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Summary

Opinion dynamics study the evolution of the ideas of interacting individuals, whether they
are people, organizations, or entire communities. Social networks are modeled as graphs,
in which every node represents an individual, paired with a real number that models its
opinion, and every edge represents an interaction or a social bond. In recent years, interest
in the topic has been increasing, and different models have been proposed. The present
work focuses on the analysis of a quantized model, which is founded on the premise that
people don’t have access to the exact opinion of the individuals they are interacting with.
Instead, every person can infer an approximation of their interlocutors’ opinion based on
the behaviour they display.

The model in question is discontinuous in state and piecewise linear. This discontinuity
complicates the study, and requires to redefine the concept of solution of a differential
equation. To study the model, we focus on Carathéodory solutions. A phenomenon
caused by the discontinuity is the presence of extended equilibria ([1]), points that attract
some solutions, despite not being proper equilibrium points as we would expect in the
continuous case. The first original result presented concerns the basin of attraction of
such points. Then, the study focuses on specific graphs, providing two sets of original
results. The first set provides analytical expressions of extended equilibria on the line and
ring graphs. The second set of results is presented under the assumption of binary action,
which means restricting the opinion of the nodes to the interval [0,1], and thus having
only two possible behaviours, 0 and 1. In this section, we provide convergence results
for the line and ring graphs, an algorithm to find extended equilibria on tree graphs, and
show the presence of a Zeno point in the directed cycle graph with 3 nodes.
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Chapter 1

Introduction

When discussing, two people will share their ideas, and influence each other. By learning
about each other’s point of view, their opinions will grow closer, and they might end up
agreeing. If their initial opinions are too different, it might take a lot of time and multiple
interactions. Obviously, society requires frequent interactions between many different
people, and predicting the development of people’s ideas is far from an easy task.

The field that focuses on modeling such social connections is that of opinion dynamics,
that has received growing interest in the past decades. Graph theory allows to study net-
works of interacting individuals, representing every agent as a node, and every interaction
(an encounter, discussion, social bond, relationship) as an edge. Every node is associated
with an opinion, usually modeled as a real number. The main distinction between differ-
ent models lies in the equation describing the evolution of these opinions. For instance,
time can be modeled as either discrete or continuous, and in the latter case, under which
the model studied in this thesis falls, we have a differential equation.

As for most complex problems, models of opinion dynamics have to balance accuracy
of the results and complexity of the analysis. The first models proposed (summarized
in [9], [10], along with more advanced models), the French-De Groot and the Abelson
models, simply have every node move their opinion towards the average of its neighbours’,
which under very basic assumptions eventually leads to consensus between all the nodes.
Although consensus can sometimes be achieved, it is unreasonable to assume that every
group of people interacting will eventually agree. More recent works refine these models
by integrating realistic assumptions into the update law.

One family of such models is referred to as bounded confidence models (e.g. [3], [4]).
Here, the assumption is that, when interacting, people will ignore the other person’s
opinion if it is too far from their own, as it is considered to be unbelievable or simply
wrong. This translates in a graph that varies in time, as any pair of nodes initially
connected might stop interacting if their opinions diverge too much.

Another family of models, that contains the model subject of this thesis, goes under the
name of continuous opinion and discrete action models (e.g. [1], [5], [6]). The assumption,
here, is that people in most cases do not have access to their interlocutor’s precise opinion.
Instead, they can get an approximate idea based on the behaviour displayed, i.e. the
actions taken. Different hypothesis can be added, which lead to different models, for
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Introduction

instance [5] assumes discrete time and binary action, i.e. restricts the opinions to the
interval [0,1], and adds a weight to model extremists, individuals with opinions close to 0
or 1, who are more unlikely to easily change their mind.

The model studied in this work is referred to as quantized model, in which every node’s
opinion is defined as a real value xi ∈ R, but is seen by every neighbour as rounded to the
closest integer. This assumption causes the model to be discontinuous in state, as long the
nodes’ behaviour is constant the dynamic is linear, but when a node’s opinion xi crosses
the middle point between two integers, its quantized value changes, defining a new linear
dynamic for its neighbours. The discontinuity requires that we redefine the concept of
solution of a differential equation, in this work we focus on Carathéodory solutions, which
are the translation of classical solutions to the discontinuous case.

The main phenomenon that we are analyzing is the presence of extended equilibria,
points that are attractors, i.e. some solutions asymptotically converge to them, but aren’t
proper equilibrium points as we would expect in a continuous model, which means they
generate non-constant solutions if picked as initial condition. The first part of the study
focuses on finding analytical expression for the extended equilibria on particular graphs,
the line and ring graph. On the second part, we assume binary action, which simplifies the
model while still maintaining many potential applications, as it fits the situations in which
there are only two options, like answer yes or no to a question, or do or don’t do scenarios.
The main results provided are a partial description of the basin of attraction of extended
equilibria in the most general case, the analytical expression of extended equilibria for
the line and the ring graph, and when binary action is assumed, convergence for the line
graph, an algorithm to find extended equilibria on tree graphs, and finally the presence
of a Zeno point in a directed cycle graph. The study conducted is mainly analytical, with
some support provided by simulations.

The thesis is structured in 4 chapters. Firstly, we go through a brief rundown of the
mathematical tools required, concerning graph theory and ordinary differential equations.
After that, a quick overview of the models found in the literature takes place. The
third chapter is where most of the work done is concentrated, and the results found are
shown, proven and explained. Finally, we wrap up the paper with some conclusions,
interpretations and open problems.

1.1 Preliminaries
The first section of the work quickly introduces the mathematical elements needed, mainly
regarding graph theory and ordinary differential equation.

Definition 1 (Graph). A graph is a pair G = (V,E), where V = (v1, v2, . . . , vn) is the
set of nodes, and E is the set of edges, which are ordered pairs of nodes (i, j) ⊂ V × V ,
representing the connections between two nodes of the graph.

For every graph, we can define the adjacency matrix, whose generic entry aij is deter-
mined by whether there is an edge between node vi and node vj or not.

Definition 2 (Adjacency matrix). Given a graph G = (V,E), its adjacency matrix A =
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1.1 – Preliminaries

(aij)i,j∈V is defined as

aij =
I

1 if (i, j) ∈ E,

0 if (i, j) /∈ E,

If all the edges are bidirectional (vi is connected to vj ⇐⇒ vj is connected to vi), the
graph is called undirected, otherwise it is called directed.

Definition 3 (Undirected graph). Given a graph G = (V,E), G is undirected if and only
if its adjacency matrix A is symmetric.

For every node, we can define the set of nodes it is linked to in the following way.

Definition 4 (Neighbourhood). Given a graph G = (V,E), the neighbourhood of a node
vi is defined as

Ni = {vj |(i, j) ∈ E}.

The cardinality of Ni, i.e. the number of nodes vi is connected to, is called out-degree
of vi. Vice versa, the number of nodes connected to vi is called in-degree.

Definition 5 (Out-degree). Given a graph G = (V,E) with adjacency matrix A, the
out-degree of vi is defined as

di =
nØ

j=1
aij .

Definition 6 (In-degree). Given a graph G = (V,E) with adjacency matrix A, the in-
degree of vi is defined as

di =
nØ

i=1
aij .

Definition 7 (Degree matrix). Given a graph G = (V,E) with adjacency matrix A, we
can define its degree matrix D as

Dij =
I
di if i = j,

0 if i /= j.

Definition 8 (Laplacian matrix). Given a graph G = (V,E) with adjacency matrix A,
we can define its Laplacian matrix as

L = D − A,

where D is the degree matrix of the graph. Components-wise, we can write the Laplacian
as

Lij =
I

−aij if i /= jq
j /=i aij if i = j

All the following definitions refers to a given graph G = (V,E) with adjacency matrix
A.
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Definition 9 (Walk). A walk of length k is a series of nodes v1, v2, . . . , vk such that
(vi, vi+1) is an edge for all i.
Definition 10 (Cycle). A cycle is a walk such that v1 = vk, i.e. a walk that returns to
the starting point.
Definition 11 (Path). A path is walk such that vi /= vj for i /= j, i.e. a walk with no
self-intersections.
Definition 12 (Period of a graph). The graph G is called periodic it has at least one
cycle and the length of every cycle can be dived by an integer p>1. The maximum such
p is called the period of the graph.
Definition 13 (Strongly connected). The graph G is called strongly connected if for all
vi, vj there exists a walk starting in vi and ending in vj .
Definition 14 (Complete graph). G is a complete graph, if for all vi and vj , with i /= j,
(vi, vj) ∈ E.

Complete graphs are usually denominated Kn, where n is the number of nodes.
Definition 15 (Complete bipartite graph). G is a complete bipartite graph, if the nodes
can be divided in two subsets V1 ⊂ V and V2 = V \ V1, such that (vi, vj) is an undirected
edge if and only if vi ∈ V1 and vj ∈ V2.

Complete bipartite graphs are usually denominated Kn1,n2 , where ni is the number of
nodes in Vi.
Definition 16 (Undirected line graph). G is an undirected line graph if its nodes can be
numbered in a way such that (vi, vi+1) is an undirected edge for i = 1, . . . , n− 1.
Definition 17 (Directed cycle graph). G is a directed cycle graph if its nodes can be
numbered in a way such that (vi, vi+1) is a directed edge for i = 1, . . . , n − 1, and so is
(vn, v1).
Definition 18 (Ring graph). G is a ring graph if its nodes can be numbered in a way
such that (vi, vi+1) is an undirected edge for i = 1, . . . , n− 1, and so is (vn, v1).
Definition 19 (Subgraph). G′ = (V ′, E′) is a subgraph of G if V ′ ⊂ V and E′ ⊂ E.
Definition 20 (Tree). G is a tree if it is undirected, connected and has no cycles.
Definition 21 (Spanning tree). A spanning tree of G is a subgraph of G such that V ′ = V
and that is a tree.

1.2 Ordinary Differential Equations
Differential equations are used to describe a huge variety of problems in different fields.
For this work, we only need Ordinary Differential Equations, for which we provide some
useful definitions and properties in the following pages. Throughout this section, we
consider the differential equation

ẋ(t) = f(x(t)), (1.1)
where t ∈ I ⊂ R, x ∈ Rn and f : Rn × Rn.
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1.2 – Ordinary Differential Equations

Definition 22 (Cauchy problem). A Cauchy problem is a pair given by an ordinary
differential equation and an initial conditionI

ẋ(t) = f(x(t)),
x(t0) = x0,

(1.2)

where t0 ∈ I.

Definition 23 (Solution). A (classical) solution of the Cauchy problem (1.2) is a function

φ(t, x0) : I × Rn → Rn

differentiable in t such that

φ̇(t, x0) = f(φ(t, x0)) ∀t ∈ I,

and φ(t0, x0) = x0.

Definition 24 (Orbit). Given a solution φ(t, x0), its orbit is the set

γ(x0) = {φ(t, x0)|t ∈ I}.

Definition 25 (Equilibrium point). Given a differential equation, an equilibrium point
is a point x∗ ∈ Rn such that

φ(t, x∗) = x∗ ∀t ∈ I.

We remark that, if f is of class C1, a point x∗ is an equilibrium point if and only if

f(x∗) = 0.

Definition 26 (Periodic point). x is a periodic point if it is not an equilibrium point and
for some T > 0, φ(T, x) = x.

Definition 27 (Cycle). A cycle is a closed curve that is the orbit of a solution starting
in a periodic point.

Definition 28 (Lyapunov stability). Given a compact set M ∈ Rn, M is (Lyapunov)
stable if for all ϵ, exists δ such that

dist(x,M) ≤ δ =⇒ dist(φ(t, x),M) ≤ ϵ ∀t > 0.

Remark 1. The previous definition is particularly important when M is made of a single
equilibrium point x∗, in which case we say that x∗ is stable. Analogously, in the following
definitions keep in mind that M will usually be considered to be an equilibrium point.

Given a point x ∈ Rn and a set M ⊂ Rn, we say that

Definition 29. x is attracted by M if

lim
t→+∞

dist(φ(t, x),M) = 0.
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Definition 30 (Basin of attraction).

A(M) = {x ∈ Rn|x is attracted by M}

is the basin of attraction of M .

Definition 31 (Attractor). M is an attractor if it has non-null basin of attraction.

Definition 32 (Limit cycle). A limit cycle is a cycle that is an attractor.

Definition 33 (Asymptotic stability). If M is stable and is an attractor, it is said to
be locally asymptotically stable. Furthermore, if A(M) = Rn, it is said to be globally
asymptotically stable.

For now we’ve considered generic differential equation, but in this thesis we will work
with linear systems, for which we now give some results.

Definition 34 (Linear system). A linear system is a differential equation of the type

ẋ(t) = Ax(t) + b,

where x ∈ Rn, b ∈ Rn and A is a n× n matrix.

Theorem 1. Given a linear system, the set of equilibria X = {x∗ ∈ Rn|Ax∗ + b = 0} is
a translation of a subspace of Rn.

Theorem 2. Given a linear system ẋ(t) = Ax(t) + b, and an equilibrium point x∗, let
λ1, . . . , λn be the eigenvalues of the matrix A. Then

• x∗ is asymptotically stable if and only if Re(λi) < 0 ∀i,

• x∗ is stable if and only if Re(λi) ≤ 0 ∀i, and the eigenvalues such that Re(λi) = 0
are regular, i.e. they have algebraic multiplicity equal to their geometric multiplicity.

Theorem 3. In linear systems, if the equilibrium point x∗ is locally asymptotically stable,
then it is also globally asymptotically stable.

Let us explicitly solve the following differential equation, as it will be significant later
in the thesis.

Proposition 1. Consider the Cauchy problemI
ẋ(t) = k − px(t),
x(0) = x0.

(1.3)

Its solution is
x(t) =

3
x0 − k

p

4
e−pt + k

p
. (1.4)
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1.2 – Ordinary Differential Equations

Proof. The equation can be solved using the formula for linear differential equations, that
is, given the linear equation

ẋ(t) + a(t)x(t) = b(t),

the solution is
x(t) = e−

s
a(t)dt

3 Ú
b(t)e

s
a(t)dtdt+ c

4
.

In the case considered, a(t) = p, b(t) = k, so the solution becomes

x(t) = e−
s

pdt
3 Ú

ke
s

pdtdt+ c

4
= e−pt

3 Ú
keptdt

4
+ ce−pt = ke−pt e

pt

p
+ ce−pt =

= k

p
+ ce−pt.

Applying the initial condition we get

x(0) = k

p
+ c = x0 =⇒ c = x0 − k

p
,

so that the solution of the Cauchy problem (1.3) is

x(t) =
3
x0 − k

p

4
e−pt + k

p
.

11
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Chapter 2

Opinion dynamics models

2.1 French-DeGroot model
Opinion dynamics models are used to study how information and ideas spread across a
network, described by a graph. Every node represents an individual, whose opinion is
modeled by a real number that varies in time. Any two individuals interact if there is an
edge connecting them. Historically, one of the first opinion dynamics models proposed was
the French-DeGroot model, a discrete time model that describes the change of opinion
of a node as dependent on the difference with the opinion of its neighbours. In general,
the edges of the graph are weighted, to evaluate the strength of the link between two
individual (as for instance we might value more the opinion of a close friend, than that
of an acquaintance). Given a graph G = (V,E) with n nodes, adjacency matrix A, and
weights w such that

qn
j=1 wij = 1, for i = 1 . . . n, the equations of the model are

x(k + 1) = Wx(k), k = 0,1 . . . (2.1)
or in components

xi(k + 1) =
nØ

j=1
wijxj(k), k = 0,1 . . . (2.2)

where x is the vector containing the opinion of the n nodes, k ∈ N is the time step and
W = D−1A is a stochastic matrix, with D = diag(w).

The weight wij represents the contribution of node j’s opinion on the update on i’s
opinion, while 0 ≤ wii ≤ 1 is i’s openness to change its mind: if wii = 0, at every time
step node i will update completely relying on its neighbours opinion, disregarding its own,
while if wii = 1, the node is stubborn, as it will never change value, no matter what the
other nodes think. From

qn
j=1 wij = 1, we can write 1−wii =

q
j /=i wij , which substituted

in Equation (2.2) yields
xi(k + 1) − xi(k) =

Ø
j /=i

wij [xj(k) − xi(k)] ∀i. (2.3)

This form of the model that highlights the dependence of the update on the difference of
opinions with the neighbours.
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Opinion dynamics models

This model, under light hypothesis presented in the following theorem, converges to
consensus, i.e. a point x∗ = (c, c, . . . , c), c ∈ R in which all nodes share the same opinion.

Theorem 4. Given a strongly connected graph G, the model (2.2) converges if and only
if G is aperiodic.

2.2 Abelson model
The linear Abelson model is the translation of the French-DeGroot model in continuous
time, indeed starting from Equation (2.3), the left-hand side term represents the increment
∆xi(k), that is an approximation of the derivative for the time step that goes to 0. The
Abelson model is thus described by the equations

ẋi(t) =
Ø
j /=i

aij [xj(t) − xi(t)], (2.4)

where aij ≥ 0 are the entries of the matrix of infinitesimal influence A, which, unlike W ,
is not necessarily stochastic. The previous equation can be written in matrix form as

ẋi(t) = −L[A]x(t), (2.5)

where L[A] is the Laplacian matrix of the graph. The main convergence result of the
Abelson model is as follows.

Theorem 5. The linear Abelson model converges to consensus if and only if G has a
directed spanning tree. In that case,

lim
t→∞

xi(t) = pT
∞x(0),

where p∞ ∈ Rn is found by solving pT
∞L[A] = 0 and pT

∞1n = 1.

2.3 Other models
The main issue with the models above is that the requirements for consensus are extremely
loose, and convergence to non-consensus can only happen if the graph is not connected.
In reality, though, consensus is not what we expect to see in most cases, thus we look
for models that can more accurately describe society. The main phenomenon we would
like to observe is the lack of consensus, usually reached in the form of polarization or
clusterization of opinions.

Different ideas have been proposed to achieve this goal, for instance the Taylor model
[2] adds communication sources, e.g. mass media, that broadcast constant opinions on
the nodes, who are influenced by them without being able to influence them back. The
presence of multiple sources with different static opinions impairs consensus, as each
individual will be influenced in different ways by the external information.

Another approach is used in bounded confidence models (e.g. [3], [4]), in which nodes
interact only if their opinions don’t differ more than a set threshold. The idea behind
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2.3 – Other models

these models is that when we listen to someone whose opinion is completely different from
our own, we might find it unbelievable, consider it wrong and not be affected at all by it.
These models can lead to clusterization of opinions, as different sets of nodes can converge
to opinions too distant from each other, and thus stop interacting.

The model that will be the subject of this work belong to the family of CODA models,
where the acronym stands for "Continuous Opinion, Discrete Action". The idea behind
such models is the following assumption: when interacting, nodes know precisely their
own opinion, and display a certain discrete behaviour, a sort of approximation of their
opinion, that can be seen by their neighbours. This implies that each individual doesn’t
have access to their neighbours’ precise opinion, which impairs communication making
consensus harder to achieve.

A typical example helpful to describe this type of models is that of political elections.
Each person votes for the candidate whose vision they share the most, so by knowing who
someone voted for, it’s possible to understand in what range their opinion lays. Although,
as every candidate will be voted by a variety of people, all with slightly different ideas, it
will be impossible to pinpoint the exact opinion of every voter.

Mathematically, an edge going from vi to vj represents vi observing vj ’s behaviour
and consequently being influenced by it. The opinion xi will be adjusted according to a
certain hj , a value somehow close to xj , but in general not equal, as the information xj is
hidden from vi’s sight.

Different models can be created, with different update laws and different ways of
defining the nodes’ possible behaviours. For instance, [5] proposes a discrete time model
with binary action, that uses the update law

pi(k + 1) = pi(k) + pi(k)(1 − pi(k))
ni

Ø
j∈Ni

(qj(k) − pi(k)),

where pi(k), qi(k) ∈ [0,1] are respectively the opinion and the action of node i at the time
step k.

The weight pi(k)(1 − pi(k)) is a way of modeling the fact that people with extreme
opinions are usually less inclined to change their mind. In fact, the weight considered
goes to 0 as the opinion grows closer to 0 or 1, the edges of the domain, and is maximized
when the opinion is in the middle.

Looking at another example, the model proposed in [6] takes a statistical approach,
viewing opinion of a node as the probability they think one option is better than the other,
and using an application of Bayes theorem to define the update law. The model is then
updated ([7]) to introduce the presence of contrarians, individual who tend to oppose the
opinion of their neighbours, instead of moving towards them. It is then updated again
([8]) to consider the concept of trust between individual, because as we change our opinion
on a certain topic, so does our opinion on the people that influenced us.
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Chapter 3

Quantized model

The CODA model analyzed in this work goes under the name of quantized model. The
update law resembles the Abelson model, but instead of considering the precise opinion
of the neighbours, we round it to the closest integer.

In order to do this, we introduce the quantizer function q : R → Z defined as

q(xj) =
ê
xj + 1

2
ë
, (3.1)

i.e. q(xj) = h ⇐⇒ h− 1
2 ≤ xj < h+ 1

2 .

Figure 3.1: The quantizer function q(x).

Notice that, as x ∈ R, the codomain of q(x) is the entire Z, meaning there are infinite
possible behaviours.

With this definition, the equation that describes the model is

ẋi(t) =
nØ

j=1
aij [q(xj(t)) − xi(t)], i = 1, . . . , n, (3.2)
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that can be rearranged to be written in matrix form as

ẋi(t) =
nØ

j=1
aij [q(xj(t)) − xi(t)] =

nØ
j=1

aij [q(xj(t)) − xj(t) + xj(t) − xi(t)] =

=
nØ

j=1
aij [q(xj(t)) − xj(t)] +

nØ
j=1

aij [xj(t) − xi(t)] =⇒

ẋ(t) = A[q(x(t)) − x(t)] − Lx(t),
where A is the adjacency matrix and L the Laplacian matrix of the associated graph.

Recalling that L = D−A, where D is the degree matrix, we can also write the model
in the following form:

ẋ(t) = A[q(x(t))] −Dx(t). (3.3)
This simple modification of the Abelson model drastically complicates the analysis, as

the system is now discontinuous in state. In fact, the dynamic changes when a node’s
opinion crosses the middle point between two integer numbers. The dynamic is affine
inside hypercubic-shaped domains that we label Sh, properly defined in the following, and
changes when a border is crossed.

Definition 35 (Extended equilibrium). Given h ∈ Zn, we define Sh ⊂ Rn as

Sh = {x ∈ Rn|hi − 1
2 ≤ xi < hi + 1

2 , i = 1, . . . , n},

i.e. Sh is the set of vectors whose quantized value is equal to h.

Remark 2. We will often need to work with the topological closure of Sh, defined as

Sh = {x ∈ Rn|hi − 1
2 ≤ xi ≤ hi + 1

2 , i = 1, . . . , n}.

The discontinuity requires us to generalize the notion of solution.

Definition 36 (Carathéodory solution). Given a differential equation

ẋ(t) = f(x(t)), (3.4)
with initial condition x(t0) = x0, and I = [t0, T ) ⊂ R where T ≤ +∞, a Carathéodory
solution is a function

φ(t, x0) : I × Rn → Rn

such that
φ̇(t, x0) = f(φ(t, x0)),

for almost all t ≥ t0 and φ(t0, x0) = x0.
Moreover, the solution satisfies

φ(t, x0) = x0 +
Ú t

t0

f(φ(τ, x0))dτ.
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This type of solution is the natural extension of classical solutions of a differential
equation, with the difference of requiring to satisfy the equation only almost everywhere,
i.e. everywhere except for a set of points of null measure. When simply referring to a
"solution", throughout the thesis, it is to be regarded as a Carathédory solution.

A more generalised type of solutions is given by Krasovskii, taking into account solu-
tions that may slide along the discontinuity.

Definition 37 (Krasovskii solution). Given a differential equation

ẋ(t) = f(x(t)),

with initial condition x(t0) = x0, and I = [t0, T ) ⊂ R where T ≤ +∞, a Krasovskii
solution is a function

φ(t, x0) : I × Rn → Rn

such that
φ̇(t, x0) ∈ Kf(φ(t)),

where

Kf(x) =
Ü
δ>0

co{f(y) | y such that ∥y − x∥ < δ},

where co{X} is the closure of the set of convex combinations of the elements of X.

The definition of Carathéodory/Krasovskii equilibrium is a natural extension of the
classical equilibrium:

Definition 38 (Carathéodory/Krasovskii equilibrium). x∗ is a Carathéodory/Krasovskii
equilibrium if

φ(t, x∗) = x∗,

for almost all t ∈ I, where φ(t, x∗) is a Carathéodory/Krasovskii solution of (3.4).

In [1] was proven that solutions of (3.2) exist, but are not unique. The results on
existence of solutions and an example of non-uniqueness are recalled here for convenience.

Theorem 6 (Properties of solutions). Solutions of (3.2) have the following properties.

1. For any initial condition, there exist a Carathéodory and a Krasovskii solution of
(3.2),

2. Any Carathéodory or Krasovskii solution is bounded on its domain,

3. Any Carathéodory or Krasovskii solution starting at t0 ∈ R is defined on the set
[t0,+∞).

Example 1 (Non-unique Carathéodory solutions). Consider the systemI
ẋ1 = q(x2) − x1,

ẋ2 = q(x1) − x2,
(3.5)
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with initial conditions x1(0) = x2(0) = 1
2 . As q(1

2) = 1, we can solve
I
ẋ1 = 1 − x1,

ẋ2 = 1 − x2,

with the given initial conditions to obtain the solution x1(t) = x2(t) = −1
2e

−t + 1.
However, Carathéodory solutions allow us to choose arbitrary vector fields in single

instants. If in t = 0, we consider a negative derivative for x1 and x2, immediately we enter
S(0,0), in which the dynamic is I

ẋ1 = −x1,

ẋ2 = −x2,

which yields the solution x1(t) = x2(t) = 1
2e

−t, which satisfies (3.5) for all t ∈ (0,+∞),
that is for almost all t ∈ [0,+∞) .

This shows that there are two Carathéodory solutions of (3.5) branching from (x1, x2) =
(1

2 ,
1
2).

Figure 3.2: The two solutions found in Example 1.

Remark 3. In [1] was found that for the complete and complete bipartite graphs, conver-
gence to consensus is guaranteed for all initial conditions. These graphs have diameter 1
and 2 respectively, and because it is reasonable to assume that a quick flow of information
between everyone helps with agreement, a conjecture that could be made is that consen-
sus is always achieved for graphs of diameter ≤ 2. Unfortunately, this conjecture doesn’t
hold, as shown by the following example, considering a graph of diameter 2.

Consider the graph in Figure (3.3). The dynamic is defined by

ẋ1 = q(x2) + q(x5) − 2x1,

ẋ2 = q(x1) + q(x3) − 2x2,

ẋ3 = q(x2) + q(x4) + q(x5) − 3x3,

ẋ4 = q(x3) + q(x5) − 2x4,

ẋ5 = q(x1) + q(x3) + q(x4) − 3x5.
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The point x∗ = (1
2 ,

1
2 ,

2
3 ,1,

2
3) is an extended equilibrium on S(0,0,1,1,1), as

f(0,0,1,1,1)(x∗) =



0 + 1 − 2 · 1
2 = 0,

0 + 1 − 2 · 1
2 = 0,

0 + 1 + 1 − 3 · 2
3 = 0,

1 + 1 − 2 · 1 = 0,
0 + 1 + 1 − 3 · 2

3 = 0.

Figure 3.3: The graph of diameter 2 considered in Remark 3.

Figure 3.4: Solution converging to the extended equilibrium x∗ = (1
2 ,

1
2 ,

2
3 ,1,

2
3) discussed

in Remark 3.
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3.1 Equilibrium points and extended equilibria
One of the phenomena due to the discontinuity of our model is the existence of what we
call extended equilibria, points to which solutions can converge to, despite them not being
(Carathéodory) equilibria. Consider a solution asymptotically converging to a point: as
the solution grows closer, its derivative goes to 0; if the dynamic is locally continuous, then
the derivative in that point is 0, and we have a regular equilibrium point. On the other
hand, if the point is placed exactly on the discontinuity, then the derivative can suddenly
jump to a non-null value, and we therefore have a solution asymptotically converging to
a non-equilibrium point.

We now rigorously define extended equilibria for our model, and provide an example
right after.

Definition 39. Let h ∈ Zn and fh be such that

(fh)i(x) =
Ø
j /=i

aij(hj − xi).

Then, an extended equilibrium is a point x∗ ∈ Rn such that there exists h∗ ∈ Zn such
that fh∗(x∗) = 0 and x∗ ∈ Sh∗ .

Remark 4. Notice that fh(x) coincide with ẋ(t) on Sh, in fact x ∈ Sh ⇒ q(xj) = hj . We
can write fh(x) as

(fh)i(x) =
Ø
j /=i

aij(hj − xi) =
Ø
j /=i

aijhj −
Ø
j /=i

aijxi = bi − dixi =⇒

fh(x) = −Dx+ b,

where b is a vector whose entries bi are all constant.
Example 2. Consider a line graph with 4 nodes. The dynamic is defined by

ẋ1 = q(x2) − x1,

ẋ2 = q(x1) + q(x3) − 2x2,

ẋ3 = q(x2) + q(x4) − 2x3,

ẋ4 = q(x3) − x4.

The point x∗ = (0, 1
2 ,

1
2 ,1) is an extended equilibrium.

In fact, x∗ ∈ S(0,0,1,1) and f(0,0,1,1)(x∗) = 0, as

f(0,0,1,1)(x∗) =


0 − 0 = 0,
0 + 1 − 2 · 1

2 = 0,
0 + 1 − 2 · 1

2 = 0,
1 − 1 = 0.

However, x∗ is not a Carathéodory equilibrium: ẋ∗
1 = q(x2) − x1 = 1 − 0 /= 0.
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Figure 3.5: Solution converging to the extended equilibrium considered in Example 2.

Remark 5. Extended equilibria are placed on the frontier of different hypercubes, which
means that x∗ ∈ Sh for multiple values of h ∈ Zn, but only one hypercube, the one with
h = h∗, is such that fh(x∗) = 0. Given x∗, we will refer to Sh∗ as his corresponding
hypercube.
Mind that h∗ is not the quantized value of x∗, but for t −→ +∞ it is the quantized value
of the solutions converging to x∗. In fact, x∗ is an attractor for all points in Sh∗ , as we
will show in the next section.

3.1.1 Basin of attraction of extended equilibria
The classic concepts of stability don’t apply to extended equilibria, as the point itself
generates a non constant solution moving away from the equilibrium, meaning that for
every small neighbourhood there will be at least one solution making the point unstable.

Despite this, extended equilibria are attractors, and as such we are interested in their
basin of attraction. In particular, we want to prove that each extended equilibrium x∗

attracts the entire corresponding Sh∗ .

Proposition 2. Given an extended equilibrium x∗ on a connected graph, consider h∗ ∈ Zn

for which fh∗(x∗) = 0. Then, for all x0 ∈ Sh∗

φ(t, x0) −→ x∗,

for t → +∞.

Proof. To prove the statement, we need to show that x∗ is asymptotically stable for the
local dynamic fh∗ and that φ(t, x0) cannot leave Sh∗ for t > 0.

Firstly, we prove that every dynamic fh, for all h ∈ Zn, has a single equilibrium, that
is globally asymptotically stable. This is easy to see, as from Remark 4, fh is linear and
can be written as

fh(x) = −Dx+ b,

23



Quantized model

where the matrix −D is diagonal with negative entries (if the graph is connected), which
implies that all the eigenvalues are negative and therefore the only equilibrium is locally
asymptotically stable. Since the dynamic is linear, local stability can be extended to
global stability, thus the equilibrium is globally asymptotically stable.

Notice that it is not sufficient to extended the local dynamic fh∗ to Rn and prove that
x∗ is globally asymptotically stable, to conclude that x∗ attracts Sh∗ . Actually, a solution
φ1(t, x0) of fh∗(x) starting from x0 ∈ Sh∗ could in theory not coincide with the solution
φ2(t, x0) of the quantized dynamic. In fact, φ2(t, x0) could potentially leave Sh∗ , and
consequently stop obeying the dynamic fh∗ , drifting away from φ1(t, x0) (see Figure 3.6),
so that φ1(t, x0) converging to x∗ doesn’t imply the same for result for φ2(t, x0).

Figure 3.6: Example of a solution that would converge to x∗ = (0,0) if the dynamic in
S(0,0) were to be extended to R2, but doesn’t in the discontinuous dynamic, as it enters
S(−1,0) in which the dynamic is different.

This is true for a generic h, but, as we are about to show, for h∗ associated with an
extended equilibrium we have that the solution cannot leave Sh∗ , or in other words

x0 ∈ Sh∗ =⇒ φ(t, x0) ∈ Sh∗ ∀t > 0 =⇒ φ(t, x0) −→ x∗ for t −→ +∞.

Take x0 ∈ Sh∗ , we can write the coordinates of the solution starting in x0 as

xi = h∗
i + ∆i,

with ∆i ∈ [−1
2 ,

1
2).

We can do the same with the equilibrium point,

x∗
i = h∗

i + ∆∗
i ,

where ∆∗
i ∈ [−1

2 ,
1
2 ].
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The dynamic is described by

ẋi =
Ø

j∈N(xj)
q(xj) − dixi =

Ø
j∈N(xj)

h∗
j − di(h∗

i + ∆i),

in which we can substitute the expression h∗
i = x∗

i − ∆∗
i to obtain

ẋi =
Ø

j∈N(xj)
h∗

j − di(x∗
i − ∆∗

i + ∆i) = (
Ø

j∈N(xj)
h∗

j − dix
∗
i ) − di(−∆∗

i + ∆i).

The first term is the derivative fh∗(x∗) which is null by definition of extended equilibrium.
The end result is thus

ẋi = di(∆∗
i − ∆i),

where di > 0 because the graph is connected. This relation shows that xi asymptotically
converges to x∗

i , as xi moves to the right (has positive derivative) when its placed to the
left of x∗ (∆i < ∆∗

i ), and vice versa xi moves to the left when placed at the right of the
extended equilibrium (see Figure 3.7), with speed that decreases linearly with the distance
between the two. This implies that xi always moves away from the frontier, hence it can
never cross it.

Since this holds true for all the coordinates, and all the equations are independent,
x −→ x∗ for t −→ +∞, ∀x0 ∈ Sh∗ .

Figure 3.7: For all i, the vector field points toward x∗
i = h∗

i + ∆∗
i .

3.1.2 Line graph
We now move to study particular cases, starting from the line graph. Given n nodes,
the line graph is the connected and undirected graph that impairs communication the
most, and as such non-consensus is to be expected. The focus of this section is to find
the extended equilibria.
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The dynamic (3.2) on the line graph becomes, for i = 2, . . . , n− 1
ẋ1 = q(x2) − x1

ẋi = q(xi+1) + q(xi−1) − 2xi

ẋn = q(xn−1) − xn = 0.
(3.6)

Proposition 3. Let k ∈ Zn such that k1 = kn = 0, kj ∈ {−1,0,1} for j = 2, ..., n− 1, andqn−1
j=2 kj = 0.

Then extended equilibria in a line graph with n nodes can be written in the form

xe = h+ x∗, (3.7)

where h = (h, h, ..., h), h ∈ Z and x∗ is such that

x∗
i = 1

2ki +
i−1Ø
j=2

(i− j)kj .

Proof. To find equilibrium points, we set to 0 the derivatives defined in (3.6) and we
obtain 

q(x2) − x1 = 0
q(xi+1) + q(xi−1) − 2xi = 0
q(xn−1) − xn = 0.

We have that x1 = q(x2), which means that x1 must be an integer.
Let x1 = h ∈ Z, we obviously have q(x1) = h, and from the first line of the system we
have that q(x2) = h.
Rearranging the term in the second line of the system, we see that

xi = q(xi+1) + q(xi−1)
2 for i = 2, . . . , n− 1,

which means that xi is half of an integer.
With this information, if we know the quantized value q(xi), we have 3 possible values
of xi: either q(xi) − 1

2 , q(xi) or q(xi) + 1
2 (remember that extended equilibria are on the

closure of the hypercubes).
We write this in compact form as xi = q(xi) + 1

2ki, ki ∈ {−1,0,1}.
We apply this fact to x2 to obtain x2 = h+ 1

2k2.
Let us consider again the second equation of the system, this time centered in xi−1. We
have

q(xi) + q(xi−2) − 2xi−1 = 0 =⇒ q(xi) = 2xi−1 − q(xi−2),
which allows us to find q(xi), for i−1 = 2, . . . , n−1 ⇒ i = 3, . . . , n. We can now compute
the value of x3, which can be used to compute x4 and so on:

q(x3) = 2x2 − q(x1) = 2(h+ 1
2k2) − h = h+ k2 =⇒ x3 = h+ k2 + 1

2k3,
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q(x4) = 2x3 − q(x2) = 2(h+ k2 + 1
2k3) − h = h+ 2k2 + k3 =⇒ x4 = h+ 2k2 + k3 + 1

2k4,

q(x5) = 2x4−q(x3) = 2(h+2k2+k3+1
2k4)−(h+k2) = h+3k2+2k3+k4 =⇒ x5 = h+3k2+2k3+k4+1

2k5.

We now prove by induction that q(xi) = h +
qi−1

j=2(i − j)kj , and by consequence that
xi = h+

qi−1
j=2(i− j)kj + 1

2ki. From the previous computations, we see that the statement
holds true for i = 3,4,5.
Moving to the inductive step, we assume that the statement holds for i− 2 and i− 1, and
we check that it still holds for i:

q(xi) = 2xi−1 − q(xi−2) = 2h+ 2(
i−2Ø
j=2

(i− 1 − j)kj + 1
2ki−1) − h−

i−3Ø
j=2

(i− 2 − j)kj =

= h+ ki−1 +
i−2Ø
j=2

2(i− 1 − j)kj −
i−3Ø
j=2

(i− 2 − j)kj =

= h+ ki−1 + 2(i− 1 − i+ 2)ki−2 +
i−3Ø
j=2

2(i− 1 − j)kj −
i−3Ø
j=2

(i− 2 − j)kj =

= h+ ki−1 + 2ki−2 +
i−3Ø
j=2

[2(i− 1 − j) − (i− 2 − j)]kj =

= h+ ki−1 + 2ki−2 +
i−3Ø
j=2

(i− j)kj = h+
i−1Ø
j=2

(i− j)kj .

Finally, we consider the third line of the system, in which we substitute the expressions
q(xn−1) = h+

qn−2
j=2 (n−1−j)kj and xn = h+

qn−1
j=2 (n−j)kj . Notice that xn = q(xn−1), i.e.

xn is an integer, and consequently xn = q(xn) ⇒ kn = 0. The condition q(xn−1) − xn = 0
becomes

h+
n−2Ø
j=2

(n− 1 − j)kj − h−
n−1Ø
j=2

(n− j)kj = 0 =⇒

n−2Ø
j=2

(n− 1 − j)kj −
n−2Ø
j=2

(n− j)kj − kn−1 = 0 =⇒

n−2Ø
j=2

(n− 1 − j − n+ j)kj − kn−1 = 0 =⇒

−
n−2Ø
j=2

kj − kn−1 = 0 =⇒

n−1Ø
j=2

kj = 0.

Lastly, both x1 and xn must be integer, thus they are equal to their own quantized value,
that is k1 = kn = 0, q.e.d.
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Remark 6. The sum
qi−1

j=2(i − j)kj , present in the expression of the extended equilibria,
can equally be written as

qi
j=1(i− j)kj , since

iØ
j=1

(i− j)kj = (i− 1)k1 +
i−1Ø
j=2

(i− j)kj + (i− i)ki =
i−1Ø
j=2

(i− j)kj ,

as k1 = 0. We will often use the second form as it’s more intuitive and easier to compute
with.
Remark 7. The choice of h is arbitrary, which allows us to assume h = 0. This is not
restrictive, as every extended equilibrium having h /= 0, can be thought as an extended
equilibrium having h = 0 in the reference system with origin in h = (h, h, . . . , h) ∈ Zn.
To simplify the notation, throughout the rest of the thesis we will refer to these points,
denoting them and their corresponding hypercube with an asterisk.
Notation 1. h∗ = (h∗

1, h
∗
2, . . . , h

∗
n) and x∗ = (x∗

1, x
∗
2, . . . , x

∗
n), where

h∗
i =

iØ
j=1

(i− j)kj , (3.8)

x∗
i = 1

2ki + h∗
i . (3.9)

Example 3. Let us compute all the extended equilibria (with h = 0) on the line graph
with 4 nodes defined in Example 2. The only possible values for k are

• ka = (0,0,0,0),

• kb = (0,1,−1,0),

• kc = (0,−1,1,0).

For ka we simply have h∗
a = (0,0,0,0), x∗

a = (0,0,0,0), as all the term in the sums are null.

For kb, the corresponding hypercube and extended equilibrium are h∗
b = (0,0,1,1), x∗

b =
(0, 1

2 ,
1
2 ,1). In fact, h∗

b 1 = 0 and

h∗
b 2 = kb1 = 0, h∗

b 3 = 2kb1 +kb2 = 0+1 = 1, h∗
b 4 = 3kb1 +2kb2 +kb3 = 0+2 ·1−1 = 1.

Then, x∗
b = h∗

b + 1
2kb = (0,0 + 1

2 ,1 − 1
2 ,1) = (0, 1

2 ,
1
2 ,1).

Analogously, kc = −kb leads to h∗
c = −h∗

b = (0,0,−1,−1),and x∗
c = −x∗

b = (0,−1
2 ,−

1
2 ,−1).

Remark 8. To simplify the computation of h∗ in more complex cases, we point out that
h∗

i can be obtained from h∗
i−1 as

h∗
i =

iØ
j=1

(i− j)kj =
i−1Ø
j=1

(i− j)kj =
i−1Ø
j=1

(i− j − 1)kj +
i−1Ø
j=1

kj = h∗
i−1 +

i−1Ø
j=1

kj .
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Example 4. Let us see an example of the computation of one extended equilibrium in a
more complicated case, with the help of Remark 8.
Take n = 13 and k = (0,0,1,1,0,−1,−1,0,0,0,1,−1,0). We have

h∗
1 = h∗

2 = 0, h∗
3 = h∗

2 + 0 = 0, h∗
4 = h∗

3 +
3Ø

j=1
kj = 0 + 1 = 1,

h∗
5 = h∗

4 +
4Ø

j=1
kj = 1 + 2 = 3, h∗

6 = h∗
5 +

5Ø
j=1

kj = 3 + 2 = 5,

h∗
7 = h∗

6 +
6Ø

j=1
kj = 5 + 1 = 6, h∗

8 = h∗
7 +

7Ø
j=1

kj = 6 + 0 = 6,

h∗
9 = h∗

10 = h∗
11 = 6, as

mØ
j=1

kj = 0 for m = 8,9,10,

h∗
12 = h∗

11 +
11Ø

j=1
kj = 6 + 1 = 7, h∗

13 = h∗
12 +

12Ø
j=1

kj = 7 + 0 = 7.

We have found h∗ = (0,0,0,1,3,5,6,6,6,6,6,7,7), the extended equilibrium corresponding to
k is therefore

x∗ = h∗ + 1
2k = (0,0, 1

2 ,
3
2 ,3,

9
2 ,

11
2 ,6,6,6,

13
2 ,

13
2 ,7).

Remark 9. In [1] was found that the furthest extended equilibrium from consensus, i.e.
the extended equilibrium with the greatest difference between x∗

1 and x∗
n, is such that

|x∗
n − x∗

1| =
I (n−2)2

4 if n even,
(n−1)(n−3)

4 if n odd.

This is achieved for k of the form

1. k = (0,1, . . . ,1,−1, . . . ,−1,0) if n is even,

2. k = (0,1, . . . ,1,0,−1, . . . ,−1,0) if n is odd,

and their opposites. In fact, if x∗
1 = 0 in the first case we have

x∗
n =

n−1Ø
j=2

(n− j)kj =
n/2Ø
j=2

(n− j) −
n−1Ø

j=n/2+1
(n− j) =

= (n− 2 + n− n

2 )(n4 − 1
2) − (n− 1 − n

2 + 1)(n4 − 1
2) =

= (n− 2 + n− n

2 − n+ 1 + n

2 − 1)(n− 2) · 1
4 = (n− 2)(n− 2)

4 = (n− 2)2

4 ,
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while in the second case

x∗
n =

n−1Ø
j=2

(n− j)kj =
n−1

2Ø
j=2

(n− j) −
n−1Ø

j= n+3
2

(n− j) =

= (n− 2 + n− n− 1
2 )(n− 1

4 − 1
2) − (n− n+ 3

2 + 1)(n− 1
4 − 1

2) =

= (n− 2 + n− n

2 + 1
2 − n+ n

2 + 3
2 − 1)(n− 1 − 2) · 1

4 = (n− 1)(n− 3)
4 .

3.1.3 Cardinality of the set of extended equilibria
In this subsection we investigate the cardinality of the set of extended equilibria, to see
how it scales as n grows larger. The extended equilibria are infinite due to the arbitrary
choice of h in Equation (3.7), what we are interested in is the cardinality of E∗

n = {x∗},
with x∗ defined in (3.9) for a line graph with n nodes. To this end, as there is a 1
to 1 correspondence between extended equilibria and the k defined in the hypothesis of
Proposition 3, it suffices to count in how many different ways k can be written while
respecting such hypothesis.

Given a line graph with n nodes, we have that k1 = kn = 0, therefore the values that
can vary are only m = n − 2. We will find the cardinality by partitioning the set of k
in subsets according to the number of cells equal to 0 in k, i.e. Xm

p is the set of k with
m cells, of which p cells are null. Let’s start by considering m even, and by counting the
cases for which ki /= 0 for all i. Since k cells must sum to 0, k is formed by m

2 cells with
value 1 and m

2 with value -1. The cardinality #Xm
0 of this first subset is then given by a

permutation with repetition:

#Xm
0 = P

( m
2 , m

2 )
m = m!

m
2 ! · m

2 ! .

Consider now the subset of k with 2 cells equal to 0, and consequently m − 2 cells /= 0.
Just like in the previous case, these m− 2 cells can be ordered in

#Xm−2
0 = P

( m−2
2 , m−2

2 )
m−2 = (m− 2)!

m−2
2 ! · m−2

2 !
.

From there we must add the 2 null cells. From every result of the permutation of the
m − 2 non-null cells, we can add the 2 null cells in P

(2,m−2)
m different ways, where in the

apex the 2 represents the repetition of the null cells and the m − 2 the repetition of the
non null ones. This mean that

#Xm
2 = P

( m−2
2 , m−2

2 )
m−2 · P (2,m−2)

m .

We can repeat the same process to find k with p = 4,6,8, . . . ,m null cells, to find

#Xm
p = P

( m−p
2 , m−p

2 )
m−p · P (p,m−p)

m .
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We then have, for m even, that the cardinality we are looking for is the sum of the
cardinality of all these subsets, i.e. for p = 2i,

#E∗
n =

m
2Ø

i=0
#Xm

2i =
m
2Ø

i=0
P

( m−2i
2 , m−2i

2 )
m−2i · P (2i,m−2i)

m =

=
m
2Ø

i=0

(m− 2i)!
((m−2i

2 )!)2 · m!
(2i)! · (m− 2i)! =

=
m
2Ø

i=0

m!
((m−2i

2 )!)2 · (2i)!
.

The case for m odd is similar. Notice that necessarily there is an even number of non
null cells, as there must be an equal number of 1s and -1s. Consequently, if m odd there’s
at least one cell with value 0. Elements in Xm

1 can be obtained by adding a null cell to
elements in Xm−1

0 , which can be done in m different ways (notice that P (1,m−1)
m = m) per

element in Xm−1
0 , so that

#Xm
1 = #Xm−1

0 ·m = P
( m−1

2 , m−1
2 )

m−1 · P (1,m−1)
m .

Analogously we can get the cardinality of the setsXm
p for p = 3,5,7, . . . ,m and by summing

them we obtain

#E∗
n =

m−1
2Ø

i=0
#Xm−1

2i =
m−1

2Ø
i=0

P
( m−1−2i

2 , m−1−2i
2 )

m−1−2i · P (2i+1,m−1−2i)
m =

=
m−1

2Ø
i=0

(m− 1 − 2i)!
((m−1−2i

2 )!)2 · m!
(2i+ 1)! · (m− 1 − 2i)! =

=
m−1

2Ø
i=0

m!
((m−1−2i

2 )!)2 · (2i+ 1)!
.

The results obtained using these formula are shown in Table 3.1.
Remark 10. Notice that a line graph with 2 or 3 nodes is a complete bipartite graph,
for which convergence to consensus is guaranteed. The single extended equilibrium found
is the consensus, which is a Carathéodory equilibrium, a particular case of extended
equilibrium.

3.1.4 Ring graph
Similar computations can be done for the ring graph, which can be obtained by a line
graph by simply adding an edge connecting v1 and vn.

Proposition 4. Let k ∈ Zn such that
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n m #E∗
n

2 0 1
3 1 1
4 2 3
5 3 7
6 4 19
7 5 51
8 6 141
9 7 393
10 8 1107

Table 3.1: Computed cardinality of the set of extended equilibria on the line graph with
n nodes.

• kj ∈ {−1,0,1} for j = 1...n,

•
qn

j=1 kj = 0,

•
qn

j=1(n− j)kj is a multiple of n.

Then extended equilibria in a ring graph with n nodes can be written in the form

xe = h+ x∗,

where h = (h, h, ..., h), h ∈ Z and x∗ is such that

x∗
i = 1

2ki +
i−1Ø
j=2

(i− j)kj .

Proof. Extended equilibria must satisfy q(xi−1) + q(xi+1) − 2xi = 0 for i = 1, . . . , n,
considering x0 := xn and xn+1 := x1. This can be rewritten xi = q(xi−1)+q(xi+1)

2 , i.e. xi is
half of an integer, thus we can write it as xi = q(xi) + 1

2ki. Analogously to the line graph
case, by rearranging the terms we get

q(xi) = 2xi−1 − q(xi−2) =⇒

xi = 1
2ki + 2xi−1 − q(xi−2),

meaning that we can find any value xi if we know the value of the previous two nodes.
Let x1 = h1 + 1

2k1, xn = hn + 1
2kn, where hi = q(xi). We obtain

x2 = 1
2k2 + 2x1 − q(xn) = 1

2k2 + k1 + 2h1 − hn,

x3 = 1
2k3 +2x2 −q(x1) = 1

2k3 +k2 +2k1 +4h1 −2hn −h−1 = 1
2k3 +k2 +2k1 +3h1 −2hn,
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3.1 – Equilibrium points and extended equilibria

x4 = 1
2k4 + 2x3 − q(x2) = 1

2k4 + k3 + 2k2 + 4k1 + 6h1 − 4hn − k1 − 2h1 + hn =

= 1
2k4 + k3 + 2k2 + 3k1 + 4h1 − 3hn.

By induction we notice that

xi = 1
2ki +

iØ
j=1

(i− j)kj + ih1 − (i− 1)hn.

The expression holds for i = 1,2,3,4. For the inductive step, let us assume it holds for
i − 1 and i − 2 and check it holds for i (keep in mind Remark 6 when dealing with the
last term of a sum):

xi = 1
2ki + 2xi−1 − q(xi−2) =

1
2ki+ki−1+2

i−1Ø
j=1

(i−1−j)kj +2(i−1)h1−2(i−2)hn−
i−2Ø
j=1

(i−2−j)kj −(i−2)h1+(i−3)hn =

1
2ki + ki−1 + 2

i−2Ø
j=1

(i− 1 − j)kj −
i−2Ø
j=1

(i− 2 − j)kj + (2i− 2 − i+ 2)h1 − (2i− 4 − i+ 3)hn =

1
2ki + ki−1 +

i−2Ø
j=1

(2i− 2 − 2j − i+ 2 + j)kj + ih1 − (i− 1)hn =

1
2ki + ki−1 +

i−2Ø
j=1

(i− j)kj + ih1 − (i− 1)hn =

= 1
2ki +

i−1Ø
j=1

(i− j)kj + ih1 − (i− 1)hn =

= 1
2ki +

iØ
j=1

(i− j)kj + ih1 − (i− 1)hn.

Applying the expression to xn = 1
2kn + hn yields

xn = 1
2kn + hn = 1

2kn +
nØ

j=1
(n− j)kj + nh1 − (n− 1)hn =⇒

hn + (n− 1)hn − nh1 =
nØ

j=1
(n− j)kj =⇒

nhn − nh1 =
nØ

j=1
(n− j)kj . (3.10)
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Equation (3.10) can be written as hn − h1 = 1
n

qn
j=1(n − j)kj , and since h1 and hn are

integer, necessarily
qn

j=1(n− j)kj is a multiple of n.

Previously we set x1 = 1
2k1 + h1, and it must hold x1 = 1

2k1 + 2xn − q(xn−1), thus

x1 = 1
2k1 + h1 = 1

2k1 + 2xn − q(xn−1) =⇒

h1 = kn +2
nØ

j=1
(n−j)kj +2nh1 −2(n−1)hn −

n−1Ø
j=1

(n−1−j)kj − (n−1)h1 +(n−2)hn =⇒

h1 = kn +
n−1Ø
j=1

(2n− 2j − n+ 1 + j)kj + (2n− n+ 1)h1 − (2n− 2 − n+ 2)hn =⇒

h1 − (n+ 1)h1 + nhn = kn +
n−1Ø
j=1

(n− j + 1)kj =⇒

nhn − nh1 = kn +
n−1Ø
j=1

(n− j + 1)kj . (3.11)

By comparing Equations (3.10) and (3.11), we obtain

nØ
j=1

(n− j)kj = kn +
n−1Ø
j=1

(n− j + 1)kj =⇒

kn +
n−1Ø
j=1

(n− j + 1)kj −
n−1Ø
j=1

(n− j)kj = 0 =⇒

kn +
n−1Ø
j=1

(n− j + 1 − n+ j)kj = 0 =⇒

kn +
n−1Ø
j=1

kj = 0 =⇒

nØ
j=1

kj = 0.

Remark 11. The condition
qn

j=1(n − j)kj is a multiple of n seems to be a condition of
symmetry. Let us assume k to be symmetric and check that

qn
j=1(n − j)kj = 0. If n is

even, we have kj = kn+1−j and

nØ
j=1

(n− j)kj =
n/2Ø
j=1

(n− j)kj +
nØ

j=n/2+1
(n− j)kj .
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3.1 – Equilibrium points and extended equilibria

Let us write the second sum with the new index i = n + 1 − j, considering that by
symmetry ki = kj :

n/2Ø
j=1

(n− j)kj +
nØ

j=n/2+1
(n− j)kj =

n/2Ø
j=1

(n− j)kj +
n/2Ø
i=1

(i− 1)ki.

Having the same index, we can write everything in the same sum,

n/2Ø
j=1

[(n− j) + (j − 1)]kj =
n/2Ø
j=1

(n− 1)kj = (n− 1)
n/2Ø
j=1

kj .

Noticing how
qn/2

j=1 kj =
qn

j=n/2+1 kj = 1
2

qn
j=1 kj , we finally obtain

(n− 1)
n/2Ø
j=1

kj = n− 1
2

nØ
j=1

kj = 0.

If n is odd, then k symmetric implies kn+1
2

= 0. In fact,

0 =
nØ

j=1
kj =

n−1
2Ø

j=1
kj + kn+1

2
+

nØ
j= n+3

2

kj = kn+1
2

+ 2
n−1

2Ø
j=1

kj =⇒

kn+1
2

= −2
n−1

2Ø
j=1

kj =⇒ kn+1
2

= 0

since kn+1
2

∈ {−1,0,1} and 2
q n−1

2
j=1 kj is an even number. We then have

nØ
j=1

(n− j)kj =
n−1

2Ø
j=1

(n− j)kj +
nØ

j= n+3
2

(n− j)kj ,

which we can treat analogously to the case with n even to reach the same conclusion.

Since we are working on a cycle graph, we can arbitrarily shift all the indexes of the
nodes. With the help of an example, we will show that this takes the sum

qn
j=1(n− j)kj

from value 0 to a multiple of n. Let n = 5 and k = (1,−1,0,−1,1), the extended
equilibrium can be computed to be x∗ = (1

2 ,
1
2 ,1,

1
2 ,

1
2) with h∗ = (0,1,1,1,0). By renaming

the nodes through a position shift, we have k′ = (−1,0,−1,1,1) associated with x′∗ =
(1

2 ,1,
1
2 ,

1
2 ,

1
2) and h′∗ = (1,1,1,0,0). Now

qn
j=1(n− j)k′

j = −4 − 2 + 1 = −5 = −n. In fact,
h′∗

n − h′∗
1 = 1

n

qn
j=1(n− j)k′

j = −1
5 · 5 = −1.

This is true in general, as a shift of k to the left means increasing the coefficient of
each ki for i = 2, . . . , n by 1, and decreasing the coefficient of k1 by n− 1 (shown in Table
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3.2), which results in an increase/decrease of n (or 0 if k1 = 0). In fact, considering k′ as
the shifted of k,

nØ
j=1

(n− j)k′
j =

n−1Ø
j=1

(n− j)kj+1 =
nØ

j=2
(n− j + 1)kj =

nØ
j=2

(n− j)kj +
nØ

j=2
kj =

=
nØ

j=1
(n− j)kj − (n− 1)k1 − k1 =

nØ
j=1

(n− j)kj − nk1,

meaning that if
qn

j=1(n− j)kj is a multiple of n, it still will be after an arbitrary amount
of shifts.

k1 k2 . . . kn−1 kn

n− 1 n− 2 . . . 1 0
k′

1 = k2 k′
2 = k3 . . . k′

n−1 = kn k′
n = k1

n− 1 n− 2 . . . 1 0

Table 3.2: Entries of k and relative coefficients before and after the shift.

Example 5. The sum
qn

j=1(n−j)kj (and consequently the difference between the quantized
of two adjacent nodes) cannot be arbitrarily large. Starting from a symmetric k, after
every shift the sum will keep growing in modulus as long as k′

1 /= 0 keeps having the same
sign. Since there can be at most n

2 consecutive 1 in k (if n even, or n−1
2 if n odd), n

2
marks the higher limit for |h∗

i − h∗
i+1|. For instance, for n = 16, the furthest extended

equilibrium from consensus is

• k = (1,1,1,1,−1,−1,−1,−1,−1,−1,−1,−1,1,1,1,1),

• h∗ = (0,1,3,6,10,13,15,16,16,15,13,10,6,3,1,0)

• x∗ = (1
2 ,

3
2 ,

7
2 ,

13
2 ,

19
2 ,

25
2 ,

29
2 ,

31
2 ,

31
2 ,

29
2 ,

25
2 ,

19
2 ,

13
2 ,

7
2 ,

3
2 ,

1
2),

that shifted becomes

• k = (−1,−1,−1,−1,−1,−1,−1,−1,1,1,1,1,1,1,1,1),

• h∗ = (10,13,15,16,16,15,13,10,6,3,1,0,0,1,3,6)

• x∗ = (19
2 ,

25
2 ,

29
2 ,

31
2 ,

31
2 ,

29
2 ,

25
2 ,

19
2 ,

13
2 ,

7
2 ,

3
2 ,

1
2 ,

1
2 ,

3
2 ,

7
2 ,

13
2 ),

for which in fact h1 − hn = − 1
n

qn
j=1(n− j)kj = − 1

16(−15 − 14 − 13 − 12 − 11 − 10 − 9 −
8 + 7 + 6 + 5 + 4 + 3 + 2 + 1) = 64

16 = 4.
Example 6. Invisible consensus: For n = 8, k = (1,−1,−1,1,1,−1,−1,1) yields

• h∗ = (0,1,1,0,0,1,1,0),

• x∗ = (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2)
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3.2 – Binary actions

x∗ is a non integer consensus extended equilibrium point. It is interesting to notice that,
since x∗ has a non null basin of attraction, there are solutions for which all the nodes
will asymptotically share the same opinion, while having different behaviours. This is an
example of an undetectable consensus, as an observer can only see the different actions
taken, without knowing the true opinion of each individual.

Figure 3.8: Solution with initial conditions in S(0,1,1,0,0,1,1,0), converging to x∗ =
(1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2), computed in Example 6.

3.2 Binary actions
To simplify our analysis, we focus on the dynamic in the hypercube [0,1]n, meaning that
q(xi) is either 0 or 1. This simplified version is still of interest, as it models binary be-
haviours (in general choices between two options, like yes/no or do/don’t type of actions).
One example could be the decision whether or not to buy a certain product, my opinion
will in be in [0,1] while evaluating pros and cons, but my final decision (and what my
neighbours will be able to see) will be either 0 or 1 (to buy it or not).
We now show some convergence results for the line graph.

3.2.1 Line graph
Our focus is to find the hypercubes that entirely converge to the consensus 0 = (0,0, . . . ,0),
in other words we’re looking for a condition on h ∈ Zn in order to have that for all x0 ∈ Sh,
x(t, x0) −→ h as t −→ +∞.
Then, by symmetry, the condition for convergence to consensus 1 can also be found.

Proposition 5. Let h =
qn

i=1 hiei where hi ∈ {0,1} and ei is the i-th vector of canonical
basis of Rn.
If for all i :

1. hi = 0 =⇒ 1
di

q
j∈Ni

hj ≤ 1
2 ,
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2. hi = 1 =⇒
q

j∈Ni
hj = 0

then ∀x0 ∈ Sh, limt→+∞ xi(t) −→ 0 ∀i.

The two conditions mean respectively that, in the starting hypercube, each node with
action 0 has at least one neighbour with action 0, and that every node with action 1 has
all neighbours with action 0.

Proof. Firstly, notice how if for instance q(xi−1) = 0, q(xi) = 0, q(xi+1) = 1, then xi can
not leave the interval of quantization 0. In fact, ẋi = q(xi−1) + q(xi+1) − 2xi = 1 − 2xi

which asymptotically converges to 1
2 , i.e. xi keeps getting closer to the frontier, but with-

out ever trespassing in the adjacent interval of quantization. This means that, until the
dynamic changes (either xi−1 or xi+1 change action), we will have q(xi) = 0.

Condition 1 excludes the case in which an xi such that q(xi) = 0 has all neighbours
with action one. The possible cases are therefore as follows:

• xi is at the edge of the graph (either i = 1 or i = n, and its only neighbour has
action 0,

• xi is in the middle (2 ≤ i ≤ n− 1) with both neighbours with action 0,

• xi is in the middle and has one neighbour with action 0 and one with action 1.

In the first two cases, xi obviously goes to 0, while in the third cases xi goes to 1
2 while

maintaining q(xi) = 0.
In summary, condition 1 doesn’t allow the variables with quantization 0 to swap actions
as long as the dynamic doesn’t change.

On the other hand, condition 2 grants that every xi such that q(xi) = 1 will eventually
go to 0, as ẋi = −dixi.
Thus, combining the two conditions, we have that we go from the starting hypercube to
a hypercube with one cell (or more) swapped from 1 to 0. This new set still satisfies the
two conditions, therefore we can recursively apply the same argument until all the cells
are equal to 0. Once in S(0,...,0), we know by Proposition 2 that the solution will converge
to h = (0, . . . ,0).

Remark 12. The hypercubes satisfying the two conditions are such that the second and
second to last cell are equal to 0 (otherwise condition 1 would be violated for the node on
the edge), and the cells with value 1 are far enough from each other, at least three index
numbers away.
For instance (0,0,1,0,0,0,1,0,0,1) satisfies the conditions.
Example 7. Let us consider the binary action dynamic on the line graph with 4 nodes.
The starting hypercubes that completely go to consensus 0 are:
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3.2 – Binary actions

• (0,0,0,0),

• (1,0,0,0),

• (0,0,0,1),

• (1,0,0,1).

By symmetry, the hypercubes that completely converge to consensus 1 are

• (1,1,1,1),

• (0,1,1,1),

• (1,1,1,0),

• (0,1,1,0).

There are two extended equilibria, xa = (0, 1
2 ,

1
2 ,1), placed on Sa = (0,0,1,1), xb =

(1, 1
2 ,

1
2 ,0), placed on Sa = (1,1,0,0). By Proposition 2 S(0,0,1,1) and S(1,1,0,0) completely

converge to these points.
The remaining possible sets,

• (0,1,0,0),

• (0,0,1,0),

• (0,1,0,1),

• (1,0,1,0),

• (1,1,0,1),

• (1,0,1,1),

are more difficult to study, In fact, for these cases, different starting condition in the
same hypercube will lead to different convergence points. Take for instance h =(0,1,0,0).
While x3 and x4 cannot leave their interval of quantization, both x1 and x2 can. It is
then a matter of who reaches the frontier first: if x1 does, the solution will enter S(1,1,0,0)
and will go to the extended equilibrium, while if x2 is the fastest we enter S(0,0,0,0) and
consequently go to the consensus.
In the plane (x1, x2), we can compute the analytic expression of the line separating the
two areas leading to the two different equilibria. From the dynamicI

ẋ1 = 1 − x1,

ẋ2 = −2x2,

with initial conditions x0 ∈ Sh ⇒ x0
1 ∈ [0, 1

2), x0
2 ∈ [ 1

2 ,1), we can write the solutionsI
x1(t) = (x0

1 − 1)e−t + 1,
x2(t) = x0

2e
−2t.

39



Quantized model

Let be T1, T2 such that

x1(T1) = 1
2 , x2(T2) = 1

2 ,

then the smaller Ti determines which coordinate will cross the frontier first. If T1 < T2,
x1 switches action first and we enter h∗ = (1,1,0,0), on the contrary if T2 < T1 we end up
in h∗ = (0,0,0,0). T1 = T2 marks the separation line we want to find. Computing T1, T2,
we get

(x0
1 − 1)e−T1 + 1 = 1

2 =⇒ e−T1 = − 1
2(x0

1 − 1) =⇒

− T1 = ln
1

− 1
2(x0

1 − 1)
2

=⇒ T1 = ln(−2(x0
1 − 1)) =⇒

T1 = ln(2 − 2x0
1);

x0
2e

−2T2 = 1
2 =⇒ −2T2 = ln

1 1
2x0

2

2
=⇒ T2 = 1

2 ln(2x0
2) =⇒

T2 = ln(
ñ

2x0
2).

From which T2 = T1 becomes

ln(
ñ

2x0
2) = ln(2 − 2x0

1) =⇒
ñ

2x0
2 = 2 − 2x0

1 =⇒

x0
2 = (2 − 2x0

1)2

2 .

Finally, we can define

Ω1 = {(x1, x2) | 0 ≤ x1 <
1
2 ,

1
2 ≤ x2 ≤ 1, x0

2 <
(2 − 2x0

1)2

2 },

Ω2 = {(x1, x2) | 0 ≤ x1 <
1
2 ,

1
2 ≤ x2 ≤ 1, x0

2 >
(2 − 2x0

1)2

2 },

and conclude that if (x0
1, x

0
2) ∈ Ω1, then the solution will converge to consensus (0,0,0,0),

and if (x0
1, x

0
2) ∈ Ω2, then the solution will converge to the extended equilibrium with

h∗ = (1,1,0,0).

In theory this process can be done for every number of variables that can potentially
change actions, although complexity highly increases with the number of switch candi-
dates, as there will be many different hypercubes in which the solution can enter.
Example 8. Consider now the line graph with 7 nodes, and let us pick starting hypercubes
that violate one of the two conditions to show that, in these sets, there could be solutions
converging to extended equilibria.
Using the interpretation given in Remark 12, the hypercubes violate at least one condition
when one of the following occurs:
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3.2 – Binary actions

Figure 3.9: The two areas separated by the line computed in Example 7.

1. they have a 1 in the second or second to last cell, e.g. (0,0,0,0,0,1,0),

2. they have two adjacent 1s, e.g. (0,0,1,1,0,0,0),

3. they have two 1s, two index numbers apart, e.g. (0,0,1,0,1,0,0).

In case 1, solutions can either enter hypercube (0,0,0,0,0,0,0) and go to consensus, or
enter h∗ =(0,0,0,0,0,1,1), which contains the extended equilibrium x∗ = (0,0,0,0, 1

2 ,
1
2 ,1),

as h∗
i =

qi
j=1(i− j)kj for k = (0,0,0,0,1,−1,0).

In case 2 we already find ourselves in a hypercube that is home to an extended equilib-
rium, that is x∗ = (0, 1

2 ,
1
2 ,

1
2 ,

1
2 ,0,0), as h∗ = (0,0,1,1,0,0,0) is such that h∗

i =
qi

j=1(i−j)kj

for k = (0,1,−1,−1,1,0,0) (to verify, notice that ∀i ≥ 2, hi = hi−1 +
qi−1

j=1 kj).

In case 3, x4 is allowed to change action as its neighbours both have action 1, and
if that happens we enter the hypercube (0,0,1,1,1,0,0), that similarly to the previous
case respects the condition for the presence of an extended equilibrium, this time for
k = (0,1,−1,0,−1,1,0), that generates x∗ = (0, 1

2 ,
1
2 ,1,

1
2 ,

1
2 ,0).

Proposition 6. The dynamic on the line graph restricted to the hypercube [0,1]n converges
for all initial conditions.

Proof. Let hi = 0, we’ve seen that if for instance hi−1 = 0 and hi+1 = 1, then hi can’t
change value (unless hi−1 or hi+1 change first) as xi will asymptotically go to 1

2 . In the
case of the dynamic in [0,1]n, if at any time T two adjacent nodes have the same action,
then they will stay in that quantization interval ∀t > T . In fact, if hi−1 = hi = 0, hi can’t
reach value 1 unless hi−1 does so first, but analogously hi−1 can’t reach value 1 unless hi

does first.
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Let us assume x0 ∈ Sh, where h is such that hi−1 = hi for some i. Let’s show that hj

is definitely constant ∀j = 1 . . . , n. By assumption, and following the previous reasoning,
we have that hi−1 and hi are constant, without loss of generality say hi−1 = hi = 0 ∀t ≥ 0.
Consider hi+1, if also hi+1 = 0, then it has an adjacent cell with the same value, which
implies hi+1 definitely constant. If instead hi+1 = 1, we have two options: either hi+2 = 0
for a long enough time for hi+1 to reach 0, or hi+2 = 1 (or hi+2 = 0 but it switches action
before hi+1). In either case, we end up having hi+1 = hi+2 =⇒ hi+1 and hi+2 are definitely
constant. Essentially, we have that a string of 2 adjacent nodes with same action leads
to a string of m > 2 nodes with definitely constant action, which has the last two cells
with equal value, allowing to repeat the process until the end of the line. Since xn always
copies xn−1’s action, once hn−1 is definitely constant, so will be hn shortly after. Once we
enter the last hypercube, the dynamic becomes linear, and since it’s bounded, necessarily
it is convergent, concluding the analysis.

If ∄i such that hi−1 = hi, then h is made of alternating 1s and 0s, e.g. h =
(0,1,0,1,0,1,0), that is every cell has all neighbours with opposite action, meaning that
each coordinate is pulled towards the middle and is allowed to cross the frontier. In most
cases, solutions will move from a hypercube to the other through a face, which is repre-
sented by a single coordinate switching action (a coordinates reaches 1

2 before everyone
else). If that happens, that coordinate will have the same action of its neighbours, thus
we have converge thanks to the previous analysis.

In general, solutions can enter new hypercubes through an edge (more than one coor-
dinate reaches 1

2 at the same time), which causes the behaviour switch for m coordinates,
where 1 < m < n. This implies that there are at least 2 adjacent cells such that one
switches and one does not, causing two adjacent cell to have same action, and therefore
leading to the previous case again.

The last possibility is that of all coordinates reaching 1
2 at the same time, when the

solution reaches the vertex of the hypercube. Let’s show that there cannot be a switch of
all actions. Working with Carathéodory solutions, we can potentially enter any hypercube.
When attempting to enter the hypercubes with all coordinates switched, though, we find a
vector field that pushes back towards x = (1

2 , . . . ,
1
2), not allowing Carathéodory solutions

to enter the hypercube (see Figure 3.10). In fact, let h be such that h1 = a ∈ {0,1} and

hi =
I
a, if n odd,
1 − a, if n even.

By switching all the actions, the hypercube becomes

h′
i = 1 − hi =

I
1 − a, if n odd,
a, if n even.

Apparently, a cycle between h and h′ could seem possible, but notice that by switching
all the action we reverse the vector field. Going from h to h′ is only possible through the
point x = (1

2 , . . . ,
1
2), but when in x, the solution cannot enter h′ as the vector field there

opposes it. In summary, not all actions can change at the same time, making a cycle
between h and h′ impossible.
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Figure 3.10: Visualisation of the vector fields around x = (1
2 , . . . ,

1
2).

Remark 13. Proposition (5) and Proposition (6) also hold for the ring graph, that only
differ from the line graph for a single edge. Adding the edge connecting v1 and v2 means
that nodes are indistinguishable, in particular every node has the same degree, which
makes the requirement h2 = hn−1 = 0 not necessary.

3.2.2 Tree graph
In this section we provide an algorithm to build extended equilibrium on undirected tree
graphs, when we consider binary action and opinions in [0,1]. Firstly, let us introduce
some useful definitions.

Definition 40 (Level). In an undirected tree graph, one arbitrarily chosen node is defined
to be the root. The level of a node is the distance between the root and the node in
question.

Definition 41 (Leaf). In a tree graph, the nodes of degree 1 (that are not the root) are
called leaves.

To build the extended equilibria, we will work only with the quantized values, i.e. we
will build h∗ such that there exists an extended equilibrium x∗ ∈ Sh∗ . Knowing h∗, it is
trivial to find x∗, by simply setting x∗

i equal to the average of its neighbours’ quantized
values.

To find all the possible h∗ let us start by setting h1 = 0 (the cases with h1 = 1 can
then be obtained by symmetry), where v1 is the root. The idea is to show that we can
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Figure 3.11: Visualisation of the concept of level.

(somewhat arbitrarily) set the values for the level 1 nodes, then for level 2, and so on,
without finding ourselves forced to make a choice for hi that would break the equilibrium
of the previously set nodes.

Firstly, consider the set of level 1 nodes, which we label L1. In order for the root node
v1 to be in equilibrium, we need the average of the quantized values of the v1’s neighbours
(i.e. level 1 nodes) to be no greater than 1

2 . To achieve this, we can have at most ⌊d1
2 ⌋

nodes set to 1, whereas the remaining nodes (up to d1) will be set to 0. Notice how leaves
must necessarily be set to the same quantized value of their only neighbour. In fact,
having degree 1, a leaf’s dynamic is described by

ẋl = q(xj) − xl,

from which ẋ∗
l = 0 ⇒ x∗

l = q(x∗
j ) ⇒ h∗

l = h∗
j .

After setting the level 1 leaves to 0, we need to fill the remaining d1 − #(L1 ∩ L),
where L is the set of leaves, thus #(L1 ∩ L) is the number of level 1 leaves. From a
combinatorics point of view, each possible way to assign the remaining values is a result
of the extraction of d1 −#(L1 ∩L) elements from a pool containing ⌊d1

2 ⌋ times the element
1 and d1 − #(L1 ∩ L) times the element 0. To write all equilibrium points, we need to
write down all possible outcomes.

In general, the i-th step of the algorithm sets the values of level i nodes, for i =
2, . . . , lmax, where lmax is the depth of the tree. The actions taken are the following:

• for all vj ∈ Li−1, consider the set X = Nj ∩ Li,

• set the leaves in X to the value hj ,

• assuming hj = 0 (if it’s not, the results can still be obtained by symmetry), compute
all possible outcomes of the extraction of dj − 1 − #(Li ∩ L) elements from a pool
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containing dj − 1 − #(Li ∩ L) times the element 0 and ⌊di

2 ⌋ − hk times the element
1, where hk is the quantized value of the only vk ∈ Nj ∩ Li−2 (since there can be at
most ⌊di

2 ⌋ neighbours with value 1, if hk = 1 there is one less available 1 to be set in
X).

Notice that, in a tree, a node of level i ≥ 1 has exactly one neighbour of level i − 1
and dj − 1 neighbours of level i + 1. This explains the −1 that appears in the number
of values that need to be set through combinatorics, dj − 1 − #(Li ∩ L), which can also
be seen as #(X \ L). This fact also explains why the algorithm works. When setting the
values of the nodes in Nk ∩ Li−1, the value chosen for hj doesn’t matter (so long as vj is
not a leaf), even if hj /= hk it only takes vj to have a single other neighbour to ensure its
own equilibrium. Since vj is not a leaf, dj ≥ 2 which implies that there are dj − 1 ≥ 1
neighbours of vj in Li. To summarize, a level i node is set in equilibrium at the i-th step
of the algorithm if it is a leaf, and at the (i+ 1)-th step if it isn’t. At some point, a level
set will only contain leaves, ending the algorithm.

Figure 3.12: The set of nodes of nodes the algorithm works on for all vj .

Let us apply the algorithm on an example.

Example 9. Consider the tree graph in Figure 3.13. We start by setting h1 = 0. Since
v2 is a leaf, necessarily h2 = h1 = 0. h3 can either be set to 0 or 1, as in either case
v1 will have neighbours of average ≤ 1

2 . In fact, d1 − #(L1 ∩ L) = 2 − 1 = 1 and
⌊d1

2 ⌋ = 2
2 = 1. Moving on to L2, we will have h4 = h3, while for v5 and v6 different

choices can be made. A total of ⌊d3
2 ⌋ −h1 of them can be set to 1. If h3 was set to 0, that

becomes 2 − 0 = 2, i.e. both h5 and h6 are allowed to be 1 and we will have four options:
(h5, h6) = (0,0); (0,1); (1,0); (1,1). Otherwise, if h3 = 1, we work by symmetry, pretending
h3 = 0 and h1 = 1 from which only one between h5 and h6 is allowed to be 1 so that the
options are (h5, h6) = (0,0); (0,1); (1,0);, which, by reverting the symmetry, end up being
(h5, h6) = (1,1); (1,0); (0,1). The last three nodes are leaves and as such they copy their
neighbour’s value.
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Figure 3.13: The graph considered in Example 9.

To summarise, so far the possible extended equilibria are found when h is one of the
ones shown in Table 3.3, where for simplicity the leaves were left out, as they don’t add
degrees of freedom.

h1 h3 h5 h6

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 1 1
0 1 1 0
0 1 0 1

Table 3.3

To obtain all the extended equilibria, by symmetry we list all the options that sprout
from the initial choice h1 = 1. In Table 3.4, all the extended equilibria are shown.
Remark 14. A potential way to find extended equilibria on a generic connected graph
would be to work on one of the graph’s spanning trees, find all the extended equilibria of
the spanning tree, then add one by one the missing edges, updating the list of equilibria
at each step. Notice that when connecting two nodes that aren’t leaves, some extended

46



3.2 – Binary actions

h1 h2 h3 h4 h5 h6 h7 h8 h9

0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 1 0 1 1 0
0 0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 1 1 1 0 1 1 0
0 0 1 1 0 1 0 0 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 0
1 1 1 1 0 1 0 0 1
1 1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 1
1 1 0 0 1 0 1 1 0

Table 3.4: h∗ found in Example 9 such that Sh∗ contains extended equilibria.

equilibria can be lost, as the average of the neighbours of the nodes in question can change
and leave the interval of equilibrium, [0,1

2 ] or [1
2 ,1] depending on the quantized value of the

nodes. On the other hand, if we add an edge connecting a leaf to another node, the leaf
stops having degree 1, and so it will be able to having different values, therefore opening
up possibilities for new equilibria.

3.2.3 Directed cycle graph
We now consider a directed cycle graph. The dynamic is

ẋi = q(xi+1) − xi, ∀i = 1, . . . , n, (3.12)

considering xn+1 = x1 by definition.
The aim of this section is to investigate the presence of limit cycles for n = 3, as in

[11] was found a limit cycle for n = 6 and we would like to check if they can be found in
smaller graphs as well.

For n = 3, the dynamic is 
ẋ1 = q(x2) − x1,

ẋ2 = q(x3) − x2,

ẋ3 = q(x1) − x3.

(3.13)

We start our analysis from the initial conditions x0 = (1
2 +δ, 1

2 −ϵ, 1
2) with δ, ϵ > 0. This

choice is due to the fact that we must not be in a consensus cube, which would imply the
convergence to the consensus point. In this case we chose our initial cube to be S(1,0,1),
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Figure 3.14: Directed cycle graph with n = 3.

as despite the arbitrary choice of the value of q(x0
3), x3 is pointing towards x1 which has

action 1, so x3(t) > 1
2 , q(x3(t)) = 1 for t ∈ (0, T1). However the choice doesn’t matter,

as any non consensus cube can be obtained from (1,0,1) by simple changes of variables
(rotation of indexes and/or symmetry with respect to 1

2).

Moreover, one of the variables is picked to start with value 1
2 . The dynamic inside any

hypercube is linear, not allowing cycles inside a single cube, which means that any cycle
at some point will necessarily cross the border between different cubes, i.e. xi(T ) = 1

2 for
some i and some T . We choose T0 = 0, and define T1, T2, . . . the times at which the other
infinite frontier crossings of the hypothetical cycle will happen.

We start by solving Equation (3.12), using Equation (1.4), in the starting cube, i.e.
we consider q(xi) constant for all i. We have

ẋi = q(xi+1) − xi =⇒ xi = [x0
i − q(xi+1)]e−t + q(xi+1),

which applied to (3.13) with x0 = (1
2 + δ, 1

2 − ϵ, 1
2) yields

x1(t) = (1
2 + δ)e−t,

x2(t) = (−1
2 − ϵ)e−t + 1,

x3(t) = −1
2e

−t + 1.

Now we compute T1, the time at which the solution crosses into a new cube. Either x1 or
x2 can reach value 1

2 and therefore switch actions. Notice that if x2 does so first, we enter
S(1,1,1), which can never be left. Since we are interested in the case of infinite switches,
we consider the case in which x1 crosses first, entering S(0,0,1), that happens under the
condition δ < ϵ. T1 is found as follows:

x1(T1) =
31

2 + δ

4
e−T1 = 1

2 =⇒ e−T1 = 1
2(1

2 + δ)
=⇒
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− T1 = ln
3 1

1 + 2δ

4
=⇒ T1 = ln(1 + 2δ).

Computing x2(T1) and x3(T1) we get

x2(T1) =
1

− 1
2 − ϵ

2
e−T1 + 1 =

1
− 1

2 − ϵ
2
eln( 1

1+2δ
) + 1 =

=
−1

2 − ϵ

1 + 2δ + 1
2 + 1

2 = 1
2 + −1 − 2ϵ+ 1 + 2δ

2(1 + 2δ) = 1
2 − ϵ− δ

1 + 2δ
and

x3(T1) = −1
2e

−T1 + 1 = −1
2e

ln( 1
1+2δ

) + 1 =

= − 1
2(1 + 2δ) + 1

2 + 1
2 = 1

2 + 1 + 2δ − 1
2(1 + 2δ) = 1

2 + δ

1 + 2δ .

The solution at time T1 is then
x1(T1) = 1

2 ,

x2(T1) = 1
2 − ϵ−δ

1+2δ ,

x3(T1) = 1
2 + δ

1+2δ ,

which has a similar structure to the initial condition: one variable has value 1
2 and the

other two have disagreeing actions (remember that δ < ϵ). To make it clear, we apply the
change of variables 

x′
1(t) = 1 − x2(t),
x′

2(t) = 1 − x3(t),
x′

3(t) = 1 − x1(t),

which, dropping the apostrophes, results in
x1(T1) = 1

2 + ϵ−δ
1+2δ = 1

2 + δ′,

x2(T1) = 1
2 − δ

1+2δ = 1
2 − ϵ′,

x3(T1) = 1
2 ,

with δ′ = ϵ−δ
1+2δ > 0 and ϵ′ = δ

1+2δ > 0.
We are in the same configuration as where we started from, we can reiterate the

reasoning to obtain the same results, this time in function of δ′, ϵ′: x1 crosses first if
δ′ < ϵ′, which happens at time T2 = T1 + ln(1 + 2δ′), yielding

x1(T2) = 1
2 + δ′′,

x2(T2) = 1
2 − ϵ′′,

x3(T2) = 1
2 ,
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with δ′′ = ϵ′−δ′

1+2δ′ and ϵ′′ = δ′

1+2δ′ . This can be iterated i times to find δ(i), ϵ(i) as a
function of δ(i−1), ϵ(i−1) (and in cascade as a function of δ, ϵ) with the law

δ(i) = ϵ(i−1) − δ(i−1)

1 + 2δ(i−1) , ϵ(i) = δ(i−1)

1 + 2δ(i−1) . (3.14)

To go to step i+ 1, it must hold

δ(i) < ϵ(i), (3.15)

otherwise the solution will enter the consensus cube.
Our goal is to investigate the behaviour as the number of possible switches goes to

infinity. Looking for an expression of δ(i), ϵ(i), we start by computing δ′′, ϵ′′:

δ′′ = ϵ′ − δ′

1 + 2δ′ =
δ

1+2δ − ϵ−δ
1+2δ

1 + 2( ϵ−δ
1+2δ )

=
2δ−ϵ
1+2δ

1+2δ+2ϵ−2δ
1+2δ

= 2δ − ϵ

1 + 2ϵ ,

ϵ′′ = δ′

1 + 2δ′ =
ϵ−δ

1+2δ

1 + 2( ϵ−δ
1+2δ )

=
ϵ−δ

1+2δ
1+2δ+2ϵ−2δ

1+2δ

= ϵ− δ

1 + 2ϵ .

One way to make computation easier is to write δ(i) = N
(i)
δ

D(i) ,ϵ(i) = N
(i)
ϵ

D(i) (notice that the
denominator is always the same for δ and ϵ), so that we can write

δ(i) = ϵ(i−1) − δ(i−1)

1 + 2δ(i−1) =
N

(i−1)
ϵ

D(i−1) − N
(i−1)
δ

D(i−1)

1 + 2N
(i−1)
δ

D(i−1)

=
N

(i−1)
ϵ −N

(i−1)
δ

D(i−1)

D(i−1)+2N
(i−1)
δ

D(i−1)

= N
(i−1)
ϵ −N

(i−1)
δ

D(i−1) + 2N (i−1)
δ

= N
(i)
δ

D(i) ,

ϵ(i) = δ(i−1)

1 + 2δ(i−1) =
N

(i−1)
δ

D(i−1)

1 + 2N
(i−1)
δ

D(i−1)

=
N

(i−1)
δ

D(i−1)

D(i−1)+2N
(i−1)
δ

D(i−1)

= N
(i−1)
δ

D(i−1) + 2N (i−1)
δ

= N
(i)
ϵ

D(i) .

The update laws are therefore

N (i)
ϵ = N

(i−1)
δ , (3.16)

N
(i)
δ = −N (i−1)

δ +N (i−1)
ϵ = −N (i−1)

δ +N
(i−2)
δ , (3.17)

D(i) = D(i−1) + 2N (i−1)
δ , (3.18)

which can be used to compute the values shown in Table 3.5. Notice also that the
condition δ(i) < ϵ(i), necessary to avoid the convergence to consensus for one more step,
can be written as N (i)

δ < N
(i)
ϵ = N

(i−1)
δ ⇒ N

(i)
δ −N

(i−1)
δ < 0, as the denominator is always

positive.
We notice the appearance of Fibonacci coefficients, by induction we can write
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step N
(i)
δ N

(i)
ϵ D(i) condition for next step

i = 0 δ ϵ 1 δ < ϵ
i = 1 −δ + ϵ δ 1 + 2δ 2δ > ϵ
i = 2 2δ − ϵ −δ + ϵ 1 + 2ϵ 3δ < 2ϵ
i = 3 −3δ + 2ϵ 2δ − ϵ 1 + 4δ 5δ > 3ϵ
i = 4 5δ − 3ϵ −3δ + 2ϵ 1 − 2δ + 4ϵ 8δ < 5ϵ
i = 5 −8δ + 5ϵ 5δ − 3ϵ 1 + 8δ − 2ϵ 13δ > 8ϵ
. . . . . . . . . . . . . . .

Table 3.5

N
(i)
δ = F−i−1δ + F−iϵ, (3.19)

where Fi is the i-th term of the Fibonacci sequence, considering that the Fibonacci
sequence, defined by F0 = 0, F1 = 1, Fi = Fi−1 +Fi−2, can also be extended towards −∞,
by writing Fi−2 = −Fi−1 + Fi. This yields the sequence

. . . 13,−8,5,−3,2,−1,1,0,1,1,2,3,5,8,13 . . .

In fact, Expression (3.19) holds for the i ≥ 0 results shown in Table 3.5, and

N
(i)
δ = −N (i−1)

δ +N
(i−2)
δ = −F−iδ − F−i+1ϵ+ F−i+1δ + F−i+2ϵ =

= (−F−i + F−i+1)δ + (−F−i+1 + F−i+2)ϵ =

= F−i−1δ + F−iϵ.

Condition (3.15) can then be written, through a similar computation (since N (i)
δ −

N
(i−1)
δ = −N (i+1)

δ ), as

N
(i)
δ −N

(i−1)
δ < 0 =⇒ −N (i+1)

δ = −F−i−2δ − F−i−1ϵ < 0 =⇒ −F−i−2δ < F−i−1ϵ.

Notice how F−i = −Fi for i even and F−i = Fi for i odd. Thanks to this fact we can write

=⇒
I
Fi+2δ < Fi+1ϵ if i even,
−Fi+2δ < −Fi+1ϵ if i odd.

=⇒
I

Fi+2
Fi+1

δ < ϵ if i even,
Fi+2
Fi+1

δ > ϵ if i odd.

Taking i even and combining conditions δ(i) < ϵ(i) and δ(i+1) < ϵ(i+1) we obtain
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Fi+2

Fi+1
δ < ϵ <

Fi+3

Fi+2
δ.

The sequence Fi+2
Fi+1

converges to φ = 1+
√

5
2 for i → +∞ (from below for i even and from

above for i odd), thus we can conclude that the system goes through infinite switches if
and only if ϵ = φδ. Let us show that δ(i), ϵ(i) → 0 for i → +∞. Assume δ(i) → δ, ϵ(i) → ϵ.
It must hold δ = ϵ−δ

1+2δ

ϵ = δ
1+2δ

=⇒ δ =
δ

1+2δ
− δ

1 + 2δ
=⇒ δ = δ − δ − 2δ2

(1 + 2δ)2 =⇒

δ(1 + 2δ)2 + 2δ2 = 0 =⇒ δ(1 + 4δ + 4δ2 + 2δ) = 0 =⇒ δ = 0
as the second factor is always strictly positive. Also ϵ = 0 by substitution.

Knowing that the solution asymptotically grows closer to (1
2 ,

1
2 ,

1
2), the last step neces-

sary to complete the analysis is to understand if that happens for a finite or infinite time.
Taking Ti = ln(1 + 2δ(i)) and ϵ = φδ, let us compute the time required to switch infinite
times, i.e.

∞Ø
i=1

Ti =
∞Ø

i=1
ln(1 + 2δ(i)) ≈ 2

∞Ø
i=1

δ(i) = 2
∞Ø

i=1

N
(i)
δ

D(i) < 2
∞Ø

i=1
N

(i)
δ .

Expression (3.19), when ϵ = φδ, becomes

N
(i)
δ = F−i−1δ + F−iϵ = F−i−1δ + F−iφδ = δ(F−iφ+ F−i−1).

A property of φ states that φn = Fnφ + Fn−1, which can be used in the previous
expression to obtain

N
(i)
δ = δφ−i,

from which
∞Ø

i=1
Ti < 2

∞Ø
i=1

N
(i)
δ = 2δ

∞Ø
i=1

φ−i < +∞.

What we’ve found is that x∗ = (1
2 ,

1
2 ,

1
2) is a Zeno point, i.e. a point for which x(t) → x∗

for t → T ∗ < +∞, meaning that the solution converges in finite time, while the dynamic
goes through infinite switches. If needed, the solution can be extended by defining it in
[T ∗,+∞) as the solution having x(T ∗) = x∗ as initial condition. In Figures 3.15 and 3.16
simulation results are shown, that will be discusses in a dedicated section later.
Remark 15. The previous proof implies the convergence for all initial conditions for the
directed cycle with 3 nodes. Indeed, we’ve seen that the only initial conditions that don’t
cause the solution to end up in a consensus cube after a finite number of switches converge
to the Zeno point. The proof only took in consideration solutions crossing from a cube
to the other through a face (i.e. only one variable equal to 1

2 at the time). This is due
to the fact that if a solution crosses through an edge or a vertex, it necessarily enters a
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Figure 3.15: Plot of x1(t), x2(t), x3(t) on the directed cycle, when the Zeno point arises.

Figure 3.16: Plot of the quantized values (translated up and down to avoid overlap and
grant better clarity). The vertical lines represent the switch of a quantized value, and
consequently of the dynamic. Many switches appear in the correspondence of the Zeno
point.

consensus cube right after, completing the convergence proof. In fact, in the first case the
crossing point will be of the type x0 = (1

2 ,
1
2 , x), meaning that x2 will move towards x,

instantly copying their action. Consequently, also x1, moving towards x2, will copy x’s
action, as such we reach a consensus cube. Similarly, in the last case x0 = (1

2 ,
1
2 ,

1
2), once

we arbitrarily decide the action of one of the nodes, the other two will instantly copy it,
ending the proof.
Remark 16. As mentioned earlier, in [11] a cycle was found on the directed cycle graph
with n = 6, starting from the initial conditions in S(1,0,0,0,1,1)

x0 = (1
2 + δ,

1
2 ,

1
2 − β,

1
2 − δ,

1
2 ,

1
2 + β),

where δ = 1
4(

√
5 − 1), β = 1

4(3 −
√

5).
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We can rearrange the terms to show the dependence on φ. In fact,

δ = 1
4(

√
5 − 1) = −1 −

√
5

4 = −ψ

2 = φ

2 − 1
2 ,

β = 1
4(3 −

√
5) = 1

2 − δ = 1 − φ,

which allows us to write

x0 = (φ2 ,
1
2 ,
φ

2 − 1
2 ,1 − φ

2 ,
1
2 ,

3
2 − φ

2 ).

We highlight the distance from the quantized value each node is looking at, i.e. the
distance from h = (0,0,0,1,1,1), and then factor out 1

2 to show the presence of powers of
φ.

x0 = (φ2 ,
1
2 ,
φ

2 − 1
2 ,1 − φ

2 ,
1
2 ,

3
2 − φ

2 ) =

= h+ (φ2 ,
1
2 ,
φ

2 − 1
2 ,−

φ

2 ,−
1
2 ,

1
2 − φ

2 ) =

= h+ 1
2(φ,1, φ− 1,−φ,−1,1 − φ) =

= h+ 1
2(φ1, φ0, φ−1,−φ1,−φ0,−φ−1).

It is interesting to see how exponential solutions strictly depend on the golden ratio.
Furthermore, simulations seem show that the cycle is attractive for initial conditions that
keep that symmetry, i.e.

x′
0 = h+ 1

2(a, b, c,−a,−b,−c),

even when dropping the restriction of binary actions. Some examples are shown in Figure
3.19.

To investigate the cause let us consider the cycle, and focus on x2, x3 and x4, the
variables quantized to 0, as by symmetry everything will also work for the remaining
variables.

What happens in the cycle is that at a certain time T there is a switch in the values
of the variables, i.e. xi(T ) = xi+1(0). In particular, for the considered variables, we have

x2(T ) = x3(0), x3(T ) = x4(0), x4(T ) = x5(0) = 1
2 = x2(0).

To have this happen in general we would need 3 points a, b, c, such that

x2(T ) = ae−T = b, x3(T ) = be−T = c, x4(T ) = (c− 2a)e−T + 2a = a.

Since we want the cycle to revolve around 1
2 , it must be a = 1

2 , we can then compute

1
2e

−T = b =⇒ −T = ln(2b),
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3.2 – Binary actions

Figure 3.17: x′
0 = h+ 1

2(5,3,2,−5,−3,−2).

Figure 3.18: x′
0 = h+ 1

2(0.8,0.9,0.7,−0.8,−0.9,−0.7).

Figure 3.19: Some examples of solutions converging to the limit cycle.

be−T = c =⇒ c = 2b2,

(c− 1)e−T = −1
2 =⇒ (2b2 − 1) · 2b+ 1

2 = 0 =⇒ 4b3 − 2b+ 1
2 = 0.

One solution of this equation is negative (see the plot in Figure 3.20) and thus unaccept-
able, while the other two are b = 1

2 , (trivial solution, all three points coincide so they
"swap" places at time T = 0), and b = φ−1

2 , which yields the cycle. We can check this fact
by substitution:

4
31

2

43
− 2 · 1

2 + 1
2 = 4 · 1

8 − 1 + 1
2 = 1

2 − 1 + 1
2 = 0,
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4
3
φ−1

2

43
− 2 · φ

−1

2 + 1
2 = 1

2φ
−3 − φ−1 + 1

2 =

= 1
2(2φ− 3) − (φ− 1) + 1

2 = φ− 3
2 − φ+ 1 + 1

2 = 0.

Figure 3.20: Solution of the equation x3 + 1
8 = 1

2x.

The importance of φ can also be seen through the following construction. Take the
function x(t) = et, and the subset of the domain A ⊂ R,A = {j lnφ, j ∈ Z}. We have
codA = {φj , j ∈ Z}, as

x(j lnφ) = ej ln φ = eln φj = φj .

What we see is that by taking a linear sequence of times ai, we obtain a sequence of
positions x(ai) for which x(ai) = x(ai−1) + x(ai−2).

This is due to the property of φ

φn = φn−1 + φn−2,

that can be proven using the relation φn = Fnφ+ Fn−1, as

φn−1 + φn−2 = Fn−1φ+ Fn−2 + Fn−2φ+ Fn−3 =

= (Fn−1 + Fn−2)φ+ Fn−2 + Fn−3 = Fnφ+ Fn−1 = φn.

This implies that, if we consider the family of solutions of the Cauchy ProblemsI
ẋj(t) = xj(t),
xj(0) = φj ,

(3.20)

with j ∈ Z, we have xj(T ) = xj+1(0) for T = lnφ, i.e. every solution takes the place
of the following one. Notice that the solution of the Cauchy Problem for a generic j
is xj(t) = φjet = et+j ln φ, so that studying the solutions is equivalent to studying the
evolution of the sequence of the elements of A, that all change in time according to the
law x(t) = et.

Our aim was to find initial conditions from which one exponential solution would cover
as much space as the other two combined in the same time. The same time requirement
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3.3 – Comments on simulations and numerical issues

explains the linear sequence of the elements of A, while φ appears to satisfy the other
condition. In fact, we want

x(ai) = x(ai−1) + x(ai−2),

but it also holds that
x(ai) = x(ai−1) +

Ú ai

ai−1

x(t)dt.

Consequently, imposing this condition means requiring x(ai−2) =
s ai

ai−1
x(t)dt, which from

a generic succession bi = i ln b, yields

x(bi−2) =
Ú bi

bi−1

etdt ⇐⇒ ebi−2 = ebi − ebi−1 ⇐⇒ bi − bi−1 = bi−2 ⇐⇒ b2 − b− 1 = 0

=⇒ b = φ

since b > 0.
In brief, φ seems to appear due to the presence in the cases considered of three variables,

one of which must be the sum of the other two.

3.3 Comments on simulations and numerical issues
In the previous sections, some simulation results were shown. Simulating discontinuous
equations is a delicate matter, however the numerical approach to discontinuous equa-
tions is not in the scope of this thesis. The simulations were run mostly in order to
provide graphs to help show or explain the analytical results found, and in that matter
the simulations have always been coherent.

The simulations in question were run on the software Matlab, using the Implicit Euler
method. The time interval considered was t ∈ [0,10] which allowed to show all the
phenomena of interest, while the time step of the numeric method was set to be dt = 10−4.

Regarding the method used, the update law used by Implicit Euler to solve the ordinary
differential equation ẋ(t) = f(x(t)) is

x(k + 1) = x(k) + dt · f(x(k + 1)),

which applied to Equation (3.2) becomes

xi(k + 1) = xi(k) + dt ·
nØ

j=1
aij [q(xj(k + 1)) − xi(k + 1)],

where k is the index of the current time step.
Notice how this would require the use of xj(k+1), that is yet to be computed for j > i.

For this reason, the method was coded to use the updated value xi(k + 1) for xi and the
non-updated value xj(k) for xj , resulting in the update law

xi(k + 1) = xi(k) + dt ·
nØ

j=1
aij [q(xj(k)) − xi(k + 1)].
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Quantized model

The graphs in Figure 3.15 show the behaviour of the solution closing in on the Zeno
point. However, due to the approximating nature of numerical methods, it is obviously
impossible to see all the infinite switches of the quantized values, as they happen at time
intervals of length decreasing to 0, which quickly become shorter than the time step chosen.
This makes spotting the presence of the Zeno point impossible from simulations alone,
so that we require an analytical study to prove its existence. However, its presence can
become more evident by running the simulation with smaller time steps, as more switches
become visible, as shown in Figure 3.23, where q(x1) and q(x3) can be seen to go through
an additional switch when using the refined time step dt = 10−7. The switches appear
as vertical lines, as the variables stay in the quantized interval 0 for an extremely short
time.

Another issue that can be caused by numerical approximation can arise when simu-
lating the previously mentioned cycle, as that requires a perfect switch of the the initial
conditions, thus small errors can add up in the long run, driving the cycle to break. This
problem can be avoided by choosing an adequately small time step for the interval con-
sidered. In Figure 3.26 can be seen the comparison of the results when using two different
value for the time step dt, 10−3 and 10−4, when focusing on the interval t ∈ [0,10].
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3.3 – Comments on simulations and numerical issues

Figure 3.21: dt = 10−4.

Figure 3.22: dt = 10−7.

Figure 3.23: Quantized values of the variables around the Zeno point, for different time
step sizes. 59
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Figure 3.24: dt = 10−3.

Figure 3.25: dt = 10−4.

Figure 3.26: Comparison of the effect of numerical errors on the cycle for different time
step sizes.
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Chapter 4

Conclusion

In this thesis we have provided a variety of results for Carathéodory solutions of the model
(3.2). Firstly, Proposition 2 states that every extended equilibrium, in the general case,
attracts the entire hypercube it is defined on. Secondly, we expanded on the work on
extended equilibria done in [1], by providing analytical expressions for extended equilibria
on the line and ring graphs, as well as formula for the cardinality of the set of extended
equilibria on the line graph.

After introducing the binary action hypothesis, we provided a proof of convergence for
all initial conditions on the line graph, that trivially translates to the ring graph as well
from Remark 13. Furthermore, we described an algorithm to find extended equilibria on
tree graphs. Finally, we recalled from [11] the existence of a cyclic solution on a directed
cycle graph with n = 6 nodes, and we tried to obtain a similar result for n = 3, which
lead to the discovery of a Zeno point instead.

We now conclude the thesis by discussing some possible interpretations of the model
in a social setting, and later listing the main problems still unanswered.

4.1 Interpretation
The model proposed shows a variety of phenomena. We’ve seen how disagreement is the
norm, how clusters of adjacent nodes with the same action are the expected outcome,
even how in some cases opinions keep changing without ever settling down.

Some other interesting considerations can be made. Consider, as an example, the
extended equilibrium x∗ = (0, 1

2 ,
1
2 ,1) ∈ S(0,0,1,1) on the line graph with 4 nodes. This

example shows that a node’s behaviour doesn’t depend only on its opinion, but also on
its past history. In fact, x2 and x3 share the same opinion, but behave differently. An
interpretation is that these individuals influence each other to the point where they agree,
but they both continue doing what they were doing before out of force of habit. This effect
is further amplified in Example 6, in which all nodes agree but show different behaviours.

Another aspect worth highlighting is the influence of the degree of the nodes. We know
that consensus is always achieved in the complete and complete bipartite graphs, both of
which model networks with high level of connection. Indeed, in these cases the average
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degree of the nodes scales linearly with the number of nodes n, while on the line graph
the maximum degree is 2 no matter the size of the graph. It is realistic to think this fact
impairs the flow of information, supported by the wide variety of non-consensus attractive
points the line graph presents.

The degree of the nodes is not the only factor, though, as the structure of the graph
also matters. For instance, consider the following example.
Example 10. Take a complete graphK ′

50 at consensus 0, a complete graphK ′′
50 at consensus

20, then create an undirected edge going from a node of K ′
50 to a node K ′′

50, in a one to
one correspondence. The resulting graph is already in his final hypercube, as every node
of K ′

50 converges towards the average of its neighbours’ actions which is equal to 20
50 <

1
2 ,

hence it doesn’t change action (the same can be said for K ′′
50).

We have created a graph that is in equilibrium with 2 sets of nodes that have drastically
different opinions, and this difference can be arbitrarily increased when increasing the
number n of nodes in the graph. Notice that each node has a considerable degree di =
n
2 , which is the same of the case of the complete bipartite graph Kn

2 , n
2
, which instead

always converges to consensus. This suggests that when the degree is high, non-consensus
can still arise due to the lack of communication between different communities. This is
realistic as modern day society is characterized by very high degrees of interaction, and
yet disagreement is still the normality.

4.2 Open problems
The present work focused mainly on the study of convergence of the solutions, particu-
larly on finding extended equilibria, as convergence to these points appear to be the most
frequent outcome. The results presented were obtained on specific graphs, thus the main
open problem is to find a generalisation to any graph, that is finding analytical expression
for extended equilibria on a general graph, and determining conditions under which con-
vergence is achieved. Notice that we have examples of non convergence of the solutions
(limit cycle in the directed cycle graph with 6 nodes), but most cases seem to converge.
It could be interesting to find large classes of graphs for which convergence is guaranteed,
good candidates might for instance be undirected graphs and acyclic graphs.

It could also be interesting to investigate other graphs that might manifest cyclic
behaviours, namely the directed cycle graph with a number of nodes different from 3 and
6. Finding examples on other kind of graphs would be useful to try and understand what
condition allows cyclic solutions to exist.

Another problem is the translation of the results found for binary action to the general
case q(xi) ∈ Z. The restriction to binary action drastically simplifies computations, but
could be not necessary in many cases, likely for example for the convergence on the line
discussed in section 3.2.1.

Finally, the topic of numerical simulations could be studied, to understand which of
the multiple solutions is computed and in general to formally justify the reliability of the
numerical results.
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