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Abstract 

Non-perennial rivers are the most common type of rivers on Earth today. Anthropogenic 

pressures, such as land use change and water withdrawals, as well as climate change, are 

leading to significant shifts, modifying rivers flowing conditions from perennial to non-

perennial. Change in surface water volume usually causes serious consequences on river 

ecosystems and aspects of human life, therefore it is crucial to efficiently detect the 

existence of surface water, extract its extent, quantify its volume and monitor its 

dynamics. Knowledge about the frequency and duration of flowing condition of non‐

perennial rivers is severely limited by the small number of streamflow gauges and reliable 

prediction of surface water presence by hydrological models. In this contest, the satellite 

images can provide a useful medium for studying ecological and hydrological processes 

in such systems, offering effective ways to observe and monitor water surface dynamics 

with spatially explicit and temporally frequent data. The combination of Remote Sensing 

(RS) and machine learning algorithms, in particular with the use of Convolutional Neural 

Networks (CNN) that are designed for processing and analyzing visual data such as 

images, have recently begun to be used also in environmental studies concerning water 

bodies. In this study, multispectral Sentinel‐2 images were used to detect and monitor 

changes in surface water presence along two non‐perennial Mediterranean rivers located 

in the province of Valencia (Eastern Spain). Thanks to the match between satellite images 

and ground truth data, consisting in field survey and high-resolution images, the spectral 

signatures of sediments, vegetation, and water in the river corridors were evaluated, 

founding that the Sentinel-2’s bands combination of SWIR, NIR, and RED allows an 

optimum discrimination of water on the riverbed. False‐Color composite Images (FCI) 

were then used for the identification of three distinct flowing conditions of non‐perennial 

rivers in the considered reaches: “flowing” (F), “ponding” (P) and “dry” (D). In particular, 

six years of Sentinel-2 images (period 2017-2023) were classified in terms of identified 

flowing and cloud-cover conditions, adding the “cloudy” (C) class. The obtained dataset 

allowed to train a CNN for the unsupervised classification of rivers’ flowing status, basing 

on FCI visualization only. 6-layer CNNs were used, adopting ResNet50 as base model 

for adding the train dataset at classification head. Three models were used, for 2 (water-

nonwater), 3 (F-P-D) and 4 (F-P-D-C) classes problems. Their performances in terms of 
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accuracy have been 0.7-0.88, always lower than 0.9, indicating a not optimal learning of 

the models. Despite dataset balancing in pre-processing, the “ponding” condition is the 

most critical to identify, causing the majority of misclassifications. Subsequent 

improvements such the extension and the diversification of the dataset are required, but 

this innovative technique has large application potential for the study of non-perennial 

rivers.  
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1 Introduction  

Surface water bodies, such as rivers, lakes and wetlands, are critical freshwater resources, 
for both human and ecological systems. Water helps preserve the biodiversity in riparian 
and wetland ecosystems by providing habitats to a bunch of flora and fauna species, but 
also touches multiple aspect of human lives, from drinking water supply to industrial 
processes, passing from agriculture, electricity production and transportation. 
Surface water bodies are dynamic in nature as they shrink, expand, or change their 
appearance or course of flow with time, owing to different natural and human-induced 
factors (Huang, 2018). Climate change is within these factors, since in recent decades all 
the components of the global water cycle have been modified from it (high confidence). 
The global increases in temperature and evapotranspiration, with changes in rainfall 
patterns, are significantly modifying the hydrological cycle of rivers. The Assessment 
Report 6 of IPCC concluded with medium evidence and high agreement that trends in 
annual streamflow have generally shown changes in regional precipitation and 
temperature since the 1950s. Observations over recent decades, together with current 
global-scale climate change models, indicate that the change in precipitation and 
temperature patterns is increasing the temporal variability, with higher frequency of 
extreme events such as floods and supra-seasonal droughts (Magand, 2020). Stream flows 
showed decreasing trends in parts of Southern Europe, Western and Central Africa, 
Eastern Asia, Western North America and Eastern Australia, and increasing trends in 
Northern Asia, Northern Europe, and Northern East America. In particular the 
Southwestern Europe is one of the semi-arid regions in which water bodies, including 
Mediterranean rivers, are most vulnerable, with high probability to face acute water 
scarcity problems, also due to land cover changes and increased water demands by the 
irrigation sector (IPCC, 2023). Change in surface water volume usually causes serious 
consequences, therefore it is crucial to efficiently detect the existence of surface water, 
extract its extent, quantify its volume and monitor its dynamics (Huang, 2018). The 
extraction of water bodies from satellite images is crucial for studying ecological and 
hydrological processes, urban planning, disaster management, updating geospatial 
datasets, detecting droughts, monitoring floods, navigation and other applications 
(Parajuli, 2021). Remote sensing technologies offer effective ways to observe and 
monitor surface water dynamics at various spatial scales, with spatially explicit and 
temporally frequent observational data of the Earth's surface. In last years, remote sensing 
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has exponentially evolved and so have other fields such as computer vision. In addition, 
a greater number of satellite imagery has become publicly available. Notable examples 
are Landsat and Sentinel-2 constellations. 
 

1.1 Non-Perennial Rivers 

Non-Perennial Rivers (NPRs) are ubiquitous watercourses characterized by the 
occurrence of non-flowing periods, strongly depending on the season and on water 
recharge, in form of rainfall or snowmelt, over their catchments. This definition 
encompasses all watercourses in which some data testify the absence of water along the 
channel, including a wide range of intermittencies, from streams with episodical water 
presence to quasi-perennial rivers. The separation between perennial and non-perennial 
river is not fixed in time. Anthropogenic pressures, such as climate change, land use 
change and water withdrawals could lead to significant shifts from perennial to non-
perennial condition. It’s observed that many perennial rivers are gradually becoming 
intermittent (Magand, 2020). In a recent research of Messager et al. estimated the 
percentage of NPRs around the world, obtaining that the condition of intermittency is the 
most common. It has been predicted that water ceases to flow for at least one day per 

year, on interannual average, along 41% of the river with mean annual flow > 0.1 m3/s 
and along 51% (with conservative approach) to 60% of the watercourse with mean annual 

flow ranging from 0.1 m3/s to 0.01 m3/s (Messager, 2021). From these results, the 
consideration of the non-perennial as the common condition. Under every climate change 
scenario this river type is predicted to expand in the future and not only in arid and semi-
arid climatic regions. Due to the combination and succession of both terrestrial and 
aquatic ecosystems, the time-averaged biodiversity of NPRs is extremely high. These 
watercourses provide a variety of benefits, such as the provision of materials (water and 
timber), freshwater and riparian biodiversity, regulation of biogeochemical cycles and 
functioning as ecological corridor for wild and herded animals. Drying and rewetting 
processes, timing and duration of the different aquatic phases influence the biodiversity, 
the ecosystem functioning and so the provision of ecosystem services (Magand, 2020).	
However, suffering from negative perceptions and being historically overlooked by 
researchers compared to perennial rivers, NPRs are deteriorating at alarming rates, with 
difficulties in being recognized in the legislations as a group of rivers with specific 
characteristics and needs (Fritz, 2017).  
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The Water Framework Directive - WFD 2000/60/EC (EU-Parlament, 2000) has been 
adopted in year 2000 to establish a new framework for the protection and sustainable 
management of water resources. From the adoption, its purpose has been the classification 
of the ecological quality of surface water bodies in order to achieve a "good ecological 
status" in all inland and coastal waters in EU. For doing that, it’s necessary to define the 
reference condition for each surface water body, retrieving the undisturbed case to be 
compared with subsequent analysis and monitoring. The definition of the reference 
condition in NPRs is not a simple task, since it requires the knowledge of the degree of 
intermittence and of the occurrence of the different flowing conditions (Cavallo, 2022). 

Only some countries in the Mediterranean region integrated the WFD with national 
implementations, introducing specific classifications for NPRs. In 2008, Spain and Italy, 
respectively with “ORDEN ARM/2656/2008” and “Decreto Ministeriale 16 giugno 2008, 
n. 131” (D.M. 131/2008), defined a method for the distinction of this type of river 
(Manfreda, 2023). 
 

 
Figure 1: Classification of non-perennial rivers in the ORDEN ARM/2656/2008, Spain, 

for the implementation of WFD 2000/60/EC (IPH, 2007) 
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Figure 2: Classification of non-perennial rivers in the D.M. 131/2008, Italy, for the 

implementation of WFD 2000/60/EC (MATTM, 2000) 

Main obstacles for the implementation of correct management policies are the lack of 
information on the ecological functioning of NPRs and the high spatial and temporal 
variability of this river type. To have clear patterns of river intermittency, is fundamental 
to know the hydrologic conditions that rivers can experience together with their 
frequency, duration and seasonality. Hence, the comparison of real-time data with a long-
term dataset, functioning as reference condition, is mandatory for understanding the 
alteration of the natural flow regime (Magand, 2020). In this context, there are no 
adequate instruments to detect and monitor duration and frequency of non-flowing 
periods (Cavallo, 2022). The common approaches for hydrologic regime characterization 
are: field surveys, gauging stations, logger sensors and hydrological models.  
Field surveys are one of the best solutions for acquiring real-time data on the metrics of 
the flow regime and can assess with high accuracy which hydrologic condition is present 
on time but are difficult to replicate. Gauging stations, instead, within the best solutions 
to obtain long-term data, allowing to obtain the evolution of flow discharge over years, 
but they are rarely present in intermittent stretches and not effective in measuring small 
flows and neither the presence/absence of water during ponding phases. Logger sensors 
may detect the movement of wetting and drying fronts in real-time and medium-term, but 
the main drawbacks are the difficulties in distinguishing flowing and standing water and 
the possibility of the instruments to be swept away or buried during floods. The 
hydrological models still biased in predicting the variability of flow discharge in NPRs 
and they require the knowledge of many information, mainly related to the interaction 
surface-groundwater and the riverbed soil condition (Manfreda, 2023). 
Recently, remote sensing has defined significant opportunities for monitoring NPRs. 
Within the used technique, the airborne surveys allow the execution of rapid and extended 
surveys on intermittent reaches, even if the riverbed is complicated to reach by an 
operator. Then, satellite platform can provide periodical images of the entire river 
network, making possible the constant monitoring of the NPRs flowing conditions. The 
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main limitation of the satellite image is their spatial resolution, that impedes the 
recognition of small objects and thus the application on narrow rivers (Manfreda, 2023). 
 

1.2 Remote Sensing 

Remote sensing is the science and the technology that allows to acquire qualitative and 
quantitative data on remote objects and the surrounding environment by measuring the 
electromagnetic energy that is emitted, reflected or transmitted by the area of interest. The 
data acquisition takes place thanks to remote sensors mounted on platforms, such as 
drones, airplanes and satellites, that allow to detect the electromagnetic energy coming 
from a scene and to convert it into information. Each picture elements, the pixel, has a 
discrete value in units of Digital Number – DN – (NASA, 2013). If the primary energy 
source is the Sun, instruments are passive sensors, while if they illuminate themselves the 
surfaces (e.g. radar), they are passive sensors. Passive sensors measure energy from the 
optical regions of the electromagnetic spectrum: visible, near infrared, shortwave infrared 
and thermal infrared. The resulting images have different characteristics and resolutions 
depending on the sensor used for the detection. 
A significant advantage of satellite remote sensing compared to other remote platforms, 
is the possibility of monitoring wide areas with various temporal (the so called revisit 
time) and spatial resolutions, providing a global geographic coverage. Moreover, some 
satellite archives (e.g. Landsat) provide time series longer than 40 years. The wide use of 
satellite data is also encouraged by the free distribution policy adopted by some space 
agencies, like the Copernicus program of the European Space Agency (ESA), and by 
research and education programmers set up by private companies, like Planet and Esri. In 
most of the cases, data acquired by passive sensors do not require long and complicated 
pre-processing steps. They are frequently corrected radiometrically and geometrically by 
various providers and can be directly exploited by users. Furthermore, by associating the 
blue, green and red bands to the corresponding channels, a true color image can be 
obtained, through an additive color-synthesis operation, which can be easily interpreted 
even by non-expert users. The main drawback of passive sensors like satellite, is the 
inability of observing the Earth’s surface in the presence of clouds; long periods without 
observation may occur in areas with frequent precipitation, ending with non-useful 
observations. 
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A variety of satellite missions have followed over the years. Among them Landsat, 
MODIS (Moderate Resolution Imaging Spectroradiometer) and, more recently, the 
Sentinel-2 constellation. The choice of the satellite to be used in a specific monitoring 
application depends on many factors such as the object size (length and width of the 
target), spatial resolution required, physical properties of the target, duration of the 
observation and frequency with which changes need to be tracked. In general, spatial, 
temporal and spectral resolutions are in relative opposition: data with coarse spatial 
resolution are available with high revisit time and vice versa. Hence, the choice of the 
most suitable satellite datasets to be used is a challenging task, due to inevitable trade-
offs between spatial and temporal resolution (Manfreda, 2023). 
The use of satellite data for monitoring NPRs has so far been limited by two main factors: 
the spatial resolution of the satellite images and the availability of images at affordable 
costs, since high spatial and temporal resolutions are required for monitoring NPRs. Very 
high-resolution images (space resolution of the order of 0.5 m) are available for 
commercial use, but the long-time monitoring is limited by the high products cost. Among 
the multispectral images with global coverage freely distributed, the Sentinel-2 mission 
provides the highest spatial resolution and revisiting frequency, so that its images have 
been widely exploited to map water surfaces along perennial rivers. Satellite imagery 
allows the computation of the spectral signature of the different land cover classes, 
meaning the reflectance values as a function of wavelength. Since each material has a 
unique signature, it is possible to distinguish objects easily creating land cover maps, 
extraction of land cover classes created by evaluating the spectral content of each pixel 
along the bands. Some authors have developed supervised and unsupervised classification 
methods to generate such maps for perennial rivers. Carbonneau et al. used a supervised 
classification method to extract land cover classes (water, vegetation and sediment) and 
delimit active channels from Sentinel-2 images on four Italian rivers: Po, Sesia, Paglia 
and Bonamico River (Carbonneau, 2020). There are various approaches now available 
for extracting water surfaces from multispectral sensors, but none of them is equally 
applicable to all case studies, and the challenge of extracting land cover from 
multispectral satellite frames is constantly evolving. 
Only recently some authors have begun to explore the potential of satellite data in 
monitoring the presence of water along NPRs. Seaton et al. examined the utility of various 
multispectral indices derived from Sentinel-2 and Landsat-8 imagery for the identification 
and mapping of water surface areas along three NPRs located in South Africa, Western 
Cape (Seaton, 2020). Maswanganye et al., instead, investigated the use of multi-source 
remotely sensed data to monitor water pools distribution and dynamics along three NPRs, 
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retrieving that the visualizations with indices NDWI, MNDWI, and NDVI are the best 
for extracting water and for their consequent use into a supervised Random Forest 
algorithm (Maswanganye, 2022). Furthermore, Wang and Vivoni developed a new 
approach to establish the presence of surface flow in a NPR of Arizona, USA, by 
exploiting the commercial CubeSat imagery of Planet and using an index based on NIR 
band to determine the flow condition in different reaches of the case study; the temporal 
evolution of this index showed a high degree of convergence with the observed flow data 
recorded by a gauging station located in the surveyed river reach (Wang Z. &., 2022). 
Finally, Cavallo et al. used multispectral Sentinel-2 images to detect changes in water 
surface presence and flowing condition along three Mediterranean NPRs located in 
southern Italy. By evaluating the spectral signature of the riverbed-cover classes of water, 
sediment and vegetation, thanks to the contemporaneity between ground truth and 
Sentinel-2 data, they retrieved that false color image with band SWIR, NIR, and RED is 
the one that better allows the distinction between the components of the river corridor; 
the obtained images were then used to train a locally calibrated Random Forest model to 
fulfill temporal gaps between satellite images and to predict the occurrence of the NPRs 
flowing condition (F/P/D) by using local meteorological and hydrological data (Cavallo, 
2022). 
 

1.3 Convolutional Neural Network 

Machine learning is an evolving subset of artificial intelligence (AI) that focuses on the 
development of algorithms and models that enable computers to learn and to make 
predictions or decisions based on data, without being explicitly programmed for every 
possible scenario. Deep learning is a subset of machine learning that focuses on using 
neural networks with multiple layers (Deep Neural Networks) to learn patterns and 
representations from data. These neural networks, also known as Artificial Neural 
Networks, are inspired by the structure and functioning of the human brain's 
interconnected neurons. Deep learning has been highly successful in various tasks, 
particularly those involving complex data like images, text, and audio. 
Convolutional Neural Networks (CNNs) are a specific type of Deep Neural Network 
designed for processing and analyzing visual data, such as images and videos. CNNs have 
revolutionized computer vision tasks by automatically learning hierarchical features 
directly from raw pixel data, through a self-optimization of the constituent neurons 
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(O'Shea, 2015). CNNs are composed by three types of layers: convolutional, pooling and 
fully-connected layers. These layer types constitute the CNN architecture, being 
organized in an input layer that takes and adapts data to the CNN requirement, a hidden 
layer where calculations are performed (with convolutional and pooling layers) and an 
output layer that deliver the outcomes of calculations and extractions (typically a fully-
connected layer). A CNN is a feedforward network where the neurons that compose one 
layer are interconnected with the ones of next layer, basing on the quantitative similarity 
results (scores) produced at each step by activation functions. Activation functions 
introduce the non-linearity into the neural network, allowing the capturing of complex 
relationships within data. Common activation functions include sigmoid, softmax, ReLU 
(Rectified Linear) and its variants. 
 

 
Figure 3: CNNs architecture (Balaji, 2020) 

Convolutional layers apply filters (also called kernels) to the input image in a sliding 
window manner. Each filter extracts specific features from the image, such as edges, 
textures, and patterns and the results of these convolutions are passed to subsequent 
layers. The feature map produced by these filters is location-dependent, recording the 
precise positions of features in the input. What pooling layers provide is the “translational 
invariance” which makes the CNN invariant to translations, so that, even if the input of 
the model is translated, the CNN will still be able to recognize the features in the input. 
Pooling layers achieve this by simplifying the input image with an action of 
downsampling (Figure 4). With the gradual shrink of the image dimensions, the number 
of parameters and computations in the network is minimized. Max pooling and average 
pooling are common techniques that reduce the sample size of the data by considering, 
respectively, the maximum and average value within small regions. After passing through 
multiple convolutional and pooling layers, the extracted features are flattened and passed 
into the fully-connected layer, named in this way because neurons have full connectivity 
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within input and outputs. Here neurons apply a linear transformation to the input vector, 
calculating the dot product between the input vector (e.g. in Figure 5 of dimension 1x9) 
and a matrix of weights (e.g. 9x4); then a non-linear transformation is applied through an 
activation function, that returns an output (e.g. of dimension 1x4) of regression or 
classification type, basing on the purpose of the faced task. This procedure can be 
expressed by the following formula: 
 

𝑦!(𝑥) = 𝑓('𝑤"!𝑥" +𝑤!#)
$

"%&

 

 

where x is the input vector (with elements xi), yj are the elements of the output vector y, 
N is the length of the input, w0 are the bias terms and f is the applied activation function. 
As a result, all possible connections layer-to-layer are present, meaning every input of the 
input vector influences every output of the output vector (Unzueta, 2022).  
 

 
Figure 4: Illustration of max and average pooling (Yu, 2014) 

 
Figure 5: Illustration representing the fully connected layer, in which the inputs is 

multiplied by the weights matrix to receive the output vector (Unzueta, 2022) 
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The combined use of CNNs and Remote Sensing have recently begun to be used also in 
environmental studies concerning water bodies. It was proposed by Pu et al. to classify 
water quality of Chinese inland lakes from Landsat-8 images. A 4-layered CNN was 
developed by attributing to the images a water quality level basing on the data collected 
from official website and using a transfer learning strategy for dealing with the lack of 
measurement information. The results of CNN outperformed the ones of Random Forest 
and Support Vector Machine in the classification task (Pu, 2019). Wang et al. extracted 
urban water from Landsat imageries by combining a Multi-Scale Convolutional Neural 
Network (MSCNN) with Google Earth Engine (GEE), using satellite frames over China 
as case studies. The methodology proposed to train a complete MSCNN model offline to 
then extract water in urban areas online on GEE, by using the model previously trained. 
The Offline Training Online Prediction (OTOP) method was concluded to be accurate for 
thematic map extraction on different temporal epoch and spatial location (Wang Y. D., 
2019). Also Chen et al. proposed a method for urban water extraction using Self Adaptive 
pooling Convolutional Neural Network on a dataset of Chinese high resolution 
multispectral images of ZY-3 and Gaofeng-2 satellites. The images were firstly 
segmented into superpixels using an iterative clustering method, for then functioning as 
input of the CNN, aimed to extract water body in an innovative way and to distinguish 
shadow pixels from and water ones (Chen, 2018).  
Similarly did Li et al. using very high resolution Gaofeng-2 satellite images (0.8 m spatial 
resolution) to extract water body in the south of the Beijing metropolitan area using Fully 
Convolutional Network; even if trained on a small amount of labelled data, the model 
significantly outperformed the Normalized Difference Water Index, the Support Vector 
Machine and the Sparsity Model based methods in the water body extraction procedure 
(Li, 2019). In the research of Parajuli, surface water features from Sentinel-2 images were 
extracted using state-of-art approaches of deep learning, for finally integrate them with a 
new approach having better performance. In fact, the CNN created by integrating 
DenseNet and AttResNet resulted to be more effective than index-based neural network 
in extracting water from riverbanks and small surfaces (Parajuli, 2021). 



 11 

2 Methodology 

2.1 Study area 

The study area comprehends reaches of two rivers in the Valencian Community, Spain: 
Rio Palancia and Barranc del Carraixet. River’s hydrographic basins are included in the 
Demarcación Hidrográfica del Júcar (DHJ), geographically located in the extreme 
Central East of the Iberian Peninsula, with an area of 42’851 km². This territory is 
hydrologically managed by the Confederación Hidrográfica del Júcar (CHJ) and spans 
five autonomous communities (Figure 6): the Valencian Community, with a territorial 
share of almost 50% of the total area, the Community of Castilla-La Mancha with 37.6% 
share, Aragon with 12, 6%, Catalonia with 0.20% and Murcia with 0.15% (CHJ, s.d.). 
Geomorphologically it is described as an inland mountainous area, with points and chains 
of high altitude that act as barrier forcing the moisture-laden clouds mass coming by the 
sea to rise to higher atmospheric layers for then favouring precipitation, and a coastal 
area, made up of plains commonly known as ‘planas’, comprehending formation as 
lagoons (like Albufera), marshes and wetlands. Over CHJ there is a typical Mediterranean 
climate, with warm summers and mild winters. For the Köppen-Geiger classification the 
climate over Valencian Community is of type “BSk”, meaning cold semi-arid (steppe) 
climate (Mindat, s.d.). Average annual temperatures range from 14 to 16º C and 
the thermal maximum is recorded in July and August during the dry season.  The average 
annual rainfall is 500 mm, but there is large spatial variability, with values of 300 mm in 
the southern regions and other areas where annual means greater than 750 mm are 
reached. The rainfall events occurring with great intensity and short duration are more 
frequent in autumn and a secondary in spring. Most of the surface of the CHJ territory is 
covered by permeable materials which promote infiltration of surface water 
into underground strata (Hispagua, 2021). 
In the DHJ, 304 water masses have been defined in the river category, of which 257 
correspond to natural rivers, 43 to highly modified water masses (16 assimilable to rivers 
and 27 to reservoirs) and 4 to artificial water masses. The total longitudinal extension of 
this net is  5467 km and the two main rivers are Turia and Júcar, respectively of 512 and 
280 km length. These 300 water masses (the 4 artificial water masses were not 
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considered) were classified following the system defined by the order ARM/2656/2008 
of the Spanish Government. The classification results counted 216 water masses as 
perennial, 10 seasonal (or temporary rivers), 4 intermittent (or strongly seasonal) and 70 
ephemerals. High number of NPRs stands out in the water courses that are located to the 
north of the town of Castellón de la Plana and on the left bank of the middle section of 
the Júcar (CHJ, s.d.). It’s evident that NPRs have a great importance in CHJ, representing 
more than the 20% of the rivers type, so that it’s fundamental to study their behaviour for 
setting compliant legal, environmental and hydrological objectives (CHJ, s.d.). 
 
The selection criterion for rivers and underlying reaches to consider in this study was 
based on both quality factors, such as frequent and significant phenomena of ceasing of 
flowing along the year, goodness of Sentinel-2 visualization over the area (e.g. images 
without shadows in river corridor), satellite detection of water in past events, channel 
width, distance of the study area from big anthropic intervention, and on practical factors, 
such as the channel reachability for ground truth data collection and the proximity to 
meteorological stations for having representative associated ground-recorder-data. After 
a preliminary field surveys stage, two reaches of Rio Palancia and one reach of Carraixet 
were chosen. 
 

 
Figure 6: Territorial shares of Demarcación Hidrográfica del Júcar (CHJ, s.d.) 
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Figure 7: Classification of surface water bodies over Demarcación Hidrográfica 

del Júcar (CHJ, s.d.) 

Rio Palancia is within the natural rivers, characterized as “mineralized river of low 
Mediterranean mountain” from the system established by the WFD in its Annex II and 
developed in the Hydrological Planning Instruction - IPH, and “perennial” according to 
the order ARM/2656/2008 of IPH. It has a basin of 976 km2, in which the river develops 
for a length of 90.7 km, for ending in the sea with a typical alluvial fan (CHJ, s.d.). The 
river valley is located between the Calderona and Espadà mountains, with a typical 
Iberian orientation (NW-SE). At the headwaters the river is semi-perennial, with flow 
provided by local perched aquifers. The Regajo dam (6.6 Mm3) has regulated the flows 
in the upper basin since the year 1959 (mean river flow is 1.3 m3/s) and supplies 
the irrigation canals of the coastal plain. The Algar reservoir (6 Mm3) was built in year 
2000, 15 km downstream the first dam, in order to control floods and recharge the coastal 
plain aquifer; however, it is always empty due to impounded area permeability. 
Downstream the dams, the river becomes ephemeral in its last 25 km, only carrying 
continuous flow after heavy rains (Sanchis-Ibor, 2017). 
For studying purposes in single channel river, it is considered representative a sub-portion 
of the river, called reach, included between 10 and 20 times the average width or the 
active channel (Rinaldi, 2014). 
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The first considered reach was the segment BC (“Palancia 1”), long 2.7 km, being more 
than 10 times the width of the channel that is of 230 m, with a slope of 0.81% and human 
pressure of medium level. The second reach is the segment AB (“Palancia 2”), with an 
approximative length of 2.6 km for an average river width of 120 m, a slope of 0.59% 
and low human pressure. Both reaches are classified as sinuous and confined, with 
bedload sediment of medium size made up by cobbles and gravels (40–80 mm of 
diameter). Three meteorological stations have been identified in the surrounding of the 
selected reaches, reporting a mean annual precipitation of 500 mm. Gauging station data 
from Sistema Automático de Información Hidrológica (SAIH, s.d.) are only available in 
correspondence of Regajo dam, detecting a mean annual release of 0.4 m3/s (CHJ and 
TYPSA, 2020). 

  

 
Figure 8: Rio Palancia case study 
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Figure 9: Location of reaches Palancia 1 - BC and Palancia 2 - AB 

The Barranc del Carraixet is a natural river, characterized as “mineralized river of low 
Mediterranean mountain” and “ephemeral”. It is 33.3 km long and drains a basin of 311 
km2 (CHJ, s.d.). The stream flows into the Mediterranean Sea passing in the north of 
Valencia, so that the catchment includes multiple areas of intensive land use. The upper 
river basin is dominated by coniferous forests and transitional woodland-shrub areas, the 
middle one by natural grasslands and sclerophyllous vegetation, while urban and 
agricultural uses dominate the lower basin with high presence of fruit trees plantations 
and complex cultivation patterns. Frequently absent base flow characterizes the 
hydrology, as common in Mediterranean ephemeral streams (García, 1999). 
The segment AB represents the reach under study (“Carraixet”). It is located along the 
intermediate area of transition of the river, that connects the headwaters to coastal plains. 
The reach has a length of 1.6 km for an average width of 80 m, a slope of 0.34% and 
medium human pression, due to water abstraction for irrigation. Here the channel is 
confined and sinuous, geomorphologically with a prevalence of limestone and sandstone 
relief (Camarasa-Belmonte, 2016). Three meteorological stations have been identified in 
the river basin, detecting an annual rainfall that ranges approximately between 270 and 
500 mm. In the hydrological year 2022-23 a mean flow of 0.01 m3/s has been registered 
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at the SAIH gauging station of Carraixet-Bétera, located 8 km upstream the study reach 
(SAIH, s.d.). 

 

 
Figure 10: Barranc del Carraixet case study (above) and  location of reach Carraixet – 

AB (below) 



 17 

 
Figure 11: Measured flow rate at the Carraixet-Betera gauging station, h.y. 2023 

(SAIH, s.d.) 

 

2.2 Ground truth 

The field surveys were executed preliminary for choosing the study area and consequently 
for collecting data and having references for assessing flowing conditions. In particular, 
photographic documentation and riverbed-cover polygons mapping, were gathered in 
order to have ground truths of the studied areas. The identified riverbed-cover classes 
were water, sediments, vegetation-bushes and vegetation-grass. The spectral signatures 
(SS) of these classes have been extracted thanks to the overlapping of on-site acquired 
Regions Of Interest (ROIs) and Sentinel-2 satellite images. For this reason, when 
possible, the field surveys have been executed in cloud-free days, when the passage of 
one of the Sentinel-2 satellites was scheduled. For georeferenced polygon acquisition the 
following instrumentation was used: 

• Laser rangefinder 

• Rugged computer with GIS software and Map Stream plug-in integration 

• Tripod 

• Device with GPS (e.g. smartphone) 
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Figure 12: Field survey instrumentations (left) and example of rugged computer 
(Nomad, center) and laser rangefinder (Laset Tech, right) 

The ISPRA lineguides for hydromorphological units acquisition were followed for 
polygons detection (Vezza, 2017). Very high-resolution images, provided free of charge 
by Google Earth Pro, were used as additional ground truth for SS and features extraction, 
in order to have a riverbed-cover description for every season. 
 

2.3 Sentinel-2 imagery 

Sentinel-2 multispectral images have been used for this study, thanks to their optimal 
match between temporal and spatial resolution and the open-access data availability.  
On the studied areas the revisit time is of 5 days, with a spatial resolution from 10 to 60 
meters on the ground and a wide -swath width of 290 km. The Sentinel-2 mission is part 
of the Copernicus Earth Observation program led by the European Commission and 
operated by the European Space Agency (ESA). This mission comprises a constellation 
of two polar-orbiting satellites. The first one, Sentinel-2A, was launched on 23rd June 
2015 and provides images with a revisit time of approximately 10 days at the equator; 
since the launch of the second satellite, Sentinel-2B, on 7th March 2017, the overall revisit 
time has become of 5 days under the same viewing condition (European Space Agency, 
s.d.). The mean orbital altitude of the satellites is 786 km and the mean local solar time at 
the descending node is 10:30 AM, this value chosen as a compromise between a suitable 
level of solar illumination and the minimization of potential cloud cover (European Space 
Agency, s.d.). Both satellites are equipped with an opto-electronic Multispectral 
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Instrument (MSI), able to acquire a total of 13 spectral bands in different spectral regions: 
visible (bands 1-2-3-4), red-edge (bands 5-6-7), near-infrared (NIR, bands 8-8a), 
shortwave infrared (SWIR, bands 9-10-11-12). The bands have different spatial 
resolutions and their values are reported in the following table. 
 

 
Figure 13: Characteristics of Sentinel-2 MSI, (Cavallo, 2022) 

 

 
Figure 14: Spectral distribution of 10 m (above) and 20 m (below) spatial resolution 

bands, (European Space Agency, s.d.) 
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The Copernicus Open Access Hub from ESA provides free and open access and 
downloading of Sentinel data (ESA - Copernicus HUB, s.d.). Sentinel Hub EO Broswer, 
instead, provides easy browsing, visualization and consultation of Sentinel-2 imagery 
(Sentinel HUB, s.d.). The images of “Sentinel-2 MSI: MultiSpectral Instrument, Level-
2A” dataset have been accessed directly from Google Earth Engine (GEE, s.d.), a 
computing platform for Earth science that allows users to access data and run geospatial 
analysis at planetary-scale. The Level-2A dataset contains orthoimages already 
atmospherically corrected, being Surface Reflectance (SR) or Bottom of Atmosphere 
(BOA) product. From the code editor, available in Python and JavaScript, images of the 
dataset on required dates have been download and used for the analysis. The shapefiles 
representing the classes polygons collected in field survey or drawn on high resolution 
images directly on Google Earth Pro, have been imported in GEE environment and 
overlapped to the Sentinel-2 image of correspondent (or closest) date. Spectral signatures 
represent reflectance in percentage plotted versus the bands or related central 
wavelengths. The reflectance response of water, sediment and vegetation (split into 
bushes and grass) classes have been extracted for all the available season, in order to catch 
the seasonal reflectance variation of the river corridor elements. Once obtained, the 
combination of bands that best allowed the discrimination of the identified classes was 
chosen as RGB triplet for False Color Images (FCIs) visualization. The FCIs obtained in 
this way were then used into the following steps for reducing the chance of possible 
images misclassifications. 
 
Using the Google Colaboratory, a cloud-based Jupyter notebook environment that 
execute phyton code, a six-year dataset of the available images over the study reaches, 
for the period April 2017- May 2023, has been created cutting the images with masks of 
reaches’ active channel and manually determining (in a supervised mode) the occurrent 
flowing and cloud cover conditions. Also levels of confidence, distinguishing between 
high and low, have been attributed during the classification process. The FCIs were stored 
in organized nested-folders as GeoTiff images, named with the collection date in the 
format “yyyymmdd.tif” and with related metadata, distinguishing the Sentinel-2 FCIs in 
4 classes: “cloudy”, “dry”, “flowing” and “ponding”. For the supervised classification, 
the criterion for flowing condition definition has been: 

• Dry (D) - absence of water along the whole segment as visible from FCI	
• Flowing (F) - continuity of water flows along the whole segment	
• Ponding (P) - at least a trait in which the continuity of flow is interrupted as visible 

from FCI	
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Cloudy images have been stored as side class (C) and used only in one of the classification 
tasks, since the lower interest in this image type under the hydrological point of view. To 
standardize the image classification process, the same interpreter classified the whole 
archive at the fixed scale of first visualization of 1:30’000.  
 

2.4 CNNs 

2.4.1 Pre-processing 

Google Colaboratory (Colab) was used for code and model development, since it is free 
to use, requires no setup and has direct access to images and data stored in cloud (e.g. 
Google Drive), with files that can be simply shared and edited. It also contains as pre-
installed TensorFlow, an end-to-end open-source platform for machine learning that has 
now incorporated Keras, the most popular high level Application Programming Interface 
(API) for building and training neural network. A bench of related libraries can then easily 
be imported. By default, Colab notebooks run on CPU, but it can be switched to GPU or 
TPU for significant speed up of the processes. Datasets have been handled for matching 
the CNN input data requirement. The most common image formats used for classification 
with CNNs are JPEG (or JPG) and PNG. The choice of the one to be used for a 
classification task depends on the size and complexity of the dataset, the memory and 
storage constraints of the system and on the type of application. PNG is the format that 
better preserves all the details of the original image, generally being of larger size 
compared to JPEG files. PNG is also a good option when the dataset is small and the size 
of the image size is not a major concern. Due to these reasons, GeoTiff have been 
converted into PNG format and subdivided into folders according to the classification 
task to feed. In this phase only the images with “high confidence” of classification have 
been used. Dataset creation and organization is a step of paramount importance in CNN 
applications. For each river reach, the following subfolders were prepared for their 
subsequent use into the models: 

• 2 classes: nonwater, water (NW, W) 

• 3 classes: dry, flowing, ponding (D, F, P) 

• 4 classes: cloudy, dry, flowing, ponding (C, D, F, P)  
Dataset were loaded directly from cloud, in a way that class names and successively labels 
are automatically inferred to the images, basing on subfolder name. Class names are 
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reported in alphabetic order, since is in this way that the model attributes the label indexes 
(e.g. C [0], D [1], F [2], P [3] for 4-classes reading). 
 

 
Figure 15: Tree-folder organization of the 4-classes dataset 

The images were further handled and pre-processed to meet the CNNs input requirements. 
The pre-processing steps have been (1) dataset exploring, (2) image batch grouping, (3) 
image resizing, (4) oversampling, (5) dataset split into train, validation and test subset, 
(6) data augmentation and (7) prefetching.  
While assessing pre-processing the common practice is to start from data visualization; 
the dataset can be explored by plotting some of the contained images for image size check, 
object data type and pixel content in terms of Digital Number (DN). 
Consequently, since CNNs are typically used to process large images and processing one 
image at a time can be computationally inefficient, the images are grouped in batches: by 
processing multiple images in parallel as a batch, it’s possible to optimize hardware 
utilization. The number of the image contained in each batch, and so processed at once at 
every CNN epoch before updating the weights and biases during the training process, is 
defined by the batch size. Large batch sizes can lead to faster training times because the 
CNN updates its parameters less frequently, but they also require more memory and 
computational resources; smaller batch sizes may be more computationally efficient but 
requiring more training time to converge. The batch size is a power of two and commonly 
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it is chosen in the range 16 – 512, with size of 32 as rule of thumb for good initial choice. 
Once grouped in batch, the images can be more easily handled in the other pro-processing 
steps.  
A CNN algorithm requires that the input objects all have the same size, so that image 
resizing is a compulsory step. Once extracted the major image height and width, the 
resizing has been conducted by adding a black pad to the objects of smaller dimension. 
In this way, the original images resolutions were maintained, without applying zooming 
or compression to the pixel, and the images homogenized according to the purpose. 
Once obtained in homogeneous size, the images were split into the train, validation and 
test subsets (Figure 16). The training dataset (Train DS) contains sample of data used to 
fit the model, the validation one (Val DS) the ones used to provide an unbiased evaluation 
of a model fit at the end of every training epoch, tuning model hyperparameters, and the 
test one (Test DS) the samples used to provide an unbiased evaluation of a final model 
(Brownlee, 2020). Test DS is only used once the model is completely trained on both 
Train and Val DS and represent a small number (with respect to the other subset) of 
unseen images that the model must classify basing on previous learning. The dataset split 
was achieved by setting a percentage for each subset and randomly assign dataset objects 
to them; percentages of 0.7, 0.2 and 0.1, respectively for training, validation and test 
subset, were chosen. 
Another step of paramount importance is the training dataset balance, since a model 
trained on an unbalanced set can led to false high accuracy performance, only predicting 
all the images as the majority class. Only the training subset was balanced in order not to 
have images in the validation and test sets that the model had already and previously seen. 
The number of images per each class in the training dataset was counted for then 
performing the oversampling procedure, that involves a random resampling of the objects 
of the minority class (or classes) to match the same initial condition into the learning 
process. Generally, for small dataset, the oversampling approach is preferred comparing 
to other balancing method like undersampling, that is instead useful for large amount of 
data since it reduces the number of objects contained in the majority class (or classes). 
In order to reduce the risk of overfitting, data augmentation was applied on the training 
subset. This technique artificially introduces sample diversity by applying random but 
realistic transformations to the training images, such as rotation and horizontal flipping. 
This practice is strongly suggested for small dataset since it exposes in a variated way the 
images to the model, so that it can learn and recognize features even if they have different 
spatial location. 
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Finally, prefetching during image loading was set. This technique consists in overlapping 
the pre-processing and model execution during a training step and it allows to reduce the 
computing time and to increase data performance. If tuned on, while the model is 
executing a training step s, the input pipeline is reading the data for step s+1, speeding up 
the loading process and the overall execution (TensorFlow, s.d.). 
 

 
Figure 16: Generic split into Train, Val and Test subsets (Shah, 2017) 

 

2.4.2 Model construction 

Dealing with image classification tasks, a reasonable number of samples for training an 
algorithm is 10’000. When having too little data to train a full-scale model from scratch, 
it’s common to construct own model starting from a pre-trained network, that is a model 
constructed on large and general enough dataset. This technique, known as transfer 
learning, consists of taking features of the visual world learned on one problem, and 
leveraging them on a new, similar problem. It directly addresses the smart parameter 
initialization for training neural networks, allowing to speed up the training and to 
overcome small dataset size (Prakash Maheswari, 2019). 
CNN models have been constructed by following the workflow of transfer learning 
application. 
At first was selected the pre-trained model to be used as base model. For image 
classification task, the Residual Network (ResNet) models are within the best in terms of 
performance (Huilgol, 2020). In particular the ResNet50 (Keras, s.d.) was used as base 
model for the CNN construction and it has been pretrained and weighted on ImageNet, a 
large research-training dataset consisting of 1.4M images belonging to 1000 different 
classes. During this pre-training, only the bottleneck layer was used for feature extraction. 
In fact, a common practice is to focus on the very last layer before the flatten operation, 
the bottleneck layer, that is ideal for feature extraction since it retains more generality as 
compared to the final/top layer, that instead is not very useful (TensorFlow, s.d.). This is 
achieved by specifying in the base model definition ‘include_top=False’ as a function 
argument. 
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After pre-training the convolutional base was freeze, in order to maintain the learned 
patterns, preventing the weights of the layers from being updated during the consecutive 
training on the target database. 
At this point, the proper model was built by chaining together pre-processing steps 
(constituted by the input and the sequential layers), the base model (constituted by a 
functional layer), and the classification head (that includes pooling layer, dropout layer 
and dense prediction layer). In fact, the classification head is formed by some new, 
trainable layers, that will learn to turn the old features into predictions on a new dataset. 
It is called head since it is directly incorporated on top of the frozen layers. During this 
built passage the model architecture was defined, inserting six layers. 
Finally, the target dataset was used to train the new layers, by compiling and fitting the 
model with the Train plus Val DS, tuning learning rate and number of epochs in order to 
reach the best model performance. During model compiling and fitting important 
parameters, evaluation functions and metrics are set. Model compiling configures the 
network for training by defining the optimizer, the loss function and the metrics. The 
optimizer controls the learning rate, meaning how quickly the model's optimal weights 
are calculated. A smaller learning rate may result in more accurate weights (up to a point), 
but it will take longer to compute the weights. Adam optimizer was used, since it adjusts 
the learning rate in training throughout stochastic optimization and it is generally a good 
optimizer for many cases. A loss function is a function that compares the target and 
predicted output values, measuring how well the neural network is modelling training 
data. When training, the aim is to minimize the loss between the predicted and target 
outputs by adjusting the hyperparameters. Classification loss functions are the one used 
in classification problems and they comprehend Binary Cross-Entropy, for binary 
classification, Categorical Cross-Entropy and Sparse Categorical Cross-Entropy 
functions, this last two for multi-class predictions. The metrics parameter from which it’s 
possible to choose during training and testing compiling are accuracy, precision, recall 
and F1-score. In model fitting, the train and validation dataset are assigned to the model 
and the number of epochs is specified. The number of epochs is a hyperparameter that 
defines the number times that the learning algorithm will work through the entire training 
dataset (Train DS plus Val DS). With 100 epochs, the model will be exposed to or pass 
through the whole dataset 100 times. It’s a kind of for-loop over the training dataset. 
Within this for-loop is another nested for-loop that iterates over each batch of samples, 
where one batch has the specified “batch size” number of samples. It is common to create 
line plots, called learning curves, that show epochs along the x-axis as time and the 



 26 

performance of the model on the y-axis. These plots can help to diagnose whether the 
model has over learned, under learned, or is suitably fit to the training dataset.  
After the fitting step, the model has been initially evaluated on the Test DS in order to 
obtain the first performance on this subset. 
Consequently, the fine-tuning was added. This procedure is optional, but it has been 
implemented due to its potentially to achieve meaningful improvements, by incrementally 
adapting the pretrained features to the new data. In fact, the fine-tuning consists in 
unfreezing a-part-of or the entire model obtained above for re-training it on target data 
with a very low learning rate. While in the early steps of transfer learning it’s necessary 
to freeze the entire convolutional base, rendering it entirely untrainable and only using 
weight initialization, after having done the initial training it’s possible to fine-tune the 
weights of the latter layers of the overall models, comprehending in the trainable layers 
also some of the base model. It’s important to note that without training a classifier on 
the frozen base first, initial epochs would overwrite any useful representations encoded 
in the pre-trained model, resulting in an abundance of noise. 
After this change the model was compiled again, with a learning rate of 1/10 of the one 
used in the initial stage, and re-fitted, so that it went on in the learning process. As last 
step, the obtained CNN was evaluated on the Test DS in order to extract the final 
performance scores on totally unseen data (Keras, 2020).  
  
 

2.4.3 Evaluation metrics 

Model evaluation is an essential part of every CNN. There are different types of 
evaluation metrics available for measuring the performance of a model and the most 
representative one depends on the type of problem faced and on the input features. As 
seen before, the loss is a base parameter during model compiling and fit. Accuracy, 
precision, recall and F1-score are then the mostly used evaluation metrics to assess the 
performance of classification models (Saturn Cloud, 2023).  
 

Loss 

The loss is calculated by loss function and represents the error or discrepancy between 
the predicted output of the model and the true label, quantifying how well the model is 
performing in terms of minimizing such difference. As already sad, the goal of the 
training process is to minimize the loss. 
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Binary Cross-Entropy or Log Loss (BCE) is the loss function used in binary classification 
models, where the model takes an input and has to classify it into one of two pre-set 
categories.  It's calculated using the formula: 
 

𝐵𝐶𝐸	𝐿𝑜𝑠𝑠 =
1
𝑁'−	(𝑦" ∙ log(𝑝") + (1 − 𝑦") ∙ log	(1 − 𝑝")
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where N is the number of observations, i is the given observation, y the actual true 
value, p the prediction probability (pi is the probability of the positive class, class 1, and 
(1-pi) the one of the negative class, class 0) and log refers to the natural logarithm. 
In binary problems, the positive class is the one with a higher level of significance for the 
faced problem, with the particular features to identify, while the negative class is its 
complementary (Yathish, 2022). The prediction probability is a value between 0 or 1 
obtained by applying a sigmoid function as activation to the prediction logits, that instead 
are not in a fixed range, being unnormalized raw predictions. Positive logits typically 
represent the scores for the positive class (index [1]), while negative logits the scores for 
the negative one (index [0]). The sigmoid activation function is represented by: 
 

Φ(𝑧) =
1

1 + 𝑒'( 
 

where z is the vector with logits score. 
 

 
Figure 17: Sigmoid activation function (Sharma, 2017) 

Categorical Cross-Entropy Loss (CCE) is the function to utilize in case the number of 
classes is greater than two, with an approach very similar to binary cross-entropy, but 
using and producing one-hot encoded labels. For example, the one-hot encoded label of 
an image belonging to the 3rd class out of 4, is [0 0 1 0]; the prediction vector for the 
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image may be [.3 0 .5 .2], where the inside values represent the belonging probability, 
summing up to 1, then converted to the prediction output [0 0 1 0].  
 

𝐶𝐶𝐸	𝐿𝑜𝑠𝑠 = −
1
𝑁''𝑦"!

)

!%&

∙ log=𝑝"!>
$

"%&

 

 

where N is the number of observations and M the number of classes. The softmax 
activation function is used for multiple classes tasks for the conversion of the logits vector 
into the prediction vector and it’s expressed by: 
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where 𝑧" is i-th vector of logits in input to the softmax function 𝜎(𝑥), M in the number of 
classes, 𝑒(" is the standard exponential function for input element and 𝑒(# the one for the 
output element, functioning as normalization term. The function returns a prediction 
vector with values in [0, 1] probability range. 
 
Sparse Categorical Cross-Entropy Loss (SCCE) is the equivalent of the Categorical 
Cross-Entropy, but, instead of one-hot encoded vectors, uses integer labels, starting from 
class [0]. For example, the integer label of an image belonging to the 3rd class out of 4, is 
[2]; the prediction vector for the image may be [.3 0 .5 .2], where the values represent the 
index of belonging probability, from which is then extracted the position of the maximum 
argument and predicted [2]. It uses the same loss and activation function of CCE.  
 

Confusion matrix 

The confusion matrix gives a lot of information about the model’s performance. It is the 
visual match between prediction and true sample, being a 2-D array of shape [n, n], 
where n is the number of valid classes for a given classification task. The matrix columns 
represent the prediction labels and the rows represent the real labels. In the simplest case 
of binary classification, the confusion matrix has 4 essential components (Figure 18): 

• True Negatives (TN) - number of samples correctly predicted as “negative” 

• True Positives (TP) - number of samples correctly predicted as “positive” 

• False Positives (FP) - number of samples wrongly predicted as “positive” 

• False Negatives (FN) - number of samples wrongly predicted as “negative” 
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Confusion matrix for multiple classes is similar, having on the diagonal the numbers of 
correctly predicted samples and in other positions the number of wrongly predicted ones. 
From the confusion matrix it’s possible to understand which classes are wrongly predicted 
and in which sense, for further model improvement. Its components allow then the 
computation of precision, recall and F1-score metrics. 
 

 
Figure 18: Confusion matrix of binary classification model with ‘class 0’ and ‘class 1’; 

TrueNegatives (TN), FalsePositives(FP), FalseNegatives (FN), TruePositives (TP) 

Accuracy 

Classification accuracy, or simply accuracy, is the ratio of number of correct predictions 
to the total number of input samples. Considering the terms of confusion matrix, the 
accuracy is defined as the true terms over the total number of predictions, meaning the 
diagonal terms over the sum of all the terms. In training phase, as the model improves its 
performance, the loss should decrease, and the accuracy increase. Accuracy is a realistic 
metric only if there are equal number of samples belonging to each class. For example, 
considering an unbalance dataset with 98% samples of class A and 2% samples of class 
B on the training set, the model can reach 98% of training accuracy by simply predicting 
all the sample to class A. If the same model is evaluated on a test set with 60% samples 
of class A and 40% of class, the test accuracy falls to 60%. Hence, classification accuracy 
is a great metric, but returns the false sense of achieving high accuracy in unbalance 
problems. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	𝑚𝑎𝑑𝑒 
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Precision 

Precision is a class specific metric. By considering the positive class, class 1, as the one 
under interest, the related precision is the number of correct positive results divided by 
the number of total positive results (made up of true and false positives) predicted by the 
classifier. This metric focus on the prediction column of the confusion matrix, only 
considering the class (and so the column) under interest. Also the precision of the negative 
class, class 0, can be retrieved considering in the same way the two negative terms. This 
metric stays in the range [0,1] and the expression for the positive class precision is given 
by: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 

Recall 

Also recall is a class specific metric. Taking the expression for the positive class, it is 
defined by the number of correct positive results divided by the number of all relevant 
samples (all samples that should have been identified as positive, made up of true 
positives and false negatives). In the confusion matrix, the recall focus on the true label 
row of the class under interest. Hence, it can also be obtained for the negative class, class 
0, by considering the true and false terms in the first row as substitutes of the ones in the 
second row of the confusion matrix. Recall stays in the [0, 1] range. The related formula 
for the positive class is: 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

 

F1-score 

Precision and recall are not particularly useful metrics when used in isolation. F1-score 
is the harmonic mean between precision and recall of the same class and it takes into 
account both false positives and false negatives. It tells how precise the classifier is (how 
many instances it classifies correctly), as well as how robust the model is (not missing a 
significant number of instances). Maximizing the F1-score for having better performance, 
implies simultaneously maximizing precision and recall, two metrics that for their 
construction are in trade-off. Once again, the metric is class specific and range in the [0, 
1] interval. It is mathematically defined as: 
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙

	= 2	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
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3 Results and Discussion 

3.1 Ground truth 

Three field surveys have been performed on each studied river, considering the reach 
“Palancia 1” and “Carraixet”, due to the easier reachability of their riverbed. High 
resolution images (orthophoto) of Google Earth Pro have been used as additional ground 
truth for SS and features extraction. The acquisition dates are reported in the table below, 
with specification of the ground truth type, belonging season and date of the closest 
available Sentinel-2 observation. When the ground truth acquisition and the satellite 
passage were not contemporary (the maximum time lapse was of 3 days), it has been 
checked that no precipitation event interposed, so that the only possible changes could be 
due to evaporation and consequent reduction in water surface area. For each river, rows 
of same color have been considered as gathered for the SS extraction, identifying, 
according to the available data, three main period: late winter, late autumn + winter and 
spring for Palancia; late winter, autumn and spring for Carraixet. 

 
Table 1:Palancia - resume of ground truth source, date and related Sentinel-2 image 

(W:winter, SP:spring, A:autumn) 

River Acquisition Ground truth source Ground truth date Season Sentinel-2 date 

Palancia 1 Google Earth Pro 11/03/21 Late W 11/03/21 

  2 Google Earth Pro 27/05/22 SP 30/05/22 

  3 Field survey 17/12/22 Late A 16/12/22 

  4 Field survey 20/01/23 W 20/01/23 

  5 Field survey 16/04/23 SP 20/04/23 

  6 Google Earth Pro 03/05/23 SP 05/05/23 
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Table 2: Carraixet - resume of ground truth source, date and related Sentinel-2 image 

River Acquisition Ground truth source Ground truth date Season Sentinel-2 date 

Carraixet 1 Google Earth Pro 11/03/21 Late W 11/03/21 

  2 Google Earth Pro 07/11/22 A 06/11/22 

  3 Field survey 26/11/22 A cloudy 

  4 Field survey 16/12/22 A 16/12/22 

  5 Google Earth Pro 15/04/23 SP 15/04/23 

  6 Field survey 24/04/23 SP 25/04/23 

 
Summer period is out of the descriptor since no observational data were available in 
recent years for this season. In order to catch all the river’s flowing conditions, the field 
surveys were conducted both in days after rain event, both in no precipitation period. An 
important precipitation event occurred over Valencian Community on November 10th-
12th (Pcum=70 mm at Algimia de Alfara – Palancia reaches, Pcum=40 mm at Moncada – 
Carraixet reach) as shown in Figure 19. A trial of field investigation has been done in date 
26/11 and no water was found in the rivers’ channels. The matching satellite image, 
together with all the ones subsequent the event, was cloudy and no remote observations 
after this precipitation occurrence have been available. This fact highlights the 
unpredictability of working with satellite data, that strongly depend on sky-cover 
condition. A precipitation event of lower intensity interested the zone on December 11th-
13th (Pcum=20 mm at Algimia de Alfara, Pcum=15 mm at Moncada). The first open-sky 
available image has been on December 16th and two field surveys have been conducted 
on dates 16-17/12, detecting flowing conditions of “ponding” for Palancia and “dry” for 
Carraixet. During the field survey period, no water was detected in Carraixet river 
channel. 
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Figure 19: Recorder daily precipitation at Algimia de Alfara (reference for Palancia 
reaches) and Moncada station (reference for Carraixet reach) in period Oct 22 – Jan 

23, (IVIA, 2023) 

For Palancia reaches, the field survey on 26/11 showed that 15 days after the precipitation 
event of Pcum= 70 mm, the water was already disappeared, with river found in “dry” 
condition. As a result of the precipitation event of December, instead, water remained 
longer time, allowing “ponding” status, with ponds decreasing in size, until 15/01/23 
(detected thanks to satellite images). Considering the absence of further precipitation 
intake, this phenomenon can be related to soil saturation and surface-groundwater 
interaction processes. Georeferenced polygons of various shape and linear dimension 
from 2 to 50m, representing the perimeter of found water bodies, sediment and vegetation 
riverbed-cover classes, were collected with the laser rangefinder. 
The photographic documentation of the December 16th -17th field surveys is reported 
below. In this survey, a number of 10 georeferenced water ponds was acquired for 
Palancia (Table 3). 
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Figure 20: Field survey on Palancia, date 17-12-22 and related Sentinel-2 FCI of 16-

12-22 
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Figure 21: Field survey on Carraixet, date 17-12-22 and related contemporary 

Sentinel-2 FCI 

In the table below are reported the dimensions of the acquired water pools of Palancia in 
the survey of December 17th. Average length and width are considered with respect to 
flow directions. The related positioning is shown in Figure 22.  
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Table 3: Pool acquisition for Palancia, date 17/12/22 

Date Pool n. 
Average 

length [m] 
Average 

width [m] 

17/12/22 1 55 30 

 
2 60 11 

 3 78 13 

 
4 112 34 

 5 88 40 

 
6 2 7 

 
7 82 6 

 8 34 10 

 
9 65 44 

 10 93 15 
 

 
Figure 22: Distribution of pool acquired on Palancia in date 17/12/22  

Recognizing NPRs, catching photos and collecting water coverage in different flowing 
conditions, helps to improve the environmental and social perceptions of this type of river, 
that has been historically overlooked and abandoned to degradation. The understanding 
of water heterogeneity in distribution along the channel and intermittency is necessary for 
a correct management of NPRs. 
 



 37 

   

   
Figure 23: Palancia “ponding”-date 16/12/22 over “dry”- date 16/04/23 condition 

   
Figure 24: Carraixet degradation, date 24/04/23 

 

3.2 Sentinel-2 imagery 

3.2.1 Spectral Signature extraction 

Ground true georeferenced polygons of the defined classes were combined with the 
temporally closest Sentinel-2 image (Tables 1,2) in order to extract the spectral behaviour 
of the riverbed-cover classes. Bands are representing the layers of a multispectral image. 
Each layer is made of pixels, that contain, according to the used source database, values 
of surface reflectance. By considering the pixel under a defined ROI, the SS of the object 
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over the available bands can be extracted (Figure 22). Since every pixel represents an area 
on the ground of 10 m x 10 m and it is not possible to distinguish sub-pixel objects, the 
SS extraction is of a generalized frame. The analysis showed that the minimum width of 
ponds identifiable by FCIs is highly variable. Water objects with a linear dimension lower 
than 7 m were not visible from the FCIs. In some cases, wet channels and ponds with 
widths between 7 and 10 m were identified, while in other, wet channels of width between 
10 and 15 m were not detected. This strongly depends on the relative positioning of the 
object with respect to the pixels: when a water surface is centered and spread over a single 
pixel, the identification is well performed, while if it covers only partially two or more 
pixels, the identification is more complex. 
 
Palancia’s seasonal spectral signatures of available reference data are reported below. 
Late winter extraction is matching the Google Earth Pro ground truth with the 
contemporary satellite passage on 11/03/21. Late autumn and winter refer to the dates 
16/12/22 and 20/01/23. Spring 2023 (date 03/05/23) was compared with spring 2022 
(27/05/22) due to the strong difference in land cover among these two years. In fact, low 
precipitation on the hydrologic year 2022-23 caused the dry up of soil and vegetation.  
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Figure 25: Seasonal Spectral Signatures, Palancia 

As shown in Figure 25, on late winter the reaches were in “flowing” condition and SS of 
water in wet channel was extracted. In the same plot the SS of water basins used for 
irrigation scope, that surround the river channel, was retrieved. Size, uniformity and linear 
geometry of water basins, together with the deep of such water bodies, allow better 
visualization into satellite image and consequent lower values of surface reflectance, that 
in the visible (400-700 nm) and red edge (700-800 nm) are close to the one of “clear 
water” (Figure 26). In fact, the SS of clear water (suspended solids <10 mg/l) peaks in the 
green wavelength band and decreases with increasing wavelength, reaching near-zero 
reflectance in NIR (750-1350 nm). Water of wet channel and pools, when detected, has 
instead higher reflectance values among all the spectra. This is related to the fact that 
shallow water contains solid particles representing turbidity and its reflectance is affected 
by the response of the underlying sediment bed. Among all the seasons water SS shows 
a peak in B9, not an intrinsic property of water, that is low reflective in visible and 
completely transmissive for greater wavelengths, but it is instead a remark of soil and 
sediments. Generally, soil reflectance varies according to its chemical and physical 
composition and the main drivers are the moisture and organic substance content, texture 
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and structure. The reflectance of the soil increases with the wavelength and decreases 
proportionally to the moisture content in correspondence to the water absorption peaks 
(1400, 1900, 2700 nm). As for water, the spectral response of vegetation varies with the 
wavelength, and depends on multiple factors, such as the type of vegetation, density, state 
of growth and moisture content. In the visible, surface reflectance is related to the 
presence of pigments, such as chlorophyll, that determines the absorption of the blue and 
red radiation and reflection of the green one. Along NIR lengths, the SS is influenced by 
the structure of the leaf, while in the short-wave infrared (1350- 2700 nm) by the water 
content. Healthy vegetation tends to show greater reflectance on NIR wavelengths. 

   
Figure 26: Extraction of water Regions of Interest (ROIs) belonging to basins and wet 

channel in Late Winter 2021/22 (left) and (right) common Spectral Signature plot 
(Progressive Gardening, 2022) 

In spring 2022 the SS are shifted upward with respect to the previous season and this can 
be related to the difference in the solar radiation incident angle and to different image 
acquisition conditions. Here, after a local peak in B3 - green, both bushes and grass 
vegetation peak in NIR, demonstrating a higher vegetative activity. In late autumn 2022 
the classes’ reflectance decreased and approached, being not well distinguishable. Here 
water class represent pond ROIs, since the river was found in “ponding” condition. It is 
worth to note that these spectral behaviours have been extracted only starting from field 
survey, passing polygons acquired with a different point of view with respect to remote 
sensed image, generating more inaccuracies. At last, spring 2023 shown strong 
differences with respect to spring 2022, both in SS and on visual detection. Grass sub-
class was no more present, bushes reached lower reflectance values in NIR, symptom of 
decreased activity and water along the channel was absent, determining “dry” condition 
over Palancia reaches. These modifications are related to the significantly lower 
precipitation intake over the hydrologic year 2023, phenomenon that caused the land 
cover change over the entire studied area. During this water year less than 300 mm of rain 
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were detected by the Algimia de Alfara station, 200 mm lower than the mean annual 
sensed precipitation. 
 

   
Figure 27: Google Earth Pro images of Spring 2022 (left) and 2023 (right) 

 
Figure 28: Precipitation over hydrologic year (h.y.) in the period 2019-2023 and 

relative Pmean recorded at Algimia de Alfara (IVIA, 2023) 

For the studied Carraixet reach, no water was found in the ground truth references. As 
sad, it is classified as ephemeral stream, as the term “barranc” indicates, with only 
sporadic flow after storm events. An adjacent lower reach, with different 
hydromorphologic characteristics and permanent water presence, was used for the field 
survey acquisition and the SS extraction. Here, water from canals of the irrigation system 
is released in the Carraixet channel, so that downstream the conjunction point the river is 
in artificial “flowing” condition. This lower reach was not taken as additional case study 
because of the high human influence and the absence of “dry” condition over the 2017-
2023 period. Late winter refers to the date 11/03/21, autumn to dates 06/11/22 and 
16/12/22 and spring to the acquisitions 15-25/04/23. 
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Figure 29: Seasonal Spectral Signatures and extraction of different water Regions Of 

Interest (ROIs) in Autumn 2022, Carraixet 

Similar discussions can be conducted for 
Carraixet. In late winter the reflectance 
responses are particularly low, due to the 
differences in acquisition conditions. For 
autumn the SS of water basins was added, 
retrieving a behaviour more similar to “clear 
water”, with an anomalous peak in B9, related 
to the sediment and vegetation dirtying effect 
on the pixel while acquiring with a spatial resolution of 10 m. This effect is amplified in 
the water ponds SS, since ROIs have more complex geometries that cannot be well 
described and extrapolated by FCIs. Due to the presence of marsh reed that in autumn 
and winter have brownish stems, the reflectance of bushes in these seasons reach lower 
values. In spring, instead, stems are greenish and the SS reaches an higher reflectance 
value. Once again, despite the artificial presence of water in the reach, in this season no 
grass was detected and the surrounding of the channel was particularly dry. 
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Descriptions of the spectral responses of the classes in summer period is missing, not 
having a complete knowledge of the reflectance variations along the year. Despite this, it 
is not possible to catch a unique seasonal response due to the year-by-year alteration, as 
demonstrates the comparison in Palancia between spring 2022 and 2023. In the extraction 
where a unique ground truth was used, there is a strong dependence on the satellite 
acquisition conditions, for instance for cloudy dimming and shadows covering. About the 
significancy of the results, it’s necessary to note that despite a precise and accurate caption 
of classes’ ROIs, it’s impossible to have SS that perfectly describe the spectral 
characteristics of the pure classes. Despite it’s expected that water inside river channel 
undergoes the influence of the underlying soil and sediments layer due to its shallowness, 
the obtained water reflectance of wet channel and ponds are compromised by the overlap 
within classes. Also water basins undergo the sub-pixel overlapping effect during satellite 
acquisition. Here stays the limit of using Sentinel-2 images, with finer spatial resolution 
of 10 m, while dealing with objects and covers-type that start from the meter scale (e.g. 
for pool with 2 m width), having a resolution mismatch that causes inaccuracies on the 
extrapolated data. 
 
 

3.2.2 RGB-triplet selection 

By viewing the previous charts it’s possible to state that for visible bands (B2, B3, B4) 
the water and vegetation have similar spectral signature, sometimes overlapped, while 
sediment is well distinguishable due to the higher reflectance values on these bands, 
especially in B4. In red edge spectral region (B5, B6, B7) there is less separability 
between all signatures due to the rise of vegetations and water reflectance until the 
approach of sediment’s one. Along NIR wavelengths (B8, B8A) the different classes’ SS 
are sufficiently separable. In autumn, vegetation and sediment SS approach, due to the 
lower reflectance values that bushes and grass show among this season, while water 
always has significantly lower values; due to this fact, B8 and B8A are the best bands for 
water discrimination. The SWIR spectral region (B11, B12) is good for the different 
classes’ separation, since sediment, vegetation and water occupy distinct reflectance 
levels. There are only in some cases in which bushes and water show similar reflectance 
among B12. Since the goal is the water class discrimination, taking into account the 
obtained results and the different bands’ spatial resolution, selecting the finer ones, the 
RGB triplet R - B11, G - B8 and B - B4 was chosen for the FCIs visualization. 
Respectively, the bands resolutions are 20 m, 10 m, 10 m. The B11 provides a good 
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overall separability, B8 allows the distinction of the water and has higher spatial signature 
than B8A, and B4 permit to recognize sediments from water and vegetation, composing 
the optimum combination for water detection. This choice is coherent with the study of 
Cavallo et al. (Cavallo, 2022). The selected RGB composite returns FCIs where water is 
represented by dark color (black-dark blue), vegetation by green (grass by acid green and 
bushes by darker tones) and soil and sediments by straw yellow. By comparing the FCI 
with the correspondent True Color Image (TCI) and high-resolution orthophoto, it can be 
noticed that in the FCI the wet channel clearly stands out from the other component of 
the river corridor, while it is not easily distinguishable in the TCI, retrieved by the same 
multispectral acquisition and neither by the orthophoto, despite it has a much finer 
resolution. The comparison made illustrates how visualizing FCI in B11-B8-B4 allows a 
better differentiation of the classes, improving ease and accuracy for supervised 
classification and thus dataset creation. Since among all the spectra, including on the 
selected bands, the shadows naturally present in Sentinel-2 imagery have a SS similar to 
the one of water, in dataset creation images masked with the active riverbed channel were 
used.  
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Figure 30: High resolution image (a), TCI (b) and FCI (c) visualization of date 

11/03/21 

 
 

3.2.3 Dataset creation 

The GeoTiff images dataset has been created by clipping and classifying in a supervised 
mode the FCIs of the three reaches under study for the six-year period 2017-2023. A total 
of 1265 images was retrieved, subdividing them in the classes “cloudy” (C), “dry” (D), 
“flowing” (F) and “ponding” (P) and attributing the related classification confidence 
(high/low) since the attribution is not always trivial. Images clipped with active-channel 
mask were used in order to focus on the river channel only, avoiding the problem of 
having surrounding shadows and artificial water basins that can lead to image 
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misclassification when using unsupervised algorithms. The start of the period under study 
was determined by the availability of the Surface Reflectance products of Sentinel-2, 
April 2017, and the analysis ended on June 2023. The specification of dataset composition 
is given below (Figure 31). Among reaches, similar numbers of images were classified, 
almost all being of high confidence. In reach “Palancia 1”, a majority of cloudy images 
were found (contribute of 37% on the total classified images), followed by the dry (30%), 
ponding (23%) and flowing one (10%). Within the flowing status the “dry” one is the 
most common, but considering the water status as joint, there is a balanced distribution 
of the “nonwater” (NW) and “water” (W) classes, sign that the reach experiences several 
situations with water. With quantitative data, it’s possible to state that clouds are the major 
concern of working with satellite observation, highly reducing the quantity of useful 
images. In cloudy class have been considered both the images completely and partially 
covered by cloud that didn’t make possible the attribution of a flowing condition. Reach 
“Palancia 2” is upstream with respect to the previous one, but it has different 
hydromorphological characteristics. In particular, the channel is thinner and generally has 
been detected lower water presence. In fact, even considering a unique water class (made 
up by flowing -12% and ponding – 9%), there is a strong dataset unbalance, since the 
majority class are cloudy and dry, both with a contribution of 40%. From the related bar 
chart is possible to view that there was a significant lower number of ponding images, 
while flowing status was always seen in almost 50 images. Despite the two reaches are 
adjacent, the cloudy classifications are different since cloud coverage can also interest 
little sub-portion of the image. The last reach, being Carraixet an ephemeral stream, 
showed a prevalence of dry phase (42% of the classified images) and a high cloudy 
percentage (39%). The flowing condition, with a continuity of water flows along the 
whole segment, is extremely rare (2%). More common is the ponding phase (17%) with 
water present in a heterogeneous and disconnected way, principally concentrating in a 
pool of large width naturally formed the lower part of the reach. Once again, the dataset 
is unbalanced, even considering the water-nonwater distinction. 
 
Almost the 40% of the images detected by the satellite was cloudy, over each studied 
reach. This strongly limits the data availability on flowing condition. In several cases 
cloud covers exactly the “flowing” phase, being causing precipitation. This is also the 
phase more ephemeral, lasting in general shorter time. Ponding phase, instead, is much 
frequent and last longer since it comprehends a variety of situation, from the almost-
flowing to the almost-dry one. The analysis of phases’ frequency was necessary for the 
characterization of the rivers and for consequent dataset balancing operations. 
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Meteorological data has to be considered as coupled with the frequency analysis for 
assessing the duration of each phase and retrieving precipitation threshold for channel 
activation, operation yet disturbed by the indeterminacy of cloudy observations. Cavallo 
et al. proposed the use of Random Forest (RF) models able to fill temporal gaps between 
satellite images and to predict the occurrence of the flowing status on a daily scale, using 
cumulative rainfall and air temperature data (prior to the date of satellite acquisition) as 
predictors. The performances of RF models were very high, with total accuracy of 0.82–
0.97 and true skill statistic of 0.64–0.95 (Cavallo, 2022). This suggest the goodness of the 
model, that can be applied also to different case studies, including Palancia and Carraixet, 
for retrieving the duration of each flowing phase. 
 

 
 

  
Figure 31:Distribution of the images classified in a supervised mode over Palancia 

reaches. Class C:Cloudy, D:Dry, F:Flowing, P:Ponding. 
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Figure 32: Distribution of the images classified in a supervised mode over Carraixet 

reach. Class C:Cloudy, D:Dry, F:Flowing, P:Ponding. 

 

3.3 CNNs development 

Images of created dataset have then adapted to feed the CNNs, following all the necessary 
steps to deal with a small dataset, having 1250 high-confidence samples, distributed as in 
Figure 33. Then, for each classification task only the images of the classes of interest were 
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The pre-processing workflow was applied for obtaining a uniform dataset. After a trial-
and-error procedure, a batch size equal to 32 was attributed as best image grouping size 
for extracting details from a small dataset. Features of Carraixet channel are less 
distinguishable compared to the ones of the other two case studies, since this reach has 
lower width, representing then a smaller object in which features do not appear with 
clarity. In order not to apply zooming operation, smaller images were framed with black 
pixels for obtaining a consistent size, a CNN input requirement. The overall unbalance of 
the class was solved case by case, by implementing oversampling procedure. The 
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Figure 33: Distribution of the overall high confidence dataset. Class C:Cloudy, D:Dry, 

F:Flowing, P:Ponding. 

 

 
Figure 34: Images of the 3-classes database before (left) and post (right) pre-

processing. Label [0]:Dry, [1]:Flowing, [2]:Ponding. 

Specifications of models’ construction are reported below. Basically, the same model was 
used, adapted then to the specific requirement of every task (e.g. binary or 3/4 multi-
classes). Figure 35 shows the six layers that constructed the model, being in logical order: 
input layer, sequential layer, ResNet50 functional layer, pooling layer, dropout layer and 
dense layer. The input layer serves as the initial entry point for data. Its primary function 
is to accept the raw inputs in the form of images and prepare them for the further 
processing of the subsequent network layers. For every layer, the first dimension of the 
input and output object refers to the batch size. Since the datasets have numbers of 
samples not multiple of the batch size (equal to 32) and so the number of image per batch 
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is not constant, the first dimension is replaced with “None”. In the first three layers the 
second dimension, “234”, refers to the images height in pixels, while the third one, equal 
to “188” in these layers, to the images width, both values standardized during the resizing 
pre-processing step in which objects with smaller dimension were framed with black 
pixels. The last dimension, instead, refers to the number of color channel and it is equal 
to “3” since the three RGB channel characterized the images. By proceeding in analyzing 
the models’ architecture, the second layer is the sequential one. It performs data 
augmentation, a technique that artificially introduces sample diversity by applying 
random but realistic transformations to the training images only, such as rotation and 
horizontal flipping, in a way that images do not change in size (height and width). 
The functional layer with the ResNet50 base model aims to learn and extract meaningful 
features from the pre-trained model. ResNet50 involves a high number of parameters 
(23’587’712) for basic image recognition and the functional layer generates predictions 
from the block of features. The dimension “(None, 8, 6, 2048)” provides information 
about the shape and structure of the feature maps. Feature maps are the outputs of a 
convolutional layer representing specific features in the input image; in this case they are 
generated by the final convolutional layer of ResNet50 model and they are grouped in 
batch, in which each feature map has a height of 8 pixels, a width of 6 pixels and a depth 
of 2048 channels. Going forward into the model’s architecture, the pooling layer 
(GlobalAveragePooling2D) simplifies the image and perform downsampling along the 
spatial dimensionality, averaging the information contained in each feature map. In the 
model developed, it converts object of size “(None, 8, 6, 2048)” into the simplified one 
of “(None, 2048)”, resulting in a feature vector of length 2048 for each sample in the 
batch. The dropout layer serves as regularization technique to help preventing overfitting, 
since it randomly deactivates a fraction of the neurons of the layer, avoiding the model 
from fitting too closely the training data. In the constructed CNN, this layer inserts 
between the pooling and the dense layer. The dense layer is the responsible for producing 
the network's predictions. The number of neurons (units) in this layer corresponds to the 
number of classes or categories of the classification problem. For the binary classification 
model, the dense layer returns an object of size “(None, 1)”, where the second dimension 
indicates that the raw prediction (logits vector) has a single prediction per image: positive 
numbers predict class [1], negative numbers predict class [0]. For the 3-classes task the 
model layering was the same of the previous case, with the unique difference of having a 
second dimension of the dense layer equal to 3, since every line of the logits vector should 
contain as aligned the classification score for classes [0], [1], [2]. The same occurs in the 
4-classes model, where the dense layer has a dimension of 4, scoring over [0], [1], [2], 
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[3]. This predictive layer used activation function for converting the raw logits, that 
represent the classification scores for the model, into probability values between 0 and 1. 
The sigmoid activation function was used for the binary classification, while softmax 
activation function for multi-classes tasks. These probabilities are then the input of the 
loss function, that returns a metrics for evaluating the model, the loss. The Binary Cross-
Entropy or Log Loss function was used for the 2-classes problem and the Sparse 
Categorical Cross-Entropy Loss function for multi-classes ones. 
 

    
 

 
Figure 35: Architecture (above) and initial parameters (below) of used binary 

classification model 
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Figure 36: Layets and parameters used for the 3-classes (above) and 4-classes (below) 

models 

For the selection of the parameter to use during compiling and fitting procedures, a trial-
and-error procedure was used. For the compiling, 0.001 was chosen as start value for the 
learning rate; the model response at tuning this parameter to multiple and submultiple of 
the start value was observed, until the identification of the optimal learning rate, equal to 
0.0001 for all the models. The optimum number of epochs to use during fitting instead 
changed with tasks. To retrieve this number, an initial long run was conducted, setting a 
high number of epochs and activating the early stop tuning to shut the fitting when the 
performance of the model, and in particular the validation loss, keeps decreasing. For 
each task, multiple runs of the model were made in order to identify the optimum number 
of epochs for both the initial fitting and the fine tuning fitting. The use of the early stop 
tuning allows to avoid overfitting while maximising the learning of the CNN. 
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3.4 CNNs performance 

3.4.1 Model 2-classes 

For the binary classification model, the sigmoid activation function and the Binary Cross-
Entropy Loss function were used. In this model, class labels attribution was [0] – 
nonwater, NW, and [1] – water, W, since water is the feature under interest to identify 
within the binary classification. The performance of the model was evaluated, as practice, 
on the Test DS. In fact, this subset is populated by images completely new to the model, 
not viewed and used for learning, that must be classified in an unsupervised manner. The 
model was run 5 times (a suggested number between 3 and 10) on the same dataset, in 
order to catch its different responses: at every run the weight initialization was different, 
as well as the content of the Train, Val and Test DS in terms of images. Following this 
procedure, the performance results reported in Table 4 were obtained. The accuracy for 
the binary classification on the test set ranged in the 0.70-0.78 interval, with an average 
value within the five runs of 0.77. While the accuracy should reach high values, the loss 
should minimize, so that the related test loss, from the worst to the best score, ranged in 
the 0.62-0.42 interval, with an average value of 0.52. The learning curves are the 
evolution of the model performance in terms of accuracy and loss over epochs. The 
learning curves for run n.1 and n.5, respectively the one with lowest and highest 
performance representing the range’s extremes of the analysis, are reported in Figure 37. 
A total number of 21 epochs was used, subdividing them into 7 for the initial fitting 
(epoch from 0 to 6) and 14 for fine tuning (from 7 to 20). In the initial stage, since the 
totality of the layer of the base model al freeze, the increasing of the performance was 
limited and sometimes characterized by a plateau, like in the very first epochs of run n.5; 
by analyzing the predictions at the end of the initial fitting, it’s possible to retrieve that in 
the plateau epochs the model was predicting an unique class, and in particular class water, 
for all the images of the validation dataset, having low performance since only the 35% 
of the images in the Val DS belonged to this class. Once in the fine tuning fitting, the 
learning performance improved, thanks to the contribution of an higher number of 
involved layers and parameters, obtained by unfreezing a part of the base model. In this 
stage the model learned more features from the Train DS, improving its guess on the 
validation one. In the learning curve n.1 both training and the validation accuracy reached 
a value of 0.70 and this performance was maintained also in predicting the images of the 
test set. In learning curve n.5 the validation accuracy reached the value of 0.75 and loss 
values lower than 0.5, for then having a slightly better performance while predicting the 
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Test DS, with a test accuracy of 0.78. The shape of the learning curve, with validation 
and training curves that gradually approach at latter epochs, demonstrated that a good fit 
was performed, not obtaining overfitting neither unrepresentative validation. Although 
this, the model had limited performance in both terms of accuracy and loss, demonstrating 
its not optimal learning. By analyzing the confusion matrixes and F1-score metrics, 
directly computed from the first cited, it’s possible to retrieve the major cause of 
prediction failure. The F1-score metric is class specific, so that this metrics is present for 
both NW and W class. The average F1-score for NW class is 0.77 (range 0.67-0.85), 
higher than the one of W of 0.64 (range 0.59-0.75). This indicates that a higher number 
of correct predictions occurred for the NW class. The visualization of the confusion 
matrixes (Figure 38) confirmed that, despite in run n.2, the test samples correctly 
predicted as NW class are higher in number. The model mainly failed by attributing the 
W label to images that in reality are NW, having a lot of FalsePositives. Also the number 
of FalseNegatives was relevant and the overall False attribution limited the F1-score of 
both NW and W.  
Despite it’s not explicit in the binary classification model, this misclassification is 
probably caused by the presence of the ponding images in the water class. This in-between 
status, in fact, covers a bench of situation from the quasi-dry to the quasi-flowing 
condition, so that it can led to classification errors, considering dry images as ponding 
and thus W and viceversa. The inability of the model to reach higher performance is also 
probably related to the limited dataset size. Despite different expedients were used to 
minimize the effect of the dataset size, the model was not able to learn in an optimal way 
for the dedicated classification task. 

 
Table 4: Performance results of 2-classes model 

Run n. Test Loss Accuracy F1-score NW F1-score W 

1 0.62 0.70 0.75 0.60 

2 0.48 0.72 0.67 0.75 

3 0.58 0.72 0.78 0.62 

4 0.50 0.74 0.80 0.63 

5 0.42 0.78 0.85 0.59 

AVG 0.52 0.73 0.77 0.64 
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Figure 37: Learning Curve of run n.1 and n.5. Total of 21 epochs, fine tuning at 7th 

epoch 
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Figure 38: Confusion Matrix relative to the 2-classes model runs 

 
 

3.4.2 Model 3-classes 

In the 3-classes model, the considered categories were: [0] – dry, [1] – flowing, [2] – 
ponding. Once again, the model was evaluated on the test set along 5 runs. Since it was a 
multi-classes classification model, the softmax activation function and the Sparse 
Categorical Cross-Entropy Loss function were used. For model fitting, a total number of 
21 epochs was adopted, using 5 of them for the initial fitting and the remaining 16 for 
fine tuning. The registered performances are reported in Table 5. Along the different runs, 
the average accuracy on test data was of 0.78, reaching a minimum of 0.72 in run n.5 and 
a maximum of 0.85 in run n.4. The correspondent losses were 0.5 on average, with the 
worst value of 0.61 and best of 0.38. These scores, in terms of accuracy in the range 0.72-
0.85, were higher than the ones of the 2-classes model, instead with accuracy in 0.70-0.78 
range, demonstrating that, overall, the model was better in distinguishing the water 
classes (flowing and ponding) as separated instead of incorporated. The F1-scores 
clarified that the dry and flowing class were sufficiently well classified, while the majority 
of ponding samples were incorrectly predicted. The dry class was the best identified, with 
F1-scores in the range 0.82-0.94, followed by the flowing one, that ranged in 0.69-0.87 
and lastly by the ponding one, that ranged in 0-0.31. The extremely low results on the 
ponding class were driven by the inability of the classifier to identify ponds of water. The 
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confusion matrixes in Figure 39 shows that in run n.1 and n.4, none of the sample in the 
Test DS was predicted as ponding and that, in run n.5, a single image was attributed to 
this class, but erroneously, since its true label stated the belonging to the dry class. Run 
n.2 and n.3 were the unique ones in which the F1-score was higher than 0; the confusion 
matrix of the first one shows a single sample correctly predicted as ponding, over the 12 
truly present in the Test DS, and 4 samples as FalsePositives, meaning wrongly predicted 
as ponding; the confusion matrix of the second one, instead, shows that the model 
correctly identified 2 images of the ponding class, having no FalsePositives, but not 
recognizing all the true ponding images in the Test DS, missing 9 of them. Despite the 
images in the Train DS were balanced in order to have the same initial condition along 
the classes during the learning phase and despite in the Val and Test DS the number of 
ponding images is slightly higher than the one of flowing samples (Figure 33), for the 
classification of ponding class the model had the lowest performance, revealing 
difficulties in recognizing ponding features. From the practical point of view, the obtained 
results showed the limitation of the CNN identify the feature of ponds of water with 
limited size in the given FCIs. During the supervised classification, the attribution to 
ponding class of some of the images were made knowing that even small pixels in a 
precise zone of the channel were representing water. Since the CNN model was trained 
solely on images, without other site’s information, the distinction of this status is more 
muddled. The RGB triplet selected for FCIs visualization is the one that highlights water 
presence and for the CNN this was effective for the recognition of water in wet channels 
characterizing the flowing condition, since in these images a greater number of dark tones 
pixels, with spatial continuity all along the river channel, was present. The choice made 
was not effective in the same way for the opportune discrimination of isolated dark pixels, 
that resulted not sufficiently highlighted for the CNN. The evolution of accuracy and loss 
along epochs for run n.3, under interest since the one that bring to the best identification 
of the ponding class, and n.4, the one that reached the highest test accuracy score, can be 
viewed in the learning curves in Figure 40. In the first 2 epochs of the learning curve 
relative to the run n.3, the accuracy on the Val DS is higher than the one on the Train DS, 
but at that point the curves still had to reach their stability, so that it’s not a significant 
behaviour and may be related to the guess of the majority of the images as dry. Over the 
rest of the epochs the two accuracies increased, both reaching a value close to 0.8 
(validation accuracy of 0.78 and training accuracy of 0.8) in the latter one. The score on 
the Test DS for run n.3, in fact, was of 0.77, similar to the one on Val DS. In the learning 
curve of run n.5 along the epochs the two learning curves are closer, not having sharp rise 
neither drop. In particular the losses reach values lower than 0.5 and the accuracy values 
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higher than 0.8 (0.83 for both training and validation accuracy), then predicting correctly 
the 85% of the samples in the Test DS. 

 
Table 5: Performance results of 3-classes model 

Run n. Test loss Accuracy F1-score D F1-score F F1-score P 

1 0.47 0.82 0.89 0.76 0.00 

2 0.49 0.75 0.84 0.87 0.12 

3 0.56 0.77 0.86 0.69 0.31 

4 0.38 0.85 0.94 0.81 0.00 

5 0.61 0.72 0.82 0.73 0.00 

AVG 0.50 0.78 0.87 0.77 0.09 
 
 

 
Figure 39: Confusion Matrix relative to the 3-classes model runs 
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Figure 40: Learning curves of run n.3 and n.4. Total of 21 epochs, fine tuning at 5th 

epoch 
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3.4.3 Model 4-classes 

For the 4-classes model the considered classes, with related labels, were: [0] – cloudy, [1] 
– dry, [2] – flowing, [3] – ponding. This model was evaluated on the totality of the created 
dataset because also the cloudy images is considered and stored in a separated class. Since 
it was a multi-classes classification model, the softmax activation function and the Sparse 
Categorical Cross-Entropy Loss function were used. The performance of the model was 
recorded along 5 runs, using for the fitting a total number of 40 epochs, using the first 20 
(0-19) for the initial fitting and the other 20 (20-39) for fine tuning. The results, reported 
in Table 6 show the highest performance within the developed model in terms of accuracy 
and loss. The accuracy ranged in 0.79-0.88, with a medium value of 0.85, while the loss 
ranged in 0.42-0.33 (from the worst to the best score), with a mean of 0.36. The model 
optimally recognized the cloudy samples, with F1-scores always higher than 0.9 and that 
reach a value of 0.99 in run n.5. Also the F1-scores related to the flowing class were high, 
ranging in 0.87-0.91, followed then by the dry class, with F1-scores in the range 0.80-
0.88 and finally by the dry class, that had the lowest scores, in the range 0.17-0.52. In run 
n.1 the prediction of cloudy and flowing was very precise, while a higher number of 
misclassification were made on dry and on ponding class; in particular the 9 samples were 
predicted as ponding, but only 3 correctly. In run n.2 a slightly worst classification on the 
flowing samples was made, for a slight improving in the ponding recognition; in fact, on 
the total of 13 ponding image present, only 4 were correctly classified, with other 4 
predictions to this class made erroneously. The run n.3 showed within the best scores for 
cloudy, dry and flowing images, but had a relatively low F1-score for ponding class. In 
run n.4 the overall accuracy is quite low, reflecting the lowest F1-scores of the classes. 
Finally, in run n.5 the accuracy increased, having the highest F1-scores among all the four 
classes. Here, the ponding score is higher than 0.5, since on the 16 images with ponding 
label, 6 were correctly classified, having only one case of erroneous prediction to this 
class. After this discussion, it’s possible to state that the cloudy class didn’t mine the 
model performance, but instead allowed to reach higher stability, going ahead in epochs 
for the improvements of the overall performance. In fact, this dataset is more populated, 
since cloudy images represented almost the 40% of the total frame classified in a 
supervised mode. In Figure 43 are reported the learning curves of run n.3 and n.5. Both 
the runs reached an accuracy on the test set of 0.88 but following different metrics 
evolution along epochs. At the 40th epoch the training and validation accuracies reached 
a value of 0.87 in the first graph and of 0.88 in the second one. In the 4-classes model, 
the higher number of epochs allowed the model to reach a highest performance while 
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remaining stable, without overfitting. In fact, when the number of epochs used to train a 
neural network model is more than necessary, the training model learns patterns that are 
specific to training sample data to a great extent, bringing overfitting and reducing the 
reliability of the model.  

 
Table 6: Performance results of 4-classes model 

Run n. Test Loss Accuracy F1-score C F1-score D F1-score F F1-score P 
1 0.34 0.85 0.96 0.85 0.91 0.32 
2 0.36 0.84 0.97 0.84 0.87 0.38 
3 0.33 0.88 0.97 0.88 0.89 0.29 
4 0.42 0.79 0.92 0.80 0.88 0.17 
5 0.37 0.88 0.99 0.88 0.90 0.52 

AVG 0.36 0.85 0.96 0.85 0.89 0.33 
 

 
Figure 41: Learning curvers of run n.4 and n.3 

 
Figure 42: Confusion Matrix relative to the 4-classes model runs 
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Figure 43: Learning curves of run n.3 and n.5. Total of 40 epochs, fine tuning at 20th 

epoch 
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one reporting the better performances, while the first one is the roughest. When present, 
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the class C is the best identified, with a F1-score ranging in 0.92 - 0.99, due to the strong 
difference of cloudy images, that most of the times appears as white objects with no 
features on the ground. In both the 3 and 4-classes CNNs, the flowing condition is well 
identified, with a F1-score of 0.60-0.98, with a higher frequency of high values in the 4-
classes model. Along all the developed CNN, the dry class is sufficiently well classified, 
even if a high number of sample belonging to other class were attributed to D and this is 
the main reason why the F1-score has on average values lower than 0.9. When explicitly 
separated, the ponding class was the worst identified. In the 3-classes CNN in three runs 
over five, none of the sample was correctly attributed to this class. The situation improved 
a bit in the 4-classes model, but still this is the main cause of misclassification. The low 
performances reached in the binary classification is probably related to the difficulty in 
attributing the ponding samples to the water class. The cloudy presence in the last 
considered case is not introducing big concern, but instead allows the model to be stable 
over a higher number of learning epochs. 
The obtained results demonstrated that this approach is a good starting point for assessing 
the flowing condition of NPRs in unsupervised mode. The not optimal learning of the 
CNNs has to be related to both the data quality and data quantity. In fact, despite the 
Sentinel-2 resolution mission was selected as the best compromise between spatial, 
spectral and temporal resolution, the effect of pixel shelling summed to the fact of having 
a limited dataset, made the small water objects, such as the ponds, difficult to discriminate 
for the neural networks. The recognition of images with clear features, over all the cloudy 
images, with the quasi-totality of white pixels and few information of the ground, is 
almost perfect. The CNN classification potential and validity were also demonstrated by 
the performance in identifying the flowing samples; also the images in the flowing 
conditions have clear features, specifically enhanced by selecting a FCI visualization: 
water in wet channel appears as a bench of pixels with dark tones and spatial continuity. 
Also dry images alone should have clear features, being without water and without white-
cloudy pixels and so well distinguishable, but the introduction of the ponding class, that 
the majority of the times in the used dataset was more similar to the dry condition rather 
than to the flowing one, led to feature mistake and so misclassification, lowering the 
overall performances. Despite their cryptical functioning, thanks to the bench of 
evaluation metrics that can be computed and the visualization of the model learning 
curves, it’s relatively easy to comprehend why the network is not performing well, for 
then bringing the necessary modifications. In fact, the three developed model clearly 
showed that the problematic class is the ponding one. Hence, for better classification 
performances it’s necessary to work on this prediction, increasing the number of ponding 
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images from which the modal can learn and trying different tuning approaches. Generally, 
the overall dataset extension and diversification are requires. The images used to feed the 
models were to scarce, so that the ponding features were not sufficiently distinguished 
from the dry ones. Further improvements are related to the possibility to modify the base 
model for fine tuning, testing some with variated features and possibly with higher 
number of satellite images. With a more populated dataset, other type of balancing 
operations can be considered. By changing the above, also model tuning will require 
important modifications related to number of epochs, learning rate and freezing and 
unfreezing procedures. Also, the k-folder cross validation can be added to directly retrieve 
metrics representative of multiple runs.  
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Conclusion 

The study proposed an innovative methodology for the unsupervised recognition of the 
flowing conditions in non-perennial rivers, by combining Remote Sensing and 
Convolutional Neural Network disciplines and using them for environmental and 
hydrologic application. For this implementation, the satellites of Sentinel-2 mission were 
found to be the best providers of observational data, due to the high spatial resolution and 
revisit time. The methodology was applied using the images detected in the period 2017-
2023 over three reaches taken as case studies. In particular, reaches of two different 
Mediterranean NPRs located in Eastern Spain were considered. The overlapped ROIs 
collected during field survey or drawn on high resolution orthophoto permitted the 
extraction of the spectral signatures of the classes water, sediment and vegetation, the last 
distinguished into bushes and grass. The obtained spectral responses were compromised 
by the coarser resolution of satellite image with respect to ground truth, but still allowed 
the identification of the bands triplet in which the spectral differences between classes 
were the greatest. This combination was obtained by attributing B11-B8-B4 to the RGB 
channels for obtaining FCIs. Starting from the visible, in B4 water and vegetation have 
similar reflectance but can be distinguished from sediment. In NIR region, B8 allows a 
clear identification of water, while among B11 in the SWIR all the classes can be 
differentiated fairly well. FCIs were then used for the identification of the flowing 
condition among reaches and so classified in a supervised mode, subdividing the images 
into “cloudy”, “dry”, “flowing” and “ponding” classes. Almost the 40% of the total 
detected images were cloudy, thus an important fraction of observational data was not 
useful for retrieving the flowing condition. This is the main limitation while dealing with 
satellite acquisitions. Three CNNs were developed, one for binary classification 
(distinguishing between nonwater – water), one for 3-classes task (dry – flowing – 
ponding) and one for 4 multi-classes (cloudy – dry – flowing – ponding), and the FCIs 
database was used to feed them. Firstly, the images have been pre-processed in order to 
meet the input requirements of the models. The networks started from the same 6-layer 
model, composed by input, sequential, functional, pooling, dropout and dense layer, the 
latter adapted to the number of classes that the predictor had to consider. Since most of 
the time the population of the classes in the dataset was unbalanced, balancing operations 
were performed on the training subset only, by applying the oversampling of minority 
classes. Methods to avoid overfitting were used and while tuning the models’ parameters 
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a low level of complexity was preferred, selecting a number of epochs between 21 and 
40 for the different models and a learning rate of 0.0001. The obtained accuracy ranged 
in 0.70 - 0.78 for the 2-classes model, in 0.72 – 0.85 in the 3-classes model and in 0.79 - 
0.88 in the 4-classes one. Hence, the last was the one reporting the better performances, 
while the first one was the most rough. The cloudy presence is not introducing big 
concern. In fact, when present, the cloudy class is the best identified, with a F1-score 
ranging in 0.92 - 0.99, due to the strong difference of cloudy images, that most of the 
times appears as white objects with no features on the ground. In both the 3 and 4-classes 
CNNs, the flowing condition was well identified, with a F1-score of 0.60-0.98, with 
higher frequency of high values in the 4-classes model. Along all the developed CNN, 
the dry class is sufficiently well classified, even if a high number of sample belonging to 
other class were attributed to the dry one and this limited its F1-score to values lower than 
0.9. Among all the models, the ponding condition was the most critical to detect, 
negatively affecting the performance. These results confirm that the proposed 
methodology is a good starting point for mapping water presence and assessing flowing 
conditions of NPRs in an unsupervised mode. The not optimal learning of the CNNs has 
to be related to both the data quality and quantity. In fact, despite the Sentinel-2 resolution 
mission was selected as the best compromise between spatial, spectral and temporal 
resolution, the effect of pixel shelling summed to the fact of having a limited dataset, 
made the small water objects, such as the ponds, difficult to discriminate from the neural 
networks. The correct recognition of images with clear features, over all the cloudy and 
flowing ones, was demonstrated by the high performance in attributing these classes. 
Alone, dry images should have clear features, but the introduction of the ponding class, 
that the majority of the times was more similar to the dry condition rather than to the 
flowing one, led to features mistake and so to misclassification, lowering the overall 
performances. For better classification performances, a focus on the ponding class is 
needed, increasing the number of samples from which the model can learn ponding 
feature and trying different model tuning after the modifications in other. Hence, model 
improvements are required, generally starting from the dataset extension and 
diversification, adding reaches with different hydromorphological characteristics and 
flowing status distribution, in order to reduce the specificity of the models for better 
performance while generalize. In fact, the images used to feed the models were to scarce 
and specific of the Valencian Community. With a more populated dataset, other type of 
balancing operations may have to be considered. Further improvements are related to the 
possibility to variate the base model for fine tuning, testing some with different features 
and possibly with higher number of satellite images. By changing the above, also model 
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tuning will require important modifications related to number of epochs, learning rate and 
freezing and unfreezing procedures. Also, k-folder cross-validation can be added to 
directly retrieve metrics representative of multiple runs. In the end, the free and global 
coverage of the source data, Sentinel-2 satellite mission imagery, and the base of the 
methodology developed, may allow a cost-effective application for the identification of 
the flowing condition in NPRs in different river reaches worldwide. A collaboration 
between scientists and computer science researchers is necessary for further 
improvements and for placing NPRs under a magnifying glass. The output of a similar 
procedure can then feed model that also consider meteorological data for assessing the 
frequency and duration of the NPRs flowing conditions in a substantial number of 
reaches. 
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