

POLITECNICO DI TORINO
DIGEP – DEPARTMENT OF ENGINEERING MANAGEMENT AND PRODUCTION

Master of Science Degree in Management and Engineering

Application of Machine Learning techniques in
manufacturing

Supervisor: Candidate:
Prof. Giulia Bruno Riccardo Furno

Academic Year 2022-2023

i

Abstract

Industry 4.0 is the last phenomenon that has brought the industry to a new level of process

optimisation, and one of its key elements is the Machine Learning.

This thesis aims to depict the current Machine Learning methodologies and techniques present

in the current industrial system, highlighting challenges and future opportunities. The study is

going also to dig and further analyse the fields in which these algorithms are used the most,

like the Digital Twin, a new technology that is becoming a standard in the industrial

technologies.

ii

Acknowledgements

Words cannot express my gratitude to my professor and chair of my committee for her

invaluable patience and feedback. I also could not have undertaken this journey without my

Defence Committee, who generously provided knowledge and expertise.

I am also grateful to all colleagues and mates of mine, for the countless hours spent together

working and studying.

Lastly, I would be remiss in not mentioning my family, especially my parents. Their belief and

sustain in me have been fundamental to reach the end of this journey at the Polytechnic of

Turin.

iii

Table of Contents
ABSTRACT .. I

ACKNOWLEDGEMENTS .. II

LIST OF ABBREVIATIONS ... VI

LIST OF FIGURES .. VIII

LIST OF TABLES ... X

LIST OF EQUATIONS ... XI

LIST OF CODE SNIPPETS .. XII

1. INTRODUCTION ... 1

2. STATE-OF-THE-ART ... 2

2.1. PAPER SELECTION... 2
2.1.1. First query: machine learning for prediction applications ... 2
2.1.2. Second query: machine learning and digital twin .. 6

2.2. MACHINE LEARNING AND INDUSTRIAL APPLICATIONS ... 10
2.2.1. Tool wear prediction ... 10
2.2.2. Quality prediction ... 13
2.2.3. Alternative methods for Machine Learning .. 14
2.2.4. Miscellanea ... 15

2.3. MACHINE LEARNING AND DIGITAL TWIN ... 16
2.3.1. Digital twin definition ... 16
2.3.2. DT and ML for production control and monitoring .. 24
2.3.3. DT and ML for simulation .. 26
2.3.4. DT and ML for predictive maintenance .. 26

3. MACHINE LEARNING ALGORITHMS .. 29

3.1. CLASSIFICATION ML MODELS ... 30
3.1.1. Decision Tree .. 30
3.1.2. Random Forest .. 31
3.1.3. Support Vector Machine ... 32
3.1.4. Naïve Bayes .. 33
3.1.5. K-Nearest Neighbour .. 34
3.1.6. Artificial Neural Network ... 35
3.1.7. Convolutional Neural Network ... 36
3.1.8. Recurrent Neural Network .. 37

3.2. REGRESSION ML MODELS ... 38
3.2.1. Linear Regression ... 38

iv

3.2.2. Logistic Regression ... 39
3.2.3. Random Forest .. 39
3.2.4. Support Vector Machine ... 40

3.3. PYTHON LIBRARIES .. 40
3.3.1. Matplotlib ... 41
3.3.2. Numpy ... 41
3.3.3. Seaborn ... 41
3.3.4. Pandas .. 42
3.3.5. Scikit Learn ... 42

4. STEPS OF MACHINE LEARNING IMPLEMENTATION .. 44

4.1. COLLECTION OF THE DATA ... 44
4.2. DATA NORMALISATION AND CLEANING .. 45
4.3. SELECTION OF THE FEATURES... 46
4.6. SPLIT OF THE DATASET INTO TRAIN AND TEST SETS ... 47
4.4. OPTIMISATION OF THE MODEL .. 48
4.5. EVALUATION OF THE MACHINE LEARNING MODEL .. 48

4.5.1. Regression evaluations ... 49
4.5.2. Classification evaluations ... 51

4.6. CONFRONT OF TWO ML OUTPUTS ... 53
4.6.1. Implementation and evaluation of tool wear algorithm .. 53
4.6.2. Implementation end evaluation of quality control algorithm ... 55

5. EXAMPLE OF A ML IMPLEMENTATION .. 59

5.1. DATASET .. 59
5.1.1. CNC milling machine.. 60
5.1.2. Dataset description ... 60
5.1.3. Implementation on Python .. 62

5.2. DATA NORMALISATION AND CLEANING .. 65
5.3. SELECTION OF THE FEATURES... 67
5.4. CLASSIFICATION MODELS ... 69
5.5. OPTIMISATION OF THE MODELS .. 72
5.6. OUTPUTS AND EVALUATIONS ... 73

5.6.1. Random Forest .. 77
5.6.2. KNN .. 78
5.6.3. Decision Tree .. 78
5.6.4. Logistic Regression ... 79
5.6.5. SVC ... 80
5.6.6. Naïve Bayes .. 81
5.6.7. ANN .. 81
5.6.8. Comment ... 82

v

6. CONCLUSIONS ... 83

6.1. FUTURE WORK .. 83

BIBLIOGRAPHY ... 86

vi

List of Abbreviations

Abbreviation Meaning Page (first)

AI Artificial Intelligence 15

AM Additive Manufacturing 18

ANN Artificial Neural Network 11

BLR Bayesian Linear Regression 53

BRNN Bidirectional Recurrent
Neural Network 12

CAS Context-Aware System 31

CNN Convolutional Neural
Network 11

DJ Decision Jungle 53

DT Digital Twin 9

DeT Decision Tree 13

GP Gaussian Process
Regression 11

IoT Internet of Things 15

KNN K-Nearest Neighbour 13

LoR Logistic Regression 14

LR Linear Regression 10

deLSTM Long Short-Term Memory 12

MAE Mean Absolute Error 43

ML Machine Learning 5

NB Naïve Bayes 12

NN Neural Network 11

PN Petri Nets 18

RF Random Forest 10

RMSE Mean Squared Error 44

vii

RNN Recurrent Neural Network 12

RUL Remaining Useful Life 11

SOM Self-Organising Map 14

SV Support Vector 22

SVM Support Vector Machine 10

SVR Support Vector Regression 9

WAAM Wire Arc Additive
Manufacturing 18

viii

List of Figures
Figure 1: diagrams and charts of the result of the first interaction; .. 6

Figure 2: diagrams and charts of the results of the second iteration; 9

Figure 3: tool wear that can be observed on the device [30]; ... 10

Figure 4: a milling machine operating along a piece [30]; ... 10

Figure 5: conceptual model for tool life prediction from [1];... 11

Figure 6: process scheme of [25]; ... 13

Figure 7: defects detected in the process of [25]; ... 13

Figure 8: a DT system from [112]; ... 17

Figure 9: Digital Model, Shadow and Twin, from [78]; ... 18

Figure 10: data obtained over the stages of the tool cycle from [77]; 19

Figure 11: interaction between extended and basic data, from [77]; 20

Figure 12: relationships between layers during the fusion of all the data [77];...................... 21

Figure 13: A DT for industrial production control [80]; .. 25

Figure 14: pie chart with the models most seen in the sources; ... 29

Figure 15: graphic representation of the DeT of [52]; .. 30

Figure 16: computational flow chart of the RF of [11]; ... 31

Figure 17: a schematic diagram of the RF of [11]; ... 31

Figure 18: graph illustrating the main components of a SVM model from [103]; 32

Figure 19: network structure of the SVM proposed by [5]; ... 33

Figure 20: sequence of the operation carried by the KNN algorithm [106]; 34

Figure 21: graphical representation of the system running in a NN model [107]; 35

Figure 22: ANN inner structure [107]; ... 35

Figure 23: typical structure of a CNN model from [109]; .. 37

Figure 24: experiment station from [24] ... 45

Figure 25: heat matrix between features from [3]; ... 47

Figure 26: two graphs showing different levels of quality; .. 50

Figure 27: confusion matrix for a classification problem; .. 52

Figure 28: milling machine illustration; ... 53

Figure 29: framework proposed by [43]; .. 53

Figure 30: ML model output displayed in a graph from [7]; .. 55

Figure 31: final product and the phase where the ML analysis is performed from [16]; 56

Figure 32: correlation matrix from [16];... 56

file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949255
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949256
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949257
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949258
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949259
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949260
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949262
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949263
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949264
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949265
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949266
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949267
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949268
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949269
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949270
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949271
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949272
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949273
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949274
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949275
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949276
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949279
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949282
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949283
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949284
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949285
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949286

ix

Figure 33: graphical output of the initial result in [16]; ... 57

Figure 34: graphs showing the learning curves of the RF, (a) of concentricity and (b) of

diameter, from [16]; ... 57

Figure 35: graphical output obtained in [16], divided in the 3 batches in which each data has

been collected; ... 58

Figure 36: CNC milling machine from [117]; .. 60

Figure 37: pie-chart of the number of worn and not worn rows in the dataset of [116]; 67

Figure 38: heatmatrix resulting of the dataset; ... 68

Figure 39: bar chart plotting the F1 results of the algorithm for each model; 75

Figure 40: bar chart plotting the F1 results of the algorithm for each model; 75

Figure 41: confusion matrix of the RF in the first iteration; ... 77

Figure 42: confusion matrix of the KNN in the first iteration; ... 78

Figure 43: confusion matrix obtained by the DeT in the first iteration; 78

Figure 44: confusion matrix of the LoR in the first iteration; .. 79

Figure 45: confusion matrix of the SVC obtained in the first iteration; 80

Figure 46: confusion matrix by the NB in the first iteration; ... 81

Figure 47: confusion matrix obtained by the ANN in the first iteration; 81

file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949287
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949288
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949288
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949289
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949289
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949290
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949291
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949293
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949294
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949295
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949296
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949297
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949298
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949299
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949300
file:///C:/Users/richi/OneDrive/Documenti/My%20Documents/Thesis/Thesis%20(Complete)/Thesis_302444_Riccardo%20Furno.docx%23_Toc145949301

x

List of Tables
Table 1: first iteration analysis by article .. 2

Table 2: second iteration analysis by article ... 6

Table 3: threats and countermeasures for DT [59]; .. 22

Table 4: Kernel Functions from [5]; ... 32

Table 5: results obtained for the two regressions in [43]; ... 54

Table 6: results obtained for classification in [43]; ... 54

Table 7: results of [16] displayed in a table; ... 58

Table 8: results of the RF model; .. 77

Table 9: results of the KNN model; .. 78

Table 10: results of the DeT model; .. 79

Table 11: results obtained by the LoR model; .. 79

Table 12: results obtained by the SVC model; ... 80

Table 13: results obtained by the NB; ... 81

Table 14: output report for the ANN; ... 82

xi

List of Equations
Equation 1: Taylor’s formula for tool life; ... 11
Equation 2: output of a SVM classifier; model .. 33
Equation 3: Bayes’ theorem; .. 33
Equation 4: NB, probability of A=k; .. 33
Equation 5: Bayes’ classifier; ... 34

Equation 6: ANN output equation; ... 36
Equation 7: back-propagation algorithm; ... 36
Equation 8: gradient descend algorithm; .. 36
Equation 9: calculation of ht in the RNN; .. 37
Equation 10: computation of the output in the RNN; .. 37

Equation 11: Linear Regression model .. 38
Equation 12: LR computation of β ... 38
Equation 13: Logistic Regression Model ... 39

Equation 14: RF regression equation; .. 39
Equation 15: Vapnik’s SVM regression equation; ... 40
Equation 16: Vapnik’s minimisation problem; .. 40
Equation 17: computation of w in the Vapnik’s equation .. 40

Equation 18: z-score standardisation equation; .. 45
Equation 19: log scaling equation; ... 46

Equation 20: Pearson Correlation Coefficient; .. 47
Equation 21: Mean Absolute Error; ... 49
Equation 22: Root Mean Squared Error; .. 49

Equation 23: R2 equation; ... 50

Equation 24: accuracy in a classification model; ... 51
Equation 25: precision equation; .. 51
Equation 26: recall equation; .. 51

Equation 27: F1 equation; .. 52

xii

List of Code snippets

Code snippet 1: importing line of Matplotlib; .. 41

Code snippet 2: importing line of NumPy; .. 41

Code snippet 3: importing line of Seaborn library; .. 42

Code snippet 4: importing line of Pandas and of an external file; ... 42

Code snippet 5: implementation of Scikit Learn library and importation of necessary

packages; .. 42

Code snippet 6: implementation of the dataset in the algorithm; ... 64

Code snippet 7: data cleaning function and normalisation; ... 66

Code snippet 8: heatmap/correlation matrix deployment; ... 67

Code snippet 9: implementation of a model in the algorithm; ... 71

Code snippet 10: variation of implementation of the model with hyperparameter search; ... 72

Code snippet 11: results of the parameter tuning for each method; 73

Code snippet 12: subdivision of the datasets over the experiments; 73

Code snippet 13: function for plotting the outputs; .. 74

Code snippet 14: function for producing the evaluation of each model; 74

Code snippet 15: implementation of model, evaluation, and confusion matrix in the algorithm;

.. 76

1

1. Introduction

The Machine Learning, or self-teaching-computer, are a type of statistical based approach to

the solution of different types of human problems, or human-related problems, their

applications are countless and may be implemented for medical diagnose or to online

advertising.

In this work, however, the focus will be on the purely industrial applications of the Machine

Learning: a typical example of industrial application, is the tool wear detection: through the

collection of raw data from the machine the algorithm enables a preset of command that are

able to foresee when and whether the device is going to be worn and have to be substituted.

Despite the name, the Machine Learning techniques are purely based on statistics concepts,

however there are a multitude of different models that can be used for different scopes, each

with different commands and parameters, and hence more or less effective depending on the

type of the problem.

This thesis is going to review, using articles retrieved on Scopus, the main principles that define

a Machine Learning model and their applications in the industrial field, and also how they can

relate to other Industry 4.0 technologies like the Digital Twin, The following chapter will

discuss the most common models that are usually implemented in the articles reviewed,

distinguishing between classification and regression models, analysing also how they can often

be implemented in Python. The fourth chapter will discuss and depicts the techniques that are

used for the implementation of the Machine Learning, from the data collection to the evaluation

of the models.

The last chapter will discuss a practical implementation of a Machine Learning algorithm with

a personal elaborated code and a public retrieved dataset, showing and commenting all the

methodologies that have been seen in the other chapters and how they can affect the efficiency

of the model, including the evaluation of the model.

2

2. State-of-the-art

2.1. Paper selection

A systematic and methodological search for articles on Scopus is obviously necessary, to

understand what the most efficient methods are and what are the most feasible solutions. In

this chapter three different queries have been tested and they are going to be analysed,

providing a short description for any result that has been found.

2.1.1. First query: machine learning for prediction applications

For this first section the following query has been computed: TITLE-ABS-

KEY (machine AND learning AND prediction AND

manufacturing) AND (EXCLUDE (SUBJAREA , "medi") OR[…]), the query includes also a

long list of EXCLUDE(SUBJAREA) commands, it has been useful to, indeed, rule out all the

articles that have a topic different from the manufacture, industry or engineering in general,

such as medicine, social study etc. The following tables [Table 1] are divided in 5 columns:

the first for the title of the article (linked to the bibliography), the second reference to the

operating area of the article, the third to the topic the article is dealing with, the fourth is about

the foreseen methods used in the procedure (the methods in bold have been found to be the

most precise solution) and eventually the last column is a brief dataset description, and if the

datasets are public, private or simulated.

Table 1: first iteration analysis by article

Title Area Topic Methods
Used

Datasets
Used

A use case to implement machine
learning for lifetime prediction of

manufacturing tools [1]
Drilling Machines Flank Wear

Prediction
RF, ANN, SVM,

DeT

Several Process
Parameters
(Privates)

Model predictive control in milling
based on support vector machines [2] Milling Machines Quality prediction SVM

Several Process
Parameters
(Privates)

Fatigue-life prediction of additively
manufactured metals by continuous

damage mechanics (CDM)-informed
machine learning with sensitive features

[3]

AlSi10MG Alloy Quality prediction SVM and RF
Several Process

Parameters
(Privates)

Machine learning and deep learning
based predictive quality in

manufacturing: a systematic review [4]
Review Quality prediction None None Used

A dimensionally augmented and
physics-informed machine learning for

High-entropy
Alloy Quality prediction SVM, BNN,

ANN, RF

Several Process
Parameters
(Privates)

3

quality prediction of additively
manufactured high-entropy alloy [5]

Machine Learning-Enabled Prediction
of 3D-Printed Microneedle Features [6] Microneedle Feature Prediction CNN, SVM,

Gaussian

Several Process
Parameters – Both

numerical and
images - (Privates)

A fatigue life prediction approach for
laser-directed energy deposition

titanium alloys by using support vector
regression based on pore-induced

failures [7]

Titanium Alloys

Fatigue-life
prediction through

continuous
damage

SVR, ANN, RF,
GPR

Several Process
Parameters – Both

numerical and
images - (Privates)

Multistage quality control in
manufacturing process using blockchain

with machine learning technique [8]
Review

Increase
productivity with
Quality prediction

ANN, KNN
Several Process

Parameters
(Simulations)

Machine learning-enabled prediction of
density and defects in additively

manufactured Inconel 718 alloy [9]
Inconel 718 Alloy Defect presence

prediction

SVM, CNN, Naïve
Bayes, LR, RF,
KNN, Kernel

SVM, Gradient
Boosting, DeT,

ANN

Several Process
Parameters
(Privates)

Monitoring and predicting the surface
generation and surface roughness in
ultraprecision machining: A critical

review [10]

Ultraprecision
Machining

Fatigue-life
prediction through

continuous
damage

Hybrid and ANN,
RNN, CNN

Several Process
Parameters
(Privates)

Data-driven fatigue life prediction in
additive manufactured titanium alloy: A

damage mechanics-based machine
learning framework [11]

Titanium Alloy

Fatigue-life
prediction through

continuous
damage

RF
Several Process

Parameters
(Simulated)

A machine learning framework with
dataset-knowledgeability pre-

assessment and a local decision-
boundary crispness score: An industry

4.0-based case study on composite
autoclave manufacturing [12]

Polymer
composite

Pipeline, Decision
Making ANN

Several Process
Parameters
(Privates)

A joint classification-regression method
for multi-stage remaining useful life

prediction [13]
Review Lifetime

prediction
KNN and SVR,

LR, LSTM

Several Process
Parameters
(Simulated)

Application of Machine Learning to the
Prediction of Surface Roughness in

Diamond Machining [14]
Diamond

Shape
deformation
prediction

ANN, RF
Several Process

Parameters
(Privates)

Prediction of Mechanical Properties of
Wrought Aluminium Alloys Using

Feature Engineering Assisted Machine
Learning Approach [15]

Aluminium
Alloys Quality prediction

SVR-
RBF(Hybrid),

SVM, RF

Several Process
Parameters
(Privates)

Quality Prediction of Drilled and
Reamed Bores Based on Torque
Measurements and the Machine

Learning Method of Random Forest
[16]

Drilling Machine Quality prediction RF, ANN, CNN,
SVR

Several Process
Parameters
(Privates)

Log-based predictive maintenance in
discrete parts manufacturing [17]

Discrete parts
Manufacturing

Maintenance
prediction RF

Different datasets
are used, none of

the publisher
(Privates)

A Comparative Study on Machine
Learning Algorithms for Smart

Manufacturing: Tool Wear Prediction
Using Random Forests [18]

Milling Machines Flank Wear
Prediction RF, ANN, SVR

Several Process
Parameters
(Privates)

Online Remaining Useful Life
Prediction of Milling Cutters Based on
Multisource Data and Feature Learning

[19]

Milling Machines Flank Wear
Prediction MSFLRUL

Several Process
Parameters
(Privates)

Tool remaining useful life prediction
using bidirectional recurrent neural

networks (BRNN) [20]
Cutting Tools Lifetime

prediction BRNN
Several Process

Parameters
(Privates)

Machine learning for monitoring and
predictive

maintenance of cutting tool wear for
clean-cut

Clamping
Machines

Cutter Wear
Prediction

SVM, ANOVA,
RNN

Several Process
Parameters
(Privates)

4

machining machines [21]

Machine learning based fatigue life
prediction with effects of additive

manufacturing process parameters for
printed SS 316L [22]

Stainless Steel
316L

Fatigue-life
prediction through

continuous
damage

RF, ANN, SVM
Several Process

Parameters
(Privates)

Prediction of geometry deviations in
additive manufactured parts:

comparison of linear regression with
machine learning algorithms [23]

Injection
moulding Quality prediction SVR, DeT, LR

Several Process
Parameters
(Privates)

A tool condition monitoring method
based on two-layer angle kernel extreme
learning machine and binary differential

evolution for milling [24]

Milling machine Monitoring
Method TAKELM

Several Process
Parameters
(Privates)

Prediction of microstructural defects in
additive manufacturing from powder

bed quality using digital image
correlation [25]

Metal
Components

Shape
deformation
prediction

Naïve Bayes
Several Process

Parameters
(Privates)

Automated Geometric Shape Deviation
Modelling for Additive Manufacturing
Systems via Bayesian Neural Networks

[26]

Review
Shape

deformation
prediction

Bayesian NN

Several Process
Parameters – Both

numerical and
images - (Privates)

Prediction of selective laser melting part
quality using hybrid Bayesian network

[27]
Melting Machine Prediction of

melting part

Bayesian NN,
Gaussian

Regression

Several Process
Parameters
(Privates)

Prediction for Manufacturing Factors in
a Steel

Plate Rolling Smart Factory Using Data
Clustering-Based Machine Learning

[28]

Review Lifetime
prediction

Gaussian
Regression, RF,

GB
None used

A defect-based physics-informed
machine learning framework for

fatigue finite life prediction in additive
manufacturing [29]

AlSi10Mg Fatigue-life
prediction PINN

Several Process
Parameters
(Publics)

 Machine Learning in CNC Machining:

Best Practices [30]

Milling Machine Flank wear
prediction RF

Several Process
Parameters
(Privates)

Deep multi-task network based on
sparse feature learning for tool wear

prediction [31]
Milling Machine

Lifetime
prediction through

tool wear
DMTL

Process
Parameters

collected with
experiments
(Privates)

Meta domain generalization for smart
manufacturing: Tool wear prediction

with small data [32]
Review Tool wear

prediction MDG

Several Process
Parameters

(Publics-provided
by NASA)

Tool Wear Monitoring Using Machine
Learning [33] Review Tool wear

prediction SVM, NN

Several Process
Parameters – both

acoustic and
numeric -
(Privates)

Automated Domain Adaptation in Tool
Condition

Monitoring using Generative
Adversarial Networks [34]

Review Tool condition
monitoring GAN

Several Process
Parameters
(Privates)

Tool Life Stage Prediction in Micro-
milling from Force Signal Analysis

Using Machine Learning Methods [35]
Milling Machine Tool wear

prediction RF

Several Process
Parameters – both

imaging and
numeric -
(Publics)

Correlating tool wear and surface
integrity of a CNC turning process using

Naïve based classifiers [36]
Turning Machine Tool wear

prediction Naïve Based
Several Process

Parameters
(Privates)

Tool Remaining Useful Life Prediction
Method Based on Time-frequency

Features Fusion and Long Short-term
Memory Network [37]

CNC Machine Tool wear
prediction LR, Bayes, SVR,

Several Process
Parameters
(Privates)

5

Machine learning based approach for
process supervision to predict tool wear

during machining [38]
AlSi10Mg Tool wear

prediction RF, SVM
Several Process

Parameters
(Publics)

An intelligent prediction model of the
tool wear based on machine learning in

turning high strength steel [39]
Steel Turning

Tool wear
prediction and
quality of the

product

SVR, ANN
Several Process

Parameters
(Privates)

Logistic classification for tool life
modelling in machining [40] Milling Machine Tool wear

prediction LoR
Several Process

Parameters
(Privates)

Tool Condition Monitoring for High-
Performance Machining Systems—A

Review [41]
Review Tool wear

prediction None None used

Implementation of Machine Learning
techniques for prognostic of railway

wheel flange wear [42]
Railway Wheel Flange Wear

prediction LoR, ANN
Several Process

Parameters
(Privates)

Machine Learning Framework for
Predictive Maintenance in Milling [43] Milling Machine Predictive

Maintenance

LR, DF, BLR,
BDT, NN, LoR,

DJ, BDT

Several Process
Parameters
(Privates)

In-process Tool Wear Prediction System
Based on Machine Learning

Techniques and Force Analysis [44]
Machining Flank Wear

Prediction CNN
Several Process

Parameters
(Privates)

Tool Wear and Tool Life Estimation
Based on Linear Regression Learning

[45]
Cutting Tool Tool wear

prediction LR
Several Process

Parameters
(Privates)

Most of the analysed articles have used Python as implementation tool, few others Matlab.

However, in several documents, there is no reference to the software used. Almost all the

articles have used only numerical parameters (in the column the typology is specified only

where there were more than one). Unfortunately, almost all the articles have private data or at

least the publisher did not provide information about the availability.

Eventually, some graphs from the SCOPUS Analysis have been collected and shown

underneath [Figure 1] this section to furnish some additional particulars regarding the articles

presented formerly. One of the most important interesting facts is, indeed, the increasing

number of articles on this topic, especially in the last 8 years.

6

2.1.2. Second query: machine learning and digital twin

For the second iteration, a slightly different query has been chosen: TITLE-ABS-KEY (machine

AND learning AND manufacturing AND digital AND twin) and, like the first iteration, the off-

topic subjects have been excluded. The table [Table 2] presented beneath, differently from the

previous one [Table 1] differentiates the Machine Learning (ML) topics with the ones of Digital

Twins, since the two arguments are related but they are complementary and almost never they

have the same purpose.

Table 2: second iteration analysis by article

Title Area ML Topic DT Topic Methods
Used

Datasets
Used

Hybrid learning-based digital twin for
manufacturing process: Modelling

framework and implementation [46]

Metal Cutting
Machines Quality prediction

Increasing the
knowledge of the

features
ANN

Several Process
Parameters
(Privates)

Toward a smart wire arc additive
manufacturing system: A review on

current developments and a framework of
digital twin [47]

Wire-Arc-
Additive-

Manufacturing
(WAAM)

Quality prediction Real Time
Monitoring ANN, RNN

Several Process
Parameters
(Privates)

Figure 1: diagrams and charts of the result of the first interaction;

7

A bio-inspired LIDA cognitive-based
Digital Twin architecture for

unmanned maintenance of machine tools
[48]

Drilling machine Tool wear
prediction

Maintenance Self-
Evaluation RF, SVM, CNN

Several Process
Parameters
(Privates)

An AR-assisted Deep Reinforcement
Learning-based approach towards

mutual-cognitive safe human-robot
interaction [49]

Safety Measures Safety Protocols
Prediction

Real Time
Monitoring PPO None used

A multi-access edge computing enabled
framework for the construction of a

knowledge-sharing intelligent machine
tool swarm in Industry 4.0 [50]

Swarm Tool Quality prediction Real Time
Monitoring Not Specified

Several Process
Parameters
(Privates)

Petri Nets-Based Modeling Solution for
Cyber–Physical Product Control

Considering Scheduling, Deployment,
and Data-Driven Monitoring [51]

CLIA Not mentioned Real Time
Monitoring None

Several Process
Parameters
(Privates)

Metaverse and AI Digital Twinning of
42SiCr Steel Alloys [52] Steel Alloys Digitalisation Real Time

Monitoring

RF, DeT, LR,
Gradient Bosting

Regression

Several Process
Parameters
(Privates)

Digital twin assisted: Fault diagnosis
using deep transfer learning for
machining tool condition [53]

Milling and
Drilling Machines

Quality
prediction/Tool
wear prediction

Real Time
Monitoring SVM

Several Process
Parameters
(Privates)

Dynamic Scheduling Optimization of
Production Workshops Based on Digital

Twin [54]
AGV Implant

Production
Simulation
Analysis

Scheduling,
Control and
Monitoring

Not Specified
Several Process

Parameters
(Privates)

A digital twin implementation
architecture for wire + arc additive

manufacturing based on ISO 23247 [55]
WAAM Quality prediction Real Time

Monitoring CNN
Several Process

Parameters
(Privates)

Machine Learning for Design
Optimization of Electromagnetic

Devices: Recent Developments and
Future Directions [56]

EM Devices Quality prediction Possible Future
implementation

ANN, RF, SVM,
DNN, CNN

Several Process
Parameters
(Privates)

Mechanistic models for additive
manufacturing of metallic

components [57]

Additive
Manufacturing

(Review)

Quality
prediction/Tool
wear prediction

Increasing the
knowledge of the

features
ANN, SVM, RF

Several Process
Parameters
(Privates)

Simulation-Optimization of Digital Twin
[58]

Beverage
Manufacturing

Plant

Quality prediction
(Not Mentioned)

Increasing the
knowledge of the

features
None

Several Process
Parameters

(Simulation)
Digital Twin Security Threats and

Countermeasures: An Introduction [59] Review Not Mentioned Threats and
Countermeasures None None used

Knowledge Project – Concept,
Methodology and

Innovations for Artificial Intelligence in
Industry 4.0 [60]

Review Not Mentioned
Presentation of the

Project and
Methodology

None None used

A Framework of Dynamic Data Driven
Digital Twin for Complex Engineering

Products: The Example of Aircraft
Engine Health Management [61]

Aircraft Engine Tool wear
prediction

Predictive
Maintenance RF, RNN, LSTM

Several Process
Parameters

(Publics-provided
by NASA)

Synthetic datasets for Deep Learning in
computer-vision assisted tasks in

manufacturing [62]
Robotic Arm Classification of

the images
Real Time
Monitoring CNN

Several Process
Parameters
(Privates)

Reinforcement Learning Based
Production Control of Semi-automated

Manufacturing Systems [63]

Car Engine
Components

Distribution of the
tasks

Increasing the
knowledge of the

features
ANN

Several Process
Parameters
(Privates)

Incorporating process physics
phenomena in formation of digital twins:

laser welding case [64]
Laser Welding Not Mentioned Real Time

Monitoring None
Several Process

Parameters
(Privates)

Foresighted digital twin for situational
agent selection in production control [65]

Manufacturing
Implant

(Not Specified)
Not Mentioned Real Time

Monitoring None
Several Process

Parameters
(Privates)

Digital twin improved via visual question
answering for vision-language interactive
mode in human–machine collaboration

[66]

VQA
Recognition of

Words, Images and
Sounds

Real Time
Monitoring CNN

Several Process
Parameters – both

acoustic and
numeric -
(Privates)

Digital-twin-driven geometric
optimization of centrifugal impeller with

Centrifugal
Impeller (Milling

Machine)

Tool wear
prediction

Increasing the
knowledge of the

features
Not Specified

Several Process
Parameters
(Privates)

8

free-form blades for five-axis flank
milling [67]

Smart Manufacturing Control
with Cloud-embedded Digital Twins [68]

Manufacture
Controller

Quality
prediction/Tool
wear prediction

Real Time
Monitoring SVM

Several Process
Parameters
(Privates)

Combining Simulation and Machine
Learning as

Digital Twin for the Manufacturing of
Overmolded

Thermoplastic Composites [69]

Thermoplastic
Composites Quality prediction Real Time

Monitoring RF, DeT
Several Process

Parameters
(Privates)

Towards Real-time Process Monitoring
and Machine Learning for Manufacturing

Composite Structures [70]
CFRP Tool wear

prediction
Predictive

Maintenance Not Specified
Several Process

Parameters
(Simulated)

Physics-based modeling and information-
theoretic sensor and settings selection for

tool wear detection in precision
machining [71]

Milling Machine Tool wear
prediction

Increasing the
knowledge of the

features
KNN

Several Process
Parameters –

Images, Sonorous
and Numerical-

(Privates)
Digital twin-driven supervised machine
learning for the development of artificial

intelligence applications in
manufacturing [72]

Multiple
Machinery

Quality
prediction/Tool
wear prediction

Increasing the
knowledge of the

features
ANN, CNN

Several Process
Parameters – both
image and numeric

-
(Simulated)

An effective architecture of digital twin
system to support human decision

making and AI-driven autonomy [73]

Manufacturing
Implant

(Not Specified)
Creating the DT Predictive

Maintenance Not Specified
Several Process

Parameters
(Privates)

Understanding of the Modeling Method
in Additive

Manufacturing [74]
Review Not Mentioned

Challenges,
Descriptions and

Applications
None None used

The prediction method of tool life on
small lot turning process – Development

of Digital Twin for production [75]
Turning Machine Tool wear

prediction

Increasing the
knowledge of the

features
CNN, BP, SVM

Several Process
Parameters – both
image and numeric

-
(Private)

Context Aware Control Systems: An
Engineering

Applications Perspective [76]
Review General

Description

Challenges,
Descriptions and

Applications

KNN, CNN,
Bayesian

Regression
None used

Digital twin for cutting tool: Modeling,
application, and service strategy [77] Cutting Tool Tool wear

prediction
Real Time
Monitoring

ANN and CNN,
SVM

Several Process
Parameters
(Privates)

Digital Twin: Enabling Technologies,
Challenges and Open Research [78] Review Not Mentioned

Challenges,
Descriptions and

Applications
None None used

An Implementation Approach for an
Academic Learning Factory for

the Metal Forming Industry with Special
Focus on Digital Twins

and Finite Element Analysis [79]

Metal Forming Not Mentioned Real Time
Monitoring None

Several Process
Parameters
(Privates)

Machine Learning based Digital Twin
Framework for Production

Optimization in Petrochemical Industry
[80]

Petrochemical Training the DT Real Time
Monitoring RF

Several Process
Parameters – both
image and numeric

-
(Simulated)

A supervised machine learning approach
to data-driven simulation of

resilient supplier selection in digital
manufacturing [81]

Supplier Selection Performance
prediction

Increasing the
knowledge of the

features

SVM, ANN,
Bayesian Network,
Naive Bayes, DeT,

KNN, LR

Several Process
Parameters
(Privates)

Machine Learning based Continuous
Knowledge Engineering for Additive

Manufacturing [82]

Additive
Manufacturing Quality prediction Real Time

Monitoring
KNN, SVM, NN,

DeT

Several Process
Parameters
(Privates)

Enhancing Digital Twins through
Reinforcement Learning [83]

Metal
Manufacturing Quality Prediction Safety Policy

Controller
Bayesian Neural

Network

Several Process
Parameters
(Privates)

Electric Motor Production 4.0 –
Application Potentials of Industry 4.0

Technologies
in the Manufacturing of Electric Motors

[84]

Electric Motors
(Review)

Challenges,
Descriptions and

Applications

Challenges,
Descriptions and

Applications
None None used

9

A Survey on Digital Twin: Definitions,
Characteristics, Applications,
and Design Implications [85]

Review Not Mentioned
Challenges,

Descriptions and
Applications

None None used

Digital Twin for Machining Tool
Condition Prediction [86] Milling Machine Not Mentioned

Integration of
digital and physical

knowledge
None

Several Process
Parameters
(Privates)

Lead time prediction in a flow-shop
environment with analytical and machine

learning approaches [87]
Lead Time Lead time

prediction
Lead time
prediction LR, RF, SVR

Several Process
Parameters
(Privates)

Data Construction Method for the
Applications of Workshop Digital Twin

System [88]
Data Construction Verification of the

Hypothesis
Tool wear
prediction Naïve Bayes, RF

Several Process
Parameters

(Public)
Digital Twin-enabled Collaborative Data

Management for Metal Additive
Manufacturing Systems [89]

Additive
Manufacturing

Decision-Making
Support (Quality

prediction)

Increasing the
knowledge of the

features
CNN

Several Process
Parameters
(Privates)

Intelligent welding system technologies:
State-of-the-art review and

perspectives [90]

Welding Machine
(Review)

General
Description

Real Time
Monitoring

DeT, SVM, ANN,
CNN, RNN None used

As in the first interaction, here some graphs extrapolated from SCOPUS are shown [Figure 2],

to provide a better understanding of where and when this research is pursued the most. It’s

interesting noticing how ten years ago the number of research documents about was nought

and has raised just in the last two years.

Figure 2: diagrams and charts of the results of the second iteration;

10

2.2. Machine Learning and Industrial applications

This section is going to analyse, the industrial applications for ML algorithms that have been

highlighted by the sources of [Table 1]. The main industrial applications are essentially: tool

wear (25) and quality prediction (12), several others may have been applied for specific works.

The tools on which the ML models have been applied are also object of discussion since there

are mainly three different devices the sources are focus on: milling machines (10), drillers (4)

and alloy (10). Eventually, a subsection is going to briefly describe the not common ML

method that have been applied for specific purposes.

2.2.1. Tool wear prediction

One of the main fields of intervention that ML faces, at least in industrial applications, is the

wear prediction of the machinery. Drillers, Millers and in general attrition-based tools,

equipment that has a flank face operating directly on a workpiece surface causing frictions that

lead toward the wear of the machine are all potential subject of application for the tool wear

prediction task for a ML algorithm. Typically, the tool wear of an industrial machine is

measured mainly on the flank wear (measured as

VB) [Figure 3]: the attrition that is generated on

the flank face of the tool leads to a consistent loss

of the latter, compromising therefore the

functionality of the machine [Figure 4] [30]. In

this context, the ML has indeed proven to be

efficent and brought a high degree of innovation

and performance in the industry. In particular, the

ML objective is to detect patterns, according to

the features provided and predict a likely value

(in this case, tool wear), using statistical and

probability models [33]. The tool life, therefore,

can be computeted using the Taylor’s Formula

[Equation 1]:

Figure 3: tool wear that can be observed on
the device [30];

Figure 4: a milling machine operating
along a piece [30];

11

Equation 1: Taylor’s formula for tool life;

𝑉𝐶𝑇𝑛 = 𝐶 (1)

Where, VC is the cutting speed of the tool, Tn the tool life expected before the flank wear will

be too extended and C a constant that has to be computed experimentally. The other values

depend on the metal and on the machine that are used. The ML is hence used (at least in this

task) to foresee the value of Tn, using the other parameters as regressors. However, the ML

may be also applied to classify the tool if worn or still usable according to the value of the

regressors. These two “types” of ML might seem similar, but the models used for the

implementation are very different, since the former pursue a prediction on continuous values

and the latter aim to predict a categorical output, anyway these models and their implications

are going to be seen in the details in the following chapter.

An example of implementation of ML is provided by R.Oberlé et al. [1] precisely explain the

argument of this subsection: the authors, at first, prepared the framework, that is showed aside

[Figure 5] . They have

implemented a Random Forest

(RF) method to predict the tool

wear in cutting machines, it has to

find a relationship between the

input (i.e., torque, temperature,

speed, etc.) and the output data

(i.e., the tool wear) during the so

called “training phase”, verified

during the “testing phase” and

eventually applied on new input data computing, hence, the prediction. As described by the

work of D.Wang et al.[32], the collection and the management of these data may be

problematic, since their amount in order to be statistically significant has to be enormous, hence

the authors proposed to implement a meta domain generalisation: the algorithm aims to

generalise an ML model in a source domain into a target domain, where there are few or no

data, training and testing these datasets.

The decision of the best model to be applied is, obviously, determined by the number of error

that it is expected to do, according to different methods that are going to be discussed in the

third chapter, like R2 or the Mean Average Error. Speaking of which, the RF is one of the most

used and efficient (statistical speaking) ML models in both regression and classification

Figure 5: conceptual model for tool life prediction from [1];

12

problems, speaking about the latter: A. Varghese et al. [35], for example, used the RF to

classify the tool wear condition in two different stages, according to how the machine was

reaching the end of its useful life and how fast the machine was cutting.

Different authors [9], [11], [14], [22], [17] and [42] have indeed implemented an RF model for

different machinery (including milling and turning) and for quality prediction (mainly alloy

plates) field as well, such as [16], illustrating the best practices and ideas they applied during

the optimisation of the model.

However, most of the sources in their work, do not implement directly a precise model, they

compare the results of the most likely to be efficient methods and eventually they select the

one that has the best evaluation method, like D.Wu et al. [18], that analysing a miller, confirm

the accuracy of the RF, since it has been capable of outperforming other solutions: like

Artificial Neural Network (ANN) and Support Vector Regression (SVR). The authors affirm

that they used different sensors to collect the data directly from the machine (e.g., cutting force

sensor, vibration sensor, acoustic emission sensor) through 315 milling tests.

Anyway, the RF is not always the best answer, nor it may be applied everywhere: A. Gouarir

et al. [44] and M.R. Sarabi et al. [6] have both applied Convolutional Neural Network (CNN)

as a model to predict the tool wear of machining through the direct analysis of image and the

prediction embedded in all the Neural Network (NN). Always based on the CNN there is the

work of J.Wu et al. [13] that implemented a joint classification method for the multi-stage

Remaining Useful Life (RUL) like the one of [35].

Speaking of which, J. He et al. [31] proposed a method, Deep Multi-Task Learning (DMTL),

derived from the NN, with the peculiarity of being capable of computing the prediction of

different tasks simultaneously, it was tested on three different cutting machines in different

working conditions and the method has been able to outperform the other models, revealing

hence its efficiency.

Some other methods, require an optimisation or even to be fused to other components/methods

in order to become reliable, like N.S.Karuppusamy et al. [45] that have to combine the Linear

Regression (LR) and Principal Component Analysis (PCA), to obtain a hybrid method much

more effective than the LR alone for predicting the tool wear of a cutting tool edge.

Eventually, it is also possible to combine in one algorithm both the classification and the

regression problems: in the work of E.Traini et al. [43], the authors studied the implementation

of a milling cutting tool, applicable to different machines. The model is thought to predict wear,

and to classify the output given by the former to decide when it has to be substituted.

13

2.2.2. Quality prediction

A similar topic to the tool wear prediction is the quality prediction, as suggest the name, its aim

is to predict the quality of the product, providing quality-enhancing insights and hence a

decrease in the reject rate of the line [4] or it may be used to study the predicted surface

roughness as in the work of [10]. An

example of this topic is provided by J. L.

Bartlett et al. [25], that implemented a

Naïve-Bayes (NB) as a classification

model, for the distortion along the metal

components. The image aside [Figure 6]

depict the process applied in the article: the

system from a picture extracts the topology

of the piece and then detects any difference

in the height on the surface, the NB,

eventually, classify (according to the

settings decided), whether the product is

defective or regular as in the article of N.K.

Mandal et al. [36]. Eventually, below is reported an image [Figure 7] show three possible

defects that may be detected by the process illustrated above.

Figure 7: defects detected in the process of [25];

The works of [2] and [3] are both focused the Support Vector Machine (SVM), in particular

the latter discuss the implementation of the SVM method on Continuous Damage Control

(CDM), a technique that through a continuous damage is able to provide information to the

ML about the life and the remaining resistance of the material on which is working. Actually,

it seems that SVM is rather effective in the task of quality prediction: references [5] and [38]

Figure 6: process scheme of [25];

14

have indeed implemented a model to predict the quality of the different types of alloys, with

an SVM algorithm that systematically outperformed the RF one. The model has been able, in

both cases, to predict the deterioration of the samples with good accuracy considering both

morphology, size and defect location. The SVM is a classification model, its version for the

prediction for continuous values have been implemented by both L. Dang et al. [7] and I.

Baturynska et al. [23], with the Support Vector Regression (SVR) as a classification ML

algorithm in Additive Manufacturing to detect the formation of pores on metal surfaces,

discussing also about the optimisation problem that is always necessary for any ML algorithm.

2.2.3. Alternative methods for Machine Learning

This section groups the articles that have implemented uncommon or peculiar regression

methods that may represents an alternative solution to the other seen above, or a combination

of two common methods. Normally, however, these approaches are dedicated to specific case

and may be harder to implement then the ones already studied.

The article of T.F. De Barrena et al. [20], for example, treats the implementation of the

Bidirectional Recurrent Neural Network (BiRNN), a derivation of the Recurrent Neural

Network (RNN), that is typically used for algorithms that have to recognise a speech or a

handwriting, but in this case has been applied to compute the RUL. Another derivation of the

NN has been studied by the sources [26] and [27], the Bayesian Neural Network (BNN) as

model for the prediction, the model may be either discrete or continuous, so in order to receive

a more precise result, the model has been proposed is a hybrid solution of the two versions of

the BNN. Eventually, E. Salvati et al. [29] implemented a new neural network: the Physics-

Informed Neural Network (PINN), that combines the numerical analysis embedded in the NN

models with the underlying physics of the studied phenomenon.

The sources [21] and [37] investigated the effectiveness of a prediction tool method based on

time-frequency features implementing the Long Short-Term Memory (LSTM) network, the

extraction of the data is performed through the time-frequency domain analysis, and then the

LSTM is applied to combine the multidimensional features and predict the RUL.

The combination proposed by M. Cheng et al. [39] and M. Hu et al. [15] for tool wear

prediction, compared the SVM and the combination GS-SVM, that showed a reduction of the

MSE of 85%. A hybrid model is thought to be an algorithm able to gain the ability of both the

models it is based on, and therefore enhance both their capabilities, in the case of the GS and

15

SVM have been hybridised since the SVM is necessary to the prediction of the tool wear, and

the GS is able to perform a grid search on the product, hence improving the ability of the SVM

itself.

B. Lutz et al. [34] proposed the Generative Adversarial Network (GAN) as the model for the

prediction of Tool-Condition-Monitoring, the peculiarity is that this innovative model is able

to analyse and study the images obtained from the tool itself, some activity of labelling is still

required, but the algorithm definitely reduces the effort in this operation.

Y. Zhou et al. [24] studied for Tool Condition Monitoring another algorithm: Two-Layer Angle

Kernel Extreme Learning Machine (TAKELM), a direct variation of KELM, a model

considered efficient especially in the case of a small dataset, however, it does underperform

with the extraction of inherent features in raw data and hence the TAKELM is supposed to

overcome these two drawbacks.

L.Guo et al. [19] proposed the model MSFLRUL, that includes both the data acquisition,

deletion of outliers and the prediction itself of the RUL model for milling machines and has

been found capable of effectively foreseeing the remaining life of the tool.

J. Karandikar et al. [40] worked on a model to classify the tool wear of a milling machine

through an algorithm of Logistic Regression (LoR), the authors worked on a classification

problem since, using shop floor data, the wear can only be measured at the time of tool

replacement.

2.2.4. Miscellanea

In this subsection, the utmost articles are shortly analysed and explained. One of the most

interesting of these applications is the work of B. Crawforda et al. [12] designed and tested a

pipeline for decision-making, in an Industrial implant, implemented on the basis of an ANN

algorithm. The proposed system had the transparency of the model increased and so was the

dataset and provided a score ranking globally and locally.

J. Gu et al. [8] studied Blockchain Technology (BCT) to overcome both quality management

and data protection issues, due to the high volume of these latter.

In the work of M. Li et al. [33], they discussed and tested the efficiency of Self Organising

Maps (SOM), useful for identifying the features for tool wear monitoring through the use of

competitive learning strategies. The models used for the prediction are the NN and the SVM,

16

and the former has obtained better results than the latter, but the SOM has demonstrated

significant capability into improving the efficiency of the regression method.

Eventually, the references,, [28] and [41] provide useful reviews about the optimal criteria for

choosing features, the quality classifications, optimisation challenges, and the most used and

efficient models divided by task and process.

2.3. Machine Learning and digital twin

As in the previous section, the articles from the second table [Table 2] are going to be explored

and studied according to their topic and field of application. Moreover, are also provided

several subsections where peculiar sources have been analysed in the details, since this work

consider them necessary to give to the reader a sufficient knowledge to continue in the further

sections of this chapter. Preliminary, three main fields of applications have been detected:

monitoring (19), simulation (3) and predictive maintenance (14) that, in the sources, may have

been applied differently and on a different tool, like drillers (3), milling machines (6) and

cutting machines (3) or directly the whole implant/production line (9). Notable, is also the

numerous applications of DT on additive manufacturing systems (5) and other implementations

that show how elastic the DTs can be.

Between these articles, there are also some reviews that debate on the DT, not on certain

applications but on the implications that come with the implementation of these technologies.

2.3.1. Digital twin definition

In this section is going to be described the DT, an innovative technology that is spreading

through all the industrial fields. It usually has been described as “the forefront technology of

Industry 4.0” [78], for what concerns data analysis and the connectivity on the Internet of

things (IoT). The DT is, indeed, expected to be one of the most important innovations brought

by the Industry 4.0 revolution, but what is exactly a DT?

According to the NASA: “A DT is an integrated multiphysics, multiscale, probabilistic

simulation of an as-built vehicle or system that uses the best available physical models, sensor

updates, fleet history, etc., to mirror the life of its corresponding flying twin” [78].

17

More in general, a DTs can be defined as a virtual machine (or computer based) model that

simulates, emulates, or mirrors a physical entity (the so-called physical twin). The DT is,

therefore, linked to its twin through a unique key, identifying the physical entity, however it

cannot be simply considered a model or a simulation, it has to be considered an evolving

counterpart that follows the lifecycle of the physical twin and learn from it, sometimes being

also able to monitor and control the physical entity (or process). Specifically talking, the

twining it’s possible by the use of a continuous communication and interaction, through the

synchronisation between the DT and the physical part, and/or an external entity that supervise

the whole process [85]. Big-data storage and analytics are all technologies that nowadays are

hugely common and affordable and hence, relatively

easy to implement. On the other hand, prediction,

monitoring and control is entrusted to both Artificial

Intelligence (AI) and ML, enabling the predictive

maintenance approach and real-time monitoring of

the system. [85], moreover the AI may be a valid

assistant for the DT to improve the product quality

and enhancing the supply chain efficiency [60]. The

image aside [Figure 8] summarises the behaviour of

a DT and how it relates with its physical counterpart.

As already explained above, the DT system is provided with both AI and ML to ensure the

highest level of autonomy and precision available, however the system cannot usually be

considered fully autonomous, but they still require an adequate amount of human operators

especially when the operation performed is of the diagnosis type or when modification or

testing are required [85].

At the begin of the section, there has been expressed a general description of a DT, in this

subsection, according to the work of B.R. Barricelli et al. [85], are going to be showed the main

characteristic that a proper DT system is supposed to be implemented with:

• Both the DT and the physical counterpart have to be equipped with networking devices

to ensure the continuous exchange of data, even with a cloud-based connection,

however, DT system may be completely cloud-based as in [56];

• All the data exchanged among the system have to be stored in a data storage system,

accessible by the DT as well. The data to be stored, moreover, have to be both the

dynamic and the static, that will work as a “memory” of the physical twin;

Figure 8: a DT system from [112];

18

• The DT has to be able to manage and process high-dimensional data, hence it has to be

equipped with high-dimensional data-(de)coding and data fusion algorithms to manage

the data coming from different sources;

• A proper DT system implies the use of an AI, based on supervised/unsupervised

learning models, enabling different applications: prediction, pattern recognition,

outliers detection as shown in the work of Z. Huang et al. [46];

• Obviously, the DT has to provide modelling and simulation applications for depict in

the best possible manner the current state of the two twins. Alternatively, it may be also

applicated for the creation of simulated datasets for training ML algorithms [62];

As highlighted by the work of A. Fuller et al. [78], several similar terms spreaded in the field

of the DT might be misleading and cause of incomprehension and hence they need to be

clarified:

• Digital Model: a digital version of a pre-existing physical object, it lacks of any data

exchange and there is no communication with its physical counterpart;

• Digital Shadow: a digital version of a physical object, as the name suggests, the former

receive information from the physical part but not vice versa;

• Digital Twin: the DT is characterised by a reciprocal exchange of data between the

digital and the physical twin, and a modification in one leads automatically to a change

in the other.

The following image [Figure 9], provide a graphical description of what it has just been

described above:

Figure 9: Digital Model, Shadow and Twin, from [78];

19

The work of Y. Xie et al. [77] has highlighted the procedure of a manufacturing task within an

industrial environment, about the cutting machine as the following lines are going to portrait.

The following data are, therefore, required to prepare a DT system for the whole life of the

manufacturing tool:

• Market Analysis data: quantity and production volumes may be determined by the

customer demand, market data and segmentation;

• Development data: improvement and modification on the tool design or specifications,

can be obtained and shaped by the historical, functional and parametrical data;

• Production plan data: inventory, supplier data are all information that are definitely

useful to understanding the tool and the line itself;

• Manufacturing data: the raw materials, once arrived at the implant are inspected during

the quality testing and then used to assemble the products ;

• Usage and service: failure data, tool wear status and general utilisation information are,

eventually, obtained directly at the usage stage of the machine. This particular type of

data, since there is a huge amount of these parameters and they are also supposed to be

cloud-shared, necessary to consider the implementation of specific technologies and

techniques to deal with these problems, like: Apache Spark, Apache Hadoop and

MapReduce that have been presented by [73]

The tool life cycle and the type of information that are obtained at each stage are depicted

graphically in the image below [Figure 11].

In case the amount of data available from the manufacturing phase, the work of S. Stieber et

al. [70] explains the introduction of the “Transfer Learning”, a technique that allows to obtain

Figure 10: data obtained over the stages of the tool cycle from [77];

20

data in high volume: initially a model is trained with simulated data and hence tuned on the

actual tool with real-world data.

The DT is thought to be a complete map for its physical part, obviously the data acquisition is

performed priorly to be merged with the machine status, followed with an analysis of these

data. The data fusion allows the creation of a bi-directional and real-time share of data, the

ML, on the other hand, is able to predict event such as tool failure over the machine life cycle.

The following image [Figure 12] shows the interaction between basic and extended data, that

are going to be explained after the figure.

The so called “Basic data” are a range of data that include the design dimensions, various state

data (feed speed, cutting depth), processing time etc., the shape of the digital model is thought

to be a perfect representation of its physical counterpart, in every possible aspect, fact that is

possible through the use of these basic data. On the other hand, the “Extended data” are

intended to be all the series of parameters, specifications and information that are not directly

accessible from the tool, but that they are computable by the basic data. Moreover, the extended

data may be calculated with the use of ML models, especially for tool wear parameters.

Figure 11: interaction between extended and basic data, from [77];

21

The DT is hence thought to portrait the tool life cycle, from the begin to the decay, therefore

also depicting the current efficiency status of the machine, indexes are usually calculated at

this stage: RUL, surface quality, etc..

The fusion of these data is performed over three different layers [77]:

• Data level: acquired by customers or engineers, all the initial information is here

received and stored;

• Feature level: the recognition and the prediction itself of the wear, take place at this

layer;

• Decision level: tool failure, maintenance and tool wear status data are obtained at this

stage, to assist in the human procedure of decision making;

Furthermore, the following image [Figure 13], displays the relationship between these three

levels.

As explained by the work of E.Karaaslan et al. [59], the DT has undoubtedly enabled a new

level of innovation at the industry level, however several threats may target this newborn

technology, and the protection of the corporation’s technologies is a priority, especially in this

Figure 12: relationships between layers during the fusion of all the data [77];

22

era. This section is going to review and analyse them, providing the best solution for the

problem, therefore even the implementation of the technology itself requires a knowledge of

the risks that come with the DT.

The main threats that have been identified by [59], are described in the following lines:

• Physical threats: since the interaction with the physical part, even the DT may be

physically damaged, or may even provoke injuries (even fatal) to human personnel,

hence it is generally considered as a top-tier in a risk-assestment, however the DT may

represent the best chance to prevent any fatal injury since it can be programmed to

avoid or restrict certain movement if organic presence is detected in the system, as

explained by the work of C. Li et al. [49] and in C. Cronrath et al. [83];

• System threats: attackers might attack the operative system that host the DT, rather than

the DT itself, through the use of malicious programs;

• Software threats: any unauthorised access to the code may compromise the whole DT

since, the code is the very blueprint of the DT, and would let the attacker to have access

to sensible information, such as the vulnerabilities and the characteristics of the DT;

• ML threats: ML algorithms are also target of malicious program, they are more

vulnerable in the training/testing phase, and may compromise the reliability of the

program or decrease the performance;

The countermeasure, on the other hand, proposed by [59] are showed in the following table

[Table 3]:

Table 3: threats and countermeasures for DT [59];

Threats Countermeasures

Physical Threats Physical Security

Data Modification Threats
Tamper-proof and Tamper-resistant

hardware, Hash, Blockchain, IPFS

Software Threats
Software Hardening, Secure SDLC,

Security Testing

Data Communication Threats
Network Resiliency, Cryptographic

solutions, Blockchain, Firewall, IDS

System Threats
Firewall, IDS, Antimalware, System

Hardening

23

Data Storing Threats Cryptographic solutions

ML Threats

Data sanitization, Algorithm robustness

enhancement, Security Assessment

Mechanism, Privacy Preserving Techniques

 As may be seen by the table, most of these applications/techniques are quite easy to implement

and should be implemented anyhow, however the implementation of some of these

countermeasures should not be any prior to a risk-assessment performed in consideration of

the likelihood and the impact of each event since the important cost that these techniques would

have on the company/industry.

The previous lines have described the DTs in the detail, studying their features and

characteristics, however the DT technology comes with issues and challenges as well, that are

going to be described in this section:

• Ethical issues: by nature, the DTs technology is expected to compute and analyse huge

amount of data, some of this data, may be classified as “personal data” (i.e., the height

of a human operator that work with a machine), according to the definition of the

GDPR, at the art. 4 [114], and hence under the protection of the European act;

• Cost of implementation: as explained in other sections, might be characterised by an

important expenditure that can result in an unbearable sunk cost, that may compromise

the whole finance of a small company. Worsen by the absence of a standardised system

of DT [78];

• Threats and securities: the security is a source of primary preoccupation for the

implementation of a DT system, since this technology has to elaborate data that may be

considered delicate, the protection of these information is of primary importance for

the company that have to protect against any attempt of breach [59];

• Misleading predictions and technical limitations: an issue that might has not seem

obvious is the fact that a DT, even though it is innovative and effective, it may also be

misplaced or commit errors that are not so easy to detect or correct. Another perilous

scenario may be considering these system not as in assistance of human-lead task but

as a substitute for them.

• Trust: as highlighted by [76], the rapid evolution of technology that has touched every

sector of the ordinary life, like food and smart cities, that may not be accepted easily

24

by everyone. Therefore, the Context-Aware System (CAS) may become an important

factor to the implementation of these new technologies;

2.3.2. DT and ML for production control and monitoring

As highlighted by the work of Q.Min et al. [80], the DT would enable a continuous interaction

and analysis: a system non-DT based, is strictly dependent on the presence of an expert human

operator or at top, to a one-time ML output. On the other hand, the DT system is able to

guarantee that the data collected in real-time in the physical factory are stored with the

historical ones and both elaborated (training and testing) and provide real-time feedback to the

industry for the production control, there are also examples of implementation of DT for the

direct control of machinery in an industrial environment, such as the work of S. Wu et al. [54],

where the DT operates on Automated Guided Vehicles (AGV) or the article of Z.Liu et al. [51]

with the implementation of Petri Nets (PN).

he ML is perfect for any implementation of DT, since it may be applied in different task and

situation to obtaining the most useful information: it may be able to compute and foreseen the

expected Lead Time in the machines [87][63] or it may be applied to predict the supplier

performance over time [81].

Hower this system cannot be expected to be costless nor easy to implement, since it would

require a great amount of chip and sensor, virtual environment, connection between the

machines and the virtual environment etc., The source [80] also provides a graphical

representation of how a DT relates to the physical environment [Figure 10]

25

According to the picture above, the DT (initially training by a ML model using historical data,

then deployed online) receives the real-time data from the physical environment and elaborates

various data (optimisations, market modelling and profit maximisation), and the computed

results are hence used to manage the factory, through secondary systems, such as MES and

ERP, or even more peculiarly, the ERP can be managed directly by the DT system as described

in the work of M. Dehghanimohammadabadi et al. [58], similarly a DT can automatically

chose the strategy (i.e., FIFO, LIFO) according to the necessity of the implant [65].

According to the sources analysed, the Additive Manufacturing (AM), and also the Wire Arc

Additive Manufacturing (WAAM), seems to be appealing field of application for the most

recent innovation such as the DTs. The AM, also known as 3D printing, is the technique of

building parts, layer-on-layer, directly from the raw materials, the WAAM, in particular is a

subcategory that uses the heat generated by wires to shape the material to be used [47].

Typically, the AM relies on trial-and-error techniques before achieving any defect-free

product, the DT may be applied to reduce the time necessary to this trial and error since it can

provide a higher level of detail for the data received [57], however it may also be implemented

for a ‘general’ task of monitoring of the machinery, predicting the process parameters [74]. As

highlighted by the work of . H.Ko et al. [82], the evaluation performed on these models are

either physical, either numerical: the former refers to the prediction precision of the physical

phenomena, the latter, on the other hand, refers to the efficiency of the mathematical model

Figure 13: A DT for industrial production control [80];

26

used for the ML. Eventually, the sources [89] and [55] both provide additional implementation

procedures for DT systems in WAAM manufacture.

2.3.3. DT and ML for simulation

Another, important, field of application for the DT is the simulation: simulations of event that

cannot be recreated on a real device either for human endanger, for time constraints [80] or

because it is too complicated to figure and understand numerous relationships in a device

allowing the detection of errors in the project at an early stage [84].

A world that applies the DT technology consistently is the Formula 1, where the time constraint

is important, and on the other hand, an extremely high efficiency is required. Each team has to

verify the reliability of countless of components each week, and other parts like powertrains

and tyre compounds have their worn status checked weekly [117]. The DTs perform a primary

task in developing the car performance, since they can receive continuously new data coming

from the vehicles, and hence provide the engineers with new data to work on to develop or take

decisions during the race. A further example of this field of application has been provided by

Tesla, that implemented a DT for the simulation of the car engine and other component [80].

In these applications, the relationship, between the DT and the AI is of primary importance,

because the final output is generally performed by the AI that using data analytics can improve

the quality of the forecast of the components, in particular it may be used to enhanced to train

the ML training phase and improving the final output of the AI [72][67]. Z. Wua et al. [61], is

one of the few sources that explained in the detail the framework of their proposed a RNN

based model to monitor the health of aircraft engines, thought to manage the monitoring,

visualisation, data storage, analysis and eventually control resulting in a system capable of

calculating the RUL, to diagnose and prognose the engine.

2.3.4. DT and ML for predictive maintenance

The last field of application of DT that is going to be studied in this work is the predictive

maintenance, that may be even considered a consistent part of the monitoring and control field.

27

The DT may be in fact created to mirror a device or a machine that is subject to worn, they are

able to detect both anomalies and predict maintenance to a single object. As explained in the

work of T Bornagiu et al. [68], the process is divided in four different layers:

• Collecting data streams: linked to the physical part, the DT collect several types of

data, not only from the device but also from the environment, events etc. Eventually

the system should also be prepared to properly construct and assemble the data and

convert these data according to a standard, as explained in [88] and [50]. The

positioning of the sensors over the device is a complicated task and should be performed

by an expert, however a sensibility analysis can be defined as a good practise to avoid

any uncertainty [71];

• Processing analysis data streams: in this face the DT has to separate and align data

from the streams in standard time slices and grouping them according to their

covariance. In this layer, an anomaly may be detected and if necessary, the DT may

signal to block the machine and isolate defective resources as shown in [86], applied

for CNC milling machine;

• Machine Learning: extract online insights from the aggregated data streams from the

shop floor of resources, process and environment and paralleling computing patterns

and orders. The use of ML usually implies prediction, classification, and clustering,

performed with different models, however the NNs have proven themselves to be the

most effective method for tool wear prediction with historical data availability [75].

The system should also be able to manage and deal the conflicts of data in the and to

direct the system [90];

• Decision making: the outputs given by the other layers, allow enabling the predictive

maintenance and a global optimisation of the process, however it is possible that the

DT itself can be able to perform self-maintenance and self-optimisation [53], or at least

provide the exact guideline to the human operator [48]. As depicted by [64], there are

situations where the algorithm has been designed to receive more than one output

(obtained with different method), and the DT system itself decides. After several

training and testing phase, which one is the method that best describe the phenomenon

of the device on which the DT is working on;

A typical characteristic of this application of DT system is a strict cooperation with a human

operator, and several solutions to facilitate the interaction have been proposed, one example is

28

depicted in the work of T. Wang et al. [66], they implemented a DT system with a Visual

question answering (VQA), an embedded technology that, through the deep learning, is

capable of visual understanding, text information understanding and reasoning, enabling the

DT to understand simple question from the operator or to answer to multiple-choice questions.

29

3. Machine learning algorithms

In this chapter the most common and useful algorithms are going to be studied and analysed,

depicting the mathematical calculations behind them and the architecture of these models.

Preliminary, it may be useful to provide some general definition:

• Unsupervised Learning: reveals the underlying pattern in the dataset not explicitly

presented [102].

• Supervised Learning: learns a function to make a prediction of a defined label based of

the dataset provided [102].

• Reinforcement Learning: the ML learn to operate accordingly to the interaction with

the environment, similarly to a trial-and-error approach [102].

However, the ML model analysed here are mainly of the supervised learning.

According to the sources analysed the most used models are displayed in the following chart

[Figure 14] and hence the ones that are going to be analysed in the following sections:

Eventually, in the section 2.3., the main libraries that are necessary for any implementation in

Python of the ML are described briefly.

Figure 14: pie chart with the models most seen in the sources;

30

3.1. Classification ML Models

As already discussed in the first chapter, while describing the work of the authors there are two

type of ML models: one is the regression, used to predict continuous values and the second one

is the classification that, as the name suggest, classify the values in two or more categories. In

this section, the latter are going to be studied: the classification, in the details, is a process that

aims to find a model that automatically divide the dataset in the category needed, according to

several parameters provided. In this section, hence, the most important classification models

are going to be analysed.

3.1.1. Decision Tree

The DeT has been applied by O.Khalaj et al. [52] for the research of features in the

implementation of a DT for steel alloys obtaining relevant results, moreover this model can be

used for both classification and regression, however it is definitely more effective in the

classification processes [100]. The

logic behind a DeT, that is a

supervised model, is quite simple:

it is a tree structured (see the image

[Figure 15] aside from the source

[52]) classifier composed by three

types of nodes: Root, Interior and

Leaf. The root node is obviously

the initial node and represents the

whole dataset, the interiors are the

features of the dataset and eventually the leaves are the outcome of the queries. Hence, the

output or the leaf is determined exclusively by a True/False mechanism. It has the advantage

of being quite simple to understand and may help with the data cleaning problem, however it

is usually subject to overfitting (inability to generalise the algorithm) that makes it unreliable

to run efficiently [100]. The RF algorithm is a derivation of the DeT that is able to deal with

this last problem and it is going to be analysed also in its classificator version in the following

subsection.

Figure 15: graphic representation of the DeT of [52];

31

3.1.2. Random Forest

According to the several sources reviewed in chapter 1, RF is considered one of the most

effective ML algorithms for both classification and regression problems. RF is a decision tree,

and indeed a derivation of DeT described at the subsection 2.1.1.. The RF, differently from

DeT, is based on Ensemble Learning: a technique that implies the use of multiple trees,

averaging the result, maximising the efficiency and hence resolving the overfitting problem,

these models are therefore trained

with different samples of the

original dataset through the use of

the Bootstrapping technique that

randomly chose these samples

[101]. These procedures are shown

graphically in the figure below

[Figure 17], and moreover it is also

reported the computational flow

chart [Figure 16], both coming from

the source [11].

A further analysis regarding the regressor version of the RF is going to be performed in the

following chapter 2.2.3..

Figure 17: a schematic diagram of the RF of [11];

Figure 16: computational flow chart of the RF of [11];

32

3.1.3. Support Vector Machine

The SVM is a supervised ML algorithm that can be used for both classification and regression

problem, however the SVM is more reliable in the former, and it’s one of the main classificator,

being easy to implement, fast and robust [33]. The SVM can be divided in two categories:

• Linear SVM: used for linearly separable data, meaning that if a dataset can be classified

into two classes by using a single, straight, line then it is a linearly separable data [103];

• Non-linear SVM: if a dataset cannot be classified using a straight line [103];

There may be a multitude of “lines” for divide the dataset, but the best decision boundary has

to be determined anyhow and it is called Hyperplane. The

data that are closest to the hyperplane, and hence affecting

it are called Support Vector (SV) because their role [103].

The graph [Figure 18] aside shows the concepts that have

just been described. The work of H. Wang et al. [5]

highlights the importance of the Kernel Functions in the

SVM model to avoid the curse of dimensionality by

replacing high-dimensional data calculation, beneath this

subsection a table [Table 4] depicts the main Kernel

Functions.

Table 4: Kernel Functions from [5];

Kernel function Analytical formula Parameter

Linear Kernel 𝑘(𝑥𝑖, 𝑥) = (𝑥𝑖
𝑡, 𝑥) -

Polynomial Kernel 𝑘(𝑥𝑖 , 𝑥) = (𝑥𝑖
𝑡, 𝑥)𝑑 𝑑 ≥ 1

Radial basis function Kernel
𝑘(𝑥𝑖, 𝑥) = 𝑒

−
‖𝑥𝑖−𝑥‖2

2𝜎2
𝑑 > 0

Sigmoid Kernel 𝑘(𝑥𝑖, 𝑥) = tanh(𝛽𝑥𝑖
𝑡𝑥 + 𝜃) 𝛽 > 0, 𝜃 < 0

Figure 18: graph illustrating the
main components of a SVM model

from [103];

33

Conversely, the role of these Kernel Functions is

to convert the raw data into a suitable format for

the SVM algorithm to process, as shown in the

figure aside [Figure 19] from [5]. Where w is the

normal vector, output of the Kernel Function. At

the very end of the algorithm, the result of the

SVM is given by the following system of

equations [104] :

Equation 2: output of a SVM classifier; model

𝑦 = { 1 ∶ 𝑤𝑡𝑥 + 𝑏 ≥ 0
0 ∶ 𝑤𝑡𝑥 + 𝑏 < 0

 (2)

3.1.4. Naïve Bayes

The NB, a supervised ML model as well, is called this way since it depends on the Bayes’

theorem [25]:

Equation 3: Bayes’ theorem;

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (3)

The NB classifier simplifies the assumption that the predictors are conditionally independent

of each other given the class, however it doesn’t seem to affect the robustness of the model

results since, they are related to the highest probability and only the single observation might

be inaccurate. Actually, it has been proven that the model does work efficiently even when

there is a dependency among the classes. Therefore, under the assumption of independent

variables the probability of class A occurring due to a known value of data B is given by [25]:
Equation 4: NB, probability of A=k;

𝑃(𝐴 = 𝑘|𝐵1, … , 𝐵𝑛) =
𝜋(𝐴 = 𝑘 ∏ 𝑃(𝐵𝑗|𝐴 = 𝑘)𝑛

𝑗=1

∑ 𝜋(𝐴 = 𝑘)𝐾
𝑘=1 ∏ 𝑃(𝐵𝑗|𝐴 = 𝑘)𝑛

𝑗=1

 (4)

Figure 19: network structure of the SVM
proposed by [5];

34

As already explained, the above equation gives the probability of A=k (i.e., worn, or not worn),

but the algorithm requires an additional part that gives a value or another according to what is

the classification foreseen, this equation is the Bayes’ classifier [105]:

Equation 5: Bayes’ classifier;

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃(𝑦) ∏ 𝑃(𝑥𝑖|𝑦)
𝑛

𝑖=1
(5)

The GP model, eventually, is a similar approach to both the classification and regression

problems, but it is slightly less common than the NB.

3.1.5. K-Nearest Neighbour

The KNN is one of the simplest ML models among the supervised ones: it assumes the

similarity between data and categorise it to the most similar available, its peculiarity is, indeed,

that it doesn’t require an actual training phase, but it stores all the dataset for classify the new

data [106]. K, is an integer chosen by the user and it is the number of “neighbours” to consider.

[8]. A sequence of the procedure just described is depicted in the following picture [Figure 20]

below:

Figure 20: sequence of the operation carried by the KNN algorithm [106];

35

The nearest neighbour is chosen with the Euclidean distance between the data points, obviously

the closest is chosen [106]. The choice of K can be done with the elbow method or a cross-

validation [8], conversely the higher K is, the more KNN is immune to the outliers.

3.1.6. Artificial Neural Network

The ANN is part of the family of the NN, a type of ML based on the human biology since it

reproduces the connection present in a human brain, concept that can be shown graphically

with the following images [Figure 21][Figure 22] [107]:

Figure 21: graphical representation of the system running in a NN model [107];

Figure 22: ANN inner structure [107];

36

In the details, the second picture shows the inner structure of an ANN , the hidden layers are

the phases where the algorithm make its calculation and tries to find a pattern in the available

data. The following equation is the output expected by the ANN model:

Equation 6: ANN output equation;

𝑦𝑗 = 𝑓𝑖 (∑ 𝑤𝑖𝑗𝑥𝑖 − 𝜃𝑖) (6)

Where xi is the input signal of neuron, fi is the activation function and ϴi is the error threshold

of hidden layer neuron [5]. The activation function is a set of transfer function used to obtain

the required output, it may be binary, linear, hyperbolic, etc. [107]. In order to minimise the

error between output the result and the test, the weight and the threshold are updated by the

back-propagation algorithm and gradient descend algorithm during the training as shown by

the following equations [5], the iteration stop when the threshold is reached as showed.
Equation 7: back-propagation algorithm;

𝑤𝑖𝑗(𝜎 + 1) = 𝑤𝑖𝑗(𝜎) − 𝑙𝑟

𝜕𝑒(𝜎)

𝜕𝑤𝑖𝑗(𝜎)
(7)

Equation 8: gradient descend algorithm;

𝜃𝑖𝑗(𝜎 + 1) = 𝜃𝑖𝑗(𝜎) − 𝑙𝑟

𝜕𝑒(𝜎)

𝜕𝜃𝑖𝑗(𝜎)
(8)

3.1.7. Convolutional Neural Network

The CNN, a component of the NN family, is famous for being one of the most used algorithms

for the processing of grid-like topology, such as an image [108]. A CNN is typically divided

in three different layers:

• Convolutional layer: it performs a dot product using two matrices, one composed by

learnable parameters and the other by a portion of the receptive field [108];

• Pooling layer: it replaces the output from the convolutional layer by computing a

statistic of the nearby outputs [108];

• Fully Connected Layer: it is useful to connect the input and the output [108];

37

The following image [Figure 23] show the typical structure of a CNN model [109], where the

input is convolved for producing the activation map, letting the model to learn the features of

the input.

Figure 23: typical structure of a CNN model from [109];

3.1.8. Recurrent Neural Network

The RNN is going to be the last model to be seen in this work, and it is mostly used for

processing information that is sequential: a speech, for example, indeed its name, recurrent,

comes by the fact that the model repeats the process for each element and the output is

depended to the previous calculations [110]. Mathematically speaking, the process that allows

the RNN is provided by the following equations:
Equation 9: calculation of ht in the RNN;

ℎ𝑡 = 𝑔ℎ(𝑤𝑖𝑥
𝑡 + 𝑤𝑅ℎ𝑡−1 + 𝑏ℎ) (9)

Equation 10: computation of the output in the RNN;

𝑌𝑡 = 𝑔𝑦(𝑤𝑦ℎ𝑡 + 𝑏𝑦) (10)

Where w is the weight of the value, x the input and b the bias of the observation. The process

is, therefore, repeated continuously for training and hence improve the quality of the output

[111].

38

3.2. Regression ML Models

As already explained in the section 2.1. the regression is used to foresee the continuous value

of a dependent variable in relation with another one that is an independent variable, and it is

also called regressor. Although, what is exactly a regression? A regression is defined as a

statistical technique that compute the strength of the relationship between the regressor and the

dependent variable using experimental data. A certain percentage of the data available is

intended to be trained in the fitting process of the model the rest is used to verify the validity

of the model: the lower the obtained error, the more accurate is the model. In this section the

most important regression models are going to be studied.

3.2.1. Linear Regression

The LR is one of the simplest supervised algorithms and one of the easier to implement, it’s

simpleness may be useful when the prediction is just considering one regressor and the

relationship between is supposed to be linear. This model has been used by N.S. Karuppusamy

et al. [45], providing also the equation shown underneath this description.
Equation 11: Linear Regression model

𝑌 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖 + 𝜀

𝑛

𝑖=0

 (11)

Where xi is the regressor of the i-th component, Y is the dependent variable, β are the coefficient

of each component of the equation and eventually ε represents a residual to the dependent

variable Y. The coefficients β are estimated with the following equation:
Equation 12: LR computation of β

𝛽 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

(12)

This equation is obtained by the ε minimisation problem of the (10).

39

3.2.2. Logistic Regression

The LoR is depicted in the work of J. Karandikar et al. [40] even though in the article it has

been used as a classification method, it is not a core competency of its, but it can be used as

classificator when a threshold command is used in the algorithm. The LoR model, a supervised

algorithm, is a Log shaped (s-curve) graph and typically, it is used when Y is a dichotomous

variable (labelled either 0 or 1) implying that all the values between are the probabilities of Y

to be one of the two. Its equation model is given by:
Equation 13: Logistic Regression Model

𝑝(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥)
 (13)

Where p(x)k is the probability that the respective Yk has one of the two values or (if it is not

dichotomous) p(x) is equal to Y.

3.2.3. Random Forest

The analysis performed in the subsection 2.1.2., showed the classificator side of the RF, the

work of Z. Zhou et al. [11], however showed how even in the regression role the RF performed

efficiently. The RF is, indeed, composed by several DeT composed by leaves and roots. The

training stage of the RF model consists in developing these DeT, uncorrelated, and the final

result is given by the average of the result of all the DeT, on which the RF was trained

specifically for. Therefore, the final output of the RF for the regression is given by [11]:
Equation 14: RF regression equation;

𝑌𝑝𝑟𝑒 =
1

𝑘
∑ 𝑌𝑖

𝑝𝑟𝑒

𝑘

𝑖=0

=
1

𝑘
∑ 𝑓(𝑋, 𝑆𝑛

𝑘)
)

𝑘

𝑖=0

 (14)

As already explained, Ypre is given by the average output of the i-th tree, or alternatively may

be computed directly in the second equation where (𝑆𝑛
1, … , 𝑆𝑛

𝑘) is the vector of the bootstrap

samples, and X represents the input variables. The non-linear relationship between X and S,

f(X, S) is built once the training stage is completed [11].

40

3.2.4. Support Vector Machine

After the analysis portrayed in the subsection 2.1.3., the SVM regressor is going to be studied

with the help of the source [2] that used it for predictive control on milling machines. The SVM

in the regression role may also be called SVR. M. Ay et al. [2] provide a full description to the

SVR: it has been firstly studied by Vapnik and Lerner in 1963, originally thought to be just a

classification model, but it was developed later by Vapnik in 2000 with the following

regression equation:
Equation 15: Vapnik’s SVM regression equation;

𝑦 = 𝜔𝑇 ∙ 𝜃(𝑥) + 𝜌 (15)

Where ρ is the bias, x is the input vector and ωt ϴ(x) is a function useful to map the input and

weight the result.

The learning ability of the algorithm is described by Vapnik as the optimisation of a cost

function J:
Equation 16: Vapnik’s minimisation problem;

min 𝐽 =
1

2
∙ ‖𝑤‖2

2 + 𝐶 ∙ ∑(𝜀𝑘 + +𝜀𝑘
∗)

𝑁

𝑘=1

(16)

Where the first term represents the structural error and the second the empirical error. The

solution of the optimisation problem leads to the Lagrange coefficients αl, and w can now be

computed as follows:
Equation 17: computation of w in the Vapnik’s equation

𝑤 = ∑(𝛼𝑙 − 𝛼𝑙
∗) ∙ 𝜃(𝑥𝑙)

𝑁

𝑙=1

(17)

Hence, the initial formula of Vapnik can be reworked with the new term [2].

3.3. Python libraries

Python is one of the most important and diffused programming languages among the object-

oriented ones, and it’s characterised by a great readability and a relatively easy implementation

According to most of the sources of chapter 1, Python is the most used language for the

41

implementation of ML algorithms, it may be confronted with Matlab, but the former is

undebatable easier to implement and to read, easier to transport and it posses far more

capabilities (at least with the countless libraries that can be imported in the code). The

following subsections are going to briefly reviews the main libraries that are implemented in

ML algortihms.

3.3.1. Matplotlib

As the name suggests, Matplotlib is a library able to compute laborious mathematical

operations and plotting the results of these last-mentioned. Matplotlib is a fundamental package

for the implementation of a ML algorithm, it allows to verify graphically the result or see the

pattern of the data. Eventually, Matplotlib is also capable of plot several charts at once,

allowing even a certain amount of customisation of the graph plotted. Below is reported the

importing line of the library [Code snippet 1], importing it with the command “as” allows to

short the name of the method once called in a function or in a class.

import matplotlib.pyplot as plt

Code snippet 1: importing line of Matplotlib;

3.3.2. Numpy

NumPy is Python package fundamental for scientific computation, enabling calculation with

arrays and matrices, but also gives to the user several command (as the square root), essential

but absent in the vanilla release of Python, and since its structure, the library accelerates and

makes smoother all the calculations that are performed in the algorithm [95]. Below has been

provided the import line of the NumPy library [Code snippet 2].

import numpy as np

Code snippet 2: importing line of NumPy;

3.3.3. Seaborn

Seaborn is a Python package and an extension of Matplotlib, that allows the algorithm to

elaborate and plot graphs with a statistical purpose (i.e., “scatterplot” and “correlation matrix”)

42

as described in [96]. Below is reported the import line of the Seaborn package [Code snippet

3].

import seaborn as sns

Code snippet 3: importing line of Seaborn library;

3.3.4. Pandas

Pandas is a data manipulation and analysis library. The operation that Pandas is able to perform

are several: join, merge, split, indexing, select, grouping and ordering, it is able to both create

the database in-app or importing and reading it from other sources (i.e., local hardware or in-

cloud database) in multiple format: xls, SQL and csv. Pandas is also known since it’s capable

of performing data cleaning and since it is extraordinary easy to use and to work on. Below, is

reported the importing line of the package [Code snippet 4].

import pandas as pd
df = pd.read_csv('/Users/administrator/... /experiment.csv')

Code snippet 4: importing line of Pandas and of an external file;

The second line shows the command to use an external file as database in Python, it will not

be saved and hence any manipulation prior to the stop of the application run has to be repeated

in any following run.

3.3.5. Scikit Learn

Scikit Learn, eventually, is the library that mathematically enables the ML algorithm since it

brings to the code both the regression and the classification models. Scikit Learn, moreover, is

thought to work in collaboration with the Python libraries that have been described in the other

subsections, especially Pandas and Numpy [98]. Underneath this description some command

for importing the packages from Scikit Learn are showed [Code Snippet 5]

from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.metrics import classification_report, confusion_matrix,

f1_score, ConfusionMatrixDisplay
Code snippet 5: implementation of Scikit Learn library and importation of necessary packages;

43

Metrics is a module that contains the statistical evaluations of the ML modules present in Scikit

Learn, including F1, R2 and Mean Absolute Error (MAE), hence it’s also a fundamental

package for any implementation of ML algorithms.

44

4. Steps of Machine Learning implementation

This chapter is going to review step-by-step the main phases that characterise any

implementation of a ML algorithm, from the collection of the data to the evaluation of the

model, distinguishing, when possible, particular cases or different situations that may occur

during the implementation.

4.1. Collection of the data

The first step is obviously the collection of the data, that varies according to what type of task

or machine is going to be analysed and prepared for.

Normally the data are obtained experimentally, hence with several datasets where the authors

may have varied some condition and kept constant others, as a rule of thumb: to keep constant

are supposed to be only the condition that are not expected to change in an actual application

(i.e., the material or the federate). Otherwise, some sources have also implemented a ML model

using external datasets that have been provided by public sources like NASA or Universities.

There are, therefore, different ways to extract a dataset from a working machine [115]:

• Sensors: fundamental for any dataset, they can be placed on the machine or nearby, in

the environment. They have the advantage of being relatively low-cost solutions and

are easy to position, however they require precision when they have to be placed on the

machine since, a misplaced sensor may lead toward an unsatisfactory dataset or worse,

to a biased dataset;

• Operators: some information can only be collected by physical operators. Typically,

these types of information are Boolean (i.e., worn/not worn) and have to be bounded

with other types of information to be relevant for the ML algorithm;

• Connected systems: in some cases, the machines are connected to other systems or a

DT, that are able to provide more accurate, in real time and that would be harder to

collect manually;

• Machine tools: most of the modern machine are already capable of produce and share,

reducing hence the need of the sources listed above;

The following image [Figure 24] shows a generical configuration for a dataset collection, it is

also possible to see the placement of different sensors that have to collect different data type:

45

Figure 24: experiment station from [24]

4.2. Data normalisation and cleaning

As already explained the first section, the number of features to be extracted are several or even

more and an obvious problem is that each feature has a different dimension, unit of measure

etc., this inconvenient may lead to an extended time for the training in the model (typically

80% of the whole dataset is used in this phase) and an eventual failure in the convergence of

the model [3]. The most common solution to this problem is the normalisation of the dataset

and especially the z-score standardisation, to eliminate the difference between the feature and

utilise the whole information available from the dataset. The formula of the z-score is the

following:
Equation 18: z-score standardisation equation;

𝑥∗ =
𝑥 − 𝜇

𝜎
(18)

The standardisation remaps the dataset to an interval [-1,1], equalising the weight of all the

values. Other known techniques are the ‘Feature Clipping’ that, as the name suggests, clip the

46

value in the datasets to avoids the outliers, or the ‘Log Scaling’ that is able to compress a wide

range of values into a narrower one using the following formula:

Equation 19: log scaling equation;

𝑥′ = 𝑙𝑜𝑔(𝑥) (19)

The normalisation became necessary especially when in the dataset are present also

information that are categorical and that can assume value way higher than the measurements

that have been taken on the machine, even though they are not likely to be that important.

Eventually, the last operation that has to be performed directly on the dataset, is the data

cleaning in order to ensure the algorithm to be more efficient and faster. Typically, the data

that should be removed are:

• Duplicates: in high-volume collection of data is very likely that duplicate values are

present in the dataset, these rows should be removed since they don’t add information

to the algorithm, but it just makes it slower;

• Outliers: the outliers are value that are significantly different from the rest of the

dataset, maybe because collected under particular circumstances, and hence should be

removed from the dataset, however in some cases they may be kept in the database, but

the ML chosen should be one that is unlikely to be biased by outliers;

• Incomplete rows: sometimes, may happen that the collection of the data is only

partially, due to errors in the system or in the sensor, however the status of incomplete

makes them unusable for a ML algorithm hence they should be removed;

• Structural errors: errors may be anything that is not consistent with the rest of the

dataset and that can be defined as mislabelled categories, theoretically these errors may

be corrected in the dataset and not removed, at least in some cases;

4.3. Selection of the features

Typically, during the collection of the data several different features are gathered, even though

a certain amount of them is not decisive for the algorithm and may even hamper the regression.

The best practise for identifying empirically the feature is considering the correlation of two

features, the Pearson Correlation Coefficient is reported below [3]:

47

Equation 20: Pearson Correlation Coefficient;

𝐶𝑜𝑟𝑟(𝑥𝑖, 𝑥𝑗) =
𝐶𝑜𝑟𝑟(𝑥𝑖 , 𝑥𝑗)

√𝑉𝑎𝑟(𝑥𝑖) ∙ √𝑉𝑎𝑟(𝑥𝑗)

(20)

A graphical and quick solution is the heat

matrix showed aside [Figure 25] from [3]:

each square shows the correlation [-1,1]

between the two features with a different

intensity of the colour accordingly.

According to this matrix, the feature should

be selected when they reach a certain grade

of correlation in the label that is going to be

the target of the algorithm. However, there

are some ‘trick’ to enhance the result, for

example in the work of [43] didn’t

considered any feature with a higher correlation then 0.9, since they don’t add any relevant

information to the model. Alternatively, it can be used the Anova F-Value that gives an idea of

how much two features are related [17].

Eventually, each feature has to contain only value that can be related to other values: typically,

there may be several featured labelled with strings (name of the material, worn/ not worn, phase

), hence all these features should be converted in a value: worn/not worn will became 1/0 for

the calculation and then it may be reconverted back for the final output.

4.6. Split of the dataset into train and test sets

The split of the dataset may be seen as a simple procedure; however, it is a delicate operation

that has to be studied very carefully: the dimensions of the two derived sets and the way that

the dataset has been collected are both parameters that may affect importantly the efficiency of

the algorithm.

The dimensions of the dataset are typically 80% of the dataset that is used for the training phase

and the remaining 20% to the test of the model. However different strategies might be taken

into account for a specific model that have a particular learning capabilities increasing or

decreasing the size of the training size,

Figure 25: heat matrix between features from [3];

48

A second matter is the way in which the whole dataset has been collected: it is important indeed

to maintain the i.i.d. condition in entire dataset, and especially between the train and the test

sets. In a typical industrial environment, the train dataset is collected separately to prepare the

model and then verified on a new dataset which is indeed the test dataset, otherwise, the model

will be negatively affected, and its output will be a value that does not reflect the actual

prediction ability of the model.

Eventually, there is another method to furtherly verify the validity of the model: the k-fold

cross validation [43], it’s a procedure in which different outputs, obtained from different

dataset (ideally, they are all supposed to be approximately the same size), are collected and

their results are averaged for all the evaluators, resulting in just one final output for each

performance metric.

4.4. Optimisation of the model

Although the several approaches presented above for enhance the results of the ML algorithm

there is still the need for a further phase for optimise the model, in this section some of these

are going to be reviewed:

• Early stopping: during the training phase, the main objective is to reduce the loss

function (i.e., errors), with this technique the train of the model stops when the evaluator

stops improving [20];

• Training process hyperparameter: the hyperparameter is a parameter that control the

learning process, and its effect may be enhanced through the so-called Cross Validation.

Several iterations are performed during the training phase and then compared to define

the best hyperparameter [20];

• General optimisation: during the implementation of the ML algorithm is possible to

configure different parameters on different models enhancing the result of a model

according to its specific requirement and needs;

4.5. Evaluation of the Machine Learning model

The decisive final task, it’s obviously the evaluation of the model, or the evaluation between

the models. Typically, this phase it has to be different according to which type of ML algorithm

has been performed: classification models require different evaluation method then the ones

49

that can be used on the regressions. In this section both typologies are going to be reviews.

Eventually, after the evaluation has been performed would be wise to step back to the

optimisation phase to search if anything could have been done better and hence enhancing

furtherly the algorithm.

4.5.1. Regression evaluations

The first to be reviewed are the most common: the regression ones, the main evaluators,

according to most of the sources are: the MAE, Root Mean Squared Error (RMSE), R2.

The MAE is one of the most common measures for errors in statistic, therefore its principle is

simple: an arithmetic average of the absolute errors. Its equation is reported below this

introduction:

Equation 21: Mean Absolute Error;

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛
𝑖=1

𝑛
(21)

Where, yi is the prediction, xi is the regressor and n is the total number of observations.

Obviously, the lower is the MAE the better is the model, and generally it is considered a good

indicator of the magnitude of errors. However, the RMSE gives more weight to large errors,

highlighting hence systematic errors in the algorithm [1], so it may be more important in the

evaluation. The formula RMSE is the following:
Equation 22: Root Mean Squared Error;

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑥𝑖)2𝑛

𝑖=1

𝑛
(22)

Eventually, the R2 or coefficient of determination, it is commonly considered as the most

important evaluator in statistics: it determines the portion of variability that can be explained

by the model, hence the higher R2 the better is the model. The formula of the coefficient is the

following:

50

Equation 23: R2 equation;

𝑅2 = 1 −
𝑆𝑆𝑅𝑒𝑠

𝑆𝑆𝑇𝑜𝑡

(23)

Where SSRes and SSTot are respectively the sum squares of the residual errors of the data model,

and the total errors. All these evaluators can be easily implemented in any Python algorithm

using the module Metrics of Scikit Learn, however the effectiveness of a regression model may

be also verified graphically, as showed in the following image [Figure 26]:

Figure 26: two graphs showing different levels of quality;

The graph on the left, portraits a situation where the model is a good solution: it detected the

general pattern of the data and the R2 is acceptable. On the other hand, the graph on the right

has completely missed the pattern and the R2 value is indeed very low. Moreover, both the

graphs allow to determine whether there is a bias in the model: since the dots are equally

distributed along the line of regression, the model is definitely noy biased.

Other solutions considered in the sources are: Relative Squared Error (RelSE), Normalised

Root Mean Error (NRMSE), Mean Absolute Percentage Error (MAPE), Relative Absolute

Error (RAE), that are not significantly different from the ones seen above, however any

application should study what is the best evaluator that fits for the algorithm that is working

on, since each of them has its pros and cons.

51

4.5.2. Classification evaluations

As already explained, the classification methods require a different form of evaluations since

the different type of output (i.e., labelled). Typically, there are mainly three types of evaluation

for classification algorithms: accuracy, precision, recall and F1. The first, the accuracy is

simply the number of correct predictions over the total predictions:

Equation 24: accuracy in a classification model;

𝐴𝐶𝐶 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
(24)

Although, the accuracy gives an idea of how accurate the model is, it provides no clue about

where there is an error or how to correct it. A potential solution to this problem may be given

by the precision evaluator: it considers the relationship between the true positive (the

predictions labelled as ‘1’ when they are actually ‘1’), it may be really useful to correct the

problem of false positive. The formula is the following:

Equation 25: precision equation;

𝑃𝑅𝐸𝐶 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
(25)

A similar idea is the one of the recall (called also sensitivity) : it considers the number of true

positive, over the number of both true positives and false negatives, hence the number of what

is actually true. The formula is showed beneath;

Equation 26: recall equation;

𝑅𝐸𝐶 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
(26)

Eventually, the F1, that is a combination between recall and precision, considering both true

positive and false negative. Its formula is the following:

52

Equation 27: F1 equation;

𝐹1 =
2 ∙ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(27)

That, similarly to the R2, the higher the better; it can also be rewritten with a different β (

normally is 1), to give a different importance between false negatives and true positives.

It is also possible to verify the correctness of the model through the so-called confusion matrix,

that shows the number of measurement that were correct or wrong, allowing the user also to

perceive the presence of any bias or misjudgement in the algorithm. The following image

[Figure 27], depicts the composition of a confusion matrix that typically is applied on ML

models of classification.

Figure 27: confusion matrix for a classification problem;

The above image shows just two labels, but the confusion matrix can be applied on algorithms

with more labels and in any case it would be possible to distinguish between the correct

prediction and the various type of errors that may occur.

Just as the regression evaluators, all of these techniques are naturally implemented in the

metrics module of Scikit Learn.

53

4.6. Confront of two ML outputs

In this section, two ML are going to be analysed according to highlight the differences between

them, and depicting the features that highlights the characteristics of the two models.

4.6.1. Implementation and evaluation
of tool wear algorithm

There are numerous examples of ML algorithms

applied on tool wear predictions, one of the most

detailed is the one provided by E. Traini et al. [43],

they applied several ML models for the prediction of

flank wear (measured with VB) on milling [Figure 28].

A milling machine is a rotating tool with multiple

cutting edges that gradually remove material from the

surface of the workpiece, that gradually advance on

the worktable: hence, knowing how the machine

works, it would be possible to already start working on

the features to be used in the ML, such as feed rate,

cutting speed and spindle speed.

The dataset used for this article was obtained

experimentally, and the model has the peculiarity of

combine both regression and classification algorithms,

as showed in the image aside [Figure 29]. Initially the

dataset is collected through analogical sensor and then

manipulated during the pre-processing phase for the

generation of the features and obviously, both

normalisation and transformation of the data in order

to be suitable for the processing itself, that is computed

considering the training, the testing, and the evaluation

phase.

A first ‘monitoring’ regression model and a classification one is supposed to determine whether

the tool has to be replaced or otherwise, a second regression ‘predictive’, instead, has to

compute the RUL, hence for the couple the target variable is the VB and for the second

regression is, indeed, the RUL.

Figure 28: milling machine illustration;

Figure 29: framework proposed by [43];

54

The models applied for the regression are: LR, RF, Bayesian Linear Regression (BLR), DeT

and NN, evaluated with RMSE, Relative Squared Error (RelSE) and R2.

On the other hand, for the classification are chosen: LoR, RF, DeT, NN and Decision Jungle

(DJ), evaluated with ACC, and the percentages of correct responses SP and WP.

To enhance the results given by the ML algorithm has been used the hyperparameter Tuning

method to match the optimal value for each model.

The results obtained by the model above are showed in the tables [Table 5][Table 6] below:

Table 5: results obtained for the two regressions in [43];

 RMSEVB RelSEVB R2VB RMSERUL RelSERUL R2RUL

LR 0.110 0.182 0.817 1.671 0.178 0.822

RF 0.123 0.225 0.781 1.517 0.134 0.866

BLR 0.116 0.194 0.813 1.640 0.174 0.826

DeT 0.122 0.218 0.794 1.615 0.156 0.844

NN 0.110 0.179 0.821 0.581 0.022 0.979

Table 6: results obtained for classification in [43];

 SP WP ACC
LoR 0.960 0.9 0.941
RF 0.936 0.917 0.930

BLR 0.952 0.917 0.941
DeT 0.960 0.950 0.957
NN 0.936 0.9 0.924

As clearly showed, the best model for the classification is the DT and the NN for both

regressions, since the results obtained in the R2.

Typically, a table is the main way to visualise and confront the results, since it is clean and

immediate to read and understand. However other sources showed the results on the graphs,

and it may be a solution even more feasible to find a systematic error (i.e., an error om higher

value of the target). The following image shows the output visualised through a plot [Figure

30].

55

The graph clearly shows the good results obtained by both ANN and SVR, however a table for

reporting the values obtained by the evaluators is necessary in any case. The graph also shows

the bounds of the error, beyond these lines the prediction is not acceptable.

4.6.2. Implementation end evaluation of quality control algorithm

This subsection, instead, is going to review an implementation of a quality control algorithm

for ML, the work of S. Shorr et al. [16] is a good representation of the scope of the algorithm.

In the article are analysed drilled and reamed bores in an early stage of machining (milling

machine), the algorithm indeed should help improving the process planning, avoiding waste

and guarantee the quality of the workpiece. The dataset was obtained by an industry in

Germany, producing hydraulic valves to be assembled as shown in the following picture

[Figure 31]:

Figure 30: ML model output displayed in a graph from [7];

56

As may be seen, firstly the housing is machined

with a drilling machine and eventually assembled

in the final product. The quality of the bores of the

housing are defined by several parameters: force,

torque, power, vibration, or acoustic emission that

may also be applied for the detection of tool wear

that is itself a feature for the quality of the bores

during machining. To reduce the amount of data to

be analysed and hence enhancing the prediction

itself, a selection of the features through correlation

matrix [Figure 32] is performed. The standard

deviation, the mean, skewness, kurtosis, minimum

and maximum value are computed for the spindle

and the z-axis, and the feature selected are the ones

with the highest correlation (i.e., intensity of

green). Moreover, the targets to be determined are

identified in the ‘concentricity’ and the ‘diameter’, values that strictly correlate to the quality

of the product. The model to be used initially was decided prior to the analysis, using a test

dataset, and resulted in the RF to be the most accurate (lower error) [Figure 33]:

Figure 31: final product and the phase where the ML analysis is
performed from [16];

Figure 32: correlation matrix from [16];

57

Accordingly, RF is indeed the model with the lowest MAE for both diameter and concentricity,

while CNN and ANN are dramatically inaccurate for the diameter. Eventually, the RF was the

only model applied in the algorithm, it had to compute the predictions of both the targets,

determining eventually if the quality boundaries are complied. The following graphs show the

learning curves of the RF over the testing phase [Figure 34]:

Where, the training dataset size was 85% of the total dataset and the final statistical result are

reported below [Table 7]:

Figure 33: graphical output of the initial result in [16];

Figure 34: graphs showing the learning curves of the RF, (a) of concentricity and (b) of diameter,
from [16];

58

Table 7: results of [16] displayed in a table;

 Concentricity Diameter

MAE 17.1 0.27

MAPE 27.0 0.002

Maximum Error 83.0 0.72

R2 96.3 94.1

The results show how the results

(considering especially the R2) are

acceptable for both the target

parameters, however it is not

neglectable that the model could be

improved furtherly considering the

MAPE and MAE for the

concentricity.

Moreover, studying the results with a

graphical output [Figure 35] has

helped the authors to understand the

results of the prediction was

influenced by the batch it was

referring to: the third batch prediction,

for example, had problems to

correctly predict the most small and

large diameter but the model could be

still considered effective.

Figure 35: graphical output obtained in [16], divided in
the 3 batches in which each data has been collected;

59

5. Example of a ML implementation

This chapter is going to reviews a simple classification ML model that has been computed

using publicly available dataset. The study is going to show how the implementation of a

classification algorithm can be performed to determine whether a CNC milling machine is

worn or not, and how it should be executed practically and how to evaluate the results. The

implementation of the algorithm is going to be explained in the following steps:

• Dataset: the dataset has to be correctly analysed in order to justify all the other choices

that have been made, moreover it will also be provided a brief explanation of the CNC

milling machine from which the dataset has been collected. Moreover, a description of

the cross validation performed here is going to be provided as well;

• Data normalisation: the dataset is composed by several parameters that have to be

analysed for the feature selection, to determine whether an actual correlation is present

the data normalisation is a delicate operation that has to be performed;

• Feature selection: the features selection is a necessity in any ML algorithm since it has

to provide to the model the parameters that have been identified to be correlated the

most to the target feature. The model cannot be applied to the entire dataset since

problems of perfect collinearity can arise from the execution of the model and therefore

not all the features can be used for the application;

• Models and Optimisation: a description of the model that has been chosen for the

analysis and the optimisation of the parameters that has been performed on them,

moreover to maximising the effectiveness of the algorithm a procedure for K-Fold

Cross-Validation has been implemented as well and here explained and justified;

• Output: eventually the output and an analysis of the results have to be performed,

therefore finding which is the most efficient model;

5.1. Dataset

The dataset used are publicly available [116], they have been collected by the University of

Michigan on a CNC Milling machine, and divided into 18 different experiments, all provided

in .csv, they come with a 19th file that represent the condition under each experiment has been

60

performed. In this section a general description of the machine and the dataset is going to be

given, and how the importation/manipulation in Python is performed.

5.1.1. CNC milling machine

As already explained at the beginning of the chapter,

the machine analysed is a CNC milling machine,

which is basically a milling machine combined with

Computer Numerical Control (CNC) [Figure 36].

The CNC is a technique of indirect control over the

machine that, using a set of predefined instructions,

is able to manipulate the object automatically and

without any human intervention, hence the machine

interacts only with the code that has to be converted

into instructions (i.e., Cartesians coordinates),

allowing the machine to be extremely precise while

working [117].

5.1.2. Dataset description

The total amount of dataset, one for each experiment conducted, is 18 and all of them are

composed by the same features with the same dimensionality, the features that have been

collected, have also been described by the source [116]:

• X1_ActualPosition: actual x position of part (mm);

• X1_ActualVelocity: actual x velocity of part (mm/s);

• X1_ActualAcceleration: actual x acceleration of part (mm/s/s);

• X1_CommandPosition: reference x position of part (mm);

• X1_CommandVelocity: reference x velocity of part (mm/s);

• X1_CommandAcceleration: reference x acceleration of part (mm/s/s);

• X1_CurrentFeedback: current (A);

• X1_DCBusVoltage: voltage (V);

• X1_OutputCurrent: current (A);

• X1_OutputVoltage: voltage (V);

Figure 36: CNC milling machine from
[117];

61

• X1_OutputPower: power (kW);

• Y1_ActualPosition: actual y position of part (mm);

• Y1_ActualVelocity: actual y velocity of part (mm/s);

• Y1_ActualAcceleration: actual y acceleration of part (mm/s/s);

• Y1_CommandPosition: reference y position of part (mm);

• Y1_CommandVelocity: reference y velocity of part (mm/s);

• Y1_CommandAcceleration: reference y acceleration of part (mm/s/s);

• Y1_CurrentFeedback: current (A);

• Y1_DCBusVoltage: voltage (V);

• Y1_OutputCurrent: current (A);

• Y1_OutputVoltage: voltage (V);

• Y1_OutputPower: power (kW);

• Z1_ActualPosition: actual z position of part (mm);

• Z1_ActualVelocity: actual z velocity of part (mm/s);

• Z1_ActualAcceleration: actual z acceleration of part (mm/s/s);

• Z1_CommandPosition: reference z position of part (mm);

• Z1_CommandVelocity: reference z velocity of part (mm/s);

• Z1_CommandAcceleration: reference z acceleration of part (mm/s/s);

• Z1_CurrentFeedback: current (A);

• Z1_DCBusVoltage: voltage (V);

• Z1_OutputCurrent: current (A);

• Z1_OutputVoltage: voltage (V);

• S1_ActualPosition: actual position of spindle (mm);

• S1_ActualVelocity: actual velocity of spindle (mm/s);

• S1_ActualAcceleration: actual acceleration of spindle (mm/s/s);

• S1_CommandPosition: reference position of spindle (mm);

• S1_CommandVelocity: reference velocity of spindle (mm/s);

• S1_CommandAcceleration: reference acceleration of spindle (mm/s/s);

• S1_CurrentFeedback: current (A);

• S1_DCBusVoltage: voltage (V);

• S1_OutputCurrent: current (A);

• S1_OutputVoltage: voltage (V);

62

• S1_OutputPower: current (A);

• S1_SystemInertia: torque inertia (kg*m^2);

• M1_CURRENT_PROGRAM_NUMBER: number the program is listed under on the

CNC;

• M1_sequence_number: line of G-code being executed;

• M1_CURRENT_FEEDRATE: instantaneous feed rate of spindle;

• Machining_Process: the current machining stage being performed. Includes

preparation, tracing up and down the "S" curve involving different layers, and

repositioning of the spindle as it moves through the air to a certain starting point;

Eventually, the datasets are bounded to a 19th file, called ‘train’, which is a summary of the

characteristics of all the experiments, its features have also been described by [116], as follows:

• No : experiment number;

• material : wax (same for all the experiments);

• feed_rate : relative velocity of the cutting tool along the workpiece (mm/s);

• clamp_pressure : pressure used to hold the workpiece in position(bar);

• tool_condition : label for unworn and worn tools;

• machining_completed : indicator for if machining was completed without the

workpiece moving out of the pneumatic in position;

• passed_visual_inspection: indicator for if the workpiece passed visual inspection, only

available for experiments where machining was completed;

Obviously, the last three features have been collected after the experiments were completed,

while the first four features have been collected prior to the experiments were conducted.

5.1.3. Implementation on Python

The following lines shows how the datasets have been loaded in the algorithm and how

combine them with the train file [Code Snippet 6]:

def datatable():
 experiment_result = pd.read_csv("/Users/../Test/train.csv")
 experiment_result['passed_visual_inspection'] =

experiment_result['passed_visual_inspection'].fillna('no')
 df = pd.read_csv('/Users/../Test/experiment_01.csv')
 frames = []
 for i in range(1, 19):

63

 exp_num = '0' + str(i) if i < 10 else str(i)
 frame = pd.read_csv(f"/Users/../Test/experiment_{exp_num}.csv")
 exp_result_row = experiment_result[experiment_result['No'] == i]
 frame['exp_num'] = i
 frame['material'] = exp_result_row.iloc[0]['material']
 frame['feedrate'] = exp_result_row.iloc[0]['feedrate']
 frame['clamp_pressure'] = exp_result_row.iloc[0]['clamp_pressure']
 frame['tool_condition'] = exp_result_row.iloc[0]['tool_condition']
 frame['machining_finalized'] =

exp_result_row.iloc[0]['machining_finalized']
 frame['passed_visual_inspection'] =

exp_result_row.iloc[0]['passed_visual_inspection']

 frames.append(frame)
 df = pd.concat(frames, ignore_index=True)
 mapping_1 = {'Starting': 0,
 'Prep': 1,
 'Layer 1 Up': 2,
 'Layer 1 Down': 3,
 'Repositioning': 4,
 'Layer 2 Up': 5,
 'Layer 2 Down': 6,
 'Layer 3 Up': 7,
 'Layer 3 Down': 8,
 'end': 9,
 'End': 9}
 mapping_2 = {'worn': 0,
 'unworn': 1}
 mapping_3 = {'no': 0,
 'yes': 1}

 df['Machining_Process'].replace(mapping_1, inplace=True)
 df['tool_condition'].replace(mapping_2, inplace=True)
 df['passed_visual_inspection'].replace(mapping_3, inplace=True)
 df['machining_finalized'].replace(mapping_3, inplace=True)
 df = df.sample(frac=1)
 df.drop_duplicates()
 print(df)
 column_headers = list(df.columns.values)
 print("The Column Header :", column_headers)

64

 return df, df_test

Code snippet 6: implementation of the dataset in the algorithm;

The code above is the function “datatable” that has been applied for this analysis, it has to

resolve two different problems: merging 18 similar files and merge these 18 files with

another one that is totally different. The solution that has been found is to, firstly, add as a

feature the experiment number (“exp_num”) and then combine all the values present in

“train” for that experiment to all the rows present in each experiment. The following is the

output that has been obtained:

“The Column Header : ['X1_ActualPosition', 'X1_ActualVelocity',

'X1_ActualAcceleration', 'X1_CommandPosition', 'X1_CommandVelocity',

'X1_CommandAcceleration', 'X1_CurrentFeedback', 'X1_DCBusVoltage',

'X1_OutputCurrent', 'X1_OutputVoltage', 'X1_OutputPower',

'Y1_ActualPosition', 'Y1_ActualVelocity', 'Y1_ActualAcceleration',

'Y1_CommandPosition', 'Y1_CommandVelocity', 'Y1_CommandAcceleration',

'Y1_CurrentFeedback', 'Y1_DCBusVoltage', 'Y1_OutputCurrent',

'Y1_OutputVoltage', 'Y1_OutputPower', 'Z1_ActualPosition',

'Z1_ActualVelocity', 'Z1_ActualAcceleration', 'Z1_CommandPosition',

'Z1_CommandVelocity', 'Z1_CommandAcceleration', 'Z1_CurrentFeedback',

'Z1_DCBusVoltage', 'Z1_OutputCurrent', 'Z1_OutputVoltage',

'S1_ActualPosition', 'S1_ActualVelocity', 'S1_ActualAcceleration',

'S1_CommandPosition', 'S1_CommandVelocity', 'S1_CommandAcceleration',

'S1_CurrentFeedback', 'S1_DCBusVoltage', 'S1_OutputCurrent',

'S1_OutputVoltage', 'S1_OutputPower', 'S1_SystemInertia',

'M1_CURRENT_PROGRAM_NUMBER', 'M1_sequence_number', 'M1_CURRENT_FEEDRATE',

'Machining_Process', 'exp_num', 'material', 'feedrate', 'clamp_pressure',

'tool_condition', 'machining_finalized', 'passed_visual_inspection']”

Moreover, the function has to solve some data transformation problems as explained in [43]:

the features “tool_condition”, “machining_finalized”, “passed_visual_inspection” and

“Machining_Process” are all features where the values are strings, hence they have to

converted in values. To do so the “dictionary” method has been applied: for each string

present in the column, a correspondent numerical value has been associated with the

dictionaries (called “mapping_i”) and modified in the dataframe through the method

“.replace” native of Pandas. Eventually, the function removes the duplicates present in the

database (df.drop.duplicates()) and randomise the order of the row present in the database

65

(df.sample) in order to don’t compromise the training phase that is going to be performed in

the other functions present in the algorithm.

As explained in the last chapter, the test and train dataset should be separated since the

beginning and they cannot be merged and divided any after, hence the best solution is to

divide already the dataset, resulting in two different return for the function showed above.

5.2. Data normalisation and cleaning

The following lines of Python illustrate the implementation of data cleaning and normalisation

in the application prepared for this work [Code snippet 7]:

def cleaning(test, train):
 df, df_test = datatable(test, train)
 to_drop = []
 to_drop_2 = []
 for col in df.columns:
 if len(df[col].unique()) == 1:
 to_drop.append(col)
 df.drop(to_drop, axis=1, inplace=True)
 for col in df.columns:
 if len(df[col].unique()) == 1:
 to_drop_2.append(col)
 df.drop(to_drop_2, axis=1, inplace=True)
 cols_to_norm = ['X1_ActualPosition', 'X1_ActualVelocity',

'X1_ActualAcceleration', 'X1_CommandPosition',
 'X1_CommandVelocity', 'X1_CommandAcceleration',

'X1_CurrentFeedback', 'X1_DCBusVoltage',
 'X1_OutputCurrent', 'X1_OutputVoltage',

'X1_OutputPower', 'Y1_ActualPosition', 'Y1_ActualVelocity',
 'Y1_ActualAcceleration', 'Y1_CommandPosition',

'Y1_CommandVelocity', 'Y1_CommandAcceleration',
 'Y1_CurrentFeedback', 'Y1_DCBusVoltage',

'Y1_OutputCurrent', 'Y1_OutputVoltage', 'Y1_OutputPower',
 'Z1_ActualPosition', 'Z1_ActualVelocity',

'Z1_ActualAcceleration', 'Z1_CommandPosition',
 'Z1_CommandVelocity', 'Z1_CommandAcceleration',
 'S1_ActualPosition', 'S1_ActualVelocity',

66

 'S1_ActualAcceleration', 'S1_CommandPosition',

'S1_CommandVelocity', 'S1_CommandAcceleration',
 'S1_CurrentFeedback', 'S1_DCBusVoltage',

'S1_OutputCurrent', 'S1_OutputVoltage', 'S1_OutputPower',
 'M1_sequence_number', 'M1_CURRENT_FEEDRATE',
 'Machining_Process', 'feedrate', 'clamp_pressure',
 'machining_finalized', 'passed_visual_inspection']
 df[cols_to_norm] = MinMaxScaler().fit_transform(df[cols_to_norm])
 df.dropna(axis=0, how="any", subset=['tool_condition'], inplace=True)
 df = df.fillna("", inplace=False)
 df_test[cols_to_norm] =

MinMaxScaler().fit_transform(df_test[cols_to_norm])
 df_test.dropna(axis=0, how="any", subset=['tool_condition'],

inplace=True)
 df_test = df_test.fillna("", inplace=False)
 print(df)
 labels = ['not worn', 'worn']
 df['tool_condition'].value_counts().plot(kind='pie', labels=labels)
 print(df_test)
 return df, df_test

Code snippet 7: data cleaning function and normalisation;

The function above is the one used to clean the datasets and normalise the values, firstly the

datatable function is deployed to import the databases, and all the column that are not completes

are removed, then a list containing the name of the columns of the database that have to be

normalised, note that all the column are selected for the normalisation but “tool_condition”,

since the target of the analysis and if normalised it would become a continuous variable and no

longer a categorical one. The normalisation is performed with the method MinMaxScaler(),

from the package “Preprocessing” of SciKit Learn, and it applies a scaling normalisation to all

columns that have been selected in a range between 0 and 1, on the basis of what are the

67

maximum and the minimum for each

parameter. Furthermore, the function

proceeds dropping all the rows that have no

value in “tool_condition” since useless.

Eventually, the function counts and plot the

number of worn and unworn rows are present

in the train dataframe: an excessive number

on a side, or the other, might lead to a biased

prediction. The result of this final part of the

code, however, is plotted for each iteration

like in the first one as showed aside [Figure

37] in order to consider any bias present in the

testing dataset. Therefore, there is no need to

have a test dataset unbiased, since the

algorithm should be able to determine in both cases.

5.3. Selection of the features

The following task is the selection of the features, that has been performed using the heat matrix

applied on the train database, the following lines represents the lines [Code snippet 8] to obtain

the correlation matrix and then, the output is showed [Figure 38]
df, df_test = cleaning(test, train)
fig, ax = plt.subplots(figsize=(40, 40))
sns.heatmap(df.corr(), annot=True, cmap='Blues', ax=ax)
plt.show()

Code snippet 8: heatmap/correlation matrix deployment;

Figure 37: pie-chart of the number of worn and not
worn rows in the dataset of [116];

68

Figure 38: heatmatrix resulting of the dataset;

The target feature, “tool_condition” on the last row, has to be checked on each column to

understand which are the target that may be considered for the regression. Accordingly, all

the features with a higher correlation then 0.05 are hence chosen for the prediction, the

feature “passed_visual_inspection” and “num_exp”, even though are related are the target

they are not going to be considered for the prediction since they have been evaluated

correlated because the construction of the dataset and hence their presence would just falsify

69

the results of the prediction. Therefore, the features that are going to be considered for the

prediction are the following:

['X1_ActualPosition', 'X1_CommandPosition',
 'X1_DCBusVoltage',
 'X1_OutputCurrent', 'Y1_ActualPosition',
 'Y1_CommandPosition',
 'Y1_DCBusVoltage', 'Y1_OutputCurrent', 'Y1_OutputVoltage',
 'Z1_ActualPosition', 'Z1_CommandPosition',
 'S1_ActualVelocity',
 'S1_ActualAcceleration', 'S1_CommandVelocity',
 'S1_CurrentFeedback', 'S1_DCBusVoltage', 'S1_OutputCurrent',

'S1_OutputVoltage', 'S1_OutputPower',
 'M1_sequence_number', 'feedrate', 'clamp_pressure']

5.4. Classification models

The models that have been chosen are here showed, presented with the parameters that can be

modified and their corrispondant default value:

• Random Forest: it can be imported by SciKit Learn as RandomForestClassifier, and the

parameters that can be modified are the following:

(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, m

in_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_n

odes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs

=None, random_state=None, verbose=0, warm_start=False, class_weight=None, cc

p_alpha=0.0, max_samples=None);

• K-Nearest-Neighbour: it is imported form Scikit Lean as

neighbours.KNeighboursClassifier(), it can be modified in the following parameters:

(n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='

minkowski', metric_params=None, n_jobs=None);

• Decision Tree: it is imported as DecisionTreeClassifier(), can be modified in

(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_sam

ples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=Non

e, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alp

ha=0.0);

70

• Logistic Regression: imported as LogisticRegression, is the only one that is not

properly a classifier, but it is often applied in this role, it can be modified as follows

(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scalin

g=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_

class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None);

• SVM: it is imported as svm.SVC, it’s the classification variant of the SVM as explained

in the third chapter, and it can be modified in: (*, C=1.0, kernel='rbf',

degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.0

01, cache_size=200, class_weight=None, verbose=False, max_iter=-

1, decision_function_shape='ovr', break_ties=False, random_state=None);

• Naïve Bayes: imported as naive_bayes.GaussianNB, it is a gaussian variation of the

Naïve Bayes model and it can be modified in: (*, priors=None, var_smoothing=1e-

09);

• ANN: imported as neural_network.MLPClassifier, it is the Python most common

method for a neural network implementation, its parameters are:

(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch

_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_

iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_star

t=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validati

on_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-

08, n_iter_no_change=10, max_fun=15000);

These models have been chosen according to what has been studied in the third chapter, in the

section of the classification, in order to show a complete reviews about these algorithms, that

therefore, they are also supposed to be the most common in any ML implementation.

Each of these models has been implemented as follows [Code snippet 9]:

from sklearn.linear_model import LogisticRegression
import numpy as np
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn import neighbors, naive_bayes
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier

71

def random_forest(df, df_test):
 X_train = df[['X1_ActualPosition', 'X1_CommandPosition',
 'X1_DCBusVoltage',
 'X1_OutputCurrent', 'Y1_ActualPosition',
 'Y1_CommandPosition',
 'Y1_DCBusVoltage', 'Y1_OutputCurrent', 'Y1_OutputVoltage',
 'Z1_ActualPosition', 'Z1_CommandPosition',
 'S1_ActualVelocity',
 'S1_ActualAcceleration', 'S1_CommandVelocity',
 'S1_CurrentFeedback', 'S1_DCBusVoltage',

'S1_OutputCurrent', 'S1_OutputVoltage', 'S1_OutputPower',
 'M1_sequence_number', 'feedrate', 'clamp_pressure']]
 y_train = df["tool_condition"]
 X_test = df_test[['X1_ActualPosition', 'X1_CommandPosition',
 'X1_DCBusVoltage',
 'X1_OutputCurrent', 'Y1_ActualPosition',
 'Y1_CommandPosition',
 'Y1_DCBusVoltage', 'Y1_OutputCurrent',

'Y1_OutputVoltage',
 'Z1_ActualPosition', 'Z1_CommandPosition',
 'S1_ActualVelocity',
 'S1_ActualAcceleration', 'S1_CommandVelocity',
 'S1_CurrentFeedback', 'S1_DCBusVoltage',

'S1_OutputCurrent', 'S1_OutputVoltage', 'S1_OutputPower',
 'M1_sequence_number', 'feedrate', 'clamp_pressure']]
 y_test = df_test["tool_condition"]
 model = RandomForestClassifier()

 model.fit(X_train, y_train)
 y_pred = model.predict(X_test)
 return y_test, y_pred

Code snippet 9: implementation of a model in the algorithm;

The two datasets are imported in the function and two subset for each are obtained for splitting

each dataset to a Y and X for testing and for training, that is going to be fitted in the model,

called RandomForestClassifier() in this case. The function is therefore yet incomplete since it

is going to be modified in the following section for the optimisation

72

5.5. Optimisation of the models

Eventually, there is the optimisation of the models phase, where for each model the parameters

are selected in order to have the best possible output. For this application the GridSearch

method has been applied, it is one of the most common hyperparameter tuning methods, hence

the implementation of the model is modified as follows [Code snippet 10]:

from sklearn.linear_model import LogisticRegression
import numpy as np
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn import neighbors, naive_bayes
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier

def random_forest(df, df_test):
 param_grid = {'min_samples_split': [7, 14],
 'max_features': [5, 10, 20],
 'criterion': ['gini', 'entropy']}
 X_train = df[[...]]
 y_train = df["tool_condition"]
 X_test = df_test[[...]]
 y_test = df_test["tool_condition"]
 model = RandomForestClassifier(max_depth=None, min_samples_split=7,

n_estimators=400, criterion='gini',
 max_features=5)
 # grid_search = GridSearchCV(model, param_grid=param_grid, cv=3,

n_jobs=8)
 # grid_search.fit(X_train, y_train)
 # print('Best parameters:', grid_search.best_params_)
 model.fit(X_train, y_train)
 y_pred = model.predict(X_test)
 return y_test, y_pred

Code snippet 10: variation of implementation of the model with hyperparameter search;

The param_grid list, contains the parameters that have to tuned to maximise the optimisation

of the model. As the program runs the above algorithm return a string with the optimal

73

parameters that have to be inserted in the model manually, therefore after this procedure these

lines may be converted into comment since they would just increase the time for the algorithm

to complete. For the same reason, just 4 parameters have been chosen for tuning but

theoretically all the parameters seen in the last section may be added.

The following lines show the optimisation of each model present in the algorithm [Code snippet

11]:

model = RandomForestClassifier(max_depth=None, min_samples_split=7,

n_estimators=400, criterion='gini',
 max_features=5)
model = neighbors.KNeighborsClassifier(n_neighbors=8, weights='distance')
model = DecisionTreeClassifier(criterion='log_loss', max_depth=None,

min_samples_split=2, splitter='best')
model = LogisticRegression(penalty=None, solver='saga', max_iter=10000)
model = SVC(probability=True, shrinking=True, kernel='rbf')
model = naive_bayes.GaussianNB(var_smoothing=0.1873817422860384)
model = MLPClassifier(max_iter=1000, hidden_layer_sizes=13, random_state=9)

Code snippet 11: results of the parameter tuning for each method;

5.6. Outputs and evaluations

In this last section are provided the outputs and the evaluations that have been obtained in this

work, moreover each solution is going to be analysed and commented.

As already explained in the other sections, in this application a procedure for the K-Fold Cross

Analysis has been implemented in the algorithm: the 18 experiments are inserted in a different

database for each of the three iteration that has been performed, the following lines show the

subdivision of the dataset over the three experiments [Code snippet 12]:

test_1 = [12, 16, 17, 18]
train_1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15]
test_2 = [1, 2, 6, 9]
train_2 = [3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18]
test_3 = [8, 9, 11, 12]
train_3 = [1, 2, 3, 4, 5, 6, 7, 10, 13, 14, 15, 16, 17, 18]

Code snippet 12: subdivision of the datasets over the experiments;

74

 The subdivision has been thought to test the algorithm under a similar amount of worn and

unworn rows; the results are hence averaged in order to provide a definitive result for each

evaluation metric.

What follow are two functions that have been used for the production of the output [Code

snippet 13][Code snipper 14]:

def final_evaluation(evaluations, method, color):
 data = {'Random Forest': evaluations[0], 'KNN': evaluations[1],
 'Decision Tree': evaluations[2], 'Logistic Regression':

evaluations[3], 'SVM': evaluations[4],
 'Naive Bayes': evaluations[5], 'ANN': evaluations[6]}
 Names = list(data.keys())
 values = list(data.values())
 fig = plt.figure(figsize=(10, 5))
 plt.bar(Names, values, color=color,
 width=0.4)
 plt.xlabel("Methods")
 plt.ylabel(method)
 plt.title("Evaluation of the methods selected")
 plt.show()

Code snippet 13: function for plotting the outputs;

def evaluator(y_test, y_pred, evaluations, evaluations_r, method):
 precision = metrics.precision_score(y_test, y_pred)
 accuracy = metrics.accuracy_score(y_test, y_pred)
 recall = metrics.recall_score(y_test, y_pred)
 f1 = metrics.f1_score(y_test, y_pred)
 print(pd.DataFrame([precision, accuracy, recall, f1],

index=['Precision', 'Accuracy', 'Recall', 'F1'],
 columns=[method]))
 evaluations.append(accuracy)
 evaluations_r.append(f1)
 return evaluations, evaluations_r

Code snippet 14: function for producing the evaluation of each model;

75

As may be seen in the second function, the evaluator used for this application have been: F1,

precision, accuracy, and recall, according to what has been seen in the third chapter. Each

time a model is applied in the algorithm, the evaluator function is also applied, that return a

table with the evaluation of each model, the final evaluation function is triggered as well to

append the values of the evaluation to a list that is needed for plotting the following results

[Figure 39][Figure 40]

Figure 39: bar chart plotting the F1 results of the algorithm for each model;

Figure 40: bar chart plotting the F1 results of the algorithm for each model;

76

As may be seen, the RF and the DT have both obtained good results, and ANN and LoR are

mediocre but can still be considered acceptable, KNN and SVM are highly inefficient, and

the NB just did not detect the pattern, however more detailed comment and evaluation are

provided in the following subsections.

Eventually, below this paragraph it has been provided the function that has been implemented

for the whole procedure that has been seen in the last sections [Code snippet 15]

def plotter(test, train):
 evaluations = []
 evaluations_r = []
 df, df_test = cleaning(test, train)
 fig, ax = plt.subplots(figsize=(40, 40))
 sns.heatmap(df.corr(), annot=True, cmap='Blues', ax=ax)
 plt.show()
 y_test, y_pred = random_forest(df, df_test)
 cm = confusion_matrix(y_test, y_pred, labels=[0, 1])
 disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=[0,

1])
 plot('Random Forest', disp)
 evaluations, evaluations_r = evaluator(y_test, y_pred, evaluations,

evaluations_r, "Random Forest")
Code snippet 15: implementation of model, evaluation, and confusion matrix in the algorithm;

This procedure is the same for the all the other models, so it would be pointless to show their

lines as well. Initially two lists are created (void) to be used in the evaluator function, then the

function of cleaning the database is triggered and it returns the two databases (train and test),

normalised, to this function. The results obtained in the model function are called and plotted

in the confusion matrix. Eventually the function evaluator is triggered that append the

evaluations to the lists declared at the begin of the function, the function therefore proceeds

this way for each models that has been seen above.

The following subsections, as already mentioned, will briefly discuss the results of each model

and show all the other result and other possible optimisations.

77

5.6.1. Random Forest

The RF is resulted to be the second-best model for

this application, and for what can be seen in the

confusion matrix aside [Figure 41], the model is

balanced and provided acceptable results.

However, it also shows a bias in the output for the

second type error, that are five times bigger then

the ones of first type, and the overall result is

definitely worse than the DeT.

The following table, shows the exact value of the

results obtained by the model [Table 8]:

Table 8: results of the RF model;

Precision Accuracy Recall F1
0.841 0.869 0.965 0.899
0.762 0.645 0.645 0.640
0.989 0.749 0.683 0.808
0.864 0.754 0.733 0.782

The last row reports the averaged results of the three rows above, and these numbers have to

be considered as the results, it has been chosen to report also the other values in order to

investigate any further problematic in the dataset or in the model.

As may be seen, the results obtained are substantially good for all the iteration performed,

moreover the table shows also that the bias toward the second type error is not systematic since

the recall is strangely different only in the first iteration while in the other experiments the

results are lower, however the bias may be toward the first type errors as showed by the

precision in the third iteration.

Eventually, the RF is indeed the second better choice for the algorithm however the gap

between the DeT is important, on the other hand a higher level of tuning of the parameters that

may reveal a better choice for the analysis.

Figure 41: confusion matrix of the RF in the
first iteration;

78

5.6.2. KNN

The KNN obtained what can be defined an

inefficient result: it did not detect the pattern

and definitely it suffers of a huge bias toward

the first type error as it has been depicted in the

confusion matrix [Figure 42], a further analysis

may be obtained consulting the table beneath

shows the overall results obtained by the KNN

in the algorithm [Table 9]:

Table 9: results of the KNN model;

Precision Accuracy Recall F1
0.576 0.459 0.415 0.482
0.403 0.335 0.336 0.367
0.777 0.373 0.265 0.395
0.585 0.389 0.339 0.415

As already mentioned above, this model suffers of a bias toward the first type error as showed

by the precision parameter, that is still high for all the experiments that have been performed.

The optimisation has been performed on most of the parameters, hence it’s hard to say that a

better optimisation will improve somehow the model that on the basis of the table above is just

inadequate to this dataset.

5.6.3. Decision Tree

The DeT obtained the better results of all the

other models for all the experiments, and

especially better than the ones obtained by the

RF, even though this latter is supposed to be a

“correction” of the DeT and looking at the

confusion matrix [Figure 43], it appears also

as it is not suffering relevant bias toward one

Figure 42: confusion matrix of the KNN in the
first iteration;

Figure 43: confusion matrix obtained by the DeT
in the first iteration;

79

type of error, and even the absolute error amount is not big as the ones obtained by the other

models.

The following table shows the results obtained by the DeT in details [Table 10]:

Table 10: results of the DeT model;

Precision Accuracy Recall F1
0.906 0.883 0.901 0.903
0.838 0.741 0.679 0.750
0.904 0.895 0.966 0.934
0.883 0.840 0.849 0.862

As may be seen, the results are very good, and there is no evident sign of any bias toward any

type of error, and therefore the DeT has provided acceptable estimations for the dataset utilised.

5.6.4. Logistic Regression

The LoR is the only model that is technically a

regression, applied to the classification and in this

work. As may be seen by the confusion matrix

aside [Figure 44] the results are mediocre and

hence the model is better than others but not

comparable to the results obtained by the DeT. It

can be said that the results seem heavily biased,

and the number of errors is important. The

following table shows the results obtained by the

LoR for each experiment [Table 11]:

Table 11: results obtained by the LoR model;

Precision Accuracy Recall F1
0.567 0.502 0.737 0.643
0.438 0.342 0.529 0.479
0.714 0.368 0.306 0.429
0.573 0.404 0.524 0.517

Figure 44: confusion matrix of the LoR in
the first iteration;

80

As may be seen, the results are medially around 0.5, however looking at the single

measurement, it is clear that the results are influenced by the datasets on which the model is

tested and hence the model is not able to detect efficiently a path, however, as already said for

other models, a different set of parameters obtained with a more accurate optimisation might

be able to revert this condition and making the model more precise.

5.6.5. SVC

The SVM, or SVC, since it is implemented for

a classification algorithm, obtained a awful

result and characterised even by a high degree

of error, seeing the output depicted in the

confusion matrix [Figure 45], it seems also that

a bias toward the first type error is heavily

present in the model.

 The following table reports the output of the

SVC in the algorithm [Table 12]:

Table 12: results obtained by the SVC model;

Precision Accuracy Recall F1
0.430 0.366 0.129 0.199
0.569 0.566 0.988 0.722
0.215 0.196 0.015 0.028
0.405 0.376 0.377 0.317

A bias toward the false negative is confirmed. The overall values show that the model did not

detect the pattern, however a further hyperparameter tuning might be able to slightly increase

the capabilities of the model, but it is unlikely that it would make the model acceptable.

Figure 45: confusion matrix of the SVC obtained
in the first iteration;

81

5.6.6. Naïve Bayes

The NB obtained the worst results as may be seen

in the in the confusion matrix [Figure 36],

moreover it also depicts a situation where the

model is totally biased, the predictions it made

define the model as unusable for this algorithm

and it also has been confirmed by the following

table [Table 13] :

Table 13: results obtained by the NB;

Precision Accuracy Recall F1
0.268 0.330 0.058 0.096
0.484 0.413 0.376 0.423
0.527 0.235 0.107 0.178
0.426 0.326 0.180 0.232

As quite clear by the outputs reported, the NB is biased and still committed an enormous

amount of error. It is quite clear that the model did not detect any path for the target feature

and hence is not able to be used in an actual situation. Since for it’s hyperparameter tuning

have been used all the parameters available, it is unlikely that under other conditions the

algorithm would obtain a better result,

5.6.7. ANN

The ANN is the only NN that has been

applied for this algorithm, the results

obtained are however mediocre as may be

seen in the confusion matrix [Figure 47]:

the model is heavily biased toward the

second type errors, and it has never been

actually able to correctly detect a path for

the wear of the machine. The confusion

matrix depicts also a situation where there

Figure 46: confusion matrix by the NB in the first
iteration;

Figure 47: confusion matrix obtained by the ANN in
the first iteration;

82

is a tendency to define as “worn” almost all the data available and hence it already proves the

inadequacy of the model to the algorithm. As a further example of that, the report from the

three iteration is displayed beneath this paragraph [Table 14]:

Table 14: output report for the ANN;

Precision Accuracy Recall F1
0.495 0.385 0.590 0.538
0.571 0.569 0.994 0.725
0.368 0.186 0.072 0.120
0.478 0.380 0.552 0.461

The bias is evidently highlighted by the Recall metrics that shows a huge variance in the three

experiments, that indeed influences the F1 as well. However, the values reached are purely due

to the averaged nature of the experiments since a low value is balanced by an higher one, hence

the model is just unable to detect the path of the wear of the machine and it should not be

applied for an actual situation.

5.6.8. Comment

In this chapter several different models have been implemented and tested on a classification

algorithm to verify both the implementation theories seen in the other chapters and to provide

a deeper understanding of this methodologies. The final evaluation portrayed a situation where

the DeT outperformed all the other models, and the RF model is almost as balanced.

This work also reviewed the implications and complications that may arise from any ML

implementation and provide practical suggestions for the preparation of a ML algorithm.

All the confusion matrixes and the outputs presented in this chapter have been computed on

the Python algorithm that has been presented as well and the compiler itself did not return any

error for this algorithm.

83

6. Conclusions

This work has studied the applications and the implementation of the ML algorithms, from the

collection of the dataset to the evaluation of the models. Initially the review was focused on a

purely theoretical analysis with a study on the applications like the quality and the tool wear

predictions, and even applications that included the DT systems, then the analysis started to

consider more practical views to see the MLs, as studying the most common ML models, from

the RF to the KNN and which Python libraries are usually implied for the deployment of a ML

or its preparation.

This work studied then, the general methodologies that are used for the implementation of ML:

how to collect a useful dataset from a machine and how to manipulate it (normalisation and

sampling) clean the data that cannot be used, how to select the features (regressors) for the

analysis and how a ML can be optimised using the hyperparameter tuning. Moreover, the study

reviewed the most used evaluation methods for a ML algorithm, for both regression and

classification models, including numerical and graphical solutions.

Eventually the thesis, studied the implementation of a ML through a personal use case with a

public dataset. The use case briefly studied the CNC milling machine that was the machine the

dataset was collected from, the dataset itself and how this data has been cleaned and

normalised, the following task has been the selection of the features and choosing the ML

model to apply to the algorithm, that were chosen accordingly to what has been seen in the

analysis of the sources. The final phase of this implementation was the evaluation that has been

fully portrayed for the whole set of models, with all the evaluation methods that have been seen

in the former chapter, the results where that the RF and DeT both obtained acceptable results

and they can actually be used for a ML implementation.

All this procedures that have been seen in the last chapter are presented with the python

algorithm that was used for this personal implementation, in order to provide the reader a full

understanding of what has been done and how it can be furtherly improved.

6.1. Future work

This thesis reviewed the most common techniques and methodologies that can be applied for

the implementation of a ML algorithm, eventually providing a practical solution for a

classification problem. Although, this latter approach is complete and fully works, it may be

84

improved furtherly with an expanded session of hyperparameter tuning, or even with the

implementation of Deep Learning methodologies that have not really studied in this work.

Moreover, a proper study with the DTs should be considered to increase the knowledge of this

latter, and to understand the relationship between DT and ML.

Eventually, a further study for a regression algorithm should also be considered in order to

review the other kind of ML that has not be seen in this practical implementation.

85

86

Bibliography

[1] R. Oberlé, S.Schorr, L.Yi, M.Glatt, D.Bähre, J. C. Aurich, ”A Use Case to Implement

Machine Learning for Life Time Prediction of Manufacturing Tools”, Procedia CIRP, Volume

93, Pages 1484-1489, Institute of Production Engineering, Saarland University, 2020.

[2] M. Ay, S. Stemmler, M.Schwenzer, D.Abel, Thomas Bergs, “Model Predictive Control in

Milling based on Support Vector Machines”, IFAC-PapersOnLine, Volume 52, Issue 13, Pages

1797-1802, RWTH Aachen University, 2019.

[3] H.Wang, B.Li, F.Xuan, “Fatigue-life prediction of additively manufactured metals by

continuous damage mechanics (CDM)-informed machine learning with sensitive features”,

International Journal of Fatigue, Volume 164, East China University of Science and

Technology, 2022.

[4] H.Tercan, T.Meisen, “Machine learning and deep learning based predictive quality in

manufacturing: a systematic review”, Journal of Intelligent Manufacturing, Volume 33, Issue

7, Pages 1879 - 1905, University of Wuppertal, 2022.

[5] H.Wang, B. Li, F.Xuan, “A dimensionally augmented and physics-informed machine

learning for quality prediction of additively manufactured high-entropy alloy”, Journal of

Materials Processing Technology, Volume 307, Article number 117637, School of Mechanical

and Power Engineering, East China University of Science and Technology, 2022.

[6] M.R.Sarabi, M.M.Alseed, A.A.Karagoz, S.Tasoglu, “Machine Learning-Enabled

Prediction of 3D-Printed Microneedle Features”, Biosensors, Volume 12, Issue 7, Article

number 491, Graduate School of Sciences & Engineering, Koç University, 2022.

[7] L. Dang, X. He, D. Tang, Y. Li, T. Wang, “A fatigue life prediction approach for laser-

directed energy deposition titanium alloys by using support vector regression based on pore-

induced failures “, International Journal of Fatigue, Volume 159, Issue 106748, Beihang

University, 2022.

[8] J.Gu, L.Zhao, X.Yue, N.I. Arshad, Mohamad, H.Ummul, “Multistage quality control in the

manufacturing process using blockchain with machine learning technique“, Information

Processing and management, Volume 60, Issue 4, Article number 103341, Yangzhou

University, 2023.

[9] A.K.Sah, M. Agilan, S. Dineshraj, M.R. Rahul, B. Govind “Machine learning-enabled

prediction of density and defects in additively manufactured Inconel 718 alloy”, Materials

87

Today Communications, Volume 30, Article number 103193, Indian Institute of Technology,

2022.

[10] K.Manjunath, S.Tewary, N.Khatri, K.Cheng, “Monitoring and predicting the surface

generation and surface roughness in ultraprecision machining: A critical review”, Machines,

Volume 9, Issue 12, Article number 369, Central Scientific Instruments Organisation, 2021.

[11] Z. Zhan, W. Hu, Q. Meng, “Data-driven fatigue life prediction in additive manufactured

titanium alloy: A damage mechanics-based machine learning framework”, Engineering

Fracture Mechanics, Volume 252, Article number 107850, Beihang University,2021.

[12] B.Crawforda, R.Sourki, H.Khayyamb, A.S. Milani “A machine learning framework with

dataset-knowledgeability pre-assessment and a local decision-boundary crispness score: An

industry 4.0-based case study on composite autoclave manufacturing”, Computers in Industry,

Volume 132, Article number 103510, University of British Columbia, 2021.

[13] J.Wu, M. Wu, Z. Chen, Xiaoli Li, Ruqiang Yan, “A joint classification-regression method

for multi-stage remaining useful life prediction”, Journal of Manufacturing Systems, Volume

58, Part A, Pages 109-119, Singapore School of Mechanical Engineering, 2021.

[14] N.E.Sizemore, M.L. Nogueira, N.P.Greis, M.A. Davies, “Application of Machine

Learning to the Prediction of Surface Roughness in Diamond Machining”, Procedia

Manufacturing, Volume 48, Pages 1029-1040, University of North Carolina, 2020.

[15] M.Hu, Q.Tan, R.Knibbe, S.Wang, X.Li, T.Wu, S.Jarin, M.Zhang, “Prediction of

Mechanical Properties of Wrought Aluminium Alloys Using Feature Engineering Assisted

Machine Learning Approach”, Metallurgical and Materials Transactions A: Physical

Metallurgy and Materials Science, Volume 52, Issue 7, Pages 2873 - 2884, School of

Mechanical and Mining Engineering, 2021.

[16] S. Schorr, M. Möller, J.Heib, D.Bähre, “Quality Prediction of Drilled and Reamed Bores

Based on Torque Measurements and the Machine Learning Method of Random Forest”,

Procedia Manufacturing, Volume 48, Pages 894-901, RWTH Aachen University, 2020

[17] C.Gutschi, N.Furian, J.Suschnigg, D.Neubacher, S.Voessner, “Log-based predictive

maintenance in discrete parts manufacturing”, Procedia CIRP, Volume 79, Pages 528-533,

Graz University of Technology, 2019.

[18] D.Wu, C.Jennings, J.Terpenny, R.X.Gao, S.Kumara, “A Comparative Study on Machine

Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests”,

ASME, Volume 139, Issue 7, Pennsylvania State University, 2017.

[19] L.Guo, Y.Yu, H.Gao, T.Feng, Y.Liu, “Online Remaining Useful Life Prediction of

Milling Cutters Based on Multisource Data and Feature Learning”, IEEE Transactions on

88

Industrial Informatics, Volume 18, Issue 8, Pages 5199 - 52081, Southwest Jiaotong

University,2022.

[20] T.F.De Barrena, J.L.Ferrando, A.García, X.Badiola,M.S.de Buruaga, J.Vicente, “Tool

remaining useful life prediction using bidirectional recurrent neural networks (BRNN)“, The

International Journal of Advanced Manufacturing Technology, Volume 125, Issue 9-10, Pages

4027 - 4045, Fundación Vicomtech, 2023.

[21] A. Bonci, A. Di Biase, A.F. Dragoni, S. Longhi, P. Sernani, A. Zega, “Machine learning

for monitoring and predictive maintenance of cutting tool wear for clean-cut machining

machines “, IEEE International Conference on Emerging Technologies and Factory

Automation, Volume 2022, Polytechnic University of Marche,2022.

[22] Z. Zhan, H. Li, “Machine learning based fatigue life prediction with effects of additive

manufacturing process parameters for printed SS 316L”, International Journal of Fatigue,

Volume 142, Article 105941, Beihang University, 2021.

[23] I. Baturynska, K. Martinsen, “Prediction of geometry deviations in additive manufactured

parts: comparison of linear regression with machine learning algorithms “, Journal of

Intelligent Manufacturing, Volume 32, Issue 1, Pages 179 - 200, Norwegian University of

Science and Technology,2021.

[24] Y.Zhou, B.Sun, W.Sun, “A tool condition monitoring method based on two-layer angle

kernel extreme learning machine and binary differential evolution for milling“, Measurement:

Journal of the International Measurement Confederation, Volume 16615, Article number

108186, Wenzhou University, 2020.

[25] J. L. Bartlett, A.Jarama, J.Jones, X.Li, “Prediction of microstructural defects in additive

manufacturing from powder bed quality using digital image correlation”, Materials Science

and Engineering: A, Volume 794, Article 140002, University of Virginia, 2020.

[26] R. de Souza Borges Ferreira. A. Sabbaghi, Q. Huang, “Automated Geometric Shape

Deviation Modeling for Additive Manufacturing Systems via Bayesian Neural Networks”,

IEEE Transactions on Automation Science and Engineering, Volume 17, Issue 2, Pages 584 -

598, Article number 8851391, University of Southern California, 2020.

[27] N.Hertlein, S.Deshpande, V. Venugopal, M. Kumar, S. Anand, “Prediction of selective

laser melting part quality using hybrid Bayesian network”, Additive Manufacturing, Volume

32, Article number 101089, University of Cincinnati, 2020.

[28] C.Y. Park, J.W.Kim, B.Kim, J.Lee, “Prediction for Manufacturing Factors in a Steel Plate

Rolling Smart Factory Using Data Clustering-Based Machine Learning”, IEEE, Volume 8,

Pages 60890 - 60905, Article number 9046761, University, Pohang, 2020.

89

[29] E.Salvati, A.Tognan, L.Laurenti, M.Pelegatti, F.De Bona, “A defect-based physics-

informed machine learning framework for fatigue finite life prediction in additive

manufacturing”, Materials and Design, Volume 222, Article number 111089, University of

Udine,2022.

[30] T.von Hahn, C. K. Mechefske, “Machine Learning in CNC Machining: Best Practices “,

Safety of Machinery: Design, Monitoring, Manufacturing, Queen’s University, 2022.

[31] J. He, C. Yin, Y. Wang, “Deep multi-task network based on sparse feature learning for

tool wear prediction”, Sage Journals, Nanjing University of Science and Technology, 2020.

[32] D. Wang, Q. Liu, D. Wu, L. Wang, “Meta domain generalization for smart manufacturing:

Tool wear prediction with small data”, Journal of Manufacturing Systems, Volume 62, Pages

441-449, University of Central Florida, 2022.

[33] M. Li, M. Burzo, “Tool Wear Monitoring Using Machine Learning “, IEEE Canadian

Conference on Electrical and Computer Engineering, University of Michigan-Flint, 2021.

[34] B.Lutz, D. Kisskalt, D.Regulin, B.Aybar, J.Franke, “Automated Domain Adaptation in

Tool Condition Monitoring using Generative Adversarial Networks”, IEEE International

Conference on Automation Science and Engineering, Volume 2021, Pages 1326 - 133123,

Institute for Factory Automation and Production Systems,2021.

[35] A.Varghese, V.Kulkarni, S.S.Joshi, “Tool Life Stage Prediction in Micro-milling from

Force Signal Analysis Using Machine Learning Methods“, ASME, Volume 143, Issue 5, Indian

Institute of Technology, 2020.

[36] N.K.Mandal, N.K.Singh, N.H. Tarafdar, A.Hazra, “Correlating tool wear and surface

integrity of a CNC turning process using Naïve based classifiers”, Proceedings of the

Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Volume

235, Issue 5, Pages 772 - 781, Indian Institute of Technology, 2021.

[37] B. Pang, D.Yuan, D.Li, Z.Di, “Tool Remaining Useful Life Prediction Method Based on

Time-frequency Features Fusion and Long Short-term Memory Network”, 2021 Global

Reliability and Prognostics and Health Management, PHM-Nanjing 2021, Shandong

University, 2021.

[38] V.Parwal, B.K. Rout, “Machine learning based approach for process supervision to predict

tool wear during machining“, Procedia CIRP, Volume 98, Pages 133-138, Birla Institute of

Technology and Science Pilan, 2021.

[39] M.Cheng, L.Jiao, X.Shi, X.Wang, P.Yan, Y.Li, “An intelligent prediction model of the

tool wear based on machine learning in turning high strength steel”, Proceedings of the

90

Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Volume

234, Issue 13, Pages 1580 - 15971, Beijing Institute of Technology, 2020.

[40] J. Karandikar, T. Schmitz, S. Smith, “Logistic classification for tool life modeling in

machining”, Procedia CIRP, Volume 101, Pages 106-109, University of Tennessee, 2021.

[41] A. Mohamed, M. Hassan, R. M’Saoubi, H. Attia, “Tool Condition Monitoring for High-

Performance Machining Systems—A Review”, Sensors, Volume 22, Issue 6, Article number

2206, McGill University, 2022.

[42] C.J.Fourie, J. A.Du Plessis, “Implementation of Machine Learning techniques for

prognostic of railway wheel flange wear”, The South African Journal of Industrial

Engineering, University of Stellenbosch, 2020.

[43] E.Traini, G.Bruno, G. D’Antonio, F. Lombardi, “Machine Learning Framework for

Predictive Maintenance in Milling”, IFAC-PapersOnLine, Volume 52, Issue 13, Pages 177-

182, Politecnico di Torino, 2019.

[44] A. Gouarir, G. Martínez-Arellano, G. Terrazas, P. Benardos, S. Ratchev, “In-process Tool

Wear Prediction System Based on Machine Learning Techniques and Force Analysis”,

Procedia CIRP, Volume 77, Pages 501-504, The University of Nottingham, 2018.

[45] N.S.Karuppusamy; P.Pandian P; H.Lee; B.Kang, “Tool wear and tool life estimation based

on linear regression learning”, IEEE, Christ University, 2015.

[46] Z. Huang, M. Fey, C. Liu, E. Beysel, X. Xu, C. Brecher, “Hybrid learning-based digital

twin for manufacturing process: Modelling framework and implementation”, Robotics and

Computer-Integrated Manufacturing, Volume 82, RWTH Aachen University, 2023.

[47] H. Mu, F. He, L. Yuan, P. Commins, H. Wang, Z. Pan, “Toward a smart wire arc additive

manufacturing system: A review on current developments and a framework of digital twin”,

Journal of Manufacturing Systems, Volume 67, Pages 174-189, University of Wollongong,

2023.

[48] J. Lv, X. Li, Y. Sun, Y. Zheng, J. Bao, “A bio-inspired LIDA cognitive-based Digital

Twin architecture for unmanned maintenance of machine tools”, Robotics and Computer-

Integrated Manufacturing, Volume 80, Donghua University, 2023.

[49] C. Li, P. Zheng, Y. Yin, Y. M. Pang, S. Huo, “An AR-assisted Deep Reinforcement

Learning-based approach towards mutual-cognitive safe human-robot interaction”, Robotics

and Computer-Integrated Manufacturing, Volume 80, Hong Kong Polytechnic University,

2023.

[50] C. Zhang, G. Zhou, J. Li, F. Chang, K. Ding, D. Ma, “A multi-access edge computing

enabled framework for the construction of a knowledge-sharing intelligent machine tool swarm

91

in Industry 4.0”, Journal of Manufacturing Systems, Volume 66, Pages 56-70, Xi’an Jiaotong

University, 2023.

[51] Z. Liu, L. Hu, W. Hu, Jianrong Tan, “Petri Nets-Based Modeling Solution for Cyber-

Physical Product Control Considering Scheduling, Deployment, and Data-Driven Monitoring”,

IEEE Transactions on Systems, Man, and Cybernetics: Systems, Volume 53, Issue 2, Zhejiang

University, 2023.

[52] O. Khalaj, M.Jamshidi, P.Hassas, M. Hosseininezhad, B. Mašek, C. Štadler, J. Svoboda,

“Metaverse and AI Digital Twinning of 42SiCr Steel Alloys”, Mathematics, University of West

Bohemia, 2023.

[53] B. D. Deebak, F. Al-Turjman, “Digital twin assisted: Fault diagnosis using deep transfer

learning for machining tool condition”, Intelligent Systems, 2022.

[54] S. Wu, W. Xiang, W. Li, L. Chen, C. Wu, “Dynamic Scheduling Optimization of

Production Workshops Based on Digital Twin”, Applied Science, University of Shanghai,

2022.

[55] D. B. Kim, G. Shao, G. Jo, “A digital twin implementation architecture for wire + arc

additive manufacturing based on ISO 23247”, Manufacturing Letters, Volume 34, Pages 1-5,

Tennessee Technological University, 2022.

[56] Y. Li, G.Lei, G. Bramerdorfer, S. Peng, X. Sun, J. Zhu, “Machine Learning for Design

Optimization of Electromagnetic Devices: Recent Developments and Future Directions”,

Applied Sciences, Volume 11, Issue 4, Pages 1 - 242, Article number 1627, Zhongyuan

University of Technology, 2021.

[57] H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, T. DebRoy,

“Mechanistic models for additive manufacturing of metallic components”, Progress in

Materials Science, Volume 116, Nanjing University of Science and Technology, 2021.

[58] M. Dehghanimohammadabadi, S.Belsare, R.Thiesing, “Simulation-Optimization of

Digital Twin”, Proceedings - Winter Simulation Conference, Volume 2021, Northeastern

University, 2021.

[59] Enis Karaarslan, Mohammed Babiker, “Digital Twin Security Threats and

Countermeasures: An Introduction”, 14th International Conference on Information Security

and Cryptology, ISCTURKEY 2021, Pages 7 - 11, Muǧla Sitki Koçman University, 2021.

[60] S.Alvarez-Napagao, B. Ashmore, M.Barroso, C. Barrué, C. Beecks, F. Berns, I. Bosi, S.A.

Chala, N. Ciulli, M. Garcia-Gasulla, A.Grass, D.Ioannidis, “Knowledge Project – Concept,

Methodology and Innovations for Artificial Intelligence in Industry 4.0”, IEEE International

Conference on Industrial Informatics (INDIN), Universitat Politècnica de Catalunya, 2021.

92

[61] Z. Wua, J. Li, “A Framework of Dynamic Data Driven Digital Twin for Complex

Engineering Products: The Example of Aircraft Engine Health Management”, Procedia

Manufacturing, Volume 55, Pages 139-146, Virginia State University, 2021.

[62] C. Manettas, N.Nikolakis, K. Alexopoulos, “Synthetic datasets for Deep Learning in

computer-vision-assisted tasks in manufacturing”, Procedia CIRP, Volume 103, Pages 237-

242, 2021.

[63] L. Overbeck, A. Hugues, M.C. May, A. Kuhnle, G. Lanza, “Reinforcement Learning

Based Production Control of Semi-automated Manufacturing Systems”, Procedia CIRP,

Volume 103, Pages 170 - 175, Karlsruhe Institute of Technology, 2021.

[64] A. Papacharalampopoulos, K. Sabatakakis, P. Stavropoulos, “Incorporating process

physics phenomena in formation of digital twins: laser welding case”, Procedia CIRP, Volume

99, Pages 490 - 495, University of Patras, 2021.

[65] M. C. May, L. Overbeck, M. Wurster, A. Kuhnle, G. Lanza, “Foresighted digital twin for

situational agent selection in production control”, Procedia CIRP, Volume 99, Pages 27-32,

Karlsruhe Institute of Technology, 2021.

[66] T. Wang, J. Li, Z. Kong, X.Liu, H. Snoussi, H. Lv, “Digital twin improved via visual

question answering for vision-language interactive mode in human–machine collaboration”,

Journal of Manufacturing Systems, Volume 58, Pages 261 - 269, Beihang University, 2021.

[67] Y. Zhou, T. Xing, Y. Song, Y. Li, X. Zhu, G. Li, S. Ding, “Digital-twin-driven geometric

optimization of centrifugal impeller with free-form blades for five-axis flank milling”, Journal

of Manufacturing Systems, Volume 58, Part B, Pages 22-35, Beihang University, 2021.

[68] T. Borangiu, S. Răileanu, A. Silişteanu, S. Anton, F. Anton, “Smart Manufacturing

Control with Cloud-embedded Digital Twins”, IEEE, University Politehnica of Bucharest,

2020.

[69] A.Hürkamp, S. Gellrich, Tim Ossowski, J. Beuscher, S. Thiede, C. Herrmann, K. Dröder,

“Combining Simulation and Machine Learning as Digital Twin for the Manufacturing of

Overmolded Thermoplastic Composites”, Journal of Manufacturing and Materials

Processing, Volume 4, Article number 92, Technische Universität Braunschweig, 2020.

[70] S. Stieber, A. Hoffmann, A. Schiendorfer, W. Reif, M. Beyrle, J. Faber, M. Richter, M.

Sause, “Towards Real-time Process Monitoring and Machine Learning for Manufacturing

Composite Structures”, IEEE, University of Augsburg, 2020.

[71] U. Awasthi, Z. Wang, N. Mannan, K. R. Pattipati, G. M. Bollas, “Physics-based modeling

and information-theoretic sensor and settings selection for tool wear detection in precision

93

machining”, Journal of Manufacturing Processes, Volume 81, Pages 127-140, UTC Institute

for Advanced Systems Engineering, 2022.

[72] K. Alexopoulos, N. Nikolakis, G. Chryssolouris, “Digital twin-driven supervised machine

learning for the development of artificial intelligence applications in manufacturing”,

International Journal of Computer Integrated Manufacturing, Volume 33, Issue 5, Pages 429

- 4393, University of Patras, 2020.

[73] F. Mostafa, L. Tao, W. Yu, “An effective architecture of digital twin system to support

human decision making and AI-driven autonomy”, Concurrency and Computation: Practice

and Experience, Volume 33, Issue 19, La Trobe University, 2021.

[74] Z. Chen, “Understanding of the Modeling Method in Additive Manufacturing”, IOP

Conference Series: Materials Science and Engineering, Volume 711, Issue 17, 2020.

[75] S. M. Bazaz, M. Lohtander, J. Varis, “The prediction method of tool life on small lot

turning process – Development of Digital Twin for production”, Procedia Manufacturing,

Volume 51, Lappeenranta-Lahti University of Technology, 2020.

[76] R. A. C. Diaz, M. Ghita, D. Copot, I. Roxana Birs, C. Muresan, “Context-Aware Control

Systems: An Engineering Applications Perspective”, IEEE Access, Ghent University, 2020.

[77] Y. Xie, K. Lian, Q. Liu, C. Zhang, H. Liu, “Digital twin for cutting tool: Modeling,

application and service strategy”, Journal of Manufacturing Systems, Volume 58, Part B, Pages

305-312, Huazhong University of Science and Technology, 2021.

[78] A.Fuller, Z.Fan, C. Day, C, Barlow, “Digital Twin: Enabling Technologies, Challenges

and Open Research”, IEEE Access, Volume 8, Pages 108952 - 10897, Keele University, 2020.

[79] B. J. Ralph, A. Schwarz, M. Stockinger, “An Implementation Approach for an Academic

Learning Factory for the Metal Forming Industry with Special Focus on Digital Twins and

Finite Element Analysis”, Procedia Manufacturing, Volume 45, Pages 253-258,

Montanuniversität Leoben, 2020.

[80] Q. Min, Y. Lu, Z. Liu, C. Su, B. Wang, “Machine Learning based Digital Twin Framework

for Production Optimization in Petrochemical Industry”, International Journal of Information

Management, Volume 49, Pages 502-519, 2021.

[81] I. M. Cavalcante, E. M. Frazzon, F. A. Forcellini, D. Ivanov, “A supervised machine

learning approach to data-driven simulation of resilient supplier selection in digital

manufacturing”, International Journal of Information Management, Volume 49, Pages 86 - 97,

Federal University of Santa Catarina, 2019.

94

[82] H. Ko, P. Witherell, N. Y. Ndiaye, Y. Lu, “Machine Learning based Continuous

Knowledge Engineering for Additive Manufacturing”, IEEE, Nanyang Technological

University, 2019.

[83] C. Cronrath, A. R. Aderiani, B. Lennartson, “Enhancing Digital Twins through

Reinforcement Learning”, IEEE, 2019.

[84] A. Mayr, M. Weigelt, J. von Lindenfels, J. Seefried, M. Ziegler, A. Mahr, N. Urban, A.

Kühl, F. Hüttel, J. Franke, “Electric Motor Production 4.0 – Application Potentials of Industry

4.0 Technologies in the Manufacturing of Electric Motors”, 2018 8th International Electric

Drives Production Conference, EDPC 2018 - Proceedings, Article number 8658294,

Friedrich-Alexander University Erlangen-Nuremberg, 2018.

[85] B. R. Barricelli, E. Casiraghi, D. Fogli, “A Survey on Digital Twin: Definitions,

Characteristics, Applications, and Design Implications”, IEEE Access, Università degli Studi

di Brescia, 2019.

[86] Q. Qiao, J. Wang, L. Ye, R. X. Gao, “Digital Twin for Machining Tool Condition

Prediction”, Procedia CIRP, Volume 81, Pages 1388-1393, China University of Petroleum,

2019.

[87] D. Gyulai, A. Pfeiffer, G. Nick, V. Gallina, W. Sihn, L. Monostori, “Lead time prediction

in a flow-shop environment with analytical and machine learning approaches”, IFAC-

PapersOnLine, Volume 51, Issue 11, Pages 1029-1034, Hungarian Academy of Sciences,

2018.

[88] T. Kong, T. Hu, T. Zhou, Y. Ye, “Data Construction Method for the Applications of

Workshop Digital Twin System”, Journal of Manufacturing Systems, Volume 58, Pages 323-

328, Shandong University, 2021.

[89] C. Liu, L. Le Roux, C. Körner, O. Tabaste, F. Lacan, S. Bigot, “Digital Twin-enabled

Collaborative Data Management for Metal Additive Manufacturing Systems”, Journal of

Manufacturing Systems Volume 62, Pages 857-874, Cardiff University, 2022.

[90] B. Wang, S. J. Hu, L. Sun, T. Freiheit,” Intelligent welding system technologies: State-of-

the-art review and perspectives”, Journal of Manufacturing Systems, Volume 56, Pages 373-

391, University of Michigan, 2020.

[91] “StackOverFlow” [Online]. Available: https://stackoverflow.com.

[92] “Scopus” [Online]. Available: https://www-scopus-com.

[93] “Wikipedia” [Online]. Available: https://en.wikipedia.org/wiki/Tool_wear

[94] “MatPlotLib” [Online]. Available: https://matplotlib.org

[95] “NumPy” [Online]. Available: https://numpy.org

https://stackoverflow.com/
https://www-scopus-com/
https://en.wikipedia.org/wiki/Tool_wear
https://matplotlib.org/
https://numpy.org/

95

[96] “Seaborn” [Online]. Available: seaborn: statistical data visualization — seaborn 0.12.2

documentation (pydata.org)

[97] “Pandas” [Online]. Available: https://pandas.pydata.org

[98] “SciKitLearn” [Online]. Available: https://scikit-learn.org/stable

[99] “Wikipedia” [Online]. Available: https://en.wikipedia.org/wiki/Machine_learning

[100] “Toward Data Science” [Online]. Available: https://towardsdatascience.com/machine-

learning-basics-decision-tree-regression-1d73ea003fda

[101] “Toward Data Science” [Online]. Available: Machine Learning Basics: Random Forest

Regression | by Gurucharan M K | Towards Data Science

[102] “Toward Data Science” [Online]. Available: Top 6 Machine Learning Algorithms for

Classification | by Destin Gong | Towards Data Science

[103] “Javapoint” [Online]. Available: Support Vector Machine (SVM) Algorithm - Javatpoint

[104] “GeeksforGeeks” [Online]. Available: Support Vector Machine (SVM) Algorithm -

GeeksforGeeks

[105] “Toward Data Science” [Online]. Available: Naive Bayes Classifier. What is a classifier?

| by Rohith Gandhi | Towards Data Science

[106] “Javapoint” [Online]. Available: K-Nearest Neighbor(KNN) Algorithm for Machine

Learning - Javatpoint

[107] “Javapoint” [Online]. Available: Artificial Neural Network Tutorial - Javatpoint

[108] “Toward Data Science” [Online]. Available: Convolutional Neural Networks, Explained

| by Mayank Mishra | Towards Data Science

[109] “Wikipedia” [Online]. Available: Convolutional neural network - Wikipedia

[110] “Toward Data Science” [Online]. Available: Recurrent Neural Networks. Remembering

what’s important | by Mahendran Venkatachalam | Towards Data Science

[111] “Javapoint” [Online]. Available: Recurrent Neural Network (RNN) in TensorFlow -

Javatpoint

[112] “AnyLogic” [Online]. Available: Digital Twin Development and Deployment –

AnyLogic Simulation Software

[113] “ICE” [Online]. Available: Digital twins in F1 and the built environment | Institution of

Civil Engineers (ICE)

[114] “GDPR” [Online]. Available: General Data Protection Regulation (GDPR) – Official

Legal Text (gdpr-info.eu)

[115] “Production Machining” [Online]. Available: How to Collect and Use Machine Data |

Production Machining

https://seaborn.pydata.org/
https://seaborn.pydata.org/
https://pandas.pydata.org/
https://scikit-learn.org/stable
https://en.wikipedia.org/wiki/Machine_learning
https://towardsdatascience.com/machine-learning-basics-decision-tree-regression-1d73ea003fda
https://towardsdatascience.com/machine-learning-basics-decision-tree-regression-1d73ea003fda
https://towardsdatascience.com/machine-learning-basics-random-forest-regression-be3e1e3bb91a
https://towardsdatascience.com/machine-learning-basics-random-forest-regression-be3e1e3bb91a
https://towardsdatascience.com/top-machine-learning-algorithms-for-classification-2197870ff501
https://towardsdatascience.com/top-machine-learning-algorithms-for-classification-2197870ff501
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
https://www.geeksforgeeks.org/support-vector-machine-algorithm/
https://www.geeksforgeeks.org/support-vector-machine-algorithm/
https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c
https://towardsdatascience.com/naive-bayes-classifier-81d512f50a7c
https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning
https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning
https://www.javatpoint.com/artificial-neural-network
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce
https://towardsdatascience.com/recurrent-neural-networks-d4642c9bc7ce
https://www.javatpoint.com/recurrent-neural-network-in-tensorflow
https://www.javatpoint.com/recurrent-neural-network-in-tensorflow
https://www.anylogic.com/features/digital-twin/
https://www.anylogic.com/features/digital-twin/
https://www.ice.org.uk/news-insight/news-and-blogs/ice-blogs/the-civil-engineer-blog/digital-twins-in-f1-and-the-built-environment
https://www.ice.org.uk/news-insight/news-and-blogs/ice-blogs/the-civil-engineer-blog/digital-twins-in-f1-and-the-built-environment
https://gdpr-info.eu/
https://gdpr-info.eu/
https://www.productionmachining.com/blog/post/how-to-collect-and-use-machine-data-
https://www.productionmachining.com/blog/post/how-to-collect-and-use-machine-data-

96

[116] “Kaggle” [Online]. Available: CNC Mill Tool Wear | Kaggle

[117] “All3DP” [Online]. Available: What Is CNC Milling? – Simply Explained | All3DP

https://www.kaggle.com/datasets/shasun/tool-wear-detection-in-cnc-mill
https://all3dp.com/2/what-is-cnc-milling-simply-explained/

