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Abstract: 
 

The study of nonlinear dynamic systems presents complex challenges across various 
scientific domains, notably in engineering and physics. This research addresses the critical 
need for state and parameter estimation through the development of innovative Bayesian 
inference techniques, with a specific focus on Kalman filters, Unscented Kalman filters, 
and Particle filters. The primary objective is to bridge existing gaps in parameter estimation 
methods, creating techniques that not only fit data but also unveil the fundamental 
relationships governing system behaviors. This research establishes a robust foundation in 
the realm of nonlinear dynamic systems, introducing the theoretical underpinnings of 
Bayesian inference techniques. It provides a clear framework for numerical 
implementation and demonstrates practical utility in real-world scenarios. To this end, 
numerical examples of nonlinear mechanical systems are considered first, considering both 
process and measurement uncertainties. Then, experimental data of a geometrically 
nonlinear vibrating system is collected and used to validate the proposed approaches. The 
developed Bayesian inference techniques display promising results in estimating 
parameters, offering insights into complex system behaviors. This work contributes to the 
field of nonlinear dynamics, enhancing our ability to understand and manipulate complex 
behaviors while addressing the critical demand for model parameter estimation. 
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General Introduction 
 

In today's world, we encounter nonlinear dynamic systems in various scientific domains, 
from engineering to physics. These systems often present complex challenges, particularly 
when it comes to estimating their states and parameters accurately. To address this critical 
need, this research focuses on the development of Kalman filters, Unscented Kalman filters, 
and Particle filters which belong to the class of Bayesian Filters (Ho and Lee, 1964; Lee, 
1964; Jazwinski, 1966, 1970). 

Our primary goal is to bridge existing gaps in parameter estimation methods. Rather than 
merely fitting data, we aim to uncover the fundamental relationships governing the 
behaviors of these systems. This work lays a robust foundation in the realm of nonlinear 
dynamic systems and introduces the theoretical underpinnings of Bayesian inference 
techniques (Bernardo and Smith, 1994; Gelman et al., 2004). 

Our research provides a clear framework for numerical implementation and demonstrates 
practical utility in real-world scenarios. We begin by considering numerical examples of 
nonlinear mechanical systems, taking into account both process and measurement 
uncertainties. Furthermore, we collect experimental data from a geometrically nonlinear 
vibrating system to validate the proposed approaches. 

The Bayesian inference techniques we develop offer promising results in estimating 
parameters, providing valuable insights into the complex behaviors of these systems 
(Sarkka, 2023; Sarkka 2013). This work contributes significantly to the field of nonlinear 
dynamics by enhancing our ability to understand and manipulate these complex behaviors 
while addressing the critical demand for accurate model parameter estimation. 

In a world where nonlinear dynamic systems play a central role in various fields, from 
swaying bridges to intricate molecular interactions, our research is not just an academic 
endeavor; it has the potential to reshape industries and drive scientific exploration. Our 
contributions lie in the innovations of Bayesian techniques and in enabling researchers and 
professionals to understand and manipulate nonlinear behaviors more effectively. 

This introduction sets the stage for our journey into the world of nonlinear dynamic systems, 
where complexities and discoveries intertwine, and where we aim to shed light on their 
intricate behaviors and relationships. 
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Chapter 1. Nonlinear Dynamics Systems 
 

1.1 Nonlinear Dynamics Systems Definition and Contrast with Linear Systems 

A nonlinear dynamics system refers to a mathematical model that describes the behavior 
of a system where the relationship between the system's variables and their rates of change 
is not described by linear equations. In other words, the change in the system's state over 
time is not directly proportional to the system's current state. Instead, the dynamics of 
nonlinear systems are influenced by the interaction and interdependency of variables in 
complex ways, often leading to fascinating and unpredictable behavior. 

To better understand nonlinear dynamics systems, it is essential to contrast them with their 
linear counterparts (Fuchs, 2014). In linear systems, the principle of proportionality and 
superposition holds, making their behavior predictable and straightforward. When the input 
to a linear system is doubled, the output also doubles, and the principle of superposition 
allows us to combine individual solutions to obtain the overall response. 

In contrast, nonlinear systems exhibit non-proportional and non-additive behaviors. This 
means that a doubling of the input may not necessarily result in a doubling of the output. 
Additionally, the principle of superposition does not apply to nonlinear systems, making it 
challenging to decompose complex behavior into simpler components. 

One classic example of a nonlinear dynamics system is the double pendulum. A double 
pendulum consists of two connected pendulums, where the motion of the lower pendulum 
is affected by both gravity and the motion of the upper pendulum. The behavior of the 
double pendulum is highly sensitive to its initial conditions, meaning that even slight 
differences in the starting positions or velocities of the pendulums can lead to dramatically 
different trajectories. 

In a linear system, the motion of each pendulum would be independent of the other, and 
their behavior would be predictable and stable. However, the interdependency between the 
two pendulums in the double pendulum system results in chaotic and complex motion, 
making it an excellent example of a nonlinear dynamics system. 

Nonlinear dynamics systems are of significant interest to scientists, engineers, and 
researchers across various disciplines. They play a critical role in modeling and 
understanding complex natural phenomena, such as weather patterns, fluid dynamics, and 
population dynamics. Additionally, nonlinear systems are prevalent in engineering 
applications, including robotics, control systems, and communication networks. 

The study of nonlinear dynamics systems has important implications in fields such as chaos 
theory, dynamical systems theory, and complex systems research (Schön, 2006). By 
investigating nonlinear dynamics, researchers can gain insights into the emergence of 
patterns, bifurcations, and other complex behaviors, that are not present in linear systems. 
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Modeling nonlinear dynamics systems typically involves expressing the relationships 
between the system's variables and their rates of change using nonlinear differential 
equations. Solving these equations analytically is often infeasible due to their complexity, 
and numerical methods are used for simulation and analysis. 

To analyze the behavior of nonlinear systems, researchers often employ techniques from 
dynamical systems theory. This theoretical framework enables the study of stability 
properties of equilibrium points, the identification of periodic orbits or limit cycles, and 
the detection of bifurcations, where the system's behavior changes qualitatively as 
parameters are varied. 

Overall, nonlinear dynamics systems are an essential area of study with broad applications 
in understanding the complexities of the natural world and engineering systems. Their 
unique behaviors challenge researchers to develop sophisticated mathematical and 
computational tools, making them an exciting and dynamic field of research. 

 

1.2 Difference between Deterministic and Stochastic Systems 

Deterministic nonlinear systems are characterized by a predictable and deterministic 
relationship between the system's variables and their rates of change (Fuchs, 2014 ; Schön, 
2006). In other words, given the initial conditions of the system, its future behavior is 
entirely determined and repeatable. The dynamics of deterministic systems are governed 
by deterministic equations, meaning that there is no inherent randomness or uncertainty in 
the system's evolution over time. 

Consider a simple harmonic oscillator, a classic example of a deterministic nonlinear 
system. The motion of the oscillator is governed by a second-order nonlinear differential 
equation that relates the position and velocity of the oscillator to an external force. Given 
the initial position and velocity of the oscillator, its future trajectory can be precisely 
predicted using the laws of physics and calculus. 

Stochastic systems (Maybeck, 1982a; Stengel, 1994), on the other hand, introduce an element 
of randomness or probabilistic behavior into the system's dynamics. In these systems, the 
future evolution of the system is uncertain, even when the initial conditions are known with 
certainty. The dynamics of stochastic systems are described by stochastic differential 
equations (SDEs) or stochastic difference equations, which incorporate random or 
probabilistic elements. 

A well-known example of a stochastic nonlinear system is the Brownian motion or random 
walk. Brownian motion describes the random movement of particles suspended in a fluid 
due to collisions with molecules of the fluid. In this system, the motion of the particle is 
influenced by random and unpredictable collisions, leading to a continuous and erratic 
movement over time. 
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In some cases, systems may exhibit a combination of deterministic and stochastic behavior. 
These are referred to as hybrid systems. For example, in certain biological processes, 
deterministic processes may govern the overall behavior of the system, while random 
events, such as mutations or environmental fluctuations, introduce stochasticity. 

Understanding the distinction between deterministic and stochastic nonlinear systems is 
crucial for selecting appropriate modeling techniques and analysis methods depending on 
the specific characteristics and uncertainties present in the system under investigation. 
Stochastic models are particularly useful when dealing with real-world systems subject to 
random events, providing a more realistic representation of the inherent uncertainty in these 
complex systems. 

 

1.3 State-of-the-Art in Nonlinear Dynamics Systems 

Before delving further into the specifics of this thesis, it is essential to review the state-of-
the-art in the field of nonlinear dynamics systems. A comprehensive understanding of prior 
research and existing methodologies is critical for identifying gaps and opportunities for 
innovation. 

 

1.3.1 Prior Research and Key Methodologies Used in Modeling Nonlinear Systems 

A substantial body of research has been dedicated to nonlinear dynamics systems, 
encompassing both theoretical developments and practical applications. Researchers have 
explored various mathematical and computational techniques for modeling and analyzing 
these systems. Some of the prominent areas of study include: 

1. Differential Equations: Differential equations are at the core of modeling nonlinear 
dynamics systems. They establish the relationship between the system's state variables 
and their rates of change over time. In general, differential equations can be classified 
into ordinary differential equations (ODEs) for continuous-time systems or partial 
differential equations (PDEs) for systems that depend on both time and space variables 
(Øksendal, 2003, L Renson, 2015, L Renson, 2018, D Anastasio, 2020). 

Nonlinear differential equations are expressed as functions of the state variables and 
their derivatives, and they may involve products, powers, trigonometric functions, 
exponential functions, or other nonlinear terms. Solving these equations analytically is 
often challenging or even impossible, requiring numerical methods for simulation and 
analysis. 

2. State Space Representation: State-space representation is a mathematical technique used 
to model both linear and nonlinear systems in a more systematic and compact form (V 
Verdult, 2002). It involves converting a higher-order system of differential equations into 
a set of first-order equations in a state vector format.  
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The state vector contains all the system's state variables, and the dynamics of the system 
are expressed as a set of first-order ordinary differential equations. This transformation 
simplifies the analysis of complex systems, facilitates the use of linear algebra tools, 
and enables the application of control theory and system identification methods. 

3. Dynamical Systems Theory: Dynamical systems theory provides a theoretical 
framework for analyzing the behavior of nonlinear systems. It focuses on understanding 
the stability and behavior of equilibrium points, periodic orbits, limit cycles, and chaotic 
attractors. 

Stability analysis is critical for determining the long-term behavior of the system. Stable 
equilibrium points act as attractors that draw the system towards a particular state, while 
unstable equilibrium points lead to divergent trajectories. Periodic orbits and limit 
cycles represent regular repeating patterns in the system's state, while chaotic attractors 
exhibit sensitive dependence on initial conditions and aperiodic behavior. 

4. Numerical Methods: Given the complexity of most nonlinear differential equations, 
analytical solutions are often impractical. Numerical methods play a fundamental role 
in solving these equations and simulating the behavior of nonlinear systems over time. 
Common numerical methods include Euler's method, Runge-Kutta methods (E Hairer, 
2006), and finite difference methods for ODEs, as well as finite element methods and 
finite volume methods for PDEs. 

Numerical simulations enable the investigation of system behavior under different 
conditions, the exploration of bifurcations, and the study of parameter sensitivity. These 
simulations provide valuable insights into the dynamics of nonlinear systems when 
analytical solutions are not attainable. 

5. Nonlinear Control Techniques: Controlling nonlinear systems presents unique 
challenges, as the relationship between inputs and outputs is not necessarily linear. 
Nonlinear control techniques aim to stabilize and control the behavior of nonlinear 
systems effectively. Techniques like feedback linearization, sliding mode control, and 
adaptive control are utilized to handle the complexities of these systems. 

6.  Chaos Theory and Bifurcation Analysis: Chaos theory is a branch of mathematics that 
deals with the study of chaotic behavior in deterministic nonlinear systems. Chaos arises 
from sensitive dependence on initial conditions, which means that infinitesimal 
differences in initial conditions can lead to vastly different trajectories over time. 
Bifurcation analysis focuses on the study of qualitative changes in the system's behavior 
as a parameter is varied. Bifurcations can lead to the emergence of new behaviors, such 
as the appearance of periodic orbits or chaotic attractors. 

By employing these key mathematical concepts, researchers and engineers can develop 
accurate and insightful models of nonlinear systems. These models facilitate the 
understanding of complex behaviors, provide predictive capabilities, and enable the design 
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of efficient control strategies for a wide range of applications across various fields of 
science and engineering. 

 

1.3.2 Identified Research Gaps 

Despite the progress made in modeling and analyzing nonlinear dynamics systems, several 
challenges and gaps persist in the field: 

Parameter Estimation: Accurate parameter estimation remains a significant challenge due 
to the inherent nonlinearity of these systems. Current methodologies often struggle to 
provide reliable parameter estimates, especially when dealing with complex and high-
dimensional systems. 

Incorporating Uncertainty: Many real-world systems are subject to uncertainties and noise. 
Current approaches may not adequately address the incorporation of these uncertainties 
into models, leading to suboptimal predictions. 

Computational Complexity: The computational demands of modeling and analyzing 
nonlinear systems, particularly in high-dimensional spaces, necessitate the development of 
efficient algorithms and numerical techniques. 

 

1.4 Challenges in Parameter Estimation for Nonlinear Systems 

Parameter estimation is a critical process in modeling nonlinear systems, as it involves 
determining the values of unknown parameters that best fit the model to observed data. 
However, parameter estimation in nonlinear systems poses several challenges due to their 
complex and dynamic nature. Understanding and addressing these challenges are essential 
to obtain accurate and reliable parameter estimates. Below are the key challenges in 
parameter estimation for nonlinear systems: 

1. Nonlinearity: The primary challenge in parameter estimation for nonlinear systems is 
the inherent nonlinearity of the system dynamics. Nonlinear relationships between 
variables can lead to multiple solutions or ambiguities in parameter estimation. Unlike 
linear systems where parameter estimation is often straightforward, nonlinear systems 
require more sophisticated and iterative techniques to identify the optimal set of 
parameters that best represent the observed data. 

2. Uncertainty and Noise: Real-world data collected from measurements are often affected 
by uncertainties and noise. These uncertainties can arise from various sources, such as 
sensor inaccuracies, measurement errors, and environmental variability. Incorporating 
these uncertainties into the parameter estimation process is crucial for obtaining reliable 
parameter estimates that account for the inherent noise in the data. 

3. High-Dimensional State Spaces: Many nonlinear systems have high-dimensional state 
spaces, meaning they involve a large number of state variables. Estimating parameters 
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in high-dimensional spaces can be computationally intensive and may require 
specialized algorithms to efficiently explore the parameter space. High-dimensional 
systems also suffer from the "curse of dimensionality," where the volume of the 
parameter space grows exponentially with the number of dimensions, making 
exhaustive search methods impractical. 

4. Identifiability and Sensitivity Analysis: Identifiability refers to the uniqueness of 
parameter estimation. In some cases, nonlinear systems may exhibit parameter 
redundancy, meaning different combinations of parameters can produce similar system 
behavior. Identifiability analysis helps determine which parameters can be uniquely 
estimated from the available data and which are partially or fully unidentifiable. 

Sensitivity analysis is crucial in assessing the impact of uncertainties in parameter 
estimates on the system's behavior. Small errors in parameter estimation can lead to 
significant deviations in system predictions, especially in chaotic or sensitive systems. 

5. Model Structure Uncertainty: Choosing an appropriate model structure for a nonlinear 
system is often a challenging task. In some cases, the exact form of the nonlinear model 
may not be known a priori, and different model structures could fit the data equally well. 
Model structure uncertainty adds another layer of complexity to parameter estimation, 
as researchers must consider various plausible model formulations. 

6. Global Optimization: Nonlinear parameter estimation often involves finding the global 
optimum in the parameter space, which can be challenging due to the presence of 
multiple local minima or maxima. Traditional optimization methods might get stuck in 
local optima, leading to suboptimal parameter estimates. Global optimization 
techniques, such as genetic algorithms, particle swarm optimization, or simulated 
annealing, are employed to address this challenge. 

7. Data Sparsity and Observability: In some cases, data sparsity or limited observability of 
the system can hinder parameter estimation. Insufficient or sparse data may not fully 
capture the system's dynamics, leading to biased or inaccurate parameter estimates. 
Observability analysis helps determine which parts of the system can be inferred from 
available data and which parts remain unobservable. 

8. Computational Complexity: Parameter estimation in nonlinear systems can be 
computationally demanding, especially for large-scale or high-dimensional models. 
Efficient algorithms and numerical techniques are required to handle the computational 
burden and provide reasonable estimation times. 

To overcome these challenges, researchers often leverage Bayesian inference techniques, 
such as the Kalman filter, Unscented Kalman filter, and particle filter. Bayesian approaches 
provide a principled way to incorporate prior knowledge, handle uncertainty, and 
iteratively update parameter estimates as new data becomes available. These techniques 
allow for more robust and accurate parameter estimation, enhancing the understanding and 
predictive capabilities of complex nonlinear systems. 
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1.5 Overview of Thesis 

This thesis aims to contribute to the field of nonlinear dynamics by addressing the 
challenges outlined above, particularly in the context of parameter estimation. We will 
explore innovative Bayesian inference techniques, such as the Kalman filter, Unscented 
Kalman filter, and particle filter, to enhance our ability to accurately estimate parameters 
in nonlinear systems. The subsequent chapters will delve into the theoretical foundations 
and practical applications of these techniques, providing a comprehensive framework for 
researchers and practitioners working with nonlinear dynamics systems. 

we will delve into the theoretical basics of Bayesian inference techniques, laying the 
groundwork for our subsequent discussions. Then we will focus on numerical 
implementation procedures and will showcase the application of these techniques in real-
world scenarios. Finally, we will summarize our findings, discuss their broader 
implications, and highlight the contributions made in the realm of nonlinear dynamics. 

As we embark on this journey, we aim to provide valuable insights, tools, and 
methodologies to researchers and professionals seeking to better understand and 
manipulate the intricate behaviors of nonlinear dynamics systems. 
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Chapter 2. Bayesian Inference 
 

2.1 Overview of Bayesian Inference 

Bayesian Inference is a sophisticated statistical framework that serves as a powerful tool 
for reasoning about uncertainty in a systematic and coherent manner (Tarantola, 2004; Kaipio 
and Somersalo, 2005; Rasmussen and Williams, 2006; Sarkka, 2011, L Renson, 2022). At its core, 
Bayesian Inference offers a structured methodology to update our beliefs, expressed in the 
form of probability distributions, as new data becomes available. This updating process 
enables us to refine our understanding of uncertain quantities, often referred to as 
parameters, within a given model. 

The origin of Bayesian Inference can be traced back to the 18th century when Reverend 
Thomas Bayes pioneered the concept of integrating prior knowledge with observed 
evidence to arrive at updated probabilities (Wiener, 1950; Proakis, 2001; Hayes, 1996). 
Unlike classical frequentist statistics, which treat parameters as fixed values and data as 
random outcomes, Bayesian Inference treats both parameters and data as probabilistic 
entities. This fundamentally aligns with the intuitive notion that our knowledge about a 
parameter's true value is subject to uncertainty, often stemming from factors such as 
measurement errors, variability, or incomplete information. 

Central to Bayesian Inference is the idea of the "prior" and the "likelihood." The prior 
captures our initial beliefs about a parameter's distribution before considering any new data. 
The likelihood quantifies the probability of observing the data given specific parameter 
values (Milton and Arnold, 1995). As new data is obtained, the prior is updated using Bayes' 
theorem, which mathematically combines the prior and the likelihood to yield the 
"posterior" distribution. This posterior distribution represents our revised beliefs about the 
parameter after incorporating the observed evidence. 

The iterative nature of Bayesian Inference is particularly advantageous. As more data 
accumulates, the posterior distribution becomes increasingly refined, providing a 
comprehensive picture of the parameter's true distribution. This iterative updating aligns 
with the scientific method's principles—continuously refining hypotheses based on new 
evidence. 

Bayesian Inference offers several compelling advantages over classical approaches. Firstly, 
it provides a coherent framework to incorporate prior information or expert knowledge into 
the analysis, effectively utilizing existing understanding to enhance data-driven 
conclusions. Secondly, it naturally handles uncertainty by representing it as a probability 
distribution, allowing for a nuanced exploration of potential outcomes and associated 
probabilities. Thirdly, Bayesian methods enable the propagation of uncertainty through 
complex models, supporting robust decision-making even in intricate systems. 

This approach finds application in a diverse range of fields. From medical diagnoses and 
climate modeling to financial forecasting and artificial intelligence, Bayesian Inference 
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equips researchers and practitioners with a versatile tool to extract meaningful insights 
from data while acknowledging and quantifying the inherent uncertainty in the process. By 
offering a principled way to reason about uncertainty, Bayesian Inference is a cornerstone 
of modern statistical analysis and plays a pivotal role in advancing our understanding of 
complex phenomena. 

 

2.2 Bayesian Underlying Principles: 

2.2.1 Probabilistic Framework: Central to the essence of Bayesian inference is its 
foundation in a probabilistic framework (Stratonovich, 1968; Jazwinski, 1970). This 
framework employs probability as a precise language to quantify and express our 
understanding of uncertainty in the context of parameters and observed data. In the 
Bayesian perspective, parameters are not regarded as fixed but as random variables, 
characterized by probability distributions. By doing so, Bayesian analysis seamlessly 
integrates the quantification of uncertainty into the entire inference process, leading to 
coherent and intuitive reasoning. 

 

2.2.2 Incorporating Prior Knowledge: A distinctive feature of Bayesian inference is its 
capability to incorporate existing knowledge or beliefs regarding parameters before any 
data is collected. This is achieved through the introduction of a prior probability 
distribution over the parameter space. The prior distribution encapsulates what is known 
or assumed about the parameters based on prior information, historical data, or expert 
opinions. This integration of prior knowledge empowers Bayesian inference to leverage 
external information, thereby enhancing the precision and efficiency of parameter 
estimation. 

 

2.2.3 Likelihood Function: Within the framework of Bayesian inference, the likelihood 
function stands as a cornerstone, embodying the essence of how observed data interacts 
with model parameters (Milton and Arnold, 1995). Essentially, it quantifies the plausibility 
of the collected data, given particular values of the model parameters. This function serves 
as a bridge between the theoretical predictions of the model and the actual data points 
observed. 

 

Mathematically, the likelihood function  𝑃(𝑦 ∣ µ)  is expressed as: 

𝑃(𝑦 ∣ µ) = 𝑓(𝑦 ∣ µ) 

Where: 

• 𝑃(𝑦 ∣ µ) is the likelihood of observing the data 𝑦 given a set of parameter values µ. 
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• 𝑓(𝑦 ∣ µ) represents the probability density function or probability mass function, 
depending on whether the data is continuous or discrete. 

 

Interpretation and Significance: The crux of the likelihood function lies in its interpretation 
as a measure of how well the model, characterized by the parameter values 𝜃, aligns with 
the actual data observations 𝑦 . Larger values of 𝑃(𝑦 ∣ µ) signify that the model's 
predictions, with the specified parameter values, closely correspond to the observed data 
points. Conversely, smaller values indicate a weaker match between the model's 
predictions and the observed data. 

 

2.2.4 Bayes' Theorem:  Bayes' theorem, a pivotal equation in Bayesian inference, governs 
the process of updating our beliefs about unknown parameters in response to new data. 
This theorem establishes a profound connection between the prior distribution, the 
likelihood function, and the posterior distribution. Named after Reverend Thomas Bayes 
(Wiener, 1950; Proakis, 2001; Hayes, 1996), it represents the crux of how probabilities are 
refined as new evidence is encountered. 

Mathematically, Bayes' theorem is presented as: 

 

𝑃(µ | 𝑦) =
𝑃(𝑦 ∣ µ) ⋅ 𝑃(µ)

𝑃(𝑦)
  

Where: 

• 𝑃(µ | 𝑦) denotes the posterior distribution of parameters µ after observing data 𝑦. 

• 𝑃(𝑦 ∣ µ) is the likelihood function, which quantifies the probability of observing data 
𝑦 given specific values of the parameters µ. 

• 𝑃(µ)  signifies the prior distribution, which encapsulates the initial beliefs or 
knowledge about the parameter values before observing any data. 

• 𝑃(𝑦)  acts as the marginal likelihood or evidence, ensuring that the posterior 
distribution is a valid probability distribution. 

 

Updating Beliefs using Bayes' Theorem: The journey of updating beliefs about 
parameters through Bayes' theorem unfolds in the following sequence: 

1. Prior Beliefs: Before any data is collected, the prior distribution 𝑃(µ) captures the 
initial beliefs about parameter values. This distribution incorporates any prior 
knowledge, past studies, or external data. 
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2. Observing Data: As data is gathered, the likelihood function 𝑃(𝑦 ∣ µ) steps in to assess 
how well the model, with specific parameter values, aligns with the observed data. 

3. Updating Beliefs: By invoking Bayes' theorem, the prior distribution and likelihood 
function join forces to compute the posterior distribution 𝑃(µ ∣ 𝑦). This distribution 
embodies our updated beliefs about the parameters after factoring in the observed data. 

 

Mathematically, the theorem and its three-step application provide a structured and 
principled mechanism to refine our understanding of the parameters in light of new 
evidence. It captures the essence of Bayesian inference—adapting and improving our 
beliefs in a rigorous and iterative manner. 

The updating process can be summarized as follows: As we observe new data, our beliefs 
about the parameters are revised in light of this new evidence. The prior distribution is 
combined with the likelihood function to obtain the posterior distribution, which reflects 
our updated understanding of the parameters. The posterior distribution is used to make 
probabilistic inferences, estimate credible intervals, perform model selection, and draw 
conclusions about unknown quantities. 

 

2.2.5 Posterior Distribution: The culmination of Bayesian inference rests upon the 
posterior distribution, an embodiment of our refined beliefs regarding the model 
parameters following the assimilation of observed data. It serves as a harmonious synthesis 
between the prior knowledge and the new information gathered from the data. Unlike 
conventional frequentist methodologies that offer single-point estimations, Bayesian 
inference unveils a comprehensive probability distribution spanning the parameter space. 
This comprehensive distribution empowers us to not only quantify uncertainty but also 
draw probabilistic conclusions, elevating our grasp of the inherent variability in the system. 

 

2.2.6 Iterative Updating: One of the hallmark attributes of Bayesian inference is its 
potential for iterative updating of parameter estimates as fresh data streams in. This facet 
is especially advantageous when data is collected sequentially or in batches. As each new 
data segment surfaces, the prior distribution transforms into the posterior distribution 
through the process of Bayesian updating. The iterative nature of this procedure permits 
adaptive decision-making, enabling the model to dynamically refine parameter estimates 
and learn from evolving data streams. 

Here we can see the schematic aspect of Bayesian Inference for prior, likelihood, and 
posterior steps: 
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Figure 2. Prior, Likelihood, and Posterior aspects of Bayesian Inference 

 

This iterative approach underscores the dynamic nature of Bayesian inference (E, Chatzi, 
2010; E, Chatzi, 2009), where the model adapts to new insights, fosters ongoing learning, 
and facilitates informed decision-making in the face of evolving information. It embodies 
the essence of Bayesian reasoning by embracing the cyclical process of belief refinement. 
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Chapter 3. Kalman Filter 
 

3.1 Introduction to the Kalman Filter  

The Kalman filter stands as a cornerstone in the realm of recursive Bayesian estimation 
techniques, offering a powerful solution for estimating the state of linear dynamic systems 
in the presence of noise. Pioneered by Rudolf E. Kalman in the early 1960s (Ho and Lee, 
1964; Lee, 1964; Jazwinski, 1966, 1970), this methodology has since emerged as a ubiquitous 
tool with applications spanning engineering, control systems, signal processing, robotics, 
and navigation. At its core, the Kalman filter is geared toward enabling accurate state 
estimation in real-time scenarios, even when systems are subject to various sources of 
uncertainty. 

1. Linear Dynamic Systems: The Kalman filter is fundamentally designed to cater to 
linear dynamic systems. Such systems possess two integral attributes: 

• Linearity: Linearity denotes that the relationships governing the interaction between 
the system's state variables and inputs are described through linear equations. This 
implies that the system's behavior is encapsulated within linear combinations of its 
state variables and inputs. 

• Dynamics: Dynamics pertain to the temporal evolution of the system. Linear 
systems manifest their dynamics through linear differential or difference equations, 
representing the time-dependent transition of state variables. 

2. State-Space Representation: Central to the Kalman filter's functioning is its operation 
on linear systems depicted using a state-space formulation. This representation dissects 
the model into two vital components: the state equation and the observation equation. 

• State Equation: The state equation encapsulates the evolution of the system's state 
variables across time. It typically assumes the form of a linear differential or 
difference equation, connecting the present state to the preceding state and the system 
inputs. 

• Observation Equation: The observation equation establishes the link between the 
actual measurements or observations and the underlying system state. This equation 
defines the mapping from the state variables to the observed measurements and takes 
into account the inherent measurement noise that often accompanies real-world data. 

3. Recursive Bayesian Estimation: The Kalman filter's hallmark feature is its recursive 
Bayesian estimation paradigm, characterized by its ability to iteratively furnish state 
estimates at each time step. This recursive approach renders the Kalman filter 
exceptionally efficient and well-suited for real-time applications. 

4. Bayesian Filtering: The Kalman filter is grounded in Bayesian filtering principles, 
framing the state estimation challenge as a probabilistic inference endeavor. Guided by 
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Bayes' theorem, the Kalman filter dynamically updates the state estimate as new 
measurements are assimilated. 

5. Prediction Step: In each iteration, the Kalman filter enacts two core stages, namely 
prediction and update. In the prediction phase, the filter prognosticates the system's 
forthcoming state by leveraging the previous state estimate and the system's transition 
model. This step encompasses the system's dynamics and any available control inputs 
to propel the state estimate forward temporally. 

6. Update Step: The subsequent update phase of the Kalman filter incorporates fresh 
measurements to refine and rectify the state estimate that emerged from the prediction 
phase. This adjustment process draws upon the observation model and measurement 
data to revise the state estimate, contingent upon the likelihood of the observed 
measurements given the forecasted state. 

7. State Estimation: At each juncture, the Kalman filter furnishes two primary estimates: 

• State Estimate (a posteriori): This estimate encapsulates the optimal approximation 
of the genuine system state, incorporating the observed measurements. It arises as 
the outcome of the update step, serving as the present-day best estimate of the 
system's state. 

• State Prediction (a priori): This estimate arises from the prediction step prior to the 
assimilation of new measurements. It offers the subsequent state estimate, grounded 
solely in the system's dynamics and the antecedent state approximation. 

8. Covariance Matrix: The Kalman filter supplements its estimates with the calculation 
of the covariance matrix at each time instance. This matrix quantifies the inherent 
uncertainty or inaccuracy intrinsic to the state estimate. It conveys the extent of 
dispersion or correlation existing among state variables. 

9. Adaptive Nature: A distinctive attribute of the Kalman filter is its inherent adaptability. 
It capably navigates the intricacies of systems undergoing temporal alterations, varying 
noise attributes, and uncertainties present in real-time measurements. The Kalman filter 
persists in updating both its state approximation and covariance matrix, consistently 
refining its estimates in dynamically shifting environments. 

10. Extensions: The Kalman filter's applicability extends through several variations 
tailored to specific scenarios. The Extended Kalman Filter (EKF) (Jazwinski, 1970; 
Maybeck, 1982b; Bar-Shalom et al., 2001; Grewal and Andrews, 2001) extends the basic 
Kalman filter to tackle non-linear dynamic systems by approximating the non-linear 
state and observation models via linearization. The Unscented Kalman Filter (UKF) 
(Julier et al., 1995; Julier and Uhlmann, 2004; Wan and Van der Merwe, 2001) offers an 
alternative, approximating non-linear transformations without necessitating explicit 
linearization. These extensions enhance the filter's applicability across a broader 
spectrum of real-world scenarios. 
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Here below we can summarize the steps in this figure. 

 

Figure 3. Kalman Filter Process 

 

In conclusion, the Kalman filter is a versatile recursive Bayesian estimation technique 
designed specifically for linear dynamic systems. It provides an efficient and adaptive way 
to estimate the state of a system in the presence of noise and has found widespread 
applications in fields that involve state estimation, tracking, and sensor fusion in real-time 
systems (Bar-Shalom et al., 2001; Crassidis and Junkins, 2004; Challa et al., 2011). Its ability to 
incorporate both prior knowledge and real-time measurements makes it a valuable tool in 
various engineering and control applications. 

 

 

3.2 Step-by-Step of the Kalman Filter Algorithm: 

The Kalman filter is a recursive algorithm used to estimate the state of a linear dynamic 
system in the presence of noise. It operates in two main phases: prediction and update. Here 
is a detailed step-by-step explanation of the Kalman filter algorithm: 

 

1. Initialization: 

• Initialize the state vector 𝒙0 and the state covariance matrix 𝑷0 with their initial 
estimates or values. 
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• 𝒙0  ∊ 𝑅𝑁 represents the initial state estimate, while 𝑷0 ∊ 𝑅𝑁𝑥𝑁 that represents the 
initial uncertainty or error in the state estimate. 

 

2. Prediction Phase: At each time step 𝑘, the Kalman Filter performs the prediction 
phase to predict the state estimate for the next time step (Kalman, 1960b; Kalman, 
1961). 

 

3. State Prediction (a priori): 

• Use the state transition model to predict the state estimate at the next time step 𝒙𝑘∣𝑘−1 
based on the current state estimate 𝒙𝑘−1∣𝑘−1 and the system dynamics. 

• The state transition model is typically represented by a linear equation: 

𝒙𝑘∣𝑘−1 = 𝐅𝑘 ∗ 𝐱𝑘−1|𝑘−1 + 𝐁𝑘 ∗ 𝐮𝑘  

Where: 

𝑭𝑘  ∊ 𝑅𝑁𝑥𝑁 is the state transition matrix.  

𝑩𝑘  ∊ 𝑅𝑁𝑥1  is the control input matrix (if any) 

𝒖𝑘  ∊ 𝑅1𝑥1 is the control input (if any). 

 

4. State Covariance Prediction (a priori): 

• Use the state transition model and the previous state covariance 𝑷𝑘−1|𝑘−1 (N ∗

N size) to predict the state covariance (Julier, 2000) at the next time step 𝑷𝑘|𝑘−1 (N ∗

N size) . 

• The state covariance prediction is given by:  

𝑷𝑘|𝑘−1 = 𝑭𝑘 ∗ 𝑷𝑘−1|𝑘−1 ∗ 𝑭𝑘
⊺ + 𝑸𝑘  

Where: 

𝑸𝑘  ∊ 𝑅𝑁𝑥𝑁 is the process noise covariance matrix, representing the uncertainty 
introduced by the system dynamics and any unmodeled processes. 

 

5. Update Phase: At each time step 𝑘, the Kalman Filter performs the update phase to 
incorporate new measurements and refine the state estimate. 
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6. Measurement Residual (Innovation): 

• Calculate the measurement residual (also known as the innovation) 𝒚𝑘 as the 
difference between the observed measurement 𝒛𝑘 and the predicted measurement 
based on the state estimate 𝒙𝑘|𝑘−1. 

𝒚𝑘 = 𝒛𝑘 −  𝑯𝑘 ∗ 𝒙𝑘|𝑘−1 

where 𝑯𝑘 ∊ 𝑅1𝑥𝑁 is the observation matrix, which maps the state space to the 
measurement space. 

 

7. Measurement Residual Covariance: 

• Calculate the measurement residual covariance 𝑺𝑘 as the sum of the measurement 
noise covariance 𝑹𝒌 and the covariance of the predicted measurement. 

𝑺𝑘 = 𝑯𝑘 ∗  𝑷𝑘|𝑘−1 ∗  𝑯𝑘
⊺  +  𝑹𝑘 

where 𝑹𝑘 ∊ 𝑅1𝑋1 is the measurement noise covariance matrix, representing the 
uncertainty in the measurements. 

 

8. Kalman Gain: 

• Calculate the Kalman gain 𝑲𝑘, which determines the contribution of the 
measurements to the state update. 

• The Kalman gain is given by: 

 𝑲𝑘 = 𝑷𝑘|𝑘−1 ∗  𝑯𝑘
⊺ ∗  𝑺𝑘

−1 

 

9. State Update (a posteriori): 

• Update the state estimate based on the measurements and the Kalman gain to obtain 
the a posteriori state estimate 𝒙𝑘|𝑘. 

𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 +  𝑲𝑘 ∗ 𝒚𝑘 

 

10. State Covariance Update (a posteriori): 

• Update the state covariance based on the Kalman gain to obtain the a posteriori state 
covariance 𝑷𝑘|𝑘. 

𝑷𝑘|𝑘 = (𝑰 − 𝑲𝑘 ∗ 𝑯𝑘) ∗ 𝑷𝑘|𝑘−1 
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11. Repeat: 

• Repeat the prediction and update phases for the next time step  𝑘 + 1  by using the 
updated state estimate  𝒙𝑘|𝑘  as the new initial state estimate  𝒙𝑘+1|𝑘 and the updated 
state covariance  𝑷𝑘|𝑘  as the new initial state covariance  𝑷𝑘+1|𝑘. 

 

As good representation of Kalman filter we can refer to this graph below: 

 

 

Figure 4. Kalman Filter prediction and update flow 

 

The Kalman filter algorithm continually updates the state estimate and the state covariance 
at each time step as new measurements are received, providing an efficient and accurate 
estimate of the underlying system state even in the presence of noise and uncertainties. It 
is a widely used tool for state estimation, tracking, and sensor fusion in real-time systems. 

 

3.3 Assumptions and Limitations of the Kalman Filter in Nonlinear Systems 

The Kalman filter is a powerful tool for estimating the state of linear dynamic systems in 
the presence of noise. However, its effectiveness diminishes when applied to nonlinear 
systems. Here are the assumptions and limitations of the Kalman filter in handling 
nonlinear systems: 
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Assumptions: 

1. Linearity: The Kalman filter assumes that the underlying dynamic system is linear. 
This assumption is crucial because the filter relies on linear algebra and statistical 
properties that are valid only for linear systems. 

2. Gaussian Noise: The Kalman filter assumes that all the noise components (process 
noise and measurement noise) are Gaussian with zero mean and known covariance 
matrices. This assumption is essential for the optimal performance of the Kalman 
filter, as it relies on the properties of Gaussian distributions in its estimation process. 

3. Model Knowledge: The Kalman filter assumes that the system dynamics and the 
observation model are known with certainty. This knowledge is necessary for setting 
up the state transition matrix (𝑭𝑘), the observation matrix (𝑯𝑘), and the covariance 
matrices (𝑸𝑘 and 𝑹𝑘) accurately. 

4. Initial State: The Kalman filter assumes that the initial state estimate and covariance 
matrix are known or can be estimated precisely. Accurate initialization is crucial, as 
errors in the initial state can propagate throughout the filtering process. 

The effect of good initialization and accurate initial value is important in the 
estimation process. If we use a not accurate or bad initial value it will take several 
sample until Kalman Filter find its flow. Here below we see a photo representing the 
case where we have a bad initial value. 

 

 

Figure 5. Bad initial value for Linear system Kalman Filter 

 

Limitations: 

1. Nonlinear Systems: The primary limitation of the Kalman filter is its inability to 
handle nonlinear dynamic systems. In nonlinear systems, the relationship between 
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the state variables and the system inputs becomes nonlinear, and the system 
dynamics cannot be represented by linear equations. As a result, the state transition 
model (𝑭𝑘) in the Kalman filter becomes invalid. 

2. Degeneracy: In the presence of nonlinearity, the Kalman filter may suffer from 
degeneracy (sarkka, 2012a), where the updated state estimate and covariance matrix 
become unreliable due to the mismatch between the linear filter assumptions and the 
nonlinear system behavior. 

3. Loss of Optimality: When applied to nonlinear systems, the Kalman filter loses its 
optimality property, meaning that it may no longer provide the best possible state 
estimate. The filter's optimality is derived from its ability to exploit the linear 
Gaussian structure of the system, which does not hold in nonlinear scenarios. 

4. Linearization Techniques: Some attempts have been made to extend the Kalman 
filter to handle nonlinear systems by using linearization techniques such as the 
Extended Kalman Filter (EKF) or the Unscented Kalman Filter (UKF). These 
methods approximate the nonlinear functions by their linear or unscented equivalents. 
However, these approximations may introduce errors, especially for highly nonlinear 
systems. 

5. Sensitivity to Initialization: In nonlinear systems, the Kalman filter's performance 
can be highly sensitive to the quality of the initial state estimate and covariance. Poor 
initialization can lead to divergence or poor convergence, making it challenging to 
obtain accurate estimates. 

 

3.4 Alternative Approaches for Nonlinear Systems 

To address the limitations of the Kalman filter in handling nonlinear systems, alternative 
filtering techniques have been developed: 

1. Extended Kalman Filter (EKF): The EKF linearizes the system dynamics and 
observation functions around the current state estimate. It uses a first-order Taylor 
series approximation to estimate the Jacobian matrices, enabling the Kalman filter to 
be applied to certain types of nonlinear systems. However, the EKF may suffer from 
approximation errors for highly nonlinear systems. 

2. Unscented Kalman Filter (UKF): The UKF approximates the nonlinear functions 
using a set of carefully chosen sample points (sigma points) that capture the true mean 
and covariance of the system state. It propagates these sigma points through the 
nonlinear functions to compute the updated state estimate and covariance. The UKF 
often provides more accurate estimates than the EKF for moderately nonlinear systems. 

3. Particle Filter (Monte Carlo Filter): The Particle Filter (Gordon et al., 1993; Kitagawa, 
1996; Doucet et al., 2001; Ristic et al., 2004) represents the probability density function 
of the state using a set of weighted particles. It allows for more flexibility in handling 
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highly nonlinear systems and non-Gaussian noise (Kitagawa, 1987, 1996; Gordon, 
1993). However, the Particle Filter can be computationally intensive and may suffer 
from the "curse of dimensionality" for high-dimensional state spaces. 

 

In conclusion, while the Kalman filter is a powerful and widely used estimation technique 
for linear dynamic systems, it has important assumptions and limitations that restrict its 
applicability to nonlinear systems. For nonlinear systems, specialized filtering techniques 
such as the EKF, UKF, or Particle Filter are typically used to provide more accurate and 
robust state estimates (Agamennoni, 2011; Deisenroth, 2012). The choice of the 
appropriate filtering technique depends on the specific characteristics of the nonlinear 
system and the desired level of accuracy and computational complexity. 

 

3.5 Kalman Filter Application 

The Kalman filter has found successful applications in various domains due to its ability 
to provide accurate state estimation in the presence of noise and uncertainties. Here are 
some notable examples of successful applications of the Kalman filter in engineering and 
other fields: 

1. Navigation and GPS: The Kalman filter is widely used in navigation systems and 
GPS receivers to estimate the position (Kaplan, 1996), velocity, and orientation of 
vehicles and mobile devices. It fuses data from multiple sensors, such as 
accelerometers, gyroscopes, and GPS receivers, to provide accurate and reliable real-
time position tracking even in challenging environments with signal obstructions or 
noisy measurements. 

2. Aerospace and Aviation: In aerospace engineering, the Kalman filter is used for 
various applications, including aircraft navigation, attitude determination, and flight 
control (Sarkka et al., 2007b). It helps stabilize aircraft during flight, estimate aircraft 
states for control systems, and facilitate autonomous landing and drone operations. 
Below we can see a photo representing the Aerospace application of Kalman Filter. 

 

Figure 6. Kalman Filter in Aerospace application for navigation 
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3. Robotics and Autonomous Systems: In robotics, the Kalman filter plays a critical 
role in state estimation for robotic localization, mapping, and path planning (Bar-
Shalom and Li, 1995). It enables robots to accurately estimate their position and 
orientation in real-time, allowing them to navigate complex environments and perform 
tasks autonomously. 

4. Target Tracking: The Kalman filter is extensively used in target tracking systems, 
such as radar and sonar tracking (Blackman and Popoli, 1999). It provides optimal 
estimates of the target's position and velocity, enhancing the accuracy and efficiency 
of target tracking in various defense and surveillance applications. 

5. Control Systems: The Kalman filter is widely used in control engineering for state 
estimation and control system design (Stone et al., 1999). It is employed in applications 
such as temperature control, motor control, and industrial process control, where 
accurate estimation of the system's state is crucial for optimal performance. 

6. Financial Markets: In finance, the Kalman filter is used for time-series analysis, stock 
market forecasting, and volatility estimation. It provides a robust framework for 
modeling financial time series and extracting hidden patterns from noisy data. 

7. Speech and Audio Signal Processing: The Kalman filter is applied in speech and 
audio processing for noise reduction, echo cancellation, and speech enhancement 
(Godsill and Rayner, 1998). It helps improve the quality of audio signals in noisy 
environments and hands-free communication systems. 

8. Image and Video Processing: In computer vision, the Kalman filter is used for object 
tracking, camera motion estimation, and image stabilization (Lin et al., 2006). It helps 
track moving objects in video sequences and compensate for camera movements 
during image or video capture. 

9. Medical Imaging: In medical imaging, the Kalman filter is used for motion 
compensation, cellular model predictive control, and image reconstruction (Hauk, 2004; 
Tarantola, 2004; Kaipio and Somersalo, 2005; Lin et al., 2006; B Smart, 2022). It helps 
reduce artifacts and motion-related distortions in medical images, improving the 
accuracy of diagnosis and treatment planning. 

10. Environmental Monitoring: The Kalman filter is applied in environmental 
monitoring for estimating various environmental parameters (Murray, 1993; Keeling and 
Rohani, 2007), such as pollutant concentrations, temperature, and humidity. It enables 
accurate and timely monitoring of environmental changes and facilitates data 
assimilation in weather forecasting models. 

11. Power Systems: In power systems engineering, the Kalman filter is used for state 
estimation in power grids. It helps estimate the state variables, such as voltage and 
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current, in real-time, ensuring the stability and reliability of power transmission and 
distribution networks. 

12. Wireless Communications: In wireless communication systems, the Kalman filter 
is used for channel estimation, signal equalization, and interference cancellation (Van 
Trees, 1968, 1971; Proakis, 2001). It helps improve the quality of wireless 
communication signals and enhance the capacity of communication networks. 

 

These successful applications highlight the versatility and effectiveness of the Kalman 
filter in a wide range of domains. Its ability to provide accurate and real-time state 
estimation in the presence of noise and uncertainties makes it a valuable tool in engineering 
and various other fields where accurate estimation of dynamic systems is critical for 
optimal performance and decision-making. 
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Chapter 4. Unscented Kalman Filter 
 

4.1 Introduction to Unscented Kalman Filter 

The Unscented Kalman Filter (UKF) (Julier et al., 1995; Julier and Uhlmann, 2004; Wan and 
Van der Merwe, 2001) stands as a sophisticated extension of the classic Kalman filter, 
meticulously crafted to surmount the challenge of handling nonlinear dynamic systems. 
This novel methodology represents a pivotal advancement that significantly broadens the 
applicability of the Kalman filter framework, which is intrinsically built for systems 
exhibiting linear characteristics. The UKF comes into play when the constraints of linearity 
are relinquished, ushering in a realm where complex, nonlinear systems can be effectively 
navigated and estimated. 

Traditionally, the Kalman filter thrives in scenarios where the dynamics of a system and 
its observations adhere to linear relationships. However, reality often unfolds through 
nonlinear dynamics that elude the constraints of linearity. This is where the UKF emerges 
as a beacon of innovation, transcending the limitations of its predecessor. It accomplishes 
this by ingeniously approximating the intricate nonlinear functions inherent in the system's 
evolution and observations. 

The UKF's approach is underpinned by the concept of sigma points, which embody a clever 
strategy to capture the essence of the system's true mean and covariance. These sigma 
points, carefully selected in a manner that holistically represents the system's statistical 
characteristics, serve as the linchpin of the UKF's nonlinear approximation. With these 
sigma points in hand, the UKF orchestrates a systematic exploration of the nonlinear 
functions that dictate state transitions and observations. This exploration culminates in the 
derivation of an updated state estimate and covariance, thereby ensuring that nonlinear 
dynamics are accounted for with precision and rigor. 

In essence, the UKF brings a transformative capability to the Kalman filter landscape (E 
Chatzi, 2010; Sarkka, 2013). It equips the filter to gracefully adapt to the complexities of 
nonlinear systems, making it an indispensable tool for an array of real-world applications. 
As we delve deeper into the mechanics of the Unscented Kalman Filter, its distinct 
mechanisms and steps will unravel, illuminating how it breathes life into nonlinear state 
estimation with remarkable efficacy and versatility. 

 

4.2 detailed outline of the Unscented Kalman Filter 
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4.2.1 Nonlinear System Model:  

In the concept of the Unscented Kalman Filter (UKF), the "Nonlinear System Model" refers 
to the mathematical representation of a dynamic system that exhibits nonlinearity in its 
state transition and/or observation functions. The UKF is designed to handle such nonlinear 
systems and provide accurate state estimation in the presence of noise and uncertainties. 
Here we see the process in figure 7. 

 

Figure 7. Unscented Kalman Filter flow summary 

 

Let's delve into more details about the Nonlinear System Model: 

1. State Transition Model: The state transition model represents the evolution of the 
system's state over time. In a discrete-time setting (commonly used in the UKF), it is 
defined by a nonlinear function  𝑓(⋅)  that relates the current state vector 𝒙𝑘 to the 
previous state vector 𝒙𝑘−1 and any control input 𝒖𝑘 at time step 𝑘. The state transition 
model can be expressed as: 

𝒙𝑘 = 𝑓(𝒙𝑘−1, 𝒖𝑘)  +  𝒘𝑘 

Where: 

𝒙𝑘 is the state vector at time step 𝑘. 

𝒖𝑘 is the control input (if any) at time step 𝑘. 

𝒘𝑘  represents the process noise at time step 𝑘 . It is assumed to be a zero-mean 
Gaussian random variable with covariance matrix 𝑸𝑘. The process noise accounts for 
uncertainties and unmodeled dynamics in the system. 

 

2. Observation Model: The observation model represents the relationship between the 
system's state 𝒙𝑘 and the measurements or observations 𝒛𝑘 obtained from sensors. In 
a discrete-time setting, the observation model is represented by a nonlinear 
function ℎ(⋅) that maps the state vector to the observation space. The observation 
model can be expressed as: 
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𝒛𝑘 = ℎ(𝒙𝑘) + 𝒗𝑘 

Where: 

𝒛𝑘 is the measurement vector at time step 𝑘. 

𝒗𝑘 represents the measurement noise at time step 𝑘. It is assumed to be a zero-mean 
Gaussian random variable with covariance matrix 𝑹𝑘. The measurement noise 
accounts for inaccuracies and uncertainties in the sensor measurements. 

 

3. Nonlinearity in the System Model: The key characteristic of the Nonlinear System 
Model is that the state transition function 𝑓(⋅) and/or the observation function ℎ(⋅) are 
nonlinear. This nonlinearity can arise due to various reasons, such as physical 
phenomena, complex interactions, or non-linear sensor responses. Nonlinearity 
implies that the relationship between the system's state and its inputs or measurements 
cannot be represented using simple linear equations. 

4. UKF Approximation of Nonlinearity: To address the nonlinearity in the system 
model, the UKF approximates the statistical properties of the state distribution after 
passing through the nonlinear functions without explicitly linearizing the functions. It 
achieves this by using a set of carefully chosen sigma points that represent the mean 
and covariance of the state distribution. These sigma points are propagated through 
the nonlinear functions to compute the predicted state estimate and covariance, which 
are then used in the prediction and update steps of the UKF. 

5. Handling Process and Measurement Noise: The UKF extends the state vector and 
covariance matrix to incorporate the process noise 𝒘𝑘 and measurement noise 𝒗𝑘 . 
This augmentation allows the inclusion of uncertainty in the propagated sigma points 
and enables the UKF to provide robust state estimation in the presence of noise and 
uncertainties. 

 

 

4.2.2 Sigma Point Generation 

The key idea of the UKF is to generate a set of sigma points that capture the true mean and 
covariance of the state. The sigma points are selected in a way that they represent the mean, 
and their spread approximates the covariance of the true state distribution. The number of 
sigma points is typically 2𝑁 + 1, where 𝑁 is the dimension of the state vector. 

We can see a simple presentation of sigma points in the figure 8. in this figure as shown 
we have 5 sigma points; we have one in the center which is our mean point and we put the 
posterior point of the previous iteration as our new mean point in sigma generation and we 
calculate the other 4 points according to the center points and we have our Gaussian 
approximation circle which is formed by generating the sigma points. 
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Figure 8. Sigma Points for Unscented Kalman Filter 

 

The sigma point generation process can be outlined as follows: 

1. Determining the Number of Sigma Points: The number of sigma points used in the 
UKF is typically chosen to be 2𝑁 + 1, where 𝑁 is the dimension of the state vector. 
Each sigma point includes the mean state vector and captures the spread of the state 
distribution. 

 

2. Calculation of Sigma Point Weights: The weights associated with the sigma points 
are determined to ensure that the Unscented Kalman Filter provides unbiased and 
accurate state estimates. The weights are dependent on the dimension of the state 
vector 𝑁 and a scaling factor, often denoted by 𝜆. The choice of 𝜆 affects the spread 
of the sigma points. 

 

3. Sigma Point Computation: To generate the sigma points, we start with the mean state 
vector 𝒎 and the covariance matrix 𝑷 of the current state distribution. For a state 
vector of dimension 𝑁, we compute 2𝑁 + 1 sigma points as follows: 

a. Mean Sigma Point: The first sigma point is simply the mean state vector itself:  

𝒙0 = 𝒎 

b. Covariance Sigma Points: Next, we compute 𝑁 sigma points that are dispersed 
along the principal directions of the state distribution, determined by the covariance 
matrix 𝑷. These sigma points are calculated as:  

𝒙𝑖 = 𝒎 + (√(𝑁 + 𝜆)𝑷)
𝑖
            𝑓𝑜𝑟 𝑖 = 1,2, … ,𝑁  

𝒙𝒊+𝑵 = 𝒎 − (√(𝑁 + 𝜆)𝑷)
𝑖
      𝑓𝑜𝑟 𝑖 = 1,2, … ,𝑁 
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Where: 

(√(𝑁 + 𝜆)𝑷)
𝑖
 denotes the 𝑖𝑡ℎ column of the square root of (𝑁 + 𝜆)𝑷. 

 

4. Forming the Sigma Point Set: Finally, we combine the mean sigma point and the 
covariance sigma points along with their adjusted weights to form the sigma point set. 
The set is represented as:  

𝑋 = {(𝒙0,𝑊0), (𝒙1,𝑊1), … , (𝒙2𝑁,𝑊2𝑁)} 

Where each element (𝒙𝑖,𝑊𝑖) in the set consists of a sigma point 𝒙𝑖  and its 
corresponding weight 𝑊𝑖. 

 

4.2.3 Weight Computation 

Weight computation in the Unscented Kalman Filter (UKF) determines the significance of 
each sigma point and its associated measurement in the state estimation process. These 
weights play a crucial role in calculating the predicted state estimate, covariance, Kalman 
gain, and other key quantities. The weight computation step ensures that the contributions 
of sigma points are appropriately weighted based on their reliability and relevance.  

Here's a detailed outline of the weight computation process: 

1. Define Scaling Factors: Before computing the weights, the UKF requires two scaling 
factors: 𝛼 and 𝜅 determines the spread of the sigma points around the mean.  

𝜆 =  𝛼2(𝑁 + 𝜅) − 𝑁 

2. Weight for the Mean Sigma Point: The weight associated with the mean sigma point 
𝑊0 is determined by the scaling factors 𝛼, as well as the dimensionality of the state 𝑁: 

 𝑊0
𝑚 =

𝜆

𝑁 + 𝜆
 

𝑊𝑖
𝑚 =

1

2(𝑁 + 𝜆)
 

3. Weights for Covariance Sigma Points: The weights for the covariance sigma points 
Wi are calculated using the scaling factor α and ensure that the UKF provides accurate 
and optimal state estimates. 𝐹𝑜𝑟 𝑖 = 1,2, … ,2𝑁, the weights are given by:  

𝑊0
𝑐 =

𝜆

𝑁 + 𝜆
+ (1 − 𝛼2 + 𝛽) 

𝑊𝑖
𝑐 =

1

2(𝑁 + 𝜆)
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𝛽  is an additional algorithm parameter that can be used for incorporating prior 
information on the (non-Gaussian) distribution of mean. 

4. Importance of Proper Weights: Properly computed weights ensure that the sigma 
points are appropriately emphasized during various steps of the UKF, such as 
computing the predicted state estimate, covariance, Kalman gain, and updating the 
state estimate based on measurements. Accurate weight computation contributes to the 
accuracy, stability, and convergence of the UKF algorithm. 

5. Handling Non-Gaussian Distributions: For non-Gaussian distributions, 
modifications to the weight computation may be necessary to achieve optimal 
performance. Techniques like the Unscented Transform can be applied to adjust the 
weights and ensure accurate estimation in cases of non-Gaussianity. 

 

The weights determine the influence of each sigma point in the state estimation process, 
and their calculation takes into account scaling factors, dimensionality, and the presence of 
process and measurement noise. Proper weight computation ensures that the UKF adapts 
effectively to the characteristics of the state distribution and provides reliable and robust 
state estimates even in the presence of nonlinearities and uncertainties. 

 

 

4.2.4 Augmentation 

Augmentation is a key step in the Unscented Kalman Filter (UKF) that involves extending 
the state vector and covariance matrix to incorporate the process noise and measurement 
noise. This step allows the UKF to account for uncertainty and noise in the propagated 
sigma points while handling both nonlinear state transition and observation functions.  

The augmentation process can be outlined as follows: 

1. Augmentation of the State Vector: In the standard Kalman filter, the state vector 𝒙𝑘 
only includes the primary state variables. However, in the UKF, the state vector is 
augmented to include the process noise 𝒘𝑘, which represents the uncertainty in the 
state transition. The augmented state vector 𝒙𝑎 is defined as: 

𝒙𝑎 = [
𝒙𝒌

𝒘𝒌
] 

Where: 

𝒙𝑎 is the augmented state vector at time step k. 

𝒙𝒌 is the primary state vector. 
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𝒘𝒌 is the process noise vector, assumed to be zero-mean Gaussian with covariance 
matrix 𝑸𝒌. 

 

2. Augmentation of the Covariance Matrix: Similarly, the covariance matrix 𝑷𝑘 is 
augmented to incorporate the covariance of the process noise. The augmented 
covariance matrix 𝑷𝑎 is defined as:  

𝑷𝑎 = [
𝑷𝑘 0
0 𝑸𝑘

] 

Where: 

𝑷𝑎 is the augmented covariance matrix at time step k. 

𝑷𝑘 is the covariance matrix of the primary state vector. 

𝑸𝑘 is the covariance matrix of the process noise. 

 

3. Augmentation for Measurement Noise: In the update step of the UKF, the augmented 
state vector is further extended to incorporate the measurement noise 𝒗𝑘, which 
represents the uncertainty in the sensor measurements. The augmented state vector 
including both process and measurement noise is denoted as 𝒙𝑎

𝑚. 

 

4. Propagation of Augmented Sigma Points: With the augmented state vector 𝒙𝑎 and 
augmented covariance matrix 𝑷𝑎 , the augmented sigma points are generated using the 
same procedure outlined in the "Sigma Point Generation" step. These augmented 
sigma points are then propagated through the nonlinear functions to obtain the 
predicted augmented state estimate and covariance. 

 

5. Combining Augmented Sigma Points: The predicted augmented state estimate and 
covariance are used in the prediction and update steps of the UKF. During these steps, 
the UKF computes the mean and covariance of the predicted augmented state using 
the propagated augmented sigma points. The augmented sigma points and their 
corresponding weights are used to estimate the mean and covariance in the same way 
as the primary state in the traditional Kalman filter. 

 

By including process and measurement noise in the augmented state vector and covariance 
matrix, the UKF provides a robust framework for accurate state estimation in the presence 
of noise and uncertainties, making it suitable for a wide range of real-world applications. 
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4.2.5 Sigma Point Propagation  

Sigma point propagation in the Unscented Kalman Filter (UKF) involves passing the 
generated sigma points through the nonlinear state transition function to predict the new 
state estimates. This step is crucial for updating the state distribution while accounting for 
nonlinearity and uncertainty in the dynamic system.  Here is a representation of sigma 
points propagation through state transition model in Figure 9. 

 
Figure 9. Sigma Points propagation through the nonlinear transform (state transition) 

 

Here's a detailed outline of the Sigma point propagation process: 

1. Use Generated Sigma Points: Sigma points are generated based on the current state 
estimate 𝒙𝑘 and covariance matrix 𝑷𝑘 using the procedure outlined in the "Sigma 
Point Generation" step. These sigma points, along with their corresponding weights, 
form the sigma point set 𝑋. 

2. Propagate Through Nonlinear Function: Each sigma point in the set 𝑋 is propagated 
through the nonlinear state transition function 𝑓(⋅) to predict the new state estimate at 
the next time step 𝑘 + 1. The propagation process involves applying the nonlinear 
function to each sigma point. 

3. Compute Predicted State Estimate and Covariance: After propagating the sigma 
points through the nonlinear function, the predicted state estimates are obtained. The 
mean and covariance of the predicted state distribution are computed using the 
propagated sigma points and their associated weights. These predicted state estimates 
form the basis for the prediction step of the UKF. 

4. Use Propagated Sigma Points for Further Steps: The predicted state estimate and 
covariance, along with the propagated sigma points and their weights, are used in 
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subsequent steps of the Unscented Kalman Filter, including the prediction and update 
steps. In the prediction step, the state estimate and covariance are used to compute the 
predicted mean and covariance of the state distribution. 

5. Incorporating Process Noise: In the UKF, the process noise 𝒘𝑘 is included in the 
augmented state vector. During sigma point propagation, the process noise is also 
propagated through the nonlinear state transition function along with the sigma points. 
This accounts for the uncertainty and variability introduced by the process noise during 
the state transition. 

6. Augmented Sigma Point Propagation: When the augmented state vector is used (as 
explained in the "Augmentation" step), both the primary state and process noise 
components are propagated through the nonlinear function. This allows the UKF to 
handle both the state transition and the associated process noise in a consistent manner. 

7. Importance of Proper Nonlinear Propagation: The accuracy of the sigma point 
propagation relies on the accuracy of the nonlinear state transition function 𝑓(⋅). It's 
crucial to ensure that the nonlinear function accurately represents the behavior of the 
system to obtain reliable predicted state estimates. 

 

This step enables the UKF to capture the impact of nonlinearity and uncertainty in the 
dynamic system, leading to improved state estimation accuracy. By incorporating process 
noise and propagating augmented sigma points, the UKF provides a robust and effective 
framework for handling both nonlinear state transitions and noisy measurements in a wide 
range of real-world applications. 

 

 

4.2.6 Prediction Step:  

The prediction step in the Unscented Kalman Filter (UKF) involves using the propagated 
sigma points to compute the predicted state estimate and covariance for the next time step. 
This step allows the filter to forecast the evolution of the system state while accounting for 
nonlinearity and uncertainty.  

Here's a detailed outline of the prediction step process: 

1. Propagated Sigma Points: After the sigma point propagation through the nonlinear 
state transition function, we have a set of propagated sigma points 𝑋′ that represent the 
predicted state distribution at the next time step. 

 

2. Computing the Predicted Mean: The predicted mean state 𝑋𝑘+1
−  is calculated as the 

weighted sum of the propagated sigma points 𝑋′:  
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𝑋𝑘+1
− = ∑𝑊𝑖 ∗ 𝒙𝑖′

2𝑁

𝑖=0

  

Where: 

𝑋𝑘+1
−  is the predicted mean state estimate at time step 𝑘 + 1. 

𝑊𝑖 are the weights associated with the propagated sigma points 𝒙𝑖′. 

 

3. Computing the Predicted Covariance: The predicted covariance matrix 𝑷𝑘+1
−  is 

computed using the propagated sigma points 𝑋′, the predicted mean state 𝒙𝑘+1
− , and 

the process noise covariance 𝑸𝑘+1:  

𝑷𝑘+1
−   = ∑𝑊𝑖(𝒙𝑖

′ − 𝒙𝑘+1
− )(𝒙𝑖

′ − 𝒙𝑘+1
− )𝑇 + 𝑸𝑘+1

2𝑁

𝑖=0

  

Where: 

𝑷𝑘+1
−   is the predicted covariance matrix at time step k+1. 

(𝒙𝑖
′ − 𝒙𝑘+1

− ) represents the difference between the propagated sigma point and the 
predicted mean. 

 

4. Using Predicted Estimates: The predicted mean state 𝒙𝑘+1
−  and predicted covariance 

matrix 𝑷𝑘+1
−   are used in the subsequent steps of the UKF. In particular, they are used 

in the update step to compute the Kalman gain and update the state estimate based on 
the measurement information. 

 

5. Importance of Accuracy: The accuracy of the prediction step relies on the quality of 
the propagated sigma points and the proper representation of the nonlinear state 
transition function. If the propagated sigma points are representative of the true state 
distribution and the nonlinear function is accurately modeled, the predicted estimates 
will be reliable. 

By using the propagated sigma points, the UKF computes the predicted mean state and 
covariance, which serve as the foundation for subsequent state updates. The prediction step 
ensures that the filter maintains accurate and up-to-date state estimates as it iterates through 
the dynamic process and assimilates new measurements. 

 

4.2.7 Observation Sigma Points 
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The concept of observation sigma points is a key feature of the Unscented Kalman Filter 
(UKF) that enables the filter to handle nonlinear observation models. These sigma points 
are generated to approximate the expected measurements based on the predicted state 
estimate. The observation sigma points allow the UKF to incorporate nonlinearity in the 
measurement function and improve the accuracy of the state estimation process.  

Here's a detailed outline of the observation sigma points process: 

1. Propagated Sigma Points: After the prediction step, we have a set of propagated 
sigma points 𝑋′ that represent the predicted state distribution at the next time step. 

 

2. Propagation Through Nonlinear Observation Function: Each propagated sigma 
point in the set 𝑋′ is passed through the nonlinear observation function ℎ(⋅) to predict 
the expected measurements at the next time step:  

𝒛𝑖
′ = ℎ(𝒙𝑖

′)       𝑓𝑜𝑟 𝑖 = 0,1, … ,2𝑁 

Where: 

𝒛𝑖
′ is the expected measurement corresponding to the propagated state 𝒙𝑖

′. 

ℎ(⋅) is the nonlinear observation function. 

 

3. Computing the Predicted Measurement Mean: The predicted measurement mean 
𝒛𝑘+1

−  is calculated as the weighted sum of the propagated expected measurements 

𝒛𝑘+1
− = ∑ 𝑊𝑖 ∗ 𝒛𝑖′

2𝑁

𝑖=0

 

Where: 

𝒛𝑘+1
−  is the predicted measurement mean at time step 𝑘 + 1. 

𝑊𝑖 are the weights associated with the propagated sigma points 𝒛𝑖′. 

 

4. Computing the Predicted Measurement Covariance: The predicted measurement 
covariance matrix 𝑺𝑘+1

−  is computed using the propagated expected measurements  𝒛𝑖′, 
the predicted measurement mean 𝒛𝑘+1

− , and the measurement noise covariance 𝑹𝑘+1:  

𝑺𝑘+1
− = ∑𝑊𝑖(𝒛𝑖

′ − 𝒛𝑘+1
− )(𝒛𝑖

′ − 𝒛𝑘+1
− )𝑇 + 𝑹𝑘+1

2𝑁

𝑖=0

 

Where: 
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𝑺𝑘+1
−  is the predicted measurement covariance matrix at time step 𝑘 + 1. 

(𝒛𝑖
′ − 𝒛𝑘+1

− )  represents the difference between the propagated expected 
measurement and the predicted measurement mean. 

 

5. Using Predicted Measurements: The predicted measurement mean 𝒛𝑘+1
−  and 

predicted measurement covariance matrix 𝑺𝑘+1
−  are used in the update step of the UKF. 

They are crucial for computing the Kalman gain and updating the state estimate based 
on the actual measurements. 

 

6. Importance of Accurate Nonlinear Propagation: The accuracy of the observation 
sigma point propagation relies on the quality of the nonlinear observation function 
ℎ(. ). Ensuring that the nonlinear function accurately represents the mapping between 
the state space and the measurement space is essential for obtaining reliable predicted 
measurements. 

By propagating the expected measurements through the nonlinear observation function, the 
UKF is able to incorporate nonlinearity in the measurement process and provide accurate 
predicted measurements. The predicted measurement mean and covariance are crucial 
components in the subsequent update step, enabling the filter to assimilate real 
measurements and refine the state estimate accordingly. 

 

4.2.8 Update Step  

The update step in the Unscented Kalman Filter (UKF) is where the filter assimilates real 
measurements to refine the state estimate. In this step, the UKF calculates the Kalman gain, 
updates the state estimate and covariance based on the actual measurements, and ensures 
that the filter adapts to new information. 

Here's a detailed outline of the update step process: 

1. Propagated Sigma Points and Predicted Measurements: After the prediction step, 
we have the set of propagated sigma points 𝑋′ and the predicted measurement mean 
𝒛𝑘+1

− , as well as the predicted measurement covariance 𝑺𝑘+1
−  based on the observation 

sigma points. 

2. Calculate Cross-Covariance Matrix: The cross-covariance matrix 𝑪𝑥𝑧 measures the 
correlation between the state deviations from the predicted state estimate and the 
measurement deviations from the predicted measurement mean. It is computed as:  

𝑪𝑥𝑧 = ∑𝑊𝑖(𝒙𝑖
′ − 𝒙𝑘+1

− )(𝒛𝑖
′ − 𝒛𝑘+1

− )𝑇

2𝑁

𝑖=0
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Where: 

𝑪𝑥𝑧  is the cross-covariance matrix. 

(𝒙𝑖
′ − 𝒙𝑘+1

− ) represents the difference between the propagated sigma point and the 
predicted state estimate. 

(𝒛𝑖
′ − 𝒛𝑘+1

− )  represents the difference between the propagated expected 
measurement and the predicted measurement mean. 

3. Calculate Kalman Gain: The Kalman gain 𝑲 determines how much weight to give to 
the predicted state estimate and the measurements when updating the state estimate. It 
is computed as: 

 𝑲 = 𝑪𝑥𝑧 ∗ 𝑺𝑘+1
−1  

Where: 

𝑲 is the Kalman gain. 

𝑺𝑘+1
−1  is the inverse of the predicted measurement covariance matrix. 

4. Update State Estimate: The state estimate is updated using the Kalman gain and the 
measurement deviation from the actual measurement 𝒛𝑘+1:  

𝒙𝑘+1
+ = 𝒙𝑘+1

− +  𝑲 ∗ (𝒛𝑘+1 − 𝒛𝑘+1
− ) 

Where: 

𝒙𝑘+1
+  is the updated state estimate. 

𝒛𝑘+1 is the actual measurement at time step 𝑘 + 1. 

5. Update Covariance Matrix: The updated covariance matrix 𝑷𝑘+1
+  is computed to 

reflect the new state estimate considering the measurement information:  

𝑷𝑘+1
+ = 𝑷𝑘+1

− −  𝑲 ∗ 𝑺𝑘+1 ∗ 𝑲𝑇 

Where: 

𝑷𝑘+1
+  is the updated covariance matrix. 

𝑲 is the Kalman gain. 

𝑺𝑘+1 is the predicted measurement covariance matrix. 

6. Finalizing the Update Step: The updated state estimate 𝒙𝑘+1
+  and covariance matrix 

𝑷𝑘+1
+  are used as the new estimates for the current state at time step 𝑘 + 1. The filter 

iterates through this process for each new measurement, adapting and refining the state 
estimates as more information becomes available. 
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By calculating the Kalman gain, updating the state estimate, and adjusting the covariance 
matrix, the UKF ensures that the state estimate aligns with the observed measurements 
while considering the uncertainties associated with both the state and the measurements. 
This iterative process enables the UKF to provide accurate and robust state estimates even 
in the presence of noise, nonlinearity, and uncertainty. 

 

4.2.10 Repeat  

The "Repeat" step in the Unscented Kalman Filter (UKF) refers to the iterative process that 
the filter follows to estimate the state of a dynamic system. The UKF iterates through 
prediction, update, and weight computation steps to continuously refine the state estimate 
as new measurements become available. This iterative process ensures that the filter adapts 
to changing conditions and provides accurate state estimates even in the presence of 
nonlinearity, uncertainty, and noise.  

Here's a detailed outline of the iterative process: 

1. Initialization: The UKF begins with an initial estimate of the state vector 𝒙0 and its 
associated covariance matrix 𝑷0. These initial estimates can come from prior 
knowledge or initial measurements. 

2. Prediction Step: In this step, the UKF propagates the current state estimate 𝒙𝑘 through 
the state transition function using sigma points. This results in the predicted state 
estimate 𝒙𝑘+1

−  and the predicted covariance matrix 𝑷𝑘+1
− . 

3. Weight Computation: The weights for the sigma points are computed based on the 
scaling factors 𝛼 and 𝛽, the dimensionality of the state 𝑁, and additional factors such 
as 𝜅 for augmented sigma points. These weights determine the significance of each 
sigma point in the subsequent steps. 

4. Observation Sigma Points: For nonlinear observation models, the UKF generates 
observation sigma points based on the predicted state estimate. These observation 
sigma points approximate the expected measurements and facilitate handling 
nonlinearities in the measurement function. 

5. Update Step: In this step, the UKF assimilates real measurements by calculating the 
Kalman gain and updating the state estimate and covariance based on the actual 
measurements. The updated state estimate 𝒙𝑘+1

+  and covariance matrix 𝑷𝑘+1
+  reflect 

the integration of measurement information. 

6. Iteration and Convergence: The updated state estimate 𝒙𝑘+1
+  serves as the current 

state estimate for the next iteration. The UKF iterates through the prediction, weight 
computation, observation sigma points, and update steps for each subsequent time step. 
The iterative process continues as new measurements are acquired, and the state 
estimate refines with each iteration. 
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7. Handling Multiple Measurements: The UKF is capable of handling multiple 
measurements at each time step. For each measurement, the filter performs the 
observation sigma points, update, and weight computation steps before proceeding to 
the next time step's prediction. 

8. Convergence and Stability: The iterative process aims to converge to an accurate 
state estimate as the filter iterates through prediction and update steps. Proper 
initialization, accurate modeling of nonlinear functions, appropriate weight 
computation, and suitable tuning of parameters contribute to the stability and 
convergence of the UKF. 

By iteratively refining the state estimate through prediction, observation, update, and 
weight computation steps, the UKF adapts to changing conditions, handles nonlinearity 
and uncertainty, and provides accurate state estimates even in complex and noisy 
environments. This iterative process is the core mechanism that makes the UKF a powerful 
tool for state estimation in a wide range of applications. 

 

 

4.3 Unscented Kalman Filter (UKF) vs. Standard Kalman Filter 

Strengths of the Unscented Kalman Filter (UKF) Compared to the Standard 
Kalman Filter: 

1. Nonlinearity Handling: The UKF excels in handling nonlinear state transition and 
observation functions, which the standard Kalman filter struggles with. The UKF uses 
sigma point approximation to capture the nonlinearities, making it suitable for a wide 
range of real-world applications. 

2. Accurate Approximations: By using a set of carefully chosen sigma points, the UKF 
provides more accurate approximations of the mean and covariance of the state 
distribution compared to linearization methods used in the standard Kalman filter. 

3. No Derivative Computation: The UKF does not require the computation of 
derivatives (Jacobian matrices) of nonlinear functions, as required in the standard 
Kalman filter. This saves computational resources and simplifies implementation, 
especially for complex models. 

4. Flexibility: The UKF is versatile and can be applied to systems with complex 
dynamics and observations without the need for explicit linearization. This flexibility 
is particularly useful when dealing with systems that exhibit rapidly changing 
nonlinear behavior. 

5. Handling of Gaussian and Non-Gaussian Distributions: The UKF performs well 
for both Gaussian and moderately non-Gaussian distributions, whereas the standard 
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Kalman filter assumes Gaussian distributions. This allows the UKF to provide accurate 
estimates even in cases of mild non-Gaussianity. 

 

Weaknesses of the Unscented Kalman Filter Compared to the Standard Kalman 
Filter: 

1. Computational Complexity: The UKF requires more computational resources 
compared to the standard Kalman filter due to the need for sigma point generation, 
propagation, and weight computations. This can be a concern for real-time 
applications or systems with high-dimensional state spaces. 

2. Limited Handling of Highly Non-Gaussian Distributions: While the UKF can 
handle moderately non-Gaussian distributions, it may struggle with highly non-
Gaussian distributions. In such cases, more advanced techniques like particle filters 
might be more appropriate. 

3. Parameter Tuning: The UKF involves tuning parameters such as scaling factors 
(𝛼, 𝛽, 𝜅)  to achieve optimal performance. Selecting appropriate values for these 
parameters can be challenging and may require some trial and error. 

4. Dependency on Sampling Techniques: The quality of the UKF estimates relies on 
the accuracy of the sigma point sampling. Poorly chosen sigma points can lead to 
inaccurate estimates and potential divergence of the filter. 

5. Limited Understanding of Uncertainty Propagation: While the UKF provides a 
good approximation of the mean and covariance of the state distribution, it may not 
fully capture the propagation of uncertainty through complex nonlinear functions as 
accurately as particle filters, especially in scenarios with large uncertainties. 

In summary, the Unscented Kalman Filter addresses many of the limitations of the standard 
Kalman filter by efficiently handling nonlinearity without requiring the computation of 
derivatives. However, it comes with its own set of challenges, including computational 
complexity and parameter tuning. The choice between the two filters depends on the 
specific characteristics of the system, the available computational resources, and the 
desired level of accuracy and robustness in state estimation. 
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Chapter 5. Particle Filter 
 

5.1 Introduction to Particle Filter (Sequential Monte Carlo Method): 

In the realm of state estimation and filtering, the Particle Filter, also known as the 
Sequential Monte Carlo (SMC) (Liu, 2001) method, stands as a remarkable breakthrough 
that transcends the constraints of traditional linear and Gaussian assumptions. This 
innovative technique has emerged as a potent solution for tackling the challenges posed by 
nonlinear dynamics, non-Gaussian distributions, and high-dimensional state spaces in 
various fields, including robotics, signal processing, finance, and more. Its roots can be 
traced back to the 1990s when researchers sought to extend the capabilities of traditional 
filters, like the Kalman filter, which are limited by their assumptions of linearity and 
Gaussianity (Gilks et al., 1996; Liu, 2001; Brooks et al., 2011). 

 

The Essence of Particle Filtering: 

At its core, the Particle Filter embraces the notion of non-parametric Bayesian filtering. 
This implies that rather than relying on closed-form equations or moment-based 
representations of the state distribution, the Particle Filter takes an empirical stance (Daum 
and Huang, 2003; Snyder et al., 2008). It harnesses the power of particles—discrete samples 
that embody hypothetical states—to approximate the elusive posterior distribution of the 
true system state. By sequentially updating and propagating these particles, the Particle 
Filter endeavors to capture the dynamic evolution of the state as new measurements 
become available. 

 

Unraveling Complex Dynamics and Non-Gaussianity 

The Particle Filter, a cornerstone of state estimation, introduces a groundbreaking approach 
that defies the limitations imposed by linear and Gaussian assumptions. This method, also 
known as the Sequential Monte Carlo (SMC) technique, has revolutionized state estimation 
in diverse fields by embracing the intrinsic complexity and non-Gaussian nature of real-
world systems. 

 

Conceptual Essence: 

At the heart of the Particle Filter method lies a profound shift in perspective. Instead of 
confining the state distribution to conform to a specific functional form, the Particle Filter 
ventures into the realm of empirical representation. It navigates through the intricacies of 
nonlinear dynamics and multifaceted uncertainties by harnessing particles—discrete 
hypothetical states—as its currency. 
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Dynamic Hypotheses: 

Particles are not just numerical entities; they embody dynamic hypotheses about the true 
state of a system. These particles span the state space, embodying a spectrum of potential 
states at a given time step. Unlike parametric filters that demand specific distributional 
assumptions, Particle Filters capitalize on the richness of particles to accommodate the 
diversity, nonlinearity, and even multimodality present in real-world systems. 

 

Flexibility and Adaptability: 

A hallmark of the Particle Filter is its adaptability. While traditional filters might falter in 
the face of nonlinearities, the Particle Filter thrives. It elegantly sidesteps the need for 
derivatives or Jacobian matrices, gracefully accommodating systems where mathematical 
tractability is elusive. This adaptability extends to a wide array of applications—robotics, 
finance, ecology—where complex behaviors and diverse distributions reign supreme. 

 

Capturing Uncertainty: 

The Particle Filter method doesn't shy away from uncertainty; it thrives on it. In situations 
where Gaussianity is but a distant dream, this technique emerges as a guiding light. 
Particles, equipped with weights that reflect their fidelity to observations, collectively 
create an ensemble that spans the spectrum of uncertainty, from low-probability outliers to 
high-probability modes. 

 

Sequential Evolution: 

The Particle Filter method is not a one-time wonder. It operates sequentially, mirroring the 
real-world progression of dynamic systems (Doucet et al., 2001). It ingeniously blends 
prediction, data assimilation, and state estimation in an iterative dance. With each step, 
particles evolve, predictions refine, and estimations converge towards the elusive truth of 
the state. 

 

Beyond Linearity and Gaussianity: 

Perhaps the most transformative aspect of the Particle Filter method is its liberation from 
linear and Gaussian assumptions. It embraces the inherent complexity of reality, 
acknowledging that systems rarely adhere to the simplicity of linear behavior or Gaussian 
distributions. This adaptability equips the Particle Filter to unveil the mysteries of chaotic 
systems, understand intricate biological processes, and navigate the tumultuous waters of 
financial markets. 
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Ongoing Frontiers: 

While the Particle Filter method has undoubtedly elevated state estimation, it's not devoid 
of challenges. Sample degeneracy, computational load, and the quest for efficient 
resampling mechanisms remain active areas of research. As technology advances, hybrid 
methods that blend Particle Filters with other estimation techniques are on the horizon, 
promising enhanced accuracy and efficiency. 

In essence, the Particle Filter method is a beacon of innovation in the realm of state 
estimation. It challenges the status quo, redefining how we unravel the mysteries of 
dynamic systems. By embracing complexity, nonlinearity, and non-Gaussianity, the 
Particle Filter has ushered in a new era where state estimation is not just about equations, 
but about capturing the essence of reality itself. 

 

 

5.2  The Fundamental Steps: 

 

5.2.1 Particle Initialization:  

The Particle Filter commences its journey with the selection of an initial set of particles. 
These particles span the state space and are endowed with corresponding weights to 
reflect their significance in the estimation process. 

At the heart of the Particle Filter's initiation lies the critical step of "Particle Initialization." 
This pivotal phase serves as the starting point for the entire estimation process, where an 
ensemble of particles is meticulously crafted to encapsulate the system's possible states. 
Let's delve into the intricacies of this step and the principles that guide it. 

 

Conceptual Basis: 

Particle initialization is akin to casting a wide net into the sea of possible states. It involves 
generating an ensemble of particles, each representing a speculative state of the system 
at the given time step. These particles collectively form an initial approximation of the 
true state distribution, setting the stage for subsequent steps in the Particle Filter process. 

 

Key Elements: 

1. Particle Generation: The initial ensemble of particles is drawn from an initial 
distribution 𝑝(𝑥0) , where 𝑥0 represents the system's state at the initial time step 
(Punskaya et al, 2002). The distribution should be chosen to encompass the range of 
potential states and capture the inherent uncertainties. 
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2. Number of Particles: The size of the particle ensemble, denoted as 𝑁, is a critical 
parameter. It defines how finely the state space is sampled. Larger 𝑁 provides a more 
accurate representation but escalates computational demands. 

3. Weight Assignment: Alongside generating particles, each particle is endowed with an 
initial weight 𝑤0𝑖

, reflecting its relative importance in the ensemble (Liu and Chen, 
1995). Initially, these weights are often uniform, signifying equal belief in each 
particle's validity. 

 

Strategies and Considerations: 

1. Prior Knowledge: Incorporating any available prior information about the system's 
state distribution can influence the selection of 𝑝(𝑥0). This might involve utilizing 
historical data, sensor measurements, or expert insights. 

2. Coverage and Spread: The choice of 𝑝(𝑥0)  should ensure that particles span the 
entirety of the state space, adequately capturing regions where the true state is likely 
to reside. 

 

Here we can see a representation of particles and comparison with gaussian distribution 
we had previously in UKF (sarkka, 2013).  

 
Figure 10. (a) Two-dimensional Gaussian distribution. (b) Monte Carlo representation of the same 

Gaussian distribution 

 

Mathematical Representation: 

Mathematically, the particle initialization can be described as follows: 

1. Generate 𝑁 particles: 
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𝑥0𝑖
 ,   𝑖 = 1,… ,𝑁       from the initial distribution 𝑝(𝑥0) 

2. Assign equal initial weights:  

𝑤0𝑖
= 𝑁1      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,… ,𝑁 

 

The quality of the initial particle ensemble profoundly influences the Particle Filter's 
effectiveness. Well-chosen particles and their corresponding weights lay the groundwork 
for accurate state estimation. An adept initialization facilitates smoother transitions 
through subsequent steps like prediction, weighting, and resampling. 

The "Particle Initialization" step of the Particle Filter method is not just the opening act; 
it's the canvas on which the intricate masterpiece of state estimation takes form. By 
generating particles, assigning initial weights, and framing the initial distribution, this 
step lays the cornerstone for a journey that traverses’ uncertainties, nonlinearities, and the 
complex dynamics of real-world systems. It transforms the abstract idea of estimation 
into a tangible process, setting the stage for the Particle Filter's dynamic evolution. 

 

5.2.2 Prediction:  

The particles are then subjected to the system's nonlinear dynamics, propelled forward by 
the state transition model while accommodating the introduction of process noise. This 
prediction step paves the way for projecting the particles into the future. 

Prediction in the Particle Filter: Navigating Nonlinear Dynamics and Uncertainties 

The second step of the Particle Filter, known as "Prediction," ushers the ensemble of 
particles into the future by subjecting them to the system's nonlinear dynamics. This 
pivotal phase sets the stage for estimating how the system's state evolves over time, 
incorporating both the inherent behavior of the system and the uncertainties introduced 
by process noise. 

 

Crucial Conceptual Foundation: 

In the prediction step, each particle ventures forth as a potential trajectory of the system's 
evolution. The nonlinear dynamics of the system guide the particles as they project 
forward in time, while process noise introduces the vital element of uncertainty. This 
process lays the groundwork for assessing how the particles' speculative states evolve 
over the prediction interval. 

Key Elements: 

1. Nonlinear Dynamics: The system's behavior is often nonlinear, meaning its evolution 
cannot be adequately captured by linear equations. In the prediction step, particles are 
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propelled forward according to the nonlinear state transition model, capturing the 
intricate interplay of the system's variables. 

2. Process Noise: The real world is rife with uncertainties and perturbations that can 
influence a system's dynamics. Process noise accounts for these uncertainties, ensuring 
that the predicted states of the particles encompass a range of possible outcomes. 

 

Mathematical Representation: 

The prediction step can be formalized as follows: 

1. For each particle 𝑖 = 1, … , 𝑁: 

• Propagate the particle using the nonlinear state transition model:  

𝑥𝑡+1
𝑖 = 𝑓(𝑥𝑡

𝑖) + 𝜖𝑡
𝑖  

Here: 

𝑓(⋅) represents the nonlinear state transition function  

𝑥𝑡
𝑖 is the particle's state at time t, and  

𝜖𝑡
𝑖 is the process noise. 

 

Process Noise Incorporation: 

Process noise is essential for capturing the system's inherent uncertainty and deviations 
from the model's deterministic predictions. It can be drawn from a known distribution or 
modeled as a Gaussian process with zero mean and covariance matrix 𝑄𝑡

𝑖. 

The prediction step not only advances the particles in time but also introduces the vital 
element of uncertainty. By integrating process noise, the Particle Filter method 
acknowledges that real-world dynamics are subject to deviations and perturbations that 
need to be accounted for in the estimation process. 

The "Prediction" step in the Particle Filter is a crucial endeavor in estimating how a 
system evolves over time, while accommodating its nonlinear behavior and inherent 
uncertainties (sarkka, 2013). By propelling particles into the future and embracing 
process noise, this step allows the Particle Filter to navigate the intricate dynamics of the 
real world. It sets the particles on a trajectory that mirrors the complex evolution of the 
system, providing the foundation for subsequent steps like weighting, resampling, and 
estimation. 
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5.2.3 Weighting and Measurement Incorporation  

As measurements are acquired, the particles' compatibility with these observations is 
assessed. Weights are assigned to each particle based on their likelihood with respect to 
the measurements, capturing the consistency between particle-generated predictions and 
real-world data. 

Weighting and Measurement Incorporation in the Particle Filter: The Marriage of Model 
and Observation 

In the dynamic dance of state estimation through the Particle Filter, the "Weighting and 
Measurement Incorporation" step holds a pivotal role, forging a profound connection 
between theoretical predictions and real-world measurements. This phase is where the 
particles' virtual trajectories intersect with the tangible reality of observed data, and the 
tapestry of estimation takes its first concrete shape. 

Imagine a convergence point where each particle's envisioned path crosses paths with the 
empirical data gathered from the system. This is the core of "Weighting and Measurement 
Incorporation." Each particle is assessed for its alignment with the observed 
measurements, and its significance in the ensemble is dynamically adjusted based on its 
ability to harmonize with the empirical truth. 

 

Crucial Elements: 

1. Measurement Likelihood (Liu, 2001): This is the cornerstone of the step. It quantifies 
the probability of a particle generating a specific outcome given the measurements 
acquired. This likelihood is a measure of how well the particle's projected state 
resonates with the real-world observations. 

2. Weight Assignment: With the measurement likelihood as the lodestar, each particle is 
assigned a weight proportional to its compatibility with the observed data. Particles 
generating outcomes that closely match the measurements receive higher weights, 
making their contribution more significant in the estimation process. 

 

Mathematical Details: 

1. Measurement Likelihood (Conditional Probability): For each particle 𝑖 = 1, … , 𝑁, the 
measurement likelihood is calculated as: 

𝑝(𝑦𝑡 ∣ 𝑥𝑡
𝑖) 

Here:  

𝑦𝑡 represents the actual measurement at time 𝑡, and  

𝑥𝑡
𝑖 is the predicted state of particle 𝑖 at the same time step. 
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2. Weight Assignment: The weight assigned to each particle 𝑖  is proportional to its 
measurement likelihood: 𝑤𝑡

𝑖  ∝  𝑝(𝑦𝑡 ∣ 𝑥𝑡
𝑖)  to ensure that the weights sum up to unity 

across all particles, normalization is performed:  

𝑤𝑡
𝑖  =

𝑝( 𝑦𝑡 ∣∣ 𝑥𝑡
𝑖 )

∑ 𝑝(𝑦𝑡 ∣ 𝑥𝑡
𝑗
)𝑁

𝑗=1

 

 

This step signifies a balance between model and observation. Particles that conform 
closely to the measurements gain more weight, symbolizing their harmony with real-
world evidence. Conversely, particles that diverge significantly receive lower weights, 
representing their incompatibility with empirical data. Consequently, this process propels 
the ensemble towards the true state distribution, aligning the particles' trajectories with 
observed reality. 

"Weighting and Measurement Incorporation" represents a pivotal crossroads where 
hypotheses meet evidence, predictions intersect with measurements, and theoretical 
trajectories find resonance with empirical truth. It is where Bayesian inference manifests 
in its purest form, molding particle significance based on their ability to reflect the real 
world. This phase is the bridge that unites the abstract concept of state estimation with 
the tangible realm of data, illuminating the way forward in the Particle Filter's journey to 
uncover the hidden state of the system. 

 

 

5.2.4 Sequential Importance Resampling  

Importance Sampling: 

In practical Bayesian models, it's often hard to directly get samples from the probability 
distribution 𝑝(𝑥 |𝑦1:𝑇)  because it's a complicated function (sarkka, 2013; Liu, 2001). 
Instead, we use a simpler distribution called the "importance distribution" 𝜋(𝑥 |𝑦1:𝑇) to 
get samples easily. This method is called importance sampling. 

Importance sampling works by breaking down the expectation of the posterior probability 
density into smaller parts: 

𝑝(𝑥 |𝑦1:𝑇) ∶  ∫𝑔(𝑥) 𝑝(𝑥 | 𝑦1:𝑇) 𝑑𝑥 =  ∫ [𝑔(𝑥)
𝑝(𝑥 | 𝑦1:𝑇)

𝜋(𝑥 | 𝑦1:𝑇)
] 𝜋(𝑥 | 𝑦1:𝑇) 𝑑𝑥  

 Where 𝑔(𝑥) is an arbitrary function and the importance distribution 𝜋(𝑥 | 𝑦1:𝑇) should 
cover at least the same area as the actual distribution 𝑝(𝑥 | 𝑦1:𝑇). We approximate this 
expectation using a technique called Monte Carlo (sarkka, 2013; Liu, 2001), where we 
draw 𝑁  samples from the importance distribution and calculate an approximation as 
shown below: 
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𝐸[𝑔(𝑥) | 𝑦1:𝑇] ≈
1

𝑁
∑

𝑝(𝑥(𝑖)|𝑦1:𝑇)

𝜋(𝑥(𝑖)|𝑦1:𝑇)

𝑁

𝑖=1

 𝑔(𝑥(𝑖)) =  ∑ῶ(𝑖) 𝑔(𝑥(𝑖))

𝑁

𝑖=1

 

 

The weights for these samples are defined in as below: 

ῶ(𝑖) =
1

𝑁
 
𝑝(𝑥(𝑖)|𝑦1:𝑇)

𝜋(𝑥(𝑖)|𝑦1:𝑇)
 

 

However, a drawback of direct importance sampling is that we need to evaluate 
𝑝(𝑥(𝑖)|𝑦1:𝑇)  directly, which can be tricky. To solve this issue, we approximate the 
expectation integral by also approximating the normalization constant, which is often 
hard to compute. 

    

   Sequential Importance Sampling: 

Sequential Importance Sampling (SIS) (Doucet et al., 2001) is like a Sequential version of 
importance sampling. It's a method we use to estimate the filtering distributions in state 
space models.  

𝑥𝑘  ~ 𝑝(𝑥𝑘 |𝑥𝑘−1) 

𝑦𝑘 ~ 𝑝(𝑦𝑘 |𝑥𝑘) 

 

These models involve states 𝑥𝑘 ∊ 𝑅𝑛 and measurements 𝑦𝑘 ∊ 𝑅𝑚, which can have both 
discrete and continuous parts. 

In SIS, we work with a weighted set of particles, {(𝑤𝑘
(𝑖) , 𝑥𝑘

(𝑖)) ∶  𝑖 = 1,…… ,𝑁} which 
are essentially samples from a distribution, along with their associated weights. This set 
helps us represent the filtering distribution 𝑝(𝑥𝑘 |𝑦1:𝑘) at each time step 𝑘. We can use it 
to estimate the expected value of any function 𝑔(. ) as an average of these weighted 
samples, as shown here: 

𝐸[𝑔(𝑥𝑘) | 𝑦1:𝑘]  ≈ ∑𝑤𝑘
(𝑖)

 𝑔(𝑥𝑘
(𝑖)

)

𝑁

𝑖=1

 

Alternatively, you can think of SIS as creating an approximation to the filtering 
distribution, as: 
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𝑝(𝑥𝑘 | 𝑦1:𝑘)  ≈ ∑𝑤𝑘
(𝑖)

 𝛿(𝑥𝑘 − 𝑥𝑘
(𝑖))

𝑁

𝑖=1

 

   We can show the process of sequential importance sampling as figure below: 

 

Figure 11. Importance Sampling process 

 

   Sequential Importance Resampling: 

The issue with the SIS algorithm mentioned earlier is that it often leads to a situation where nearly 
all the particles end up with extremely low or zero weights. This problem is known as 
"degeneracy" in particle filtering, and it used to make particle filters not very practical for real-
world applications for a long time. 

To fix this degeneracy problem, we use a resampling process (Gordon et al., 1993; Kitagawa, 
1996; Doucet et al., 2001; Ristic et al., 2004). This means we draw N new samples based on 
the weights we have and replace the old set of N samples with this fresh set. 

The Particle Filter strives to maintain diversity among particles, ensuring representation 
across different regions of the state space. Resampling serves this purpose, granting 
particles with higher weights a higher chance of reproduction in the next iteration. This 
mechanism counteracts particle degeneracy and guarantees a balanced representation. 

Resampling in the Particle Filter: Fostering Diversity and Enabling Balance 

The "Resampling" step in the Particle Filter is a strategic maneuver executed to nurture 
diversity within the particle ensemble and to achieve a balanced representation of 
potential states. This step becomes increasingly crucial as the Particle Filter iterates, 
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preventing the ensemble from becoming dominated by a select few particles and 
rejuvenating underrepresented yet plausible hypotheses. 

The primary goal of resampling is twofold: to breathe life into the ensemble by amplifying 
the voices of particles with higher weights (indicating their alignment with measurements) 
and to reintroduce particles embodying diverse predictions about the true state. This step 
mitigates issues arising from the degeneration of weights, ensuring that each particle has 
a meaningful impact on the evolving estimation process. 

 

Key Elements of Resampling: 

1. Importance of Diversity: As the estimation process unfolds, some particles accumulate 
higher weights due to their alignment with the observed measurements. While these 
particles contribute significantly, they can dominate the ensemble, potentially 
sidelining valid but underrepresented hypotheses. Resampling steps in to rekindle 
diversity. 

2. Weighted Selection: Resampling isn't a random lottery; it's a weighted process. 
Particles with higher weights are more likely to be selected multiple times, while 
particles with lower weights have a reduced chance of continuation. This approach 
ensures that particles generating more plausible outcomes retain their influence. 

  

Mathematical Mechanics: 

The process of resampling can be outlined as follows: 

1. Compute the cumulative weights:  

𝑊𝑡
𝑖 = ∑𝑤𝑡

𝑗

𝑖

𝑗=1

 

2. Generate 𝑁 random samples 𝑢𝑖 from a uniform distribution over the interval [0,
1

𝑁
]. 

3. Initialize indices 𝑖 and 𝑗 to 1. 

4. For each of the 𝑁 particles 𝑘 = 1,… ,𝑁: 

• While 𝑢𝑘 is less than 𝑊𝑡
𝑖, increment 𝑖 by 1. 

• Assign particle 𝑘 the properties (state, weight) of particle 𝑖. 

 

     The process of Sequential Importance Resampling is shown as figure below: 
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Figure 12. Sequential Importance Resampling flow process 

 

Effective Number: 

The concept of the "effective number of particles" or "effective sample size" is often 
used in resampling. It reflects the ensemble's ability to represent the underlying 
distribution. Calculating the effective number helps gauge whether resampling is 
necessary. It is computed as:  

𝑁𝑒𝑓𝑓 =
1

∑ (𝑤𝑡
𝑖)

2𝑁
𝑖=1

  

When 𝑁𝑒𝑓𝑓 is lower than a certain threshold, it signals the need for resampling to 
rejuvenate diversity.    

 

Types of Resampling: 

1. Systematic Resampling: Particles are organized into segments based on their 
cumulative weights. A single random draw determines the starting point, followed by 
equidistant sampling within each segment. 

2. Residual Resampling: After determining whole particles to be resampled, the residual 
fraction decides which particles within a segment are replicated. 
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3. Stratified Resampling: Particles are partitioned into segments, and within each 
segment, random draws are performed. This approach ensures a more uniform 
distribution of resampled particles. 

 

Significance and Challenges: 

1. Diversity and Balance: Resampling safeguards diversity and balances the ensemble, 
reinvigorating underrepresented hypotheses. 

2. Mitigating Degeneracy: It addresses the phenomenon of weight degeneracy, where 
only a few particles contribute significantly to the estimation. 

3. Randomness vs. Determinism: Resampling introduces randomness, which might be 
challenging to reconcile in deterministic algorithms. 

 

"Resampling" in the Particle Filter acts as a compass that steers the ensemble away from 
dominance, leading it towards a comprehensive representation of possible states. It's the 
Particle Filter's mechanism for infusing the ensemble with fresh energy, nurturing 
diversity, and ensuring that all valid regions of the state space receive fair consideration. 

 

 

5.2.5 Estimation  

The culmination of the Particle Filter process entails combining the resampled particles 
to formulate the estimated state. The final estimate is a weighted average of these particles, 
accounting for both their contribution and their significance, as inferred from their 
assigned weights. 

Estimation in the Particle Filter: Uniting Particles into a Coherent Whole 

The fifth step of the Particle Filter, aptly named "Estimation" marks the grand finale of 
the estimation journey. It's the moment where the diverse and resampled particles 
harmoniously converge to yield a weighted collective that paints an accurate portrait of 
the system's true state. This is the step where speculation meets evidence, and the 
ensemble's insights crystalize into a coherent estimation. 

The essence of the "Estimation" step lies in synthesizing the knowledge encapsulated 
within the particle ensemble into a single, representative estimate of the system's state. 
Each particle contributes to this synthesis based on its assigned weight, reflecting its 
alignment with observed measurements. The result is a weighted aggregation that aptly 
captures the nuances of the true state. 
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Key Elements of Estimation: 

1. Resampled Ensemble: After resampling, the ensemble becomes a rejuvenated 
assembly of particles, each carrying a unique interpretation of the true state. These 
particles span the range of plausible states, from most likely to less probable, and thus 
represent the full spectrum of potential outcomes. 

2. Weighted Average: The estimation is formed as a weighted average of the particles' 
states. The weight assigned to each particle signifies its reliability in the estimation 
process, reflecting its proximity to observed measurements. 

 

Mathematical Mechanics: 

The "Estimation" step can be described mathematically as follows: 

1. For each particle 𝑖 = 1, … , 𝑁: 

• Multiply the particle's state 𝑥𝑡
𝑖 by its weight 𝑤𝑡

𝑖. 

2. Compute the estimated state 𝑥𝑡 as the sum of the weighted states:  

𝑥𝑡  =  ∑𝑤𝑡
𝑖 ∗ 𝑥𝑡

𝑖

𝑁

𝑖=1

 

 

Implications and Significance: 

1. Weighted Aggregation: The estimation reflects a collective wisdom, where each 
particle's perspective contributes based on its alignment with measurements. This way, 
the ensemble's insights are weighted by credibility. 

2. Adaptive Response: The Particle Filter dynamically adjusts the estimation based on 
the ensemble's evolving understanding, as particles gain or lose significance through 
the estimation journey. 

3. Incorporation of Uncertainty: The ensemble's diversity and the incorporation of 
measurement noise within particles acknowledge the inherent uncertainty in 
estimating the true state. 

 

"Estimation" in the Particle Filter is akin to weaving together a tapestry of particles, each 
thread contributing to the larger fabric of knowledge. As the particles unite, their 
individual strengths are harnessed, leading to an estimate that resonates with the observed 
data. This phase transforms the Particle Filter's collective speculation into a tangible 
conclusion, where the inherent uncertainties of the system are accommodated, and the 
true state emerges from a symphony of weighted insights. 
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5.2.6 Iterative Evolution  

Armed with the newly refined state estimate, the Particle Filter embarks on a recurring 
journey, iterating through the prediction, weighting, resampling, and estimation steps as 
new measurements arrive, progressively refining its understanding of the system's 
underlying state. 

iterative Evolution in the Particle Filter: Unveiling the True State through Iteration 

The sixth step of the Particle Filter, "Iterative Evolution," marks the inception of a 
dynamic journey. With each iteration, the Particle Filter unveils a progressively refined 
understanding of the system's true state, embodying a cyclical process that adapts and 
updates its estimation as new measurements pour in. This iterative dance paves the way 
for an ever-improving approximation of reality. 

Imagine the Particle Filter as a relentless seeker of truth, continuously recalibrating its 
estimation based on the evolving interplay between model predictions and empirical 
observations. The essence of "Iterative Evolution" lies in its recursive nature—a perpetual 
sequence of prediction, weighting, resampling, and estimation steps that mirrors the 
system's actual evolution. 

 

Key Elements of Iterative Evolution: 

1. Refinement of Estimation: Each iteration hones the Particle Filter's estimation. As new 
measurements arrive, the ensemble adapts, embracing particles that resonate with the 
observed data while shedding those that diverge. 

2. Dynamic Response: The Particle Filter's response is dynamic and adaptive. As the 
ensemble evolves, the estimation converges towards a more accurate depiction of the 
true state. 

 

Mathematical Mechanics: 

The iterative evolution of the Particle Filter encapsulates the following sequence of steps: 

1. Prediction: Propagate particles through the nonlinear state transition model, 
accounting for process noise:  

𝑥𝑡+1
𝑖 = 𝑓(𝑥𝑡

𝑖) + 𝜖𝑡
𝑖 

2. Weighting: Evaluate particle-measurement compatibility using measurement 
likelihood:  

𝑝(𝑦𝑡 ∣ 𝑥𝑡
𝑖)  

Assign weights:  
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𝑤𝑡
𝑖 ∝ 𝑝(𝑦𝑡 ∣ 𝑥𝑡

𝑖) 

 Normalize weights:  

𝑤𝑡
𝑖 =

𝑝( 𝑦𝑡 ∣∣ 𝑥𝑡
𝑖 )

∑ 𝑝( 𝑦𝑡 ∣∣ 𝑥𝑡
𝑗
)𝑁

𝑗=1

  

3. Resampling: Refresh the ensemble through resampling, guided by the weights. 
Higher weights indicate a higher likelihood of being selected. 

4. Estimation: Synthesize the resampled particles to form an updated state estimate:  

𝑥𝑡  =  ∑𝑤𝑡
𝑖 ∗ 𝑥𝑡

𝑖

𝑁

𝑖=1

  

 

Implications and Significance: 

1. Adaptive Learning: "Iterative Evolution" ensures that the Particle Filter adapts to the 
evolving dynamics and measurements, refining its estimation over time. 

2. Accommodating Change: As the system's state changes, the Particle Filter's estimation 
dynamically shifts to maintain relevance. 

3. Balancing Exploration and Exploitation: The iterative nature allows the Particle Filter 
to balance between exploring new hypotheses and exploiting existing knowledge. 

The essence of "Iterative Evolution" is the Particle Filter's persistent quest to unveil the 
hidden truth. Through the cyclical process of prediction, weighting, resampling, and 
estimation, the Particle Filter navigates the delicate dance between model and reality. It 
harnesses the power of adaptability, continuously refining its understanding of the 
system's true state with every step, every iteration, and every new measurement. 

 

5.3 Advantages and Impact 

Particle Filters: Unleashing the Power of Dynamic Estimation 

Particle Filters are a dynamic and versatile family of algorithms that wield immense 
power in tackling the challenges of nonlinear, non-Gaussian state estimation. Their 
adaptability, ability to accommodate uncertainties, and capacity to track complex systems 
have made them a cornerstone in various fields, ranging from robotics and aerospace to 
finance and environmental monitoring. Let's delve profoundly into their advantages and 
the transformative impact they bring: 

1. Handling Nonlinearity and Non-Gaussianity: Particle Filters excel where traditional 
methods struggle—capturing the intricate relationships of nonlinear systems. By 
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representing the state distribution with particles rather than relying on Gaussian 
assumptions, they can faithfully track the evolution of highly complex and non-
Gaussian systems, ensuring that estimations are not limited by linearity. 

2. Accommodating Uncertainties: Uncertainty is an inherent aspect of real-world 
systems. Particle Filters not only acknowledge this but thrive in such environments. 
Their ensemble-based nature allows them to explicitly model uncertainties, be it 
process noise, measurement noise, or model errors. This makes them robust and 
adaptable even when dealing with incomplete or noisy data. 

3. Real-Time Adaptability: Particle Filters are designed for on-the-fly adaptation. With 
every new measurement, they update their estimation in real-time, allowing them to 
track dynamic systems that evolve over time. This adaptability is crucial in fields like 
robotics, where precise and real-time state estimation is paramount for successful 
navigation and control. 

4. Versatility Across Domains: Particle Filters are domain-agnostic, transcending 
boundaries across various industries. In robotics, they enable simultaneous 
localization and mapping (SLAM); in finance, they underpin tracking financial 
instruments; in ecology, they monitor environmental changes. Their flexibility lies in 
their generic framework, making them a go-to choice for complex state estimation 
problems. 

5. Handling Multi-Modal Distributions: In scenarios where the true state distribution 
is multi-modal, Particle Filters shine. Their ensemble nature enables them to capture 
multiple modes, ensuring that no significant mode of the distribution is left unexplored. 
This is crucial in scenarios where multiple hypotheses about the system's state are valid. 

6. Handling High-Dimensional Spaces: Particle Filters remain effective even in high-
dimensional state spaces, where traditional methods struggle due to the curse of 
dimensionality. Particle diversity prevents the ensemble from getting stuck in local 
optima, enabling them to explore large state spaces more effectively. 

7. Integration with Non-Parametric Approaches: Particle Filters inherently embrace a 
non-parametric perspective, aligning well with modern trends in data analysis. They 
can be naturally integrated with techniques like kernel density estimation and Gaussian 
mixture models to enhance their capabilities. 

8. Navigating System Nonlinearity: Particle Filters effortlessly navigate chaotic or 
unpredictable systems, enabling them to capture behaviors such as bifurcations and 
attractor transitions. This makes them suitable for systems where traditional linear 
approaches falter. 

9. Bridging Model and Reality: Particle Filters bridge the gap between model 
predictions and real-world observations. Through resampling and weighted 
aggregation, they ensure that predictions resonate with actual measurements, striking 
a harmonious balance between theoretical insights and empirical evidence. 
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10. Research and Innovation Catalyst: Particle Filters continually push the boundaries 
of what's possible in state estimation. They have inspired research into advanced 
variants like the Unscented Kalman Filter and Gaussian Processes for Particle Filtering, 
driving the innovation engine in the field. 

In essence, Particle Filters stand as a testament to the power of computational approaches 
in unraveling complex systems. Their ability to embrace uncertainty, adapt in real-time, 
and provide reliable estimates for nonlinear and non-Gaussian systems positions them as 
a pivotal tool in modern data analysis, enabling advancements across diverse disciplines. 

 

5.4 Particle Filter Applications 

Particle Filter and Monte Carlo method have found numerous important applications in 
various domains of life and industry (PM Djuric, 2003). Here are some of the most 
significant applications: 

 

1. Target Tracking and Localization: In robotics and surveillance, particle filters are 
used to track moving objects like pedestrians, vehicles, or wildlife. They estimate the 
object's position and movement based on sensor data, which is crucial for applications 
like autonomous navigation and security systems. A figure showing the application of 
particle filter in localization is shown below (V Landa, 2018) where in the left part we 
have our particles and in the middle part we have our particles after Sequential 
importance resampling which leads us to the last photo in the right side where we 
accurately estimate the location of the object: 

 

Figure 12. Particle Filter in localization application 
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2. Robotics and Autonomous Navigation: Robots, including autonomous cars and 
drones, rely on particle filters to estimate their position and orientation in real-time. 
This is essential for path planning, obstacle avoidance, and overall safe and efficient 
navigation. 

3. Human Activity Recognition: In computer vision, particle filters are used to 
recognize human activities in video sequences. They can track and identify gestures, 
interactions, and behaviors, making them useful in applications like gaming, 
surveillance, and healthcare. 

4. Speech and Speaker Recognition: Particle filters are applied in automatic speech 
recognition (ASR) systems to identify and distinguish speakers, which can be valuable 
in voice-controlled systems and security applications. 

5. Finance and Economics: In finance, particle filters are used for estimating complex 
financial models, managing portfolio risk, and forecasting asset prices. They help in 
pricing derivatives and managing investment portfolios in uncertain markets. 

6. Environmental Monitoring: Particle filters are employed in environmental studies to 
estimate the state of ecological systems. They can track the movement of animals, 
monitor pollution levels, and predict climate changes based on sensor data. 

7. Medical Imaging and Biomedical Applications: In medical imaging, particle filters 
assist in tracking the motion of organs for radiation therapy, segmenting medical 
images for diagnosis, and estimating physiological parameters from patient data. They 
enhance the accuracy of medical diagnoses and treatments. 

8. Space Exploration: Particle filters are used in spacecraft navigation to estimate the 
spacecraft's position, velocity, and orientation relative to celestial objects. This is 
crucial for autonomous space missions and rendezvous with other spacecraft or 
celestial bodies. 

9. Target Recognition and Defense: Particle filters are applied in defense systems for 
tracking and recognizing targets like aircraft or missiles. They help guide interceptor 
missiles to their intended targets and assist in situational awareness. 

10. Finance and Risk Assessment: In financial institutions, particle filters are used for 
risk assessment, credit scoring, fraud detection, and modeling financial market 
behaviors. They help in making informed decisions and managing financial risks. 

11. Industrial Process Control: Particle filters assist in monitoring and controlling 
industrial processes, such as chemical manufacturing or power generation. They 
estimate the state of the process variables, ensuring efficient operation and early 
detection of anomalies. 

12. Oceanography and Weather Prediction: Particle filters help scientists in 
oceanography by tracking ocean currents, modeling marine ecosystems, and studying 
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climate patterns. In weather forecasting, particle filters assimilate data from various 
sources to improve the accuracy of predictions. 

 

5.5 Challenges and Frontiers 

Particle Filters: Navigating Challenges and Pioneering Frontiers 

While Particle Filters bring a formidable arsenal to the realm of state estimation, they are 
not immune to challenges and constraints. As technology evolves and computational 
capabilities advance, these challenges fuel innovation, leading to the exploration of new 
frontiers. Let's delve profoundly into the obstacles and the horizons that Particle Filters 
encounter: 

Challenges: 

1. Computational Complexity: Particle Filters demand computational resources that 
grow linearly with the number of particles used. As the number of particles increases, 
so does the computational burden. This can become a significant challenge when 
dealing with high-dimensional state spaces or real-time applications. 

2. Particle Degeneracy: Over time, certain particles can accumulate much higher 
weights than others, leading to a situation known as particle degeneracy. This 
diminishes the diversity of the ensemble and can result in inaccuracies in the 
estimation process. 

3. Resampling Artifacts: Resampling can inadvertently introduce artifacts, leading to 
non-physical particle distributions. These artifacts can distort the estimation process 
and need to be carefully managed through techniques like regularized resampling. 

4. Non-Gaussianity and High Dimensions: In high-dimensional state spaces, 
maintaining a representative particle ensemble can be challenging due to the curse of 
dimensionality. Also, Particle Filters may struggle when dealing with multi-modal 
distributions or when Gaussian assumptions are unwarranted. 

5. Trade-off Between Exploration and Exploitation: Choosing the right number of 
particles and the resampling threshold involves a delicate trade-off between 
exploration (exploring new hypotheses) and exploitation (exploiting known 
information). A wrong choice can lead to biased estimations or increased 
computational costs. 

 

Frontiers: 

1. Advanced Resampling Techniques: Innovations in resampling techniques aim to 
address challenges related to particle degeneracy and artifacts. Adaptive resampling, 
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regularized resampling, and hybrid resampling methods combine ideas from different 
domains to refine the process. 

2. Particle Diversity Maintenance: Techniques to preserve particle diversity are actively 
researched. Methods like stratified resampling, auxiliary particle filters, and particle 
rejuvenation aim to counter the challenges of particle degeneracy. 

3. Gaussian Process Particle Filters: This frontier blends the strengths of Gaussian 
Processes with Particle Filters. It involves using a Gaussian Process to model the 
posterior distribution of the state, allowing for more flexible and data-driven 
uncertainty modeling. 

4. Online Learning and Active Estimation: Combining Particle Filters with online 
learning algorithms allows systems to adaptively learn and improve their estimation 
capabilities as new data becomes available. Active estimation strategies determine 
optimal measurements to acquire, enhancing estimation efficiency. 

5. Distributed Particle Filters: With the rise of distributed systems, researchers are 
exploring ways to perform state estimation using distributed Particle Filters. This 
involves managing multiple ensembles across different nodes while exchanging 
information to obtain a global estimation. 

6. Variational Particle Filters: Variational approaches combine Bayesian inference with 
optimization, providing a means to approximate complex posterior distributions. 
Variational Particle Filters strive to balance accuracy and computational efficiency. 

7. Approximate Bayesian Computing: This innovative approach leverages particle-
based methods to perform Bayesian computation when the likelihood function is 
computationally intractable or unavailable. It holds promise for solving complex 
problems in various domains. 

8. Hybrid Estimation Techniques: Researchers are exploring hybrid methodologies that 
combine Particle Filters with other estimation techniques, such as Kalman Filters, 
Unscented Kalman Filters, and neural networks, to leverage the strengths of each 
approach. 

In essence, the challenges faced by Particle Filters have spurred research and innovation, 
leading to the exploration of exciting frontiers in state estimation. As computational 
capabilities continue to evolve, Particle Filters are poised to overcome existing limitations 
and blaze new trails in diverse fields, contributing to our understanding of complex 
systems and enhancing our ability to make informed decisions in the face of uncertainty. 
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Chapter 6. Experimental and Numerical step 
 

6.1 Numerical procedure  

This section deals with a numerical implementation on MATLAB for the three kinds of 
filters previously discussed: Kalman Filter, Unscented Kalman Filter and Particle Filter. 
Three numerical integration schemes are adopted each time, namely Euler, Runge Kutta 
and Feedback Input integration. First, the procedure is validated on numerical data (from 
D Anastasio et al, 2020), and then on real data in the " Experimental setup”. 

The system studied is a single degree of freedom system with the following equation of 
motion:  

𝑚ẍ(𝑡) + 𝑐ẋ(𝑡) + 𝑘х(𝑡) = f(𝑡) 

Here the values that have been used in the algorithms are listed as below: 

𝑚 (𝑚𝑎𝑠𝑠) = 1.3 𝑘𝑔 

𝑐 (𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡) = 2 
𝑁𝑠

𝑚
 

𝑘(𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠) = 800 
𝑁

𝑚
 

𝐹𝑠 = 4000  𝐻𝑧 (𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)  

With these values, a numerical model was constructed to represent the system. It is 
noteworthy that different numerical approaches entail distinct presentations. In the case of 
the Euler and Runge-Kutta approaches, the system is presented continuously, while the 
standard Feedback scheme necessitates a representation in the state space. Therefore, the 
determination of the subspace matrices, becomes essential. In this context, it is done as 
follows: 

𝐴 =  [
0 1

−
𝑘

𝑚
−

𝑐

𝑚

] ;    𝐵 =  [
0
1

𝑚

]  ;     𝐶 =  [1      0]  ;    𝐷 =  [0] 

 

The magnitude of the introduced noise remains constant in both the SDOF and MDOF 
systems, facilitating a clearer distinction in performance and improved result comparisons. 
Below, the noise levels are presented. 

𝑄 = 𝑒𝑦𝑒(2) ∗ 1𝑒 − 5     Process Noise 

𝑅 = 𝑒𝑦𝑒(1) ∗ 1𝑒 − 3     Measurement Noise 
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First, the results for the SDOF system are presented. By implementing the algorithms with 
random input types for the Kalman Filter, following the procedures outlined in Chapter 3, 
the outcomes are depicted in Figure 20. The figure incorporates the results obtained using 
all three numerical approaches: Euler (green line), Runge-Kutta (black line), and Feedback 
input (blue line). 

Two distinct segments of the figure, have been intentionally selected for magnification and 
additional presentation. This allows for a clearer observation of the performance of the 
various numerical approaches in estimating the system's state. The left segment is of 
particular interest because, as we approach peak values, filters typically encounter 
difficulties in accurately estimating the states at these points. However, it is evident that 
our Kalman filter accurately estimates these segments as well. Subsequently, in the RMS 
values, we will demonstrate that our Kalman filter exhibits exceptional performance in 
SDOF systems. 

 

Figure 20. Kalman Filter result for SDOF in random input. 

 

The results for the sweep input type in Kalman Filter for SDOF systems are displayed in 
Figure 21 below. It's important to note that the sweep input used is a linear sweep with the 
same frequency range as that employed for the random input. 
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Figure 21. Kalman Filter result for SDOF in sweep input. 

 

This pertains to a linear system using the Kalman Filter to estimate the system's states. For 
the nonlinear systems, two types of nonlinearities are introduced: one with a quadratic 
stiffness coefficient (𝑘2 = 5000 

𝑁

𝑚2) and the other with a cubic stiffness coefficient (𝑘3 =

1.5 ∗ 106  
𝑁

𝑚3) (D Anastasio, 2020). 

To account for these added nonlinear terms within our system, the equation of motion and 
state space model must be appropriately adjusted as follows: 

𝑚ẍ(𝑡) + 𝑐𝑣ẋ(𝑡) + 𝑘3х(𝑡)
3 + 𝑘2х(𝑡)

2 + 𝑘1х(𝑡) = f(𝑡) 

 

𝐴 =  [
0 1

−
𝑘

𝑚
−

𝑐

𝑚

] ;     𝐵 =  [
0       0        0
1

𝑚
    

𝑘3

𝑚
    

𝑘2

𝑚

]  ;     𝐶 =  [1      0]  ;      𝐷 =  [0     0    0] 

 

Using the updated subspace matrices for the nonlinear system and employing both the 
Unscented Kalman Filter (UKF) and Particle Filter (PF) to facilitate a more comprehensive 
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comparison of results, various figures are presented. Firstly, Figure 22 illustrates the 
outcomes achieved with UKF and PF across different numerical schemes. Subsequently, 
the distinctions between UKF and PF within each numerical scheme are showcased 
individually in Figures 23. 

 

 

 

Figure 22. Unscented Kalman Filter and Particle Filter result for SDOF in random input 
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Figure 23. UKF and PF result for SDOF in random input in Feedback, Euler, and Runge 
kutta Scheme 
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The results for the sweep input type in Unscented Kalman Filter and Particle Filter for 
SDOF systems are displayed in Figure 24 and 25 below. It's important to note that the 
sweep input used is a Nonlinear sweep with the same frequency range as that employed 
for the random input. 

 

 

 

Figure 24. Unscented Kalman Filter and Particle Filter result for SDOF in sweep input 
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Figure 25. UKF and PF result for SDOF in sweep input in Feedback, Euler, and Runge 
kutta Scheme 
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To conduct the analysis in the 2DOF system, it is essential to introduce our 2DOF model. 
In the case of the linear implementation within our Kalman Filter, the following data, 
sourced from (S Marchesiello, 2008; D Anastasio, 2020), are employed, encompassing two 
masses and their corresponding system parameters: 

𝑚1 = 0.5 [𝑘𝑔]; 𝑚2 = 1 [𝑘𝑔]; 𝑐1 = 4 [
𝑁𝑠

𝑚
] ; 𝑐2 = 1 [

𝑁𝑠

𝑚
] ; 𝑘11 = 2𝑒3 [

𝑁

𝑚
] ; 

𝑘12 = 5𝑒2 [
𝑁

𝑚
] ;  𝑀 = [

𝑚1 0
0 𝑚2

] ;  𝑐 = [
𝑐1 + 𝑐2 −𝑐2

−𝑐2 𝑐2
] ;  𝑘 = [

𝑘11 + 𝑘12 −𝑘12

−𝑘12 𝑘12
] ; 

𝐹𝑠 = 4𝑒3 [𝐻𝑧] (𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦);  𝑑𝑡 =
1

𝐹𝑠
 [𝑠]  

Utilizing the same system parameters and maintaining an identical noise level as in the 
SDOF analysis, the procedure is implemented to ensure consistent conditions for 
comparing the filter's performance. Accordingly, the noise levels are as follows: 

𝑄 = 𝑒𝑦𝑒(2) ∗ 1𝑒 − 5     Process Noise 

𝑅 = 𝑒𝑦𝑒(1) ∗ 1𝑒 − 3     Measurement Noise 

Below, the results for the Kalman Filter in the 2DOF system are presented: 

Figure 26. Kalman Filter 2DOF with Random Input. 



75 
 

 

Figure 27. Kalman Filter 2DOF with Sweep Input. 

This pertained to the linear system, where the Kalman Filter was employed for estimating 
the system's states. For the nonlinear systems, two types of nonlinearities were introduced: 
a quadratic stiffness coefficient (𝑘2 = 5000 [

𝑁

𝑚2]) and a cubic stiffness coefficient (𝑘3 =

1.5 ∗ 106  [
𝑁

𝑚3]) (S Marchesiello, 2008; D Anastasio, 2020). With the incorporation of 
these nonlinear terms into our system, the state space model had to be accordingly adjusted 
to account for these nonlinearity effects. As a result, the modified values are presented 
below: 

     𝐴 =

[
 
 
 
 

0 0 1 0
0 0 0 1

−
𝑘11+𝑘12

𝑚1

𝑘12

𝑚1
−

𝑐1+𝑐2

𝑚1

𝑐2

𝑚1

𝑘12

𝑚2
−

𝑘12

𝑚2

𝑐2

𝑚2
−

𝑐2

𝑚2]
 
 
 
 

   ;    𝐵 =  

[
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
1

𝑚1
0

𝑘3

𝑚1
0

𝑘2

𝑚1
0

0
1

𝑚2
0

𝑘3

𝑚2
0

𝑘2

𝑚2]
 
 
 
 

    

𝐶 = [
1 0 0 0
0 1 0 0

]   ;    𝐷 = [
0 0 0 0 0 0
0 0 0 0 0 0

] 
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In the previous subspace matrices, it's crucial to understand the relationships between 
columns and rows to correctly place parameters. Even a small mistake can significantly 
affect the outcome. Hence, a deep understanding of the system's model and physics informs 
these matrices. 

These matrices apply to the Feedback input scheme in the predict step of our filters. For 
Euler and Runge-Kutta schemes in the predict step, we use numerical integration of the 
equation of motion. We also maintain the same noise level for consistent filter performance. 

Below are the results for the 2DOF system with random input: 

 

 

Figure 28. Unscented Kalman Filter and Particle Filter result for 2DOF in random input. 
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Here is the result for Feedback scheme and Runge Kutta scheme and these two scheme’s 

performances in Random Input. 

 

 

Figure 29. UKF and PF result for SDOF in random input in Feedback, and Runge kutta 
Scheme. 
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The same procedure is applied to the sweep input in 2DOF systems, yielding the results 
presented below: 

 

 

Figure 30. Unscented Kalman Filter and Particle Filter result for 2DOF in sweep input. 
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Below, the results for the Feedback scheme and the Runge-Kutta scheme, along with an 
assessment of their respective performances, are presented: 

 

 

Figure 31. UKF and PF result for SDOF in random input in Feedback, and Runge kutta 
Scheme. 
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The Root Mean Square (RMS) is employed to evaluate the performance of filters in all 
schemes, both in SDOF and MDOF systems. The RMS provides a measure of the average 
magnitude of errors. The formula for RMS is: 

𝑅𝑀𝑆 = √[
(∑(𝑥𝑖

2)) 

𝑁
]  

Where '𝑥𝑖 ' denotes individual data points, and '𝑁' represents the total number of data points. 

The results are presented in both table and bar plot formats. 

 

SDOF error results for both random and sweep input: 

For Random Input: 

RMS Table for KF, PF and UKF in random input: 

 

 

RMS Bar plot for KF, PF and UKF in random input: 
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For Sweep Input: 

RMS Table for KF, PF and UKF in sweep input: 

 

 

RMS Bar plot for KF, PF and UKF in sweep input: 
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MDOF error results:  

For Random Input: 

RMS Table for KF, PF and UKF in random input: 

 

 

RMS Bar plot for KF, PF and UKF in random input: 
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For the Sweep Input: 

RMS Table for KF, PF and UKF in sweep input: 

 

 

RMS Bar plot for KF, PF and UKF in sweep input: 

 

 

At the culmination of this results chapter, it is important to note that the overarching 
conclusions drawn from these findings have been expounded upon in the subsequent 
conclusion chapter. For a comprehensive understanding of the implications and 
significance of these results, readers are encouraged to refer to the conclusion chapter. 
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6.2 Experimental setup 

In this section, a detailed description of the experimental setup utilized for parameter 
estimation of the double-well vibrating system (D Anastasio, 2020) is provided. This 
system consists of a u-shaped steel frame connected to a movable mass with vertically 
guided motion. Base excitation is introduced through a shaking table, resulting in the 
imposition of a vertical displacement, denoted as 𝑏(𝑡), onto the structure. Please refer to 
Figure 16 and 17 for schematic representations of the experimental device with a free body 
diagram and a corresponding photograph for visual reference. 

 

 

Figure 16: Photos of the experimental setup: (a) Negative Equilibrium position z−
∗  , 

(b) Positive Equilibrium position z+
∗ . 

 

 

Figure 17. Model of the negative oscillator and free-body diagram of m. 



85 
 

The equation of motion for this system, as derived in [29], considers the vertical motion of 
the mass and demonstrates a double-well potential characteristic, leading to the presence 
of three equilibrium positions, two of which are stable. In the context of this study, 
exclusive attention is given to in-well oscillations centered around one of the stable 
equilibrium positions. The equation of motion is presented as follows: 

𝑚ẍ(𝑡) + 𝑐𝑣ẋ(𝑡) + 𝑘3х(𝑡)
3 + 𝑘2х(𝑡)

2 + 𝑘1х(𝑡) = −𝑚�̈�(𝑡) 

Here, ' 𝑚  ' denotes the mass of the moving part, '𝑐𝑣 ' represents the viscous damping 
coefficient, and '𝑘1', '𝑘2', and '𝑘3' correspond to the linear, quadratic, and cubic stiffness 
coefficients, respectively. The external excitation is provided by the acceleration of the 
base, denoted as '�̈�(𝑡)'. 

The damping model, extensively explored in [44], takes into account the effects of the 
sliding motion of the moving mass. This model is particularly relevant when studying 
cross-well oscillations. However, for the purposes of this study, which is focused on in-
well motion, a simplified equivalent viscous damping term is employed. 

To measure and record the behavior of the system, the following instrumentation has been 
implemented: 

• Laser Vibrometer: The moving mass is equipped with a laser vibrometer, enabling 
the measurement of its absolute displacement '𝑦(𝑡)'. Data collection commences 
from the equilibrium position illustrated in Figure 16. 

• Accelerometer: An accelerometer is utilized to record the acceleration of the base 
'�̈�(𝑡)'. 

• Relative Displacement: The relative displacement '𝑥(𝑡)' is calculated by taking the 
difference between the laser-measured displacement '𝑦(𝑡)' and the displacement of 
the base '𝑏(𝑡)', which is obtained by integrating its measured acceleration twice. 

For the experimental trials, random excitation is applied to the system using a sampling 
frequency of 512 Hz and a time span of 300 seconds. The root mean square (RMS) value 
of the base acceleration is 26 

𝑚

𝑠2
 RMS and the time history of the relative displacement 

𝑥(𝑡) is shown in Figure 18. 

 

Figure 18: Time history of the relative displacement x(t). 
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The estimated system parameters (D Anastasio, 2020) obtained from these experiments are 
as follows: 

• Estimated Natural Frequency: 11.22 Hz 

• Damping Ratio: 6.22% 

• Estimated Nonlinear Coefficients: 

• Quadratic Stiffness (𝑘2): −4.5501 × 105 𝑁𝑚−2 

• Cubic Stiffness (𝑘3): 1.8924 × 105 𝑁𝑚−3 

 

In the following sections of this thesis, Bayesian inference techniques, such as the Kalman 
filter, unscented Kalman filter, and particle filter, will be utilized to estimate the states of 
the complex nonlinear dynamic system. 

Now, the results of the procedure outlined in the numerical step for the real measurement 
data of the previously described system are presented below: 

 

 

 
Figure. UKF State estimates with Feedback and Runge Kutta schemes. 
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Figure. PF State estimate with Feedback and Runge Kutta schemes. 

 

 

 
Figure. Runge Kutta and Feedback differences in UKF and PF 
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The Root Mean Square (RMS) error of the filters' performance in all schemes for the real 
measurement system has been computed based on the available data. These results are 
presented in both tabular and bar plot formats. 

 

Table of RMS for real measurement data: 

 

 

Bar plot of RMS for real measurement data: 
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Chapter 7. Discuss and Conclusion 
 

Interpreting the Results for SDOF: 

1. Kalman Filter (KF) for Linear Systems: The Kalman Filter, tailored for linear 
systems with Gaussian noise, demonstrates superior performance within the 
feedback scheme. Linear systems inherently align with KF's assumptions of 
linearity and Gaussianity. However, in the Euler and Runge-Kutta schemes, the 
introduction of nonlinearity by these numerical integration methods is believed to 
disrupt the filter's assumptions, subsequently resulting in increased estimation 
errors. KF is most appropriate when applied to linear systems where Gaussian noise 
effectively models uncertainties. 

2. Unscented Kalman Filter (UKF) for Nonlinear Systems: The Unscented Kalman 
Filter excels in estimating states within nonlinear systems. In the feedback scheme, 
it outperforms the Euler and Runge-Kutta schemes owing to its capability to 
approximate the state distribution through the use of meticulously selected sigma 
points. This enables the filter to more accurately capture the system's behavior. 
When the system exhibits nonlinear dynamics, UKF's feedback scheme emerges as 
a robust choice for achieving accurate estimations. 

3. Particle Filter (PF) for Nonlinear Systems: The Particle Filter's feedback scheme 
exhibits the highest performance among the three schemes, reaffirming its ability 
to effectively manage complex nonlinear dynamics. The feedback scheme, in 
particular, derives benefits from its capacity to adapt to nonlinearities by 
representing the state distribution using a set of particles. While the Euler scheme, 
while less precise, provides an alternative in scenarios with constrained 
computational resources. PF is most valuable when addressing systems 
characterized by significant nonlinearities and non-Gaussian noise, scenarios where 
other filters may struggle to deliver precise estimates. 

 

Filter Selection Based on SDOF Results: 

• Kalman Filter: Employ the Kalman Filter in scenarios involving linear systems 
where Gaussian noise is an appropriate model for uncertainties. Exercise caution 
when employing it with Euler or Runge-Kutta integration schemes in nonlinear 
systems, as these solvers introduce nonlinearity, which may lead to suboptimal 
results. 

• Unscented Kalman Filter: Opt for the Unscented Kalman Filter when working with 
nonlinear systems. The filter's feedback scheme, particularly within the feedback 
scheme, proves highly effective at accurately capturing nonlinear dynamics. It 
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strikes a balance between accuracy and computational efficiency, rendering it 
suitable for moderately nonlinear systems. 

• Particle Filter: Select the Particle Filter for systems characterized by significant 
nonlinearities and non-Gaussian noise. The filter's resampling scheme excels in 
capturing complex dynamics, offering the most precise estimates. 

 

 

Interpreting the Results for MDOF with Random Input: 

1. Kalman Filter (KF) for Linear Systems: Higher RMS errors observed in KF's 
feedback scheme for both masses can be attributed to its linear assumptions and the 
simplicity of the prediction section. It performs reasonably well with the Runge 
Kutta scheme. The Euler and Runge Kutta schemes yield superior performance due 
to their integration process. 

2. Unscented Kalman Filter (UKF) for Nonlinear Systems: UKF's feedback scheme 
shows lower RMS errors compared to the Euler and Runge Kutta schemes for both 
masses. This outcome suggests that the feedback scheme is enhanced in the 2DOF 
system dealing with nonlinearities, thanks to its adaptive nature. 

3. Particle Filter (PF) for Nonlinear Systems: PF's feedback scheme achieves the 
lowest RMS errors, showcasing its ability to handle the introduced nonlinearity 
effectively. By employing particles to represent state distributions, the PF excels in 
capturing complex dynamics and exhibits very close accuracy to Runge Kutta in 
this scenario. 

 

Interpreting the Results for MDOF with Sweep Input: 

1. Kalman Filter (KF) for Linear Systems: KF's feedback scheme demonstrates better 
accuracy for the 2nd mass under sweep input conditions. However, for the 1st mass, 
it exhibits lower accuracy compared to Euler and Runge Kutta schemes. This 
discrepancy could be attributed to the nature of the Sweep input, which challenges 
normal filters. Additionally, differences in the integration process for force input to 
the 1st mass may contribute to the observed variations. 

2. Unscented Kalman Filter (UKF) for Nonlinear Systems: UKF's feedback scheme 
maintains balanced accuracy for both masses, outperforming Euler and Runge 
Kutta solvers. Its ability to adapt and update itself in each iteration makes it the 
preferred choice for handling nonlinearities. 

3. Particle Filter (PF) for Nonlinear Systems: PF's feedback scheme consistently 
performs well for both masses, regardless of input type. This highlights its 
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robustness in managing nonlinearities and its capacity to provide accurate state 
estimates, even under different input conditions. 

 

Filter Selection Based on MDOF Results: 

• Kalman Filter: In MDOF cases with linear systems, employing the Runge Kutta 
solver is advisable, as it performs reasonably well under various input types. 

• Unscented Kalman Filter (UKF): Optimal for the UKF Feedback scheme when 
dealing with nonlinearities, irrespective of the input type. Its feedback nature excels 
in capturing nonlinear dynamics, making it suitable for moderately nonlinear 
systems. 

• Particle Filter (PF): Choose the PF when confronting strong nonlinearities, 
especially when other filters face challenges. PF's feedback scheme offers 
exceptional accuracy in highly nonlinear scenarios. Additionally, the Runge Kutta 
scheme for PF serves as a viable option for addressing strong nonlinearities in the 
system. 
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