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Summary

Studying bacteria and viruses is crucial for improving cures and preventing large-
scale epidemics or pandemics. Antimicrobial resistance (AMR) refers to the ability
of microorganisms to withstand the effects of antimicrobial treatments and poses a
signiĄcant public health threat, so understanding its prevalence, mechanisms, and
spread is a global priority. Research in this sector brought signiĄcant advancements
in technology, which have resulted in remarkable cost reduction and accelerated
processing speeds.
Despite these improvements, the acquisition of such technologies can still pose a
considerable Ąnancial burden in low-resource settings. There remains ample room
for further enhancements, particularly through the integration of machine learning
and computational intelligence strategies to automate processes.
In the past, algorithmic solutions to bacterial resistance were not feasible due
to the complexity of microbial genomes, limited data availability, and lack of
computational power. Although classical algorithms are still impractical for such
complex problems, the increased data and computational power have enabled initial
attempts. Machine learning algorithms have been extensively studied for predicting
antimicrobial resistance based on genotype information. These approaches can be
supervised or unsupervised. Some studies have used gene presence/absence and
antimicrobial susceptibility testing outcomes as features to train models. Recent
studies have utilized k-mers derived from the genomes of antimicrobial-resistant
and susceptible species, along with susceptibility testing outcomes, to develop
prediction models. Tools like Mykrobe predictor and RAST employ machine
learning classiĄers to identify antimicrobial resistance genes. These tools have
shown high accuracy in identifying resistance elements in independent validation
sets. However, machine learning classiĄers depend on training data and existing
knowledge, necessitating large datasets of curated resistance genes and accurate
genotypic data. While machine learning shows promise in antimicrobial resistance
prediction, it still has a long way to go before it can be used for rapid diagnostics
and replace traditional culture techniques and susceptibility testing, which typically
take days or weeks to produce results.
On the other hand, no attempts involving evolutionary computation have been
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attempted, despite it offering several advantages compared to machine learning
approaches. Firstly, it excels at exploring vast solution spaces, making it effec-
tive in complex problems with high-dimensional search spaces. It can handle
non-differentiable and discrete problems, making it suitable for tasks involving
categorical variables or combinatorial optimization. Additionally, evolutionary
algorithms are robust to noisy and incomplete data, producing meaningful results
even when data quality is imperfect. They are designed for global optimization,
avoiding getting trapped in local optima. Evolutionary algorithms are adaptable
to dynamic environments, adjusting to changing conditions. Moreover, they can
be parallelized for faster convergence and scalability, making them suitable for
complex real-world scenarios.
For these reasons the primary objective of this research is to utilize Evolutionary
Computation to address the complex issue of bacterial resistance. SpeciĄcally, the
algorithm aims to identify distinct markers that are highly prevalent in resistant
variants but largely absent in susceptible ones. These markers have the potential
to be correlated with speciĄc types of resistance, offering valuable insights into the
underlying mechanisms of bacterial resistance. Moreover, this research endeavors to
contribute to the development of targeted interventions by analyzing and uncovering
the signiĄcance of these markers. A critical factor inĆuencing the Ąnal outcome is
the ability to identify a wide range of well-established markers associated with a
particular bacterium and a speciĄc antibiotic. This focus on discovering numerous
known markers is vital for improving the accuracy and reliability of future research
in this important area.
Three main tests have been designed to evaluate the effectiveness and reliability of
the algorithm, assessing overall performance, result variability and ability to avoid
under/overĄtting. The initial test aimed to assess the algorithmŠs performance
with a random seeding. This allowed for an evaluation of the algorithmŠs ability
to navigate away from local optima and determine the impact of unĄltered data
before implementing signiĄcant removals. By exposing the algorithm to unĄltered
data, valuable information and crucial patterns could be identiĄed, avoiding pre-
mature discarding of data. This test established a baseline understanding of the
algorithmŠs behavior and guided subsequent analyses. The second test employed
a targeted seeding approach, selecting only sequences from variants resistant to
the speciĄc antibiotic of interest. This strategy aimed to increase the likelihood of
discovering meaningful genetic sequences associated with resistance and expedite
convergence towards favorable solutions. The targeted approach was expected to
yield a higher average Ątness score and greater variance in results compared to the
random seeding test. It offered insights into the diversity and complexity of the
problem domain, while mitigating the risk of overĄtting. The Ąnal test focused
on minimizing the occurrence of repeating sequences in the Ąnal generation. The
motivation behind this test was to strike a balance between Ątness and diversity,
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recognizing the importance of both factors in achieving comprehensive classiĄcation
outcomes. The insights gained from the second test inĆuenced this approach,
aiming to ensure a rich and varied set of sequences that encompassed a wide range
of resistance proĄles. Emphasizing both high Ątness and diversity was deemed
crucial for effective classiĄcation.
In the conducted experiments, Staphylococcus Aureus was selected as the bacteria
of interest, and Gentamicin was the primary antibiotic under investigation. The
dataset consisted of 470 variants, which remained consistent across all attempts.
It was expected that including more variants would improve the accuracy of the
results. The population size was set to 100 individuals, striking a balance between
convergence speed and performance. The iteration limit was deĄned as 1000 itera-
tions, although it was not reached in any of the experiments. The data obtained
from the experiments included Ątness results, the number of generations needed to
reach stability, and the variance of the solutions found. In Test 1, the average Ątness
consistently increased with each generation, peaking at generation 8. However, the
Ąnal population only consisted of two distinct sequences, one being a mutation of
the other with minor differences. This behavior was attributed to the vast search
space and the presence of susceptible individuals complicating the identiĄcation
of randomly occurring resistant sequences. The selection and replacement process
favored the emergence of the "optimal" solution in terms of Ątness, reducing the
variability in subsequent populations. In Test 2, the introduction of selective seed-
ing, focusing on resistant variants, resulted in improvements compared to random
seeding. Stability was achieved in only four generations, and both the maximum
Ątness and variability increased. The maximum Ątness reached the highest possible
value allowed by the data, indicating signiĄcant progress. A substantial proportion
of the Ąnal generation possessed the maximum Ątness, suggesting the algorithmŠs
enhanced efficiency with selective seeding. However, the number of unique in-
dividuals remained low, indicating limited variability. To address the issue of
limited variability, Test 3 introduced a "re-seeding" process before evaluation. This
process ensured uniqueness by replacing repeated sequences with new ones selected
similarly to the initial seeding phase. This artiĄcial increase in variability to 100%
of the population made the algorithmŠs behavior more unpredictable, resulting in
a decrease in performance and average Ątness. Nevertheless, the average Ątness
showed a gradual increase over time, albeit with less consistent growth due to
the randomness introduced by reseeded individuals. Notably, there was a notable
increase in sequences with high Ątness, with approximately 37% of individuals
exceeding a Ątness level of 20 in the 10th generation, nearly double the outcome of
experiment 2.
In conclusion, the project has demonstrated that the evolutionary computation
approach offers a viable solution to the problem under investigation. However, it is
evident that further improvements are required to enhance the performance of the
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algorithm and deliver more precise and valuable solutions.
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Chapter 1

Background

1.1 Bacterial Resistances Recognition

In the present times, the signiĄcance of studying bacteria and viruses has become
increasingly apparent as we strive to enhance modern treatments and prevent large-
scale epidemics or pandemics. However, the rapid mutation rate exhibited by these
organisms poses a formidable challenge for long-term cures and effective solutions.
To combat bacterial infections, a wide range of antimicrobials has been developed
and discovered. Since their initial commercial introduction in the 1930s, they have
proven to be invaluable tools in managing pathogenic microbes. Nevertheless, their
remarkable efficacy in eliminating pathogens has also contributed to the emergence
of antimicrobial resistance. Antimicrobial resistance (AMR) refers to the ability
of microorganisms to withstand the effects of antimicrobial treatments. The
excessive or inappropriate use of antibiotics has been closely linked to the rise and
dissemination of microorganisms that are resistant to these drugs. Antimicrobial
resistance is a major public threat and monitoring and understanding the prevalence,
mechanisms and spread of antimicrobial resistance are priorities for global infection
control strategies.
The current techniques for resistance proĄling [1] follow this scheme:

1. Sample collection: DNA is extracted from colonies of different (culture-
independent) or speciĄc (culture-dependant) bacteria.

2. Sequencing: the bacterial genome is analyzed by a sequencer, like the Illumina
machines, which determines the exact order of the 4 nucleotids and Ąlters
the reads by quality. The raw output of this sequencing process are what
are called "Sequencing Reads", strings of A, C, T, G representing nucleotide
sequences of the input DNA or RNA.

3. Sequencing-based resistance discovery: it can be of two types, both equally
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important and with different pros and cons

• Assembly-based: the sequencing reads are initially assembled into con-
tiguous fragments known as "contigs". These contigs are then compared
to custom or public reference databases for annotation, enabling the
identiĄcation of resistance determinants.

• Read-based: resistance determinants are predicted by directly mapping the
sequencing reads to a reference database to obtain a coverage estimation
and to detect variants.

4. Downstream analysis: the obtained data is rearranged for use. Some examples
are

• Resistome cluster analysis

• Antibiotic resistance gene network analysis

• Resistance proĄling

More speciĄcally, the Illumina machines follow the NGS (Next Generation
Sequencing) [2], which is a series of steps used by modern sequencing machines.
The main steps, excluded sample collection and data analysis, are:

• Library preparation: it involves preparing the DNA or RNA samples for pro-
cessing and sequencing on NGS platforms. This process includes fragmenting
the samples to obtain appropriately sized targets and attaching specialized
adapters at both ends. These adapters facilitate the interaction of the samples
with the NGS platform. The prepared samples, known as libraries, comprise a
collection of molecules ready for sequencing. The speciĄc library preparation
procedure may vary depending on the reagents and methods used, but it aims
to generate DNA fragments of desired lengths with adapters at both ends.

• Clonal AmpliĄcation and Sequencing: clonal ampliĄcation is a crucial step
where the DNA fragments from the prepared libraries are ampliĄed and at-
tached to surfaces such as beads, Ćow cells, or ion surfaces. This ampliĄcation
enables the generation of strong Ćuorescent signals that can be detected by
the sequencers. Following clonal ampliĄcation, the library is loaded onto the
sequencer, which reads and detects the nucleotides one by one through a pro-
cess known as sequencing by synthesis (SBS). The SBS is a DNA sequencing
technique that relies on DNA polymerases and dNTPs to replicate the target
DNA strand. This method involves introducing nucleotides either individually
or modiĄed with identifying tags, such as Ćuorophores, to enable the recog-
nition of the incorporated base type as the DNA molecule elongates. Each
nucleotide incorporation is chemically blocked, ensuring that it is a unique and
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distinguishable event. During the sequencing process, the signal produced from
each nucleotide incorporation is captured. Subsequently, the blocking group is
removed to prepare the strand for the next round of nucleotide incorporation
by DNA polymerase. This iterative series of steps is repeated for a speciĄc
number of cycles, leading to the replication and sequencing of the desired
DNA strand.

In recent years, signiĄcant advancements in technology have resulted in remark-
able cost reduction and accelerated processing speeds. However, despite these
improvements, the acquisition of such technologies can still pose a considerable
Ąnancial burden in low-resource settings. Nevertheless, within this context, the
signiĄcance of digital analysis and data collection is already widely recognized.
Yet, there remains ample room for further enhancements, particularly through
the integration of machine learning and computational intelligence strategies to
automate processes.

Until some years ago, algorithmic solutions to the bacterial resistance problem
were not feasible for many reasons:

• The complexity of bacteriaŠs genome and his sudden mutation prevented the
use of classical rule-based algorithms.

• The amount of available data was much less than today.

• There wasnŠt enough computational power to allow the use of AI (ArtiĄcial
Intelligence) or EC (Evolutionary Computation) solutions.

Today the situation is very different: even if a classical algorithm is still unfeasible
for such complex problem, the amount of data and computational power has risen
enough to make initial attempts possible.

Numerous studies have investigated the use of machine learning algorithms to
study antimicrobial resistance and its ability to predict resistance based on genotype
information. Machine learning approaches can be implemented as either supervised
or unsupervised learning methods. Some studies have used gene presence or absence
and antimicrobial susceptibility testing (AST) outcomes as features to create the
training dataset for models. For example, one study employed logistic regression
to develop a model that could differentiate between vancomycin-susceptible and
vancomycin-intermediate Staphylococcus aureus based on 14 gene parameters and
3 molecular typing markers [3]. The model achieved an 84% classiĄcation accuracy
using publicly available genomic data and patient isolates, demonstrating a proof
of concept for identifying antimicrobial resistance. Another study compared a
rules-based approach with a machine learning-based approach (logistic regression)
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for predicting antimicrobial resistance proĄles and found that the machine learning-
based approach had higher accuracy, especially for novel variants of known resistance
genes [4].

Recent studies and tools have utilized k-mers derived from whole genomes
of antimicrobial-resistant and susceptible species, along with AST outcomes, to
develop prediction models. For instance, Mykrobe predictor [5] is a fast k-mer
screening tool that identiĄes antimicrobial resistance genes and single nucleotide
polymorphisms (SNPs) in S. aureus and M. tuberculosis. It utilizes curated genetic
information of resistant and susceptible alleles to build reference graphs and maps
k-mers from sequencing reads to these graphs. Mykrobe predictor demonstrated
high sensitivity and speciĄcity for identifying resistance elements in independent
validation sets.

In contrast, Rapid Annotation using Subsystem Technology (RAST) [6] is a
k-mer-based tool that employs a machine learning classiĄer (AdaBoost) based on
the PATRIC database to identify target-speciĄc antimicrobial resistance genes.
RAST is trained on k-mer data derived from the contigs of each genome, and the
binary matrix of k-mer presence/absence, along with AST outcomes, is used to form
a classiĄer model and identify putative resistance-associated k-mers. RAST showed
high accuracies in identifying speciĄc resistance types in different pathogens.

One limitation of machine learning classiĄers is their dependence on training
data and existing knowledge. To apply machine learning classiĄers in clinical
diagnostics, a large dataset of curated antimicrobial resistance genes linked to
accurate genotypic data and AST information is required to build effective and
robust classiĄers. Additionally, machine learning approaches are being employed to
predict antimicrobial resistance genes in metagenomic data. For example, DeepArgs
is a newly established tool that utilizes deep learning to identify resistance genes
based on curated datasets and can predict resistance genes in new test data [7].

While the application of machine learning to antimicrobial resistance prediction
and classiĄcation shows promise, these techniques still have a long way to go before
they can be used for rapid diagnostic purposes and replace traditional culture
techniques and AST, which typically take days or weeks to produce results.

1.2 Evolutionary Computation

Evolutionary algorithms are heuristic-based approaches that solve complex problems
by emulating the principles of natural selection and evolution [8]. They are
particularly effective in tackling problems that are computationally challenging or
infeasible to solve optimally using traditional methods.

The core concept of an evolutionary algorithm (EA) revolves around four main
steps: initialization, selection, evolutionary operators, and termination. These steps
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mirror key aspects of natural selection, allowing for modular implementation and
easy adaptation. In an EA, individuals with higher Ątness are favored for survival
and reproduction, while unĄt individuals are gradually phased out, ensuring that
only the Ąttest contribute to subsequent generations.

In the context of problem-solving, an EA aims to Ąnd the best combination of
elements that maximizes a given Ątness function. The algorithm continues until a
termination condition is met, which could be a predeĄned number of iterations or
reaching a speciĄc Ątness threshold. Although this scenario represents a common
application in discrete problems, EAs can be employed in various other contexts.

Initialization involves creating an initial population of potential solutions or
individuals, often generated randomly within the problemŠs constraints. The
population should encompass a diverse range of solutions to explore multiple
possibilities throughout the algorithm.

Selection is the process of evaluating the Ątness of each individual in the
population using a Ątness function tailored to the speciĄc problem. Designing
an effective Ątness function can be challenging, as it should accurately represent
the problemŠs characteristics. The selection phase typically involves choosing the
top-scoring individuals for further reproduction, but there could be variants to
preserve some variability and try to avoid the risk of getting stuck in a local
extrema.

Genetic operators encompass two sub-steps: crossover and mutation. After
selecting the top individuals (often the top two), the algorithm creates offspring
by combining their characteristics through crossover. This process involves mixing
combinations of genetic material to produce valid solutions. This technique is
common in Genetic algorithms, a subgroup of evolutionary algorithms, but is not
mandatory for the algorithms to work. Mutation, on the other hand, introduces new
genetic material by altering a small portion of the offspring, ensuring exploration
beyond local extrema. The occurrence and severity of mutations are typically
governed by a probability distribution.

Termination marks the end of the algorithm. Two common termination con-
ditions are reaching a maximum run time or achieving a speciĄc performance
threshold. At this point, a Ąnal solution is selected and returned, marking the
conclusion of the EA.

While EAs excel at optimizing solutions, itŠs important to note that they may
not always Ąnd the absolute best solution but instead continually improve upon
existing solutions. The computational requirements of EAs can be high due to the
complexity of evaluating Ątness: nonetheless, even seemingly simple evolutionary
algorithms can tackle complex problems, as the complexity of the algorithm does
not necessarily correlate with the problemŠs complexity.
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Figure 1.1: Example graph of an EA. 1

1.3 Motivations

There are many reasons why an implementation based on Evolutionary Computation
could be interesting and give additional insights in respect to the previously
mentioned Machine Learning attempts.

• Exploration of Solution Space: evolutionary algorithms excel at exploring vast
solution spaces, especially in complex problems with high-dimensional search
spaces. They can effectively navigate through a large number of potential
solutions, allowing for a more comprehensive search and the discovery of
diverse and optimal solutions.

• Handling Non-Differentiable and Discrete Problems: unlike traditional op-
timization methods based on gradient, evolutionary algorithms can handle
non-differentiable and discrete problems effectively. They are well-suited
for tasks that involve categorical variables, combinatorial optimization, or
problems where the Ątness landscape is non-linear and discontinuous.

• Robustness to Noisy and Incomplete Data: evolutionary algorithms can
handle noisy and incomplete data gracefully. By using population-based
search strategies and maintaining diversity, they are less susceptible to noise
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and outliers. They can still produce meaningful results even when the data is
imperfect or contains missing information.

• Global Optimization: evolutionary algorithms are designed to Ąnd globally
optimal or near-optimal solutions rather than getting trapped in local optima.
Through mechanisms like mutation, they promote exploration of the search
space, allowing for the discovery of better solutions that might be outside the
vicinity of local optima.

• Adaptability and Dynamic Environments: evolutionary algorithms possess
inherent adaptability and can handle dynamic environments. They can dy-
namically adjust the population to changing conditions, allowing them to
respond and adapt to new information or evolving problem characteristics.

• Parallelization and Scalability: evolutionary algorithms can be easily paral-
lelized, leveraging the computational power of modern hardware architectures.
This parallelization enables faster convergence and scalability to larger problem
sizes, making them suitable for handling complex real-world scenarios.

1.4 Theoretical and Technical Issues

The previously proposed approach encountered 3 main problems that needed to be
addressed and overcome:

1. The research space is incredibly vast, posing a signiĄcant challenge in navigat-
ing and exploring it effectively

2. Extracting meaningful sequences from the complete genome without external
data is nearly impossible

3. Mykrobe is a very slow tool

The Ąrst problem stemmed directly from the inherent complexity of the research
domain. Each variant encompassed an extensive range of bases, typically ranging
from 100 to 500 million. Consequently, selecting sequences at random from such
a vast space proved to be highly inefficient, exacerbating performance issues,
particularly when dealing with larger datasets. To mitigate this challenge, a
solution was devised by implementing a seeder that exclusively selected random
sequences from known resistant variants. This seeder strategy will be further
explored and elaborated upon in paragraph 2.5, offering insights into its effectiveness
and implications.
Additionally, problem 2 surfaced due to the apparently random nature of the
starting and ending points of the sequences. As a result, there was a heightened
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risk of selecting superĆuous or incomplete sequences, which could compromise the
accuracy and reliability of the analysis. To overcome this obstacle, the utilization
of CONTIGS Ąles played a pivotal role: those contains a comprehensive list of
already recognized sequences recognized sequences segmented by known markers.
By leveraging this resource, a more focused and precise analysis was ensured,
minimizing the risk of incorporating irrelevant or incomplete genetic sequences.
Finally, problem 3, relating to the slow performance of the Mykrobe tool, which
will be further explored in paragraph 3.3, was addressed to the best extent possible
through the implementation of parallelization techniques. Despite these efforts, the
tool remained a signiĄcant bottleneck in the overall implementation process.
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Chapter 2

Proposed approach

2.1 Algorithm overview

As discussed in detail in paragraph 1.1, the Ąeld of machine learning has witnessed
extensive research and produced varying outcomes. However, there has been a
notable absence of applications integrating Evolutionary Algorithms and other
branches of Computational Intelligence into this domain. Consequently, the primary
objective of this research endeavor is to bridge this gap by applying Evolutionary
Computation to tackle the challenging problem of bacterial resistance. More
speciĄcally, the algorithm aims to identify distinctive markers that exhibit a
high prevalence among resistant variants while being predominantly absent in
susceptible ones. These markers hold the potential for correlation with speciĄc
types of resistance. By uncovering and analyzing such markers, this research seeks
to shed light on the underlying mechanisms of bacterial resistance and potentially
contribute to the development of targeted interventions. In the pursuit of this
goal, one of the crucial factors that signiĄcantly inĆuences the Ąnal outcome is
the ability to identify a multitude of well-established markers associated with a
particular bacterium and a speciĄc antibiotic. This emphasis on the discovery of
numerous known markers is essential for enhancing the accuracy and reliability of
future research in this topic.
The basic structure of this algorithm is formed by:

• A seeding phase, where the starting population is initiated

• An evaluation phase, where the Ątness is calculated

• A selection and replacement phase, where the best elements from the popula-
tion are selected and the worst are discarded

• A mutation phase, where each individual has a probability to receive changes
to his structure
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• A termination phase, where the algorithm is supposed to have reached a
meaningful result, so it terminates

Algorithm 1 Basic schema of the researchŠs algorithm

Population initialization ▷ Seeding phase
while Termination conditions do

Selection of best elements ▷ Selection and replacement phase
Mutate some elements ▷ Mutation phase
Calculate fitness ▷ Evaluation phase

end while

2.1.1 Initial population, seeding and selection

As explained in paragraph 1.2, the seeding is the phase in which the initial popula-
tion is generated. Since the results must represent markers that could be signiĄcant
to the resistance problem, the most obvious representation of individuals is made by
encoding them as DNA sequences of varying length. The seeder will retrieve them
from the data, check that the obtained individuals are different from one another
and then encode the population adding some elements necessary for the effective
implementation. The sequences are selected from the CONTIGS (see paragraph
2.5.1) and cut into random length between deĄned limits. Since the search space
is very large, the work of the seeder is fundamental for the Ąnal success of the
algorithm: this component is in fact the main element of experimentation, so its
changes will be further discussed in section 3.2.
A tournament selection was used for the selection process: it involves running
multiple tournaments among randomly chosen individuals and then selecting the
Ąttest individual to continue in the following phases of the algorithm. This partic-
ular selection gives the possibility to modify the selection pressure quite easily, by
simply changing the tournament size. A larger tournament size reduces the chances
of weak individuals being selected since there is a higher probability of stronger
individuals being present. The selection pressure parameter plays a crucial role
in the convergence rate of the evolutionary algorithm, as higher selection pressure
leads to faster convergence. The level of control over the selection pressure enables
greater inĆuence over the overall outcomes, resulting in improved avoidance of
overĄtting or underĄtting.
A plus type replacement strategy was also used, which means that the entire
existing population is replaced by the best population-many elements from the
combined set of parents and offspring.
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2.1.2 Mutators

The mutators employed in this project are speciĄcally designed to manipulate the
genomic sequence, thereby imposing certain limitations on the range of possibilities.
Two primary mutators are utilized: the length mutator and the sequence mutator,
each serving a distinct purpose within the algorithm.
The length mutator operates on the original sequence selected by the seeder
and introduces alterations by either shortening or lengthening it. The degree of
alteration is determined by a random number of basis, typically ranging between 1
and 20 in my implementation. Notably, the basis for alteration are not randomly
chosen but are derived from the original sequence itself. This approach ensures that
the modiĄcations remain connected to the inherent characteristics of the sequence.
On the other hand, the sequence mutator takes the same variant from which the
original sequence was derived but replaces it with an entirely different one.
In contrast to the length mutator, the sequence mutator represents a departure from
the conventional evolutionary variator. It may not adhere, at least apparently, to the
principle of locality as the changes introduced can be substantial. Both the length
and the bases themselves can be altered, potentially leading to signiĄcant variations.
However, this mutator possesses the potential to yield intriguing results, particularly
when certain variants exhibit multiple sequences associated with resistance. It also
presents an opportunity to unveil potential hidden correlations between speciĄc
genomic sequences.
Additionally, there was contemplation regarding the inclusion of a mutator that
adds random bases to the sequences. However, the probability of generating a
meaningful sequence diminishes with each additional base. Furthermore, even
if a generated sequence produced using this method displayed a connection to
resistance, it would be challenging to establish its signiĄcance or demonstrate its
utility within the algorithm or without a broader research context.

2.1.3 Evaluation and Termination

The Ątness function is quite simple and is implemented thanks to the use of a
screening tool (in our case Mykrobe was used, described in paragraph 2.5.2). The
screener analyzes the sequence and confronts it with a list of variants utilizing the
Ątness function

fitness = R − S

where R is the number of resistant correspondences and S is the number of
susceptible ones. Without some more data this simple Ątness function was the best
option to obtain meaningful results: a variant can be to add parameters to the
Ątness function like

fitness = a ∗ R − b ∗ S
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where a and b are weights added to make the presence in the resistant or susceptible
variants more or less impactful on the Ąnal results. ItŠs to be noted that these
weights wouldnŠt affect sequences present in only resistant or only susceptible
individuals, but any sequence in between.
Since the algorithm has the objective to Ąnd an high number of sequences with the
highest Ątness as possible, the main termination condition is

max (fitnessn) − avg(fitnessn) < p

where fitnessn is the set of Ątnesses of the current population and p is a variable
chosen arbitrarily which represents the maximum difference between the maximum
and the average Ątnesses. In this way the algorithm is forced to iterate until the
population Ątness is stabilized. Another condition is the number of maximum
iterations, a pretty common condition in evolutionary algorithms.
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Chapter 3

Experiments and Results

3.1 Tests

In order to evaluate the effectiveness and reliability of the algorithm, a series of
three tests were designed. These tests aimed to assess key factors, including overall
performance, result variability, and the algorithmŠs ability to avoid both overĄtting
and underĄtting the problem at hand.

3.1.1 Test 1

The initial test conducted involved providing the algorithm with a random seeding,
which might initially appear counterintuitive considering the challenges outlined
in point 2.3. However, given that one of the fundamental advantages of an
Evolutionary Algorithm (EA) compared to greedy algorithms lies in its ability to
navigate away from local optima, it was essential to examine the potential impact
of including a substantial amount of unĄltered data before making any signiĄcant
removals. Depending on the characteristics of the research space, the results
could vary from a prominent and dominant single local minimum to a complete
absence of meaningful or valuable results. This test allowed for a comprehensive
evaluation of the algorithmŠs performance under different seeding conditions, thereby
informing subsequent decisions regarding data removal or reĄnement strategies.
By intentionally exposing the algorithm to unĄltered data, the possibility to avoid
prematurely discarding valuable information and potentially missing out on crucial
patterns or insights is avoid as much as possible. Ultimately, this test helped
establish a baseline understanding of the algorithmŠs behavior and paved the way
for more informed and targeted analyses in subsequent iterations.
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3.1.2 Test 2

The second test aimed to provide the algorithm with a non-random seeding approach,
which involved selecting only sequences from variants that exhibited resistance
to the speciĄc antibiotic of interest. By utilizing this targeted seeding strategy,
the expectation was to increase the likelihood of discovering meaningful genetic
sequences associated with resistance. One of the anticipated outcomes of this test
was to establish a starting population with a higher average Ątness score compared
to the random seeding test (Test 1). By deliberately choosing variants that displayed
resistance to the antibiotic, the initial population would inherently possess a greater
potential for containing relevant genetic markers linked to resistance. This targeted
approach sought to expedite the algorithmŠs convergence towards more favorable
solutions from the outset. Additionally, the second test was expected to yield
greater variance in the Ąnal results compared to Test 1. By focusing the seeding
on resistant variants, the algorithm had the opportunity to explore a wider range
of genetic sequences that might be associated with resistance. This increased
variation in the Ąnal results would provide valuable insights into the diversity and
complexity of the problem domain, offering a broader perspective on potential
solutions. Although there still remained the possibility of the algorithm overĄtting
to speciĄc patterns within the data, this concern was expected to be less problematic
compared to Test 1.

3.1.3 Test 3

The Ąnal test was speciĄcally devised to compel the algorithm to minimize the
occurrence of repeating sequences within the Ąnal generation. Given that this
study primarily entailed a classiĄcation problem rather than pure optimization,
having a greater number of sequences with high Ątness was deemed more desirable
and meaningful compared to a single highly Ąt sequence. The rationale behind this
test stemmed from the insights gained from the results of the second test, which
will be further discussed in paragraph 3.2.3. The motivation behind this test was
to strike a balance between Ątness and diversity, acknowledging the importance
of both factors in achieving a more comprehensive classiĄcation outcome. While
the algorithmŠs ability to identify highly Ąt sequences was crucial, it was equally
important to ensure a rich and varied set of sequences that encompassed the breadth
of resistance proĄles.

3.2 Implementation

The effective implementation of the algorithm was developed in Python using the
inspyred framework, an open-source framework for creating biologically-inspired
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computational intelligence algorithms such as evolutionary computation, swarm
intelligence, and immunocomputing. The inspyred library played a crucial role in
automating the overall structure of the algorithm and implementing key components
like tournament selection and the plus replacement strategy. However, certain
components required customization due to their speciĄc nature:

• The seeder, where the population is initially formed

• The mutator, to introduce random changes and variability to the population

• The evaluator, the component used to calculate the Ątness

To seed a population of N individuals (for the experiments in paragraph 3.1
N = 100) a set of random sequences (which were only from resistant variants
in experiments 2 and 3) are selected from the CONTIGS Ąles, a subsequence is
selected with random starting and ending points and then an individual is encoded.
The individual is composed of:

• The DNA sequence

• Starting and ending points

• A reference to the original CONTIG Ąle, used by the mutators

• An identiĄer for the original sequence

Only the DNA sequence is necessary for the theoretic algorithm to work, but the
other elements are necessary implementation-wise.
The length mutator changes only the starting and ending points and update the
subsequence, by a random number between 1 and 20. Checks are in place to
avoid to cross the limits of the original sequence. The sequence mutator on the
other hand, takes the CONTIG Ąle of the original sequence and select randomly a
different one, obviously with different starting and ending points, too.
The evaluation process is strictly dependant on Mykrobe for this implementation.
Mykrobe [9] is an open-source tool that analyses the whole genome of a bacterial
sample and predicts which drugs the infection is resistant to. It supports Illumina
sequences and, at the moment, supports Mycobacterium Tuberculosis, Staphylococcus

Aureus, Shigella Sonnei and Salmonella Typhi sequences. It does so by confronting
the bacterial genome with his panels, which are the program correspondent of
the AST Ąles we discussed previously. An additional highly valuable feature of
Mykrobe is the ability to incorporate custom panels, which allows the inclusion
of information about samples that may not be available in the standard Mykrobe
dataset or to focus solely on speciĄc samples of interest. In the context of the
implementation process, this particular feature of Mykrobe acquires fundamental
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importance. The RAWS Ąles, which corresponds to the utilized CONTIGS, serve
as the basis for creating the custom panel. This custom panel is then utilized
to determine the correspondences between the analyzed individuals and resistant
or susceptible variants. By comparing the individualŠs genomic data with the
custom panel, Mykrobe identiĄes the number of correspondences to resistant and
susceptible variants. This count of correspondences is subsequently utilized to
calculate the Ątness of each individual in the algorithm. The data and statistics of
the current population, including average, median, maximum, and minimum values,
are saved to monitor and assess the algorithmŠs performance. This information will
be used to generate graphs in paragraph 3.2.
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Algorithm 2 Algorithm implementation

for N = 0, N <= 100, N = N + 1 do

A random sequence is selected from the CONTIGS Ąles
A subsequence is obtained by randomizing starting and ending points
An individual is encoded using that subsequence
If the individual is unique, is added to the population

end for

while max (fitnessn) − avg(fitnessn) < p do

inspyred.ec.selectors.tournament_selection
inspyred.ec.replacers.plus_replacement
for Each individual do

if random number between 0 and 1 <= mutation_rate then

if random number between 0 and 1 <= 0.5 then

Select the current sequence from the CONTIGS
Variate the starting and ending points
Save that as the new sequence

else

Select the current variant
Select a new sequence from the same variant
Save that as the new sequence

end if

end if

Save the new population
end for

for Each individual do

Put the sequence in Mykrobe
Mykrobe confronts the sequence with all variants to Ąnd matches
Mykrobe returns R and S

Calculate fitness = R − S

end for

Save population results to a Ąle
end while

Show best result
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3.3 Data and Formats

The basic data needed to train the algorithm are:

• RAWS: the preprocessed clean reads, obtained from the INSDC Sequence
Read Archive, and initially sequenced by an Illumina sequencer

• CONTIGS: sequencing reads reassembled into continuous fragments obtained
by an Assembly-based sequencing method. These are divided in Mapped
and Unmapped, depending on the found correspondence compared to that
bacteriumŠs reference genome.

• AST: the list of known susceptibilities/resistances, the results of the down-
stream analysis following the traditional resistance proĄling techniques.

The fastq format is a text-based format for storing both a biological sequence and
its corresponding quality scores. ItŠs formed of 4 line-separated Ąelds:

• Field 1 begins with a Š@Š character and is followed by a sequence identiĄer
and an optional description

• Field 2 is the raw sequence letters

• Field 3 begins with a Š+Š character and is optionally followed by the same
sequence identiĄer

• Field 4 encodes the quality values for the sequence in Field 2, and must contain
the same number of symbols as letters in the sequence.

In our speciĄc case Field 1 contains an NCBI-assigned identiĄer and an additional
description, holding the original identiĄer from Illumina plus the read length.
In Field 4 the byte representing quality runs from 0x21 (lowest quality; Š!Š in
ASCII) to 0x7E (highest quality; Š~Š in ASCII).

3.4 Experiments

In the conducted experiments, Staphylococcus Aureus was chosen as the bacteria
of interest, and Gentamicin was the primary antibiotic under investigation. The
dataset consisted of 470 variants and was consistent across all attempts: itŠs
expected that the accuracy of the results would improve with the inclusion of more
variants. The population size was set to 100 individuals, as a smaller population
converged too quickly, while a larger one yielded better results at the expense of
performance. The iteration limit was deĄned as 1000 iterations, although this limit
was not reached in any of the experiments.
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The mutation rate was set to 33%, so around 1

3
of the element of each population

should receive a length or sequence mutation.
It is worth noting that in all experiments, the maximum Ątness achieved was
relatively low, typically ranging between 15 and 26. This outcome was not attributed
to project failure or implementation errors, but rather to the dataset composition,
which contained a higher number of susceptible variants compared to resistant ones.
To address this issue, a larger and more diverse dataset would be beneĄcial. However,
due to limitations in computational power, the presented results represented the
best compromise between the amount of data and computational time achievable.
In regard to the data obtained, we will discuss the Ątness results, the amount of
generation needed to reach stability and the variance of the solutions found.

3.4.1 Random Seeding

The Ąrst experiment, corresponding to Test 1, obtained the results very much
compatible with what expected prior.

Generation 0 1 2 3 4 5 6 7 8

Average Fitness -201.46 -60.18 -3.08 4.64 11.11 16.07 18.74 21.11 25.0

Maximum Fitness 26.0 16.0 18.0 18.0 22.0 24.0 25.0 25.0 25.0

Minimum Fitness -412.0 -120.0 -11.0 -2.0 5.0 13.0 16.0 18.0 25.0

Number of different individuals 100 39 15 8 7 8 11 9 2

According to the experimental Ąndings, the average Ątness of the population
demonstrates a consistent increase with each successive generation, peaking at
generation 8. While this may initially appear as an optimal outcome, closer exami-
nation of the data reveals that the Ąnal population consists of only two distinct
sequences. Notably, one of these sequences is a mutation of the other, with only a
few bases differing between them. This behavior can likely be attributed to the
vast search space involved in the study. As anticipated prior to the experiment,
the presence of susceptible individuals within the research space adds complexity
to the identiĄcation of randomly occurring sequences associated with antimicrobial
resistance. Furthermore, the selection and replacement process implemented during
the evolutionary algorithm progressively reduces the variance in the subsequent
population, favoring the emergence of the "optimal" solution in terms of Ątness.
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Figure 3.1: Plot of the results of Test 1 for each generation

3.4.2 Selected Seeding

The introduction of the selection of resistant variants in the seeding process showed
some improvements compared to the random seeding experiment.

Generation 0 1 2 3 4

Average Fitness -157.94 15.01 23.53 25.46 25.74

Maximum Fitness 26.0 26.0 26.0 26.0 26.0

Minimum Fitness -412.0 -11.0 20.0 25.0 25.0

Number of different individuals 100 42 30 26 17
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Figure 3.2: Plot of the results of Test 2 for each generation

Through the utilization of selective seeding, notable improvements have been
observed in the evolutionary algorithm. In this case, stability is achieved after
a reduced number of four generations, and both the maximum Ątness and vari-
ability have increased compared to previous experiments. The maximum Ątness
now reaches the highest possible value allowed by the data, indicating a signif-
icant advancement from the earlier experiment where this maximum value was
not attained, likely due to the inherent randomness in certain algorithmic phases.
Furthermore, in the Ąnal generation, an impressive proportion of 12 out of 17
distinct sequences obtained the maximum Ątness, accounting for approximately
70%. These encouraging results were consistently replicated across tests involving
different antimicrobials, suggesting that the algorithm has become notably more
efficient with the incorporation of selective seeding. However, it is important to
note that despite these advancements, the number of unique individuals still only
represents a mere 17% of the entire population. While this is an improvement
compared to the previous experiment, it still indicates a limited degree of variability,
which can be considered suboptimal.
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In order to address the issue of limited variability in the population, Test 3 incor-
porates a "re-seeding" process. This additional step occurs before the evaluation
phase, where the algorithm veriĄes the uniqueness of individuals and replaces any
repeated sequences. The new sequences are selected using a similar approach as
the initial seeding phase, effectively artiĄcially setting the variability to 100% of
the population. The results of the Ąrst 10 generation of this modiĄed algorithm
are the following:

Generation 0 1 2 3 4 5 6 7 8 9 10

Average Fitness -139.70 -71.49 -66.87 -39.8 -24.21 -16.33 -25.76 -12.61 1.26 3.69 -4.3

Maximum Fitness 25.0 25.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0

Minimum Fitness -412.0 -143.0 -293.0 -211.0 -195.0 -301.0 -128.0 -395.0 -114.0 -113.0 -411.0

The experimental data demonstrates that this re-seeding process introduces greater
unpredictability to the algorithmŠs behavior, resulting in a signiĄcant decrease
in performance and average Ątness. However, this outcome was expected since
the most successful sequences are less likely to be duplicated unless they undergo
mutation. Although the average Ątness in Test 3 is lower compared to previous
experiments, it exhibits a gradual increase over time. The growth rate, however,
is less consistent due to the randomness introduced by the reseeded individuals.
Despite this, the most intriguing aspect of the Ąnal result is the notable increase
in sequences with high Ątness. In the 10th generation, approximately 37% of
the individuals possessed a Ątness level exceeding 20, which is nearly double the
outcome of experiment 2.
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Figure 3.3: Plot of the results of Test 3 in the Ąrst 10 generations
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Chapter 4

Conclusions

Evolutionary computation has proven to be a valuable tool for addressing the
antimicrobial resistance problem by identifying sequences correlated to bacterial
susceptibility. However, there are several caveats and issues that need to be
addressed through further research and development.

The Ąrst issue encountered is the speed of the algorithm. While evolutionary
algorithms have the ability to continue and mutate the results to Ąnd optimal
solutions, the time required to complete a single generation can be a limitation in
applications that require quick solutions. The performance of tools like Mykrobe,
although essential and currently irreplaceable, contributes to this issue.

The second issue is related to the Ątness and variability of the results. The
algorithm tends to prioritize either Ątness (as seen in experiments 1 and 2) or
variance (as observed in experiment 3). However, a balance between these two
aspects is crucial, as their impact on both the results and performance of the
algorithm is signiĄcant.

Another noteworthy issue is that while the algorithm is efficient in Ąnding
sequences related to antimicrobial resistance, it struggles to identify those that are
not prevalent in the dataset. Without parameter optimization and the development
of new tools, addressing these aspects appears to be challenging.

Lastly, there is a need for a substantial amount of data. With a larger dataset,
the number of sequences grows signiĄcantly, and their connection to the resistance
of speciĄc variants becomes more evident. Therefore, acquiring and utilizing a larger
and more diverse dataset is crucial for improving the algorithmŠs effectiveness.

The results of the experiments and data analysis have provided valuable insights
and have sparked ideas for further research and development of the algorithm.

One key idea is to integrate a learning component with the existing algorithms,
forming a Learning ClassiĄer System. In this approach, the evolutionary algorithm
would serve as the discovery component, while the learning component would
handle the classiĄcation task more effectively. This combination would leverage the
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strengths of both approaches and potentially enhance the algorithmŠs performance.
Building upon this idea, another possibility is to incorporate two distinct datasets

into the algorithm: one dedicated solely to seeding and another exclusively for
evaluation. This approach aligns with the common trend in classiĄcation algorithms
and can help prevent overĄtting while generating more meaningful results.

Parallelization is another important aspect that can be explored. By optimizing
the code and improving the management of the Mykrobe tool, the algorithm could
process multiple instances simultaneously, signiĄcantly speeding up the workĆow.

Overall, this research serves as a demonstration of the beneĄts that evolutionary
computation techniques can offer in medical and biological research. However,
it also highlights the current limitations and complexity of the original problem,
prompting further exploration and reĄnement of the algorithm.
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