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Abstract

Throughout their lifetime, neurons are constantly exposed to a large variety of
mechanical stimuli in many physiological circumstances. In this regard, experimen-
tal evidence demonstrated how mechanical cues play a central role in determining
the direction and velocity of axonal outgrowth. In particular, neurons seeded on
planar substrates undergoing periodic stretches have been shown to reorient almost
perpendicularly to the main stretching direction, reaching a stable equilibrium
orientation in correspondence with angles within the interval [60°, 90°]. The entire
reorientation and outgrowth process is guided by a highly motile structure at
the axon tip: the growth cone. In this Thesis, we present a new model for the
reorientation and growth of neurons in response to cyclic stretching. A linear vis-
coelastic model for the growth cone reorientation with the addition of a stochastic
term is merged with a moving-boundary model for tubulin-driven neurite growth
to simulate the axonal pathfinding process. Various combinations of stretching
frequencies and strain amplitudes have been tested, through the numerical sim-
ulation of the proposed model. Specifically, simulations show that neurons tend
to reorient almost perpendicularly to the stretching direction in great agreement
with biological evidence. Moreover, the model captures the relation between the
stretching condition and the velocity of reorientation. Indeed, numerical results
show that as the frequency and amplitude of oscillation increase, neurons tend to
reorient themselves more rapidly.
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Chapter 1

Introduction

The significance of electrochemical signals in numerous cellular processes has been
acknowledged and under investigation for several years. Nevertheless, only recently,
more focus has been directed towards the cellular response to mechanical stimuli
coming from the surrounding environment. There are many biological circumstances
in which mechanical cues are relevant such as growth, differentiation, embryogenesis,
and motility [1–3]. In addition, understanding the mechanical interactions of
cells with the environment can be fundamental in providing insights into various
pathologies and in developing new methods for tissue engineering applications.
Various types of cells, including fibroblasts, myofibroblasts, cardiomyocytes, and
endothelial cells, have been studied for their mechanical sensitivity. However, in
this work, we are going to focus on how the neuron cells respond to mechanical
actions, specifically on the importance of mechanical cues in the axonal growth
mechanism which comprehends both the elongation and guidance phases. The
study will examine the reorientation of neurons under cyclic stretch conditions,
with a particular emphasis on the biological observations reported in [4].

So far, the development of the nervous system has been mainly studied in
the context of biochemistry, molecular biology and genetics. However, there is a
growing recognition of the importance of mechanical information in shaping the
evolution and development of the neuronal network. It has been shown through
experimental evidence that processes like neural migration, axon extension and
neural stem cell differentiation are influenced by mechanical forces and cues [5–7].

Understanding the mechanism involved in the above-mentioned phenomena is
fundamental and of great interest nowadays because neurons, both in the central
and peripheral nervous system, undergo constant mechanical loading during their
life cycle. For example, some peripheral nerves adapt continuously during the
extension and flexion of joints. The nerves must sustain and rapidly adapt to the
tension generated by the high rate of growth of some big mammalians. Indeed, the
blue whale’s spinal chord is reported to increase its length by 2 cm/day and its
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spinal axons can reach a total length of 10 m-30 m [8–10]. A similar axon growth
rate is peculiar of the giraffe’s neck nerves [8]. The centrality role of forces has also
been discovered in the gyrification. During the brain folding process, the brain
size increases and numerous active and passive forces act in and on the cortex
over different length and time scales. The cortical neurons must adapt to the
tension exerted on them during this process, depending on the region they are
placed. However, recent studies have shown how neurons could play an active role
in the process as generators of tension. This gives an enlightening explanation
of how the brain cortex folds [5, 7]. Some in vitro experiments demonstrate
how different stiffness of the culture substrate, different mechanical stimuli and
different substratum topographies affect the gene expression and protein synthesis
in neural stem cells [7]. This leads us to think that mechanics plays a central
role during embryogenesis. All these experiments, show how mechanical cues have
an important role throughout all scales in nervous system development, from the
molecular assembly in a single neuron to the final configuration of the whole nervous
system.

Among all these phenomena, our aim is to investigate the neurite outgrowth in
response to a dynamic mechanical stimulation. In particular, we are interested in
studying how the neurites’ shape and outgrowth direction can be controlled by an
applied cyclic stretch. The morphology of neuron cells and the different mechanisms
involved in the axonal growth will be presented in Section 1.1 followed by a more
detailed list of experimental evidence on how mechanical cues affect the neurites’
growth. In this section, particular attention will be put on the neurons’ response to
cyclic stress. Section 1.2 is devoted to a short review of the mathematical models
for the axonal elongation and reorientation. Finally, the aim and the structure of
this dissertation are stated in Section 1.3.

1.1 Biological background

1.1.1 Neuron morphology
Neurons are the basic unit cells of the nervous system. They are among the most
complex cells of the animal kingdom because of their peculiar morphology and their
ability to communicate with other excitable cells through electrochemical signalling
pathways. Neurons are cells with a distinct polarity and they are morphologically
divided into: soma, dendrites, axon and the axon tip (Fig. 1.1). The dendrites and
the axon are globally identified as neurites. The soma, also known as cell body,
is the central part of the neuron containing the nucleus and most of the cellular
organelles. It processes incoming signals from the dendrites and generates outgoing
signals. The dendrites are branching structures extending from the cell body that
receive signals from other neurons or sensory receptors. The axon is the longest

2



Introduction

Figure 1.1: Morphology of a neuron. Once the neuron is settled, the growth cone
transforms into a series of synaptic boutons.

neurite of the neuron and it carries the electrochemical signals from the soma to
the axon terminals which are connected to other neurons or tissues. The axon tip
is a highly motile structure, also known as growth cone. The growth cone has an
important role during the axonal pathfinding process in the early stages of axonal
growth. It serves as a guide for the axon and it determines the speed and direction
of the axon outgrowth. Once the axon establishes contact with a targeted neuron
or another tissue cell, the growth cone loses most of its motility by transitioning to
a series of branched terminations. Each of these terminations ends with a synapse
[5, 11, 12].

As we will see, the growth cone plays a central role in the early stage of axonal
development. For this reason, it is necessary to take a look at its specific morphology
in order to better understand how neuron development works. The growth cone
is a highly dynamic hand-shaped termination of a neurite. It presents a very
dense cytoskeleton structure shown in Fig. 1.2. The peripheral domain, also called
P-domain, consists of finger-like filopodia made of F-actin bundles. These bundles
are also known as stress fibers. Then, there is a transitional zone (T-domain) made
of actomyosin contractile structures which form sort of arcs perpendicular to the F-
actin filaments. Finally, the C-domain is the inner part of the growth cone. Here
we have all the microtubules (MTs) that enter the growth cone from the axonal
shaft.
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Figure 1.2: Cytoskeleton of the growth cone. Taken with permission from [13].

1.1.2 Axonal elongation
Neuronal growth is the key process necessary to establish the neuronal network
during neurogenesis. The most relevant process for neuronal growth is the axonal
elongation, i.e. the addition of new cellular material to the axon. This phenomenon
has been proven to happen in two consecutive stages, both driven by mechanical
tension [8, 14]. The first phase is called tip-growth, while the second stage is known
as stretch growth or towed axon phase.

Tip-growth

The newly born axon is guided by the growth cone (GC) through a pool of chemo-
mechanical cues and obstacles to reach its final target. The GC is able to move in
a spatially biased way to translate environmental signals into directional movement
towards the target cell. This entire process is known as axonal pathfinding. Growth
cones can integrate a large variety of stimuli such as chemotropic molecules, electric
signals, mechanical triggers, topography and stiffness of the substrate. Once the GC
has identified the preferred direction of growth, a complex cytoskeletal remodelling
process starts and leads to the axonal elongation in the growth cone’s preferred
direction. The GC advancement pulls the axon and the tension generated on it
leads to the axonal elongation. This has been first proven by Lamoureux in 1989
and presented in [15]. During this phase the new cellular material is added in
correspondence with the axon tip [12, 13].

In more details, the axon outgrowth process is divided into three stages, said
protrusion, engorgement and consolidation [12, 13] which are represented in Fig. 1.3
and described in the following.
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Figure 1.3: Phases of axon outgrowth. Adapted with permission from [13].

Protrusion. The actin bundles couple to the substrate via focal adhesion points.
This happens thanks to cells-adhesion molecules that serve to create a clutch
between the cytoskeleton and the extracellular matrix. This leads to a decrease
of the F-actin retrograde flow rate enhancing the polymerization of the actin
filaments against the GC external membrane. As a consequence, the filopodia
and lamellopodia move forward to extend the leading edge of the growth cone.
This process pulls the axonal shaft and provokes the axonal elongation. The
higher the pulling magnitude, the more space is generated for the development
of new microtubules. Hence, the higher is the pulling force, the longer will be
the resulting axon.

Engorgement. The actin in the T-domain is removed and the arc myosin-II
structures let the microtubules grow and invade the P-domain. In this phase,
new cell material is added to the axon tip by the polymerization of tubulin at
the free ends of the MTs. The quantity of free tubulin present in the growth
cone and its assembly rate determines the magnitude of axonal outgrowth.

Consolidation. The myosin-II arcs compact the newly formed MTs in a new
localized C-domain advanced with respect to the previous position. The
F-actin polymerization slows down and goes back to an equilibrium with the
actin retrograde flow. Filopodia retract and the whole process is ready to
start again along a new preferred direction.

Our current understanding of how the axonal pathfinding phenomenon works is
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far from complete. However, we can firmly state that the asymmetrical distribution
of traction forces in the remodelling process of GC’s cytoskeleton leads the axon
to change its growing direction [12]. If the resulting force is not aligned with the
previous growth direction, the GC’s base is pulled toward the side of higher tension,
which thus determines the area that the microtubules can invade and toward which
they bend. To summarize, neurite growth depends on the complex interplay of
active pushing and pulling forces mediated by the growth cone traction, the tubulin
transportation and the microtubules assembly.

Stretch growth

Once the growth cone reaches the targeted cell, the axon is established and the
synaptic connection is created. At this point, we step into the second stage of
the axonal elongation: the stretch growth or towed axon phase. This phase is still
poorly understood and it has received less attention than the tip-growth process.
Nevertheless, it is well known that axon elongation happens because of the tension
generated by the migration of the target cells which pull the neuron. This second
stage of elongation allows neurons to adapt in cases such as the growth of an
organism. During the stretch growth process, new material is no longer added to
the axon tip. It is although added in various spots along the axon, most probably
in correspondence with the axon hillock, i.e. in the proximity of the soma (see
Fig. 1.1). The towed axon elongation phase was first theorized and presented in
[16] by Weiss in 1941. Then experiments conducted by Bray [17] and Dennerll [18]
biologically validated the theory.

1.1.3 Experimental results
We will now discuss some experiments that have been carried out to study neurons’
responses to different types of mechanical stimuli. It is important to note that these
studies were carried out on various types of neuronal cells, including those in the
peripheral and central nervous systems of different organisms. Certain mechanical
properties may not be universally applicable to all neurons, but are rather specific
to the experimental model being used. Therefore, some experimental results may
appear contradictory and inconsistent with one another.

As already stated, the ability of cultured neurites to elongate under the applica-
tion of tension was first demonstrated by Bray in [17]. He also showed that the
initiation and elongation of neurites could be regulated by tension and that the
role of the cellular cytoskeleton is fundamental for the stabilization of neurons.
Bray’s work has been validated and extended by Dennerll et al. in [18] and Zheng
et al. in [19]. They both recreated the condition of stretch growth by pulling the
axon tip of different neurons with glass needles in order to increase the tension
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(a) Elongation rate of PC12 neurites as
function of applied tension

(b) Response of two PC12 neurites to applied
forces greater and less than 100 µdyn

Figure 1.4: Plots created from the experimental data collected by Dennerll in
[18]. In (a) the elongation rate of PC12 neurites as a function of the initial applied
tension is plotted. In this experiment, the minimum threshold value to have axonal
elongation is 100 µdyn. In (b) is shown the response of two PC12 neurites to applied
forces greater and less than 100 µdyn identified as the minimum threshold value to
have axonal elongation.

on the neurite. They found the existence of a linear relation between the growth
rate and the tension applied, with surprisingly high sensitivity (see Fig. 1.4a). An
increase in tension of 1 µdyn leads to an average increase of the elongation rate
equal to 1.5 µdyn/h. However, there exists a minimum tension threshold below
which axon elongation does not happen (see Fig. 1.4b). For chick sensory neurons,
this critical value has been reported to vary from 50 µdyn to 150 µdyn in most
cases[20]. However, this value can vary and it is peculiar of each neuron. There
has also been identified a lower limit tension value, called rest tension, which is
the minimum tension that the axon tends to maintain in physiological conditions.
Each neuron has its own rest tension and its value usually spans from 2 nN to
5 nN[21]. Furthermore, nerves are naturally subject to tension even in homeostatic
conditions, as they are interconnected with other tissues characterized by the ability
to contract and relax, such as motor muscles or the heart. The continuous change
in configuration of such tissues forces neurons to constantly regulate the internal
tension along the axon in order to prevent damage to their cellular functions.
In the case of axonal slackening, when the tension along the axon is below the
rest value, the axon starts to actively regulate its internal tension and undergo a
straightening process. That’s the reason why neurons generally tend to assume a
straight-line configuration. This phenomenon has recently been explored in depth
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Figure 1.5: Experimental results taken with permission from [21] are presented.
The sequence on the top shows the straightening process of a neuron after the
axonal slackening (scale bar: 40 µm). The graph below shows how the tension
along the axon is gradually restored to its rest value (around 2 nN in this case).

by Rajagopalan et al. in [21]. In addition to the straightening process, in order to
maintain a constant tension as the axon length increases, the cross-sectional area of
the axonal shaft grows by the addition of new cellular material [18]. These biological
observations provide a simple control mechanism for axons to accommodate tissue
enlargement in growing animals.

Further investigations on stretch growth phenomena have been carried out by
Pfister et al. in [8]. They used a microstepper motor system to evaluate the effects
of escalating rates of stretch on integrated axon tracts over days to weeks in culture.
The in vitro experiments showed how mechanical stimuli can induce extreme axonal
growth and even exceed every previously observed limit of neurite growth. Indeed,
under ideal conditions, an 8 mm/day rate of stretch growth has been reached.
Extreme growth occurs with a gradual increase in the strain rate of the applied
deformation. The strain rate step should be small and spaced with acclimation
periods otherwise neurons undergo disconnection with damages to their internal
structure.

Other studies have been addressed on the importance of substrate compliance in
neuron development. Since axonal tension is modulated by the nature of neuronal
anchorage to its substrate, substrate stiffness has been shown to have a strong
influence on the axonal growth mechanism. Neuronal cells physiologically grow

8



Introduction

Figure 1.6: Some results from the experiments conducted in [23]. On the left
panel, the different directionality of growth between the softer and the stiffer
substrate is visible (scale bar: 20 µm). On the right panel, the negative durotaxis of
a nerve can be observed (scale bar: 15 µm). The images are taken with permission
from [23].

on substrates that are softer than those where other types of cells develop. That
holds true in particular for the neurons of the central nervous system. Indeed the
physiological stiffness of the brain tissue stands around 0.1 kPa [7]. In this regard,
Koch et al. [22] conducted a study on the distinct behaviour of neurons belonging
to the CNS (central nervous system) and PNS (peripheral nervous system) on
substrates with varying levels of stiffness. Substrates ranging from 150 Pa to
5000 Pa have been used. Hippocampal neurons, part of the central nervous system,
have shown an outgrowth independence on the substrate stiffness. On the contrary,
dorsal root ganglion cells (part of the peripheral nervous system) displayed robust
outgrowth on stiffer substrates (∼ 1000 Pa) and difficulties in growing on the
softer ones. The same topic has been investigated by Koser et al. in [23]. They
observed the growth of Xenopus retinal ganglion axons in vivo. Growth on a stiffer
(1 kPa) and a softer (0.1 kPa) substrate has been analysed. The average extension
velocity of axons was significantly higher on stiff than on soft substrates. Also, the
directionality of growth has been influenced by substrate compliance (see Fig. 1.6,
left panel). While on stiffer substrates, axons grew rather straight and parallel to
each other, on softer substrates axons grew less coherently. Another astonishing
result observed is the negative durotaxis the nerves undergo (see Fig. 1.6, right
panel). Indeed, fascicles of neurons in the presence of a stiffness gradient in the
substrate tend to bend and grow towards the softer part of the substrate.

Lately, many works in literature have headed the attention on the role of the
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geometrical features of the substrate on the axonal outgrowth. Many types of
micropatterned substrates have been tested in order to screen if the substrate
topography can effectively promote different aspects of neuronal development.
Usually, the nano-imprinted patterns consist of parallel grooves with various depths,
widths and distances between adjacent ridges. The size of such grooves usually
spans from 1 µm to 100 µm as in [20, 24–26], up to 500 µm as in [27, 28]. In
most of the experiments, axons grew in the longitudinal direction of grooves, even
though their behaviour changes in relation to the topography dimensions and the
neuron cell characteristics. The maximum alignment along the patterns happens
when the spacing of the grooves matches the linear dimension of the growth cone
(2 µm-10 µm) [25, 26]. Moreover, the nerve cells prefer to grow on ridge edges
and elevations rather than in grooves [27]. The experiments in [29] show how
neurons can potentially assume every shape by following the substrate topography,
i.e. circular, squared and hexagonal grooves. However, in some cases, neurons
show the ability to cross the grooves and do not follow the pattern alignment by
growing perpendicularly to the ridges. This behaviour is observed to depend on
the diameter and Young’s modulus of axons [20].

Cyclic stretch

By now, it is recognized and experimentally proven that several types of cells align
along a precise direction in response to a deformation applied on the substrate they
are attached to. When a monolayer of cells experiences cyclic deformation, the cells
positioned on the substrate tend to adjust their orientation in a specific manner.
This adjustment continues until they achieve a stable configuration characterized by
a clearly defined angle between their axis and the direction of principal stretching
[1, 3, 30–33]. However, whether neurons have a similar response to cyclic stretching
remains an elusive issue even though the directional alignment and outgrowth of
neurons is a critical step of nerve regeneration engineering and functional recovery
of nerve systems. Most mechanobiological studies in neuroscience focus on cellular
responses to static strain, as reported in the previous subsection, and there has
been very limited effort to reveal the role of dynamic mechanical stimulation on
neurogenesis. Throughout their lifetime, neuronal cells are constantly exposed to
cyclic strain. For instance, the brain tissue is highly vascularized. Brain perfusion
is demonstrated to provoke a cyclic tissue deformation in the range of 2% [34].
Also, the movements of the head can induce mild accelerations that deform the
brain matter with strains up to 5% with peaks of 10%-15% in some extreme sports
activities [34]. Deformation may reach much higher rates during embryogenesis.
Another example is the case in which nerves should sustain high levels of strain
caused by the tissues they are interconnected with, such as the skin, the heart and
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the muscles. Skeletal muscle cells are reported to reach levels of strain around 25%-
35% [35]. The normal myocardial strain in humans falls into the 16%-22% interval,
but if we consider the radial strain the values are much higher (35%-59%) [36].
Finally, the shoulder skin can reach strain levels from 40% to 60% [37]. Therefore,
cyclic stretch is a physiological condition that the nervous system experiences on a
daily basis.

One of the first attempts at studying how periodic stretching can promote neurite
outgrowth has been performed by Higgins et al. in [38]. They had stimulated
for 7 days SH-SY5Y human neuroblastoma cells with a cyclic uniaxial stretch
with of 10% strain rate and 0.25 Hz frequency. They actually found out that cell
stretching alone induced noticeable neurite outgrowth with respect to the control
group. Ishibashi et al. presented a similar work in [39]. Dorsal root ganglion
neurons have been triggered with a uniaxial cyclic stretch with 10% strain rate and
frequencies in the 0.25 Hz-1 Hz range. Experiments showed how frequency has little
impact on enhancing neurite outgrowth, while time is an essential parameter. The
longer neurons were stretched, the higher their extension rate was. A more accurate
study has been delivered by Haq et al. in [35]. They investigated the combined
effect of strain rate and frequency on PC12 cells development. The considered
deformations with 4%, 8%, 16% strain rates and 0.1 Hz, 0.5 Hz, 1 Hz frequencies.
The influence of a micro-textured substrate has been also analysed. Strain rate and
frequency have been discovered to have an interrelated relationship. Specifically, at
high strain levels, increasing the frequency decreases the development of neurite
extensions, whereas at low strain rates, increasing the frequency increases the
development of neurites. For what concerns the directionality of axon growth, the
high strain condition (16% at 1.0 Hz) caused most of the neurites to orient away
from the direction of the applied strain. The other stretch conditions tested (4%
and 8% amplitudes with different frequencies) led to a more uniform distribution
of the axon directions. Embryonic rat cortical neurons’ have been exposed to
relatively high strain rate values (7%, 15% and 28%) with a 0.3 Hz frequency in
[34]. Despite the high deformation imposed, neural cells showed high resilience
and they all survived. All the tests displayed directed outgrowth of neurites with
a preferred branch direction away from the main strain direction. The steered
neuronal outgrowth effect became more pronounced with increasing amplitudes to
ultimately reach average axon orientations nearly perpendicular to the deformation
direction. In this experimental setting, strain rate has been discovered to be more
influential on the axonal orientation process than the frequency. This result is in
contrast with experimental findings on other cell types where frequency has been
demonstrated to have a stronger influence on the reorientation process than the
strain amplitude [1, 3, 30]. In [35], where PC12 neuron cells have been tested, the
frequency seems to be just an accelerator of the orientation process, but it does
not influence the final stable angle orientation.
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Figure 1.7: Images of the tests conducted in [4] on PC12 cells after 24, 72, and
120 h. The upper row is the control sample. In the lower row a cyclic stretch with
10% amplitude and 0.25 Hz frequency has been applied. Scale bar: 100 µm. Images
taken with permission from [4].

In this dissertation, we are going to focus on the results delivered by Lin et al.
in [4]. We are going to use it as the main reference because of its completeness in
reporting experimental evidence on the effects of cyclic stretch on neuron reorienta-
tion and axon outgrowth. The article will be used to validate the mathematical
model we will develop in the next sections by comparing our numerical results to
the biological observations reported in the literature. In this work [4], a stretching
device has been used to impose a cyclic uniaxial deformation to a PDMS substrate
on which PC12 cells were cultured. Polydimethylsiloxane (PDMS) is a silicone elas-
tomer widely used in micro and nanotechnology applications, microfluidic devices,
optical systems and sensors. Thanks to its high biocompatibility, this material
is widely used in biological experiments as well. Usually, the PDMS samples are
coated with collagen or fibronectin to favour cell attachment; poly-L-lysine may be
added to increase the biocompatibility level. PDMS usually offers high elasticity
and its properties remain stable in time if subjected to temperature fluctuations
[40]. However, the mechanical characteristics of this material are easily tunable by
varying the samples-making process, i.e. the curing temperature or the mixing ratio
of the base polymer and the cross-linking curing agent [41–43]. In particular, in [4]
they used 20×60×1 mm PDMS strips (Sylgard 184, 10:1) that were cured for 2 h
at 80 ◦C. For what concerns the experimental stretching condition of the substrate,
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relatively low values of stretching amplitudes (2–10%) and frequencies (0.05–0.25
Hz) have been adopted. Results have been collected after 24h, 72h and 120h of
stretching period (see Fig. 1.7). It was observed that neurons tend to align away
from the stretch direction when stretching amplitude and frequency are sufficiently
large. In particular, stretch amplitude seems to be relevant in provoking neurons’
reorientation. For low strain values (2%) axons do not align along a particular
direction even though maximum frequency is applied. With higher strain values
(5% - 10%) neurons align almost perpendicularly to the main stretch direction.
Frequency has more influence on the timing of the reorientation phenomenon. The
higher is the frequency, the faster it happens. In addition, experiments show that
the axon elongation rate is hardly affected by cyclic stretch. More details on the
results present in [4] will be delivered in Section 4.

1.2 Mathematical modelling background
Formalizing biological processes to create mathematical models allows for a com-
prehensive understanding of the fundamental aspects of such phenomena and offers
a direct way to test hypotheses. In this section, we will present some mathematical
models developed to understand the underlying mechanisms responsible for neuron
development. A complete review of such models can be found in [14].

The first attempt at modelling axons and their mechanical behaviour has been
made by Dennerll in [18]. After discovering the relationship existing between
tension and axon growth rate, he proposed a way to mechanically model the axon.
In order to best reproduce the viscoelastic behaviour of neurites, he has proposed
a combination of three classical mechanical elements: a relatively stiff spring in
series with a Voigt element, in parallel with a dashpot, corresponding to a standard
linear solid (see Fig. 1.8a). Considering then the fact that over a certain tension
threshold axon undergoes elongation, a further dashpot has been added to the
model giving the so-called Burgers element (see Fig. 1.8a). The results in [18] have
been later deepened in [44] where an investigation into the mechanical properties
of neurons has been conducted. More recently, Dennerll’s work has been extended
by O’Toole et al. in [45] with the inclusion in the model of the adhesion between
the axon and the substrate. They treated the neurite under tension as a series of
dashpots, while the attachments to the substrate have been represented as friction
dashpots (Fig. 1.8b).

For what concerns the neurite growth process, several models exist. The
first approach consists in modelling the neurite by compartmental models. Each
compartment proposed in [46–51] is associated with one chemical concentration and
exchanges material with other compartments via diffusion and/or active transport
by motor proteins. In [50] the simplest situation is modelled, considering two
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(a) Burgers element (b) Model for axon and substrate interaction

Figure 1.8: In (a) k1 and k2 are the spring constants. H is the constant of the
first free dashpot while G is the growth dashpot constant. In (b) the axon modelled
as in [45]: a series of growing dashpots with constant G. The attachments to the
substrate are friction dashpots with constant η.

compartments: the soma and the growth cone. Growth relies on the concentration
of tubulin in the axon tip and it is supplied by the soma through diffusion and
active transport. The model has been extended in [51] by introducing a limiting
growth factor. Afterwards, the previous compartmental models have been refined
by considering the value of the concentration at every point along the neurite, thus
one-dimensional continuum models of axonal elongation have been developed in
[46–49]. In particular, the model given in [48] is a one-dimensional moving-boundary
model for tubulin-driven axonal growth made up of a coupled system of three
differential equations. The first PDE describes the time and spatial evolution of
tubulin along the axonal shaft following a classical convection-diffusion problem.
The other ODEs describe the evolution in time of the axonal length and the
free tubulin concentration in the GC. This model will be completely reported in
Section 2.4 because it will be part of the model proposed in the current dissertation.

Some models in the literature aim to reproduce more complex phenomena than
simple axon growth, such as axon turning, beading, and changes in the axons’
cross-sectional area. For example, in a recent study [52], a three-dimensional
continuum mechanical model was presented for axonal shaft development. The
model represents the neurite as a stress-free cylinder with a given initial cross-
sectional area and length, fixed in correspondence with the soma end. The shaft’s
mechanical behaviour is based on the morphoelasticity theory, which successfully
reproduces growth, retraction, and axonal turning in response to guidance cues.
Similarly, another study [53] used a similar morphoelastic approach to model and
reproduce the negative durotactic response observed in nerves [23]. Axon bundles
are modelled as morphoelastic rods with motion analogous to that of optic rays.
Interestingly, Snell’s law proves to be an excellent mechanism for reproducing the
peculiar durotactic response of neurons [53].
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Lately, some models have been addressed to reproduce the dynamics of neuronal
cells cultured on patterned surfaces. In [54] a general stochastic approach is
used. The growth cone movement is described by Langevin and Fokker-Planck
equations with both deterministic and stochastic contributions. Growth alignment
is determined by surface geometry, and it is quantified by the deterministic part
of the Langevin equation. A physical approach has instead been used in [20]. A
3D physical model of axonal outgrowth was developed. In this model, axon shafts
are simulated as elastic 3D beams with focal contacts with the substrate. The
bending direction of axon tips is governed by the energy minimization principle.
The model predicts both axonal groove ridge crossing and alignment in relation to
the geometrical and mechanical properties of the axons.

As mentioned before, there is a lack of investigations on the effects of cyclic
stretch on neuron reorientation. Thus, very few mathematical models have been
developed to better understand and reproduce the phenomenon. This is surprising
considering the fact that there are, instead, numerous models aimed at explaining
the phenomenon of reorientation in other cell types than neurons [1, 3, 10, 30–
33]. Usually, these works focused on creating models in which the equilibrium
orientation angle of the cells coincides with the minimum strain, the minimum
stress or the minimum energy configuration. In particular, models that are based
on the minimization of energy have shown a high accuracy in reproducing the
biological evidence of the cell reorientation process. So far, the only theoretical
framework aimed at explaining the neuron alignment under dynamical stretch is
the one proposed by Lin et al. in [4]. In this article, in addition to the experiments
that have been already discussed, they propose a mathematical model for neuron
reorientation and axonal outgrowth. The idea of such model is to connect the
evolution of neuron orientation and configuration to the microscopic dynamics
of subcellular structures, such as stress fibers, focal adhesions, and microtubules.
The numeric results are finally compared to the biological observations they made
resulting in a model that well reproduces the experimental evidences.

1.3 Aim and structure of the Thesis
As mentioned earlier, it is clear that there is still a lot to be learned about the
complex mechanisms that govern the development of neuronal cells. In particular,
the way in which these cells respond to mechanical stimuli is an area that has
not been extensively studied in the literature. This is particularly true when it
comes to understanding how these cells react to cyclic stretching. Consequently,
the development of mathematical models in this regard has significant potential
for advancement, even though it is quite challenging.

The aim of this Thesis is to introduce a new model for the reorientation and
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growth of neurons in response to cyclic stretching. We plan to model the neuron
by dividing it into three main parts: soma, axon, and growth cone. Afterwards, we
will simulate the tip growth phase and axonal guidance in response to dynamic
mechanical stimuli. The soma is supposed fixed, while an ODE gives the equation
of motion of the GC in the Lagrangian frame. The GC position depends on its
orientation and speed. The orientations will be given by an adaptation of the linear
viscoelastic model presented in [1] that has been originally developed for other cell
types’ reorientation phenomenology. The speed of the axon tip will be instead
derived by the diffusion tubulin-driven model for axonal growth presented in [48].

The rest of the Thesis is organized as it follows. In Chapter 2 the mathematical
model is fully presented. First, we report some continuum mechanics basic notations.
Then, we formulate the hypothesis on the substrate’s mechanical behaviour and
the equation of motion for the growth cone is given. Afterwards, we infer the
reorientation model equations for the growth cone by adapting the work done in
[1] and then we add the one-dimensional model for the axonal growth given in [48].

In Chapter 3 the numerical implementation of the whole model is delivered. The
equations are discretized by using an explicit Euler scheme for the time derivatives
and finite differences schemes for the spatial terms. The integral terms are as well
approximated by using explicit numerical schemes. The discretized equations are
numerically solved using Matlab ®.

In Chapter 4 we set all the parameters and conditions involved in the model.
We then show the results of the numerical simulations, showing that they both
qualitatively and quantitively agree with the experimental observations given in [4].

In Chapter 5, we will conclude the dissertation by summarizing the results
obtained, recalling the assumptions we made and discussing the limitations of the
proposed model. Lastly, some possible modifications and expansions of the model
for possible future works will be presented.
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Chapter 2

Mathematical model

In this Chapter, the mathematical model for neuron growth and reorientation in
response to the cyclic stretch of the underlying substrate is presented. Our model
combines the linear viscoelastic model for cell reorientation given in [1] with the
one-dimensional axon growth model delivered in [48].

In Section 2.1 we recall some notions of continuum mechanics [55, 56]. Then,
in Section 2.2 a short review of the main model assumptions is presented. The
general frame to describe and quantify the axon morphology is delivered, as well
as the hypothesis on the substrate behaviour. We then focus on the growth cone
axonal pathfinding process. Afterwards, we present in Section 2.3 an adaptation
of the linear viscoelastic model for cell reorientation given in [1]. We define an
elastic energy and by its minimization the equilibrium angles are computed. To
model the randomness in the living beings’ behaviour, a stochastic term is added
to the reorientation equation in Section 2.3.2. Finally, in Section 2.4, we follow
what is done in [48] to develop a one-dimensional moving-boundary model for
tubulin-driven axonal growth.

2.1 Mechanical framework
Let B∗ be the reference configuration, namely the substrate when no stretch is
applied. A particle in this configuration can be identified by the Lagrangian
coordinates X = (XK). Then, once the deformation has been applied, we can
identify the current configuration Bt at time t (see Fig. 2.1). We denote the
coordinates of a particle in the deformed configuration by the Eulerian coordinates
x = (xi). The two configurations are linked by a smooth map χ, called finite
deformation, which assigns to a general material point X a spatial point x as
follows

x = χ (X, t) ∈ Bt ∀(X, t) ∈ B∗ × [0, T ]. (2.1)
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B∗
Bt

εx

X x

χ

Figure 2.1: Reference configuration and current configuration in the case of a
uniaxial stretch.

We can now introduce the deformation gradient tensor F, a linear application that
associates each infinitesimal vector dX in B∗ with the correspondent infinitesimal
vector dx in Bt:

dx = F(X, t) dX. (2.2)
The representative matrix of this tensor is

F = (FiK) =
A

∂xi

∂XK

B
, (2.3)

We require that detF > 0 in every point of the continuum media and at any instant
time.

The vector that links the position of a material point X in the reference con-
figuration to its correspondent position in the deformed configuration is called
displacement:

u := χ (X, t) − X = x − X. (2.4)
The gradient of u allows us to rewrite the deformation gradient in the following
form

F = I + Grad u, where (Grad u)iK = ∂ui

∂XK

, (2.5)

where I is the second order identity tensor.
There are other mathematical entities that will be useful for our purposes. The

first one is the right Cauchy-Green deformation tensor

C := F⊤F. (2.6)

The aforementioned tensor measures how much the deformed body differs from the
undeformed one.

The other mechanical definition that will be useful in our dissertation is the
Cauchy stress tensor T. Let us first consider the general tension t defined as the
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surface load per surface unit considered on the body Bt. The Cauchy hypothesis of
simple continuum states that

t = t(x, t, n), (2.7)

where x is a point on the surface we are considering and n is its outward normal
vector with respect to the control volume one is considering. The Cauchy’s theorem
assures the existence and uniqueness of the second-order stress tensor T, such that
the surface load may be written as

t = Tn. (2.8)

We now take into account the case in which the displacement u of every material
point is relatively small. We can define a deformation as infinitesimal when the
gradient of the displacement is very small, i.e. ∥Grad u∥ ≪ 1 or ∥Grad u∥ ∼ δ
where δ is an infinitesimal parameter. In this setting, we define the infinitesimal
strain tensor as

E := 1
2
è
Grad u + (Grad u)⊤

é
. (2.9)

The tensor E coincides with the symmetrical part of Grad u and it can be interpreted
as a first approximation of C. Indeed, by neglecting all the terms of a higher order
than the linear one, we can write

C = I + 2E + o(ϵ). (2.10)

Then, the infinitesimal strain tensor provides all the information needed to charac-
terize the deformation applied to the body.

Let us now consider a generic unit vector d along whose direction we take a
segment of infinitesimal length dS in the Lagrangian configuration. We define the
longitudinal strain, with respect to the direction d, in the following way

ε(d) := ds − dS

dS
= d · Ed, (2.11)

where ds is the length of the segment after the deformation, i.e. in the current
configuration. The longitudinal strain is simply the ratio between the length
variation of an infinitesimal segment, due to a given deformation, and its initial
length in the reference configuration. The general matrix form of the infinitesimal
strain tensor can thus be expressed as

E =

 ε1 γ12/2 γ13/2
γ12/2 ε2 γ23/2
γ13/2 γ23/2 ε3

 , (2.12)
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where εi = ε(di) are the longitudinal strains (or normal strains) along the directions
di and γik = γ(di, dk) are the shear strains. These types of strains represent the
change in angle between two perpendicular elements of the body undergoing the
deformation. The directions along which the shear strains are null are called
principal directions and the relative strains applied in these directions are named
principal strains. Recalling that E is symmetric, it is always possible to find an
orthogonal coordinate system with axes oriented along the principal directions and
such that Eq. (2.12) thus writes

E =

εx 0 0
0 εy 0
0 0 εz

 , (2.13)

where x, y and z denote the principal directions. In this work, we will set the x
axis in the direction of the maximum applied stretch which is a principal direction
and z orthogonal to the substrate.

2.2 Model assumptions

2.2.1 Neuron model and substrate mechanics
In this section, some considerations about the mechanical properties of the substrate
and the mathematical representation of the neuron.

Substrate mechanical properties. The first thing to point out is that neurons
are attached to the substrate, hence the whole cell body perceives the deformation
that is externally imposed on it. In fact, thanks to the presence of focal adhesion
(FAs) and stress fibers in the cell, the PDMS deformation is transferred to the
soma, the axon and the growth cone. We do not explicitly model FAs and the
process of force transmission and we will assume that the deformation of the
substrate is completely transferred to the neuron. Then, for simplicity, we suppose
that the traction forces generated by all the cellular structures don’t modify the
mechanical behaviour of the substrate. Considering the range of strain amplitudes
experimentally tested in [4] and that we are going to numerically reproduce in our
model, we decide to treat the substrate as linear, elastic and isotropic [41].

As mentioned in the previous Chapter, the particular experimental set-up used
to study cell reorientation phenomena consists of a thin strip of PDMS on which
cells are seeded. It allows us to apply the plane strain approximation, i.e. the
substrate is treated as a 2D layer and every deformation along the z axis is neglected.
In addition, the experimental data are usually reported for cells located in the
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Figure 2.2: COMSOL simulation of the stretched substrate. The strains along
the principal directions are plotted considering a deformation with ε = 5%.

central portion of the substrate as reported in Fig. 2.2. In that area, we can assume
that the stress and the strain are homogeneous, as also shown in Fig. 2.2 obtained
using COMSOL. Then, the principal directions coincide with the axis along which
the stretch is applied and the orthogonal one. Then Eq. (2.13) becomes

E =
C
εx 0
0 εy

D
, (2.14)

whereas the deformation gradient takes the form

F ≈ I + E =
C
1 + εx 0

0 1 + εy

D
. (2.15)

In the majority of experiments, the applied strain along the x direction is usually
a waveform function like

εx(t) = 1
2ε [1 − cos(ωt)] = 1

2ε [1 − cos(2πft)] (2.16)

where ε is the maximum strain amplitude, ω is the angular frequency expressed
in rad/s and f is the frequency expressed in Hz. The strain along the y axis εy

can be either controlled externally (biaxial stretching) or freely determined by the
mechanical characteristics of the substrate (uniaxial stretching). In both cases,
it is useful to introduce the biaxiality ratio r that represents the percentage of
contraction in the y direction with respect to the strain applied along the x axis.
In formula, the definition reads

r := max
∀t∈T

εy(t)
ε

. (2.17)
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and in our dissertation, its value will remain constant over time. The strain along
the y axis can be consequently expressed as εy = −rεx. We will see in Section 2.3
that parameter r is fundamental for the determination of the final cells orientation.
Finally, we point out that all the variables of our model are computed and reported
in the Lagrangian configuration. As a remark, when the applied deformation is
null the Lagrangian frame and the Eulerian one coincide.

Axon representation. We will divide the neuron into soma, axonal shaft and
growth cone (see Fig. 1.1). In order to model the axonal pathfinding process,
the soma is assumed to be fixed and we consider the axon as the only neurite by
neglecting other branches possibly developing from the soma. The axonal growth
is thus characterized by the evolution of the position of the growth cone. The
position of the growth cone is identified by a material point located at the axon tip
and provided with a direction of orientation N. This direction is determined by
the preferred direction assumed by the stress fibers (SFs) making up the growth
cone cytoskeleton (see Fig. 2.3). The cone’s direction N depends on the angle θ(t)
measured with respect to the main stretch direction and defined as follows

N(t) =
è
cos θ(t), sin θ(t)

é⊤
. (2.18)

All the SFs are linked by proteins arranged orthogonally to the fibre bundles (see
Fig. 2.3) whose direction is this

N⊥ =
è
− sin θ(t), cos θ(t)

é⊤
. (2.19)

Moreover, stress fibers are reported to be up to ten times stiffer than the binding
proteins [2]. For this reason, locally, the presence of the growth cone gives a natural
anisotropic mechanical response to the GC-substratum material. In addition,
we disregard the influence of the axonal shaft and the soma on the mechanical
behaviour of the material, since we assume that the axon can instantaneously adapt
its shape to follow the position of the growth cone. We finally assume that in the
growth cone region, the material has an orthotropic linear viscoelastic response.

We identify the growth cone position in the undeformed configuration at a
certain time t with XGC(t). The corresponding position in the Eulerian frame
is xGC(t) = χ(XGC(t)). We take track of the axon tip trajectory by solving the
following ODE in the Lagrangian configuration

dXGC(t)
dt

= V (t)N(t) (2.20)

where V (t) is the Lagrangian axon growth speed. This quantity will be first
considered as constant with a value equal to the mean axon growth velocity reported

22



Mathematical model

Figure 2.3: Growth cone model representation.

in literature [4]. Then, we will deduce its value by solving the tubulin-driven axon
growth model presented in Section 2.4.

We clarify that in our model the path followed by the growth cone does not
coincide with the axon. The axonal shaft is indeed identified as the end-to-end
segment from soma to axon tip (see Fig. 2.4) and it assembles at each instant
t depending on the position of the growth cone. This assumption is based on
biological observations and allows to simplify the model. Indeed, it has been
experimentally observed [18, 20, 21] that neurons actively regulate the tension
along the axon in order to maintain a certain rest value [18]. This is made by
straightening the axonal shaft over time (see Fig. 1.5). We just assume this process
is instantaneous with the axon that reassembles at each time instant t. Considering
the axon as coincident with the GC trajectory would also lead to some difficulties
in modelling the tubulin transport as illustrated in Section 2.4. Moreover, axons
maintain a shape that differs much from a straight line just when they grow on
micro-patterned substrates with specific geometries [20, 25–29, 35, 57]. In all the
other cases, modelling axons as straight segments is consistent with the biological
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Figure 2.4: Representation of the neuron in the Lagrangian and Eulerian frames.
The black dashed line is the path followed by the GC. The blue dashed line is the
axon defined at a previous time instant. The solid blue line is the axon at the
current time t.

evidence.
We now write in mathematical terms what we above-mentioned. We first define

the vectors that link the soma to the axon tip in both the Lagrangian and Euclidean
configurations:

L(t) = XGC(t) − XS, l(t) = xGC(t) − xS, (2.21)

where XS and xS are the positions of the soma in the Lagrangian and Eulerian
frame, respectively. The axon length at time t is

L(t) = |L(t)|. (2.22)

The Lagrangian length and the Euclidean one coincide when the applied deformation
is null.

2.2.2 GC and axon orientations
The axon orientation is denoted by the angle φ(t) formed by the vector L(t) that
represents the axon and the x axis (see Fig. 2.5). This angle will be used in the
next sections and it will come in handy for the statistical analysis of the model
results in Section 4. The fact that the orientation angle of the growth cone and the
orientation of the axon may differ is consistent with the biological phenomenology.
Indeed, the growth cone is a very motile structure that changes direction quickly
and its role is to steer the axon in order to change the growth direction.
Theorem 1. If the growth cone reaches an equilibrium direction θeq, for a time
that is large enough, the following equality holds

φeq := lim
t→∞

φ(t) = θeq. (2.23)
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Figure 2.5: Orientation angles of the axon and the growth cone.

Proof. We refer to Fig. 2.6 where we set as XS and XGC the soma and the growth
cone position respectively. The point P is the spot where the GC reaches the
equilibrium orientation θeq, from that point on the growth cone moves along the
straight line b and its orientation does not change because it has reached the
equilibrium value. Referencing to Fig. 2.6, we define the angle β as the difference
between the GC equilibrium angle and the axon direction:

β(t) := θeq − φ(t). (2.24)

We consider the triangle
△

XSHXGC and define p = PXGC, k = HP and u = XSH.
We then apply the law of sines to get

sin φ

p + k
= sin β

u
⇒ sin β = u

p + k
sin φ. (2.25)

We can now write

sin φ = sin (θeq − β) = sin θeq cos β − sin β cos θeq (2.26)

and by substituting Eq. (2.25) in the previous equality, we get

sin β

C
1 + u

p + k
cos θeq

D
= u

p + k
sin θeq cos β (2.27)

that finally leads to
tan β = sin θeq

p+k
u

+ cos θeq
. (2.28)
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Figure 2.6: Geometrical proof of Eq. (2.23)

For sufficiently large times (t → ∞), the axon continues to grow leading the
distance p → ∞. Thus, the term tan β → 0 and consequently β → 0. We finally
obtain the following asymptotic result

lim
t→∞

β(t) = lim
t→∞

(θeq − φ(t)) = 0. (2.29)

Thus defining φeq := lim
t→∞

φ(t) we have Eq. (2.23).

2.3 Reorientation model
In this section, the model for the growth cone reorientation is presented. The aim
is to develop a model that can reproduce the dependence of the reorientation of the
growth cone on the frequency and the strain amplitude of the applied deformation.
Indeed, in the case of neurons, also the strain amplitude is reported to play an
important role in the cell reorientation timing and final angle [4]. In order to do so,
we follow what done in [1] by introducing a linear viscoelastic model. An extension
to the non-linear frame is presented in [2, 58].

As already mentioned in Section 2.2, the substrate alone is modelled as an
isotropic linear elastic material while the region where the growth cone is located is
modelled as orthotropic and linear viscoelastic as a consequence of the GC-substrate
interaction. The biaxiality in the mechanical behaviour is given by the alignment
direction of the stress fibers N and the orthogonal direction N⊥ along which the
binding proteins are placed.

The other assumption we make is treating the growth cone as a Maxwell
viscoelastic material with a single relaxation time. The viscoelastic response of
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the cellular structure is due to the time required by the acto-myosin network to
reorganize itself, and to the continuous rearrangement process of the FAs. The latter
ones attach and detach repeatedly to the substrate to minimize the stress perceived
by the growth cone, especially if subject to a continuous external deformation. The
higher is the frequency of the cyclic stretch applied, the faster the growth cone’s
cytoskeleton rearranges as reported in biological observations. In this scenario,
the growth cone behaves elastically. On the contrary, the GC shows its viscous
characteristics for lower frequency regimes when the cytoskeleton rearrangement
time is lower than the deformation period.

We now write down the evolution equation for the growth cone orientation
following what has been done in [1]. We start by defining the work done by the
stress on the growth cone due to the SFs alignment process, which in the linear
frame is L := T(t|θ) : E(t), where T(t|θ) is the Cauchy stress tensor given the
previous orientations θ and E is the infinitesimal strain tensor characterizing the
linear terms of the externally imposed deformation. The evolution of the orientation
angle θ can be related to the changes in the work L using the Lagrangian mechanics
and neglecting the inertial terms. The following equation holds:

Kλθ
dθ

dt
= −∂L

∂θ
(2.30)

where K is the Young modulus of the GC-substrate material and λθ is the time
the growth cone needs to reorient itself. Hence, the product Kλθ can be seen as a
viscous-like coefficient measuring cell resistance to realignment. By substituting
the definition of L in Eq. (2.30) we get the dynamics equation for the orientation
angle

dθ(t)
dt

= − 1
Kλθ

∂T
∂θ

(t|θ) : E. (2.31)

The latter equation tells us that θ, and hence the growth cone, tend to assume a
value for which the variation of the stress T with respect to θ is null or orthogonal
to the deformation given by E.

In order to close the model we need a constitutive relation for T. In the
viscoelastic frame, the model reads

T(t|θ) =
Ú t

−∞
C(θ(τ); t − τ) [E(t) − E(τ)] dτ (2.32)

in which we referred to the relaxation kernel as C that takes into account the
memory effects of the viscoelastic material. We assume an exponential dependence
on the term t−τ with a single relaxation time λ. This parameter can be interpreted
as the time necessary for the cytoskeleton to disassemble and reassemble in order
to change the spatial configuration of the growth cone. Hence, the relaxation kernel
writes

C(θ(τ)|t − τ) = 1
λ

C0(θ(τ))e−(t−τ)/λ (2.33)
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where C0(θ(t)) is the fourth-order elasticity tensor (or stiffness tensor). Then
Eq. (2.32) becomes

T(t|θ) =
Ú t

−∞

1
λ

C0(θ(τ))e−(t−τ)/λ [E(t) − E(τ)] dτ (2.34)

and the final differential form of its constitutive equation is

λ
dT
dt

(t|θ) + T(t|θ) = C0(t|θ)dE
dt

(t), (2.35)

where Eq. (2.35) the functional C0 is defined as

C0(t|θ) :=
Ú t

−∞
e−(t−τ)/λC0(θ(τ)) dτ. (2.36)

2.3.1 Energy minimization
In the literature, some works have focused on mathematical models in which the
equilibrium orientation angle of the cells coincides with the minimum strain or
minimum stress direction [33]. However, these models do not precisely reproduce
cell reorientation behaviour. Indeed, it has been demonstrated that models based
on energy minimization give results that are in better agreement with the biological
evidence [1, 3, 10, 30]. Taking that into account, our model relies on the fact that
the growth cone orientation is driven by the minimization of a general elastic energy
density U . Indeed, it can be proven [1] that in both the high and low frequency
regime the Eq. (2.31) reduces to the following

dθ(t)
dt

∝ −∂U
∂θ

= ∂T
∂θ

: E. (2.37)

As already stated, in the range of strain amplitudes tested in [4], PDMS has
been proven to have a linear elastic behaviour [41]. Hence, we hereafter work in
the linear approximation by considering just the linear terms of the deformation
characterized by the strain tensor E. For this reason, the specific form of the elastic
energy density for the growth cone that is valid for our model assumes the following
form

U = Uiso(I1) + Uortho(I4) + Umix(I1, I4) (2.38)
where where Uiso is the purely isotropic contribution, the term Uortho represents
the orthotropic contribution, while Umix gives the coupling effects of isotropy and
anisotropy. In the linear approximation, all the invariants that give higher-order
terms are neglected, and thus all the terms in Eq. (2.38) depend just on the
invariants of E which give linear terms, i.e.

I1 := trE, I4 := N · EN. (2.39)
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Since the first invariant does not depend on the orientation θ, as ∂Uiso

∂θ
= 0 the

term Uiso can be neglected in our discussion. Then, the final form of the elastic
energy will be

U = Uortho(I4) + Umix(I1, I4)

= 1
2K∥ (N · EN)2 + 2K14 (trE) (N · EN) .

(2.40)

where K∥ is a coefficient related to the stiffness along the SFs direction and
K14 weights the coupling term. We remark that, depending on the amplitude
stretching ranges we work with, we can obtain an equivalent result to what is given
in Eq. (2.40) also by considering the substrate as nonlinear. The general elastic
strain energy density would be dependent on the eight invariants of the tensor C.
By assuming, when possible, to work in the small deformations limit the invariants
of C can be approximated with the invariants of the strain tensor E and with
some further simplifications a final energy form that is very similar to the one in
Eq. (2.40) can be written. An example of this procedure can be seen in [1, 2].

Recalling the explicit forms of E and N defined in Eq. (2.14) and Eq. (2.40),
respectively, Eq. (2.40) becomes

U = 1
2K∥(εx cos2 θ + εy sin2 θ)2

+ 2K14(εx + εy)(εx cos2 θ + εy sin2 θ).
(2.41)

The derivative of U with respect to the orientation angle is

∂U
∂θ

= 2K∥ sin θ cos θ(εy − εx)(εx cos2 θ + εy sin2 θ)

+ 4K14(εx + εy)(εy − εx) sin θ cos θ
(2.42)

and the equilibrium condition ∂U
∂θ

= 0 reads

2(εy − εx) cos θ sin θ
è
K∥εx cos2 θ + K∥εy sin2 θ + 2K14(εx + εy)

é
= 0. (2.43)

Considering the interval [0, π], Eq. (2.43) is satisfied under one of the following
conditions on the interval:

sin θ = 0 ⇒ θeq = 0, π (2.44)

cos θ = 0 ⇒ θeq = π

2 , (2.45)
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K∥εx cos2 θ + K∥εy sin2 θ + 2K14(εx + εy) = 0

cos2 θeq = 2K14(εx + εy) + K∥εy

K∥(εy − εx) . (2.46)

Equations (2.44) and (2.45) give the parallel and perpendicular orientation, re-
spectively. Equation (2.46) leads to the definition of the so called oblique equilibrium.

By substituting the relation εy = −rεx, the Eq. (2.46) becomes

cos2 θeq = K∥r + 2K14(r − 1)
K∥(1 + r) . (2.47)

With further computations, we obtain the final form of the oblique solutions:

cos2 θeq = 1
2 + K

31
2 − 1

r + 1

4
(2.48)

where we have introduced the parameter

K = K∥ + 4K14

K∥
= 1 + 4K14

K∥
(2.49)

that embodies all the mechanical characteristics of the growth cone-substratum
media. What we have just obtained is consistent with the results reported in [1, 2,
30]. From Eq. (2.48) it is clear that the parameter r is fundamental to determine
the final equilibrium angle of the growth cone. This parameter is easily tunable
in biaxial experiments and controlled by imposing different deformations to the
substratum or by using different clamps for stretching it. A complete study on the
incidence of r on the cell orientation angle is made in [30], even if the study has
not been conducted on neuron-type cells.

Equilibrium orientations and stability

Now we are going to exploit the stability of the equilibrium angles given in Eq. (2.44),
Eq. (2.45) and Eq. (2.48). We demonstrate that the existence and stability of such
orientations depend on the sign of K and the value of r. For the Thesis purpose,
we are interested in discussing the case K > 1, indeed this case holds always true in
our specific case considering Eq. (2.49). The other cases can be deduced from [1].

We first need to introduce the parameter ρ := K + 1
K − 1 and then set the conditions

of existence for the oblique equilibria. Of course, since

0 ≤ cos2 θeq ≤ 1 (2.50)
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the oblique equilibrium angle exists if 1
ρ

< r < ρ. The parallel and perpendicular
angles, instead, always exist.

In order to conduct the stability study, we write down the second-order derivative
of our energy U with respect to θ

∂2U
∂θ2 = 2ε2

x(r + 1)
è
K∥ cos2 θ(1 + r) + 2K14(1 − r) − K∥r

é 1
cos2 θ − sin2 θ

2
+ 4ε2

x(r + 1)2K∥ cos2 θ sin2 θ.
(2.51)

and set the general stability condition as follows

∂2U
∂θ2

-----
θ=θeq

> 0. (2.52)

Considering K > 1, the stability analysis gives the following results (reported also
in Fig. 2.7):

• θeq = 0 is stable if r > ρ;

• θeq = π
2 is stable if r <

1
ρ

;

• the oblique equilibrium angles are always stable.

2.3.2 Stochastic term
Cells are living beings. That means that their movement can not be uniquely given
by a deterministic equation. Indeed, cellular crawling and axonal pathfinding as
well are characterized by intrinsic randomness. Each neuron can react differently to
external stimuli even if some common general behaviour can be extrapolated from
the experimental results. This is reflected in an uncertainty in the experimental
results. In all the works analyzed, the equilibrium angle is not unique, but it is
given as a range of possible values.

Mathematically, we assume that randomness characterizes the orientation angle
rather than the growth cone position. Another option could be adding the uncer-
tainty also on the growth cone speed term V (t). We modelled the randomness in
the neuron reorientation process by adding a stochastic term to Eq. (2.31). We
then obtain a new stochastic differential equation

dθ(t)
dt

= − 1
Kλθ

∂T
∂θ

(t|θ) : E +
ó

σ2

λθ

ξ = − 1
Kλθ

∂U
∂θ

+
ó

σ2

λθ

ξ (2.53)
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Figure 2.7: Bifurcation diagram for the case K > 1. The solid line represents the
stable equilibrium while the dashed ones are the unstable equilibrium.

where σ is a parameter representing the stochastic angular fluctuation and ξ ∼
N (0,1). The latter equation can be properly written as an Itô process [59]:

dθ = − 1
Kλθ

∂U
∂θ

dt +
ó

σ2

λθ

dWt (2.54)

where Wt is the stochastic variable that defines a Wiener process. This stochastic
process, also known as Brownian motion, is the most commonly used in modelling
the behaviour of living beings. This variable can be numerically approximated with
dWt =

√
dt N (0,1) as stated in [60].

2.4 Axon growth model
In this section, we are going to present the model for the axonal growth. We
consider the one-dimensional model developed in [48] which is an extension to
the one previously presented in [46, 61]. In the previous Chapter, we explained
how the protrusion of new microtubules in the growth cone leads to an effective
elongation of the axon. The model tries to replicate this scheme and to ideally
set the tubulin concentration as the main and only variable responsible for neuron
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0 L(t) L(t) + Lc

soma axon GC

cS(t) c(s, t) cc(t)

A
Vc

Figure 2.8: One-dimensional compartment model for tubulin-driven axon growth

growth. Moreover, we assume tubulin molecules small enough to consider them as
a homogeneous continuum.

We follow the classical division of the neuron by splitting it into soma, axonal
shaft and the growth cone located at the axon tip. We treat each part as a
compartment in a one-dimensional frame (see Fig. 2.8). We are going to use the
coordinate s directed along the axon direction which is given at each instant time
by the angle φ(t). The soma is placed at s = 0 while the tip of the axon is at
s = L(t). The growth cone is assumed to have characteristic length Lc and volume
Vc. The axonal shaft cross-sectional area is A and is assumed constant. The tubulin
concentration in the soma, along the axon and in the growth cone are denoted
by cS(t), c(s, t) and cc(t), respectively. The production of the tubulin takes place
only in the soma, while its degradation occurs in the neurite and in the growth
cone with a constant rate g. All the parameters that will appear in this section are
listed in Table 2.1.

We start by writing down the conservation of mass equation along the axon in
the general section (s1, s2) in the Lagrangian frame of the substrate:

d
dt

Ú s2

s1
Ac(x, t) ds = A [F (s1) − F (s2)] −

Ú s2

s1
Agc(s, t) ds, (2.55)

where F [ mol/ms2] is the flux per unit area of tubulin which is defined as F = cv.
We can rewrite a constitutive equation for the flux according to the Fick’s law [48]
by setting

F = ac − D
∂c

∂s
. (2.56)

Substituting Eq. (2.56) in Eq. (2.55) and differentiating lead to the classic advection-
diffusion-reaction equation for c

∂c

∂t
+ a

∂c

∂s
− D

∂2c

∂s2 = −gc for 0 < s < L(t). (2.57)
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Parameter Meaning Unit

a tubulin active transport velocity m/s
D tubulin diffusion coefficient m2/s
g tubulin degradation rate s−1

Lc GC length m
L0 initial axon length m
rg tubulin polymerization rate m4/s mol
r̃g GTP reaction polymerization rate s−1

c∞ equilibrium tubulin concentration in the GC mol/m3

A axon cross-sectional area m2

v tubuline velocity m/s
Vc GC volume m3

s̃g microtubules disassembly rate s−1

ρAgkLc
portion of the assembly microtubules

that may undergo disassembly mol

Table 2.1: Parameters used in the one-dimesional axonal growth model

The conservation of mass Eq. (2.55) should also hold in the growth cone com-
partment. While the flux in s = L(t) + Lc is null, the one over the boundary
s = L(t) from the left to the right is not. In order to write down this flux, we define

c− := c(L(t)−, t) = lim
j→0

c(L(t) − j, t). (2.58)

and then we define the derivative of the concentration right behind s = L(t) as

∂sc
− := lim

j→0

∂c

∂s

-----
L(t)−j

. (2.59)

The total flux that arrives at the growth cone from the axon (seen by an observer
who’s moving with the boundary s = L(t)) is

A
1
ac− − D∂sc

− − L′(t)c−
2

. (2.60)

We referred to L′(t) as the speed of the axon growth. The conservation of mass for
the growth cone reads

d (Vccc)
dtü ûú ý

mass increase per unit time

=

= A
1
ac− − D∂sc

− − L′(t)c−
2

ü ûú ý
flux in

− gVcccü ûú ý
degradation

− r̃gVcccü ûú ý
assembly

+ s̃gρAgkLcü ûú ý
disassembly

.

(2.61)
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The ODE that models the axon growth speed is now introduced:

V (t) = dL(t)
dt

= rg (cc(t) − c∞) . (2.62)

Finally, we rewrite Eq. (2.61) by making some algebra and substituting Eq. (2.62)
in it. Thus, the final form of the conservation of mass for the growth cone reads

Lc
dcc

dt
= ac− − D∂sc

− − rg(cc − c∞)c− − gLccc − r̃gLccc + r̃gLcc∞. (2.63)

Since we are dealing with a diffusion equation, we expect the solution for c(x, t) to
be smooth. Hence, it is natural to impose the continuity in s = 0 and s = L(t). In
particular, we set c− = cc(t) for every time t.
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2.5 Complete model
In this section, we are simply going to write down all the equations that make up
our model for neuron growth and reorientation. In this way, a general view is given
of the variables involved and how they are linked.

dXGC(t)
dt

= V (t)N(t),

N(t) =
è
cos θ(t), sin θ(t)

é⊤
,

dθ(t)
dt

= − 1
Kλθ

∂T
∂θ

(t|θ) : E +
ó

σ2

λθ

ξ,

λ
dT
dt

(t|θ) + T(t|θ) = C0(t|θ)dE
dt

(t),

∂c

∂t
+ a

∂c

∂s
− D

∂2c

∂s2 = −gc 0 < s < L(t),

Lc
dcc

dt
= ac− − D∂sc

− − (rgcc + r̃gLc) (cc − c∞),

V (t) = dL(t)
dt

= rg (cc(t) − c∞),

N(0) = N0,

XGC(0) = X0
GC,

θ(0) = θ0,

T(0) = 0,

C0(0) = 0,

c(0, t) = cS(t) t ≥ 0,

c(L(t), t) = cc(t) t > 0,

c(s, 0) = c0(s) 0 ≤ s ≤ L0,

L(0) = L0,

cc(0) = c0(L0).

(2.64)
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Numerical implementation

The mathematical model proposed in Chapter 2 can not be solved analytically,
hence a numerical implementation is needed. In this Chapter, we describe the
different schemes used in order to discretize the equations of the model both
in space and time. Once the discretization has been done, the model has been
implemented in Matlab ®. In algorithm 1 we list all the steps necessary to solve
the complete model. Specifically, in Section 3.1 we deal with the discretization of
the reorientation equations of the model, i.e. Eq. (2.31) and Eq. (2.35). Instead,
in Section 3.2 we give the numerical form of the axonal growth model given in
Eq. (2.57), Eq. (2.62) and Eq. (2.63).

3.1 Reorientation model discretization
The numerical implementation of the growth cone reorientation model given in
Section 2.3 is here tackled following what has been done in [1]. We are first going
to discretize Eq. (2.20). The time discretization is performed through the explicit
Euler method thanks to its ease of implementation. The time interval is set equal
to ∆t. The position of the growth cone at time tn = n∆t is approximated with
Xn

GC ≈ XGC(tn). The explicit scheme reads:

Xn+1
GC = Xn

GC + ∆tV nNn (3.1)

where V n is the axon growth velocity at time tn obtained from the resolution of the
tubulin-driven axonal growth model whose discretization will be later discussed.
Instead, Nn is the growth cone orientation at time tn depending on the orientation
angle θ(tn) at the same instant. In order to update the value of the orientation
angle, we are now going to discretize Eq. (2.31). The value of the angle at time
tn = n∆t is approximated with θn ≈ θ(tn). The term ∂T

∂θ
is instead substituted
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using a first-order centred finite-differences scheme. Considering the component
Txx and Tyy of T, the discretization of Eq. (2.31) reads

θn+1 = θn − ∆t

Kλθ

C
T n

xx(θ + ∆θ) − T n
xx(θ − ∆θ)

2∆θ

− r
T n

yy(θ + ∆θ) − T n
yy(θ − ∆θ)

2∆θ

D
εn

x.

(3.2)

Considering that we start our simulations from the undeformed state, at time t = 0
we have ε0

x = 0, T 0
xx = 0, T 0

yy = 0 and C0 identically equal to 0. The explicit
Euler scheme is used also in the approximation of time derivatives present in the
constitutive Eq. (2.35). For the sake of simplicity, we report the discretized equation
just for the component Txx computed at time tn+1. Hence, the approximated value
T n+1

xx will be used to compute θn+2 following the advancement scheme in Eq. (3.2).
Supposing r = 0, the explicit time-marching numerical method is

T n+1
xx = T n

xx

A
1 − ∆t

λ

B
+ 1

λ
(Cn

0 )xxxx ε̇n
x. (3.3)

The trapezoidal rule can be used to approximate the integral term present in the
definition of C0. The integral, considering r = 0, is discretized in the following
way:

(Cn
0 )xxxx =

Ú tn

−∞
e(tn−τ)/λ (C0(θ))xxxx dτ

=
Ú tn−1

−∞
e(tn−τ)/λ (C0(θ))xxxx dτ +

Ú tn

tn−1
e(tn−τ)/λ (C0(θ))xxxx dτ

= e−(tn−tn−1)/λ(Cn−1
0 )xxxx +

Ú tn

tn−1
e(tn−τ)/λ (C0(θ))xxxx dτ

≈ e−(tn−tn−1)/λ(Cn−1
0 )xxxx

+ 1
2
1
tn − tn−1

2 è
(C0)xxxx(θn) − e−(tn−tn−1)/λ(C0)xxxx(θn−1)

é
.

(3.4)

All the results can be straightforwardly extended in the case r /= 0 and for the
component Tyy.

3.2 Axonal growth model discretization
In Section 2.4 we presented the tubulin-driven model for the axonal growth. We
recall that the model is nonlinear and consists of a coupled set of a PDE and two
ODE. The PDE describes the transport process of free tubulin from the soma to the
growth cone. It is defined on a one-dimensional domain with a moving boundary,
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which is itself part of the solution. This makes the numerical implementation a
little delicate. In order to work on a constant spatial domain, we perform a spatial
scaling of the model as reported in [46, 48, 49]. After that, we approximate the
system using the method of lines, i.e. we introduce a first spatial discretization in
order to transform the PDE into an ODE. Finally, we perform a time discretization
and we obtain the fully implementable system.

3.2.1 Spatial scaling
As the axon grows, the domain of the PDE expands since it is defined as the
interval [0, L(t)]. We want to prevent this problem in order to be able to implement
a method in which a constant number of spatial computational cells can be used
regardless of the axon length and neglecting the axon orientation. To do so, we
scale the growing domain to the constant interval [0,1] (see Fig. 3.1). The scaling
is done with respect to the axon length L(t) and reads

y := s

L(t) ,
∂y

∂s
= 1

L(t) ,
∂y

∂t
= −sl′(t)

L2(t) = −yl′(t)
L(t) (3.5)

with s ∈ [0, L(t)] and y ∈ [0,1]. Considering the tubulin concentration on the
y-domain c̄(y, t) := c(yL(t), t), we get

∂c

∂t
= ∂c̄

∂t
− yl′(t)

L(t)
∂c̄

∂y
,

∂c

∂t
= 1

L(t)
∂c̄

∂y
,

∂2c

∂s2 = 1
L2(t)

∂2c̄

∂y2 . (3.6)

By substituting Eq. (3.5) and Eq. (3.6) in Eq. (2.57), Eq. (2.62) and Eq. (2.63),
we can write down the transformed dynamic model for the axonal growth:

∂c̄

∂t
+ α(y, cc, l) ∂c̄

∂y
− D

L2
∂2c̄

∂y2 = −gc̄, 0 < y < 1, t > 0

dcc

dt
= (a − gL(t))

L(t) cc − D

L(t)l ∂y c̄− − (rgcc + r̃gL(t))
L(t) (cc − c∞), t > 0

dl

dt
= rg(cc − c∞), t > 0

c̄(0, t) = cS(t), t ≥ 0
c̄(1, t) = cc(t), t > 0
c̄(y,0) = c0(yL0), 0 ≤ y ≤ 1
cc(0) = c0(L0)
L(0) = L0

(3.7)
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Ln

XS

Xn
GC

0

∆y 2∆y
. . .

j∆y
. . . 1

Figure 3.1: Scaling and discretization of the axon at time t = tn. The transfor-
mation allows to pass from the growing domain [0, L(t)] to the fixed interval [0,1]
as shown by the dashed arrows.

where we defined α(y, cc, L) := a − yL′(t)
L(t) = a − yrg(cc − c∞)

L
. It is fundamental

to understand the difference between the scaling process we have just applied and
the deformation that we apply to the substrate. The passage from the reference
configuration to the deformed one is a physical fact. It happens in reality and
the axon length changes due to the deformation. Indeed, the axon is stretched as
the substrate is. The spatial scaling is instead just a mathematical tool. There is
no actual change in the axon length when we scale the domain into the interval
[0,1]. It is just a trick that we use in order to have a fixed domain on which we
can compute the solution of the model numerically by maintaining the cell size
constant regardless of the axon length. So at each time step, we consider the axon
length in the deformed configuration, we map it to the domain [0,1], we compute
in Matlab ®the tubulin concentration, we map the values back to the original
domain and finally, we get the growth axon speed.

3.2.2 Spatial and time discretization
We find an approximate solution to the model by applying the method of lines.
We first introduce the spatial discretization to rewrite the PDE of the system as
an ODE. Let us divide the y-interval [0,1] into M computational cells. Each cell
has size ∆y := 1/M . The edges of the cells are identified by the points yj = j∆y
with j = 0, . . . , M and at each point the tubulin concentration is approximated
by C̄j ≈ c̄(yj, t). According to the boundary conditions, C̄0 and C̄M should be
respectively interpreted as cS(t) and cc(t).
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Numerical implementation

The approximation of the spatial derivatives is made using second-order central
finite differences, while for the term ∂y c̄− a one-sided second-order approximation
is used. The following relations hold

∂c̄(yj, ·)
∂y

≈ C̄j+1 − C̄j−1

2∆y
,

∂2c̄(yj, ·)
∂y2 ≈ C̄j+1 − 2C̄j + C̄j−1

∆y2 ,

∂y c̄− ≈ 3C̄M − 4C̄M−1 + C̄M−2

2∆y
.

(3.8)

For what concerns the time discretization, we use an explicit Euler method. As a
remark, the time step is denoted by ∆t and the general time instant t by tn := n∆t.
The concentration along the axon is numerically approximated with C̄n

j ≈ c̄(yj, tn)
for j = 1, . . . , M − 1. Similarly, the tubulin concentration in the growth cone and
the axon length are approximated with Cn

c ≈ cc(tn) and Ln ≈ l(tn). Each time
derivative is substituted by formulas like

∂c̄(yj, tn)
∂t

≈
C̄n+1

j − C̄n
j

∆t
. (3.9)

We now write down the complete explicit time marching numerical method that
has been implemented in Matlab ®. We substitute Eq. (3.8) and Eq. (3.9) in
Eq. (3.7) to get

Cn+1
c = Cn

c

C
1 + ∆t

Lc

A
a − gLc − 3D

2∆yLn

BD

− ∆t

Lc

(rgCn
c + r̃gLc) (Cn

c − c∞) + ∆tD

2∆yLnLc

1
4C̄n

M−1 − C̄n
M−2

2
,

Ln+1 = Ln + rg∆t (Cn
c − c∞)

Cn+1 = ACn

(3.10)

where

A :=



1 0 0 . . . 0
A2,1 A A2,3

. . . ...
0 . . . . . . . . . 0
0 . . . AM−1,M−2 A AM−1,M

0 · · · · · · 0 1


Cn :=


C̄n

1
C̄n

2
...

C̄n
M

 . (3.11)
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Numerical implementation

The coefficients on the diagonal of A are

A = 1 − ∆t

C
2D

(Ln∆y)2 + g

D

Aj,j−1 = ∆t

C
−α(yj, Cn

c , Ln)
2∆y

+ D

(Ln∆y)2

D

Aj,j+1 = ∆t

C
α(yj, Cn

c , Ln)
2∆y

+ D

(Ln∆y)2

D (3.12)

and the imposed Dirichlet boundary conditions at each time step are C̄n+1
0 = Cn+1

s

and C̄n+1
M = Cn+1

c .
In order to prevent numerical oscillations and let the method converge to

the solution, we must impose some condition on the choice of the discretization
parameters ∆t and ∆y. In this perspective, we recall the CFL condition ∆t and
the cell Pèclet condition for ∆y:

∆t ≤ ∆y2L2
min

2D
, ∆y ≤ 2D

(a + rgc∞) Lmin
(3.13)

where Lmin is the minimal axon length that can be achieved. The same value of
the time discretization parameter ∆t is used for both the implementation of the
reorientation part of the model and the axonal outgrowth one.

Algorithm 1 Algorithm which solves the discretized version of the complete model
presented in Eq. (2.64)

Reorientation input: N0, X0
GC, f , ε, T(0), C0(0)

Axonal outgrowth input: L0, c0, cc(0), cS

Using the second equation of the system (3.10) we get the initial outgrowth
velocity
for n = 0,1, . . . , N do

Update XGC in the Lagrangian configuration using Eq. (3.1)
Compute the new GC orientation θ from Eq. (3.2)
Compute the polarization N
Solve the tubulin-driven diffusion system Eq. (3.10)
Update the growth speed V
Update the stress tensor T using Eq. (3.3)
Update C0 using Eq. (3.4)

end
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Chapter 4

Results

After introducing the entire model for the process of axonal pathfinding in response
to cyclic stretch, we are finally ready to present the numerical results obtained
implementing in Matlab ®the numerical scheme proposed in Chapter 3. The
numeric discretization parameters ∆t and ∆y are set in order to satisfy the condition
given in Eq. (3.13) and their values have been reported in the caption of each of
the simulations shown in this Chapter.

In the first part of this Chapter, we present the parameter estimation for both
the axonal elongation process and the reorientation of the growth cone. We will
give all the values of the parameters collected from the experiments present in
the literature. Subsequently, in Section 4.2 we use these parameters to test the
sensitivity of our model. We are first going to test the axonal growth model given
in Section 2.4 and then the reorientation model shown in Section 2.3.

Finally, in Section 4.3 we perform the numerical simulations for the entire model
and we compare the results to the biological evidence given in the literature.

4.1 Parameter estimation
Axonal outgrowth model parameters

The values of the model parameters introduced in Section 2.4 are collected from
the literature. The transport of tubulin and other cellular components along the
axon has been widely tested. Despite that, this phenomenon is still not fully
understood and experiments have been carried out on different types of neurons
and cells [62–65]. Hence, it is not possible to determine a unique value for each of
the parameters that are shown in our model. Still, we can provide some ranges of
values within which the parameters can fall to be considered biologically valid. The
complete list of suitable intervals for the axonal outgrowth is given in Table 4.1.
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Parameter Interval Unit

a 0.5-3 10−8 m/s
D 1-25 10−12 m2/s
g 1-200 10−7 s−1

Lc 1-20 10−6 m
rg 2.3 10−7 m4/s mol
r̃g 0.053 s−1

c∞ 11.90 10−3 mol/m3

cS 0-4c∞ 10−3 mol/m3

Table 4.1: Parameter values intervals for the axonal outgrowth model given in
[48].

Before we choose the exact parameter values to assign to match the experimental
evidence, in Section 4.2.1 we will study how the different parameters can affect the
axonal growth. In particular, we will focus on the length of the axonal shaft L.
In all the simulations that will be performed, we suppose the axon to be initially
comparable to the dimension of the growth cone. Hence its initial value is set as
L0 = 10 µm. The tubulin concentration in the soma will be instead cS = 2c∞ and
it is supposed to remain constant in time. Since the axon is initially very short, we
can assume that the initial tubulin concentration along the shaft is constant and
equal to the tubulin concentration in the soma, giving c(s,0) = 2c∞ ∀s ∈ (0, L0).
For the same reason, we set the initial tubulin concentration in the growth cone
equal to the concentration in the soma, i.e. cc(0) = 2c∞. All the other parameters
may vary and in Section 4.2.1 we will finally set all their values in order to get
numerical results consistent with the experiments presented in [4].

Reorientation model parameters

Let us now introduce all the parameter values used to run the numerical simulations
concerning the reorientation part of our model presented in Section 3.1. We start by
defining all the mechanical properties of the substrate. We refer to the experiments
conducted in [4]. They used 20×60×1 mm PDMS strips (Sylgard 184, 10:1) that
were cured for 2 h at 80 ◦C. Considering the specific preparation condition, the
material is reported to have a Young modulus E = 2.05 MPa [43] and a Poisson’s
ratio ν = 0.495 [66]. As said in the previous Chapters, the substrate is cyclically
pulled by two lateral clamps. Since the region of interest where the neurons are
analyzed is positioned in the central part of the substratum away from the lateral
clamps (see Fig. 2.2), we can assume the uniaxial stretching condition. The strain
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f ( Hz) 0.05 0.15 0.25 0.25 0.25
ε (%) 10 10 10 2 5

Table 4.2: Values of stretching frequency and amplitude used in the experiments
conducted in [4].

imposed along the x-direction takes the following sinusoidal form

εx(t) = 1
2ε [1 − cos (2πft)] (4.1)

while on the y-axis the strain is freely determined by the mechanical characteristics
of the substrate because we are considering a uniaxial stretch. Thus, we can write
εy = −rεx and set r = ν = 0.495. All the combinations of stretching frequency and
amplitude tested are listed in Table 4.2.

We recall that, based on our model, we have determined that there are three
equilibrium angles that exist in the first quadrant of the circumference. These
angles, in the interval [0, π) include one parallel to the stretching direction, one
perpendicular, and one oblique. It is important to note that the corresponding
angles can be found in the other quadrants due to symmetry reasons. According
to biological pieces of evidence presented in [4], neurons tend to reorient them-
selves primarily along angles within the interval [60° − 90°], and this pattern is
symmetrically evident in the other quadrants as well. Therefore, we can assume
that the oblique equilibrium is stable while the other two equilibria are unstable,
as shown in Fig. 2.7. We have then set the oblique equilibrium angle to coincide
with the medium value of the interval [60°, 90°] obtaining θeq = 75°, and given that
r = 0.495, we have determined that K = 2.56 using Eq. (2.48).

Considering Eq. (2.31), we now focus on the term K which is the Young modulus
of the GC-substrate material. Due to the difficulty of determining this parameter
experimentally, we follow the approach taken in [1] and introduce a new parameter,
denoted as K̂∥, where

K̂∥ = K∥ + 4K14 = K∥K.

Here, K∥ relates to the stiffness of the GC-substrate material along the SFs direction.
By setting K = K̂∥ and utilizing the simplified version of the energy density, the
term K∥ simplifies with the other terms present in Eq. (2.31) and Eq. (2.35).
Therefore, in our work, the value of K∥ does not directly influence the model results.
We arbitrarily set K∥ = 1.

The growth cone viscous relaxation time has been measured to be below 10s
in [67], while the change in its direction and the consequent steering of the axon
requires a time in the order of minutes, according to [68]. The simulation will be
performed using biologically plausible values. We set the growth cone relaxation
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time λ = 1 s and the time required to reorient λθ = 60 s. These values give
numerical results in good agreement with experimental evidence reported in [4].

Stochastic term

In this section, we will compute the value of the stochastic angular fluctuation
σ present in Eq. (2.53). We first introduce g = g(θ, t) as the probability density
function (PDF) of the growth cone orientation. The probability density function we
are using is defined on θ ∈ [0, π). The dynamics of g is given by the Fokker-Planck
equation [59], whose equilibrium solution in our specific case is

g∞(θ) = C exp
5
− 1

4σ̄2 (1 + ν)2 cos4 θ − 1
4σ̄2 (1 + ν)(S − 2ν) cos2 θ − 1

4σ̄2 ν(ν − S)
6

.

(4.2)

where S = (K − 1)(1 − r) and σ̄2 = σ2

2ε2
x

. The definition of σ̄ is valid in the high-
frequency regime which is indeed our case of interest. It clearly shows how the
higher the strain, the more focused the response to the reorientation. Hence we
obtain more peaked distribution than the ones with a lower stretch amplitude.

At this point, we introduce the definition of circular average on the interval
[0, π)

θ̄l(t) :=
Ú π

0
θ g∞(t, θ) dθ (4.3)

and we compute the value of σ such that θ̄l is equal to the oblique equilibrium
angle given in Section 4.1, i.e. we set θ̄l = θeq = 75°. We then set the amplitude
of the applied strain ε = 10%, since it is the value used in the experiments
conducted in [4] which we would like to numerically reproduce with our model.
Using Matlab ®, we find that the optimal choice for the angular dispersion
parameter is σ = 0.0095. In Fig. 4.1 we display the equilibrium PDF g∞ for
different stretching amplitudes ε. As we predicted, the distribution becomes more
peaked with increasing strain level, in correspondence with the oblique equilibrium
angles of the first two quadrants of the circumference. This implies that for
the higher frequency rate, the deterministic term will significantly influence the
dynamics of θ. Conversely, for lower strain amplitudes, the stochastic term has
greater significance compared to the deterministic one. Thus, growth cones are
inclined to follow orientations that deviate from the equilibrium.

4.2 Sensitivity analysis
This section is dedicated to the sensitivity analysis of the different parts that make
up our model. We are going to vary some of the values of the parameters and then
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Figure 4.1: Plot of the equilibrium PDF g∞ depending on different values of the
stretching amplitude ε with fixed σ = 0.0095 and r = 0.495.

discuss how the simulations are affected by these variations. This will allow us to
finally determine the best values to use in the simulations of the entire model that
will be performed in Section 4.3.

4.2.1 Axonal outgrowth parameters
We start by varying the tubulin active transport velocity a (see Fig. 4.2a). As we
can imagine, the higher the transport of the tubulin along the axonal shaft is, the
longer the resulting axon will be. This is due to the fact that with a higher transport
velocity, more tubulin arrives from the soma to the growth cone leading to a higher
assembly rate for the new microtubules. We can observe that, an increase in the
values of a leads to an increase in the length of the axonal extension, following a
linear behaviour. The result is similar if we vary the diffusion coefficient D, as done
in Fig. 4.2b. In this case, we can see how for lower values of D, a small increment
in its value can lead to a considerable increase in the length of the neurite. As D
becomes larger, the axonal extension increment gets smaller. The other parameter
we decided to vary is the length of the growth cone Lc (see Fig. 4.2c). A longer
growth cone leads to a larger amount of volume where the tubulin can be stored
and then polymerized. So, the longer the growth cone, the longer the axonal shaft
is. That behaviour is well captured by our model, even though 50 µm and 100 µm
are extreme values that cannot be observed in nature and have been simulated just
to display the role of the GC length in our model. Finally, we varied the value of
the tubulin degradation rate g. From what we reported in Fig. 4.2d, we can state
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(a) D = 1 · 10−12, g = 5 · 10−7,
Lc = 4 µm, ∆y = 0.05, ∆t = 0.1 s

(b) a = 0.5 · 10−8, g = 5 · 10−7,
Lc = 4 µm, ∆y = 0.1, ∆t = 0.02 s

(c) D = 1 · 10−12, g = 5 · 10−7,
a=0.5·10−8, ∆y = 0.05, ∆t = 0.1 s

(d) D = 1 · 10−12, a = 0.5 · 10−8,
Lc = 4 µm, ∆y = 0.05, ∆t = 0.1 s

Figure 4.2: Parametric sweep for the tubulin driven axon outgrowth model. The
initial conditions are: L0 = 10, cS = 2c∞, c(s,0) = 2c∞ ∀s ∈ (0, L0), cc(0) = 2c∞.

that the importance of this parameter becomes more evident as the simulation
time increases. Indeed, in the 24 h simulation, no differences have been noted.
With 120 h simulated, the difference becomes slightly visible even though a large
change in the value of g corresponds to a very small change in the axonal length.
We can suppose that for longer times simulations, these differences become more
evident. We can, instead, state that by increasing the value of g, the length of the
neurite decreases. This is consistent with the fact that if the degradation rate of
the tubulin is higher, there is less free tubulin available in both the axon and the
GC to be polymerized into the new microtubules. We can conclude that D is the
parameter that mostly affects the axon growth rate among the four discussed.
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Parameter Value Unit

a 0.5 10−8 m/s
D 1 10−12 m2/s
g 5 10−7 s−1

Lc 4 µm
rg 2.3 10−7 m4/s mol
r̃g 0.05 s−1

c∞ 11.90 10−3 mol/m3

cS 2c∞ 10−3 mol/m3

L0 5 µm

Table 4.3: Parameter values used for the simulation shown in Figs. 4.3 and 4.4

Figure 4.3: Comparison between the length of the axon obtained by our simulation
(solid line) and some of the experimental evidence given in [4] (coloured vertical
bars). The data are reported after 24 h, 72 h and 120 h from the beginning of
the experiment. For the simulation, we set ∆y = 0.02, ∆t = 0.005 and used the
parameters in Table 4.3.

We now want to find the parameter values that better fit the experimental data
presented in [4]. In the experiments, no significant difference has been observed in
the length of the neuron growth under cyclic loading and the control ones. This
led us to not include any tension-related term in the axonal growth model. We
performed a simulation of an axon growing for 120 h by considering an initial
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neurite length of L0 = 5 µm. The tubulin concentration in the soma is cS = 2c∞
and constant in time. The initial conditions for the tubulin concentration along the
axon and in the growth cone are the same as the previously presented simulations:
c(s,0) = 2c∞ ∀s ∈ (0, L0) and cc(0) = 2c∞. By using the parameter values listed
in Table 4.3 we obtain the results shown in Fig. 4.3, in terms of axon length,
and Fig. 4.4 in terms of tubulin concentration in space and time. In particular
in Fig. 4.3 a comparison between experimental evidence and our model result is
given. We can see how the model fits the data given by [4] at different times of
the axonal elongation process. From the same simulation, we plotted the tubulin
concentration profile along the axon after 120 h (see Fig. 4.4a) and the history
of the tubulin concentration in the growth cone (see Fig. 4.4b). We can see how
the tubulin concentration gradually decreases as we move toward the GC and its
maximum value is in correspondence with the soma. At the axon termination, we
have the lowest value corresponding with the free tubulin concentration present in
the growth cone. This is consistent with the fact that the flux of tubulin goes from
the soma to the axon tip. For what concerns the concentration of free tubulin in the
growth cone we can notice how it rapidly decreases to reach the equilibrium value
c∞ as we expected. We recall that the more free tubulin is present in this area, the
more microtubules are assembled and so the higher is the axonal elongation.

(a) Free tubulin concentration profile along
the axonal shaft after 120 h

(b) Time evolution of the free tubulin
concentration in the growth cone

Figure 4.4: Free tubulin concentration profiles resulting from our model. We used
the parameters in Table 4.3 and we set ∆y = 0.02 and ∆t = 0.005.

4.2.2 Reorientation parameters
In this section, the numerical results for the reorientation of the sole growth cone
are given. In this phase, we don’t consider any stochastic term. Hence the dynamics
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Figure 4.5: Time evolution of θ for a very short period according to Eq. (2.31)
and Eq. (2.35). The starting angle is θ0 = 30°. The other parameters used in the
simulation are: r = 0.495, λ = 1 s, λθ = 60 s and ∆t = 0.1s.

of the orientation angle θ is solved according to Eq. (2.31) and Eq. (2.35). In all
the simulations θ0 = 30° is the starting orientation angle, while both the stress
tensor T and the functional C0 have been set identically equal to 0 at t = 0 because
we start the simulation from the undeformed state. We also fixed the biaxiality
ratio r = 0.495.

We first analyze Fig. 4.5, where the reorientation process of the growth cone
has been simulated for a very short period imposing a cyclic deformation with
frequency f = 0.05 Hz and strain amplitude ε = 10%. We can see how the dynamics
of θ displays an oscillatory behaviour, as expected, because we are applying a
periodic deformation to the substrate. Consequently, the orientation angle gradually
increases through small oscillations until it reaches the predicted orientation. The
magnitude and the frequency of such oscillations depend on the characteristics of the
cyclic stretch imposed on the sample. However, when considering larger simulation
periods these oscillations become harder to distinguish because of graphical reasons.

Let us now consider the numerical results given in Fig. 4.6, where we simulated
the growth cone reorientation process for longer periods such as 24 h and 120 h.
We first analyze the case where the frequency is fixed at value f = 0.25 Hz and the
stretching amplitude varies. In the simulations, we have included also the strains
tested in [4] (2%, 5% and 10%). From Fig. 4.6a we can see that the higher the
strain rate is, the faster the reorientation process occurs. Indeed, for ε = 30% the
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(a) (b)

(c) (d)

Figure 4.6: Time evolution of θ starting from θ0 = 30°. In (a)-(b) the frequency is
fixed and the strain varies. In (c)-(d) the stretching amplitude is fixed and various
frequencies have been tested. In all the simulations r = 0.495, λ = 1 s, λθ = 60 s
and ∆t = 0.1s.

equilibrium angle is reached after just 10 h. For lower values of ε, e.g. 10% and
5%, it is necessary to wait around 120 h in order to see the growth cone reaching
the oblique equilibrium θeq = 75° (see Fig. 4.6b). Instead, for very low values
of the strain rate the reorientation process takes longer times. Even after 120 h,
there is just a slight difference between the final angle and the initial one. This
leads to having in fact no visible reorientation during the experimental observation
periods. The numerical results are thus in good agreement with what is presented
in [4]. Indeed, in [4] data were collected after 24 h, 72 h and 120 h of stretching.
With a frequency of f = 0.25 Hz, neurons showed no significant reorientation when
ε = 2%. At ε = 10%, a large number of neurons aligned themselves to angles
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between 60° and 90° or their symmetric counterparts in other quadrants within
just 24 hours. After 120 h, all the cells resulted aligned in that direction. The
reorientation process was also observed for ε = 5%, albeit at a slower rate, resulting
in some neurons not aligning to the equilibrium direction.
We now consider the simulations in which the strain rate is fixed at ε = 10%
and various frequencies are tested. Also in this case the values used in [4] for the
stretching frequency have been included (0.05 Hz, 0.15 Hz and 0.25 Hz). Considering
Fig. 4.6c is clear that higher frequencies induce reorientation with a characteristic
time that decreases with the frequency. However, the higher the frequencies become,
the less significant the acceleration of the reorientation process is. We can indeed
notice how after around 60 h the behaviour for the higher frequencies tested
is substantially the same and they both led the growth cone to reach the final
reorientation angle after 120 h. The results are consistent with the biological
evidence in [4]. Considering f = 0.05 Hz the reorientation process takes place in a
shorter time compared to what occurs with higher frequency values as f = 0.15 Hz
and f = 0.25 Hz.
Another interesting phenomenon that can be seen from our simulations is the
presence of a minimum threshold under which the cyclic stretch does not induce
any significant response in the growth cone orientation. This happens also with
other cell types [1]. In our case, the threshold value can be quantified around
f = 0.017 Hz. This frequency sets the transition from the low-frequency regime
to the high-frequency one. Since we have that λθ ≫ λ, the transition is mostly
affected by λθ and happens when λθf ≈ 1. In the high-frequency regime the
relaxation time, i.e. λθ, is much longer than the oscillation period T of the cyclic
deformation. So, the reorganization process of the cell is slower than the period of
the imposed strain. The growth cone response in this case is elastic and it reorients
itself by minimizing the energy. On the contrary, in the low-frequency regime, the
reorientation process becomes viscous. The period of the imposed deformation is
longer than λθ and therefore the growth cone adapts to the imposed strain and
does not reorient significantly on the time scale of the experiment. Based on our
simulations, it is evident that there is no significant reorientation of the growth
cone even after 120 h when the frequency is at 0.01 Hz, which falls under the
low-frequency regime. Additionally, we observed that for a frequency of 0.02 Hz,
which is only slightly above the minimum threshold, the reorientation process takes
longer than the experimental observation period. In contrast, all frequencies tested
in the study by Lin et al. (2020) belong to the high-frequency regime, where the
growth cone successfully reorients itself to reach the equilibrium angle.
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4.3 Complete model simulations
Now everything is ready to present the simulation results of the entire neuron
reorientation and axonal outgrowth model given in Eq. (2.64). Ideally, it would
be possible to simulate the growth of all neurons distributed on the substrate
simultaneously. However, for computational reasons, we chose to simulate the
growth of each individual neuron independently, assuming that each of them is
positioned at the centre of the substrate. The two approaches are equivalent
since the mechanical behaviour of the substrate in the testing region is uniform as
shown in Fig. 2.2. Furthermore, we remark that the chosen approach neglects the
possibility of neurons coming into contact, during their growth and reorientation
process, which is something not included in the mathematical model.

Recalling that the soma is fixed, we set for each of the neurons simulated

XS = (0,0), L0 = 5 µm, θ0 ∈ U(0, 2π), (4.4)

where U in this case is the continuous uniform distribution. In this way, we
can faithfully reproduce the random initial distribution of neurites’ orientations.
Consequently, the initial conditions assigned to the growth cone position and
orientation are

N0 =
è
cos θ0, sin θ0

é⊤
, XGC(0) = L0N0, (4.5)

and the neurite at time t = 0 is the end-to-end segment from XS to XGC(0) (see.
Fig. 4.7a - green line). Initially, the orientation of the axon and the growth cone
coincide, i.e. θ0 = φ0.

We begin by presenting a comparison of the simulated growth cone dynamics in
Fig. 4.7 when the random term is included versus when it is not. We recall that in
our model, the axon does not coincide with the path followed by the growth cone,
but it is the segment that links the soma to the growth cone and we suppose that it
instantly reforms at each instant. When comparing Fig. 4.7a and Fig. 4.7b, we can
notice that in the case without the random term, the trajectory followed by the
growth cone is smoother. On the contrary, the addition of the random term makes
the path followed by the cone less regular, thus simulating the crawling process
of the cell structure. The final orientation of both the growth cone and the axon
differs as well in the two cases, even though they are similar. Indeed, the random
term can both speed up or slow down the reorientation process, thereby replicating
the natural variability of the single neuron behaviour.

In order to validate the model, we made some statistics on the simulations and
compared them to the experimental results reported in [4]. At first, we considered
that the phenomenon of growth occurred with constant velocity, ignoring the
tubulin-driven axonal growth model. The velocity considered is V = 4 · 10−10 m/s
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(a) No random term added (b) Random term added

Figure 4.7: Simulations of axon growth and reorientation for 24 h when no
random term is considered and when it is. The thicker green line is the axon at
initial time t = 0. The thin line is the path followed by the growth cone according
to Eq. (2.20). The initial orientation angle is θ0 = π/12, the growth velocity is
supposed to be constantly equal to V = 4 · 10−10 m/s. We have set f = 0.25 Hz,
ε = 10% and ∆t = 0.1s.

which is simply an average of the experimental instant velocities reported in [4] at
24, 72 and 120 h. We included the random term while keeping other parameters
as listed in Table 4.3. To obtain statistically valid results, we simulated the
reorientation process and growth of 100 different neurons with the initial conditions
given in Eq. (4.4) and Eq. (4.5). We set ∆t = 0.1 s and reported the results at
24, 72 and 120 h. The combinations of values for the stretching frequency and
amplitude investigated are the ones listed in Table 4.2. In order to easily compare
the numerical results with the experimental ones, we used circular histograms to
represent the statistics of our model. The same representation method has been
used by Lin et al. in [4] where they analysed the reorientation process of 100 neurons
and they summarized the results as circular histograms. Specifically, Fig. 4.8 and
Fig. 4.9 respectively highlight how variations in either the strain amplitude or the
frequency affect neuron reorientation. In all cases, the circle has been divided into
12 slices measuring 30° each. Then at 24, 72 and 120 h they counted how many
axons fell into each of the slices and generated the relative circular histograms.
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Experimental results for neuron reorientation
with fixed frequency

Figure 4.8: Statistical results of neuron reorientation taken from the experiments
conducted by Lin et al. in [4] when the frequency is fixed equal to f = 0.25 Hz
and different strain amplitudes are considered. A sample of N = 100 neurons has
been analysed in the experiments. The histogram bars represent the percentage of
neurons whose orientation angle falls into the specific slice of the circle.
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Experimental results for neuron reorientation
with fixed strain amplitude

Figure 4.9: Statistical results of neuron reorientation taken from the experiments
conducted by Lin et al. in [4] when the strain amplitude is fixed equal to ε = 10%
and different frequencies are considered. A sample of N = 100 neurons has been
analysed in the experiments. The histogram bars represent the percentage of
neurons whose orientation angle falls into the specific slice of the circle.
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Results

Simulated neuron reorientation with constant velocity
and fixed frequency

Figure 4.10: Statistical results of neuron reorientation at different strain ampli-
tudes and at constant frequency. The random term is included, the growth velocity
is constant with value V = 4 · 10−10 m/s, λ = 1 s, λθ = 60 s and ∆t = 0.1 s. The
statistics are made on 100 simulated neurons.

58



Results

Simulated neuron reorientation with constant velocity
and fixed strain amplitude

Figure 4.11: Statistical results of neuron reorientation at different frequencies
and at constant stretching amplitude. The random term is included, the growth
velocity is constant with value V = 4 · 10−10 m/s, λ = 1 s, λθ = 60 s and ∆t = 0.1 s.
The statistics are made on 100 simulated neurons.
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We applied the same procedure to our model on a sample of N = 100 simulated
neurons. The resulting circular histograms with the resulting simulated axons of
the model are given in Fig. 4.10 and Fig. 4.11. At a first sight, the numerical
simulations appear to be in good agreement with the experimental observation in
Figs. 4.8 and 4.9. The reorientation process is well simulated and clearly visible
from the histograms. Indeed, simulated neurons tend to align perpendicularly
with respect to the main stretch direction. The different behaviours at different
frequencies and amplitudes are mimicked as well: increasing either the strain
amplitude or the frequency, the reorientation process becomes faster.
Finally, we observed that the absence of reorientation, biologically observed for small
strains, can be reproduced in the model. Indeed, at 2% strain rate, the distribution
of the neurons’ orientation angles stays uniform along the circumference even after
120 hours of cyclic deformation. The qualitative discrepancies that we can point
out are: axons appear to be longer than the ones observed in the experiments. For
example, after 120 h the simulated neurons are around 60 µm longer than the real
neurons tested in [4]. Furthermore, we remark that the reorientation process is
not finely reproduced for the lowest of the frequency values tested. Indeed, when
f = 0.05 Hz despite the simulated neurons reorienting over time, the entire process
occurs much more slowly compared to experimental observations.

To further investigate the numerical results, let us introduce the order parameter
defined as

⟨cos 2φ⟩ = 1
N

NØ
i=1

cos 2φi (4.6)

where N is the total number of neurons and φi if the orientation angle of the i-th
axon. The value of this parameter can span from -1 to 1: a random orientation
of the sample corresponds to 0, a fully coherent parallel orientation gives 1 and
a fully perpendicular one equals −1. We computed the order parameters for the
simulations in Fig. 4.10 and Fig. 4.11 and plotted their time evolution in Fig. 4.15.
As anticipated, we observe a monotonically decreasing trend in the computed order
parameter, in line with the experimental data. However, it is noticeable that the
model tends to overestimate the order parameter values, particularly over extended
simulation periods such as 72 and 120 h. This implies that the reorientation process
is simulated faster than it occurs in reality. A possible way to overcome this problem
is to decrease the time needed by the growth cone to change its orientation, i.e.
decrease the value of λθ. The other option that we will implement further in this
work is to drop the assumption that the axon growth velocity is constant. Indeed,
we saw in Section 4.2.1 how with the tubulin-driven axonal growth model neurons
tend to progressively decrease their growth rate as time passes. Consequently, the
axon reorientation process also experiences a slowdown when coupled with the
tubulin-driven axonal outgrowth, resulting in simulation outcomes more in line
with experimental observations. On the contrary, when the strain amplitudes are
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Figure 4.12: Evolution of order parameters for the simulated neuron cells on
the substrate subjected to cyclic stretch with different values of frequency and
amplitude. The axon outgrowth velocity is supposed to be constant. The empty
circles are experimental data from [4] with error bars representing the standard
deviation, and the solid curves are the simulation results of our model.

5% or 10% and for shorter periods such as 24 h, there is an underestimation of
the order parameter. This might be attributed to the axon’s orientation angle
φ not having sufficient time to align with that assumed by the growth cone θ.
Nonetheless, we can state that the model performs well in replicating differences in
strain amplitude with a high stretching frequency, but it seems to have difficulty in
accurately capturing the different behaviours when varying the frequency value.

At this point, we perform simulations assuming that the velocity is no longer
constant but determined by the axonal growth model outlined in Section 2.4. Thus,
we will simulate the complete model as presented in Eq. (2.64). Similarly to the
previous case, 100 different neurons with random initial orientations have been
simulated, and the results have been compared to those presented in [4] reproduced
in Fig. 4.8 and Fig. 4.9. The parameters for the axonal outgrowth used are listed in
Table 4.3. As previously done, all the statistics are given as circular histograms in
Fig. 4.13 and Fig. 4.14. In comparison to the previous situation, it can be observed
that the inclusion of the axonal growth model via tubulin diffusion successfully
results in neurons reaching a length around 110 µm after 120 h. This is consistent
with the experimental data reported in [4]. Hence, the addition of the tubulin-driven
model to the reorientation process allowed us to overcome the overestimation of the
neurons’ length that we previously had obtained when we used a constant value
for the axonal outgrowth velocity.
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Simulated neuron reorientation with tubulin-driven
axonal growth model and fixed frequency

Figure 4.13: Statistical results of neuron reorientation at different stretching
amplitudes and at constant frequency when the tubulin-driven axonal growth model
is implemented. The random term is included, λ = 1 s, λθ = 60 s, ∆x = 0.1 and
∆t = 0.1 s. The statistics are made on 100 simulated neurons.
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Simulated neuron reorientation with tubulin-driven
axonal growth model and fixed strain amplitude

Figure 4.14: Statistical results of neuron reorientation at different frequencies
and at constant stretching amplitude when the tubulin-driven axonal growth model
is implemented. The random term is included, λ = 1 s, λθ = 60 s, ∆x = 0.1 and
∆t = 0.1 s. The statistics are made on 100 simulated neurons.
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If we compare the numerical results given in Figs. 4.13 and 4.14 with the
histograms computed from the experiments in Figs. 4.8 and 4.9, we can state
that when analyzed in its entirety, the model effectively predicts the behaviour of
neurons exposed to dynamic stimuli. However, we can still observe that when using
a low frequency (f = 0.05 Hz) the model struggles to produce results faithful to the
experimental data (compare Fig. 4.14 and Fig. 4.9). Although the reorientation
process takes place, it is not simulated quickly enough, which ultimately results
in a broader angular distribution of the axons’ orientation. Let us now refer to
Fig. 4.15 to make a deeper analysis of the order parameters defined in Eq. (4.6).
We first notice that at 24 h the reorientation process is underestimated with order
parameters that are higher than the experimental ones. As already anticipated,
the fact that the orientation of the growth cone and the axon differs may lead to a
delay in the axon reaching the equilibrium orientation in a short time. However,
for longer periods, in most of the numerical tests performed, the simulation results
are in good agreement with what is reported in [4]. The model has been able to fit
the different behaviours between the 0.15 Hz case and the 0.25 Hz one after 72 and
120 hours. The model has been also able to mimic the absence of the reorientation
when ε = 2% and f = 0.25 Hz. Conversely, the model lacks in finely reproducing
what happens in the experiments when the strain amplitude is equal to 5% and in
the case of a relatively low frequency f = 0.05 Hz.

Figure 4.15: Evolution of order parameter for the simulated neuron cells on
the substrate subjected to cyclic stretch with different values of frequency and
amplitude. The tubulin-driven axonal outgrowth model has been considered in
the simulations. The empty circles are experimental data from [4] with error bars
representing the standard deviation, and the solid curves are the simulation results
of our model.
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Chapter 5

Conclusions and
perspectives

The directional alignment and outgrowth of neurons in response to cyclic stretch
remains an elusive issue that has not been extensively studied in the literature from
both the biological and modelling perspectives yet. This is quite surprising since
neuronal cells are constantly exposed to cyclic strain in physiological conditions.
Moreover, determining the right directionality of the growth of neural cells is
a critical step in nerve regeneration engineering and functional recovery of the
nervous systems. It is also true that, due to their peculiar morphology, mathematical
modelling of neuron cells is quite challenging, which is why it is a flourishing field
for research.

In this dissertation, we presented a new model for the reorientation and growth
of neurons in response to cyclic stretching. The model has been created by adapting
the linear viscoelastic model for cell reorientation given in [1] and the tubulin-driven
axonal outgrowth model in [48]. In our model, the neuron is divided into soma,
axonal shaft and growth cone. The externally imposed cyclic stretch triggers the
growth cone reorientation that consequently guides the axon. The axonal outgrowth
relies instead on the polymerization of free tubulin transported from the soma to
the growth cone via a convection-diffusion process. We were able to numerically
simulate the neuron reorientation process considering different combinations of
stretching frequencies and strain amplitudes. All the results were then validated
by comparing the simulation to the experimental evidence in [4]. In particular, our
model seems to finely reproduce the neuron behaviours at relatively high-frequency
stretching conditions and in the long term. However, more work should be done to
improve the reproduction of the reorientation process at low-frequency values and
shorter periods.

Our study has been conducted by making some simplifications and has some
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limitations that might be interesting to address in future work. We assumed to
work considering the substrate’s mechanical behaviour as linear. This is quite a
strong assumption considering that in some of the experiments, the strain rate
values used are considerably high. In order to make our model more reliable in
reproducing neuron behaviour under extreme stretching conditions, we can consider
dropping this simplification and formulate a new model in the future in which we
consider the nonlinearities of the substrate deformation. Such a model could also be
written and solved in the Eulerian frame to obtain a more realistic representation
of the neurons’ behaviour. This would involve considering the changes in growth
cone position and orientation in the deformed configuration, as well as how the
axon would deform by changing its length, and how the tubulin transport process
would be affected by these factors.

We then supposed that the cellular structures do not modify the mechanical
behaviour of the substrate alone which remains isotropic. However, we showed how
it is acknowledged that the growth cone actually exerts a traction force on the
substrate to pull the axon in the axonal guidance process. Hence, to create a more
realistic model, the interaction between the neuron and the substrate could be
taken into account since it modifies the stresses and strains of the substrate itself.
This would require describing the process of adhesion formation and detachment
along the axons and the growth cone.

Another simple extension to our model could be to add a tension-dependent
term on the axon growth model. In our specific case, this dependency has been
excluded just because in the experimental results reported in [4] the cyclic stretch
seems not to enhance the outgrowth velocity of neurites. However, we saw how
in many other studies tension led to a higher axonal elongation rate. Maybe we
can hypothesise that the higher the tension on the axon, the higher the tubulin
production in the soma or the higher the polymerization rate in the soma or the
faster the transport along the axonal shaft.

Some modifications can be done also from the numerical implementation per-
spective. In fact, for time discretization we used for the sake of simplicity an
explicit Euler method. However, it requires very little time steps ∆t to guarantee
numerical stability. Since we need to simulate experiments that last for days for a
significant number of neuron cells, the computing time required to get our result is
quite high. So, a more efficient numerical scheme can be introduced to discretize
the model in time. Furthermore, some work should be addressed to rigorously
prove the existence and uniqueness of solutions in our model.

In conclusion, the hope is that in the future, further experiments will be carried
out to better investigate the reorientation process of neurons subjected to cyclic
stretch. By doing so, it will be possible to have a better comprehension of the
phenomenon, identify its key mechanisms, and develop more precise mathematical
models.
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