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Abstract 

 

 

Proglacial areas are one of the most rapidly changing ecosystems due to glacier and 

permafrost degradation. To better understand these environments and their 

dynamics, bathymetric mapping is a necessary step in hydraulic modelling. This is 

essential for assessing water quality, sediment and pollutant movement, and 

evaluating habitats. This thesis aims to evaluate the effectiveness of a geographically 

weighted regression (GWR) model, which can capture a spatially heterogeneous 

relationship between inputs and an output, to retrieve bathymetry of a shallow 

proglacial lake, whose water depth is less than about 1 m, from RGB and multispectral 

imagery. The case study is a system of proglacial channelized streams joining in a 

shallow lake originating from the melting of the Rutor alpine glacier, in Valle d’Aosta. 

Field experiments were carried out during summer 2021 and 2023 for GNSS 

positioning along different sections of the streams and simultaneously for acquiring 

photogrammetric data with digital numbers (DN) using an uncrewed aerial vehicle 

(UAV). The digital cameras mounted on the UAV were RGB and multispectral sensors 

respectively for 2021’s and 2023’s survey. Water depth along the surveyed sections 

was retrieved from the measured points and the Digital Elevation Model (DEM) 

generated from the UAV imagery. After obtaining the orthomosaic of the area, 

spectral band ratios were computed and, through the principal component analysis 

(PCA), were selected as an optimal input of the GWR model. For 2021’s model inputs, 

ln(DNB/DNR) and ln(DNG/DNB) were selected, while for 2023’s one, ln(DNNIR/DNG) and 

ln(DNG/DNB). Results showed that the GWR models based on a single band ratio input 

led to a discrepancy between estimation and observation, especially for 2021’s 

dataset. In contrast, considering both PCA-selected band ratios, the GWR models 

showed improved performances, as R2 increased from 0.47 to 0.77 for the 2021 

dataset, and from 0.90 to 0.94 for the 2023 dataset. Moreover, the 2023 bathymetry 

reconstruction was more accurate than the 2021 reconstruction, likely due to the 

larger dataset of water depth observations and the use of multispectral UAV 

acquisition. Multispectral data more effectively modelled the effect of spatial 

heterogeneous bottom types, caused by submerged vegetation and sediment. 
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1. Introduction 
 

In the context of global warming, mountainous regions serve as crucial climate 

indicators. Consequently, there is a growing urgency to characterize and comprehend 

the dynamics of these environments. This becomes particularly pertinent in the Alpine 

region, where the increase in average air temperatures has more than doubled the 

global average temperature rise. Rapid glacier and ice sheet retreat impact sediment 

supply, affecting nutrient cycling, carbon flux, and resource management. 

To gain a deeper understanding of these dynamic mountain environments, 

bathymetric mapping assumes a pivotal role within hydraulic modelling. This process 

is crucial for assessing various aspects, including water quality, sediment and 

pollutant transport, and habitat evaluation. 

Traditionally, accurate bathymetric data for river modelling have been collected 

through methods such as total stations, GPR, and echosounders. However, these 

conventional approaches can be time-consuming, costly, or unfeasible for large or 

inaccessible areas such as proglacial areas (Monteys et al., 2015). Bathymetric Light 

Detection and Ranging (LiDAR) systems offer quicker topography data collection but 

require specialized processing algorithms and clear water conditions. Recently, 

remote sensing techniques using multispectral and hyperspectral imagery have 

gained popularity for reconstructing water depth in coastal and inland waters. 

Radiance observed by remote sensors can be separated into different components, 

and water depth estimation relies on accurate separation (Kim et al., 2019). In rivers, 

where shallow water leads to significant bottom-reflected radiance conventional 

methods assuming a constant relationship between water depth and radiance 

encounter challenges due to varying bottom types. This complexity arises from 

diverse bed materials like sediments, vegetation, and periphyton. Global inversion 

models struggle in such heterogeneous environments (Su et al., 2014). 

To address these limitations, a geographically weighted regression (GWR) model is 

proposed. This approach takes into account local factors in determining the linear 

regression coefficients considering the geographic context of each location. This 

technique captures the spatially varying response of radiance to water depth, 

accommodating the heterogeneity of substrates in rivers (Vinayaraj et al, 2016): GWR 

has shown success in mapping near-shore bathymetry from multispectral imagery, 

but its application in stream environments is less explored. 

This thesis aims to assess the effectiveness of a GWR model in estimating the 

bathymetry of a network of channelized streams flowing into Marginale Lake, a 

shallow proglacial lake situated in the vicinity of the Rutor glacier in the Italian Alps. 

The water depth in this context typically reaches approximately 1 meter, and the 

estimation process leverages geomatic and hydrological data collected over two 

years (2021 and 2023). 
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While glaciers have been extensively studied, until now, few studies have focused on 

proglacial areas. However, the modelling of potential future lake’ dynamics in 

mountain areas, once the glacier melted, holds significant importance, especially 

concerning natural hazards, associated risks, and the socio-economic dimensions 

linked to proglacial lake formation (Heckmann et al., 2019). 

The thesis was conducted in collaboration with the Climate Change Glacier Lab1. Its 

structure is as follows. An initial section provides a review of the theoretical framework 

behind proglacial environment monitoring using geomatics and bathymetry 

inversion models. Then, the study site, Marginale Lake, is introduced. The following 

section delineates the methodology employed to retrieve the lake's bathymetry.  

Finally, the application of the method is illustrated. The thesis concludes with a 

discussion of the main findings, limitations, and suggestions for future improvements. 

 

  

 

1 Of DIATI department of Politecnico di Torino  
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2. Glacial and Proglacial Environments 
 

 

2.1 Glacial Environments and Climate Change  
Mountain regions are both sensitive to and disproportionally affected by recent 

climate change (Heckmann et al., 2019). One of the most significant and visible 

changes is glacier retreat. This process exposes formerly glaciated terrain to open air, 

triggering consequences for hydrological, geomorphic, and ecological systems. The 

geomorphic response to deglaciation has been categorized as paraglacial 

geomorphology (Heckmann et al., 2019), a branch of geomorphology concerned with 

the evolution of landscapes in high latitudes and altitudes. It deals with the role of 

water in the solid state in landscape evolution and through geotechnical and 

hydrological aspects related to water resource scarcity and environmental change 

(Dixon, 2016). 

This chapter proposes a description of the features of these specific environments, 

starting from the glaciers from which they originate. 

 

2.1.1 Glaciers 

Glaciers are formed over many years, and even if they may appear static they are 

always mobile masses. Their motion is driven by gravitational forces and weight, 

occasionally sliding over water or sediment layers. This movement sculpts 

surroundings, glaciated valleys being one of the most characteristic examples. Glacier 

retreat yields another characteristic environment, as they leave sediment and reshape 

their form, leaving clear traces of their prior dimensions. 

Glaciers are found across continents that have emerged from Earth's crust. In Europe, 

they dominate high mountain areas with favourable snow accumulation conditions. 

Alpine glaciers vary widely in size, spanning from small areas to extensive expanses 

over mountain peaks. Their size significantly influences responses to changing masses 

over time.  

Glacier formation begins in the 'accumulation area,' where snow accumulation is 

greater than melt. Snow undergoes metamorphosis either through melting and 

refreezing, through the pressure and compaction of the overlying snow, becoming 

firn and then ice, increasing the overall mass of the glacier. Driven by increasing 

weight, the glacier flows toward the 'ablation area,' where part of its mass thaws and 

evaporates. An 'equilibrium line' marks the balance between melting and snowfall, 

separating these zones. Stable temperatures maintain glacier shape and size stability. 

Glacier equilibrium remains dynamic. Wind and avalanches alter snow distribution, 

impacting thawing or accumulation. Continuous snow mass movement leads to 

diverse features. Sliding forces generate crevasses, and where they intersect, seracs 

form. Moving ice collects debris, forming visible dark lines on its surface, known as 
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moraines. Melting snow forms supraglacial lakes and moulins, vertical fractures 

created by meltwater (Macelloni, 2022).  

 

2.1.2 Proglacial Areas 

Before describing the characteristics of proglacial environments, some clarifications 

about terminology are needed. Here the taxonomy proposed by Slaymaker (2009, 

2011) - proglacial, periglacial and paraglacial - is adopted. “Proglacial” refers to an 

area, while “periglacial” refers to a process: a geomorphic process driven by frost. 

Finally, “paraglacial” addresses the specific morphodynamics (including their 

development over time) within a deglaciated landscape, encompassing spatial and 

temporal changes in the activity of geomorphic processes, slope instability, and the 

accumulation and erosion of sediment storage landforms.  

Proglacial areas usually refer to areas deglaciated since the peak of the Little Ice Age 

(LIA) and now adjacent to the terminus of the present glacier. Comparisons with 

present-day glacier extents show that the distance by which many glaciers have 

retreated since the end of the LIA is in the order of 102 to 103 m, and the area 

deglaciated is in the order of 103 to 106 m2 (Heckmann et al., 2019). 

These areas are of particular interest to researchers and geographers because they 

provide valuable insights into the interactions between glaciers, climate, and the 

environment. 

Proglacial environments undergo rapid and dynamic changes as glaciers retreat. As 

the ice melts, it exposes the land that was once covered by ice, revealing a complex 

landscape shaped by glacial activity. Transitional nature is a key characteristic of 

proglacial environments. Thus, they are considered to be in a state of transition, 

moving from glacial to non-glacial conditions, as Johnson (2002) noted. Alternatively, 

they are seen as shifting from an unstable or metastable state, which arises during 

deglaciation, toward establishing a new equilibrium under periglacial or non-glacial 

conditions, as discussed by Slaymaker (2011). In fact, the "close to the ice front" area 

of a glacier, known as the proglacial zone, is challenging to define accurately in the 

field today. Due to the rapid melting of glaciers, the position of the glacier snout can 

shift significantly from year to year, up to tens of meters. This continuous movement 

disrupts the previously established equilibrium between sediment delivery from the 

glacier and fluvial reworking (Slaymaker 2011; Heckmann et al., 2019). Where this 

equilibrium exists, it is highly dynamic.  

One of the features of proglacial areas is the deposition of glacial sediments. As the 

glacier retreats, it releases sediments it had previously carried. This can result in the 

formation of various landforms such as moraines, which are ridges of debris left along 

the sides of the glacier's former path. These landforms provide evidence of the 

glacier's past extent and help scientists reconstruct its history. 
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Proglacial areas also experience changes in hydrology. Periglacial processes of 

freezing-thawing-drying on an annual basis perturb the composition of 

groundwaters within the proglacial zone (Tranter et al., 2014). The melting ice 

contributes to the formation of meltwater streams, ponds, and lakes. These water 

bodies often contain fine sediment, and they play a crucial role in transporting and 

depositing sediment downstream. Additionally, the availability of meltwater can 

impact the local ecosystem, influencing plant growth, animal habitats, and even 

human activities.  

Lakes are a distinctive element of glacial landscapes. They are located near current or 

historical glaciers and ice sheets, in high alpine cirques, inner-alpine valleys, and 

lowlands. The formation of proglacial lakes occurs as retreating glaciers reveal 

topographical depressions in bedrock or open spaces behind sediment dams, 

prompting the accumulation of water and sediment. Consequently, proglacial lakes 

serve as primary sediment repositories, interrupting the natural flow of sediment from 

elevated areas to lower regions. 

In recent years, new lakes have developed in glacier forefields, and the size of 

numerous proglacial lakes has expanded across mountainous regions, attributed to 

the effects of climate-induced glacier melting. These lakes hold substantial societal 

significance in mountainous landscapes, encompassing aspects ranging from water 

supply and energy generation to issues of hazard, risk, and tourism. Certain proglacial 

lakes have garnered significant attention from the public and scientific communities 

due to catastrophic occurrences like lake outburst floods, as well as increased hazards 

and risks downstream. Recent studies focused on the modelling of potential future 

lakes in mountain areas, once the glacier melted, considering natural risks, and socio-

economic dimensions (Otto, 2019; Heckmann et al., 2019). 

The subject of this work is a system of proglacial channelized streams joining in a 

shallow lake. The channelled streams develop covering an alpine plateau and are fed 

by the Rutor glacier, and the formed lake is called Lago Marginale. 

 

2.1.3 Cryosphere and Hydrosphere 

To understand the role of glaciers and proglacial lakes and streams in the Earth's 

ecosystem, it’s important to define the cryosphere and hydrosphere. 

The cryosphere and hydrosphere are two interconnected components of Earth's 

complex system, each playing a crucial role in shaping our planet's climate and 

supporting life. 

The cryosphere encompasses all frozen water on Earth's surface, including snow, sea 

ice, ice caps, ice sheets, frozen lakes, rivers, and permafrost. It constitutes about 10% 

of the planet's surface and plays a vital role in Earth's climate dynamics and its overall 

water distribution. Modifications within the cryosphere are intricately linked to 

mountain ecosystems, which serve as sources of water for downstream agriculture, 
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hydropower generation, environments, and human consumption. The cryosphere is 

pivotal for both human activities and natural processes, contributing to the 

equilibrium of Earth's climate conditions (Macelloni, 2022). 

The hydrosphere, on the other hand, consists of all the water on Earth's surface, 

including oceans, lakes, rivers, groundwater, and atmospheric water vapour. It is the 

largest component of the climate system (Kundzewicz, 2008). It is in constant motion, 

driven by various processes like evaporation, condensation, and precipitation. The 

hydrosphere plays a crucial role in regulating Earth's temperature through heat 

absorption and release, as well as in transporting heat around the planet through 

ocean currents. 

The cryosphere and hydrosphere are closely linked through the water cycle. Water 

evaporates from the hydrosphere, forms clouds, and is then transported through the 

atmosphere. When it condenses, it falls as precipitation, which can accumulate as 

snow and ice in colder regions. As the climate changes, alterations in the cryosphere 

can disrupt the delicate water cycle balance, affecting regional water availability and 

weather patterns. Understanding these interactions is crucial for predicting and 

mitigating the effects of climate change and ensuring the sustainable management 

of Earth's water resources. The interaction between the cryosphere and hydrosphere 

is particularly important in terms of water availability, sea-level changes, and climate 

feedback mechanisms. Melting glaciers and ice sheets contribute to rising sea levels, 

impacting coastal areas and communities. Water stored in glaciers and snow cover 

also serves as a significant source of freshwater for many regions around the world. 

Changes in the cryosphere can influence ocean circulation patterns, which in turn 

affect climate patterns. 

Thus, being mountainous and glacial environments among the most sensitive to the 

impact of climate change, they are studied as key indicators of climate variations. 

 

2.1.4 Climate Change 

In recent years, the rapid retreat of glaciers due to global warming has brought 

increased attention to proglacial areas. Researchers are closely monitoring these 

regions to document the shifts in landscape, hydrology, and ecosystems as glaciers 

continue to recede. Understanding proglacial environments is not only vital for 

advancing our knowledge of glacial processes but also for anticipating and mitigating 

the effects of climate change on various interconnected systems. 

The cryosphere is experiencing continuous transformations, particularly in 

mountainous regions, and these shifts are set to persist at both local and global 

scales. Within mountainous contexts, alterations will stem not only from climate 

change but also from indirect factors that bear significant environmental and socio-

economic implications. Glaciers serve as pivotal components within the water balance 

cycle of mountain landscapes and serve as sensitive indicators of climate change. 
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Changes in temperature and precipitation directly affect glacier dynamics and 

subsequently impact the proglacial landscape.  

In general, each component of the cryosphere and hydrosphere assumes a distinct 

role within Earth's ecosystem, with each modification triggering repercussions across 

multiple domains. The thawing of ice sheets and glaciers contributes to rising sea 

levels and yields changes in marine ecosystems. Similarly, the melting of sea ice has 

the potential to reshape general ocean circulation patterns and the productivity and 

biodiversity of marine ecosystems. In terms of climate, the reduction of the reflective 

snow-white surface intensifies global warming by diminishing Earth's albedo and 

triggering ice-albedo feedback. The thawing and subsequent diminishment of 

permafrost disrupt the delicate equilibrium of the subsurface, altering the carbon 

cycle by releasing higher levels of methane into the atmosphere (IPCC, 2013, 2017). 

The ongoing pattern of continuously increasing emissions of Greenhouse Gases 

(GHGs) and the subsequent rise in temperatures have led to an elevation of the 

equilibrium line (the line that separates the accumulation and ablation areas of a 

glacier) and a consistent decline in glacial masses. Projections from the 

Intergovernmental Panel on Climate Change (IPCC) highlight that the most 

substantial loss of snow mass is occurring in areas with smaller glaciers, such as the 

Alps, resulting in significant social and economic repercussions (Macelloni, 2022). 

Proglacial areas are one of the most rapidly changing natural earth surface systems 

due to glacier and ice sheet mass loss and permafrost degradation, all of which have 

become more evident over the last three decades (IPCC, 2019) and all of which are 

predicted to continue for many decades (Shannon et al., 2019; Carrivick e Tweed 

2021). 

In the European Alps, there has been an observed rise in air temperature of 0.3°C per 

decade on average (IPCC, 2018). This increase displays seasonal variability, with more 

pronounced upticks in summer and spring (Auer et al., 2007; Ceppi et al., 2012). This 

non-uniform pattern of fluctuation is also visible on a global scale across various 

elevations. Warming trends are generally accentuated above 500 meters above sea 

level (Wang et al., 2016a; Qixiang et al., 2018). In contrast, a uniform global trend is 

lacking for high elevations. 

A continuous decline in the mountain cryosphere is evident, particularly in the 

European Alps. Since 1850, the ice area in the European Alps has diminished by 54%, 

and this trend is projected to persist. Projections suggest that, if this trend goes on, 

approximately 4-13% of the original ice area will remain by 2100 (Rasul et al., 2020). 

Over recent decades, the snow line has gradually risen, accompanied by a reduction 

in the number of snow cover days. The IPCC Fifth Assessment Report (AR5) predicts 

an 80% loss in the current mass of European glaciers (IPCC, 2014). 

The maintenance of glacier equilibrium relies significantly on the presence of snow 

cover. It contributes to thermal regulation by reflecting heat and protecting the 

underlying ice, thereby shielding it from melting. Snowfall patterns exhibit high 
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sensitivity to climate change, and they are characterized by significant fluctuations 

over both years and decades. As the snow line shifts to higher elevations, liquid 

precipitation becomes more frequent at lower altitudes. This intensifies overall 

melting and triggers mechanisms linked to air temperature changes. 

The whitish colour of snow and glacial regions plays a key role in the albedo effect, 

essential to Earth's energy balance. Surfaces with high albedo, such as snow-covered 

areas and ice sheets, reflect a large portion of incoming solar radiation back into 

space. In the context of snow and glaciers, the albedo effect is particularly crucial. 

Snow and ice have high albedo due to their bright, white surfaces. When sunlight hits 

these surfaces, much of it is reflected, preventing the underlying ice from warming 

up too quickly. However, as temperatures rise and snow melts, the exposed darker 

surfaces, like soil, rock or older and dark ice, have lower albedo and absorb more 

heat. Local surface temperatures can rise up to 2 degrees. This leads to further melting 

and a positive feedback loop – the more melting occurs, the more heat-absorbing 

surfaces are exposed, causing even more melting. Additionally, the deposition of dark 

particulate matter like dust and black carbon, caused by pollution and wind transport, 

exacerbates melting by diminishing the remaining snow's reflectivity. This accelerates 

the reduction of snow cover. These feedback loops also hold significance for 

permafrost in mountainous areas, as the carbon dioxide and methane contained 

within it could be released into the atmosphere consequently. 

Glacier types exhibit varying responses to shifts in climate conditions. As 

temperatures rise, the Equilibrium Line Altitude (ELA) of a glacier – originally set at a 

certain elevation (ELA1) – moves higher (ELA2), as illustrated in Figure 2.1. This change 

results in increased melting of snow and a reduced accumulation area. Over time, 

glaciers adjust their ELA in ways specific to their types. Smaller glaciers often vanish 

entirely, while mountain glaciers thin out, and valley glaciers lose their tongues. For 

instance, glaciers characterized by gentle slopes and elongated tongues in valleys, 

found in places like Alaska, Canada, and the Alps, experience a gradual mass 

reduction in response to climate-driven shifts. This leads to substantial thinning of 

the glaciers, while their outward appearance remains largely unchanged despite 

significant mass losses. In contrast, smaller mountainous glaciers adapt quicker to 

climate changes, reshaping by expanding their ablation areas more rapidly (Vaughan, 

et al., 2013). 
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Figure 2.1 IPCC AR5, Schematic of three types of glaciers located at different elevations, and their 

response to an upward shift of the equilibrium line altitude (ELA). 

 

In the European Alps, the retreat of alpine glaciers appears to have been influenced 

by the industrial revolution, rather than immediate climate change impacts that 

became evident later. The increase in black carbon soot played a pivotal role. Despite 

temperature rise and reduced precipitation, alpine glaciers experienced mass growth 

until around 1910. However, the late 1950s saw the onset of snow-covering dark 

particulate, diminishing albedo and accelerating snowmelt due to intensified solar 

radiation (Painter et al., 2013). 

While climate models are currently examining shifts in snow cover, it's evident that 

heightened rainy precipitation in alpine regions, combined with an ongoing 

temperature increase, led to a 25% reduction in snow mass. 

In the projections outlined by the IPCC, the expected reduction in snow cover ranges 

from 30% under RCP2 2.6 to potentially up to 80% under RCP 8.5 by the year 2100, 

as depicted in Figure 2.2 

 

2 RCP stands for Representative Concentration Pathways emission scenarios that IPCC defines 

as: “… used to assess the costs associated with emission reductions consistent with particular 

concentration pathways. The RCPs represent the range of GHG emissions in the wider 

literature well (Box 2.2, Figure 1); they include a stringent mitigation scenario (RCP2.6), two 

intermediate scenarios (RCP4.5 and RCP6.0), and one scenario with very high GHG emissions 

(RCP8.5).” (IPCC, 2014) 
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Figure 2.2 Projected glacier mass evolution between 2015 and 2100 relative to each region’s glacier 

mass in 2015 (100%) based on three Representative Concentration Pathways (RCP) emission scenarios 

(IPCC,2022). 

The global extent of glaciers encompasses approximately 250,000 km2, spanning 

various regions around the world, except for Antarctica, the Greenland Region, and 

the Canadian and Russian Arctic. The evolution of glaciers primarily depends on the 

equilibrium between snow accumulation and ablation, while the glacier's response to 

temperature changes is influenced by factors like atmospheric warming, heightened 

longwave radiation, and shifts in air moisture. Atmospheric warming emerges as the 

primary catalyst for the widespread recession of glaciers, with human-driven 

increases in greenhouse gas emissions playing a significant role (Marzeion et al., 

2014). 

Empirical research demonstrates a strong likelihood of substantial ice mass loss 

across polar and high mountain regions, as indicated in Figure 2.3. The IPCC's 

projections for 2100 emphasize the most profound mass reductions in regions 

featuring smaller glaciers, such as the scenario observed in the European Alps. A 

similar concept also applies to the modification of permafrost mass, lake and river 

ice, and all ecosystems connected to them. 
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Figure 2.3 Annual mass balance of reference glaciers with more than 30 years of ongoing glaciological 

measurements. From the World Glacier Monitoring Service (WGMS). 

 

2.1.5 Glacier-related Effects of Climate Change 

Alterations in this equilibrium can give rise to numerous implications for delicate 

mountain ecosystems and the inhabitants residing within them. Glaciers, along with 

the broader cryosphere, regulate water reservoirs for over 600 million individuals 

globally, encompassing mountainous and downstream areas. This vital resource is 

harnessed for purposes ranging from hydropower generation to agricultural 

irrigation and the sustenance of domestic and industrial requirements. Any shift in 

the balance of the cryosphere can potentially exert profound influences, reshaping 

both human communities and the surrounding ecosystems. 

The melting of glaciers, ice caps, ice sheets, and the broader cryosphere has a direct 

impact on rising sea levels. While there is ongoing research to precisely estimate the 

contribution of melting ice masses to sea level modification, current studies suggest 

they account for approximately 30% of sea level changes over the last century. 
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Figure 2.4 Observed and modelled historical changes in the ocean and cryosphere since 1950, and 

projected future changes under low (RCP2.6) and high (RCP8.5) greenhouse gas emissions scenarios 

(IPCC, 2019: Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a 

Changing Climate). 

Additionally, the cryosphere, particularly in alpine regions, has significant socio-

economic implications for mountain communities and tourism-dependent areas. The 

diminishing glaciers also exert an influence on water quality due to intensified 

anthropogenic pollutants affecting downstream ecosystems. This reduction in 

glaciers also disrupts hydropower production through altered runoff patterns and the 

release of sediment and debris from melting. In agriculture, the reduction of snowfall 

alters soil moisture and water supply levels for irrigation, possibly leading to the 

emergence of higher-altitude crops. Also, the tourism industry that relies on winter 

activities is affected by these phenomena. Rising temperatures lead to shorter and 

less predictable ski seasons. Warmer temperatures can result in reduced snow quality 
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and reliability, as in delaying the start of the skiing season and accelerating the end, 

reducing the overall window of opportunity for winter sports. 

The ramifications of climate change in mountainous regions extend to water security, 

impacting both small-scale and regional scales, especially during dry periods. The 

changing cryosphere also increases the occurrence of natural hazards like landslides, 

avalanches, and flooding, all linked to the destabilization of long-standing geological 

formations. For instance, in the European Alps, the interaction of melting glaciers and 

increased sediment transport has led to heightened slope instability and landslide 

potential. Unprecedented heat waves in high-altitude regions can exacerbate melting 

and detachment phenomena from steep walls. 

 

 
Figure 2.5 Synthesis of observed physical changes and impacts on ecosystems and human systems in 

eleven high mountain regions over the past decades that can at least partly be attributed to changes 

in the cryosphere. (IPCC, 2019: Summary for Policymakers. In: IPCC Special Report on the Ocean and 

Cryosphere in a Changing Climate). 

Confidence is high that exposure to cryosphere hazards in high mountain regions has 

increased in recent years and is projected to persist (IPCC, 2021). The rise in rainy 

precipitation can amplify wet snow and avalanches, while heightened snowmelt can 

result in glacial lake expansion, increased water flow, and potential avalanches in 

periglacial lakes, culminating in flood risks. It's also essential to consider the economic 

significance of mountain areas, particularly in terms of tourism. The European Alps, 

renowned for their winter tourism and skiing industry, are at risk of substantial 

economic losses due to temperature increases, potentially leading to increased costs 

and financial vulnerability. 

Moreover, changes in the cryosphere have far-reaching implications for cultural 

values and human well-being. From Arctic Island states to indigenous communities 

in Nepal's Annapurna Conservation Area, the alterations in mountain environments 

threaten cultural identities and livelihoods. Notably, 46 out of 247 UNESCO World 

Heritage natural sites encompass glacier regions, and projections indicate that eight 

of these sites could vanish by 2100 under varying scenarios (IPCC, 2017, 2021). 
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Mitigation strategies primarily aim to address hazards linked to rising temperatures, 

while adaptation approaches in this domain are still evolving. Often, adaptations 

involve community-driven modifications, such as altering agricultural practices and 

water management. However, it is unclear how effective they are over a prolonged 

period of time. 

Climate change in glacial environments is predicted to amplify cryosphere hazards 

and trigger a comprehensive reshaping of ecosystems, habits, and equilibrium for 

populations that interact within these contexts. The imperative for safeguarding both 

the human population and biodiversity in these vulnerable areas necessitates vigilant 

glacier monitoring as a foundational step toward mitigating and adapting to these 

evolving circumstances. 

 

 

Figure 2.6 Anticipated changes in high mountain hazards under climate change, driven by changes in 

snow cover, glaciers and permafrost, overlay changes in the exposure and vulnerability of individuals, 

communities, and mountain infrastructure (IPCC, 2019). 
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2.2 Glaciers and Proglacial Areas Monitoring 

 

2.2.1 Why? 

Acting as indicators of climate change, glaciers and proglacial areas are environments 

that should be monitored over time. However, the study and monitoring of Alpine 

glaciers and proglacial areas are of crucial importance for several other reasons, too, 

which are listed below and have been briefly described in the previous paragraphs. 

1. Indicators of climate change. 

2. Supply of water resources. 

3. Risk management. Monitoring glaciers and proglacial areas aids in assessing 

and managing the risk of events such as avalanches, landslides, and glacial 

outburst floods, providing crucial data for infrastructure planning and 

community protection. 

4. Habitat and biodiversity: Proglacial areas, where glaciers are retreating, are 

unique environments that host a variety of habitats and unique species. 

Glacier retreats and the formation of proglacial lakes and valleys can influence 

biodiversity and species behaviour, as well as local ecological processes. 

Monitoring these areas helps to better understand the impacts of 

environmental change on fauna and flora. 

In summary, the study and monitoring of Alpine glaciers and proglacial areas have 

significant implications across a wide range of sectors, from understanding climate 

change to managing water resources and conserving biodiversity. This research is 

essential to inform policy decisions, develop adaptation and mitigation strategies, 

and preserve mountain ecosystems and the communities connected to them. 

 

2.2.2 How? 

A systematic and synchronized monitoring effort to track changes in glacier extent 

(frontal variations or length shifts) with annual temporal resolution was initiated as 

early as 1893 during the 6th Geological Congress in Zurich. Initially encompassing a 

few hundred glaciers worldwide, this sample expanded to over 900 glaciers for several 

decades (from 1960 to 1990), and currently stands at approximately 600 glaciers 

(Zemp et al., 2015; Paul et al., 2019; Heckman et al., 2019). 

Monitoring of these environments mainly takes place annually, to assess the extent 

of the glacier retreat at the end of the summer ablation period (Macelloni, 2022). 

For a select number of glaciers, records of their terminus changes have been 

documented since 1850, although often lacking annual precision (WGMS 2008; 

Vaughan et al. 2013). Furthermore, for certain glaciers, not only frontal shifts (one-

dimensional data) but also lateral extents have been reconstructed, offering a two-
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dimensional (2D) perspective on their former glacier area, particularly for their lower 

sections (Zumbühl and Holzhauser 1988). 

Since 1986, the World Glacier Monitoring Service (WGMS) has been in charge of 

collecting standardized observations on changes in mass, volume, area and length of 

glaciers over time (glacier fluctuations). It also compiles statistical information 

regarding the spatial distribution of perennial surface ice (glacier inventories). These 

glacier fluctuation and inventory datasets hold substantial significance as key 

variables in climate system monitoring. They serve as a foundational resource for 

hydrological modelling in relation to the potential impacts of atmospheric warming 

and provide fundamental insights into glaciology, glacial geomorphology, and 

quaternary geology. The highest information density is found for the Alps and 

Scandinavia, where long and uninterrupted records are available (WGMS 2015 and 

earlier versions, wgms.ch/ggcb). 

With each year being added, the time series gains incremental value, serving a 

multitude of purposes including enhancing process understanding, detecting climate 

change patterns, and fine-tuning model calibration. 

Detailed reconstructions of earlier glacier fluctuations are primarily constructed from 

indirect evidence sources, such as dated moraines, dendrochronology, and paintings 

(Paul et al., 2019; Heckman et al., 2019). 

Satellite imagery offers alternative and largely free access to the reconstruction of 

glacial fluctuations. In comparison to ground-based data, satellite images cover a 

more limited period (e.g., Landsat Multi-Spectral Scanner (MSS) from 1972, Thematic 

Mapper (TM) from 1984) and may not be available for every year within a specific 

region due to factors such as cloud cover or acquisition strategies. Additionally, freely 

accessible satellite data with extensive historical records, such as Landsat, have a 

limited spatial resolution (MSS: 79 m, TM: 30 m), limiting the ability to monitor 

changes with finer temporal intervals (e.g., every 5–10 years, depending on the rate 

of change). However, these drawbacks are counterbalanced by the full spatial 

coverage of an entire region, capturing all glaciers within the area, rather than only a 

limited selection with easy ground access. 

Satellite images are predominantly employed for the mapping of glacier extents (i.e., 

outlines), instead of front variations. Given that satellite data is available for regions 

or periods that may lack ground-based information, it can complement existing 

datasets in this aspect (Barandun et al. 2015). A notable advantage of satellite imagery 

lies in its potential for automatic classification of clean glacier ice using a 

straightforward band ratio approach (e.g., red divided by short-wave infrared band) 

combined with a segmentation threshold to create a binary image map. 

Subsequently, raster-to-vector conversion techniques can convert this map into 

glacier outlines (Paul 2002, 2015; Bolch and Kamp 2006). 
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Finally, uncrewed aerial vehicles (UAVs), also known as unmanned aircraft systems 

(UAS) or drones, have come to the forefront in the past. Combined with Structure-

from-Motion (SfM) photogrammetry, UAVs established an exceptionally efficient 

workflow in the field of glacial and paraglacial geomorphology, filling the gap 

between traditional ground-based surveys and satellite remote sensing data. Various 

models of small Uncrewed Aerial Systems (UASs) are available in the market, designed 

for easy portability by an individual and providing a favourable balance between cost 

and benefit. This strategy allows the capture of imagery from relatively low altitudes, 

enabling highly detailed reconstruction of 3D features.  

The data obtained from UAVs present a versatile spatial and temporal resolution, 

thereby facilitating a transition from mere descriptions of geomorphological features 

to a more profound comprehension of the relationships between processes and 

forms, e.g., by quantification of short-term landscape changes in response to various 

influencing factors. 

Current applications of UAV-SfM in studies of modern and past glacial 

environments generally encompass geomorphological mapping and change-

detection analysis. Researchers also indicate potential future applications, e.g., by 

combining UAV data with historical archives, terrestrial SfM, and crowd-based image 

gathering to allow for a better understanding of landscape changes in response to 

present climate warming (Śledź et al., 2021). 

Measurement in photos, by satellites or UAVs, means also measuring points on the 

object without physical contact with the object. Therefore, photogrammetry and 

satellite images are useful for glacial and proglacial environments, in which the object 

cannot easily be reached (Kappas, 2011). 

 

 

Figure 2.7 Schematic of aerial photogrammetry for glacial monitoring. (Kappas, 2011) 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/glacial-environment
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/glacial-environment
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/geomorphological-mapping
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In glacial and proglacial environments, the difficulties related to equipment 

transportation and the limited accessibility of the areas to be monitored, along with 

the cost and risk of the measurement campaigns, are parameters of fundamental 

importance in the choice of the monitoring techniques to be adopted (Macelloni, 

2022). 

 

2.2.3 Geomatics Tools  

For this study, the need for monitoring has required the implementation of in-situ 

measurement campaigns and the application of different geomatics techniques. 

Before highlighting the specific tools applied, a brief definition of geomatics follows. 

Geomatics is a “systemic, multidisciplinary, integrated approach for selecting the 

instruments and the appropriate techniques for collecting, storing, integrating, 

modelling, analysing, retrieving at will, transforming, displaying, and distributing 

spatially georeferenced data from different sources with well-defined accuracy 

characteristics and continuity in a digital format” (Gomarasca 2010).  

The tools applied in the very first step of this work, which was monitoring and 

collecting data, are: 

- Global Navigation Satellite System (GNSS)  

- Geographical Information Systems (GIS) 

- Aerial photogrammetry 

Global Navigation Satellite System (GNSS) enables the precise localization of objects, 

achieving accuracy down to a few centimetres. This system relies on radiofrequency 

signals emitted by dedicated satellite constellations, such as the Global Positioning 

System (GPS), which are collected by ground receivers. By determining the satellite's 

position in relation to the Earth and calculating the satellite-receiver distance, the 

coordinates of a specific point can be established. This distance is derived indirectly 

by measuring the signal's time or phase emitted by the satellite and received by the 

receiver. 

Geographical Information Systems (GIS) represent complex systems designed to 

store, manage, analyse, process, and visually present geographic data. They enable 

the integration of tools capable of receiving, recording, depicting, and manipulating 

georeferenced spatial data. 

Aerial photogrammetry, a technique reliant on images briefly described in the 

previous paragraph, facilitates the reconstruction of three-dimensional models and 

the determination of intrinsic attributes along with their spatial positioning. 

 

2.2.4 Aerial Photogrammetry  

Several studies have already validated the potential of UAS photogrammetry (Barry 

and Coakley 2013, Gülch 2011, Haala et al. 2009, 2011, 2012, 2013, Küng et al. 2011, 

Vallet et al. 2011, Rosnell and Honkavaara 2012). Noteworthy advantages include the 

cost-effectiveness, the automation and high repeatability of surveys, and the 

exceptional resolution of the final output. Instead, drawbacks are associated with the 

post-processing phase. 
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Essential components for proficient aerial surveys using UASs include: 

- a camera equipped to capture high-resolution imagery. this camera 

comes with distinct specifications like resolution, lens type, and image 

stabilization features; 

- a GNSS receiver for precise location determination and georeferencing of 

the captured images; 

- an inertial measurement unit (IMU) for assessing UAS orientation and 

acceleration. It provides data on roll, pitch, yaw angles, and linear 

accelerations, enhancing UAS stability and result accuracy; 

- a wireless communication system for linking with a ground control station, 

enabling real-time monitoring (RTK) of flight status, command reception, 

and data transfer; 

- an onboard small computer processor managing diverse tasks such as 

image processing, data storage, flight control algorithms, and component 

communication. 

Specifically, the concept behind the application of photogrammetry for proglacial 

area surveys is relatively easy. It mainly takes place annually, to assess the extent of 

the glacier retreat at the end of the summer ablation period. The careful planning of 

the aerial survey during more favourable weather conditions is fundamental. Low 

wind (< 25 km/h) and short shade hours are preferred related to the specific UAS 

capability. Also, clear or uniformly cloudy skies are the optimal conditions. Being 

proglacial areas particularly prone to cloud cover, weather conditions present a 

constraint for aerial survey flights, and waiting for favourable weather can be time 

and cost-intensive in some instances. 

The camera captures images with a designated overlap percentage, forming the basis 

for the Structure from Motion technique. These images, with around a 10 cm Ground 

Sampling Distance (GSD), yield a Digital Surface Model (DSM) or Digital Elevation 

Model (DEM) boasting a vertical accuracy of approximately 20 cm (Gonçalves et al. 

2010, 2011). 

The GSD [m] depends on flight height, H [m], focal length, f [mm], sensor dimension, 

and image dimension. This geometric ratio is readily estimated via tools like the PIX4D 

calculator. 
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Figure 2.8 2022 campaign - © Politecnico di Torino – DIATI | cc@polito 

Utilizing photogrammetric processing software employing the SfM approach, the 2D 

DSM, orthomosaic, and 3D point cloud are generated. Subsequently, georeferencing 

can be accomplished. This can be achieved through direct photogrammetry thanks 

to the embedded GNSS receiver in the UAS, offering accuracy matching the GNSS 

signal. Alternatively, known coordinate points called Ground Control Points (GCPs) 

can be used for georeferencing. These GCPs can be natural elements identified from 

collected images or markers pre-placed on the ground for this purpose before the 

survey. 

 

2.3 Paraglacial Geomorphology 
In the late 19th century and by the early 20th century, “glacial theory” developed, 

encompassing glacial geomorphology with the description of glacial landforms and 

mapping of glaciated terrains. Over time, the field has forged intricate connections 

between glaciology, dating techniques, Geographic Information Systems (GIS), 

hydraulic modelling and glacial sedimentological studies. With these linkages, major 

paradigm shifts and scientific advances have increased our understanding of glacial 

environments. With climate change and global warming, understanding the latest 

glacial environments gains paramount importance (Menzies, 2018). 

In this study, after the data collection performed using geomatics monitoring 

techniques, the bathymetry of a system of proglacial streams was reconstructed. The 

channelized streams develop covering an alpine highland downstream of the Rutor 

glacier, joining in a shallow lake, known as Lago Marginale. 
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Figure 2.9 Photo of the Marginale Lake, 18th July 2023. 

Bathymetry mapping is the prerequisite activity that sets a basis for hydrological 

modelling and paraglacial geomorphology. To make evaluations of water quality, 

habitat conditions, and environmental flow for riverine ecosystems via hydraulic 

modelling, for a proper understanding of sediment fluxes and also inferring 

geomorphic responses to climate changes in proglacial environments, it is necessary 

to first undertake bathymetric mapping (Kim et al., 2019; Heckman and Morche, 

2019).  

 

2.3.1 Conventional methods for bathymetry mapping 

Rivers and streams commonly exhibit irregular shapes, including confluences and 

meander bends, resulting in intricate flow patterns characterized by recirculating 

motions and centrifugal-induced secondary currents (Kalkwijk and De Vriend, 1980; 

Jia and Wang, 1999; Ferguson et al., 2003). Due to these complexities, precise and 

high-resolution bathymetric data have gained recognition as essential input elements 

for river modelling, serving to enhance the overall performance of the models 

(Crowder and Diplas, 2000; Merwade, 2009). 

Traditional methods of surveying stream bathymetry have traditionally involved direct 

measurement techniques like robotic total stations (RTS), real-time kinematic global 

positioning systems (RTK-GPS), and echosounders mounted on moving vessels, as 

documented by Brasington et al. (2000), Julien et al. (2002), Lamarre and Roy (2008), 

and Kim et al. (2018). However, these on-site methodologies are known for their time-

consuming, labour-intensive, and expensive nature, particularly when dealing with 

inaccessible areas (Ceyhun and Yalçın, 2010; Ding et al., 2018). 
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Bathymetric Light Detection and Ranging (LiDAR) systems, in contrast, offer the 

advantage of rapidly providing seamless topography data (Guenther et al., 2000) and 

have been employed for river bathymetry measurements (Kinzel et al., 2007; Hilldale 

and Raff, 2008). However, the utilization of such systems demands specialized 

algorithms to manage the extensive data and is contingent on water clarity at the 

study sites, as pointed out by Legleiter et al. (2009) and Abdallah et al. (2013). 

In recent decades, an increasing number of studies have turned to remote sensing 

techniques for reconstructing bathymetry in coastal and inland waters, leveraging the 

spectral information present in multispectral and hyperspectral imagery, as 

demonstrated by Philpot (1989), Legleiter et al. (2004), Fonstad and Marcus (2005), 

Carbonneau et al. (2006), Lyzenga et al. (2006), and Pan et al. (2015). The radiance 

observed by remote sensors can be described as (Kanno and Tanaka, 2012): 

𝐿𝑡(𝜆) = 𝐿𝑎(𝜆) + 𝐿𝑠(𝜆) + 𝐿𝑤(𝜆) + 𝐿𝑏(𝜆) 

where 𝐿𝑡(𝜆) is the total radiance reaching a remote sensor; 𝐿𝑎(𝜆) is the atmospheric 

scattering; 𝐿𝑠(𝜆)is the water surface-reflected radiance; 𝐿𝑤(𝜆) is the in-water 

scattering corresponding to the water depth; 𝐿𝑏(𝜆) is the radiance reflected by sea or 

stream beds (substrate); λ indicates the wavelength (spectral band) of remote-sensing 

imagery. In fact, the solar irradiance, in the impact of a water surface, breaks down 

according to different interaction mechanisms. 

This radiance is nothing but the colour that the human eye perceives. When observed 

in small quantities, pure water is a substantially colourless element. Which justifies its 

very low reflectivity and high visible transmissivity. In the observation of a water body, 

it is necessary to consider the different contributions listed above.  

In any case, the components of the previous equation different from 𝐿𝑤(𝜆), the most 

important information needed, turn out to be a disturbance and undesired; the most 

arduous task of aquatic remote sensing lies precisely in isolating the radiance of 

interest from these components. The portion of energy reflected by the water, when 

it is pure, can reach a maximum of 3% of the incident radiant flux and is confined 

mostly to the bands of blue-green light from where a continuous decrease is 

observed going towards the lengths of longer waves, until completely absorbed, 

already from near-infrared. The colour of the water, therefore, is not an intrinsic 

property but depends almost exclusively on the influence of the surrounding 

environment, such as the colour of the sky or that of the seabed, and the result of the 

diffusion caused by the presence of compounds such as phytoplankton, the 

suspended sediment, the organic component, or other substances. 
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Figure 2.10 Effect of variable bottom types on remote-sensing radiance. Atmospheric scattering and 

water-surface-reflected radiance are ignored (Kim et al., 2019). 

 

Within these variables, 𝐿𝑎(𝜆)and 𝐿𝑠(𝜆) can be eliminated by atmospheric and sun-

glint correction algorithms. In optically deep waters such as oceanic and lacustrine 

systems, 𝐿𝑏(𝜆) usually has no significant effects on  𝐿𝑡(𝜆) (Ma et al., 2011; Reichstetter 

et al., 2015). Thus, it becomes feasible to approximate water depth using remotely 

sensed data by considering 𝐿𝑡(𝜆) as equivalent to 𝐿𝑤(𝜆). Instead, in-stream and near-

shore applications, this approximation is not valid due to the significant influence of 

𝐿𝑏(𝜆), particularly in shallow waters, as depicted in Figure 2.10 (Su et al., 2008; 

Legleiter et al., 2016). Consequently, accurately extracting 𝐿𝑤(𝜆) from 𝐿𝑡(𝜆) 

necessitates the identification of 𝐿𝑏(𝜆). 

Traditional bathymetric inversion algorithms relying on multispectral imagery 

typically assume a uniform relationship between water depth and 𝐿𝑡(𝜆), assuming 

𝐿𝑏(𝜆) remains constant across the entire study area (Stumpf et al., 2003; Legleiter, 

2013). However, rivers and streams frequently exhibit varying bottom types, resulting 

in spatially heterogeneous 𝐿𝑏(𝜆) due to diverse bed materials like sediments, 

pavements, in-stream vegetation, and periphyton (Beisel et al., 2000; Cotton et al., 

2006; Hondzo et al., 2013). This complexity limits the effectiveness of conventional 

global inversion models in cases where 𝐿𝑏(𝜆) varies spatially. Although specialized 

inversion algorithms have succeeded in separating 𝐿𝑏(𝜆)and 𝐿𝑡(𝜆) in coastal regions, 

this remains a challenge and is optimally achieved with hyperspectral imagery 
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(Brando et al., 2009; Lee et al., 1999; Ma et al., 2014; Wozencraft et al., 2003; 

Cannizzaro and Carder, 2006). 

Some researchers reconstructed bathymetry using a methodology able to reduce the 

refraction error on photogrammetric data in fluvial environments, like the iterative 

Dietrich’s refraction correction method (Lingua et al., 2023), or one based on Snell’s 

law or on a polynomial correction relying on the physical and photogrammetric 

characteristics of the investigated object (Pontoglio et al., 2020).  

 

Figure 2.11 (Pontoglio et al., 2020) Water depth underestimation. Where WDC is the water depth 

correction, 𝑖 ̂and �̂�  the angle of incidence and angle of refraction of light, 𝑛𝑎𝑖𝑟 and 𝑛𝑤𝑎𝑡𝑒𝑟 are the 

refractive indices of air and water respectively. The Snell’s law is  
sin 𝑖

sin 𝑟
=

𝑛𝑤𝑎𝑡𝑒𝑟

𝑛𝑎𝑖𝑟
 

 

This study introduces a geographically weighted regression (GWR) model to enhance 

the accuracy of bathymetry mapping in streams with heterogeneous bottom types. 

The GWR model establishes local linear relationships between predictors and target 

values, incorporating geographical attributes specific to each location (Brunsdon et 

al., 1996). This geospatial regression approach effectively captures the spatially 

varying relationship between 𝐿𝑡(𝜆) and water depth, accounting for the diverse 

substrates in stream environments. Several studies successfully retrieved bathymetry 

using GWR in near-shore coastal regions from multispectral imagery (Su et al., 2014; 

Monteys et al., 2015; Vinayaraj et al., 2016), where the heterogeneity of bottom types 

causes variability in the relationship between remotely-sensed radiance and shallow 

water depth. However, the application of this local inversion model to stream 

environments remains limited. 

In the field experiment, the remote-sensing radiance measured by the sensor, 𝐿𝑡(𝜆), 

is represented by a digital number (DN). The concept of DN is here introduced and 

will be helpful for the understating of the next paragraph. It refers to the numerical 

value assigned to a pixel in a digital image and corresponds to a particular brightness 

or intensity level. So, the DN represents the radiometric information enclosed in each 

pixel. DN is also called "digital value," "pixel value," or "digital intensity." UAV images 

are composed of different spectral bands: red, green and blue if the sensor works in 

https://en.wikipedia.org/wiki/Angle_of_incidence_(optics)
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the visible range of wavelengths; near-infrared, thermal infrared and so on if the 

sensor is multi or hyperspectral. A DN value is assigned for each band of the image 

for every pixel. 8-bit images are the most common format of UAV imagery, and their 

DN can range between 0 and 255. This means that each pixel of the image can assume 

256 values. There are also greater bit depth images, like 16- or 32-bit. For example, 

with 16 bits, there are 216 possible combinations of bits, which correspond to 65536 

distinct possible values (from 0 to 65535). As a result, a 16-bit image can represent a 

wider range of details and nuances compared to an 8-bit image. 

 

2.3.2 Spatial statistics for environmental applications  

When extracting bathymetric information from multispectral imagery, the commonly 

accepted approach for estimating water depth through bathymetric inversion models 

involves utilizing the natural logarithmic values of the band ratios derived from two 

distinct spectral bands (as indicated by Stumpf et al., 2003; Legleiter et al., 2009; 

Legleiter, 2013). This is represented by the ratio between the digital number of each 

band. To define the optimal band ratios from all possible combinations of the 

multispectral bands, this study employed the principal component analysis (PCA). 

Principal component analysis (PCA) is a method that reduces the dimensionality of 

data while preserving its essential information. This technique is particularly valuable 

for datasets that have a large number of features. It finds frequent application in tasks 

like image processing and genome research, which often involve working with 

datasets containing thousands or even tens of thousands of variables. Although a 

larger volume of data is consistently advantageous, there are instances in which the 

abundance of information within datasets can lead to excessive model training 

durations and result in the development of dimensionality as a significant issue. 

Diminishing the count of variables invariably implies a compromise in accuracy; 

nonetheless, the art of dimensionality reduction lies in exchanging a slight degree of 

accuracy for enhanced simplicity. This is grounded in the notion that smaller datasets 

facilitate more efficient exploration and visualization, consequently rendering the 

analysis of data points considerably faster and more straightforward for machine 

learning algorithms. 

Basically, it transforms the original dataset into a set of new variables, known as 

principal components, that are orthogonal (uncorrelated) to each other. Here are the 

steps involved in performing PCA: 

1. Standardize the Data: The goal of this step is to standardize the range of 

continuous initial variables so that they all have equal impact on the analysis. 

Each variable's values can be standardized by subtracting their mean and 

dividing by their standard deviation.  

 

This is crucial because PCA is sensitive to the scale of the data. 
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2. Compute the Covariance Matrix: The goal of this step is to understand if a 

correlation is present between pairs of the standardized variables. The 

covariance matrix says how the variables of the input data set vary from the 

mean with respect to each other. 

 

Example of covariance Matrix, in this case for 3-dimensional Data. 

 

3. Compute the eigenvectors and eigenvalues of the covariance matrix to 

identify the principal components. Eigenvectors represent the direction of the 

new feature space (called principal components), while eigenvalues indicate 

the variance of the data along these directions. They give insight into how 

much information each principal component carries. By ranking the 

eigenvectors in order of their eigenvalues, highest to lowest, the principal 

components are sorted in order of significance. The idea behind the principal 

components is that they are new variables that are built as linear combinations 

of the initial variables, in such a way that the new variables (i.e., principal 

components) are uncorrelated and most of the information within the initial 

variables is compressed into the first components. Geometrically speaking, 

principal components represent the directions of the data that explain the 

most variance. (“Principal Component Analysis (PCA) Explained | Built In”) 

4. Select Principal Components: Choose the top-k eigenvectors corresponding 

to the highest eigenvalues. The number of principal components selected 

depends on the desired dimensionality reduction. 

5. Create the Projection Matrix and transform the data. Here a projection matrix 

is formed by stacking the selected eigenvectors as columns. This matrix will 

be used to transform the original data into the new feature space by 

multiplying the standardized data by the projection matrix.  

6. Evaluate dimensionality reduction by computing the explained variance. The 

explained variance for each principal component is calculated by dividing its 

eigenvalue by the sum of all eigenvalues. This provides insight into how much 

variance each principal component retains from the original data, to decide 

on the number of principal components to retain. The aim is to retain a high 

proportion of the total variance while reducing dimensionality.  
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3. Case Study: the proglacial area of Rutor 

Glacier 
 

The Rutor Glacier lies on the northwestern border of the Italian peninsula and forms 

part of the Italian-French border (as depicted in Figure 3.1). 

 

 

Figure 3.1 Rutor geographical overview. Base map by ESRI. 

 

It covers an area of 7.9 km2 (Corte et al., 2023). It is 4.68 km long and extends from 

2540 to 3486 m (head of the Rutor) above sea level. Among Valle d'Aosta's glaciers, 

it ranks as the third largest after the Miage and Lys glaciers.  

It is also referred to as 'Ruitor' or 'Rhutor,' deriving its name from the French-

Provençal language: 'Ru,' meaning a small river, and 'Tors,' highlighting a challenging 

path characterized by rocky jumps, tiers, and the precipitous course of a watercourse. 

The Rutor morphology is relatively flat, characterized by a combination of steep rocky 

ledges and sub-flat basins (Viani et al.,2020; Orombelli, 2005). Rocky ridges delimitate 

the upper part of the glacier (Testa del Rutor) and the peak called “Vedettes du Rutor” 

divides the glacier's front into two primary sections. Rocky zones partition the glacial 

front into three segments, bordered by moraines composed of glacial debris. The 

glacier terminates in three tongues at its front (Viani et al.,2020; Corte et al., 2023), 

and the eastern one reaches the lowest altitude of the glacier, which terminates in a 

lake, called Lago Superiore. 
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 Figure 3.2. Overview of Rutor glacier and its proglacial area in 3D. Google Earth image. 

 

A distinguishing feature of the Rutor is its proglacial area, which encompasses 

approximately 4 km2, as detailed in Villa et al. (2007). This area holds significant 

relevance for the investigation of sediment dynamics within proglacial systems, 

primarily due to its diverse geomorphological characteristics. After the Little Ice Age 

(LIA), the retreat of the Rutor glacier has instigated a gradual expansion of its 

proglacial expanse. This glacier recession has brought forth previously concealed 

topographic depressions, leading to alterations in stream networks and the 

emergence of multiple proglacial lakes. These lakes serve as repositories for 

sediments, effectively blocking the transfer of sediments from the glacier's outlet to 

lower elevations. The elevation range between the lowest proglacial lake and the 

glacier terminus (middle tongue snout) spans from 2387 m a.s.l. to 2661 m a.s.l. Within 

the Rutor proglacial area, a variety of land-system components are evident, including 

steep slopes, outwash plains (sandurs), and both single and braided channels. 

Notably, the alluvial channel beds and banks exhibit a diverse range in composition, 

ranging from fine sands, silt, and clays to boulders (Corte et al., 2023). 

At present, there are a total of five proglacial lakes that receive surface water supply 

from the eastern tongue of the glacier. In particular, two of these lakes have emerged 

within the last five years and are closely connected to the glacier lobe. Among these 

lakes, one prominent body of water is denoted as Superiore Lake (L1 in Figure 3.3), 

which ranks as the second-largest lake within the Rutor proglacial zone. It is sourced 

by multiple inflows, with a primary inflow originating directly from the glacier's 

eastern tongue. Following its accumulation, L1 discharges through a solitary outflow, 

which proceeds for a distance of 830 meters before entering a sandur. 
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Figure 3.3 a) Digital Surface Model (DSM) as of 2008 of the Rutor glacier and the L4 lake catchment. 

The upslope area of L4 outflow (hatched area with continuous black lines) has been mapped using the 

2008 model of Valle d’Aosta. The inset shows the location in Italy. b) DSM as of 2021 of the Rutor 

proglacial area and locations of L1, L2, L3 and L4 proglacial lakes. (Corte et al., 2023) 

 

This sandur, fueled by the glacier's meltwater, spans an area of roughly 0.1 km2. When 

the water level in the sandur rises, due to a topographic barrier present within it, 

another lake develops, called Marginale Lake (L2, 2504 m a.s.l.), which is the object of 

this work. Subsequently, water from L2 travels through a steep creek with a notable 

elevation drop of 100 m to the Seracchi Lake (L4) located at an elevation of 2387 m 

above sea level.  

Another significant water body, Lake Santa Margherita (L3), now mostly represented 

by remnants of a peat bog, occupies a broad depression at an elevation of 2400 m 

a.s.l., intersecting perpendicularly to the glacier. Following 1820, the glacier front 

progressively receded, contributing to a gradual lowering of Lake Margherita's water 

level by approximately ten meters. 

In the context of water dynamics, the outflows of L2 and L3 (Santa Margherita Lake) 

serve as the sole surface inflows for the L4 Lake. Notably, the outflow of L4 contributes 

to the majestic Rutor cascades. This fourth lake, L4, serves as the primary recipient of 

all meltwaters originating from the Rutor glacier and holds the distinction of being 

the largest and most downstream proglacial lake within the studied region. The 

outflow cross-section of L4 remains relatively stable, facilitating convenient 

measurement of the lake's discharge rate. 

 

3.1 Rutor Glacier Retreat since the Little Ice Age 
During the period known as the Little Ice Age (XIV-XIX centuries), the Rutor Glacier 

expanded significantly, reaching an elevation of 2150 m a.s.l. and extending up to the 

Lac Du Glacier above La Thuile. The Lac du Glacier, which was once more expansive 
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and now is partially filled with sediment, occupied the Plan de la Lière, a plain at an 

elevation of 2145 m a.s.l. This area is marked by two moraine ridges that delineate 

Rutor's maximum extent during the Little Ice Age. 

Based on available studies, it is known that the Rutor Glacier’s maximum expansion 

is dated back to 1864 (Viani et al.,2020; Orombelli, 2005), when the glacier had a 

surface area of approximately 12 km2 (Villa et al., 2007). 

 

 

Figure 3.4. Chartography of Rutor basin in 1860 (Baretti, 1880). Lago del Rutor (now Lake Santa 

Margherita) fills the valley, blocked by the Rutor glacier, and discharges its water directly into Lac du 

Glacier, 250 m below. Superiore, Marginale and Seracchi Lakes do not exist yet [Colour figure can be 

viewed at wileyonlinelibrary.com] (Vergnano et al., 2023). 

 

Since the conclusion of the Little Ice Age in the mid-19th century, the glacier has 

undergone a retreat of over 2 km, and up until the 1990s, an estimated ice loss of 

approximately 480 million cubic meters has been observed. 

According to Villa et al., 2008: “From 1975 to the present, another 50% of the 

remaining volume was lost. This calculates to a volume reduction rate of –0,5%yr–1 

from its maximum size during the Little Ice Age to 1975, a value of –1,1%yr–1 between 

1975 and 1991, and a volume reduction rate of –2,1%yr–1 until 2006.”  

https://onlinelibrary.wiley.com/doi/full/10.1002/esp.5555#esp5555-bib-0006
http://wileyonlinelibrary.com/
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Figure 3.5. Reconstruction of the Rutor Glacier terminus from its maximum extent in LIA to 2004 

(modified from Villa et al., 2007). The areas highlighted in blue, green, yellow and red indicate the 

current extent of lakes L1, L2, L3 and L4 respectively. 

 

Since 2005, ARPA, the Aosta Valley regional agency for environmental protection has 

been monitoring the annual mass variation of the glacier. This variation is represented 

in Figure 3.6, expressed in mm of water equivalent, and is determined by calculating 

the net mass balance between winter-spring accumulation and summer ablation. The 

net mass balance for the 2021-2022 period resulted in -4.946 mm of water equivalent, 
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with a retreat of 31 – 40 m for the right tongue, 27 m for the left and 26 m for the 

central one (Arpa VdA). 

 

Figure 3.6 Rutor yearly mass balance for the period 2005-2022. The mass balance is calculated as 

winter-spring accumulation minus summer ablation (source ARPA VdA). 

 

Under the new climate conditions, variations in the water and sediment budget of the 

lake become increasingly likely, posing the risk of catastrophic events and irreversible 

transformations. In fact, the increased sediment input, along with the area 

morphology, could contribute to the potential disappearance of these proglacial 

lakes in the future (Orombelli, 2005). The Rutor has experienced numerous instances 

of flooding, with the most severe and damaging occurrences documented between 

1594 and 1598, as well as multiple events in the 17th century. Particularly, two notable 

flood events took place in 1751 and 1752. However, not all of these incidents have 

been meticulously recorded, as some recurred annually. In some cases, these flood 

events coincided with regional flooding, such as the one in 1640 that also led to the 

inundation of the town of Aosta. These floods were triggered by the presence of the 

glacial tongue obstructing the natural flow of water into Lake Santa Margherita. With 

rising water pressure, the rock face collapsed, resulting in flooding. The most recent 

glacial flood was registered in September 1864.  

Given this context, the establishment of the "CC-Glacier Lab" at Politecnico di Torino 

- DIATI emerges as a significant initiative, forming part of the MIUR project 

"Department of Excellence." Operating as a multidisciplinary laboratory, the CC-

Glacier Lab's primary mission revolves around identifying and comprehending the 

dynamics unfolding in proglacial regions undergoing deglaciation and associated 

mass movements. The chosen focus area for in-depth exploration is the Rutor Glacier 

and its adjacent proglacial zone, but also other glaciers in the Aosta Valley, Italy. 
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The importance of this research group lies in its interdisciplinary essence, bringing 

together researchers from diverse fields such as hydrology, geophysics, geomatics, 

and water engineering. Starting in 2021, the project has actively engaged in 

comprehensive data collection activities within the area, setting on-site survey 

campaigns along with continuous monitoring activities. Instrumentation has been 

strategically deployed across the region, enabling the collection of data spanning 

multiple years and encompassing entire melting seasons, thereby facilitating a 

comprehensive temporal assessment of the locale. Weather station, pluviometer, 

geophones, hydrometer, turbidimeter, ground control points for photogrammetry 

and other tools. 

The CC-Glacier Lab project presents a unique opportunity to glean invaluable insights 

into the metamorphoses occurring in the Alps due to the impacts of climate change. 

Moreover, the knowledge gathered through this research holds the potential to 

contribute significantly to the formulation of effective strategies aimed at mitigating 

climate change effects and adapting to its far-reaching ramifications. 

In conclusion, some pictures of the Rutor glacier and proglacial areas are shown 

below. They belong to historical archives and previous scientific research and field 

campaigns in the area. Moreover, they are presented in a manner that aims to 

encourage a comparison between the previous appearance of the site and the current 

one. 

Figures 3.7 and 3.8 both represent an overview of the glacier as it can be seen from 

the path leading to the Deffeyes refuge, which is also visible in this pair of photos. 

These photos also capture the Vedettes du Rutor, the rocky peak that splits the 

glacier's front into two main sections.  

Figure 3.9 shows the plain of actual Marginale Lake as it was in 1909: covered by the 

glacier. Figure 3.10 frames the glacier from a similar viewpoint, but from a greater 

distance, which allows a wider image of the same scene: the cascade outflowing from 

Marginale Lake and entering Seracchi Lake is pictured. Figure 3.11 displays the 

Seracchi Lake and the upstream slope, which was previously concealed by the glacier 

but is now crossed by the cascade. 

Lastly, Figure 3.12 depicts the same slope and Margherita Lake. 
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Figure 3.7 Rutor 1926 (historical archive). 

 

 

Figure 3.8 Rutor July 2021 (Macelloni, 2022). 
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Figure 3.9 Brocherel, Rutor 1909 (historical archive). 

 

 

Figure 3.10 Rutor Glacier in summer 2021 and Seracchi Lake (Macelloni, 2022). 
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Figure 3.11 Rutor Seracchi Lake 1909 (historical archive). 
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Figure 3.12 Santa Margherita Lake and the chapel on the top of the hill, summer 2021. 
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43 

 

4. Methodology 

 

4.1 Data Acquisition 
To collect water depth and spectral imagery data, four field campaigns were 

conducted in the proglacial area of Rutor glacier, where the Lago Marginale 

(previously also called L2) is located. The field activities were performed on the 9th of 

July 2021 and, for 2023, on the 22nd of June, 18th of July and 2nd of September. 

Specifically, in 2023, the UAV survey was carried out in July, while the depth 

measurements are related to all the three expeditions.  

Lake Marginale (Figure 4.1) spans an area of roughly 0.042 km2 and is at 2504 m a.s.l. 

It covers an outwash plain and originates from an intricated system of streams fuelled 

by the glacier's meltwater. The bed materials of the alluvial channels are mainly fine 

sands, silt and, depending on the seasonal and daily changes in water level, 

submerged vegetation. This heterogeneity of the streambed could exhibit different 

patterns of bottom reflection on the remotely sensed data. The stream banks are 

mainly covered by bigger boulders and vegetation. 

 

Figure 4.1 Marginale Lake, July 2023. 

 

4.1.1 Photogrammetry Survey 

The aerial imagery was collected using different UAVs in different years. 

In 2021, images with 5472 × 3648 pixels in spatial resolution were acquired using a 

RGB-based digital camera mounted on a Phantom 4, DJI. The UAV was operated 126 
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m above the ground to cover the whole region of interest in the image frame. The 

RGB camera has a 20MP resolution and a focal length of 8.8 mm. The ground 

resolution or ground sample distance (GSD) obtained was 2.86 cm/pix. The flight was 

conducted in Real-Time Kinematic (RTK), which provides centimetric precision, thanks 

to the RTK GNSS receiver for real-time positioning integrated into the drone. 

Weighing 1380 grams and being compact, the DJI Phantom 4 was easy to carry on 

the site. Due to favourable weather conditions and the absence of winds, it 

successfully conducted flights during the measurement campaign. Moreover, when 

planning a survey in high mountain environments, it's crucial to account for the 

operating temperature range of the UAV, which typically spans from 0°C to 40°C. 

While the estimated maximum flight time is around 28 minutes, cold temperatures 

can significantly shorten this duration, necessitating frequent battery replacements. 

Throughout the campaign, four spare batteries had to be carried for on-the-fly 

changes as required. 

 

 

Figure 4.2 Phantom 4 DJI (Macelloni, 2022) 
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Figure 4.3 GCPs of July 2021 campaign (Macelloni, 2022). 

Twelve stable points were measured, consisting of painted marks on stable boulders 

and canvas markers, georeferenced with RTK and static Global Navigation Satellite 

System (GNSS) positioning approach (Figure 4.3). These points will be then used in 

the processing phase as ground control points (GCPs), to improve the accuracy of the 

models. The GCPs positioning was performed using the GNSS base station DIATI100, 

placed in front of the Deffeyes hut (Figure 4.4).  

 

Figure 4.4 GNSS base station DIATI100. Coordinates UTM ETRF2000, Est = 342979.659, Nord = 

5059115.879, Ellipsoidal height = 2621.306, Orthometric height H= 2567.337 (Macelloni, 2022). 

The base station is needed to get differential corrections (needed to improve the 

positioning accuracy) during the positioning of points when the NRTK approach is 

not feasible, meaning when there is no internet connection, which is a frequent 

scenario in mountain environments. Trimble SP80 receivers (Figure 4.5) were 

employed for all point positionings during the Rutor campaigns, both in 2021 and 

2023. It was ensured that the instrument height was consistently marked each time, 

accounting for variations depending on the pole used. This variation was then 

subtracted from the measured height to obtain the precise point height. The 

specifications of the TRIMBLE SP80 receiver are detailed in the figure below. 
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Figure 4.5 Trimble SP80 and its characteristics (Macelloni, 2022). 

In July 2023, instead, a DJI Mavic 3M was used for the 2023 imagery. This UAV has 

two sensors, one RGB (20MP, focal length of 12 mm), and one multispectral (5MP, 

focal length of 4 mm), which covers the following wavelength ranges: 

- Green (G): 560 ± 16 nm; 

- Red (R): 650 ± 16 nm; 

- Red Edge (RE): 730 ± 16 nm; 

- Near-infrared (NIR): 860 nm ± 26 nm. 

The imagery dimensions are 5280 × 3956 pixels, and 2592 × 1944 pixels, respectively 

for RGB and multispectral cameras. The flight height was 58.7 m, with a ground 

resolution (GSD) of 1.54 cm/pix. Also in this case the flight was conducted in RTK and 

ground control points were used: some of them were the same as the previous years’ 

surveys, and some were installed and then removed. Their positioning was performed 

using the Trimble receiver previously introduced. 

 

Figure 4.6 DJI Mavic 3M (online source). 

As the drone camera's coordinates are specified in geographic coordinates ETRF2000 

(Rete Dinamica Nazionale RDN2008), including longitude and latitude, they need to 

be transformed into cartographic coordinates: Est and Nord. Also, the altitude 

coordinate must be converted from ellipsoidal to orthometric height. Then, the image 

coordinates were orthorectified and converted to the UTM coordinates (RDN2008 / 

UTM zone 32N) through the software ConveRgo (Conversioni di coordinate per le 

Regioni), using Italian grids for projective transformation.  

After each flight, the Agisoft Metashape software was used to generate the final 

models of the area surveyed, that, for the purposes of this work, were the orthomosaic 
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and the digital elevation model (DEM) of the area of Marginale Lake. For 2021 data, 

these products were provided by the geomatics researchers of the CC-Glacier Lab 

and they cover a bigger area, ranging from the glacier to the Seracchi Lake, of interest 

for their research; while data of the 2023 survey were processed specifically for the 

area of Marginale Lake. 

The photogrammetric processing follows the standard Structure from Motion (SfM) 

workflow, which will be briefly described below. The input data of the processing are 

imagery and geolocation information, meaning coordinates of markers. Firstly, the 

images are aligned, and then, by collimating the stable points defined by the GCPs, a 

more precise spatial position of the image acquisition centres can be obtained. The 

collimation step can take time, as each marker must be searched for in the various 

photos and associated with the corresponding coordinates. Once the camera centres 

and georeferentiation are done, the dense cloud is built. Consequently, the mesh is 

created by interpolating the dense point cloud. The mesh is then used to generate 

the next product, which is the digital elevation model (DEM). Finally, the orthomosaic 

can be generated, too. The reports of the processing can be found in Annex 1.  

For both datasets, the models were made using the reference system RDN2008 / UTM 

zone 32N (N-E) (EPSG: 6707), and all the processing steps were carried out with a 

high-accuracy approach. 

For 2021, 1480 RGB images were aligned and nine GCPs from the twelve (Figure 4.3) 

measured on the field were used in the collimation phase. The residual errors 

estimated by the software for both camera location and GCPs are shown in the tables 

below.  

Table 4.1 Average camera location error on drone model 9th July 2021. 

X error 

[cm] 

Y error 

[cm] 

Z error 

[cm] 

XY error 

[cm] 

TOT error 

[cm] 

0,667 0,950 1,098 1,161 1,598 

 

Table 4.2 Residual errors on GCPs drone model 9th July 2021. 

N. Points 
X error 

[cm] 

Y error 

[cm] 

Z error 

[cm] 

XY error 

[cm] 

TOT error 

[cm] 

9 1,675 1,849 1,786 2,4956 3,069 

 

Due to its low flight altitude and RTK positioning, this survey returns highly precise 

3D models with centimetre-level accuracy. These final models reproduced the area 

spanning from the glacier to the Seracchi Lake, so only a portion of them was used 

for this work, cutting the orthophoto and the DEM in GIS environment so to extract 

only the region of Marginale Lake. 
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For the 2023’s dataset, 4220 images were aligned. Even if the area of survey is smaller 

with respect to 2021, covering only the outwash plain of Marginale Lake, the number 

of pictures results higher since they include not only RGB images, but also R, G, RE 

and NIR ones. So, during the flight, for each location, the drone took contemporarily 

5 photos, one for each sensor. Then, it results that the 4220 photos correspond to 

844 sets of 5 images of the same frame. When uploading the images on Metashape, 

selecting the option “Multiple-camera system”, it is able to recognize the 

multispectral nature of the images. The workflow for multispectral imagery 

processing does not change from the standard workflow for RGB photos, apart from 

an additional step where the primary channel can be selected after adding the images 

to the project, that for this work was the RGB one, being the sharpest and most 

detailed. Then, the following processing steps (Align photos, manual collimation of 

GCPs, Build Dense Cloud, Build DEM, Build Orthomosaic) are performed based on the 

primary channel. All spectral bands are processed together to create a multispectral 

orthomosaic that retains the same channels as the source images when exporting the 

orthomosaic (Agisoft Metashape User Manual - Professional Edition, Version 1.8). 

In this case, five GCPs were used in the collimation step. As for 2021’s dataset, the 

residual errors of both cameras and GCPs are shown below. 

 

Table 4.3 Average camera location error on drone model 18th July 2023. Multispectral imagery. 

X error 

[cm] 

Y error 

[cm] 

Z error 

[cm] 

XY error 

[cm] 

TOT error 

[cm] 

16.532 13.388 9.962 21.273 23.490 

     
Table 4.4 Residual errors on GCPs drone model 18th July 2023. Multispectral imagery. 

N. Points 
X error 

[cm] 

Y error 

[cm] 

Z error 

[cm] 

XY error 

[cm] 

TOT error 

[cm] 

5 20.793 12.996 76.630 24.521 80.478 

 

Being the precision of both camera and GCPs alignment quite low, another 

processing was performed considering only the RGB photos, which allowed better 

results. For this reason, as Metashape allows to build the orthomosaic from an 

imported DEM, the final multispectral orthomosaic was built on the DEM generated 

from the RGB images of 2023 dataset. Nevertheless, the orthomosaic of 2023 was still 

less accurate compared to that of 2021. Below, the residual errors of the only-RGB 

project are in tables 4.5 and 4.6. 

Table 4.5 Average camera location error on drone model 18th July 2023. RGB imagery. 

X error 

[cm] 

Y error 

[cm] 

Z error 

[cm] 

XY error 

[cm] 

TOT error 

[cm] 

2.077 2.1454 4.284 2.986 5.222 
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Table 4.6 Residual errors on GCPs drone model 18th July 2023. RGB imagery. 

N. Points 
X error 

[cm] 

Y error 

[cm] 

Z error 

[cm] 

XY error 

[cm] 

TOT error 

[cm] 

5 5.074 5.521 6.097 7.498 9.664 

 

The final DEMs of 2021 and 2023 datasets were used to retrieve water depth in some 

points of the area of interest, while the orthomosaics were used to extract the digital 

numbers (DN) to create the model inputs. 

 

4.1.2 GPS Measurements and Water Depth Estimation 

This study used the GNSS receiver Trimble SP80 for the positioning of the GCPs but 

also of some points on the streambed along several cross-sections along the alluvial 

channels, which is shown in Figure 4.5. In 2021, 100 points were measured (Figure 

4.7), while in 2023, 595 points positions were collected (Figure 4.8), both in RTK. The 

accuracy provided by this coordinate measurement method is centimetric, around 

0.03 m. 

 

Figure 4.7 GPS measurements (yellow dots) on the orthophoto of Marginale Lake produced from UAV 

flight of July 2021. 

The measured data were used to estimate the water depth along those sections of 

the streams. In 2021, the water free-surface height was calculated as the average 

altitude of two points on opposite sides of the river section. This altitude was read 

from the DEM generated from the UAV flight. Then, the water depth at each of the 

100 sampled points was retrieved subtracting the free surface height and the 

measured streambed altitude. 
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Figure 4.8 GPS measurements on the orthophoto of Marginale Lake produced from RGB imagery of 

UAV flight of July 2023. Different coloured dots indicate different measurement times: blue dots were 

sampled in June 2023, magenta in July 2023, and green in September 2023. 

Instead, for 2023, water depth was measured directly in the field, together with the 

point position, for most of the sample. So, the DEM was used to retrieve water depth 

only for a few points. In particular, the depth of points measured during June and 

September campaigns was retrieved as for the 2021 dataset, while during the July 

expedition a metre was installed on the pole of the receiver and the depth read on 

the metre was recorded simultaneously to the position. Afterwards, a constant value 

corresponding to the height of the tip of the pole was add to each measure (Figure 

4.9). 

    

Figure 4.9 Measurement of the depth of points in July expedition. 
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In the further processes of this work, the estimated water depth data were all 

considered as observed data for the construction of the bathymetric inversion model. 

 

4.2 Selection of Model Inputs through PCA 
In the process of retrieving bathymetry from multispectral imagery, it is a common 

practice to use the natural logarithmic values of the band ratios of two spectral bands 

as suitable estimators for water depth (Stumpf et al., 2003; Legleiter et al., 2009; 

Legleiter, 2013). Accordingly, this study also employed RGB and multispectral band 

ratios as input variables for the bathymetric inversion model. In particular, two GWR 

models were tested for both the 2021 and 2023 datasets: a simple linear GWR model 

(GWR1) with one band ratio input and a multiple linear GWR model (GWR2) with two 

band ratio inputs. 

To compute the band ratios, the digital number (DN) values were used. The imagery 

captured in 2021 is in 8-bit format, so their DN values range from 0 to 255, instead 

2023’s are 16-bit images so DN range from 0 to 65535. 

To identify the most suitable band ratios from the numerous possible combinations 

of bands, this study applied the principal component analysis (PCA). This dimension 

reduction technique effectively reduces a large set of correlated data to a smaller set 

of uncorrelated data by removing the multicollinearity that can reduce the precision 

of estimated parameters in regression models (Aguilera et al., 2006). PCA calculates 

new variables known as principal components, or also axes or factors, through the 

eigenvalue decomposition of a data covariance matrix. The first principal component 

(PC1) is characterized by the highest variance, and the second principal component 

(PC2), has the second-highest variance and is orthogonal to PC1. 

The PC analysis was performed using the Excel tool XLSTAT, which allows to analyse 

the correlation between the input variables by selecting different approaches: here 

the Pearson PCA type was selected, that is the traditional PCA, where data is 

standardized or normalized before calculations, so to prevent the undue influence of 

variables with high variances on the result. The PC analysis results are shown below, 

firstly for the 2021’s dataset, and then for the 2023’s dataset. 

 
 
 

2021 RGB imagery  

Following the PC analysis, it was observed that ln(DNB/DNR) exhibited a strong 

correlation with PC1, accounting for 69% of the overall variance across all six band 

ratios, as outlined in Table 4.7. Conversely, ln(DNG/DNB) demonstrated a positive 

correlation with PC2, which was entirely uncorrelated with PC1, explaining 31% of the 

total variance.  
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Table 4.7 Correlation between band ratios and principal components, 2021 dataset. 

  PC1 (69%) PC2 (31%) 

ln(R/G) -0.782 -0.624 

ln(R/B) -1.000 -0.011 

ln(G/R) 0.782 0.624 

ln(G/B) -0.678 0.735 

ln(B/R) 1.000 0.011 

ln(B/G) 0.678 -0.735 

 

Consequently, in order to construct both the single and multiple linear GWR models 

(GWR1 and GWR2, respectively), ln(DNB/DNR) and ln(DNG/DNB) emerged as potential 

candidates for input variables in the bathymetric inversion models for 2021 dataset. 

Therefore, both band ratios were selected as input variables for the multiple linear 

GWR model (GWR2). Instead, for building the single linear regression model (GWR1) 

that only uses one spectral input, one of the two band ratios was chosen. To 

determine which band ratio to use, the methodology outlined by Kim et al. (2019) 

was followed, which consists of selecting the band ratio that shows the highest 

correlation to water depth.  

This study revealed (Table 4.8) that the most correlated band ratio was ln(DNB/DNR), 

with a correlation coefficient (ρ) to water depth of 0.64, while ln(DNG/DNB) was found 

to be less sensitive to changes in water depth, as depicted in Figure 4.10. To identify 

the statistical significance of these correlations, the corresponding p-values were 

computed, too. Both band ratios had a p-value less than the significance level of 0.05, 

indicating rejection of the null hypothesis of no correlation between the variables and 

water depth. 

The higher correlation between ln(DNB/DNR) and the observed water depth can be 

attributed to the radiative transfer characteristics of the red band, which are highly 

sensitive to changes in water depth due to the significant light absorption by pure 

water. In contrast, the blue band is more related to the spectral properties of bottom 

types and the water column. In aquatic environments, the red band typically 

experiences greater light absorption compared to the blue-green bands, which 

instead have higher reflectance, leading to an increase in ln(DNB/DNR) with rising 

water depth (Legleiter, 2013). 

Therefore, ln(DNB/DNR) was considered as the sole input variable for the bathymetric 

inversion model GWR1.  

 
Table 4.8 Correlation between PCA-selected band ratios and observed water depth, 2021 dataset. 

  ρ p-value 

ln(B/R) 0.648 0.000 

ln(G/B) -0.324 0.001 
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Figure 4.10 Response of PCA-selected band ratios, ln(DNB/DNR) on the left and ln(DNG/DNB) on the 

right, to observed water depth. The orange line indicates a fitting line to observation. 2021 dataset. 

 

2023 imagery  

The DNs to compute the band ratios for 2023’s dataset were extracted from the two 

orthomosaics generated and previously mentioned: the RGB one (which had a better 

accuracy) and the multispectral one. 

- For the RGB case, as for the 2021 dataset, six variables were to be submitted 

to PCA, which are all the natural logarithms of all the possible combinations 

between the three bands RGB (8-bit images). 

- For the multispectral case, eighteen variables were submitted to PCA, which 

are all the natural logarithms of all the possible combinations between the 

total seven bands: three bands of the RGB camera, and the four of the 

multispectral sensor, G, R, RE, NIR. (16-bit images). 

RGB only 

The PCA analysis revealed that the ratio of ln(DNB/DNR) was strongly correlated with 

PC1, explaining 83% of the total variance of all six band ratios listed in Table 4.9. On 

the other hand, ln(DNR/DNG) had the strongest positive correlation with PC2, which 

was orthogonal to PC1, and accounts for 17% of the total variance. Therefore, 

ln(DNB/DNR) and ln(DNR/DNG) are potential input variables for the bathymetric 

inversion models. 

Table 4.9 Correlation between band ratios and principal components, 2023 dataset (RGB only). 

  PC1 (83%) PC2 (17%) 

ln(R/G) -0.826 0.564 

ln(R/B) -0.997 -0.080 

ln(G/R) 0.826 -0.564 

ln(G/B) -0.905 -0.426 

ln(B/R) 0.997 0.080 

ln(B/G) 0.905 0.426 
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In order to build both the single and multiple linear GWR models (GWR1 and GWR2), 

ln(DNB/DNR) and ln(DNR/DNG) were selected as input variables for the latter. For GWR1, 

which utilizes a single spectral input, the appropriate band ratio input was chosen 

among the two variables with the same approach used for 2021’s dataset. 

Subsequently, the correlation between the PCA-selected band ratios and water depth 

was analysed, as illustrated in Table 4.10 and Figure 4.11. Then, ln(DNR/DNG), showing 

the highest correlation to water depth, was used as input of GWR1. 

 
Table 4.10 Correlation between PCA-selected band ratios and observed water depth, 2023 dataset 

(RGB only). 

  ρ p-value 

ln(B/R) 0.452 0.135 × 10-21 

ln(R/G) -0.574 0.000 × 10-21 

 

 

Figure 4.11 Response of PCA-selected band ratios, ln(DNB/DNR) on the left and ln(DNR/DNG) on the 

right, to observed water depth. The orange line indicates a fitting line to observation. 2023 dataset 

(RGB only). 

 
 

Multispectral 

In this dataset the number of all possible combinations of the seven bands (RGB, R, 

G, RE, NIR) is eighteen. As a result of the PCA, ln(DNNIR/DNG) was highly correlated to 

PC1, explaining 65% of the total variance attributed to all eighteen variables, as shown 

in Table 4.11. Instead, ln(DNG/DNB) had the strongest positive correlation with PC2, 

perfectly orthogonal to PC1 and accounted for 17% of the total variance. Thus, 

ln(DNNIR/DNG) and ln(DNG/DNB) can be candidates for input variables of the 

bathymetric inversion models. PC3, PC4 and PC5 were not considered, as each of 

them represents smaller percentages of the total variance of the set of variables.  
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Table 4.11 Correlation between band ratios and principal components, 2023 dataset (RGB and 

multispectral). For an easier visualization, the band ratios obtained from the RGB sensor of the drone 

are in pink, while those of the multispectral sensor are in grey. 

  PC1 (65%) PC2 (17%) PC3 (11%) PC4 (5%) PC5 (2%) 

ln(R/G) 0.711 0.127 0.365 -0.582 0.078 

ln(R/B) 0.643 0.762 0.073 0.012 0.020 

ln(G/R) -0.711 -0.127 -0.365 0.582 -0.078 

ln(G/B) 0.496 0.839 -0.043 0.219 -0.004 

ln(B/R) -0.643 -0.762 -0.073 -0.012 -0.020 

ln(B/G) -0.496 -0.839 0.043 -0.219 0.004 

ln(G/R) -0.389 0.205 -0.856 -0.260 0.081 

ln(G/RE) -0.969 0.154 0.082 0.016 0.175 

ln(G/NIR) -0.971 0.217 0.070 -0.074 -0.020 

ln(R/G) 0.389 -0.205 0.856 0.260 -0.081 

ln(R/RE) -0.938 0.118 0.272 0.073 0.167 

ln(R/NIR) -0.962 0.200 0.179 -0.045 -0.031 

ln(RE/G) 0.969 -0.154 -0.082 -0.016 -0.175 

ln(RE/R) 0.938 -0.118 -0.272 -0.073 -0.167 

ln(RE/NIR) -0.902 0.280 0.050 -0.184 -0.268 

ln(NIR/G) 0.971 -0.217 -0.070 0.074 0.020 

ln(NIR/R) 0.962 -0.200 -0.179 0.045 0.031 

ln(NIR/RE) 0.902 -0.280 -0.050 0.184 0.268 

 

To decide which of the two bands was the best input for the single linear regression 

GWR1, the most correlated with the observed water depth was found: the result 

showed that change in water depth was more sensitive to ln(DNNIR/DNG) (Table 4.12 

and Figure 4.12). 

 
 

Table 4.12 Correlation between PCA-selected band ratios and observed water depth, 2023 dataset 

(RGB and multispectral). 

  ρ p-value 

ln(NIR/G) -0.541 0.000 × 10-3 

ln(G/B) -0.170 0.459 × 10-3 
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Figure 4.12 Response of PCA-selected band ratios, ln(DNNIR/DNG) on the left and ln(DNG/DNB) on the 

right, to observed water depth. The orange line indicates a fitting line to observation. 2023 dataset 

(RGB and multispectral). 

 
 
 

 

4.3 GWR Model 
The relationship between the PCA-selected band ratios and water depth was analysed 

using two types of GWR methods, as previously mentioned: firstly, a simple linear 

regression model (GWR1), using a single input (the most correlated band ratio) and 

then a multiple linear regression model (GWR2), using both band ratios. 

The geographically weighted regression model has the capability to capture the 

spatially heterogeneous relationships between the spectral input of the model, and 

its output, the water depth, which is induced by the inhomogeneous streambed. This 

is allowed thanks to the parameters of the model that are functions of the spatial 

locations (Fotheringhamet al., 1998).  

 

Simple linear GWR (GWR1) 

Based on Kim et al. (2019), the equation used to build the first type of GWR model 

(GWR1), which is a simple linear regression, is the following: 

 ℎ̂𝑖 = 𝛼𝑖𝑋𝑖 + 𝑏𝑖                                                                 (2) 

where  ℎ̂𝑖 is the estimated water depth, 𝛼𝑖 is the local regression coefficient at 𝑖, which 

accounts for geographical characteristics inherent to locations. Instead, 𝑋𝑖 represents 

the single spectral input of the model, selected as the most correlated to water depth 

among the PCA-selected band ratios, as described in the previous paragraph. It is the 

value of the natural logarithm of the band ratio at the location 𝑖. Finally, 𝑏𝑖 is the bias 

at 𝑖 point. For this study, 𝑏𝑖 was disregarded, as a first approximation.  

Here in, 𝑖 indicates the regression point equivalent to the observation point. In fact, 

this model was calibrated on the field-measured points of known coordinates and 

depths. The aim was to estimate the model parameters and then interpolate them all 

over the area of the lake, also where water depth was unknown. The local regression 
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coefficients, for all the 𝑖 known points, were determined using weighted least squares 

and can be written as a vector: 

𝛼(𝑖) = (𝑋𝑇𝑊(𝑖)𝑋)−1  𝑋𝑇𝑊(𝑖)ℎ̂(𝑖)                                                                                              (3) 

where 𝛼(𝑖) is the vector of estimated values for 𝛼𝑖; 𝑋 is the vector of natural logarithm 

of the band ratio selected as input; 𝑊(𝑖) is the diagonal matrix representing the 

geographical weighting factor of ℎ̂𝑖; and ℎ̂(𝑖) is the single column vector of ℎ̂𝑖. In 

equation (3), 𝑊(𝑖) contains the weights of the model, 𝑤𝑖𝑗, estimated by the bi-square 

kernel function: 

𝑤𝑖𝑗 = [1 − (
𝑑𝑖𝑗

2

𝑏𝑘𝑟𝑛
2 )]

2

, if 𝑏𝑘𝑟𝑛 ≥ 𝑑𝑖𝑗      

𝑤𝑖𝑗 = 0 , otherwise                                                                                                                             (4) 

where 𝑏𝑘𝑟𝑛 is the kernel bandwidth that can be optimized by minimizing the sum of 

squared errors defined in Eq. (5); 𝑗 is the observation point other than 𝑖 within 𝑏𝑘𝑟𝑛; 

and 𝑑𝑖𝑗 is the distance between 𝑖 and 𝑗 (Kim et al., 2019). 

𝑆𝑆𝐸 =  ∑ (ℎ𝑖 −𝑛
𝑖=1 ℎ̂𝑖)2                                                                                                                      (5) 

 

 

Multiple linear GWR (GWR2) 

To build the second type of GWR model tested (GWR2), a multiple linear regression 

was used, based on the equation (2): 

 ℎ̂𝑖 = 𝛼𝑖(1)𝑋𝑖(1) + 𝛼𝑖(2)𝑋𝑖(2) + 𝑏𝑖                                         (6) 

where 𝛼𝑖(1) and 𝛼𝑖(2) are the local regression coefficients at 𝑖 respectively for the 

variables 𝑋𝑖(1) and 𝑋𝑖(2) at 𝑖, which are the two PCA-selected band ratios. As for Eq. 

(2), 𝑏𝑖 is the bias at 𝑖 point, which was disregarded for this study.  

The model works exactly as (2) except for the fact that two input variables are used. 

For this reason, the Eq. (3), (4) and (5) are also valid for this model.  

 

For this study, both models were implemented on the software MATLAB and QGIS3, 

respectively for the calibration and the prediction steps of the model. The calibration 

phase allowed to estimate the model parameters 𝛼𝑖 for the known 𝑖 points, and then, 

using QGIS, to interpolate them all over the area of the lake, so to predict water depth 

where it was unknown.  

 

 

3 mathworks.com and qgis.org, respectively. 
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4.4 Model Calibration 
The calibration of the model in MATLAB was based on field-measured points with 

known depth. In the 2021 dataset, all 100 measured points were utilized. For the 2023 

dataset, which was sufficiently large, the model was calibrated using 70% of the total 

dataset, specifically 422 randomly selected points. The remaining 30% (173 points) 

were used for model validation. 

The main goal of the calibration step was to retrieve the coefficients 𝛼𝑖 for the known 

𝑖 points. 

The MATLAB code was developed based on that written by Ning Liu (2023). The inputs 

of the code were: 

- a two-column matrix, containing the east and north coordinates of the 𝑖 

known points. 

- a single column vector containing the known depth values for the 𝑖 points. 

- a single column vector of the one PCA-selected band ratio for the simple 

linear GWR1, or a two-column matrix of both band ratios for the multiple 

linear GWR2, computed for the 𝑖 points. 

The outputs of the code were: 

- the model parameters 𝛼𝑖 estimated for the known 𝑖 points. 

- the model performance criteria: the scatter plot of estimated depths 

versus the observed one for the 𝑖 points, and R2 and RSR statistical indexes. 

R2 is the coefficient of determination and was used to assess the goodness 

of fit of the regression model. It ranges from 0 to 1, the closer the value is 

to 1, the better the model performance. Instead, the zero value denotes 

poor fitting. Finally, the RSR is the Root Mean Standard Deviation Ratio 

and normalizes the Root Mean Squared Error (RMSE) by the standard 

deviation of the observation data. It varies from an optimal value of 0 to 

infinity. According to Moriasi et al. (2007), RSR provides performance 

rankings as: very good (0-0.50), good (0.50-0.60), satisfactory (0.60-0.70), 

and unsatisfactory (>0.70). The formulas applied to compute R2 and RSR 

are the following: 

𝑅2 =
∑ (ℎ𝑖− ℎ̂𝑖)

2𝑛
𝑖=1

∑ (ℎ𝑖− ℎ̅𝑖)2𝑛
𝑖=1

                                                     (7) 

 

𝑅𝑆𝑅 =
√∑ (ℎ𝑖− ℎ̂𝑖)

2𝑛
𝑖=1

√∑ (ℎ𝑖− ℎ̅𝑖)2𝑛
𝑖=1

                                                   (8) 

 

The outputs of this calibration phase are illustrated hereafter, firstly for the 2021’s 

dataset, and then for the 2023’s dataset. As mentioned before, two GWR models were 

calibrated for each dataset and are shown below, beginning with the simple linear 

GWR model (GWR1) with one band ratio input and the multiple linear GWR model 

(GWR2) with two band ratio inputs. 
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2021 RGB Imagery 

The 2021 dataset of measured depth was too small to consider calibrating the model 

only over a portion of it, and using the remaining data for validation: so the calibration 

was carried out over the 100-field measured points. 

The results of model calibration for 2021’s dataset are shown in Figure 4.13 and Table 

4.13. According to the correlation analysis illustrated in the previous paragraph (Table 

4.8 and Figure 4.10), ln(DNB/DNR) resulted to be more correlated to water depth so 

the ideal candidate for the simple linear regression GWR1. However, considering only 

this spectral input, the model performances are not acceptable: the comparison of 

observed water depth and estimated one results in a sparse scatter plot, with low R2. 

Moreover, 28 out of 100 estimated depths are negative values, which is physically 

unfeasible. Instead, when considering both PCA-selected band ratios, ln(DNB/DNR) 

and ln(DNG/DNB), the number of negative estimations decreased to 7 out of 100, the 

cloud was denser and the R2 index increased from 0.48 to 0.77. Instead, RSR exhibited 

only a slight improvement, still not satisfactory, reducing from 1.89 to 1.26. 

In conclusion, the GWR2 resulted in the best model to exploit in the bathymetry 

retrieving. 

 

Table 4.13 Accuracy of GWR models in estimating water depth. 2021 dataset. 

 Input R2 RSR 
Negative 

values 

GWR1 ln(B/R) 0.475 1.894 28/100 

GWR2 ln(B/R) and ln(G/B) 0.769 1.257 7/100 

 

 

 

Figure 4.13 Comparison between observed water depth and estimated water depth using the simple 

linear GWR model (GWR1) (on the left) and the multiple linear GWR (GWR2) (on the right). The black 

line indicates a linear line passing through the origin, while the orange line is a fitting line to 

estimations, represented by the formula in the graph. 2021 dataset. 
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2023 RGB and Multispectral Imagery 

For the 2023 dataset, the calibration of the models was performed with 70% of the 

total data, precisely 422 randomly chosen data points. The remaining 30%, 

comprising 173 points, were reserved for model validation. 

 

RGB only 

Based on the correlation analysis (Table 4.10 and Figure 4.11), ln(DNR/DNG) is the most 

correlated band ratio with water depth and is the best option for the simple linear 

regression GWR1. However, when considering both PCA-selected band ratios, 

ln(DNB/DNR) and ln(DNR/DNG), the model improved: the plot of observed depth 

versus estimated one became denser, the number of negative values estimates 

decreased from 77 to 32 out of 422, and the performance measures R2 and RSR 

improved (Table 4.14). 

 
Table 4.14 Accuracy of GWR models in estimating water depth. 2023 dataset (RGB only). 

 Input R2 RSR 
Negative 

values 

GWR1 ln(R/G) 0.790 0.750 77/422 

GWR2 ln(B/R) and ln(R/G) 0.873 0.583 32/422 

 

 

Figure 4.14 Comparison between observed water depth and estimated water depth using the simple 

linear GWR model (GWR1) (on the left) and the multiple linear GWR (GWR2) (on the right). The black 

line indicates a linear line passing through the origin, while the orange line is a fitting line to 

estimations, represented by the formula in the graph. 2023 dataset (RGB only). 

 
 
Multispectral 

According to the correlation analysis (Table 4.12 and Figure 4.12), ln(DNNIR/DNG) was 

selected as the single spectral input for the simple linear regression GWR1. However, 

when only this input is considered, the model goodness is lower compared to when 

both PCA-selected band ratios are used. In fact, when considering both ln(DNNIR/DNG) 

and ln(DNG/DNB), the plot of observed depth versus estimated one became denser, 
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the number of negative values estimates decreased from 33 to 22 out of 422, and the 

performance measures R2 and RSR showed modest but good improvements (Table 

4.15). Then, also in this case, the multiple linear regression was more efficient in 

reproducing the spectral-depth relationship. 

 
Table 4.15 Accuracy of GWR models in estimating water depth. 2023 dataset (RGB and multispectral). 

 Input R2 RSR 
Negative 

values 

GWR1 ln(NIR/G) 0.895 0.530 33/422 

GWR2 ln(NIR/G) and ln(G/B) 0.937 0.410 22/422 

 

 

Figure 4.15 Comparison between observed water depth and estimated water depth using the simple 

linear GWR model (GWR1) (on the left) and the multiple linear GWR (GWR2) (on the right). The black 

line indicates a linear line passing through the origin, while the orange line is a fitting line to 

estimations, represented by the formula in the graph. 2023 dataset (RGB and multispectral). 

 

Finally, to select only one final model for the 2023 dataset, multispectral-based and 

RGB-based models were compared. According to the results of R2 and RSR (Tables 

4.14 and 4.15), and Figures 4.14 and 4.15, the models built based on the multispectral 

imagery exhibit better performances compared to those based only on the RGB 

imagery. Particularly, the multispectral GWR2 significantly reduced the discrepancy 

between the model and the observations, mitigating the deviations from the perfect 

linear line with respect to the RGB GWR2 model. In comparison to the results obtained 

from this latter model, the estimation accuracy was greatly enhanced. Specifically, the 

RSR value decreased from 0.583 to 0.410; and the R-squared value increased from 

0.873 to 0.937. Consequently, the GWR2 of the multispectral dataset was used to 

retrieve the 2023’s bathymetry. 

 

4.5 Model Prediction 
In the prediction step, the water depth was estimated for all points outside the 

calibration domain, all over the Marginale Lake area. Recalling the generalized 

formula of the model used,  
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ℎ̂𝑗 = 𝛼𝑗(1)𝑋𝑗(1) + 𝛼𝑗(2)𝑋𝑗(2) + 𝑏𝑗     (9) 

ℎ̂𝑗 is the value to retrieve for a generic unmeasured or uncalibrated 𝑗 point; 𝑋𝑗 are the 

spectral inputs available all over the area, thanks to the orthomosaic; 𝑏𝑗 is disregarded. 

Then, the unknown parameters are the 𝛼𝑗 at all the uncalibrated 𝑗 points of the area 

of interest. To estimate these coefficients, the Inverse Distance Weighting (IDW) was 

employed, using QGIS software, that interpolated the 𝛼𝑖 coefficients calculated in the 

calibration step for the known 𝑖 points. 

Once obtained the GWR parameters, the equation (9) was applied using the “Raster 

calculator” tool of QGIS and the final output produced was the bathymetry estimation 

all over the Marginale Lake. 

This procedure was applied for the models that during the calibration phase showed 

the best performance for each dataset: 

- For the 2021’s dataset, the bathymetry was retrieved using the multiple 

linear type of the GWR model (GWR2), with ln(DNB/DNR) and ln(DNG/DNB) 

as input band ratios. 

- For the 2023, the entire multispectral dataset was used, resulting better 

than using only RGB, and the bathymetry was retrieved using the multiple 

linear type of the GWR model (GWR2), with ln(DNNIR/DNG) and 

ln(DNG/DNB) as spectral inputs. 
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5. Results and Discussion 
 

At the end of the procedure exposed in Chapter 4, bathymetry estimation all over the 

Marginale Lake was retrieved for both years studied, reproducing the site 

morphology of summer 2021 and 2023. 

In 2021, bathymetry was obtained using the multiple linear model GWR2, with the 

PCA-derived band ratios ln(DNB/DNR) and ln(DNG/DNB). For 2023, the bathymetry was 

retrieved using the multispectral GWR2 model, with spectral inputs ln(DNNIR/DNG) and 

ln(DNG/DNB). 

 

5.1 2021 Results 
Figure 5.1 illustrates the streams and lake bathymetry retrieved by the model. The 

data indicates that the majority of the area has a depth of 0 to 0.5 meters, which 

matches the expectations from the field campaign as walking across the streams was 

possible. This is more distinctively elucidated in the histogram in Figure 5.2, according 

to which the most frequent depth is around 0.25 m. Deeper water is on the left side 

of the streams and lake and near the outflowing cascade, confirming also in this case 

the experience on the field. This is due to a topographic barrier that makes water to 

accumulate and flow downstream through a single channel.  

Basic statistics of the bathymetry obtained show a mean value of water depth of 0.22 

m. Minimum and maximum values, respectively of - 1.03 and 2.39 m, indicate model 

biases, being negative values physically unfeasible and the lake generally shallower 

than about 1 m. However, these biases remained quite contained to a few pixels 

(Figure 5.1) and to low frequency of occurrence, as for the histogram. According to 

this latter graph, model biases were mostly related to negative estimated depth. 

 
Figure 5.1 Spatial distribution of water depth estimated by the GWR model. Legenda: estimated depth 

(m). 2021 dataset. 
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Figure 5.2 Frequency histogram of the water depth estimated by the GWR model and basic statistics. 

2021 dataset. 

 

 

          

                                                                         
Figure 5.3 Detail of the GWR model (on the left), orthomosaic (centre) and the spatial distribution of 

ln(DNG/DNB) (on the right). 

Based on Figure 5.1, most of the biases related to negative values (magenta and 

purple pixels) are concentrated along a shallow and narrow stream whose bed is 

characterized by submerged vegetation. This stream is more distinctively shown in 

Figure 5.3, where the vegetation cover pictured by the orthomosaic (on the centre) is 

strongly responding to the spatial distribution of the band ratio ln(DNG/DNB) (on the 

right), which shows higher values where vegetation is present. In fact, vegetation 

exhibits higher reflection in the green band and higher absorption in blue, which led 

to the increase in ln(DNG/DNB) values not directly associated with change in water 

depth and thus to model bias (magenta and purple pixels in the lefthand image).  

Finally, Figures 5.4 and 5.5 show the spatial distribution over the area of the regression 

coefficients 𝛼𝑗 and of the spectral inputs ln(DNB/DNR) and ln(DNG/DNB), respectively. 
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Figure 5.4 Spatial distribution of the regression coefficient 𝛼𝑗(1) (left) and 𝛼𝑗(2) (right) interpolated by 

IDW. 2021 dataset. 

 

   

                                             
Figure 5.5 Spatial distribution of ln(DNB/DNR) (left) and ln(DNG/DNB) (right). 2021 dataset. 

Figure 5.6 represents the frequency of the residuals ℎ𝑖 − ℎ̂𝑖 between observations 

and estimations of water depth. Considering the total dataset (a), the model’s 

estimation accuracy is good, as there is little deviation from the mean value, which is 

0.05 m (for a perfect model it should be zero). A general underestimation trend is 

exhibited, nevertheless, it is restrained in terms of mean value: in fact, the average 

residual for ℎ𝑖 ≤ 0.20 m is 0.02 m, while for ℎ𝑖 > 0.20 m is 0.06 m. However, from the 

point of view of the dispersion of the data, the distribution is quite large, especially 

for water deeper than 0.20 m, for which residuals up to 0.40 m are recorded.  

The underestimation trend is confirmed when examining Figure 5.7. It compares the 

simulated water depth to the measured one, along two randomly selected cross-

sections. Section 2 has a depth ranging from 0 to around 0.20 m, and is shallower 

than Section 1, which instead goes up to 0.35 m. As illustrated by the figure, the 

shallower section has smaller residuals, of the order of 0.10 m, represented by the 

distance between the two curves, while Section 1 shows a maximum residual of about 

0.20 m where it reaches a depth of 0.35 m.   
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Figure 5.6 Frequency distribution of residuals ℎ𝑖 −  ℎ̂𝑖 for different ranges of observed water depth: (a) 

whole data set, (b) depth shallower than 0.2 m, (c) deeper than 0.2. The m in the graph indicates the 

mean value of the residuals in metres. Bar width of 0.05m. 2021 dataset. 

 
Figure 5.7 Comparison of simulated to measured water depth at two sections. y/W indicates the 

dimensionless distance from a bank of the section. 2021 dataset. 
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Figure 5.8 Overview of the position of Section 1 and Section 2. 2021 dataset. 

One possible explanation of these model biases may be the local changes in the type 

of bed in the area. Furthermore, the presence of high turbidity resulting from 

sediment fluxes along the streams could also contribute to increased variability in the 

water column.  

In conclusion, the GWR model generally underestimated the Lake's bathymetry by an 

average of 0.05 m, being more precise for water shallower than 20 centimetres with 

respect to deeper one. 

Differently from the 2023 case, which will be presented in the following paragraph, 

the above-mentioned analysis on the residuals could not be carried out as a 

validation step of the 2021 model. Being the dataset of measured depths small (100 

points), it was not possible to divide it into a calibration dataset and a validation 

dataset. Then, Figures 5.6 and 5.7 were built from the same calibration data. 

Therefore, they are not presented here as a validation of the model, but they could 

be considered as an introduction to the procedure used for 2023 model validation. 

 

 

  

1 

2 



68 

 

5.2 2023 Results 
The model depicted in Figure 5.9 provides a visual representation of the water depth 

in the streams and lake retrieved by GWR2 using 2023 multispectral data. The majority 

of the area has a depth ranging from 0 to 0.40 meters. This is consistent with the field 

campaign, where it was possible to wade across the streams to get GPS 

measurements, as for 2021. The histogram in Figure 5.10 further illustrates this, 

showing that the most common depths are 0.10 m and 0.23 m. Deeper water can be 

found on the left side of the streams and lake, as well as near the effluent cascade.  

Figure 5.10 also displays the basic statistics of the bathymetry. The mean water depth 

is 0.18 m. The extreme values have a minimum of -0.42 m and a maximum of 1.36 m, 

which can be considered improved with respect to those of 2021, which are more 

dispersed. This can be observed by comparing the histograms in Figures 5.2 and 5.10.  

Negative values indicate model biases or not submerged areas, but they are limited 

to a few pixels and occur less frequently than in 2021.  

 

 
Figure 5.9 Spatial distribution of water depth estimated by the GWR model. Legenda: estimated depth 

(m). 2023 dataset. 
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Figure 5.10 Frequency histogram of the water depth estimated by the GWR model and basic statistics. 

2023 dataset. 

 

According to the histogram (Figure 5.10), model biases are mostly related to negative 

estimated depths, which are magenta and purple pixels in Figure 5.9. However, they 

are concentrated in the highlighted areas (in Figure 5.11), where the boundary 

between the water layer and the shoreline is indeed unclear or the water is very 

shallow. Thus, the presence of negative estimated values of depth in those areas does 

not indicate bias but no presence of water depth at all, as can be better seen from 

Figure 5.12, which zooms in these highlighted areas. 

This fact is also confirmed by studying the spectral response of these areas, which is 

described in Figure 5.13. 

 

 
Figure 5.11 Orthophoto from RGB imagery of 2023, with the highlighted areas (1, 2, 3) of the boundary 

between the water and the shoreline. 

1 

2 

3 
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Figure 5.12 Detail of the model and the orthophoto for the highlighted areas 1 (top), 2 (centre), and 3 

(bottom). Legenda: estimated depth (m). 2023 dataset. 
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Figure 5.13 Spatial distribution of ln(DNNIR/DNG) (left) and ln(DNG/DNB) (right). 2023 dataset. 

The undefined border between water and soil is also shown in Figure 5.13 (left) of the 

spatial distribution of ln(DNNIR/DNG), where these border regions are in orange. In fact, 

the soil absorbs more in blue and then gradually decreases for higher wavelengths. 

Water instead absorbs more in NIR than in visible bands. This opposite behaviour of 

soil and water in visible-NIR wavelength, can be also seen in Figure 5.14, looking at 

the trend of their spectral signatures. Therefore, in Figure 5.13, where there is soil, 

ln(DNNIR/DNG) is high (yellow) because it absorbs more in G than in NIR, while the water 

has lower values of ln(DNNIR/DNG) because it absorbs more in NIR (dark purple). 

Therefore, the presence of negative estimated depth values in those regions coupled 

with the spectral response in ln(DNNIR/DNG) values suggests the absence of any water 

depth. 

 

Figure 5.14 Spectral signatures of different materials, among them water and soil. Where the 

reflectance curve has a low peak, absorption is high. The blue band range is around 0.45 µm, Green 

0.56 µm, Red 0.65 µm, Red Edge 0.73 µm, Near Infrared 0.86 µm. Online source. 
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Figure 5.15 Detail of the model and orthophoto for the area of the outflowing cascade of the Lake. The 

lefthand picture shows the model results, and the black dots (in both pictures) indicate the points 

where measured depth values are available. Legenda: estimated depth (m). 2023 dataset. 

 

Figure 5.15 shows another detail of the Lake, near the effluent cascade and the 

topographic barrier that causes water accumulation. In this area, the bathymetric 

model probably underestimates the water depth. In fact, the estimated depth in these 

areas ranges between 0.30 and 0.50 m, but according to the nearby measured points 

(black dots), this area probably is deeper. The measured points have a depth between 

0.7 and 0.95 m, as well as the estimated depth in the vicinity of these points. The 

plausible cause of this potential underestimation can be attributed to water turbidity. 

Moreover, the demarcation line delineating two distinct sedimentary hues originating 

from separate tongues of the Rutor glacier is clearly evident. 

 

Finally, Figure 5.16 shows the spatial distribution over the area of the regression 

coefficients 𝛼𝑗 of the model. 

       

                                                      

Figure 5.16 Spatial distribution of the regression coefficient 𝛼𝑗(1) (left) and 𝛼𝑗(2) (right) interpolated 

by IDW. 2023 dataset. 

 
 



73 

 

5.2.1 2023 Model Validation 

 

 

Figure 5.17 Blue dots are field-measurement points used for the calibration of the model, the yellow 

ones were used for the validation. 2023 dataset. 

 

As previously mentioned, after the model calibration and prediction, the 2023 GWR2 

was validated over the 30% of the total dataset (173 points). Figure 5.18 and Table 5.1 

show the results of this validation, also recalling the calibration results, so to facilitate 

the comparison between the trained (calibrated) and the tested (validated) model. 

They show that even reducing the sample size, as the validation was performed only 

over 173 points, the model performances do not diminish significantly: R2 decreases 

by about the 3% and RSR increased by the 15%, reaching the value of 0.472, still 

remaining in the range of very good performance, according to Moriasi et al. (2007) 

ranking classification. 

 

Table 5.1 Accuracy of GWR2 models (calibrated and validated) in estimating water depth. 2023 dataset. 

 Sample size R2 RSR 
Negative 

values 

calibration 422 0.937 0.410 22/422 

validation 173 0.905 0.472 12/173 
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Figure 5.18 Comparison between observed water depth and estimated water depth using the 

calibrated GWR2 model (on the left) and the validated one (on the right). The black line indicates a 

linear line passing through the origin, while the orange line is a fitting line to estimations, represented 

by the formula in the graph. 2023 dataset (RGB and multispectral). 

 

 

Figure 5.19 represents the frequency of the residuals ℎ𝑖 −  ℎ̂𝑖 between observations 

and estimations of water depth, computed over the 173 measured points of the 

validation. Considering the total dataset (a), the model’s estimation accuracy is good, 

as there is little deviation from the mean value, which is around 1 cm. In particular, 

for water depth shallower than 0.20 m and deeper than 0.40 m, little underestimation 

predominates, while for water depth ranging between 0.20 and 0.40 m there is mostly 

overestimation. However, the histogram is narrowly distributed around the mean, 

meaning little dispersion and standard deviation (s = 0.078 m for the total dataset).  

Residual values are significantly smaller for water depth shallower than 0.20 m, for 

which the average residual is less than 1 mm. On the other hand, the model results 

less precise when estimating water deeper than 0.40 m, being the mean residual for 

this range of depth about 9 cm. Good model performances are shown also for 

intermediate water depth, being the average residual for 0.20 m < ℎ𝑖 < 0.40 m only 

8 mm. 
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Figure 5.19 Frequency distribution of residuals ℎ𝑖 − ℎ̂𝑖 for different ranges of observed water depth: (a) 

whole data set, (b) depth shallower than 0.20 m, (c) between 0.20 and 0.40 m, (d) deeper than 0.40 m. 

The m in the graph indicates the mean value of the residuals in metres. Bar width=0.05m. 2023 

dataset. 

 

The under- and overestimation trends are visible also when examining Figure 5.20. It 

compares the simulated water depth to the measured one, along three randomly 

selected cross-sections among those of the 2023 field campaign. Both calibration and 

validation points falling in these sections are marked with different symbology (circles 

and diamonds, respectively). 

Section 1 shows overestimation when its depth ranges between 0.20 and 0.40 m. 

Instead, underestimation can be observed in Section 1, where it goes deeper than 

0.40 m, and in Sections 2 and 3 for water shallower than 0.20 m. However, biases 

generally remain contained to a few centimetres. 
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Figure 5.20 Comparison of simulated to measured water depth at three sections. y/W indicates the 

dimensionless distance from a bank of the section. Purple diamonds represent data points that belong 

to the 30% of the dataset, used for the validation, while the orange circles indicate calibration points. 

2023 dataset. 

 

   

1 2 3 
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Figure 5.21 Overview of the position of Section 1, 2 and 3. 2023 dataset. Different colours in the label 

of points in the top pictures indicate the type of data: the blue label stands for calibration points, the 

yellow label for validation. 

In conclusion, the GWR model gave a good representation of water depth with the 

average residual that was about 1 cm. Its best performance were related to the most 

frequent depth range of 0 - 0.40 m, where residuals were of the order of millimetres 

or even less. 

 

5.3 Model Comparison 
Comparing the results of the two datasets, the 2023 bathymetry reconstruction was 

more accurate than the 2021 reconstruction, likely due to the larger dataset of water 

depth observations and the use of multispectral UAV acquisition. This model 

performed better with low residuals average (0.01 m) and standard deviation (0.08 

m).  

Moreover, performance metrics were greatly enhanced. Specifically, R2 were 0.77 for 

the 2021 dataset, improving to 0.94 for the 2023 dataset; and RSR decreased to 0.41 

from 1.26.   

A possible explanation is that multispectral data could more effectively model the 

effect of spatial heterogeneous bottom types, caused by submerged vegetation and 

sediment. 

Ultimately, it can be asserted that the 2021 model primarily served as a procedural 

test, considering the limited dataset available. It resulted in a good preparatory 

analysis for the construction of the 2023 model, which constituted a significant 

application, given its substantial field-sourced data sample. 

1 

3 

2 
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The multispectral data showed to be better than only RGB ones in bathymetry 

retrieval also if comparing the two models of 2023: the only RGB one and the 

multispectral one. The multispectral GWR2 significantly reduced the discrepancy 

between the model and the observations with respect to the RGB GWR2 model. In 

comparison to the results obtained from this latter model, the estimation accuracy 

improved. Particularly, the RSR value decreased from 0.583 to 0.410; and the R-

squared value increased from 0.873 to 0.937. 

 

5.4 Future Developments 
Following the analysis of the existing literature and the research undertaken in this 

study, prospective ways for future developments include: 

- improving the accuracy of the multispectral cartographic models, in particular 

of the DEM and orthomosaic. A possibility could be increasing the number of 

markers used both as GCPs and check points. 

- gathering information on the spectral signatures of sediment types and 

vegetation by training the sensor in the laboratory, so as to know their 

radiometric response in the band ratios used as model inputs. 

- combining photogrammetric data with those from other bathymetric 

mapping techniques, such as ERT or hydrographic LiDAR, to achieve a more 

accurate estimation of lake depth. ERT is Electrical Resistivity Tomography and 

due to the recent development, this method is comparatively easy to apply 

even in very heterogeneous mountain and arctic terrain. 

- enlarging the sample size of the ground truth depth measurements to obtain 

better model calibration. 

- exploiting a Kriging interpolation instead of an IDW for obtaining the model 

coefficients 𝛼𝑗(1) and 𝛼𝑗(2)  during the prediction phase. Prediction accuracy 

results highlighted by Monteys et al., (2015) indicate that a Kriging model with 

an external drift, utilizing local Kriging neighbourhoods, emerges as the 

strongest predictor. 

- considering the local bias 𝑏𝑖 in the model equation (2), that here was 

disregarded, as a first approximation. 

In order to characterize the ecosystem and its dynamics, vegetation and sediment 

transport would be interesting to study. In fact, while the glacier melts and retreats, 

the vegetation starts colonizing the terrain left uncovered by ice. This phenomenon 

is called the rising of the tree line.  

Moreover, the catchment sediment supply has been deeply affected by the 

accelerated retreat and thinning of glaciers and ice sheets in recent decades. This, in 

turn, affects nutrient cycling, carbon flow, and the management of natural resources. 

Whilst significant attention has been focused on comprehending the spatio-temporal 

variations in meltwater production associated with deglaciation, sediment yields, 

which represent a comprehensive indicator of geomorphological activity and 
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consequently the stability of a landscape within a watershed, have received 

comparatively less research (Carrivick and Tweed, 2021).  

 

5.4.1 Thermal Data 

After the last expedition to Rutor in September 2023, where a new UAV thermal 

sensor was tested, the idea to integrate this new dataset with the presented GWR 

model, was developed. The new bathymetric model should select its input variables 

not only from the bands here studied, but it could rely on a new wavelength range 

which is the thermal one. The UAV used was a DJI Mavic 3T which can acquire photos 

in the spectral range 8-14 μm of thermal infrared, and measure temperatures 

between -20° to 150° C. This idea is based on the fact that temperature is a good 

proxy for water depth, due to the temperature gradient that a water column typically 

exhibits.  

 

Figure 5.22 Orthophoto produced from a UAV flight of September 2023, using a thermal sensor. 

Figure 5.22 shows the first results from the processing of thermal sensor imagery, 

provided by the Glacier-Lab researchers. The DN (Digital Number) values of the 

orthophoto have not been calibrated yet. However, based on a qualitative estimate, 

it can be stated that the temperatures in the study area are as follows: around 15-20 

°C on the bars, approximately zero °C near the cascade, and 5-6 °C in the shallower 

areas. 
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6. Conclusions 
 

The objective of this thesis was a comprehensive exploration of bathymetry 

estimation in a dynamic proglacial environment, specifically focusing on Marginale 

Lake in the Italian Alps.  Through geomatic data collected in 2021 and 2023, valuable 

insights were provided regarding the effectiveness of Geographically Weighted 

Regression (GWR) models in the retrieval of bathymetric information from remote 

sensing data. 

The bathymetric inversion models were constructed by utilizing the ratio of two 

spectral bands, derived through principal component analysis (PCA). The chosen 

input band ratios exhibited a significant correlation with the observed water depth, 

measured on the field. 

 

6.1 Key Findings 
 

6.1.1 2021 Results  

In 2021, the GWR model, employing PCA-selected band ratios ln(DNB/DNR) and 

ln(DNG/DNB), revealed interesting insights into Marginale Lake's bathymetry. While 

the model showed promise, it tended to underestimate water depth, particularly for 

depths greater than 20 cm. This underestimation appeared to be related to localized 

changes in the bed type, high turbidity of the water and, mostly, the small size of the 

dataset over which the model was trained. Nevertheless, this preliminary analysis laid 

the foundation for subsequent investigations. 

6.1.2 2023 Results  

The 2023 dataset, characterized by a more extensive collection of water depth 

observations and the inclusion of multispectral data, marked a significant 

advancement. The spectral inputs selected for this GWR model were the band ratios 

ln(DNNIR/DNG) and ln(DNG/DNB). The GWR model calibrated for 2023 demonstrated 

improved accuracy, with average residuals of about 1 cm. It successfully reproduced 

the most common depth range of 0 - 0.40 m, where the average residual was 

measured in the order of millimetres. However, underestimation occurred for depths 

exceeding 0.40 m. Notably, the larger dataset and multispectral data contributed to 

this enhanced performance. 

6.1.3 Model Comparison  

The findings indicated that for both the 2021 and 2023 datasets, the GWR models 

relying on a single band ratio input exhibited discrepancies between estimates and 

observations, especially in the 2021 dataset. Conversely, when both PCA-selected 

band ratios were considered, the GWR models demonstrated enhanced performance. 
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Comparing the two datasets, the 2023 bathymetry reconstruction stood out as more 

accurate than the 2021 reconstruction. This improvement was attributed to the 

greater number of ground truth depth measurements over which the model was 

calibrated and the use of multispectral imagery. The multispectral GWR model 

significantly reduced deviations between the model and observations, exemplified by 

lower values of the Root Mean Standard Deviation Ratio (RSR) and higher R² values, 

which were 0.41 and 0.94, respectively. Multispectral imagery was more advantageous 

to resolve the effects of inhomogeneous streambeds. 

Ultimately, the 2021 model was mainly used as a procedural test due to the limited 

dataset. However, it proved to be a useful preparatory analysis for the development 

of the 2023 model, which had a significant amount of field-sourced data and was the 

main focus of the application. 

 

6.2 Final Remarks 
In summary, this thesis has made significant strides in advancing our understanding 

of proglacial environments and the application of GWR models and UAV imagery for 

bathymetric mapping. While challenges and limitations persist, the findings 

underscore the potential of multispectral data and expanded datasets in improving 

the accuracy of bathymetry estimations in dynamic mountainous regions. As global 

warming continues to impact these critical ecosystems, the research serves as a 

valuable foundation for further investigations, ultimately contributing to the 

comprehensive monitoring and management of proglacial areas in the face of 

ongoing environmental changes. 
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