models.

Figure 4.1 illustrates the general architectural structures of CNN models. The
left side outlines the architecture employed by CNNs s with one or two input
channels. In contrast, the right side presents the custom architecture for CNNs s
using GAF images as input. Specifically, the structure depicted incorporates layers
of data augmentation. If the initial three data augmentation layers are omitted,
the architecture without data augmentation is obtained.
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Gramian Angular Field

The Gramian Angular Field (GAF) [20] is gaining popularity as a sophisticated
method for converting one-dimensional time series data into two-dimensional image-
like structures. Such a transformation is particularly important in the context of
deep learning. Given that CNNs are designed especially to analyze two-dimensional
data, such as images, the GAF provides a way to harness the power of CNNs for
time series data.
The GAF, in its essence, represents the complicated temporal correlations inher-
ent in time series data. This is accomplished by coding the mutual correlations
between different time points as angles. This novel encoding method is based on
the representation of time series data in polar coordinates. While the magnitude
of each data point – its distance from the origin – remains unchanged in this
transformation, its phase, or angular position relative to the origin, reflects the
essence of its value.

Building on this transformed series, the Gramian matrix is constructed. The
specific elements of this matrix are determined by the Gramian Angular Sum-
mation Field (GASF). For the implementation, the pyts package — a Python
library dedicated to time series classification — is utilized [21]. Specifically, the
class pyts.image.GramianAngularField is employed. The matrix components
encapsulate the cumulative angles between pairs of points in the series.

From a mathematical point of view, the fit_transform(x) method performs three
important steps:

1. Normalization Suppose to have a time series X = {x1, x2, . . . , xi, . . . , xN},
containing N observations. Firstly, X is normalized so that all values of X

can be in the range of [−1, 1] which can be expressed as follows:

x̃i = (xi − max(X)) + (xi − min(X))
max(X) − min(X) (4.1)

2. Calculate the polar coordinates The following step define the inverse
cosine angle, ϕ, from the normalised amplitude values and the radius, r, from
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the time label i/N , as shown in Equation 4.2. This returns angular values in
the range [0, π].


ϕi = arccos(x̃i), −1 ≤ x̃i ≤ 1, x̃i ∈ X̃

ri = i
N

, i ∈ N
(4.2)

A new insight into understanding time series is provided by this polar coordi-
nate system based representation. As time passes, the value of the sequence
changes from the original amplitude variation to the angular variation in the
polar coordinate system.

3. GASF By calculating the sum of the trigonometric function between the
sampling points, the temporal correlation between them is identified from an
angular point of view. Therefore, the GASF is defined as follows:

GASF =


cos(ϕ1 + ϕ1) · · · cos(ϕ1 + ϕn)
cos(ϕ2 + ϕ1) · · · cos(ϕ2 + ϕn)

· · · . . . · · ·
cos(ϕn + ϕ1) · · · cos(ϕn + ϕn)

 (4.3)

One of the standout attributes of GAF is its unwavering commitment to preserving
the temporal dynamics of the series. The matrix representation, by design, ensures
the retention of patterns, overarching trends, and other inherent temporal relation-
ships. This makes the transformed data highly suitable for the discerning filters of
CNNs.

Although GAF has been praised for its ability to preserve temporal relationships
and for its synergistic compatibility with CNN architectures, its inherent limitations
must be acknowledged. In particular, when dealing with noisy datasets or subtle
patterns, the GAF may struggle to accurately capture data nuances. This limitation
became apparent in the context of this study.
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Figure 4.2: GASF representations of 50 positively labeled time series.

The performance of NN models using the matrices produced by GAF modifications
as input was found to be poor compared to models using the raw time series as
input. This performance difference was first observed in the GAF outputs shown in
Figs. 4.2 and 4.3. These figures show the GAF matrices for two distinctive series:
a collection of 50 time series with positive labels and another collection of 50 time
series with negative labels.

Figure 4.3: GASF representations of 50 negatively labeled time series.

A preliminary analysis of these figures indicates some resemblance in the visual
representations of the time series in both labelled sets. This observation suggests
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that the GAF transformation may not have been optimal for the individual charac-
teristics of the dataset in question, potentially resulting in feature space overlap
and, as a result, diminished discriminatory strength.

4.2 Recurrent Neural Networks

The second macro-category of neural network models studied belongs to the
recurrent neural networks: both the Long Short-Term Memory (LSTM) and the
Gated Recurrent Unit (GRU) models were developed to fit the two databases
created, with only one channel of input data or with two channels. In the course of
this research, two separate versions of both models were carefully designed. The
aim was not only to understand the intrinsic behaviour of the LSTM and GRU
layers in the context of the datasets, but also to assess how variation in network
depth affected the performance of the model and subsequent implementation on a
microcontroller.

4.2.1 Long-Short Term Memory

Long short-term memory networks excel at processing sequences. Their ability to
deal with temporal dependencies makes them particularly well suited to data based
on sequences and time series.

The first version of the LSTM model has two LSTM layers. The input layer is
intended to receive data that matches the shape of the training dataset. The first
LSTM layer is then applied. It contains a number of LSTM cells or units, which
are essentially the memory cells responsible for maintaining temporal dependencies
across sequences. During the optimization phase, the exact number of these units
is defined. Each unit can be thought of as a memory element with built-in gating
mechanisms that control the flow of information, determining what to store, discard,
or update. The layer employs a hyperbolic tangent (tanh) activation function in
conjunction with sigmoid recurrent activation. Sequences from this layer are then
passed on to the second LSTM layer, which represents the hidden state of the
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LSTM at each time step for each input. When stacking multiple LSTM layers,
such a configuration needs to be performed because the subsequent LSTM layer
requires a sequence input to handle temporal dependencies across time steps.

The configuration of the next layer is identical to the first, with one exception:
it does not return sequences, making it suitable for connection to subsequent
non-recurrent layers. Both LSTM layers are followed by batch normalization layers
to increase learning and stabilize activations. As previously stated, an optional
dropout layer can be incorporated to reduce overfitting. The model ends with an
output layer suitable for binary classification tasks, which contains two neurons
controlled by a softmax activation function.

Figure 4.4: Architectures LSTM models.

In contrast to the prior model the second version is more straightforward, with a
single LSTM layer. This difference can be easily identified in Fig. 4.4. The input
layer remains consistent, processing the training dataset’s data. The single LSTM
layer, which has the same setup as the preceding model, is immediately followed by
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a batch normalization layer. Again, a dropout layer with the same goal of reducing
overfitting may be incorporated. The architecture is completed with a dense layer
with two output neurons and a softmax activation function. Both models train to
minimize the loss of categorical cross-entropy using the Adam optimizer with a
clipping value of 1.0.

4.2.2 Gated Recurrent Unit

Gated Recurrent Units (GRUs) are another version of recurrent neural network
designed to handle sequences. While they are theoretically similar to LSTMs in
their attempt to capture long-term relationships in data, they have a distinct
internal structure, which is principally defined by their update and reset gates.
For the purposes of this study, GRU models were built using a structure similar to
the LSTM models previously addressed. The two GRU models paralleled the two
LSTM models: one has a dual-layer design that aims to leverage the potential of
depth in capturing complex temporal patterns, while the other has a single-layer
arrangement that leans toward simplicity. The core recurrent layers in both setups
are GRUs, which stand in for the LSTMs. In Fig. 4.5 are reported the two
architectures for the GRU versions of the models.
The subtle changes in the internal gating mechanisms of GRUs and LSTMs offer
possible performance variations. GRUs reduce the gating system to two gates,
which may improve computational efficiency.
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Figure 4.5: Architectures GRU models.
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Chapter 5

Models Optimization

Optimizing neural network models is a critical step in assuring their effectiveness,
particularly when dealing with complicated systems like electric vehicle acceleration
pedal signals. This chapter digs into the complexities of model optimization,
emphasizing the need of hyperparameter adjustment and data normalization.
Using tools like the KerasTuner API allows for systematic exploration of the
hyperparameter space with the goal of improving model performance. Furthermore,
the choice between normalized and non-normalized data has been investigated
because it can have a significant impact on the behavior and correctness of a model.
The next sections will explain the approaches used for these optimizations as well
as the reasoning behind each decision.

5.1 Hyperparameter Tuning

Optimizing hyperparameters is a key step in the development of robust and efficient
neural network models, as the choice of hyperparameters can significantly influence
model performance. For hyperparameter optimization, the Keras Tuner library has
been implemented, specifically the keras_tuner.BayesianOptimization method.
This method is rooted in the principles of Bayesian optimization, with an underlying
Gaussian process (GP) model. Upper confidence bound (UCB) is the acquisition
function employed.
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Bayesian Optimization

Bayesian optimization, as elucidated by Garnett (2023) [22], is a probabilistic
model-based optimization approach that is best suited for global optimization
problems when the objective function behaves as a ’black box’. This approach is
especially useful when evaluating the function required to run expensive simulations
or when the behavior of machine learning models is highly dependent on their
parameters, such as in convolutional neural networks.
Bayesian optimization works by retaining a probabilistic belief about the objective
function and creating an acquisition function to determine the next evaluation
point. In order to learn about the function, before any data are observed, the
method frequently uses a Gaussian process prior, which is a pre-existing distribution
for an uncertain quantity. Then, given a set of observations, it conditions the
distribution accordingly. The main challenge then becomes the selection of the
next observation point. In Bayesian optimization, this is accomplished by creating
an acquisition function that is proportional to the expected desirability of assessing
the objective function at a specific point and is often an inexpensive function
to evaluate. While the acquisition function is faster to evaluate, this does not
mean that it can be evaluated on a dense grid over the entire parameter space,
especially if the dimensionality of the space is high. This distinction is critical
because Bayesian optimization gives a rational technique to select the most in-
formative points to assess next without having to intensively sample the whole space.

The activation function used by the Keras Tuner’s Bayesian optimization method
is the upper confidence bound function, also known as GP-UCB in the context
of Gaussian processes [23]. It can be interpreted in the framework of Bayesian
decision theory as evaluating an expected loss associated with evaluating the
function at a specific point. The objective is to select the point that minimizes
this expected loss. The UCB acquisition function is usually described in terms of
function maximization, rather than function minimization; however in the context
of minimization, it takes the form:

aucb(x; β) = µ(x) − βσ(x) (5.1)
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where β > 0 is a tradeoff parameter and σ(x) is the marginal standard deviation
of the function. The GP-UCB acquisition function contains explicit exploitation
(µ(x) - evaluating at points with low mean) and exploration (σ(x) - evaluating at
points with high uncertainty). In the context of optimization, exploitation entails
selecting points that are predicted to produce the greatest results based on prior
information. It is all about capitalizing on what is already known to gain instant
advantages. Exploration, on the other hand, represents the model’s uncertainty
about the function. It is about exploring unexplored function areas, particularly
in regions where the model is uncertain. The goal is to discover new information,
even if it does not immediately bring advantages. By doing so, the model may be
able to identify previously unknown better optima. Strong theoretical results are
known for UCB, namely that under certain conditions, the iterative application of
this acquisition function will converge to the true global minimum of the function.

Detailed Hyperparameter Selection

The models were constructed based on distinctive hyper parameter values adapted
to their architecture and the nature of the data they were supposed to analyze
after the hyperparameter optimization procedure. As seen in Table 5.1:

• The CNN models are made up of convolutional layers, each with its own set
of hyperparameters. The number of filters ranged from 32 to 128, while kernel
sizes ranged from 3 to 5. For these layers, two activation functions, ReLU and
tanh, were evaluated. In addition, an optional dropout layer was implemented,
and the batch size for training was varied from 10 to 32.

• The LSTM and GRU models have been developed with units ranging from 128
to 256. An optional dropout layer, similar to the CNN model, was included.
The batch size for these models was evaluated across a wider range, up to 64.

• Conv2D layers were used in the CNN with image augmentation model. The
hyperparameters of these layers were identical to those of the other CNN
models but this model also investigated imagine augmentation techniques such
as random flipping, rotation, and zooming.
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Model Type Hyperparameters Tested Ranges/Values

CNN

Conv layers: filters 32-128, step 32
Conv layers: kernel_size 3-5, step 1
Conv layers: activation ReLU, tanh
Dropout layer True, False
Batch size 10, 16, 24, 32

LSTM/GRU
LSTM/GRU layers: units 128-256, step 64
Dropout layer True, False
Batch size 10, 16, 24, 32, 64

CNN with
Image Augmentation

Conv2D layers: filters 32-128, step 32
Conv2D layers: kernel_size 3-5, step 1
Conv2D layers: activation ReLU, tanh
Dropout layer True, False
RandomFlip layer True, False
RandomRotation layer True, False
RandomZoom layer True, False
Batch size 10, 16, 24, 32

Table 5.1: Hyperparameters tested for each model architecture.

The lower amount of hyperparameters in the LSTM and GRU models compared to
the CNN models is a noticeable difference. This design decision was made to take
full advantage of Keras’ cuDNN capabilities. CUDA Deep Neural Network library,
or cuDNN, is a GPU-accelerated library of primitives for deep neural networks
developed by NVIDIA [24]. Keras will automatically transition to this fast cuDNN
implementation if it detects a suitable GPU and meets specified layer criteria. The
advantages are obvious in terms of computational speed and efficiency. However,
in order to be able to use this implementation of cuDNN, the GRU and LSTM
classes of Keras must fulfil certain requirements [25] [26], such as:

• activation == tanh

• recurrent_activation == sigmoid

• recurrent_dropout == 0

• unroll is False

43



Models Optimization

• use_bias is True

• reset_after is True (for GRU layers)

• Inputs, if use masking, are strictly right-padded.

• Eager execution is enabled in the outermost context.

The decision to optimize the models for cuDNN was dictated by practical reasons.
Model training times were prohibitive without the use of cuDNN, making repeated
testing and modifications impractical. By adhering to the cuDNN standards,
training time was significantly reduced. This acceleration was made even more
achievable by exploiting the GPU resources made available by Google Colaboratory,
also known as Colab [27]. Colab is a cloud-based platform that provides free GPU
access for machine learning and data analysis workloads. It is essentially a Jupyter
notebook environment that runs entirely in the cloud and requires no setup. The
NVIDIA Tesla T4 GPU with 16GB VRAM [28][29] is the default GPU given
by Colab, and it is powerful enough for a wide range of machine learning tasks.
Even with the computational needs of the dataset, the combination of cuDNN
optimization and Colab’s GPU resources guaranteed that the RNNs models were
trained efficiently.

5.2 Normalized Input Signals

Normalization is a fundamental preprocessing technique that is especially useful in
neural network training and time series analysis. Normalization supports faster
convergence in model training and perhaps increases performance by standardizing
the input data to a consistent range. This is especially important in signal classifica-
tion, where many different values may be encountered. The goal of normalization is
to align the intervals and distributions of the data such that no feature or scale has
a disproportionate impact on the model. Although there are indisputable benefits
to normalization in many circumstances, its indiscriminate use can be damaging.
Normalization is especially important with time series data where the emphasis is
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on pattern and sequence progression rather than raw numbers, therefore it may
not be appropriate in this context.
Distinct series or channels in multivariate time series are able to capture distinct
phenomena, stressing the requirement for channel-specific normalization. This
method considers each series as a separate entity, identifying and conserving its
unique qualities. The values of each channel are mathematically modified based on
its individual mean (µ) and standard deviation (σ), guaranteeing uniform scaling
and keeping channel distinctiveness. The formula is as follows:

x′ = x − µchannel

σchannel
(5.2)

where x′ is the normalized value and x is the original value
However, since the signals in the two channels of the database are similar but at
different voltage ranges, normalization could result in a decrease in the knowledge
that can be extracted from the data by the neural network.
Even the single-channel approach, in which the entire data set is normalized to a
common mean and standard deviation, can cause problems. For example, normal-
izing a signal that goes from a range of [0,5]V in its first half to a range of [0,10]V
in its last half can obscure the intrinsic magnitude shift between segments. Such
normalization could inadvertently diminish critical events or features, potentially
misrepresenting crucial shifts in the signal. In particular, the high [0,10]V segment,
if interrupted by outliers, may distort the normalization metric, making the [0,5]V
segment appear compressed. This could lead to under representation of patterns in
the lower range, potentially affecting subsequent analysis or modeling results.
Since it cannot be determined a priori whether normalization will have a positive
or negative effect on model performance, the models were dragged and tested with
both normalized and un-normalized data.

5.3 Optimized Architectures

This section presents the architectures that were selected as optimal after the
hyperparameter tuning process. These architectures provide the optimum hyperpa-
rameter combination for each model type, ensuring maximum performance on the
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dataset.
Table 5.2 displays the models of convolutional neural networks based on different
inputs. Three convolutional layers were utilized in the CNN models, each with its
own filter size, kernel size, and activation function. The tanh activation function
was employed by all layers in the single-channel input CNN model, with no dropout
layer and a batch size of 16. The two-channel CNN model, on the other hand, kept
the tanh activation for its layers but added a dropout layer and reduced the batch
size to 10.
The presence of a dropout layer in the two-channel CNN model, as opposed to
the absence of one in the single-channel model, indicates the increased complexity
and potential overfitting issues posed by multi-channel data. This inclusion is
probably the result of a regularization method to prevent overfitting, particularly
when dealing with richer input data.

Model filters kernel_size activation
Dropout

layer
Batch
size

CNN
one channel

32 5 tanh
False 1664 5 tanh

64 3 tanh

CNN
two channels

32 5 tanh
True 10128 3 tanh

96 4 tanh

CNN
GAF images

96 4 ReLU
False 2496 4 tanh

64 5 tanh
CNN

GAF images
augmentation

32 3 tanh
False 10128 3 tanh

64 5 ReLU

Table 5.2: Optimal hyperparameters for the CNN models.

The CNN models constructed for the GAF images use a combination of tanh and
ReLU activations, with no dropout layer and batch sizes of 24 and 10, respectively.
Furthermore, the GAF image-based CNN model’s data augmentation technique
is extremely intriguing, which is displayed in Table 5.3. The usage of just the
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’RandomRotation’ layer, ignoring the ’RandomFlip’ and ’RandomZoom’ layers,
highlights the relevance of rotational variations for the generated model when
working with GAF images. When translated into GAF images, this decision can
highlight the distinguishing aspects of time series data, stressing that rotating
patterns can lead to optimal model training.

Augmentation
Layer

RandomFlip
Layer

RandomRotation
Layer

RandomZoom
Layer

CNN
GAF images
augmentation

False True False

Table 5.3: Optimal hyperparameters for the data augmentation layers.

When looking more closely at the best hyperparameters selected, a noteworthy
pattern emerges. The consistent employment of the tanh activation function across
the convolutional layers in the CNN models demonstrates its efficiency in capturing
the complexities of the dataset, regardless of the shape of the input data. This is
especially intriguing given the extensive use of ReLU activation in many modern
CNN architectures, yet tanh appears to be the preferred option in this scenario.
This result is also highly advantageous in the context of following the Keras instruc-
tions for LSTM and GRU layers to take advantage of the cuDNN implementation,
which involves setting the layer activation function as tanh a priori.

Turning to recurrent neural networks (RNNs), the hyperparameter for LSTM and
GRU models with a single channel input, showed in Table 5.4, primarily used
128 units across layers, and the dropout layer was not used, indicating a balance
between computational efficiency and model expressiveness.
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Model units
Dropout

layer Batch size

LSTM
two layers

128 False 32128
LSTM one layer 128 False 16

GRU
two layers

128 True 24128
GRU one layer 96 False 24

Table 5.4: Optimal hyperparameters for the RNN models – one channel.

The choice of hyperparameters in two-channel models (Table 5.5), on the other
hand, can occasionally reach 192 units, indicating the necessity to represent more
intricate inter channel relationships and dynamics. Indeed, the inclusion of dropout
layers in nearly all two-channel RNN designs emphasizes the delicate trade off
between model complexity and overfitting risk.

Model units
Dropout

layer Batch size

LSTM
two layers

128 False 64192
LSTM one layer 128 True 24

GRU
two layers

192 True 24128
GRU one layer 128 True 10

Table 5.5: Optimal hyperparameters for the RNN models – two channels.

The hyperparameters of the models trained using normalized data are presented
below. When these hyperparameters are compared to those of the non-normalized
models, various distinctions and parallels become apparent. Table 5.6 shows a
significant shift toward the adoption of the ReLU activation function for CNN
models, indicating its greater efficacy in handling normalized data. Furthermore,
batch sizes have generally decreased, indicating a more granular technique for the
normalized dataset.
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Model filters kernel_size activation
Dropout

layer
Batch
size

CNN
one channel

64 5 ReLU
True 10128 4 tanh

32 4 ReLU

CNN
two channels

128 3 tanh
False 1096 3 tanh

64 3 ReLU

CNN
GAF images

32 5 tanh
False 1664 5 tanh

64 3 tanh
CNN

GAF images
augmentation

96 3 tanh
False 1064 3 ReLU

32 4 ReLU

Table 5.6: Optimal hyperparameters for the CNN models with normalized input
data.

The data augmentation layers, as shown in Table 5.7, demonstrate a preference
shift with the addition of the ’RandomFlip’ and ’RandomZoom’ layers, while the
’RandomRotation’ layer is omitted. This is in contrast to the non-normalized data,
which favored the ’RandomRotation’ layer. This disparity might be attributable to
the fact that normalization can change the distribution and the characteristics of
the data. Normalization of GAF images may emphasize or de-emphasize specific
patterns within the time series.

Augmentation
Layer

RandomFlip
Layer

RandomRotation
Layer

RandomZoom
Layer

CNN
GAF images
augmentation

True False True

Table 5.7: Optimal hyperparameters for the data augmentation layers in the
model with normalized input data.

The original patterns in the non-normalized data time series could have been more
rotationally variant, making ’RandomRotation’ more effective. However, these
rotational patterns may become less distinct or less relevant for model training after
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normalization. Furthermore, given that data augmentation is utilized to increase the
strength of models by supplying them with different versions of the training data, the
non-normalized model may have needed rotational variations, but the normalized
model may benefit more from flips and zooms. Normalized data may be smoother or
have fewer extreme values, which might cause models to overfit to specific patterns
more easily. Using ’RandomFlip’ and ’RandomZoom’ may add additional diversity
to the training process, allowing the model to generalize more effectively. Other
hyperparameters may also influence the choice of data augmentation approaches.
For example, if the normalized model employs smaller filters or different activation
functions, it may react differently to different augmentations.

Model units
Dropout

layer Batch size

LSTM
two layers

128 True 24128
LSTM one layer 256 False 10

GRU
two layers

256 False 16256
GRU one layer 128 False 10

Table 5.8: Optimal hyperparameters for the RNN models with normalized input
data – one channel.

There are noticeable discrepancies between the hyperparameters of the recurrent
neural networks in Tables 5.8 and 5.9, and their non-normalized counterparts in
Tables 5.4 and 5.5. To begin with, models trained on normalized data favor a
larger number of units. This implies that normalized data may benefit from a
more complex structure in order to better capture its temporal variations. In
contrast, normalized datasets frequently choose smaller batch sizes, suggesting a
desire for more frequent model updates, perhaps to better manage the altered data
distribution. The existence or lack of dropout layers, on the other hand, follows a
pattern similar to that of non normalized models.
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Model units
Dropout

layer Batch size

LSTM
two layers

128 True 16128
LSTM one layer 128 False 10

GRU
two layers

256 True 16128
GRU one layer 128 False 10

Table 5.9: Optimal hyperparameters for the RNN models with normalized input
data – two channels.

These distinctions highlight the significant impact of data normalization on hy-
perparameter selection. Changing the normalization of the data may alter its
underlying distribution, which can affect the learning dynamics of the model. As a
result, different hyperparameter setups are required to achieve optimal performance,
even if the model primary structure is the same.

Visual representations of neural network designs frequently reveal more about the
model’s complexity and structure than textual descriptions alone. As a result, what
follows are a few noteworthy examples of implemented NN models:

• Figure 5.1 depicts the architectures of CNN models with one-channel and
two-channel input data. The structural similarities between the two are
obvious at first glance, highlighting CNNs’ innate adaptability to different
input dimensions. Notably, the two-channel model includes a dropout layer,
which is most likely an adaptation to deal with the extra complexity of dual-
channel input. When dealing with multidimensional input, the presence of
dropout shows that there is an emphasis on avoiding overfitting.

• In Figure 5.2, the earliest versions of the LSTM and GRU models are displayed,
which are distinguished by their dual-layered approach. Their complexity
reflects an attempt to capture more complicated patterns and relationships in
the data.

• Figure 5.3 shows the later version of the model, which features a streamlined

51



Models Optimization

approach that is implemented with a single recurrent layer, indicating an
intentional trade-off between model complexity and computational efficiency.

The addition of these visual aids improves the understanding of the neural network
architectures that are being implemented and provides a comparison view of the
differences between various models.
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(a) One channel model. (b) Two channels model.

Figure 5.1: Final architectures CNN models.
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(a) LSTM model. (b) GRU model.

Figure 5.2: Final architectures RNN models - first version.
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(a) LSTM model. (b) GRU model.

Figure 5.3: Final architectures RNN models - second version.
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Chapter 6

TFLite Conversion and
Deployment on
Microcontroller

6.1 TensorFlow Lite

TensoFlow Lite (TFLite) [16] is a specific extension for on-device applications
that emerged from the TensorFlow framework. Its primary purpose is to compact
and optimize TensorFlow models in order to ensure they are adequate for edge
applications. Given the specific challenges provided by edge devices, this is not
only a question of convenience, but a requirement. TFLite addresses these issues
by minimizing latency because there is no need to request and send data to
a server, ensuring data privacy through on-device processing, operating even
in the absence of Internet connectivity, minimizing model and binary size, and
taking power consumption into account, which is critical for mobile and embedded
devices. It has been designed to integrate with various platforms, including Android,
iOS, microcontrollers, and a variety of programming languages: the Python API
(tf.lite) [30] was used for this thesis.
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6.1.1 TensorFlow Lite Conversion

Moving from TensorFlow to TFLite is a rigorous procedure that necessitates an
in-depth understanding of the requirements and conversion stages.
The process of conversion can be visualized as a series of steps:

1. Prerequisites: Ensure the model’s compatibility with the TFLite conversion.

2. Model Conversion: Transform the TensorFlow model into the TFLite format
by utilizing the proper tools and APIs.

3. Optimization: Apply approaches to minimize the model’s size while main-
taining its accuracy.

4. Quantization: Compress the model even more by reducing the accuracy of
its weights and, potentially, activations.

Prerequisites

It is crucial to confirm that the model to be converted was developed and trained
using TensorFlow’s core libraries and tools before beginning the conversion. To
achieve a smooth conversion, the model’s architecture, particularly the layers and
operations employed, must be consistent with the operations offered by TFLite.
Layers like Conv1D, Conv2D, LSTM, and GRU, for example, are widely used and
supported. Prior to conversion, a performance baseline for the TensorFlow model
was established. This will be relevant later when comparing the performance of
the TFLite model, the results of which are provided in Chapter 7.
Before conversion, the model must be evaluated in terms of data volume and overall
complexity to determine whether it is suitable for edge implementations. It is
natural to believe that more complicated models, such as RNNs, will cause more
issues during conversion than basic, linear models.
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Model Conversion

Model conversion happens once all prerequisites have been thoroughly checked.
Figure 6.1 clearly depicts the overall workflow that is required for the conversion
process.

Figure 6.1: Conversion from TensorFlow to TFLite workflow.

Although there are many APIs available for the purpose of performing this task,
the Python API emerges as the ideal choice. The recommendation stems from its
numerous capabilities: not only does it seamlessly integrate the conversion process
into the larger development framework, but it also enables the application of opti-
mizations, the incorporation of critical metadata, and a host of other features that
make the conversion process more intuitive. For this work, the TensorFlow model
was initially stored in the SavedModel format, an approach strongly recommended
by the official TensorFlow guidelines. By using the high-level API tf.keras.*,
which results in a Keras model, this format is generated. However, as shown in the
Fig. 6.1, the low-level API tf.* may be utilized as well. As a result, a TensorFlow
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Lite model in the optimized FlatBuffer format, identified by the .tflite file ex-
tension, was obtained using the tf.lite.TFLiteConverter.from_saved_model()

function [31].

Optimization

In machine learning models, optimization refers to a collection of techniques
indicated to enhance model performance, particularly when deploying it on edge
devices with limited computational resources. When a model is optimized, several
benefits can be observed that can aid in model deployment. Optimization techniques,
for example, can drastically reduce the size of the model. A reduced model takes
up less storage space on devices and requires less bandwidth and time to download.
Smaller models consume less RAM when running, resulting in less RAM usage
during inference, freeing up memory for other portions of the application, which
can translate to improved performance as well as stability. Reduced latency is
another benefit of model optimization: through optimization, latency, defined as
the time it takes a model to execute a single inference, may be significantly lowered.
This not only increases the responsiveness of real-time applications, but it can also
reduce power consumption.
It is critical, however, to understand that improvements may involve trade-offs,
potentially affecting model accuracy. While some models may see a slight reduction
in accuracy, others may see more noticeable alterations. In exceptional cases,
optimization may even improve a model’s accuracy.

TensorFlow Lite includes, but is not limited to, the following optimization tech-
niques:

• Pruning is the process of removing parameters from a model that have a
minimal impact on its predictions. While pruned models retain their original
size and runtime latency, they can be compressed more effectively, making
pruning useful for minimizing model download size.

• Clustering is the process of categorizing the weights of each level in a model
into predetermined clusters based on their similarity. Weights within the
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same cluster are then represented by a single value, the centroid of that
cluster. Clustering minimizes model complexity in a data-driven approach and
determines values based on the actual distribution of weights in the model.
As a result, clustered models can be compressed more efficiently, providing
distribution benefits similar to pruning.

• Quantization is a method that decreases the precision of the numbers that
represent the parameters of a model. As a result, the model is both smaller in
size and quicker in computation [32].

The initial step was to examine the behavior of two simple optimization algorithms,
pruning and clustering, on convolutional models with one and two channels, respec-
tively. Both techniques were performed using the TensorFlow Model Optimization
Toolkit [33].
A sparsity level of 0.5 was used for pruning, which implies the elimination of
about fifty percent of the weights. Thanks to the function ConstantSparsity, this
sparsity level was kept constant throughout the pruning operation. For clustering,
which represents the model parameters using the centroids of these clusters, the
number of clusters was set to four for this study, with the centroids initialized
linearly.
After optimization, the two versions of the models were converted to TFLite format
and their accuracy was evaluated. Notably, because pruning outperforms clustering,
the latter was eliminated from model optimization in this thesis.

Quantization

In the context of optimizing machine learning models, quantization emerges as
a critically important approach. Essentially, quantization relies on reducing the
numerical precision required to describe a model’s parameters. These parameters
are often expressed using 32-bit floating-point numbers. Using lower precision
numbers, such as 8-bit integers, not only compacts the model but also increases its
computational speed. However, as with any optimization strategy, the advantages
must be balanced against the potential loss of accuracy.
The influence of quantization on accuracy varies depending on the application
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and model, so a comprehensive study of the quantized model is required before
implementation.
Quantization is not only desirable, but frequently required for microcontroller imple-
mentations, especially in this study where there are additional inference constraints.
Given microcontrollers’ limited memory and processing resources, the benefits of
quantization in lowering model size and enhancing inference speed become essential.
Also, the Raspberry Pi RP2040 is an ARM Cortex-M0+ dual-core microprocessor.
The ARM Cortex-M0+ [34] core is integer-only, which means it lacks a hardware
floating-point unit (FPU). As a result, all floating-point operations would have to
be emulated through software routines or libraries, which would be time-consuming.

It is worth mentioning that the attempt to integrate machine learning models on mi-
crocontrollers is a relatively new topic. As a result, quantization support for various
Keras layers, including recurrent, 1D convolution and batch normalization layers, is
still in the early stages of development [35]. Because of this major constraint, even
the simplest models cannot be properly quantized. Consequently, while the results
presented in this thesis are promising, they may not represent the pinnacle of
what is possible to achieve. However, it is important to understand the expanding
potential of this field. The community and industry are working diligently to fill
these gaps, and as the field evolves, additional support and enhanced tools are likely
to emerge, paving the way for more optimum microcontroller implementations in
the future.

TensorFlow Lite provides numerous quantization approaches suitable for a variety
of requirements:

• Post-training quantization: This is a form of quantization applied after
the model has been trained. This implies that the model is quantized without
having to be re-trained. One of the key advantages of this strategy is its sim-
plicity and broad application. Significant reductions in model size and latency
can be accomplished by quantizing the weights and, optionally, the activations.
Weight quantization, integer quantization, and 16-float quantization are three
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types of post-training quantization, and each offers a trade-off between model
size, speed and accuracy.

• Quantization-aware training (QAT): QAT, as opposed to post-training
quantization, guarantees that the model is aware of the quantization process
while training. This suggests that the model has been trained to predict the
noise and errors that quantization introduces. As a result, when the model
is quantized, it retains its accuracy more effectively than models quantized
after training. QAT was explicitly implemented in the context of this thesis
to take full advantage of its potential in obtaining optimal performance on
microcontrollers, because QAT is especially helpful for deployment on hardware
that primarily supports integer operations. QAT guarantees that the model
remains robust and performs well in such environments by training it with
quantized data. Additionally, using QAT, not only is the model size decreased
but the model is also designed to manage the decreased precision, guaranteeing
that there is minimal degradation in performance.

The pruned models were subjected to the additional optimization procedure called
Quantization Aware Training. The use of QAT varies according to the type of
model. Two different scenarios for convolutional models were investigated: one with
a representative dataset and one without. A representative dataset is a smallsubset
of the training data, usually 0.01%. It is crucial because it captures the overall
properties and distribution of the dataset, ensuring that the quantization process
appropriately represents the data’s dynamics. This dataset facilitates quantization
by giving a snapshot of the data distribution, allowing for more efficient and precise
quantization.
However, due to the inherent complexity of RNN models and their ability to retain
information from previous inputs, the representative dataset could not be used.
RNNs process data sequences in which the outcome of each step is determined not
only by the current input but also by past inputs. The total memory requirement
could be significant when combined with the memory-intensive QAT procedure.
The use of a representative dataset for RNNs contributes to the problem by adding
additional memory usage. This could cause memory exhaustion in environments
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with limited RAM, such as the Google Colab, resulting in unexpected restarts of
execution.

6.1.2 TensorFlow Lite for Microcontroller

The TensorFlow ecosystem is well-known for its strong deployment tools, which
allow developers to deploy models almost everywhere, from cloud environments to
mobile devices. This deployment capability has been extended to embedded devices,
which require efficient, portable code, with the introduction of TensorFlow Lite
for Microcontrollers [36]. TensorFlow Lite for Microcontrollers (TFLM) is a new
version of TensorFlow Lite that is specifically built to handle the unique challenges
that microcontrollers provide. Microcontrollers have restricted computational,
memory, and storage capabilities. Given these limits, it may appear unrealistic
to run powerful machine learning models on these devices. TFLM is meant to be
extremely lightweight, allowing basic machine learning operations to be performed
even when memory is restricted to a few kilobytes.

Several steps must be taken to turn a TensorFlow model into a version that can
be executed on a microcontroller. The model must first be trained using the
TensorFlow library. Following training, the model is optimized and then converted
to TensorFlow Lite format using the TensorFlow Lite converter. Through Tensorflow
Lite Interpreter [37], the accuracy of the lite model is calculated, so that it can
then be compared with the baseline model. The model is subsequently transformed
once more, this time into a C byte array, to make it easier to store in the read-only
memory of the microcontroller. This operation is made possible by TensorFlow
Lite for microcontrollers. This process culminates in inference on the device, where
the microcontroller uses a C++ library to execute the model. The produced C++
library enables TFLM inference to be performed on nearly any device, including
microcontrollers, as long as the hardware supports C++. The Edge Impulse [17]
platform was utilized in order to facilitate the TFLM model conversion process.
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6.2 Deployment on Microcontroller

6.2.1 Edge Impulse

Edge Impulse is a platform that connects advanced machine learning models to
the limitations of edge devices, primarily microcontrollers. The platform is meant
to function in combination with TensorFlow Lite for Microcontrollers (TFLM),
providing an end-to-end solution for the machine learning lifecycle, from the col-
lection of data and model training through deployment on edge devices. One of
Edge Impulse’s distinguishing features is its Python SDK, which allows developers
to profile and deploy machine learning models generated in almost any machine
learning framework to numerous hardware targets. TensorFlow Lite and TFLM,
as well as vendor-specific toolchains, are among the targets. The SDK wraps the
model in a variety of pre- and post-processing functions, as well as device-specific
optimizations, making deployment simple.

Edge Impulse is a cloud-based machine learning operations (MLOps) [38] platform
designed for developers who want to deploy models on embedded systems. It
speeds up model deployment with TensorFlow Lite for Microcontrollers by helping
users through the process of training a model in TensorFlow with Keras and then
translating that model into a C++ library that integrates with TFLM. It provides
an easy-to-use interface or Python SDK to integrate into the code.
Edge Impulse’s C++ library is versatile, allowing inference with TensorFlow Lite
for Microcontrollers on practically any device that supports C++. The library
can handle input and output processing, such as windowing and resampling time
series or audio inputs, in addition to executing the model. It can also support
post-processing operations such as adding a moving average filter to a stream of
classifier outputs. The library is also designed to apply the optimum optimizations
for the targeted processor automatically.
A key problem in edge deep learning is ensuring that the model fits within the
memory limitations of the target hardware and fulfills the needed inference per-
formance. Edge Impulse’s Python SDK assists in profiling the model for various
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target hardware architectures, ranging from microcontrollers to neural network
accelerators. This profile offers information on RAM, ROM, and inference execu-
tion time for the chosen hardware, which is useful in the design flow of a model
architecture for edge machine learning.

Once the model has been profiled and optimized, Edge Impulse makes it easy to
deploy. The model is loaded into an Edge Impulse project, where it is transformed
into a C++ library using TensorFlow Lite for microcontrollers. Once the model
is deployed to RP2040, it can be seen that the model is working either by a LED
that lights up if the signal has an error, or by connecting the microcontroller to
the computer and checking the serial output [39] .
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Chapter 7

Discussion and Comparison
of Results

The primary purpose of this chapter is to provide an overview of the empirical
findings that emerged from this research. The results that are provided here are
critical in addressing the study’s original objective of researching the efficiency of
neural networks in identifying errors in electric vehicle acceleration pedal signals
and their subsequent deployment on microcontrollers.
To offer context, it is essential to revisit the research questions that motivated this
investigation:

• How effective are neural networks in detecting anomalies in accelerator pedal
signals?

• What are the performance disparities, if any, between TensorFlow Lite models
and their more extensive neural network counterparts?

• Can a balance be achieved between the latency of neural network models on
microcontrollers and their performance accuracy?

The following sections will discuss the data, analysis and results in response to
these questions in a structured way.
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7.1 Neural Network Model Performance

As previously stated (Chapter 4), the first models were built with TensorFlow. This
strategy was adopted deliberately to provide a solid baseline, allowing for a more
informative comparison with the TFLite models. While the chosen architectures
are known for their effectiveness in time series classification tasks, it was critical
to assess their performance in light of the specific challenges given by this study’s
database and objectives.
This section will delve into the empirical results of these models, highlighting their
advantages and potential limitations in the context of electric vehicle acceleration
signal classification. This will include metrics such as accuracy, precision and F1
score, with the goal of providing a comprehensive picture of the performance of
these models in addressing the research goals set at the beginning of this thesis.

Performance metrics are critical tools for assessing and comparing the efficacy of
machine learning models. They are frequently constructed from basic components
that encapsulate the core results of a classification operation. True positives, true
negatives, false positives and false negatives are these components. They are
the heart of the confusion matrix, a table that describes the performance of a
classification model on the test set.

• True Positives (TP): These are instances where the model properly predicted a
positive outcome. It corresponded to the signals that were correctly classified
as error free in the context of electric vehicle acceleration signal classification.

• True Negatives (TN): These are instances of negative outcomes that were
accurately predicted to be negative. It denotes faulty signals that were
appropriately detected as errors.

• False Positives (FP): These are instances that were negative but were wrongly
forecast as positive by the model. This indicate that signals with errors were
misclassified as error-free.

• False Negatives (FN): These are instances of positives that were wrongly
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predicted as negative. It represents true signals that the model labeled as
errors.

The confusion matrix provides a thorough view of model performance. It offers
information on the precise nature of the errors committed by the model. Under-
standing these fundamentals is critical since it allows for a more refined evaluation
of the model. This guarantees that the model not only achieves high accuracy but
also corresponds with the specific requirements and complexities of the task in
question. In the context of this study, for example, a model that mostly produces
false negatives is preferable than one that produces false positives. The reason for
this is that with the latter, the vehicle may incorrectly believe there are no issues
when, in fact, there are, thereby risking driver safety. A system that occasionally
warns an error, even when none occurs, on the other hand, is a safer preventive
approach.
The following metrics were considered for this study:

• Loss (or Error): this quantifies how much the model’s predictions differ from
the actual value. Lower loss levels imply greater performance, whereas larger
values indicate possible model inefficiencies. In this context, the categorical
cross-entropy is the loss function employed when training the models, where
the goal is to minimize it. The specific formula depends on the type of loss
function used, in this case:

L(y, p) = −
CØ

i=1
yi log(pi) (7.1)

where yi is the true label for class i, pi is the predicted probability of the
instance belonging to class i and C is the number of classes.

• Accuracy: the accuracy value quantifies the percentage of correct model
predictions. It is determined by dividing the number of instances correctly
predicted by the total number of instances tested. Although accuracy is a
simple and intuitive metric, it does not provide information about the errors
made by the model, so it cannot be used alone to evaluate model performance.
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It is calculated as:

Accuracy = TP+TN
TP + TN + FP + FN (7.2)

• Precision: this metric assesses the accuracy of positive forecasts. It is
the proportion of correctly predicted positive observations to total expected
positives. The low false positive rate is associated with high precision. It is
defined as:

Precision = TP
TP + FP (7.3)

• Recall: also referred to as sensitivity or true positive rate, recall is the
proportion of the actual positives that were correctly identified. It is critical
when the cost of false negatives is significant. It is provided by:

Recall = TP
TP + FN (7.4)

• F1 score: The F1 score is a model performance metric that combines precision
and recall into a single value, providing a more complete picture of a model’s
performance. The F1 score ensures that both false positives and false negatives
are considered by taking the harmonic mean of these two metrics. This makes
it especially beneficial because it does not allow a high value of one metric to
compensate for a low value of the other. The F1 score is calculated as follows:

F1 Score = 2 × Precision × Recall
Precision + Recall (7.5)

7.1.1 Analysis of Accuracy and Loss

As an initial analysis, the metrics of accuracy and loss are frequently the easiest
and most basic to be evaluated. The accuracy bar plot (Fig. 7.1) for various models
provide a clear visual representation of how effectively each model identifies the
vehicle’s acceleration signals. Higher precision means that the model classifies the
test database better than those with lower precision. Meanwhile, Fig. 7.2 show the
losses, meaning how well the models’ predictions match the actual labels; lower
loss values indicate greater model performance.
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This section’s analysis focuses on models trained on unnormalized data. The
Appendix contains results comparing the accuracy and loss of models trained on
normalized data.

The model ’Two channels LSTM v1’ stands out from the visual data shown in Figs.
7.1 and 7.2, achieving the highest accuracy (0.96) among the rest of the models.
This demonstrates its more effective ability to determine the validity of acceleration
signals within the test set. In addition to its high level of accuracy, the model’s
low loss attests to its refined performance. While a high accuracy implies that
the model frequently correctly classifies the signals, a low loss reflects the model’s
confidence in its predictions. Even when the model misclassifies, the confidence
level of its incorrect prediction remains quite close to the correct outcome, ensuring
that errors are not extremely off-target. Due to its high accuracy and low loss, it is
the optimal but also the most complex model in this study.

Figure 7.1: Comparison of models accuracy - non normalized data.

When it comes to model versions, there are subtle differences in performance be-
tween v1 and v2 for both LSTM and GRU designs. The close performance metrics
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Figure 7.2: Comparison of models loss - non normalized data.

between v1 and v2, with v1 representing the more intricate models equipped with
two LSTM/GRU layers and v2 representing a streamlined version, highlight an im-
portant realization: the added complexity of v1 may be superfluous, especially when
computational efficiency is paramount, as in the case of subsequent deployments on
a microcontroller. While the differences in accuracy are slight, the difference in loss,
while still minor, is more noticeable. This underscores the fact that architectural
differences between versions do have an impact on the overall effectiveness of the
model, but it is rather small.
The comparison of the ’GAF images’ and ’GAF image augmentation’ models makes
it clear that their performance metrics are similar, but that they remain behind of
other models in terms of accuracy and loss. Their pronounced loss values indicate
bigger prediction errors, meaning that they are less reliable classifiers for the task
in question.
When comparing one-channel (1C) and two-channel (2C) configurations, a no-
ticeable trend can be seen: two-channel models, albeit slightly, outperform their
one-channel counterparts. This confirms the incremental advantages of the second
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channel in the context of signal classification. Moreover, the performance of the
models, with the exception of those using GAF images as input data, is still very
comparable, with a minimum accuracy of 0.92 of the simplest model, the one with
only one input channel. In addition, it is important to note that the two-channel
model achieves an accuracy and loss of 0.953 and 0.133, respectively, which are
very similar to the optimal values of the ’Two channels LSTM v1’ model (accuracy
0.955 and loss 0.127), which, however, has a much complex structure.

When the models were trained using normalized data (Figs. A.1 and A.2), their
performance patterns shifted slightly. Normalization, which is often used to stan-
dardize the range of independent variables or data features, appeared to have a
subtle influence on the models. For the vast majority of them, there was either a
marginal reduction in accuracy or stayed basically unchanged. This is intriguing
because normalization is frequently used to improve the training dynamics of
models, particularly neural networks, by ensuring all input features have a similar
scale.
More notably, when trained on normalized data, the loss values for these models
increased in general. A high loss suggests that, despite potentially correct classifi-
cations, the model’s predictions may not be as close or confident to the true labels
as desired.
These observations give rise to a few hypotheses. It is possible that the underlying
scale and distribution of the original, non normalized data include essential nu-
ances or patterns critical to the project at hand. Therefore, models trained with
normalized data were not analyzed further since the performance of these models
is inferior to that achievable with the original data.

7.1.2 Analysis of Precision, Recall and F1 Score

Focusing on the other key parameters, precision, recall, and F1 score, is critical
for thorough examination. These measures give light on the models’ intricate
performance features, particularly when it comes to classification complexities.
Precision and recall are frequently in conflict. A model with a high precision shows
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that it is very confident in its forecast when it predicts a positive class. A high
precision in the context of detecting anomalies in accelerator pedal signals means
that when the model predicts a signal as error-free, it is mostly error-free. A
high recall, on the other hand, shows that the model properly identifies a large
proportion of the actual positive class. A model with a high recall would capture
the majority of truly error-free signals but may misclassify some faulty signals as
error-free. The F1 Score combines the precision and recall strengths into a single
score. A high F1 Score implies that the model’s precision and recall are both high,
which is excellent because it suggests the model is both reliable when predicting a
positive class and captures a large proportion of the actual positive class.

Heatmaps, as shown in Figs. 7.3, 7.4 and 7.5, give a comprehensive visual depiction
of these metrics for one-channel and two-channels configurations of the LSTM
and GRU models and for the convolutional models. Several conclusions can be
drawn from these heatmaps: the precision of the ’Two channels GRU v1’ model is
0.936, suggesting its resilience in classifying error-free signals. The ’Two-channel
LSTM v1’ model, on the other hand, stands out with an excellent recall of 0.989,
indicating that it accurately captures almost all real signals but may potentially
produce some false positives. In general, 2C RNN models outperform 1C RNN
models in terms of precision and recall. The ’Two-channel GRU v1’ model, on the
other hand, is an outlier, with a recall of 0.957, the lowest among the RNN models.
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Figure 7.3: Heatmap of precision, recall and F1 score for one channel RNNs
models.

Figure 7.4: Heatmap of precision, recall and F1 score for two channel RNNs
models.
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Precision values for the ’GAF images’ and ’GAF images augmentation’ models are
0.79 and 0.792, respectively (Fig. 7.5). This lower precision suggests a tendency
to confuse erroneous signals as error-free signals, which is a major concern for the
real-world applications. Therefore, these models were removed from next steps
of the thesis due to their poor performance, as evidenced also by their accuracy
scores.

Precision is critical in the context of electric vehicle acceleration signals. Mistaking
an erroneous signal for error-free can have major safety consequences. According to
this perspective, the convolutional model with two channels is the most balanced
option. It not only competes with the ’Two-channel LSTM v1’ model in accuracy
and loss, but also outperforms it in precision, with a score of 0.934 versus 0.927,
while being less complex.

Figure 7.5: Heatmap of precision, recall and F1 score for convolutional models.
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7.2 TensorFlow Models vs TFLite Models

Following the evaluation of the performance of generated TensorFlow models, the
next step was to investigate the behavior of pruning and clustering on convolutional
models to assess which of the two techniques achieves better results when converting
the models to their TFLite version. The objective is to create models that are
accurate but much smaller in size than the original models. Figures 7.6 and 7.7
demonstrate the findings for models with one and two channels, respectively. The
data visualizations compare the accuracy of the test set for each model to its
size in Kilobytes. The light blue bars reflect model accuracy plotted against the
left y-axis, while the light coral bars show model size plotted against the right
y-axis. The baseline models, ’1C_baseline’ and ’2C_baseline’, serve as reference

Figure 7.6: Accuracy versus size of the optimized 1C CNNs.

points, emphasizing the large reductions in model size obtained by optimization
while preserving or even enhancing accuracy. The baseline models are the ones
presented on the left of the Figures: as can be seen, the sizes of both the 1C and 2C
CNN models, 340 KB and 803 KB respectively, are significantly larger than their
optimized counterparts. Thus, while adding two channels for input data improves
performance, it also results in a noticeable increase in model size.
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The ’pruned_1C.tflite’ model has a worthy accuracy of 0.922, which is slightly
higher than the accuracy of the baseline model. Surprisingly, this outcome was
obtained while retaining an extremely small size of only 54 KB. Regarding the
two-channel (Fig. 7.7) models, the pruned model, labeled as ’pruned_2C.tflite’,
also performed better than the original model by registering an accuracy of 0.956,
all contained in a size of 131 KB. It is worth noting that clustered models perform
poorly in terms of accuracy as well as their inability to reduce size as well as
pruned models. Because both clustering and pruning are optimization techniques
that set the ground for future quantization, only pruning was used. As a result,
quantization is done on the pruned models.

Figure 7.7: Accuracy versus size of the optimized 2C CNNs.

The quantized variation, ’quant_1C.tflite’, matched the unquantized pruned coun-
terpart’s accuracy for the 1C model, hovering around 0.920 while being roughly twice
as large in size. Interestingly, the quantized model with a representative dataset,
’quant_1C_repr_dataset.tflite’, sacrificed some accuracy (approximately 0.911) in
exchange for a drastically decreased size of 35 KB. The same behavior is followed
by the 2C model: when quantized using a representative dataset it achieves an
accuracy of around 0.911, but with a significant decrease in size compared to its
quantized counterpart model without the representative dataset, from 252 KB to
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76 KB.
Given the inherent compactness of quantized models, even in the absence of a rep-
resentative dataset, the choice was to prioritize accuracy over model size. Moreover,
as anticipated in the previous chapter, the attempt to quantize the RNN models
using the representative dataset proved problematic. This reinforced the decision
to discontinue its use, resulting also in a more consistent comparison between all
versions of the model.

In accordance with the analysis of convolutional models, a similar analytical
technique was used for RNN models. The purpose is to compare the performance of
pruned and quantized RNN models to their respective baseline equivalents. Figures
7.8, 7.9, 7.10 and 7.11 show these comparisons, which give further insight into the
accuracy and dimension of the models. The visualizations depict the LSTM and
GRU models in the two versions proposed and compared to the baselines, split by
input data from one or two channels.

Figure 7.8: Accuracy versus size of the LSTM 1C models.

To begin, it is critical to emphasize how much the decision of having two LSTM
or GRU layers vs one layer, version 1 and version 2, effects the size. Version 1
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Figure 7.9: Accuracy versus size of the LSTM 2C models.

is approximately three times bigger than the simpler version for LSTM models,
while version 1 is more than four times larger than version 2 for GRU models.
As previously stated, the complexity provided by version 1 does not provide a
sufficient benefit in accuracy to justify its usage; so, the one-layer versions will be
the focus of the following investigation. For example, the ’LSTM_1C_v2_baseline’
model, which had an accuracy of 0.944 and a size of 826 KB before quantization,
has an accuracy of roughly 0.497 after quantization (’quant_LSTM_1C_v2.tflite’).
The accuracy of its two-channel equivalent, ’LSTM_2C_v2_baseline’, has likewise
decreased from 0.947 to 0.496 in the ’quant_LSTM_2C_v2.tflite’ model.
TensorFlow has not fully optimized and incorporated the quantization for RNN
layers, as stated in the previous Chapter. This constraint becomes clear when
looking at the accuracy drop showed in Figs. 7.8 and 7.9. The accuracy of the
LSTM models almost halves as compared to their baseline versions, resulting in a
considerable performance reduction. This considerable drop shows the difficulties
and limitations associated with quantizing RNNs using existing approaches.
The GRU models, on the other hand, provide a more optimistic picture. The
’quant_GRU_1C_v2.tflite’ model, Fig. 7.10, for example, with an accuracy of 0.949
and a size of 122 KB, marginally outperforms the baseline version while half its size.
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Figure 7.10: Accuracy versus size of the GRU 1C models.

Figure 7.11: Accuracy versus size of the GRU 2C models.

Unlike LSTM models, the accuracy of GRU models remains largely consistent after
quantization. Given the current status of quantization methods, this robustness
implies that GRU models may be better appropriate for usage in constrained
contexts such as microcontrollers. Because of their consistent performance and
modest size, they are a potential choice for such real-world applications.
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7.3 Results for Model Deployment on RP2040

It is difficult to implement machine learning models on microcontrollers such as the
RP2040. Memory, computing power, and real-time requirements frequently necessi-
tate careful optimization and model selection. Edge Impulse includes a profile()

function that is a response to these problems. This method accomplishes two tasks.
First, it determines if a particular model is compatible with the target hardware,
in this case the RP2040. It also allows users to assess their model’s inference time,
offering insight into its real-time performance. To offer an example, the result of
convolutional model profiling with two channels of input data is provided in the
Appendix.
The result includes a large amount of information. It begins by providing details
on the RP2040-specific performance metrics, such as the TensorFlow Lite model’s
file size, compatibility with the microcontroller, and memory requirements for
the TensorFlow Lite and EON compilers. EON is a compiler developed by Edge
Impulse to optimize NN for deployment on embedded devices. Furthermore, the
time necessary for a single inference on the RP2040 is provided (Listing B.1). After
that, performance estimates are supplied for a variety of devices, ranging from
low-end microcontrollers to high-end GPUs or neural network accelerators. These
estimates comprise device type descriptions, inference times, memory requirements,
and compatibility statuses. These detailed profile data help developers in determin-
ing the feasibility and efficiency of executing their models on a variety of hardware
platforms (Listing B.2).

Following the results of the performance of the machine learning models created,
the profile of the one- and two-channel versions of the following models: CNN,
LSTM v2, and GRU v2 was deepened. The outputs given by Edge Impulse’s
profile() function prompted this further in-depth investigation. Table 7.1 sum-
marizes RP2040’s support for these models as well as their corresponding inference
times. Interestingly, the profile() method can determine inference time also
for unsupported models. This is due to the fact that the function simulates the
model’s execution to assess its computational complexity, providing insight into
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TFLite model Supported on RP2040 Inference Time (ms)
1C True 1693
2C True 1889

GRU_1C_v2 False 6704
GRU_2C_v2 False 4120

LSTM_1C_v2 False 43821
LSTM_2C_v2 False 30240

Table 7.1: Comparison of model support and inference time on Raspberry Pi
RP2040.

how long an inference could take, even if the real implementation on the target
device is impeded by memory or architectural restrictions. This simulation can
give significant insights into a model’s computing requirements. It should, however,
be regarded as a recommendation rather than an absolute. In this research in
particular, all models have estimated inference times that are much longer than the
intended 100 ms threshold. The value of this threshold was decide in the Evergrin
project as a adequate value for a functionality evaluation of the system.
The research project considers neural networks to be an auxiliary control mech-
anism. While the control unit monitors the hardware’s performance, the neural
network models monitor any possible malfunctions or abnormalities in the driver’s
behavior. The 100 ms threshold was not picked at random: it represents the lowest
limit of human reaction time, making it an important benchmark for real-time
responsiveness. Given this significant disparity, it was decided that testing the
inference time in the real-world setting was unnecessary because the models had
already surpassed permissible bounds in the simulated environment.

Although CNN models are the only ones that can be used with the RP2040, their
inference times are still not ideal. This raises concerns regarding the real-time
applicability of even the most basic models on such constrained hardware, particu-
larly in applications where response time is crucial.
LSTM v2 models, which are noted for their capacity to memorize patterns across
lengthy sequences, require more memory by definition. The error ’computed arena
size is >6MB’ obtained from the profile() function emphasizes not just the
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memory-intensive nature of LSTMs, but also the challenges of implementing ad-
vanced neural network architectures on microcontrollers. The recurring nature of
LSTMs, along with the requirement to retain each unit’s internal states, produces
a memory demand that the RP2040 cannot satisfy. This constraint implies that,
in addition to not working well with present quantization approaches, LSTMs may
be better suited to more powerful devices or platforms with greater memory.
On the other hand, GRU v2 models, a different class of recurrent neural network,
provide another level of difficulty. The error ’The model has multiple subgraphs,
only one is supported’ implies that the model is structurally complex. Multiple sub-
graphs can be produced by branching architectures or models designed to process
multiple types of input at the same time. Although such designs might be powerful
and adaptable, they can be difficult to implement on platforms like the RP2040 with
today’s technology. Handling models that involve multiple computational paths
requires complications beyond the capability of the microcontroller implementation
architecture, which is meant for simplicity and efficiency.

Given these findings, it is evident that microcontrollers like the RP2040 do not
provide adequate opportunities for edge computing and embedded machine learning
due to tangible restrictions. Anyway, taking into account all of the previous
evaluations, the TFLite version of the convolutional model with two input channels
(2C CNN) emerges as the best option. This model not only has excellent accuracy
and precision, but it is also natively supported by the RP2040.
Figures 7.12 and 7.13 show the performance of the 2C CNN model in the two differ-
ent versions: the TensorFlow implementation and its simplified TFLite equivalent,
which has been quantized and pruned. A comparison of these settings shows that
the TFLite version has a slightly higher false positive rate than its TensorFlow
equivalent. This increase is not optimum for the purposes mentioned in this thesis,
because errors in signals should always be identified, but the difference between
the two models is minimal. The TFLite version, on the other hand, has a lower
false negative rate, indicating that it is more successful at properly classifying
instances that are positive. This observed improvement is further confirmed by the
TFLite version’s higher percentage of true positives.
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Figure 7.12: Confusion matrix for the 2C CNN TensorFlow model.

Figure 7.13: Confusion matrix for the 2C CNN TensorFlow Lite model.
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Despite the great performance of the TFLite version of the 2C CNN model, more
powerful computer systems are required to obtain an inference time according to
the established threshold. The results supplied in the Appendix B demonstrate that
the profiling function offers evidence of this. For example, high-end Microcontroller
Units (MCUs), such as the Cortex-M7 [40] or comparable devices operating at
240 MHz, have dramatically reduced inference time by 86 ms. The Cortex-M7
is a high-performance ARM Cortex series core intended for usage in a variety
of devices ranging from microcontrollers to complete embedded systems. It is a
popular choice for demanding embedded applications due to its characteristics
such as double-precision floating point, high code density, and ease of use. These
high-end MCUs or DSPs (Digital Signal Processors) are purpose-built to perform
complicated mathematical operations and algorithms, making them perfect for
running advanced machine learning models.
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Chapter 8

Conclusions and Future
Work

The incorporation of artificial intelligence into electric vehicles indicates a major
transformation in the world of automotive manufacturing. This thesis delves into
the complex world of accelerator pedal signal classification using neural networks,
a research project that has significant potential to improve vehicle safety and con-
trol. The role of artificial intelligence in ensuring functional safety and optimizing
control mechanisms will become increasingly important as the AI field expands.
In particular, given the growing need to convert internal combustion vehicles to
EVs, as demonstrated by the Evergrin project, the market for EVs is also growing,
leading to a consequent merging of the two sectors.

To answer key research questions, this study conducted an in-depth analysis of neu-
ral network architectures and their efficiency in anomaly detection. The significant
potential of these networks in identifying errors in accelerator pedal signals was
evident. The research uses a funnel approach to find the best model for deployment
on a microcontroller. Several TensorFlow models were tested by initially evaluating
metrics such as accuracy and loss, and then performing a more comprehensive
study using the metrics of precision, recall, and F1 score. The results showed that
some models can discriminate very well between error-free signals and erroneous
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signals, providing the basis for the incorporation of AI-driven safety systems in
future EVs. CNN models with time series input, LSTM and GRU are the best
performing models, with one of the LSTM models achieving the highest accuracy
of 96%.

The study also highlighted the performance dynamics of TensorFlow Lite models
compared to their more complex neural network equivalence. The transition of Ten-
sorFLow models to TFLite, which had been enhanced by pruning and quantization
techniques, revealed several performance changes. Although the TFLite models ap-
pear to be suited for microcontroller implementation due to their compact structure,
a noticeable difference in their performance was seen when compared to the original
models, particularly for recurrent networks. This is due to the existing scarcity of
suitable quantization approaches for complicated models like LSTM and GRU. A
selection of these TFLite models were evaluated for compatibility with microcon-
troller integration using the Python SDK offered by Edge Impulse. The RP2040
only supports CNN models, but even though these are the simplest models, the
inference duration was significantly longer than the 100 ms limit set by this research.

The inference time associated with neural network models deployed on microcon-
trollers was highlighted as a major challenge. The demanding need for real-time
responses in the automotive industry is motivated by both security imperatives and
the prospect of being able to take advantage of future technology breakthroughs
for functional checks and against potential malicious attacks.

This research sets neural networks as an auxiliary control mechanism within EVs.
While the primary control system is intended to take care of hardware failures,
the neural network serves as a fallback system, meticulously monitoring any user-
induced malfunctions or security risks. Consider the following scenario: a driver,
due to unanticipated circumstances such as as an illness, keeps the accelerator
pushed for an extended length of time. In such circumstances, a sophisticated
neural network supplied with data from many sensors – including steering wheel
inputs, brake pedal usage, and other ADAS (Advanced Driver Assistance Systems)
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components – can identify this as unusual driving behavior that deviates from
conventional driving patterns. The system can determine if the extended accelerator
pressure is a genuine anomaly, such as driver illness, or the consequence of other
circumstances, such deliberate acceleration over a lengthy stretch of road, by
assessing the holistic data, and can then take corrective action.
Moreover, as vehicles become increasingly interconnected and part of complex
vehicular networks, the importance of neural networks may expand beyond their
traditional applications. They will be able to be used to discover complex anomalies
in the huge amounts of data transmitted through these networks. Neural networks
will be able to quickly detect deviations or anomalies that could be indicative
of a cyber attack by learning common patterns of data transmission and system
behavior. This proactive detection capability is critical to ensuring the cybersecurity
of modern vehicles, especially as they are increasingly connected to smart city
infrastructure and other IoT devices. In essence, neural networks will be able to act
as vigilant sentinels, strengthening cybersecurity defenses against possible cyber
attacks in these complex systems.
Given these factors, there is a clear and pressing need for models that can analyze
data rapidly without affecting accuracy. For microcontroller implementation, the
2C CNN model has emerged as the most promising and practicable so far. To
obtain the necessary latency results, however, a more powerful platform than the
RP2040, such as the Cortex-M7, may be better suited to the task.

Looking ahead to the future of neural network applications in the automobile field,
various opportunities for research and improvement arise. In the context of this
thesis, it is necessary to expand the dataset used for training and testing neural
networks. The existing approach, which involves retrieving data from a combustion
engine vehicle’s throttle valve position data, was critical for this research, as there
was no possibility to directly obtain data from the Evergrin prototype, which
was not yet operational. In the future, with Evergrin’s working prototype, it will
be practicable to obtain real data with which to train the networks, potentially
improving the resilience and reliability of the models.
Furthermore, the quick rate of technical advancements in the field of pattern
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quantization should not be underestimated. Complex models, like LSTM and
GRU, are currently challenging to incorporate into microcontrollers. However,
as quantization techniques evolve and become more sophisticated, it is expected
that these models will be able to be deployed on microcontrollers without issue in
the near future. Given the higher performance parameters associated with LSTM
models in preliminary testing, there is a strong argument in favor of investing
research effort in order to adapt these models for microcontroller implementation.
The potential benefits could alter in the future how neural networks contribute to
vehicle safety and functionality.
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Appendix A

Analysis of Accuracy and
Loss for Normalized Input
Data

Figure A.1: Comparison of models accuracy - normalized data.
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Analysis of Accuracy and Loss for Normalized Input Data

Figure A.2: Comparison of models loss - normalized data.
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Appendix B

Profile Output 2C CNN
model

Listing B.1: Performance on Raspberry Pi RP2040
1 {

2 " device ": "raspberry -pi - rp2040 ",

3 " tfliteFileSizeBytes ": 258336 ,

4 " isSupportedOnMcu ": true ,

5 " memory ": {

6 " tflite ": {

7 "ram ": 27275 ,

8 "rom ": 323824 ,

9 " arenaSize ": 26771

10 },

11 "eon ": {

12 "ram ": 20664 ,

13 "rom ": 295792

14 }

15 },

16 " timePerInferenceMs ": 1889

17 }
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Listing B.2: Performance on other device types
1 {

2 " variant ": " float32 ",

3 " lowEndMcu ": {

4 " description ": " Estimate for a Cortex -M0+ or similar

, running at 40 MHz",

5 " timePerInferenceMs ": 6281 ,

6 " memory ": {

7 " tflite ": {

8 "ram ": 29675 ,

9 "rom ": 307920

10 },

11 "eon ": {

12 "ram ": 22648 ,

13 "rom ": 287136

14 }

15 },

16 " supported ": true

17 },

18 " highEndMcu ": {

19 " description ": " Estimate for a Cortex -M7 or other

high -end MCU/DSP , running at 240 MHz",

20 " timePerInferenceMs ": 86,

21 " memory ": {

22 " tflite ": {

23 "ram ": 27275 ,

24 "rom ": 323824

25 },

26 "eon ": {

27 "ram ": 20664 ,

28 "rom ": 295792

29 }

30 },

31 " supported ": true
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32 },

33 " highEndMcuPlusAccelerator ": {

34 " description ": "Most accelerators only accelerate

quantized models .",

35 " timePerInferenceMs ": 86,

36 " memory ": {

37 " tflite ": {

38 "ram ": 27275 ,

39 "rom ": 323824

40 },

41 "eon ": {

42 "ram ": 20664 ,

43 "rom ": 295792

44 }

45 },

46 " supported ": true

47 },

48 "mpu ": {

49 " description ": " Estimate for a Cortex -A72 , x86 or

other mid -range microprocessor running at 1.5 GHz",

50 " timePerInferenceMs ": 2,

51 "rom ": 258336.0 ,

52 " supported ": true

53 },

54 " gpuOrMpuAccelerator ": {

55 " description ": " Estimate for a GPU or high -end

neural network accelerator ",

56 " timePerInferenceMs ": 1,

57 "rom ": 258336.0 ,

58 " supported ": true

59 }

60 }
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