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1. Glossary 

Acronym Concept 

AI Artificial Intelligence 

AR Augmented Reality 

CMS Content Management System 

CPS Cyber Physical System 

CRM Customer Relationship Management 

DES Discrete Event Simulation 

DT Digital Twin 

EPHM Equipment Prognostics and Health Management 

ERP Enterprise Resource Planning 

GDPR General Data Protection Regulation 

IIoT Industrial Internet of Things 

IoT Internet of Things 

MES Manufacturing Enterprise System 

ML Machine Learning 

MTTR Mean Time To Repair 

OPC-UA Open Platform Communication - Unified Architecture 

PDM Product Data Management 

PLM Product Lifecycle Management 

RUL Remaining Useful Life 

VR Virtual reality 

VSM Viable System Model 
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2. Introduction 

The utilization of technology that promotes connectivity across 

organizational systems, processes, and products is critical in the current 

framework of Industry 4.0 and in the future adoption of Industry 5.0. Another 

factor to consider in this period is the ever-increasing amount of data 

accessible that gives full descriptions of the underlying industrial processes. 

This thesis introduces the concept of the Digital Twin (DT), one of the 

technologies that will be at the forefront of Industry 4.0 and 5.0 since they 

promote the use of IoT-enabled systems, massive utilization of big data and 

collaboration between humans and robots:  

“A digital twin can be defined, fundamentally, as an evolving digital 

profile of the historical and current behaviour of a physical object or 

process that helps optimize business performance. The digital twin is 

based on massive, cumulative, real-time, real-world data 

measurements across an array of dimensions. These measurements 

can create an evolving profile of the object or process in the digital 

world that may provide important insights on system performance” 

[5]. 

It’s a technology that is transforming the manufacturing context and, in 

general, the way complex systems are designed and managed. The key 

innovation is that process management via the DT enables the conception, 

development, and testing of processes, including performance evaluation, 

using a virtual representation first and subsequently implementing them in 

the real world. 
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According to a 2022 study [28], the number of papers related to the topic has 

grown exponentially in recent years; specifically, a search on one of the major 

database for scientific articles (Scopus) revealed that it went from about 30 

articles published in 2016, the highest historical figure up to that time, to an 

average of 3000 articles in 2021 and statistically much more at the end of 

2022. This research undoubtedly reveals how the DTs tool, along with all of 

the technologies and methodologies on which it is built, is constantly 

increasing and finding more and more space in the scientific literature in 

many fields. 

 

 

Figure 1 - The number of publications on digital twins (data taken from Scopus, records from January 2016 to 
March 2022) [28] 

 

The purpose of this thesis is to highlight synergies and differences of the main 

DT frameworks regarding mainly scheduling activities described in the 
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technical literature and link some of the main connected aspects by giving an 

in-depth study of existing research as well as review of the potentiality and 

problems that Digital Twins provide to the manufacturing industry. 

Through literature research, this thesis investigates the world of DT-enabled 

systems. The study will concentrate on numerous key areas, such as the 

drivers that drive businesses to adopt this technology, the enablers that enable 

its effective implementation, and barriers that might obstacle its complete 

acceptance and integration. The methodologies and technologies utilized to 

successfully incorporate DTs into industrial systems will also be investigated. 

The review focuses on the application of DTs in several sectors and activities 

necessary in the manufacturing world, such as resource planning, material 

procurement, machinery maintenance, and real-time processing scheduling 

(key aspects for activities in the world of industry 4.0); in particular, the work 

will aim to revise the main logic architectures related to the last mentioned 

aspect (real-time processing scheduling) in order to identify a common logic 

infrastructure applicable to a variety of manufacturing contexts.  
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2.1 Approach, Methodology and Material 

Categorization 

The approach used to explore the technical literature and prepare the thesis 

follows a well-defined logic described in the following steps: 

1. An initial overview was conducted, through the main search engines 

for scientific papers (such as Google Scholar, IEEExplore, Clarivate 

Analytics’ Web of Science, Archive Ovuerte HAL, Science Direct,  

Elsevier’s Scopus, etc.) that allowed to map the main strands on 

which the scientific literature in the field of manufacturing and 

Industry 4.0 is developed and investigate regarding the application 

of DTs. 

2. The second phase involves a review of the most cited articles 

(selected with the help of Connected Papers software, etc.) in order 

to identify the most credited papers in individual research chapters 

(the various levels on which DTs can enhance and make a positive 

contribution to manufacturing). 

3. Then they were analysed by pre-dividing the articles into papers 

describing Industry 4.0 and future technologies, general reviews 

around DTs, specific reviews describing the possible adoption of DTs 

in the various levels of manufacturing, technical analyses of specific 

frameworks in the various levels of manufacturing. The purpose is to 

identify and subdivide the main branches of research. 

4. Finally, they were categorized, on appropriate Excel file table, using 

the procedure outlined in the article [7] (enter in an Excel file 

bibliographic references to articles in which enablers, drivers, and 

barriers are described and identified references to papers that provide 

frameworks for the deployment of DT), according to the topics 
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covered in the thesis chapters, which are described in the dedicated 

section (number 2.2): 

a. general Information 

b. drivers, enablers, barriers, challenges and benefits linked to DT 

adoption. 

c. supply chain planning and demand forecasting information 

d. scheduling frameworks 

e. predictive Maintenance information 

The questions this research paper seeks to answer follow: 

 What are the key features of DTs in manufacturing systems? 

 What are the primary drivers, enablers, and barriers to DT adoption in 

manufacturing systems? 

 What features should a DT's logical architecture have for scheduling 

operations within a production system? 

According to the procedures outlined above, research was conducted using 

these questions in order to maintain the emphasis on the primary subjects 

addressed by the thesis.  
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2.2 Sections Description 

The following thesis is structured into three main chapters: 

 The introduction (Chapter 2) provides an initial concept of DT and its 

subsequent evolution over time and summarily describes the main 

areas and topics of analysis on which the thesis focuses; it also 

provides the approach that was followed to analyse all the scientific 

articles on which the analysis performed is based. 

 Chapter 3 provides a classification and commentary of the main 

drivers, enablers and barriers to the implementation of DTs in 

manufacturing, particularly distinguishing between technological and 

"social" factors as well as attempting to make a connection between 

the main enablers and barriers to determine which aspects an 

organization should invest in to overcome such barriers. 

 Chapter 4 focuses on a review of the main frameworks, mainly related 

to scheduling activities, looking for differences, evolutions and main 

common features, in order to define a pattern that can be followed to 

be able to implement a DT based on a reliable framework, for 

scheduling purpose, adaptable to various contexts.  
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2.3 Evolution of the Digital Twin concept through 

Industrial eras 

Michael Grieves introduced, for the first time, the notion of Dt at the 

University of Michigan in 2003, in the context of Product Lifecycle 

Management Systems. [3]. 

He originally proposed the idea of producing a digital duplicate of assets and 

physical systems to protect them from harm or difficulties during analysis 

and diagnostic activities [1]. First reference to DT was as Mirrored Spaces 

Models. Grieves decided to change the definition of DT, during 2006, into 

Information Mirroring Model [3]. 

This definition was than evolved by the National Aeronautics and Space 

Administration (NASA) in 2010. They defined the DT as an ultra-realistic, 

high scaling simulation, which uses the best available physical models, 

sensor data and historical data for mirroring one or more real systems [2]. 

This new definition of DT concept coincided with the first practical 

implementation (due to technological restrictions, such as not developed 

system hardware power, lack of efficient and reliable connection mechanisms 

and protocols, data management, etc., DTs had no real-world application in 

a manufacturing system. [3]). 
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Figure 2 - DT concept evolution through time 

 

the concept has continued to evolve simultaneously with the increase in the 

number of papers published on the subject. For example, John Vickers in 

[52], as reported by [28], redefined his conception of DT as:  

"A set of virtual information constructs that fully describes a potential 

or actual physical manufactured product from the micro atomic level 

to the macro geometrical level." 

Up to one of the most recent definitions offered by [39] and taken up by other 

experts in the field: DT viewed as a software representation of a physical 

object including its conditions and behaviour via models and data collected 

in the real world.  
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3. Drivers, Enablers and Barriers to DT 

implementation 

3.1 Drivers 

Commonly, a “driver" is a crucial factor or influential factor that hat convince 

someone to do something or causes something to happen [36, 37]. These 

considerations are typically reasons for businesses or individuals to invest 

time, and effort in developing and deploying innovative technologies. 

As stated in [4] about the drivers in manufacturing DT world: 

“In this case, Drivers can be understood as factors and forces that 

induce companies to initiate and fully-implement digital twin-related 

projects.”  

Below follows a list of the main drivers, described by various papers, that 

direct organizations to adopt Digital Twins for production, planning, 

maintenance, scheduling, etc.: 

 the rising need to provide manufacturing flexibility: the word 

"flexibility" has been used to refer to the ability to develop a greater 

range of product variants as well as the ability to flexibly rearrange 

the manufacturing process in response to required modifications [4]. 

This point is the main focus of the DT for scheduling frameworks 

investigated in chapter 4. 

 Competitiveness: as an exogenous variable, experts highlighted rising 

corporate competitiveness, which sets pressure on enterprises to find 

ways to cut costs while maintaining quality and efficiency. As digital 

twin drivers, experts cited benefits such as quality defect recognition, 
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failures forecasting, cost savings [4] (including the high costs 

associated with disruptive testing and cost linked with prototypes [3]). 

In research [52], the aspect relative to cost reduction becomes clearer 

due to the use of digital models rather than physical prototypes (figure 

2). In particular, the physical cost rises linearly whereas the virtual 

cost decreases exponentially: 

 

 

Figure 3 - Physical Costs vs Virtual Costs [52] 

 

 Employee safety was noted in the literature as a driving force of digital 

twins. Workforce safety comes through an effective training and 

education phase that could be safer through the use of DTs and related 

tools such as AR and VR, especially in the case of risky environment, 

harmful equipment [3], so it is critical knowing how to deal with 

emergency mistakes from the moment the staff begins working [49]. 
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Figure 4 - DT Implementation Main Drivers 

 

 Accessibility was also stated as a crucial drive for DT adoption. 

Indeed, without being bound to a specific geographic area allows the 

user to check the progress of production or communicate with the DT-

enabled system remotely [52], which might be a significant benefit in 

scenarios such as the COVID-19 pandemic, as described by [3]. 

 The necessity of switching from traditional production systems in 

which activities like design, demand forecasting, scheduling, etc. of 

the production process take place concurrently with the evolution of 
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the system itself and thus takes into account all of the information of 

the environment of which it is a part. This requirement is identified by 

[3], which reports the dynamism feature, implying a constant flow of 

data between the virtual and physical portions of the system. 

 Within the scope (analysed in the previous point) of modernizing and 

projecting manufacturing systems into the future, there is the need, at 

least for large global companies, to make Human-Robot collaboration 

(the main point of future Industry 5.0) concrete and increasingly 

constant [15]. 

For example, [41] emphasizes this approach, reporting that the 

Human-robot job allocation, workstation layout optimization, human 

ergonomic analysis, and robot program testing are all possible with a 

digital twin of a human-robot collaborative work environment. 

 The straightforward requirement for real-time monitoring of the 

physical system was also mentioned as a motivator for the installation 

of industrial digital twins [5]. In fact, it enables the producer to predict 

problems faster [50], to save expenses, eliminate resource waste [51], 

as well as improve other essential deliverables [50]. The high-quality 

digital twin model with real-time data also aids in understanding the 

situation and making better and more accurate optimization decisions 

[41], other than be more responsive to exogenous changes. 

 Analysts claimed that internal process enhancement activities might 

result in digital twin projects as one of the most important drivers [4].  

A further internal motivator cited by experts is an effort to increase 

stakeholder transparency in the whole manufacturing process [4]. As 

reported in [27], transparency in manufacturing context means “full 

availability and access to information required for collaboration and 

collective management decision making. It means full disclosure of 
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detailed historical records for root-cause investigation purposes to 

uncover areas for continuous improvement. DTs aim to collect 

information at every level of the production system, enabling for more 

accurate solutions and bringing a business-level perspective closer to 

operational-level choices. 

The ability to obtain a full digital footprint of the production system 

has made it possible to gain exhaustive information about the entire 

process and product lifecycle, and that is an important driver identified 

by [5]. 

 Boosters that enhance company value: companies should assess the 

business benefit that the digital twin provides by taking into account 

factors that involve tactical effectiveness and marketplace. Among 

other things, these difficulties in strategy can be translated into 

particular solutions that could offer the wide commercial value that a 

digital twin could provide. Figure 4 lists a summary of such values by 

category [5]. 
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Figure 5 - DT Business Drivers reported in [5] 
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3.2 Enablers 

3.2.1 Systems and Technologies enablers  

The expression "Enabler" refers to the enabling aspects (organization, skills, 

network development, etc.) required to establish an atmosphere favourable 

to innovation in the business environment [6]. In the context of this thesis, 

the enablers comprehend the variables which make digital twins feasible. 

Among the various enablers listed by the technical literature, they stand out 

as technological enablers the following ones: 

 Artificial Intelligence (AI) and Machine Learning (ML): one of the 

primary innovations that enable for DTs at the moment is AI. As stated 

by [10], AI and ML are two of the main technical forces propelling 

DTs toward their truly potential. 

AI enables robots to acquire information from experience, adapt to 

new inputs, and carry out activities usually made by humans. It can 

observe the environment, evaluate the scenario, and choose the best 

course of action to achieve the set objective [8], even in uncertain 

circumstances and volatile environment. 

 Hardware concerns and Data Storage: As DTs will produce significant 

amounts of data in real time to provide problem detection and more 

effective maintenance scheduling, the capacity to store this data 

efficiently is a key enabler for the effective adoption of DTs [7].  

Regarding hardware, as mentioned in research [9], reducing prices 

have made it substantially simpler for organizations acquire access to 

more powerful processing resources, enabling improved accuracy, 

depth, and resiliency in the DTs [9]. 
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As a result, it is critical to create a data flow and a data platform 

capable of collecting an ever-increasing amount of data to support 

real-time analytics [33]. 

 Virtual reality (VR) and augmented reality (AR): can be considered 

among the key technologies that promise to add new perspectives in 

many sectors [10; 31], they enable a wide range of use cases for 

operators in a manufacturing plant, including virtual commissioning, 

remote assistance, and operator training systems, as well as 

simulations in a simulated setting [7], and provide to workforce 

improved and safer interaction frameworks and interface upgrades 

[21]. 

“This enabler of Industry 4.0 ensures higher levels of 

awareness on the shop-floor and speedy information 

distribution due to enhanced technologies for communication 

[…] “[38]. 

[22] reports the use of virtual reality alongside with a variety of 

wearable devices (e.g., tactical gloves, head-mounted accessories, 

etc.) for viewing a product's or environment's virtual model. 

 The Industrial Internet of Things (IIoT) infrastructure is critical since 

it deals with the installation of certain industrial applications. [38]. 

IoT facilitates interactions among devices across the same systems as 

well as the gathering of massive amounts of data from the 

manufacturing process. This allows a range of use cases, such as 

predictive maintenance and defect detection, to undertake 

maintenance operations just when needed, preventing unexpected 

shutdowns and breakdowns of the production infrastructure [7]. The 

Thus, data gathered by sensors within a production facility may be 

evaluated to yield useful insights. These insights can then be sent to 
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actuators to automate routine tasks along the production process, as 

previously outlined [7].  

The reality of IoT devices and sensors is a very fast-growing market, 

as identified by [23], in which an annual growth of 24.70% (Figure 

XXX) between 2023 and 2032 is predicted; it sees growth in the world 

of manufacturing especially for activities concerning real-time 

analytics, security and data management solutions. 

 

 

Figure 6 - IoT Market Growth projection (2022-2032) [23] 

 

 Simulation models are seen as a necessary technology for the adoption 

of DT, since they enable the creation of a behavioural model that 

determines how the physical asset (like machinery, equipment, etc.) 

should react to external factors determined by the environment, 

contact with other objects [22], and simulate the working and 

dynamics of the production system and the methods it employs.  

They can also help in assessing risks and inventory analysis, so they 

can have a direct impact on the performance of many processes in an 
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organization [38], to the point of virtually mapping an entire factory 

design, as reported by [25]. 

 

 

Figure 7 - DT Main Technological Enablers 

 

Various research has been done or are underway in order to understand how 

to expand the use of these technologies in different fields of work.  

 Communication protocols are a critical enabler for DTs in the 

industrial environment. They enable systems within the same IoT to 

communicate data and input signals in order to conduct particular 

actions based on DT input [7]. The goal of standardizing 

communication protocols inside an organization is to promote 

information exchange and synchronization. [25].  
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The networking domain has been identified as a key enabler since it 

is required for the collection, processing, and storage of raw data, as 

well as accurate visualization [50]. 

The reliable and efficient exchange of data is a crucial aspect of 

Digital Twin-based system as it’s highlighted in the frameworks for 

dynamic scheduling analysed in this thesis (chapter 4). 
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3.2.2 People-related and culture enablers 

This brief section is dedicated to the enablers that concern the people who 

lead all the production activities, the skills and competences required in the 

field. 

 Skills and Competencies: The exploration of force-labour training 

models and identification of key competencies that future workers 

must have in the field remains a keystone and a facilitator in the 

adoption of DTs [21], in order to guide workers toward the type of 

technology and business culture that provide DTs. 

 Data Quality: as facilitators of the digital twin's use in manufacturing, 

experts emphasized process uniformity, a well-defined deployment 

plan, and correct data fills on enterprise management software [7] 

(e.g., ERP, CRM, CMS, etc.). DTs, in fact, need high-quality data 

characterised by a constant data stream [50] to be efficient and 

reliable. 

When an organization learns how to measure the quality of the data 

that collects and processes within its system, then such measures can 

be useful at the strategic level to analyse the state of the system and 

evaluate its performance in terms of improvement or adherence to 

established standards [26]. 

 Organization culture & Management: experts identified aspects that 

describe the crucial function of leadership within an organization 

when dealing with a digital twin project, in terms of organizational 

culture and strategy enablers [4]. In order to accelerate the DT 

introduction into the organization many employees-related features 

were identified, such as the importance of cultivating leadership 

qualities in employees and promoting collaboration among employees 
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coming from different department [54]. Experts also identified 

management willingness to support long-term initiatives, senior 

management backing, and the ability to make financial investments as 

enabling factors [4].  
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3.3 Barriers 

Adoption and deployment of digital twin technology has the potential to 

transform companies by connecting the physical and digital areas improving 

operational efficiency and promoting informed decision-making. However, 

like with any profound innovation, integrating digital twins into established 

corporate structures comes with difficulties. This section dives into some of 

the key problems and obstacles identified by experts as possibly impeding 

the smooth integration and full success of potential digital twin adoption in 

the manufacturing contexts. 

 Process and System Integration: experts identified challenges 

concerning process integration as a barrier to adoption. [4]. System 

integration involves the transfer from old and obsolete legacy systems 

and equipment to the most recent cutting-edge technology. This 

barrier category encompasses both the challenge of combining new 

systems into existing ones and the issue of integrating various 

elements of existing systems collectively [7].  

System integration issues include the need to create a new User 

Interface (UI) following the integration of more DTs and the difficulty 

of combining the technology with which they were realized, if 

different, and the distribution pattern [19]. 

As an outcome, it appears that integration across different portions of 

the business is critical to the success of digital twin projects. This 

conclusion is not improbable given the significance of organizational 

integration in analogous digital transformation programs, such as 

Industry 4.0's integrations [4]. The high cost of new IT-environment 

is a point emphasized in the study [43]. 
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 Scalability issues: making DTs scalable to millions of devices, as 

theorized, turns out to be a difficult problem to manage [18]. points 

out that, from a purely technical rather than organizational point of 

view as in the previous point, it could be complicated to integrate the 

numerous techniques used by equipment and sensors to gather, 

process, and format data. 

 Assets and operational evolution: one of the primary obstacles, is the 

necessity to incorporate any new asset or operational changes into the 

present framework, which is often the product of a considerable 

investment and hence impossible to replace owing to the 

unsustainable costs involved. Because such systems have a lengthy 

lifespan, the issue of integration becomes more and more obvious with 

time [7]. Part of the challenge is the high cost of resources and 

equipment required to implement a system based on DTs (e.g., due to 

the large number of sensors and IoT systems), and part of the problem 

is the scarcity of these resources in some regions of the world [5]. 
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Figure 8 - Main Barriers for DT Implementation 

 

 Data Security: All hazards related with data capture, exchange, 

archiving, and processing, along with the protection of intellectual 

property are covered by security concerns. The problem of data 

protection and the possible loss or leakage of data is described by [19], 

in which is highlighted how it should be the foreground especially in 

cases of integrating DTs within a pre-existing system and in the case 

of delivering a systems DT combined with the structure itself. 

DTs amass data and intellectual assets which grow in value over time 

[8]. 

As pointed out in [8,] there is a need for data transparency and the use 

of methods to ensure data security, opening and preventing data loss 

or other potential harm. 
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When DT connect at different levels (as in [31]), it is necessary to 

consider data segregation and segmentation in accordance with the 

General Data Protection Regulation (GDPR), as illustrated in [19]. 

 Technological advancement: although this point may be seen as an 

advantage in the adoption and implementation of DTs in an 

increasingly easy way, it could lead to a mismatch between the 

different components that are supposed to form these systems. A 

number of articles including [50] highlight the possible technological 

advancement at different steps; particular is the example described in 

the cited article: the supporting systems or IoT devices may not be 

compatible with the DT.  

The same could be true for other technologies such as ML, AI, real-

time technologies, etc. [3]. 

 One point related to technological advancement concerns the 

communications network, through which DTs can implement the 

exchange of data necessary for their operation; [50] and [7] reports 

how the lack of an efficient 5G network can be an impediment to being 

able to connect sensors and devices. As stated by [20], 5G has a much 

better latency and it allows 100 times more devices to be connected 

than 4G. So, the development of such a network is not an optional 

extra but something essential. 

 Performance constraints: they are closely tied to hardware and 

software resource limits that provide an effective flow of data between 

physical and digital systems, allowing DTs to reach their full 

efficiency in industrial purposes.  

One of the most distinguishing features of DTs is their capacity to 

represent and track the status of their physical twins in real time [7], 

while they likewise are capable of delivering a variety of services, 
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ranging from status monitoring to properly providing solutions, and 

even controlling the physical system autonomously [4]. 

Experts have attributed performance concerns to the lack of maturity 

of certain widely used technologies (particularly those used to enable 

decision assistance and driverless action) as potential impediments to 

deployment. As a result, the lack of maturity in predictive data 

analysis approaches could end up being a barrier to applications when 

unpredictability of such technologies is a danger [4].  

Also, part of the problem is the difficulty of achieving a high level of 

modelling, a possible barrier identified by many articles dealing with 

the subject ([22; 26; 34; 25]). 

 Lack of Standardization: the article [50] notes, as a barrier, the lack of 

standardization due to both the differences between the various 

definitions of DT provided in the scientific literature and the 

differences between DTs designs and frameworks. 

[43], on the other hand, identifies a certain lack of standardization in 

the data acquisition process that directly impacts the implementation 

of DTs, and [3] point out other roots for absence of uniformity like 

models, interfaces, protocols. Instead, in [21] is reported that there 

may be discrepancy between exchange data sources among various 

suppliers, producers and consumers that could lead to an 

interoperability problem. 

 Organizational issues: the theme of the internal division of the 

organization in departments was first described by [52] and then 

reported by [13]. The first one states:  

“There is a natural siloing of information within […] 

functional areas. Each of these informational silos has 
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information about the systems. However, there may be very 

little sharing across functions”.  

Instead, in order to be implemented, the DT idea need a unified view 

of this information across all departments and functional boundaries 

[52]. 

 Lack of Knowledge and trained workers: an additional aspect, 

advocated by [21], that could affect the proper and effective use of 

DTs, is the lack of knowledge suitable for the use of DTs by the 

organization that decides to adopt them and of workers properly 

trained in managing such systems.  
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3.4 Mapping connections among enablers and 

barriers 

Taking a cue from the exercise of mapping and create logical link between 

barriers and enablers that permit them to be overcome, propose in [7], the 

same notion is suggested again in this part, but this time based on the 

evaluation of barriers and enablers reviewed in the preceding sections. The 

arrows begin with an enabling element and terminate with a barrier, 

demonstrating which enabler categories have a favourable influence on 

which barrier categories (figure 9). 

As discussed in the preceding paragraph, the technological barrier is possible 

to overcome through the advancement of the primary technologies on which 

DT-enabled systems are built: the development of AI, ML, and VR/AR 

representation technologies, simulation and modelling techniques that allow 

the system's physical and behavioural equipment to be represented, and the 

general development of hardware components. 

In the past few years, VR and AR have been seen as technological catalysts 

for the development of DTs. The aforementioned technologies enable the 

construction of training tools for new operators and give users a more 

participatory method to utilize DTs [7]. 

Communication technologies and new improvements in IoT/IIoT have 

decreased system integration difficulties. A growing number of 

manufacturers are creating and delivering unified IoT/IIoT platforms and 

solutions that are backwards compatible with current systems ([10]; [12]). 

IoT systems would also make DT use scalable; in fact, an organization's 

ability to expand the number of devices and sensors tasked with tracking 
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system status and collecting data allows it to use DT-enabled systems on a 

large scale. 

Vendor-neutral communication methods like as OPC-UA are being utilized 

to overcome the issue of integrating previous systems and new IoT/IIoT 

systems for the implementation of DTs in industrial applications [7]. 

It is essential for a business to have an effective communication protocol in 

order to overcome problems at several levels: improving the whole network 

of business communication and thereby ensuring a certain standard. 

Although significant effort is necessary to guarantee that sensitive data may 

be communicated safely between physical assets and associated DTs, such 

procedures are acceptable for the creation of DTs in industrial contexts, as 

evidenced by the work of numerous researchers in the field. 

Organizational issues are mitigated through increasing knowledge. The 

application of Industry 4.0 standards, in particular, helps businesses to build 

the groundwork for the successful growth of DTs through the creation of a 

comprehensive and integrated data infrastructure for exchanging data 

between a physical asset and its DT [12].  

Personnel training, upgrading and reskilling will benefit the environment by 

contributing to the establishment of new processes, tools, and standards for 

the construction of DTs [13]. 

The organizational issues are primarily determined by high-level decisions 

and, as a result, by management: managers' ability to develop an 

organizational culture oriented toward the DT and, as a result, an appropriate 

vision from which they can formulate feasible financial decisions for system 

development and implementation. 
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Knowledge-building technologies and design methods help to alleviate 

organizational difficulties. Workforce upgrading and reskilling [14] and the 

application of Industry 4.0 standards [12] allow businesses to keep their 

workforces up to speed on the newest technology developments, overcome a 

shortage of DT specialists and experience, and eventually make educated 

judgments on the matter. 
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Figure 9 - DT Enablers and Barriers Connections 
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4. Digital Twin Frameworks in Flow-Shop 

Systems for Scheduling Purpose  

Regardless of the adoption of dispatching rules, kanban cards, and other 

distributed production management systems (Panwalkar and Iskander, 1977; 

Green and Appel, 1981; Hopp and Spearman, 1996), many manufacturing 

facilities still develop and amend production schedules. Because of a lack of 

comprehensive global information [29], these strategies usually promote 

speed but lack long-term vision, leading in insufficient responsiveness to 

disruptive events. 

Today's industries need to be more adaptable in order to respond to 

unexpected real-time occurrences and rapidly evolving market change [40]. 

The consequently, production plans must be adaptable for events such as 

increasing demand, varying delivery duration, supplier delays, machine 

faults, and external effects such as weather or accidents. In practice, delays 

and unexpected events result in pre-scheduling failures, forcing the business 

to rely on make-to-order manufacturing operations in the flow shop 

environment [30].  

Real-time scheduling has been extensively studied and proven to 

considerably enhance scheduling decisions in an ever-changing context. Is 

also important to evolve production schedules using automated decision-

making carried out while production is in progress [31]. 

Several studies indicate that using DTs on these systems provides significant 

benefits, like minimizing the medium makespan [e.g., 1; 31] in order to 

identify a solution to this challenge in the scheduling of flow shop systems, 

carrying out the advantages of real-time scheduling strategies.  
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4.1 Frameworks Review 

The technical literature in the field of scheduling activities includes 

numerous approaches that integrate DTs in order to create a Cyber Physical 

System (CPS) able to make the scheduling activity increasingly effective and 

efficient. Many studies are concentrated in providing frameworks suitable for 

scope, which have common characteristics, therefore considered the basis for 

the realization of a highly compatible and flexible system in relation to each 

application case, but also the differences on which it is necessary to 

investigate thoroughly. This chapter aims to verify some examples of 

infrastructures that integrate the use of DT in order to make the scheduling 

activity more responsive to changes and identify the main characteristics and 

a main pattern that can be followed to theorize an efficient DT framework.  

A basic framework of a real-time flow shop assembly DT system is proposed 

in the study [30]. 
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Figure 10 - DT Framework proposed by [30] 

 

The proposed concept is based on the characteristics of dividing DTs into two 

main components, reported by [3], in physical object and virtual object where 

“there is an automatic bidirectional flow of data between the physical and 

digital object”. 

In fact, one of the features that is repeated in this type of flow shop systems 

using DTs, is the development of a DT for each machine in order to map each 

individual unit that makes up the system. 

The communication system adopted is based on a constant exchange of 

information about the status of the machinery: the physical object signals 

whether or not it is ready to process a job, the virtual object, on the other 

hand, keeps track of any disruptions and updates the scheduling sequence 

[30]. 
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The framework concept proposed by [2], shown in figure 11, focuses on the 

joint implementation of a manufacturing system DT and a decision support 

system. Again, each machine is simulated via DT thanks to the data collected 

from the physical world, thus relying on real-time communication between 

physical and virtual object. 

 

 

Figure 11 - DT Framework proposed in [2] 

 

Through the use of a model generator and an optimization algorithm, 

solutions are chosen or generated and subsequently tested, then proposed to 

the decision maker to select the best possible option. 

It should be pointed out that depending on the proposed framework, the 

measure (Job Flow Time, Job Lateness, Makespan, etc. [48]), as well as the 

dispatching rules (such as First Come First served, First In First Out, Shortest 

Processing Time, Earliest Due Date, Critical Ratio, Slack per Operation, etc. 
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[48]), through which the various proposed scheduling alternatives are 

evaluated and thus the result [42], may also change.  

[43] highlights an important evolution in scheduling systems: through the use 

of DTs, simulation and optimization algorithms, we are moving from a purely 

statistics-based pre-scheduling approach to a dynamic approach based on 

real-time data analysis. 

The module that deals with optimization also has common features, and it is 

therefore possible to develop a pattern to be used as a trail to follow for the 

implementation of future DTs. Specifically, in study [31] and [1] it is shown 

how the optimization module operates in detail. Starting with an initial job 

sequence that is tested through the simulation module, the performance is 

measured and if the sequence is the optimal one it is forwarded to the 

Manufacturing Enterprise System (MES) or scheduling system, otherwise the 

optimization mechanism is applied so that other options can be tested until 

the optimal one is found. 

 

 

Figure 12 - Optimization module adopted in framework proposed in [31] 
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2021 research [1] identifies a framework, in figure 13, made for a flow shop 

system, similar to the two previously described in which, however, a 

difference and an evolution from the previous two is highlighted: in fact, in 

addition to the data input, optimization and physical system modules, the 

Discrete Event Simulation (DES) module and the Equipment Prognostics and 

Health Management (EPHM) module are introduced. 

 

 

Figure 13 - DT framework proposed in study [1] 

 

“A DES models the operation of a system as a (discrete) sequence of 

events in time. Each event occurs at a particular instant in time and marks a 

change of state in the system” [32]. This allows the system simulations to be 

tested.  

The predictive maintenance field entails shifting maintenance approach away 

from traditional fail-and-fix techniques (diagnostics) and toward a predict-

https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Discrete_time
https://en.wikipedia.org/wiki/Sequence_of_events
https://en.wikipedia.org/wiki/Sequence_of_events
https://en.wikipedia.org/wiki/State_(computer_science)
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and-prevent approach (prognostics). Prognostics and Health Management 

(PHM) is an engineering subject that focuses on anticipating when a system 

or component may no longer operate properly [35]. 

The EPHM receives real-time input from the physical equipment and 

elaborates it to provide predictive data to the manufacturing system 

simulation model [1]. As explained in the case study attached to the research 

paper, the EPHM module calculates the failure probability and when a 

breakdown occurs it adds the Mean Time To Repair (MTTR) to the 

processing time. 

The addition of the EPHM module succeeds in making an important 

contribution to the scheduling mechanism proposed by any framework that 

uses DTs; in fact, it allows the addition, in real time, of another important 

piece of information that the simulation module can take into account to 

develop a more accurate prediction: the state of the machinery, the probability 

of breakage related to it, and the additional time required for repair (MTTR). 

Despite PHM is a very broad branch that considers various methods designed 

to offer early identification and isolation of a component's or sub-element's 

precursor and/or preliminary defect [35], one of the most studied branches is 

the estimation of Remaining Useful Life (RUL), as reported by [44]. 

“The Remaining useful life (RUL) is the length of time a machine is 

likely to operate before it requires repair or replacement” [46]. 

One of the most cited studies in the field [34], provides a framework for 

estimating the RUL, which has already been identified as one of the most 

important data for the purpose of predictive maintenance of machinery and 

to have an estimation of the machinery’s lifetime [47]. The aforementioned 

study shows how after an initial phase of physical modelling of the machinery 

and the use of physical data collected through IoT systems, the operation of 
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the machinery itself can be simulated and then the RUL can be calculated. 

This operation should be repeated continuously in order to update the data 

[34]. 

 

Figure 14 - RUL calculation method proposed in [34] 

 

It can be pointed out that most of the frameworks analysed in the literature 

(and in all those analysed in this research) are based on the concept of 

Predictive-Reactive dynamic scheduling [45]. 

The predictive-reactive framework is a process of scheduling and 

rescheduling when the originally created schedule is modified in response to 

current occurrences [40].  

Although the various studies show that all dynamic scheduling DTs rely 

mainly on real-time data to analyse the manufacturing physical system they 

control, all of them also use some source data such as production objectives 

[2; 9; 31], resources [2; 9; 40], constraints [2; 40], etc. This data is taken from 

the main management systems such as MES, ERP (which provides the info 

related to earliest start date, latest due date, job nominal processing time, etc. 

[40]), PDM, PLM, etc. 
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Most frameworks describe a DT infrastructure that manages the production 

of a single part or department of manufacturing. To date, however, 

manufacturing organizations are made up of a very vast and well-connected 

production and logistical network; therefore, it is necessary to have scalable 

DT-based infrastructures. 

An example of such a framework has been studied by [31] (figure 15), in 

which a division and linkage between local DTs and global DTs is proposed; 

the former allow, as in other cases [2; 9; 30; 40], to mimic workstation and 

process activities while the latter allow to collect data and results of process 

optimizations managed by local DTs [31]. 
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Figure 15 - DT framework and linkage between Global DT and Local DT studied in [31] 

 

This infrastructure reflects the classification of hierarchical levels described 

by [24] and reported by analysis [3] in which the infrastructure of DTs is 

divided into three levels: 

 Unit Level: refers to each unit-level physical twin. 

 System Level: permits a “Interconnectivity and collaboration among 

multiple unit-level DT” [3] 

 SoS Level: a connection of many system level DTs which can link 

different companies or departments.  
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Among the various modules that should compose a production system based 

on DTs dedicated to scheduling, in addition to the real-time information 

derived from the sensors and IoT systems that control the machinery and 

equipment, that make up the physical systems, all the reference data managed 

by the company's databases are essential: both what concerns the product, its 

production process and the information related to the quantities of product to 

be produced for each time bucket. Regarding the latter, demand forecasting 

is of great importance in order to avoid underproduction or overproduction 

scenarios. 

In fact, demand prediction is the very first phase in planning. Forecast 

predictions define necessary products, quantity, and timelines. As stated by 

multiple researchers, demand forecasting in the age of the e-supply chain is 

transitioning from an empirical to an analytical approach [13]. 

Demand forecasting is a technique that is used for the estimation of what can 

be the demand for the upcoming product or services in the future. This type 

of forecasting involves analysing past demand, current market trends, and 

other data to make predictions as accurate as possible about future demand 

[16]. 

Among the various studies proposed by the scientific literature, [17] 

identifies a link between the simulation module and the organization's 

database: specifically, the use of data contained in the ERP administrative 

system represents the historical data base on which to base the analysis, 

which is connected to the simulation module, that will present the results 

(from the various simulation methods) to a decision maker via a dashboard. 

As a result, the final manual step is the process of decision-making. 

 



 

47 
 

 

Figure 16 - Demand Forecast framework based on DT realized by [17] 

 

Another requirement for demand forecasting algorithms is the ability to cope 

with different forms of demand (stationary, seasonal, and/or trending). To 

address this issue, the study [21] proposes implementing a Viable System 

Model (VSM), which employs a variable known as "demand reactivity" for 

measuring changes in demand between time periods and comparing them to 

statistical limits established a priori; in this way, the VSM can recognize 

demand patterns and use the most appropriate forecasting algorithm 

accordingly. 

  



 

48 
 

4.2 Pattern reassumption 

To summarize all the considerations made in the preceding paragraphs, a list 

of the main points, useful in creating an adaptable and reliable framework for 

flow-shop production systems, is presented (figure 17). 

A framework that uses DTs to make scheduling activities more responsive to 

changes in the environment and the very conditions of the system in which it 

operates should possess: 

 Physical Assets: includes all the machinery and generally the physical 

part of the system. 

 Data Module: which collects all the information related to the 

machinery and the process at the various production stations (mainly 

through IoT devices) 

 Database: gathers and makes accessible to the system all available 

information and data in various organizations, process and resource 

management systems (ERP, MES, PLM, PDM, etc.) 

 Predictive Maintenance Module: allows calculation of a number of 

parameters related to the state of machinery, including mainly RUL, 

in order to take into account, during simulation, the possibility of 

breakdowns and reduce the Mean Time To Repair (MTTR). 

 Simulation Module: Allows the simulation process to be used to 

produce values on which to base the scheduling process's evaluation. 

 Optimization Module: applies a series of iterations designed to find 

all possible scheduling options and choose the optimal solution based 

on the measures identified to make the choice. It must be linked 

cyclically with the Simulation Module. 
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Figure 17 - DT-enabled pattern framework based on considerations made on frameworks studied by the 
technical literature 

 

The pattern outlined emphasizes that the use of DTs within the system must 

be based both on historical data, provided by the various business 

management systems and saved in the company databases, and on real-time 

data collected through the IoT systems networked with the equipment and all 

the physical assets. 

The framework must always be based on the iteration of a simulation 

mechanism, which has the task of initializing the jobs list and simulating 

performance through appropriate measurements, and on an optimization 

mechanism that, through an appropriate algorithm (which is not the subject 

of the thesis work), suited to the context in which it is to be implemented, has 

the task of proposing appropriate changes to the population subject to the 

scheduling activity. 

One of the problems that can affect scheduling activities is the downtime and 

breakdown of the machinery making up the production line. Hence the need 

to be able to implement a forecasting algorithm that must estimate the main 
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PHM indices and forward this information to the simulation module. Taking 

this data into account tends to eliminate or at least reduce downtime and 

increase the performance of the system itself. 

In this way, the simulation module is central as, using historical and real-time 

data, it has the entire wealth of information of the system at its disposal and 

can take into account the state of the machinery (current and historical) and 

information on the demand forecast in order to make the most efficient 

scheduling possible. 

It is crucial to note that the proposed framework, which is based on studies 

of flow-shop systems, can achieve good results despite the fact that the task 

routing options are limited.  

In fact, the characteristics of a flow-shop system, as opposed to job-shop and 

open-shop systems, allow for easier scheduling since they require a 

unidirectional flow and precedence of operations, resulting in a natural order 

of the machines [53].  

The eventual presence of several work routing options implies the presence 

of an enhanced simulation and optimization module in order to test and 

identify the best choice.  
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5. Conclusion and Perspectives 
 

The goal of this thesis was to examine numerous publications dealing with 

the issue of DTs and presenting potential frameworks for adoption that differ 

in idea and implementation concerns but share key characteristics. This leads 

to demonstrate that it is feasible to create a track or pattern that serves the 

same goal as the frameworks from which it is derived while also being 

adaptable in accordance with the requirements of the system in which the DT 

must operate, as well as the resources and technology available to the 

organization that want to use it. In fact, in order to make a technology 

accessible while simultaneously attracting consumers to use it, it must 

include qualities such as reliability, flexibility, and clarity of understanding 

and usage. 

Obviously, the introduction of a new technology is always intended to 

improve the characteristics and performance compared to the technology in 

use at the time, but there may also be an advantage of another kind 

(economic, reliability, etc.); all the drivers described in this research, 

highlight all the reasons that may convince an organization to adopt the new 

technology, in this case DTs in production systems. Drivers were highlighted 

at all levels of a corporation, from the top (business/strategic) to the lowest 

(specific unit or machinery performance). 

As technology advances, we may expect even more real-time data integration 

and AI-driven knowledge. Collaboration between researchers, businesses, 

and government is crucial for breaking through present barriers (technical, 

political, and legal concerns). Addressing data security issues, creating 

standard communication protocols, and building a digital transformation 

culture are all key stages toward digital twin adoption in regular 
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manufacturing operations and phases. Manufacturers may position 

themselves at the forefront of innovation and efficiency in the industry 4.0 

era by studying current case studies and forecasting future trends.  

The revision of the main drivers, enablers and barriers raises some questions:  

 will the time difference between the evolution of the primary DT 

technologies and the need to integrate DTs in the manufacturing 

industry have a negative impact on the industry 4.0, as well as the 

approach to industry 5.0?  

 will be possible to identify a logical framework (and/or a technical 

architecture) that can be applied to any manufacturing system in the 

future? 

As stated at the outset of this thesis, scientific literature is increasingly 

focusing on the topic of DT, both in the manufacturing and in other fields, 

and as with any new technology, the more research into it, the greater the 

development.  
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