
POLITECNICO DI TORINO
Master Degree course in Communications and Computer Networks

Engineering

Master Degree Thesis

Privacy-Preserving People Flow
Monitoring with Bloom Filters

Supervisors
Prof. Claudio Ettore Casetti
Prof. Paolo Giaccone
PhD. Riccardo Rusca

Candidato
Alex Carluccio

Academic Year 2022-2023

Acknowledgements

I would like to express my deepest gratitude to my supervisors’ professor Claudio
Casetti and professor Paolo Giaccone for their endless support and valuable com-
ments and guidance through this thesis work. I highly appreciate their valuable
advice and suggestions to improve my work.

I want to express my deep gratitude to Riccardo Rusca and Diego Gasco for
their valuable contribution and support during the completion of this thesis. Their
dedication and collaboration greatly enriched this work, and I appreciate the energy
and commitment they devoted to the project.

Furthermore, special thanks go to my family, my girlfriend Marta, and all my
friends for their constant support and the motivation they provided me with over
these years. Your affection and encouragement have been crucial to my journey,
and I am grateful to have such extraordinary people in my life.

ii

Abstract

In the last decade, our cities have undergone significant transformation due to the
widespread adoption of IoT (Internet of Things) sensors and smart devices owned
by citizens, resulting in significant improvements in urban life.

One of the most common and relevant research fields concerns the monitoring
of people’s movements, with the aim of enhancing services for citizens. This type
of monitoring also pertains to optimizing transportation infrastructure, bike lanes,
and public thoroughfares. However, it is also of crucial importance in identifying
and quantifying individuals in sensitive areas, such as ensuring safety during large-
scale events or at transit points. Additionally, it is essential to introduce new
technologies for tracking individuals in emergency situations, to reduce response
times and increase the likelihood of success.

In the context of this thesis, we focus on the WiFi fingerprinting technique,
which uses the MAC address of mobile devices as a proxy for people counting.
Due to European GDPR regulations and the stringent measures taken by major
smart device providers to enhance user privacy (e.g., through MAC address ran-
domization), most of the techniques examined in the past must be rethought and
redefined.

For this reason, we have adopted efficient probabilistic data structures called
Bloom filters for storing sensitive information. Thanks to their formal ”deniability”
property, we are able to offer a solution that safeguards user privacy. Our solution
is also compatible with trajectory-based crowd monitoring, as these elements enable
set operations, such as intersection, for determining flows.

Contents

List of Figures 1

List of Tables 3

1 Introduction 5

2 Technological issues 7
2.1 WiFi probe request . 7
2.2 Bluetooth probe request . 10
2.3 MAC address . 11

2.3.1 MAC address randomization 11
2.3.2 How main OS implement MAC address randomization . . . 12

2.4 Privacy . 13
2.4.1 GDPR . 14
2.4.2 Anonymization Techniques 15
2.4.3 Bloom filter . 17

2.5 Data Transport . 18
2.5.1 MQTT . 19
2.5.2 CoAP . 21

3 Proposal architecture 25
3.1 WiFi scanner . 26
3.2 Chain of processing . 27

3.2.1 De-randomizer . 27
3.2.2 Bloom filter . 28
3.2.3 Data Transfer . 29

4 Bloom filter for flow tracking 31
4.1 Tuning . 31
4.2 Privacy . 32

4.2.1 Brute-Force Attack . 32
4.3 Privacy Protection . 34

ii

4.3.1 Anonymization Noise . 35
4.3.2 Multiple Anonimity . 36

4.4 Counting . 38
4.4.1 Intersection . 38

5 Implemented Solution 41
5.1 Hardware . 41
5.2 System Description . 43

5.2.1 Remote Accessing to Raspberry 43
5.2.2 Capturing WiFi Probe Request 44
5.2.3 Bloom Filter Dimension . 44

5.3 Python Chain Of Processing . 44

6 Experimental evaluation 49
6.1 Profiling . 49
6.2 Bloom filter dimension . 55
6.3 Counting . 57

6.3.1 Counting intersection . 58
6.4 Anonimity . 60

6.4.1 Multiple Anonimity . 61

7 Conclusion and Future Work 63

Bibliography 65

iii

List of Figures

2.1 Simplified probe transmission scheme 8
2.2 Structure of probe request frame (reproduced from [1]) 8
2.3 Communication channels used by WiFi networks (reproduced from [1]) 9
2.4 Inquiry process . 10
2.5 48-bit MAC Address Structure . 12
2.6 Hash function . 15
2.7 Salted hash function . 16
2.8 Truncated hash function . 17
2.9 Bloom filter . 17
2.10 QoS 0 . 20
2.11 QoS 1 . 20
2.12 QoS 2 . 21
2.13 Structure of CoAP message (reproduced from [12]) 22

3.1 Proposal architecture . 25
3.2 HT Capabilities . 26

4.1 Hiding set . 35
4.2 Bloom filter with γ = 1 composed of elements (x1, x2, x3) 37
4.3 Bloom filter with γ = 0.66 composed of elements (x1, x2, x3) 37
4.4 Bloom filter with γ = 1 and K = 3 composed of elements (x1, x2, x3) 38

5.1 Raspberry Pi 3 Model B . 42
5.2 Raspberry Pi 3 Model B Configuration 43
5.3 System Python Chain of Processing 45
5.4 System Flow Chart . 47

6.1 Middleware Script CPU Load Evolution Over Time 50
6.2 Middleware Script RAM Load Evolution Over Time 50
6.3 Analyzer Script CPU Load Evolution Over Time 51
6.4 Analyzer Script RAM Load Evolution Over Time 51
6.5 Filter Script CPU Load Evolution Over Time 52
6.6 Filter Script RAM Load Evolution Over Time 52

1

List of Figures

6.7 Derandomizer Script CPU Load Evolution Over Time 53
6.8 Derandomizer Script RAM Load Evolution Over Time 53
6.9 Bloomfilter Script CPU Load Evolution Over Time 54
6.10 Bloomfilter Script RAM Load Evolution Over Time 54
6.11 Evolution of false positive probability during the insertion of ele-

ments into a Bloom filter . 55
6.12 Evolution of false positive probability during the insertion of ele-

ments into different Bloom filters. Each filters is configured with
m = 10000. 56

6.13 Evolution of false positive probability with different values of k. . . 56
6.14 Comparison between the number of elements actually inserted and

the counted ones. 57
6.15 Relative error comparison between the number of elements actually

inserted and the counted ones. 58
6.16 Comparison between the estimators c1 and c2 to evaluate the number

of people moving from one scanner to the other 59
6.17 Relative error of the estimators c1 and c2 to evaluate the number of

people moving from one scanner to the other 60
6.18 γ-deniability value in relation to the number of inserted MAC addresses 61
6.19 γ-deniability value, for different K, in relation to the number of in-

serted MAC addresses . 62

2

List of Tables

2.1 Notations and definitions . 18

3

4

Chapter 1

Introduction

Over the past years, Information and Communication Technologies (ICT) have ex-
perienced continuous development, thanks to advancements in both hardware and
software. The implementation of these technologies in cities has led to a signifi-
cant improvement in urban operations, with various terms coined to describe these
realities, such as ”cyberville”, ”digital city” and ”smart city”.

The concept of a ”smart city” represents the broadest abstraction among all the
used definitions, but there is still no final and universally accepted definition by
the academic community and industry experts. In simple terms, a smart city is
a place where traditional networks and services are made more efficient, flexible,
and sustainable through the use of information, digital, and telecommunication
technologies. The goal is to improve the city’s functioning for the benefit of its
inhabitants. In other words, a smart city leverages digital technologies to pro-
vide high-quality public services to its citizens while optimizing resource usage and
reducing environmental impact.

Monitoring people flows is another significant focus of digital city that aims to
enhance citizen services and ensure safety in sensitive areas and during transit.
It involves using advanced tracking technologies, which are particularly important
during health emergencies like the ongoing situation.

The world’s population has significantly increased in recent decades, as have
expectations regarding living standards. Projections indicate that by 2050, ap-
proximately 70% of the world’s population will reside in urban areas.

Turin, being the seventieth city worldwide and the fifth in Italy for the number
of in-person events held in 2022, faces the challenge of managing a high flow of
constantly moving people. This situation makes accurate people counting and
crowd monitoring essential elements for making effective decisions to ensure public
safety. The ability to precisely assess crowd dynamics, estimate necessary resources,
and optimize emergency response efforts is of vital importance for the authorities.
However, the task of counting and tracking individuals during large gatherings or
chaotic situations has always been a complex challenge.

5

Introduction

The aim of this work is to find a solution to this problem using scanner (APs)
for scanning WiFi bands and probabilistic data structures called Bloom filters for
storing data classified as personal while ensuring complete privacy.

During this study, various issues and limiting factors will be addressed, some of
which are due to the system itself, including:

• Ability to detect only users carrying smart devices with enabled WiFi inter-
faces.

• Ability to detect a flow of users only under specific MAC address randomiza-
tion conditions.

• Inability to distinguish if a user is carrying multiple devices simultaneously,
such as smartwatches, smartphones, and tablets.

• Inability to fully counter the randomization of MAC addresses.

The second and last points in the list require important clarification. In recent
years, mobile device manufacturers have introduced MAC address randomization
techniques. This means that the same device uses random and different MAC ad-
dresses in various generated packets. This must be carefully managed by choosing
the most effective de-randomization systems to avoid counting the same client mul-
tiple times. It is also evident that monitoring flows under these circumstances is
extremely complicated.

Alternative solutions exist, such as those proposed by companies like Footfall
Cam, which offers various models. FootfallCam 3D Prowave uses depth data and
a custom radar system to measure area occupancy for collaboration. However, its
range of action is very limited, making the study of flows impractical. On the
other hand, the FootfallCam 3D Pro2 utilizes three-dimensional stereoscopic vision
technology to capture images, and its GPU runs artificial intelligence algorithms
that leverage depth, color, and texture models to identify individuals. However, in
this case, the main issue is privacy as it involves working with images of monitored
individuals.

6

Chapter 2

Technological issues

In this chapter, we will discuss the current state of WiFi probe requests, the im-
plementation of MAC address randomization in our smart devices, and touch upon
Bloom filters and their properties.

2.1 WiFi probe request
Discovering networks by scanning all possible channels and listening to beacons is
not considered very efficient (passive scanning). To improve this discovery process,
devices often use what is called active scanning.

In active scanning, devices iterate through all available channels and instead of
passively listening to signals in search of a network, they send a frame called Probe
request, asking which networks are available on that channel.

The Probe requests are sent to the broadcast address (FF:FF:FF:FF:FF:FF).
Upon receiving a probe request, an Access Point (AP) has the option to replay the
client of its presence by sending a probe response. However, if there are no APs
nearby or if the APs are in passive mode, the client will not receive any response.

Once a request is sent, the device starts a countdown called Probe Timer while
waiting for responses. At the end of the timer, the device processes the received
responses, and if nothing is received, it moves to the next channel and repeats the
discovery process. The process is illustrated in 2.1.

Devices sending Probe requests can specify the SSID they are looking for if they
are searching for a particular network. In such cases, only IBSS (Independent Basic
Service Set) stations or access points (APs) that support that SSID will respond.
The value of the SSID (Service Set IDentifier) can also be set to 0 (i.e., the SSID
field is present but empty). This is called a ”Wildcard” SSID or ”Null” Probe
request.

In 2.2, there is an example of the structure of a Probe request. We can now
analyze a list of information that can be found within it:

7

Technological issues

Figure 2.1. Simplified probe transmission scheme

Figure 2.2. Structure of probe request frame (reproduced from [1])

• SSID: The name by which a WiFi network or WLAN identifies itself to its
users.

• Supported Rates: Data rates supported by the device to enable a correct
connection; all indicated rates must be supported.

• Request Information: Used to communicate various capabilities, preferences,
and requirements of the client device to the access points

• Extended Supported Rates: Mandatory when the number of supported rates
exceeds eight; otherwise, its presence is optional.

• DSSS Parameter Set: Used to indicate the channel.

• Supported Operating Classes: List of operating classes or frequency ranges
that the client device is capable of using. Each operating class corresponds to
a specific set of WiFi channels.

• HT Capabilities: MCS (Modulation and Coding Scheme) values which are
supported by the wireless network.

• 20/40 BSS Coexistence: Feature that allows devices to operate in both 20
MHz and 40 MHz channel bandwidths in the same Basic Service Set (BSS).

8

2.1 – WiFi probe request

• Extended Capabilities: Used to indicate specific features or functionalities
that the device supports beyond the basic capabilities defined in the standard
Wi-Fi specifications (802.11k, 802.11v, 802.11r)

• SSID List: List of Service Set Identifiers (SSIDs) that the WiFi client device
is seeking or has previously connected to.

• Channel Usage: Information about the current channel utilization of a WiFi
client device.

• Interworking: Indicate the client device’s support for specific interworking
features. Interworking is the ability of a WiFi client to seamlessly connect and
switch between different types of networks, such as WiFi, cellular networks,
and other wireless technologies, in a unified and efficient manner.

• Mesh ID: Used by device in a Mesh network to identify itself and indicate its
presence as a potential node or participant.

• Vendor Specific: Used from manufacturers to include custom or proprietary
information in the probe request, which can be utilized by specific vendor-
specific features, services, or protocols.

Scans are essential to maintain WiFi connections during the device’s sleep state,
constantly seeking better signal strength to improve the user experience. Further-
more, search requests are crucial for connecting to hidden networks where access
points (AP) do not broadcast beacons.

Figure 2.3. Communication channels used by WiFi networks (reproduced from [1])

In 2.3, there is a depiction of the 14 distinct channels utilized by WiFi networks,
along with the central frequency spectrum for each of these channels. The illustra-
tion emphasizes Channels 1, 6, and 11, which are commonly employed by wireless
routers due to their lack of frequency spectrum overlap between one another.

9

Technological issues

2.2 Bluetooth probe request
Bluetooth devices function within the globally unlicensed 2.4 GHz short-range radio
frequency spectrum. This unlicensed frequency allows Bluetooth technology to be
used without the need for regulatory approval or licensing, enabling its widespread
adoption worldwide.

When a device has its Bluetooth interface activated, it can be in two distinct
states, each serving different purposes and functions:

• Discoverable State: In this mode, the Bluetooth device actively broadcasts its
presence to other nearby Bluetooth devices, making itself visible and available
for pairing and communication. When in this state, the device is actively
seeking to establish connections with other compatible devices.

• Non-Discoverable State: When a device is in the non-discoverable state, it
does not actively broadcast its presence to other devices in the proximity.
This mode is useful for enhancing privacy and security, as the device remains
hidden and will not be detected by other Bluetooth devices during normal
scanning procedures. However, even in this state, the device can still connect
to other devices that are in the discoverable state, as long as they initiate the
pairing process.

Figure 2.4. Inquiry process

Bluetooth’s ability to switch between these two states allows for efficient and
controlled communication, striking a balance between user convenience and pri-
vacy. Users can decide when and how their devices interact with others, ensuring
a seamless and secure Bluetooth experience.

Bluetooth networks utilize a master/slave model to regulate the transmission of
data, determining when and where devices can exchange information. To discover
other Bluetooth devices, the Bluetooth protocol employs a method similar to WiFi
probe requests, known as the ”inquiry mode”, as showed in 2.4. In this mode, a

10

2.3 – MAC address

Bluetooth device sends out inquiry packets, essentially broadcasting a request to
find nearby devices. Other devices within range and in inquiry scan mode can
respond with inquiry replies, providing the necessary information for establishing
a connection.

During the inquiry process, devices exchange relevant data, such as their MAC
addresses and other identification information, facilitating the setup of a connection
between them.

2.3 MAC address
MAC address stands for Media Access Control Address, which serves as a unique
identifier for an IEEE 802 network interface. IEEE 802 encompasses various stan-
dards used in networking technologies, including Ethernet, WiFi, ZigBee, FDDI
(Fiber Distributed Data Interface), and Bluetooth, among others. Each network
interface is assigned a distinct MAC address, allowing devices to be uniquely iden-
tified.

A device equipped with both a WiFi card and a Bluetooth card will have two
MAC addresses, one for each card. Specifically, a MAC address is a 48-bit code
created to be unique. It consists of two parts, each composed of 3 bytes: the
Organizationally Unique Identifier (OUI), which represents the manufacturer of
the network interface, and the serial number of the card itself. Additionally, the
IEEE offers the option to purchase a ”private” OUI, which does not include the
company’s name in the registry.

MAC addresses are divided into two categories:

• Universally Administered Addresses: These addresses are assigned to devices
by manufacturers and are sometimes referred to as ”burned-in addresses.” In
this case, the requirement is to be globally unique.

• Locally Administered Addresses: These addresses are assigned by the net-
work administrator, replacing the burned-in address. Locally administered
addresses do not include the OUI and are not required s11 be globally unique.

The distinction between universally administered addresses and locally admin-
istered addresses is determined by the second least significant bit of the first byte
(as shown in 2.5). If the bit is set to 0, the address is considered universally ad-
ministered; if it is set to 1, the address is considered locally administered.

2.3.1 MAC address randomization
Due to the fact that the MAC address serves as a unique identifier for a device, it can
be utilized to identify an individual. As explained in 2.2 and 2.1, both WiFi devices’
probe requests and Bluetooth devices’ inquiry packets require a MAC address.

11

Technological issues

Figure 2.5. 48-bit MAC Address Structure

Consequently, smart devices belonging to users can be effortlessly tracked across
different time periods and locations as they continuously transmit their distinctive
identity.

To address this issue, a mechanism for randomizing MAC addresses has been
developed. When a device attempts to connect to an access point (AP), it sends
packets containing different source MAC addresses, preventing tracking attempts.
Due to this, in recent years, several public WiFi networks have been created in
various locations to easily monitor the flow of people. It should also be noted that
with recent updates to various operating systems, MAC address randomization is
not only used during the search phase but also during the connection phase to the
network.

2.3.2 How main OS implement MAC address randomiza-
tion

In the following we will discuss how major operating systems implement MAC
address randomization. It is crucial to note that randomization techniques and
their application on smart devices are constantly evolving. With each new software
version, manufacturers frequently make adjustments to improve user privacy and
enhance the effectiveness of these techniques.

12

2.4 – Privacy

Android

Starting from Android 8.0, as reported in [2], Android devices use randomized
MAC addresses when searching for new networks while not currently connected to
a network.

In Android 9, there is also an option in the developer settings (disabled by
default) that allows the device to use a randomized MAC address during the con-
nection to a Wi-Fi network.

In Android 10, MAC address randomization is enabled by default for client
mode, SoftAp, and Wi-Fi Direct.

Apple OS

Apple platforms, as mentioned in [3], use random MAC addresses both during
scans for WiFi networks and during ePNO (enhanced Preferred Network Offload)
scans, both when the device is not connected to a WiFi network and when the
processor is in a low-power state. ePNO scans are used to provide location-based
services on the device, such as automations triggered when arriving at a location
with a specific WiFi network. From iOS 14, watchOS 7, iPadOS 14, and onwards,
whenever a device connects to a WiFi network, it identifies itself using a random
MAC address. Users have the possibility to disable this feature, either manually or
through a new setting in the WiFi configuration. Under certain circumstances, the
device will revert to using its actual MAC address.

Windows

Windows systems, as stated in [5], do not use randomized MAC addresses by de-
fault, but depending on the versions of the operating system, it is possible to enable
this feature. Users can choose between using a random MAC address for all WiFi
networks or only for a specific WiFi network to which they are connected.

2.4 Privacy
The idea of privacy has captured considerable attention from both scholarly re-
searchers and the general media in recent times. Privacy lacks a single, unam-
biguous, and straightforward definition. Its interpretation hinges on the specific
circumstances in which it is employed. For instance, during the period when non-
electronic newspapers, magazines, and photographs were prevalent, privacy was
conceived as the ”right to solitude”. When journalists compose articles about in-
dividuals’ experiences or lives in newspapers and release pictures of them without
their consent, this act could be considered an infringement on privacy since these in-
dividuals possess the right to seclusion and should not have their images distributed
publicly, particularly without their agreement.

13

Technological issues

Nevertheless, new modes of communication have surfaced due to technological
advancements, furnishing individuals with more opportunities to explore and ex-
change information. Consequently, the notion of privacy carries a somewhat distinct
implication in this situation, as users generally have the option to decide whether
or not to disclose information about themselves. To safeguard individuals’ privacy
in this new era, new regulations have been introduced by competent authorities
worldwide; for example, the GDPR issued by the European Union through the
European Data Protection Board.

2.4.1 GDPR
The GDPR (General Data Protection Regulation), also known as RGPD in Italian,
is a new European regulation concerning the protection of personal data [11]. Its
goal is to harmonize rules regarding the collection and processing of data. Data
under GDPR can be divided into two different groups:

• Sensitive data: revealing information about race, religious, political, sexual
orientation, health status, economic and social status.

• Identifying data: personal details, residential address, and images allowing di-
rect identification of an individual. The GDPR also protects online identifiers,
such as email addresses, cookies, IP addresses, and geolocation data.

The new Privacy Regulation applies to both individuals and legal entities (pro-
fessionals and companies) processing personal data of European citizens, whether
inside or outside the European Union, online or offline. The GDPR involves four
key actors in data protection:

• Data Subject refers to an individual who possesses the data provided and
is entitled to the rights established by the new Regulation, excluding legal
entities such as companies.

• Data Controller refers to companies to whom users willingly share their data
(with prior consent to privacy). This role involves deciding the objectives
and procedures for data processing while implementing preventive measures
to ensure compliance with privacy protection regulations, including privacy by
design. Legally, they have a responsibility to meet the requirements outlined
by the regulation.

• Data Processor refers to a person appointed by the Data Controller to jointly
implement technical and organizational measures to ensure data security.

• Data Protection Officer (DPO or RPD) refers to a person that is responsi-
ble for ensuring adherence to the Regulation. They must possess specialized
knowledge of data protection regulations. Their appointment is compulsory
in cases explicitly stipulated by the GDPR.

14

2.4 – Privacy

2.4.2 Anonymization Techniques
Anonymization techniques are strategies and processes used to remove or alter iden-
tifying information from personal data. They enable data to be rendered anony-
mous or pseudonymous, thereby reducing the risk of recognition. The main ob-
jective is to balance the use of data for legitimate purposes such as research and
analysis, with the protection of individuals’ rights and privacy.

Hash

Hash functions are cryptographic algorithms used to convert data of any size into
a fixed-length value, known as a ”hash” or ”digest”. These algorithms are designed
to be one-way, meaning it should not be possible to reverse the function and go
from the digest back to the plain text (the conditional is used because certainty
cannot be guaranteed). As shown in 2.6, we can see an example of how it works.
Each input will be divided into fixed-sized blocks, which are called data blocks (the
size depends on the algorithm). If the blocks are not large enough, padding may
be added to fill them out. The hash function is then iterated as many times as the
number of data blocks, and each time, the output of the previously data block is
used as the input for the next block. Then the final output can be represented in
hexadecimal form.

Figure 2.6. Hash function

Hash functions have several important characteristics:

• Uniqueness: Every input will always produce the same output when the same
hash function is used. However, two different inputs should produce completely
different outputs.

• Speed: Hash functions must be efficient and fast in calculating the digest to
support the processing of large amounts of data.

15

Technological issues

• Collision resistance: A collision occurs when two different inputs produce the
same output. Hash functions are designed to minimize the probability of this
happening as much as possible, making it difficult or practically impossible to
find two different values with the same hash.

• Data sensitivity: Even a small variation in the input data should produce
a completely different hash. This property is known as ”diffusion” and con-
tributes to the security of the hash function.

Salted Hash

Salted hashing is a technique used to enhance security by introducing additional
layers of randomness during the hashing process as shown in 2.7. A random string
called ”salt” is added to the input before hashing, making it challenging for an
attacker to determine the original plaintext without access to both the salt and
the hashed value. The concept of salting provides several key benefits for data
security. Firstly, it mitigates the vulnerability of common attacks such as rainbow
table attacks, wherein precomputed tables of hashed values are used to expedite the
reversal of hashes. Furthermore, salting offers defense against brute-force attacks
that attempt to guess the plaintext through an exhaustive search of possible inputs.

Figure 2.7. Salted hash function

Truncated Hash

Truncated hashing is a process in which the output of a hash function is shortened
to a specific number of bits. Instead of producing the full hash value, only a portion
of it is retained, as is possible to see in 2.8. Is also important to note that truncating
a hash reduces the entropy and increases the risk of collisions, where different inputs
produce the same truncated hash.

16

2.4 – Privacy

Figure 2.8. Truncated hash function

2.4.3 Bloom filter

Bloom filters are probabilistic data structure used to represent groups of elements.
It is constructed using an array of bits B[i] with a length m and k hash functions.
Initially, the array’s bits are set to 0.

Figure 2.9. Bloom filter

When an element has to be inserted into the Bloom filter, the input is processed
through the k hash functions, which determine the positions in the array where the
value 1 should be inserted.

To check if an element is present in a Bloom filter, similar steps to insertion are
performed. The element is passed through the k hash functions, which indicate
which array cells to check. If all the indicated bits have a value of 1, the element
is considered ”probably present” in the Bloom filter. However, if even a single bit
has a value of 0, the element is ”definitely not inserted” in the Bloom filter. Before
proceeding, in 2.1 is possible to have a reminder of the notation used.

17

Technological issues

Table 2.1. Notations and definitions

Notation Definition
S Set of element stored in the Bloom filter

BF (S) Bloom filter storing a set S
n = |S| Number of element stored in the Bloom filter
m Size in bit of the Bloom filter
k Number of hash functions
tA Number of bits set to 1 in the Bloom filter A
V Hiding Set
U Set of elements in the universe
|U | Number of elements in U

False Positive

By encoding elements from a large universe into a smaller universe represented by a
bit-vector, there is a probability, calculable through appropriate equations, that an
element x not belonging to S has collisions for each output of the k hash functions.
When this happens, it is referred to as a false positive. Equation 2.1 below shows
how to calculate this probability.

Pr(false positive) = (1 − p)k =
(︄

1 −
(︃

1 − 1
n

)︃mk
)︄k

≃
(︂
1 − e

−km
n

)︂k
(2.1)

To mitigate false positives, it is possible to adjust the parameters of the Bloom
filter, such as the size of the array and the number of hash functions, according to
the specific needs of the application. For this reason, given m and n, it is possible
to calculate the optimal number of hash functions using the following formula:

kopt = n

m
log(2) (2.2)

2.5 Data Transport

Two major categories of application layer protocols exist in the realm of the In-
ternet of Things (IoT): Client/Server and Publish/Subscribe. CoAP (Constrained
Application Protocol) and MQTT (Message Queuing Telemetry Transport) stand
as the two most prevalent protocols, with the former being associated with the
Client/Server family and the latter falling under the Publish/Subscribe family.

18

2.5 – Data Transport

2.5.1 MQTT

The Message Queuing Telemetry Transport (MQTT) protocol had its genesis in
1999 thanks to an idea by Andy Stanford-Clark (IBM) and Arlen Nipper (Eu-
rotech). In MQTT workflow three primary ”entities” play pivotal roles:

• The Publisher: This is the device responsible for transmitting data to a par-
ticular set of subscribers.

• The Subscriber: A Subscriber represents a device that seeks to obtain data
related to specific topics of interest.

• The Broker: Positioned at the core of the architecture serves as central hub.
Every client, whether functioning as a publisher or subscriber, establishes a
connection with the broker for the purpose of either receiving or sending mes-
sages.

The channels through which messages are disseminated are termed as topics. A
topic is an identified logical conduit denoted by a UTF-8 string segmented by the
forward slash ”/” symbol, which is recognized as the separator for topic levels. Each
segment of the topic separated by ”/” signifies a distinct topic level. Every message
conveyed within MQTT pertains to a topic, and the broker employs topic-based
filtration to dispatch the message to all subscribers demonstrating interest in that
particular topic.

In MQTT, wildcards offer a robust mechanism to enable the simultaneous sub-
scription to multiple topics. When a client opts to subscribe to a specific topic,
it can choose to either subscribe to precisely that topic or leverage wildcards to
expand the scope of its subscription. It’s noteworthy that wildcards can solely be
applied to subscriptions and are not applicable for the purpose of message publica-
tion. Two distinct categories of wildcards exist:

• Single level wildcard, denoted by the plus symbol (+), facilitates the substitu-
tion of a single topic level. When subscribing to a topic featuring a single-level
wildcard, any topic including an unspecified string in place of the wildcard
will be matched.

• Multi level wildcard encompasses numerous levels within a topic. It is repre-
sented by the hash symbol (#) and should be positioned as the final character
of the topic, following a forward slash.

For example, if the following list of topics is present, using the expression 2.3
will subscribe to the first and third topics. Conversely, with the expression 2.4, you
will subscribe to all the topics in the list.

19

Technological issues

/home/groundfloor/livingroom/temperature
/home/groundfloor/livingroom/humidity
/home/groundfloor/kitchen/temperature
/home/groundfloor/kitchen/humidity

/home/groundfloor/+ /temperature (2.3)

/home/groundfloor/# (2.4)

MQTT introduces three tiers of Quality of Service (QoS). The determination of
QoS takes place in mutual agreement between the sender and receiver (publisher-
broker and broker-subscriber), thereby rendering it unnecessary for the QoS level
to be consistent from the publisher to the subscriber. These three tiers encompass:

• QoS 0 (Figure 2.10): Approach based on best efforts where the sender does not
anticipate acknowledgment or assurance of message reception. Consequently,
the recipient does not acknowledge the receipt of the message, and the sender
does not retain or retransmit it. QoS 0 is often referred to as ”fire and forget”
wherein the message is dispatched without subsequent monitoring or valida-
tion.

Figure 2.10. QoS 0

• QoS 1 (Figure 2.11): The primary objective is to guarantee message delivery
to the receiver at least once. When a message is published the sender retains a
duplicate of the message until it obtains a PUBACK packet from the recipient.

Figure 2.11. QoS 1

20

2.5 – Data Transport

In the event that the sender does not receive the PUBACK packet within a
reasonable timeframe, it initiates a retransmission of the message.

• QoS 2 (Figure 2.12): Represents the most elevated level of service guaran-
teeing precise single-time delivery of each message to the intended recipients.
To achieve this, QoS 2 employs a four-step interaction. When the recipient
receives a QoS 2 PUBLISH packet, it processes the publish message and re-
sponds by sending a PUBREC packet to acknowledge the receipt of the PUB-
LISH packet. In cases where the sender fails to receive a PUBREC packet
from the recipient, it persists in transmitting appending a duplicate (DUP)
flag. Following the successful reception of a PUBREC packet the sender re-
sponds with a PUBREL packet. Once the recipient obtains the PUBREL
packet, it discards all stored states and responds with a PUBCOMP packet.
Upon the culmination of the QoS 2 process, both parties attain assurance of
the message’s delivery.

Figure 2.12. QoS 2

2.5.2 CoAP
CoAP stands for Constrained Application Protocol, and it is a protocol optimized
for communication between devices with limited resources. It was developed by
the IETF (Internet Engineering Task Force) group known as CoRE (Constrained
Resource Environments). The interaction model is similar to that of HTTP (client-
server), but it differs in the context of M2M (Machine-to-Machine) communication,
where nodes can act as both clients and servers without a distinct differentiation of
entity roles. CoAP packets are significantly smaller compared to typical TCP flows
in HTTP, as CoAP utilizes UDP (User Datagram Protocol) for communication.
Retransmissions and packet ordering are managed at the application level.

In CoAP, there are four types of messages defined:

• Confirmable: To ensure greater reliability, a message can be marked as ”con-
firmable”; in such cases, the message requires a response (Acknowledgment).
Assuming no packet losses, each confirmable message will be followed by an
acknowledgment.

21

Technological issues

• Non-confirmable: Messages labeled as non-confirmable do not require sending
an acknowledgment; this message type is useful for regularly sent packets, such
as those containing sensor readings.

• Acknowledgment: These are responses to confirmable messages. Assuming a
request is confirmable, the acknowledgment can include the response (resource)
to the request; this is referred to as a ”piggybacked response.” If the response is
not immediately available, it will be sent later in a separate message (”separate
response”).

• Reset: A reset message is sent in response to a request that the server cannot
process due to a lack of context.

CoAP utilizes a basic binary header configuration for its communication, em-
ploying two message categories: requests and responses. The most compact CoAP
message spans 4 bytes, excluding the token, options, and payload components.
Subsequent to the header, the token value (ranging from 0 to 8 bytes) is followed,
which could potentially be succeeded by an array of options in an optimized TLV
(Type Length Value) structure. Any bytes beyond the header, token, and options
(if present) are designated as the message payload. In 2.13 is depicted the structure
of a CoAP message.

Figure 2.13. Structure of CoAP message (reproduced from [12])

CoAP provides support for the fundamental methods such as GET, POST, PUT,
and DELETE, which can be seamlessly correlated with their counterparts in HTTP.

• GET: Retrieve the information pertaining to the representation of a specific
resource, identified by the URI of the request. The GET method is secure and
idempotent.

• POST: It requires a representation enclosed within a request to be processed.
The operation performed by the method is determined by the server provid-
ing the resource (origin server) and depends on the ”target resource.” The

22

2.5 – Data Transport

operation can involve creating a new resource or updating the existing target
resource. The POST method is neither secure nor idempotent.

• UPDATE: It necessitates that a resource identified by a request URI be up-
dated or created with the representation enclosed within the request. The
format of the representation is specified in the ”Content-Format” option. The
PUT method is not secure but is idempotent.

• DELETE: It demands that a resource, identified by a request URI, be deleted.
The DELETE method is not secure but is idempotent.

23

24

Chapter 3

Proposal architecture

In this chapter will be presented the proposed architecture, represented in Fig-
ure 3.1. It allows tracking of people’s movements anonymously and in compliance
with the current regulations regarding the processing of personal data, as regulated
in Europe by the GDPR.

Figure 3.1. Proposal architecture

25

Proposal architecture

3.1 WiFi scanner

The devices used for scanning must also allow code execution. This is because data
processing is carried out locally, avoiding the transmission of sensitive data over the
network. Through specific analysis tools such as tshark or tcpdump, it is possible to
perform scans on the 2.4GHz and 5GHz bands. Specific data useful for future steps
must be extracted from the captures. Some frequently used pieces of information
can include:

Devices employed for scanning

• Source Address (SA): MAC address of the message sender, which in most
cases, as observed in Section 2.3.2, is a random value.

• Timestamp: The moment when the message was captured by the scanner,
necessary for de-randomization operations.

• RSSI: Received Signal Power Indicator, usable for filtering operations and
outlier removal.

• HT Capabilities: Set of information and parameters related to High Through-
put (HT) technology for WiFi networks visible in Figure 3.2. Potentially usable
to recognize messages generated by the same device but with different SAs.

Figure 3.2. HT Capabilities

26

3.2 – Chain of processing

3.2 Chain of processing
Once captured, the information needs to be processed. To achieve this, it would
be advisable to create a chain of processing units, each with individual elementary
tasks, in order to ensure the scalability of the system.

As mentioned earlier in Section 3.1, from the captures, it’s necessary to extract
useful data, and to do this, it’s possible to create a compatibility layer, a specific
middleware.

After the preliminary phase is completed, packets originating from the same
SA are grouped, creating lists, while attempting to derive information about the
network card manufacturer by examining the OUI. Simultaneously, additional data
is obtained, such as the device’s dwell time within the scanner’s range and the
variation in received signal strength. This potentially allows the determination of
the means of transportation used. For each previously created list, the content is
analyzed, and filtering and elimination rules are defined based, for example, on the
number of occurrences or the average signal strength.

3.2.1 De-randomizer
The middle phase of the chain is the de-randomization operation, in which an
attempt is made to create clusters of captured probe requests originating from the
same device but with different source MAC addresses.

Considering two different MAC addresses captured by the sniffer: MACi and
MACj, de-randomization algorithm starts if:

• First view of MACi is before last view of MACj.

• HT capability of MACi is similar to HT capability of MACj.

To do this, since the available information is limited, it is necessary to calculate a
correlation probability between the two MAC addresses. The higher this probability
is, the greater the chances that they correspond to the same device. The score
represents the inverse proportion of:

• ∆Tij: The time gap between the final sighting of MACi and the initial sight-
ing of MACj serves to illustrate the uninterrupted flow of incoming received
frames.

• ∆Pij: The difference in sequence numbers across distinct MAC addresses
within the received frames reflects the ongoing nature of frame reception. This
is particularly relevant considering that the sequence number follows a cyclical
incremental pattern (ranging from 0 to 4095, resetting to 0 after reaching its
maximum value).

27

Proposal architecture

• ∆Sij: The disparity in received signal power (RSSI) for each MAC address.
When the gap of average received signal power between the two MAC ad-
dresses is large, it becomes more likely that these two MAC addresses are not
associated with the same device.

Using the Equation 3.1 the score is computed:

scoreij =
⃓⃓⃓⃓
⃓ 1
∆Tij

× 1
∆Sij

× 1
∆Pij

⃓⃓⃓⃓
⃓ (3.1)

where:
∆Tij = tfj − tli (3.2)

∆Pij = pj − pi (3.3)

∆Sij =
{︄

sf
j − sl

i if sf
j > sl

i

4095 − (sl
i − sf

j) if sf
j < sl

i

(3.4)

defining:

• sf
j : Sequence Number of the first view of MACj

• sl
i: Sequence Number of the last view of MACi

• tfj : Timestamp of the first view of MACj

• tli: Timestamp of the last view of MACi

• pi: Average received signal power of MACi

• pj: Average received signal power of MACj

3.2.2 Bloom filter
The penultimate phase of the chain involves inserting the output information ob-
tained from the de-randomizer, which comprises groups of MAC addresses assimil-
able to the same device, into various Bloom filters. Two arrays, BF1 and BF2, are
indeed used, each serving a specific purpose:

• BF1: The elements inserted are the arithmetic averages of the MAC addresses,
represented in hexadecimal format, for each defined group.

• BF2: The elements inserted are the individual MAC addresses.

28

3.2 – Chain of processing

Through the first Bloom filter, it is possible to obtain, ensuring the correctness of
the de-randomization operation, the count of individual devices that have entered
the scanner’s range. With the second one, by intersecting multiple sets of data
from different scanners, it’s possible to perform the operation of tracking users’
movement flows.

It should be emphasized that, to comply with the current regulations for the
processing of personal data, both Bloom Filters are initially loaded with random
MAC addresses. All the details of this process will be covered in Chapter 4.

3.2.3 Data Transfer
The final phase of the entire chain concerns the transmission of information from
individual scanners to a server. This would then allow all flow analysis operations to
be carried out anonymously by intersecting the Bloom filters, as well as displaying
information on potential dashboards.

In section 2.5, we examined two different protocols, MQTT and CoAP, for data
transfer. Both employ the Client/Server paradigm, but MQTT, working over TCP,
supporting TLS, allowing for client state awareness, and offering three levels of QoS,
is preferred for implementation.

Thanks to this protocol, the two previously created Bloom filters, along with a
timestamp, will be sent to the server without the need for additional encryption
mechanisms.

29

30

Chapter 4

Bloom filter for flow
tracking

This chapter will delve into the ways in which Bloom filters can be effectively
employed to achieve a dual purpose: safeguarding user privacy while simultaneously
enabling the implementation of people counting and crowd monitoring techniques.

4.1 Tuning
To properly size a Bloom filter, it’s necessary to analyze the usage context and
perform appropriate assessments in order to determine the right number of bits
and hash functions to use, while keeping the probability of false positives below an
acceptable threshold. Failure to do so could lead to two scenarios:

• A Bloom filter that is too small would result in an increased probability of
false positives, rendering it ineffective.

• A Bloom filter that is too large would lead to space wastage, which is especially
critical in resource-constrained contexts.

At this juncture, with n denoting the number of elements to be inserted into the
filter and m representing the bit size of the Bloom filter, what is the optimal value
for k that serves to minimize the probability of false positives?

• Small k increases the fraction of 0 bits in the arrays, available for an element
that is not a member of S

• Large k increases the probability of finding at least a 0 bit for an element that
is not a member of S

31

Bloom filter for flow tracking

Equation 4.1 illustrates how it is possible to determine the optimal value of ”k”
to be used.

kopt = n

m
log(2) (4.1)

4.2 Privacy
To assess the level of privacy ensured by a Bloom filters, work [9] has examined
the extent to which an adversary can acquire information in various situations. To
achieve this objective, they analyze three attack scenarios that vary in terms of
the adversary’s awareness. In each scenario, the adversary remains unaware of the
specific elements within the stored dataset.

• Agnostic Outsider: In this scenario, an adversary possesses no knowledge
whatsoever about the algorithms, data structures, data format, and secrets
employed in the scheme. This situation could arise if, for instance, some data
is inadvertently leaked by an insider, and an external adversary captures the
data without any understanding of its content. In these situations, it is imper-
ative that the data does not disclose any particulars concerning its inherent
composition. However, given that data typically comes with contextual in-
formation and metadata, like data origin or file names, an adversary might
attempt to gather more information about the scheme using public data or
reverse engineering. Hence, the feasibility of this scenario is constrained due
to practical limitations.

• Outsider: In this case the attacker possesses an understanding of the algo-
rithms, data structures, and data format implemented within the scheme, but
lacks awareness of any concealed secrets. This scenario commonly arises when
an external adversary targets the scheme’s systems and networks, potentially
extracting data from an employee’s laptop. In such cases, the adversary might
gain access to documentation, applications, or even metadata associated with
the data structure and algorithms, if accessible within the system.

• Insider: In this scenario, the adversary possesses knowledge of the algorithms,
data structures, data format, and the shared secrets employed in the scheme,
yet remains unaware of the actual entries within the data set. This situation
is frequently encountered when dealing with an internal adversary, such as a
curious or disgruntled employee, or when a potent external adversary targets
various systems and networks.

4.2.1 Brute-Force Attack
A possible attack type is the brute-force attack, where elements are randomly
generated or taken from a dictionary, and then processed to be matched against

32

4.2 – Privacy

the examined Bloom filter. For this purpose, we define the binary events A and B:

• A = Event where a query returns a positive result for a certain element x

• B = Event where the queried x exists in the original data set S

Using these events, we can define the privacy metric as follows:

Privacy = P (B|A) (4.2)

This is the probability that given a query returning a positive result for an
element x, this element belongs to the set S. This probability can be rewritten
using Bayes’ theorem as follows:

P (B|A) = P (A|B)P (B)/P (A) (4.3)

Recall that for a Bloom Filter, P (A|B) is 1 as it represents the probability that
a query for an element x belonging to S yields a positive result.

We can also define:

Privacyabsolute = P (B|A)P (A) = P (A,B) (4.4)

This absolute metric describes the probability of correctly brute-forcing a single
element by chance. This can, for example, be used to estimate how many queries
will need to be executed to obtain a single correct positive match. The main
difference from the first metric is that we now consider negative results as well, as
P (A) is the probability of a positive query result.

However, a lower P (A) only affects the runtime of an attack and not directly
the privacy. Nevertheless, in cases where the probability of producing a positive
result P (A) is infinitesimal, a brute-force attack as described above could become
computationally infeasible for an adversary.

In order to assess the attack’s accuracy, we need to consider the probability
P (B). This probability depends on both the source data set being used and the
knowledge of the attacker. For this purpose, we assume that an adversary has some
data set used for a brute-force attack denoted by the set Sadv, or some algorithm
generating said data set. The size of this data set Sadv depends on the type of data
in S, the information available to the attacker, and the assumptions made. In cases
where no feasible data sets or generators of such exist, for example for schemes
using names of people, an adversary can only use information that is available to
them. Furthermore, in cases where a data set Sadv is too large for a brute-force
attack, thereby generating many false positives, an adversary might choose to limit
this data set by making certain assumptions. If S and Sadv are known, we can write
the probability that a randomly queried element x exists in S as follows:

P (B) = P (x ∈ S) = |S ∩ Sadv|/|Sadv| (4.5)

33

Bloom filter for flow tracking

If S is contained in Sadv, then the intersection will yield S, so knowing the size
of S is sufficient to calculate the probability. However, since no adversary will have
the same knowledge and skill, it’s impossible to make general assumptions about
the size of Sadv.

4.3 Privacy Protection
The performance of a Bloom filter is not solely determined by its false positive
probability. In a range of applications, performance is additionally impacted by
the count of elements that seem to be added to the filter due to false positives,
even though they are not actually present.

As an example [7] explores the scenario of using Bloom filters as a cache memory
to reduce the cost of accessing the main memory, requesting information directly to
the filters. The paper illustrates that if the a priori probability that the element is
in the cache is low enough before accessing the Bloom filter, it is always better to
ignore the response from the cache and go directly to the main memory, even if the
access cost is higher. We now describe how Bloom filters can be used to preserve
anonymity, but before going further, we need to consider some definitions.

Definition 1

A set V is called Hiding Set for a Bloom filter BF (S) if V contains all the elements
vi ∈ U s.t. vi /∈ S and a query for vi returns 1. Is also possible to say that vi is a
false positive. An expression proposed in [4] allow to calculate the cardinality of V
represented by the random variable Nv with a binomial probability distribution:

P{Nv = v} =
(︄

|U | − n

v

)︄
ψ(m, k, n)v(1 − ψ(m, k, n))|U |−n−v (4.6)

and mean value E[Nv] = (|U | − n)ψ(m, k, n). Figure 4.1 depicts an example of
a Hiding Set where a 10-bit Bloom filter with 2 hash functions has been used to
insert 3 elements (x1, x2, x3). At the same time, 3 elements (v1, v2, v3) show up as
false positives since a query to the filter would yield a positive result.

Definition 2

An element x ∈ S inserted in BF (S) is defined deniable if ∀i ∈ {1..k} exist at
least one element v ∈ V , such that ∃j ∈ {1..k} s.t. Hi(x) = Hj(v). A BF (S) is
γ−deniable whenever a randomly chosen element x ∈ S is deniable with probability
γ.

Note that the definition of γ-deniability explicitly requires that the covering
elements do not belong to the original set S but rather to the hiding set V . Hence,

34

4.3 – Privacy Protection

Figure 4.1. Hiding set

an element is considered deniable if it can be substituted with items that were not
initially present in the Bloom filter, all while keeping the bit map unchanged.

It is also feasible to compute the size of the hiding set, as demonstrated in the
study [4], using the formula:

γ(BF (S)) ≃
(︄

1 − exp
(︄

hk

m(1 − e−kn/m)

)︄)︄k

(4.7)

with
h = (|U | − n)ψ(m, k, n) = (|U | − n)(1 − e−kn/m)k (4.8)

depicting the mean number of elements in the hiding set.

Definition 3

Considering a Bloom Filter BF (S) and x ∈ S inserted in BF (S), x is K −
Anonymous if exists at least K − 1 hiding set elements ⟨v1...vK−1⟩ ∈ V , such
that ∃ ⟨ji...jK−1⟩ ∈ 1..k s.t. Hi(x) = Hj1(v1) = ... = HjK−1(vK−1). Consequently, it
is possible to say that a Bloom filter BF (S) is γ−K−anonymous if each randomly
chosen element is K−anonymous with probability γ.

Using 4.9 proposed in [4] is possible to compute the γ − K−anonimity for a
specific Bloom filter configuration.

γ(K,BF (S)) ≃
(︄

1 − exp
(︄

− hk

m(1 − e−kn/m)

)︄
K−2∑︂
i=0

(hk/[m(1 − e−kn/m])i

i!

)︄k

(4.9)

4.3.1 Anonymization Noise
For the reasons outlined in section 4.2, and specifically in section 4.2.1, it is neces-
sary to safeguard the privacy of the information inserted in a Bloom filter through
appropriate methodologies. In the context at hand, the filter will be used to store

35

Bloom filter for flow tracking

MAC addresses, which are considered sensitive data under the GDPR. Therefore,
we propose the utilization of the γ-deniability property, as defined in section 4.3,
to ensure the ability to deny the membership of all inserted elements. However,
as specified in 4.3, γ represents the probability of being able to deny the presence
of a randomly chosen element, using another element that is not actually part of
the set S. To guarantee this possibility for all elements present in the Bloom filter,
it’s necessary for the value of γ to reach its maximum, which is 1. This way, any
inserted element can be denied.

Initially, however, this probability is 0. In fact, when the Bloom filter is com-
pletely empty and the configuration parameters m and k, which are constants, are
ignored, the value of n (equal to 0) will nullify the equation 4.8, which will in turn
set the value of 4.7 to 0. To increase the value of γ, it is necessary to insert elements
into the Bloom filter and after a certain number of insertions, /gamma will reach
1.

However, to protect privacy, it’s not possible to use MAC addresses captured
before γ reaches its maximum value. For this reason, we introduce the concept of
anonymization noise. This noise consists of nmin randomly generated elements that
are not subject to protection constraints. They should be inserted as soon as the
Bloom filter is created to bring the value of γ to 1.

4.3.2 Multiple Anonimity
In section 4.3.1, a method for ensuring the privacy of insertions into a Bloom filter
was analyzed using the definition 4.3. However, it’s important to consider that this
approach covers an actually inserted element with only one element not actually
present.

To further enhance the provided protection, it’s possible to leverage the def-
inition 4.3. By choosing a value of K and maximizing the expression 4.9 (thus
bringing the value to 1), a coverage of at least K− 1 elements not actually inserted
can be achieved, rather than just a single element.

In this situation as well, similar to the one described earlier, it is essential to
employ ”anonymization noise” to ensure that from the very first insertion of genuine
MAC addresses, each of them is protected by at least K − 1 elements.

Practical Examples

Let’s now examine two examples where we can observe the difference between a
Bloom filter with γ deniability of 1 and one with γ deniability of 0.66. In both
figures (Figure 4.2 and Figure 4.3), the elements x1, x2, x3 have been inserted into
the filter, while the components of the hiding set are v1, v2, v3.

In Figure 4.2, any element randomly selected from S can certainly be denied.
For instance, element x1 can be denied using a combination of v1 and v2, while
element x3 can be denied using v1, v2, and v3.

36

4.3 – Privacy Protection

Conversely, in Figure 4.3, there is a 0.66 probability of randomly selecting a
deniable element. This is because the element x3 cannot be denied by any other
element belonging to the hiding set.

Figure 4.2. Bloom filter with γ = 1 composed of elements (x1, x2, x3)

Figure 4.3. Bloom filter with γ = 0.66 composed of elements (x1, x2, x3)

In the final example shown in Figure 4.4, we can observe the case of a Bloom
filter with γ = 1 and K = 3. This means that any randomly chosen element will
have each of its bits covered by at least K−1, so 2 elements from the hiding set. For
instance, the element x1 will have bit B[1] covered by v1 and v3, bit B[3] covered
by v1, v2, and v4, and bit B[8] covered by v2, v3, and v4.

37

Bloom filter for flow tracking

Figure 4.4. Bloom filter with γ = 1 and K = 3 composed of elements (x1, x2, x3)

4.4 Counting
Now let’s consider the scenario in which multiple WiFi sensors for device counting
are deployed across a large area. Each sensor will store the collected MAC addresses
within a local Bloom filter, enabling two main operations:

• Counting the number of devices that have passed through the coverage area
of that sensor.

• Anonymously identifying patterns of people’s movement.

The simple task of counting elements within a Bloom filter can be accomplished
using the formula shown in equation 4.10.

c1 = −m

k
ln
(︃

1 − t

m

)︃
(4.10)

By knowing the common MAC addresses between different Bloom filters, it is
possible to identify the people’s movement patterns performing intersections.

4.4.1 Intersection
In addition to individual element operations, Bloom filters can be used to perform
set unions and intersections. Let S1 and S2 be subsets of U , represented by the
Bloom filters BF (S1) and BF (S2), which use the same configuration parameters.
To calculate the intersection, it is necessary to perform a bitwise logical AND
operation between the two vectors. Once the Bloom filter of the intersection is

38

4.4 – Counting

obtained, it will be possible to calculate the number of elements contained within
it using two different equations. The first formula is shown in (4.10) (which should
be replaced with t3 instead of t), and the second formula is proposed in the work [6]
and shown in (4.11).

c2 =
ln
(︃
m− t3×m−t1×t2

m−t1−t2+t3

)︃
− ln(m)

k × ln(1 − 1
m

) (4.11)

where t1 represents the number of bits equal to 1 in BF1, t2 represents the
number of bits equal to 1 in BF2 and t3 represents the number of bits equal to 1
in BF3.

39

40

Chapter 5

Implemented Solution

This chapter will present the implemented solution designed to enable the safe
management of people in crowded areas. In this context, the TrialsNet project
(TRials Supported By Smart Networks Beyond 5G), among its various objectives,
aims to collect and process data during outdoor public events to enable participant
counting, flow analysis, and density assessment, ultimately enhancing collective
safety. All implementation choices made will be explained, and finally, we will
focus on the data processing workflow.

5.1 Hardware
To implement our proposal on a large scale, the primary factors to consider are
the cost and the performance; thus, we strive to find an optimal balance between
these two variables. Hardware that is too budget-friendly and offers low perfor-
mance would prove ineffective and result in significantly prolonged execution times,
whereas extremely costly and highly performant hardware might entail a resource
waste.

In our scenario, the most suitable choice is leveraging a Single Board Computer
(SBC), which optimizes the trade-off between costs, power consumption, and space
utilization. As for the software aspect, it is preferable to opt for a Linux-based
operating system, given that Linux supports a wide array of tools and is easily con-
figurable through the command line. Concerning hardware components, it would
be ideal to have a multicore processor capable of managing multiple tasks simulta-
neously, coupled with a sufficiently ample amount of RAM to ensure the system’s
proper operation. Furthermore, it would be necessary to include an LTE dongle
for internet connectivity, thereby enabling data transmission without the need for
a dedicated network, and a USB WiFi modem for capturing probe requests, as
it’s not possible to use the integrated WiFi interface in monitor mode. Regard-
ing power supply, we should not encounter substantial limitations, as the board

41

Implemented Solution

will be powered through the standard electrical grid. However, for temporary and
short-term deployments, it’s also possible to use a power bank for power supply if
needed.

Figure 5.1. Raspberry Pi 3 Model B

After conducting appropriate market evaluations and considering its widespread
use, which ensures a large supportive community in case of issues, the choice fell
on the Raspberry Pi 3 Model B, as shown in Figure 5.1. It provides a Broadcom
BCM2387 1.2GHz Quad-Core ARM Cortex-A53 processor, 1GB of LPDDR2 RAM,
4 USB 2.0 ports, and a Micro USB connector with a 5V/2.5A voltage/current
output.

Due to the fact that the integrated WiFi interface of the Raspberry Pi does not
have the capability to operate in monitor mode, we needed to obtain a USB WiFi
dongle. During the capture phase, the USB dongle will be active, while the built-in
interface will be disabled to prevent potential interference. According to the 802.11
standard, there are two typical frequency bands for WiFi: 2.4 GHz and 5 GHz.
However, since sniffing can only be performed on one band at a time, we chose to
use the most common 2.4 GHz band. This decision was made to ensure greater
compatibility with all possible devices that might pass through the covered area.

Furthermore, the presence of a reliable server is also essential for the transmission
of the gathered and processed data. With the assistance provided by the Politecnico
di Torino, we gained the opportunity to employ a system equipped with a publicly
accessible IP address, which allowed us to establish an MQTT broker along with a
linked database.

Lastly, as mentioned earlier, it was essential to integrate an LTE dongle in
order to enable remote control of the system and facilitate data transmission. The
acquired USB device provides the option to use a data SIM card compatible with
4G technology.

42

5.2 – System Description

A depiction of the system architecture can be observed in Figure 5.2

Figure 5.2. Raspberry Pi 3 Model B Configuration

5.2 System Description
In the operational context, the Raspberry Pi is powered by the electrical grid with
the support of IREN, and the WiFi and LTE dongles are connected and operational.
The integrated WiFi card will remain consistently deactivated during the data
capture phases. As soon as the brief configuration phase is completed, the two
main processes are initiated: data capture and data processing. Both are part of
an infinite cycle, as the sensor must constantly capture and process information.

5.2.1 Remote Accessing to Raspberry
To enable remote access to the Raspberry Pi, two different solutions have been
employed based on specific requirements. It’s noteworthy to consider that, since
the device is connected to the internet via the LTE dongle, it cannot have a direct
static IP address due to NAT limitations, and furthermore, the firewalls of various
Internet Service Providers do not allow direct SSH connections. The two adopted
solutions are RealVNC and ZeroTier.

43

Implemented Solution

RealVNC [10] is a remote access application that enables viewing and interact
with a computer’s desktop from another device, such as a laptop, smartphone,
or tablet. RealVNC is compatible with various platforms and operating systems,
including Windows, macOS, Linux, and mobile devices.

ZeroTier [10] One is a free and open-source software application that incorpo-
rates cutting-edge advancements in Software-Defined Networking (SDN) to enable
users to establish secure and easily controllable networks, simulating a scenario
where interconnected devices are located in the same physical vicinity. ZeroTier
offers a user-friendly web console for efficient network administration and deploys
endpoint software for clients. It employs encrypted Peer-to-Peer technology, which
distinguishes it from conventional VPN solutions. Unlike traditional setups, where
communications are relayed through a central server or router, ZeroTier enables
direct peer-to-peer messaging between hosts.

5.2.2 Capturing WiFi Probe Request
The sniffer is responsible for detecting passersby’s probe requests and temporarily
saving them to a local file using the tshark tool. By using this tool, it’s possible to
selectively filter all captured packets and save only the probe requests, identified
by the substype 0x04. In addition to this, the tshark command allows associating
a timestamp and the received signal strength with each packet, which will be used
later during the processing phase. The capture activity is performed cyclically and
operates with time windows ranging from 1 to 3 minutes, depending on the selected
configuration parameters.

5.2.3 Bloom Filter Dimension
As we will see later in section 5.3, two Bloom filters are employed. To determine
their sizes, we apply the formula described in 4.1. In this case, since the filter will
be changed approximately every 60 − 180 seconds, we consider a maximum flow
of about 1000 MAC addresses, setting m = 1000. On the other hand, to obtain
the optimal value of k to use, we still need to define the value of n, which is set to
10000 for experimental reasons. With the established values of m and n, we can
calculate k as follows:

kopt = 10000
1000 log(2) ≃ 7 (5.1)

5.3 Python Chain Of Processing
The information processing chain is comprised of a series of cyclically executed
Python scripts as visible in Figure 5.3. Their coordination and information ex-
changed are managed through UNIX pipes. When a file completes its execution, it

44

5.3 – Python Chain Of Processing

writes to STDOUT (standard output), and the subsequent file reads the informa-
tion from STDIN (standard input). In our case, we use multiple pipes to connect
the scripts in sequence, and each operates independently from the others. The
chain is composed as follows:

Figure 5.3. System Python Chain of Processing

• Middleware: From the specific folder containing the .pcap files to be ana-
lyzed, it reads their contents and extracts the necessary information. To per-
form this operation, the scapy library [8] is used, allowing access, reading, and
extraction of relevant data from .pcap files. For each probe request present
in the file, it creates a line where fields are separated by commas. During this
process, integrity checks are carried out on sections such as HT Capabilities,
A-MPDU Parameters, and HTEX Capabilities to verify their presence, and if
necessary, replace the value with a null value. Once the entire file has been
analyzed, the file itself is discarded, and the output, consisting of a list of lines
called List1, is written to STDOUT.

• Probe Analyzer: It reads the List1 from STDIN and analyzes it to create
a new list, List2. Inside List2, for each found MAC Address, the following
details are included:

1. Number of occurrences
2. First and last sight of the timestamp
3. First and last sequence number
4. Maximum and minimum received signal strength, along with a calculated

average
5. Identification of the OUI associated with the MAC address through a list

stored in the Raspberry’s memory. If the lookup operation doesn’t yield
results, ”Unknown” is inserted.

At this point, List2 is written to STDOUT.

45

Implemented Solution

• Capture Filter: It reads List2 from STDIN and remove packets that have
a MAC occurrence count less than 2. This value has been determined based
on the analyses presented in Chapter 6. Subsequently, store the refined list in
List3 and print its contents on STDOUT.

• De-Randomizer: From List3 acquired from STDIN, a recursive de-randomization
algorithm is applied to create groups of MAC addresses potentially belonging
to the same device. These groups consist of pairs of MAC addresses, and
for each pair, the conditions described in section 3.2.1 are checked to assign
a score. A higher score indicates a greater likelihood that the two MAC ad-
dresses are associated with the same device. Consequently, the output consists
of a new list, List4, composed of groups of correlated MAC addresses.

• Bloom Filter: From the List4 acquired from STDIN, the groups of MAC
addresses associated with the same device are individually extracted and si-
multaneously, 2 Bloom filters are initialized, namely BF1 and BF2, populated
with 30 random MAC addresses to ensure privacy, as explained in section 4.3.1.
For each group, the arithmetic mean is calculated and subsequently inserted
into BF1. At the same time, individual MAC addresses are inserted into BF2.
The reason for this is that BF1 will be used for counting purposes, while BF2
will be employed for an anonymous study of user flows. Each pair of Bloom
filters is associated with a timestamp, and the results are printed to STDOUT.

• Sender: In the final phase, the pair of Bloom filters associated with the
timestamp at the time of capture is sent via MQTTS (MQTT over SSL to
enhance security) to the server. Each scanner will have an identifier, and the
message will be sent to the ”bloomfilter/scanner id” topic.

Furthermore, a flowchart depicting the software-side operation of the system is
displayed in Figure 5.4

46

5.3 – Python Chain Of Processing

Figure 5.4. System Flow Chart

47

48

Chapter 6

Experimental evaluation

6.1 Profiling
The profiling activity is essential to evaluate the operational effectiveness of the
system. As previously mentioned, the system consists of two main scripts. The
first one performs simple captures using the ”tshark” command, which occupies
0.1% of the CPU and 0.3% of the RAM. The second script, on the other hand,
orchestrates the sequence of processes for information processing and involves the
execution of four Python scripts. Since a high-level programming language is being
used, it is crucial to monitor both the CPU and RAM load in order to determine
if the system is capable of simultaneously executing all the scripts present.

In this context, it is relevant to note that the utilized processor is quad-core, and
to carry out proper measurements, we make use of the ”htop” command, available
in the LINUX environment. This command provides a dynamic and real-time
representation of the system’s operational state, offering both a summary of system
information and a list of processes currently managed by the Linux kernel.

To conduct the measurements, four acquisition tests of 60 seconds each were exe-
cuted, followed by subsequent processing. Our system demonstrates an appropriate
load, with peaks of 100% on the CPU and 20% on the RAM.

The system experiences spikes in CPU load as it strives to execute the scripts as
quickly as possible. Each Python script in the sequence exhibits a different CPU
and RAM load.

Figures 6.9 and 6.10 show graphs representing the load on the CPU and RAM
over time during the execution of the most demanding script, which manages the
insertion of information into Bloom filters. As can be seen, the values for RAM
usage are the highest in the entire pipeline, while those for CPU are within the
norm.

Figures 6.1 and 6.2, on the other hand, show the usage of CPU and RAM during
the initial phase of the pipeline when the .pcap files are read for processing. In this
case, CPU usage is very high, while RAM usage is below average.

49

Experimental evaluation

Finally, Figures 6.3,6.4,6.5,6.6,6.7, 6.8 depict graphs of CPU and RAM usage
by the analysis scripts (Probe Analyzer), filtering (Filter), and derandomization.
As you can see, the filtering operation requires the least resources in terms of both
CPU and RAM, while the other two operations remain within the average range.

Figure 6.1. Middleware Script CPU Load Evolution Over Time

Figure 6.2. Middleware Script RAM Load Evolution Over Time

50

6.1 – Profiling

Figure 6.3. Analyzer Script CPU Load Evolution Over Time

Figure 6.4. Analyzer Script RAM Load Evolution Over Time

51

Experimental evaluation

Figure 6.5. Filter Script CPU Load Evolution Over Time

Figure 6.6. Filter Script RAM Load Evolution Over Time

52

6.1 – Profiling

Figure 6.7. Derandomizer Script CPU Load Evolution Over Time

Figure 6.8. Derandomizer Script RAM Load Evolution Over Time

53

Experimental evaluation

Figure 6.9. Bloomfilter Script CPU Load Evolution Over Time

Figure 6.10. Bloomfilter Script RAM Load Evolution Over Time

54

6.2 – Bloom filter dimension

6.2 Bloom filter dimension
The first task to carry out is appropriately sizing the Bloom filters for usage. As
indicated in Section 4.1, it’s essential to select the right size to avoid waste on one
side and an increase in the false positive probability on the other. In our case,
establishing two fundamental parameters was crucial: the size of the filter and the
quantity of information to be inserted.

Since the Bloom filter would be changed approximately every 60 seconds, ensur-
ing the ability to perform around 1000 insertions was of vital importance. For the
size, it was agreed that an appropriate size in terms of space would be 10000 bits,
or 1.25 kilobytes.

After defining the parameters m and n, it then became possible to determine
the value of k through the equation in 4.1. In our case, the optimal value is k = 7.

In Figure 6.11, it is possible to observe the variation of the false positive prob-
ability of a Bloom filter with a configuration of k = 7 and m = 10000 during the
insertion of elements. It is evident that the false positive probability remains stable
until 1000 insertions, after which a phase of increasing monotony begins.

Figure 6.11. Evolution of false positive probability during the insertion of
elements into a Bloom filter

In the Figure 6.12, instead, the result of an analysis on how the factor k affects
the probability of false positives is shown. Taking a Bloom filter with m equal to
10000, the trend of the false positive probability has been plotted in relation to the
number of addressed MACs, varying k. Four different values of k have been used.
It is noticeable that higher values of k require fewer insertions to achieve the same

55

Experimental evaluation

probability of false positives.

Figure 6.12. Evolution of false positive probability during the insertion of ele-
ments into different Bloom filters. Each filters is configured with m = 10000.

Figure 6.13. Evolution of false positive probability with different values of k.

To confirm what was previously stated regarding the value of k in our situation,

56

6.3 – Counting

the image 6.13 shows the variation of the false positive probability in relation to
the change of parameter k. For the creation of this graph, the equation 2.1 was
utilized, in which the parameters m remained fixed at 10000, and n was maintained
at 1000. As it can be observed, the point of minimum is obtained at k = 7.

6.3 Counting
As previously mentioned, our system is capable of performing counts on both indi-
vidual Bloom filters and following intersections for counting common elements.

The initial measurements were conducted to assess the accuracy of counts gen-
erated by the formula indicated in 4.10. More in detail the configuration of the
Bloom filter consist in k = 7 and m = 10000, initially empty. A total of 10000
elements were inserted into this filter, well beyond the value of n for which it was
designed. After each insertion, relation 4.10 was used to produce a count of the
quantity of contained elements, and the result was subsequently compared to the
actual number of elements present. In the Figure 6.14, the result of the conducted
analysis is presented. As it can be observed, the count is not significantly overesti-
mated or underestimated, even though the number of insertions exceeds the value
for which the filter was originally designed.

Figure 6.14. Comparison between the number of elements actually in-
serted and the counted ones.

This observation is further confirmed by figure 6.15, in which the generated
relative error is displayed. This error remains stable until 5000 insertions, after

57

Experimental evaluation

which it experiences a peak around the 8000 inserted elements. Nevertheless, it’s
important to note that the maximum value reached by the relative error is 0.08.

Figure 6.15. Relative error comparison between the number of elements actually
inserted and the counted ones.

6.3.1 Counting intersection
As our goal is also to enable tracking and counting, anonymously, of devices passing
through and detected by various scanners, we conducted comparisons to evaluate
which of the proposed formulas, namely 4.10 and 4.11, is the most suitable. The
measurement was conducted using two Bloom filters, namely BF1 and BF2, with
the same configuration, i.e. k = 7 and m = 10000. Starting with two completely
empty filters, the modus operandi was as follows:

1. Insert 500 random MAC addresses into BF1.

2. Insert 500 random MAC addresses into in BF2.

3. Insert 1 identical MAC address into both BF1 and BF2.

4. Calculate the Bloom filter BF3 from the intersection of BF1 and BF2, as
described in 4.4.1.

5. Count the elements that are part of the intersection using the two previously
indicated formulas.

58

6.3 – Counting

6. Return to step 3 until 500 MAC addresses are inserted.

In Figure 6.16, it is possible to observe the obtained result. Indeed, it can be
noted that the two curves are nearly parallel, even though the formula 4.10 consis-
tently tends to overestimate the number of elements present in the intersection.

Figure 6.16. Comparison between the estimators c1 and c2 to evaluate the number
of people moving from one scanner to the other

To confirm what was previously stated, Figure 6.17 shows the comparison be-
tween the relative errors of the two formulas. The relative error for c1 is noticeably
high when dealing with a small number of stored MAC addresses, becoming ac-
ceptable (less than 100%) only when more than 100 MAC addresses are stored.
Conversely, the relative error of c2 remains quite low even with a small number
of stored MAC addresses. This outcome aligns with findings in [6], indicating a
consistent pattern. However, it underscores a different balance among accuracy,
complexity, and privacy in determining the count of MAC addresses within the
intersection of BF1 and BF2.

Specifically, (4.10) only necessitates knowledge of the number of ones in BF3,
while (4.11) (although highly accurate) demands knowledge of the number of ones in
BF1, BF2, and BF3 on the same server. Consequently, these two solutions exhibit
varying levels of adaptability to a given architecture, whether it is centralized or
distributed. We leave the exploration of the optimal balance among accuracy, im-
plementation complexity, and privacy-preserving architectures for future research.

59

Experimental evaluation

Figure 6.17. Relative error of the estimators c1 and c2 to evaluate the number of
people moving from one scanner to the other

6.4 Anonimity

In Section 4.3.1, we introduced a method to ensure the anonymity of elements in-
serted into a Bloom filter by leveraging the coverage of other elements present in
the Hiding Set. However, to protect the anonymity of the first inserted elements,
we introduced the concept of ”anonymization noise,” represented by a set of nmin

randomly generated MAC addresses, to ensure that γ is already equal to 1 from the
very first true insertion. To determine the value of nmin, we used the relation 4.7
applied to a Bloom filter with configuration k = 7 and m = 1000. Starting from
an empty filter, we began inserting one random MAC address at a time and sub-
sequently calculated the value of γ. The result, visible in Figure 6.18, indicates
that for the configuration we adopted, approximately 30 insertions are sufficient to
achieve a γ value of 1.

For this reason, as soon as a new Bloom filter is instantiated, it will be im-
mediately populated with at least 30 random MAC addresses in order to ensure
the privacy of insertions, without the need to resort to the use of cryptographic
functions that would burden the system, as well as introduce additional constraints
related to the protection and management of encryption keys.

60

6.4 – Anonimity

Figure 6.18. γ-deniability value in relation to the number of inserted MAC addresses

6.4.1 Multiple Anonimity
In Section 4.3.2, we discussed the possibility of ensuring coverage for each element
inserted into a Bloom filter by a variable number, denoted as K, of other elements
belonging to the Hiding Set. Similar to what was done in Section 6.4, once a value
for K is fixed, it becomes necessary to establish the value of nK

min, so that for each
element randomly extracted from the filter, there are K − 1 non-inserted elements
capable of covering it. To achieve this, we took a Bloom filter with m = 10000 and
k = 7, applying the relation 4.9 for various values of K. The result is visible in
Figure 6.19.

Please note that by increasing the number of initially loaded random MAC
addresses in the Bloom filter by just 10, it’s possible to ensure anonymity of order
K = 20. This means that, for any given element, we would always be able to cover
it with 19 elements belonging to the Hiding Set.

61

Experimental evaluation

Figure 6.19. γ-deniability value, for different K, in relation to the number
of inserted MAC addresses

62

Chapter 7

Conclusion and Future Work

This thesis proposes an automatic and anonymous system for people counting lever-
aging WiFi probe requests received from mobile devices and the use of Bloom filters
for storage. Nowadays, developments in safeguarding individuals’ privacy are con-
tinuously evolving, from the basic enabled random MACs on most devices to the
GDPR regulations published in 2016 and enacted in 2018. For this reason, we
have developed a method that leverages the deniability and anonymity properties
of Bloom filters to preserve user privacy.

The results are very positive, especially in terms of coverage of the inserted
elements, as it is possible to arbitrarily choose a value of K to define the minimum
number of elements that will ensure coverage for each element in the filter. Utilizing
this methodology allows us to store MAC addresses within Bloom filters without
the need for additional cryptographic functions for protective purposes, significantly
enhancing ease of deployment and usage. As mentioned earlier, this completely frees
us from the obligation to manage encryption keys and all related requirements.

Undoubtedly, this thesis work could serve as a starting point for more extensive
projects. For example, in the context of commerce, it would be useful to analyze
how long a user visits specific stores to provide more relevant information about
their preferences or interests. Similarly, in an airport or railway context, studying
the busiest areas could enhance safety in the area. Finally, in an urban planning
context, it would be valuable for authorities to understand how people move within
a city to design roads, public transportation, parking, and infrastructure more
efficiently.

63

64

Bibliography

[1] Probe request frame. [Online]. URL: https://www.oreilly.com/library/
view/80211-wireless-networks/0596100523/ch04.html.

[2] Android. Mac randomization. [Online]. URL: https://source.android.
com/docs/core/connect/wifi-mac-randomization?hl=en.

[3] Apple. Mac randomization. [Online]. URL: https://support.apple.com/
it-it/guide/security/secb9cb3140c/web#.

[4] Giuseppe Bianchi, Lorenzo Bracciale, and Pierpaolo Loreti. ”better than noth-
ing” privacy with bloom filters: To what extent? In International Conference
on Privacy in Statistical Databases, pages 348–363. Springer, 2012.

[5] Microsoft. How to use random hardware addresses in windows.
[Online]. URL: https://support.microsoft.com/en-us/windows/
how-to-use-random-hardware-addresses-in-windows-ac58de34-35fc-31ff-c650-823fc48eb1bc.

[6] Odysseas Papapetrou, Wolf Siberski, and Wolfgang Nejdl. Cardinality estima-
tion and dynamic length adaptation for bloom filters. Distributed and Parallel
Databases, 28:119–156, 2010.

[7] Ori Rottenstreich and Isaac Keslassy. The bloom paradox: When not to use a
bloom filter. IEEE/ACM Transactions on Networking, 23(3):703–716, 2014.

[8] SecDev. [Online]. URL: https://scapy.net/.
[9] David Stritzl. Privacy-preserving matching using bloom filters: an analysis

and an encrypted variant, April 2019.
[10] Zero Tier. [Online]. URL: https://www.zerotier.com/.
[11] European Union. Gdpr. [Online]. URL: https://gdpr.eu/tag/gdpr/.
[12] Wikipedia. Coap - constrained application protocol. [Online]. URL: https:

//en.wikipedia.org/wiki/Constrained_Application_Protocol.

65

https://www.oreilly.com/library/view/80211-wireless-networks/0596100523/ch04.html
https://www.oreilly.com/library/view/80211-wireless-networks/0596100523/ch04.html
https://source.android.com/docs/core/connect/wifi-mac-randomization?hl=en
https://source.android.com/docs/core/connect/wifi-mac-randomization?hl=en
https://support.apple.com/it-it/guide/security/secb9cb3140c/web#
https://support.apple.com/it-it/guide/security/secb9cb3140c/web#
https://support.microsoft.com/en-us/windows/how-to-use-random-hardware-addresses-in-windows-ac58de34-35fc-31ff-c650-823fc48eb1bc
https://support.microsoft.com/en-us/windows/how-to-use-random-hardware-addresses-in-windows-ac58de34-35fc-31ff-c650-823fc48eb1bc
https://scapy.net/
https://www.zerotier.com/
https://gdpr.eu/tag/gdpr/
https://en.wikipedia.org/wiki/Constrained_Application_Protocol
https://en.wikipedia.org/wiki/Constrained_Application_Protocol

	List of Figures
	List of Tables
	Introduction
	Technological issues
	WiFi probe request
	Bluetooth probe request
	MAC address
	MAC address randomization
	How main OS implement MAC address randomization

	Privacy
	GDPR
	Anonymization Techniques
	Bloom filter

	Data Transport
	MQTT
	CoAP

	Proposal architecture
	WiFi scanner
	Chain of processing
	De-randomizer
	Bloom filter
	Data Transfer

	Bloom filter for flow tracking
	Tuning
	Privacy
	Brute-Force Attack

	Privacy Protection
	Anonymization Noise
	Multiple Anonimity

	Counting
	Intersection

	Implemented Solution
	Hardware
	System Description
	Remote Accessing to Raspberry
	Capturing WiFi Probe Request
	Bloom Filter Dimension

	Python Chain Of Processing

	Experimental evaluation
	Profiling
	Bloom filter dimension
	Counting
	Counting intersection

	Anonimity
	Multiple Anonimity

	Conclusion and Future Work
	Bibliography

