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Summary

The purpose of this thesis is presenting the Rudin-Osher-Fatemi filter for image
analysis. We will consider mostly the application for denoising, however there are
other relevant application, such as restoring damaged inscriptions.

This filter involves solving a minimization problem with the objective function
built summing an L2-norm squared, which measure the distance from the reference
image, and the total variation functional. Therefore, one of the main concerns
of this work is to understand the behaviour of this problem under a variational
point of view, this involves studying the total variation functional and the main
properties of the bounded variation functions, on which it is defined.

In the first chapter the analytical preliminaries will be presented, in particular
we will focus on the BV function, the Caccioppoli sets and the coarea formula,
which links the total variation with the perimeter of the function level sets (which
are Caccioppoli sets). Then, the idea of reduced boundary will be presented and
studied, in order to provide a better understanding of the perimeter of Caccioppoli
sets and a glimpse on the differentiation of BV functions. This preliminary section
will end with the definition and some basic properties of Γ-convergence.

The second chapter is mostly dedicated to the study of the study of the Rudin-
Osher-Fatemi problem, in particular: the existence and uniqueness of the solution,
finding the associated Euler-Lagrange equation and finding an analytical solution
for a simple test case.

The last chapter will open with an idea for the discretization of the considered
problem and the proof that it actually converges to it (in the sense of Γ-convergence).
Then a modified Arrow-Hurwitz algorithm will be presented with the purpose of
implementing a solver for this problem. Finally we will comment some of the images
produced in this way and compare the analytical solution with the computational
one.
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Chapter 1

Preliminaries

In this chapter we will introduce some mathematical fundamentals for the analytical
formulation and study of the thesis core problem. In particular, there will be
presented the space of bounded variation functions and the class of Caccioppoli
sets, with some of their fundamental properties such as the “compactness" in L1, the
approximation through regular functions, the coarea formula and the isoperimetric
inequality. In the second section we will focus more on some further results on
Cacciopoli set for the definition of inner normal vector and a better understanding
of their perimeter. The last section will regard the Γ - convergence, which will be
used to prove the validity of a continuum optimization problem discretization.

1.1 Functions of Bounded Variations and Cac-
cioppoli sets

Definitions and basic properties
Let’s begin with the definition of total variation.

Definition 1.1.1 (Total variation). Let Ω ⊂ RN open and f ∈ L1(Ω). We define
the total variation of f on Ω as:

V (f,Ω) := sup
;Ú

Ω
f div(g) dx | g ∈ C1

c

1
Ω;RN

2
, ∥g∥∞ ≤ 1

<
.

We can extend this definition to a generic Ω (not open) as follows:

V (f,Ω) = inf {V (f, A) : A ⊃ Ω open} .

We can notice that this is a generalization, by duality, of
s

Ω|grad(f)| dx, that
for N = 1 represent indeed the distance spanned on the image of f .
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Preliminaries

Example 1.1.2. If f ∈ C1(Ω), we have:

∀g ∈ C1
c

1
Ω;RN

2
,

Ú
Ω
f div(g) dx = −

Ú
Ω

grad(f) · g dx.

Therefore, extracting the sup over g we get:

V (f,Ω) =
Ú

Ω
|grad(f)| dx.

More generally, this result can be achieved also for g ∈ W 1,1(Ω).

From this example we also verify that for f constant on Ω, then V (f,Ω) = 0.

Definition 1.1.3 (BV space). We define the space of functions of bounded variations
on Ω as follows:

BV (Ω) = {f ∈ L1(Ω) |V (f,Ω) < ∞}.

This definition well explain the space’s name, however it may be useful to look
at it under another, yet equivalent, definition: the functions whose distributional
derivative is a Radon measure.

Definition 1.1.4. A function f ∈ BV (Ω) if and only if f ∈ L1(Ω) and exists a
vector valued finite Radon measure µ such that, ∀ϕ ∈ C∞

c (Ω):Ú
Ω
f∂xi

ϕ dx = −
Ú

Ω
ϕ dµi; i = 1, . . . , N.

We call µ = Df .

This two definitions turn out to be equivalent (see the appendix B).
Observation 1.1.5. We can indeed notice that the following properties are true:

• V (f,Ω) ≥ 0, because g ≡ 0 is always a competitor for the supremum in 1.1.1.

• V (c,Ω) = 0 for c constant, because for Gauss-Green theorem
s

Ω div(g) dx = 0
for every g ∈ [C1

c (Ω)]n.

• Ω1 ∩ Ω2 = ∅ =⇒ V (f,Ω1 ∪ Ω2) = V (f,Ω1) + V (f,Ω2).

• Ω1 ⊂ Ω2 =⇒ V (f,Ω1) ≤ V (f,Ω2).

This suggests that V (f, ·) is a positive measure. Indeed, generalizing the example
1.1.2, it turned out that V (f,Ω) = |Df |(Ω) (see B.0.1 for the definition of |Df |).
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1.1 – Functions of Bounded Variations and Caccioppoli sets

We can also show the following scaling property:

V (fλ,Ω) = 1
λn−1V (f, λΩ), (1.1)

where fλ(x) = f(λx). Indeed, given g as in definition 1.1.3Ú
Ω
f(λx)divg(x) dx =

Ú
λΩ
f(x)divg

31
λ
x
4 1
λn

dx,

but since divg 1
λ
(x) = divg

1
1
λ
x
2

1
λ
, we can conclude

Ú
Ω
f(λx)divg(x) dx = 1

λn−1

Ú
λΩ
f(x)divg 1

λ
(x) dx,

which leads to the equation (1.1).
From the example 1.1.2 we have that W 1,1 ⊂ BV , however we can show that

the equality doesn’t hold.

Example 1.1.6. Take a relatively compact set E ⊂⊂ Ω ( with closure included in
Ω ) and, most importantly, with C2 boundary. Let χE the characteristic function
on E. Then Ú

Ω
χE dx = |E|;

therefore χE ∈ L1(Ω). However, DχE is non zero and supported only on ∂E, thus
it can not be an L1 function. That is χE ∈ L1(Ω) \ W 1,1(Ω). Still we can verify
that χE ∈ BV (Ω). Take g ∈ C1

0 (Ω,RN ) with ∥g∥∞ ≤ 1. Applying the Gauss-Green
theorem we have:Ú

Ω
χE div(g) dx =

Ú
E

div(g) dx =
Ú
∂E
g · ν dHn−1, (1.2)

where ν is the outward normal unit vector to ∂E and Hn−1 the (n− 1)-dimensional
Hausdorff measure. Since |g · ν| ≤ 1,Ú

∂E
g · ν dHn−1 ≤ Hn−1(∂E).

Thus, V (χE,Ω) ≤ Hn−1(∂E) < ∞, that is χE ∈ BV (Ω). Furthermore, since the
boundary is C2, we can extend ν to the whole Ω as a C1

0(Ω) with ∥ν∥∞ ≤ 1.

V (χE,Ω) ≥
Ú

Ω
χE div(ν) dx = Hn−1(∂E)

=⇒ V (χE,Ω) = Hn−1(∂E).

More in general for any open A: V (χE, A) = Hn−1(∂E ∩ A).
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Preliminaries

This example suggests a way to give a more general definition of perimeter,
using the total variation.

Definition 1.1.7. Let E be a Borel set and Ω an open set, both in RN . We define
perimeter of E in Ω as:

P (E,Ω) := V (χE,Ω).
For semplicity we denote P (E) = P (E,RN).

We say that E is a Caccioppoli set or set of locally finite perimeter if, for every
bounded Ω, P (E,Ω) < +∞.

This definition of perimeter, as a measure V (χE,Ω) = |DχE|(Ω), is localized on
∂E, as χE is constant elsewhere. Clearly, the properties in 1.1.5 still hold for the
perimeter, but we also have the following two:

Proposition 1.1.8. E,F Caccioppoli sets and Ω open, then:

1. P (E,Ω) + P (F,Ω) ≥ P (E ∩ F,Ω) + P (E ∪ F,Ω).

2. |E| = 0 =⇒ P (E,Ω) = 0.

3. |E \ F ∪ F \ E| = 0 =⇒ P (E,Ω) = P (F,Ω).

4. P (E,Ω) = P (RN \ E,Ω).

5. P (tE,Ω) = tn−1P
1
E, 1

t
Ω
2
.

Proof. (1): For this part we need a density result we will prove later, see 1.1.13
and 1.1.10. There exist two sequences of smooth functions {uj} and {vj} such that
0 ≤ uj, vj ≤ 1 and :uj −→ χE inL1(Ω)

lim
j→+∞

V (uj,Ω) = P (E,Ω)
Þ vj −→ χF inL1(Ω)

lim
j→+∞

V (vj,Ω) = P (F,Ω) .

Now ujvj −→ χE∩F in L1, indeed

∥χE∩F − ujvj∥L1 = ∥χEχF − ujvj∥L1 ≤ ∥χE(χF − vj)∥L1 + ∥(χE − uj)vj∥L1 ≤

≤ ∥χF − vj∥L1 + ∥χE − uj∥L1 −→ 0.
Similarly, uj + vj − ujvj −→ χE∪F :

|grad(ujvj)| + |grad(uj + vj − ujvj)| =

= |ujgrad(vj) + vjgrad(uj)| + |(1 − vj)grad(uj) + (1 − uj)grad(vj)| ≤

≤ uj|grad(vj)| + vj|grad(uj)| + (1 − vj)|grad(uj)| + (1 − uj)|grad(vj)| =

4



1.1 – Functions of Bounded Variations and Caccioppoli sets

= |grad(uj)| + |grad(vj)|.

In conclusion, by 1.1.10 and that for smooth functions V (u,Ω) =
s

Ω|grad(u)| dx :

P (E ∪ F,Ω) + P (E ∩ F,Ω) ≤

≤ lim inf
j

Ú
Ω
|grad(uj + vj − ujvj)| dx+ lim inf

j

Ú
Ω
|grad(ujvj)| dx ≤

≤ lim inf
j

;Ú
Ω
|grad(uj + vj − ujvj)| dx+

Ú
Ω
|grad(ujvj)| dx

<
≤

≤ lim inf
j

;Ú
Ω
|grad(uj)| dx+

Ú
Ω
|grad(vj)| dx

<
= P (E,Ω) + P (F,Ω).

(2): straightforward.
(3): Without loss of generality suppose Ω = RN .

|E \ F | ∪ |F \ E| = 0 =⇒ |E \ F | = 0
Þ

|F \ E| = 0

=⇒
Ú
E∪F

div(g) dx =
Ú
E

div(g) dx+
Ú
E\F

div(g) dx =
Ú
E

div(g) dx

=⇒ P (F ∪ E) = P (E).

But similarly P (E ∪ F ) = P (F ).
(4): χRN \E = 1 − χE

=⇒
Ú

Ω
χRN \E div(g) dx =

Ú
Ω

div(g) dx−
Ú

Ω
χE div(g) dx.

But since g ∈ C1
c (Ω), from Gauss-Green we have:Ú

Ω
div(g) dx = 0.

=⇒
Ú

Ω
χRN \E div(g) dx = −

Ú
Ω
χE div(g) dx.

Thus, we conclude extracting the supremum.
(5): Since χtE(x) = χE

1
1
t
x
2
, from (1.1) we conclude

P (tE,Ω) = V (χtE,Ω) = tn−1V
3
χE,

1
t
Ω
4

= tn−1P
3
E,

1
t
Ω
4
.
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Preliminaries

Observation 1.1.9. From definition 1.1.4, given a Caccioppoli set E, DχE is a vector
valued finite Radon measure. Thus, for any C1 function g we have:Ú

E
div(g) dx = −

Ú
Rn
g · dDχE.

As DχE has support only in ∂E, we can see this equality as a generalized Gauss-
Green formula.

We will now present now some relevant results about functions in BV and
Caccioppoli sets.

Theorem 1.1.10 (Semicontinuity). Let Ω ⊂ RN open and {fj}j∈N ⊂ BV (Ω) a
sequence converging weakly ⋆ to f in L1

LOC(Ω). Then

V (f,Ω) ≤ lim inf
j→+∞

V (fj,Ω).

Proof. Let g ∈ C1
c (Ω) s.t. ∥g∥∞ ≤ 1:Ú

Ω
f div(g)dx = lim

j→+∞

Ú
Ω
fj div(g)dx = lim inf

j→+∞

Ú
Ω
fj div(g)dx ≤ lim inf

j→+∞
V (f,Ω).

Then extracting the supremum over g we get the thesis.

We can observe that this is a quite general property, telling us that the total
variation is lower semicontinuous with respect to any Lp convergence, with p ∈
[1,∞), strong or weak, since all of them imply the weak ⋆ one in L1

LOC .
We can set on BV the norm

∥f∥BV = ∥f∥L1 + V (f,Ω).

Proposition 1.1.11. (BV, ∥·∥BV ) is a Banach space.

Proof. Let’s verify ∥·∥BV is a norm:

• ∥f∥BV ≥ 0 w ∥f∥BV = 0 ⇐⇒ f = 0,

• V (λf,Ω) = supg λ
s

Ω f div(g) dx = |λ| supg
s

Ω f div(g) dx = |λ|V (f,Ω). This
leads to: ∥λf∥BV = |λ|∥f∥BV .

• V (f1 + f2,Ω) = supg {
s

Ω(f1 + f2) div(g) dx} ≤

≤ sup
g

;Ú
Ω
f1 div(g) dx

<
+ sup

g

;Ú
Ω
f2 div(g) dx

<
= V (f1,Ω) + V (f2,Ω).

This gives the triangular inequality.

6



1.1 – Functions of Bounded Variations and Caccioppoli sets

About the completeness, a Cauchy sequence on this norm is also Cauchy in L1,
that is fj → f in L1. But the sequence {fj} is bounded in BV norm, so their total
variations are, therefore (from 1.1.10) V (f,Ω) < +∞, that is f ∈ BV (Ω). fj is a
Cauchy sequence, then

∀ϵ > 0,∃N ∈ N s.t.∀j, k > N ∥fj − fk∥BV < ϵ.

fj − fk → fj − f in L1, then for j > N by 1.1.10:

V (fj − f,Ω) ≤ lim inf
k

V (fj − fk,Ω) ≤ lim inf
k

∥fj − fk∥BV ≤ ϵ.

=⇒ fj −→ f inBV (Ω).

Observation 1.1.12. In the last two points of the proof that ∥·∥BV is a norm, we
have also shown that V (·,Ω) is a convex functional.

We can notice, from example 1.1.2, that for functions in W 1,1 the BV norm is
equivalent to the one in W 1,1. This mean that we have no hopes to approximate a
generic BV function with a sequence in W 1,1, since this Sobolev space is already
closed, and much less with smooth functions. Nevertheless, we have the following
"density" result.

Theorem 1.1.13. For every f ∈ BV (Ω) there is a sequence {fj} ⊂ C∞(Ω) such
that: fj −→ f inL1(Ω);

lim
j→+∞

V (fj,Ω) = V (f,Ω).

Proof. For ε > 0, we define

Ωk =
;
x ∈ Ω : dist(x,Ω) < 1

k +m

<
,

for k = 0,1,2, . . . and m ∈ N is big enough to have V (f,Ω \ Ω0) < ε. We define
the sets Ai such that:

A1 = Ω2
Þ

Ai = Ωi+1 \ Ω̄i−1, for i > 1.

We then define ϕi a partition of the unity related to the covering Ai, that is:

• ∀i ∈ N, ϕi ∈ C∞
c (Ai);

• ∀i ∈ N, 0 ≤ ϕ ≤ 1;

• q∞
i=1 ϕi = 1;

7



Preliminaries

Given ηε a family of mollifiers, for every i we can find an εi that satisfy:

1. supp{ηεi
∗ (fϕi)} ⊂ Ωi+2 \ Ω̄i−2;

2.
s
|ηεi

∗ (fϕi) − fϕi| dx < ε2−i;

3.
s
|ηεi

∗ (fDϕi) − fDϕi| dx < ε2−i;

We can finally define the approximating function:

fε =
∞Ø
i=1

ηεi
∗ (fϕi).

From 1 we have that this sum is locally finite, therefore fε ∈ C∞(Ω) and also
Ú

Ω
|fε − f | dx =

Ú
Ω

-----
∞Ø
i=1

ηεi
∗ (fϕi) − fϕi

----- dx ≤
∞Ø
i=1

Ú
Ω
|ηεi

∗ (fϕi) − fϕi| dx < ε.

=⇒ lim
ε→0

fε = f inL1.

It remains to show that the variation is converging. From 1.1.10 we already have
V (f,Ω) ≤ lim infε→0 V (fε,Ω). For the limsup inequality consider a function g as
in the definition of total variation, given that ηεi

has radial symmetry, we get:Ú
Ω
fεdiv(g) dx =

∞Ø
i=1

Ú
Ω
(fϕi) ∗ ηεi

div(g) dx =
∞Ø
i=1

Ú
Ω
fϕidiv(ηεi

∗ g) dx;

ϕidiv(ηεi
∗ g) = div(ϕi(ηεi

∗ g)) − grad(ϕi) · (ηεi
∗ g);

=⇒
Ú

Ω
fεdiv(g) dx =

∞Ø
i=1

Ú
Ω
fdiv(ϕi(ηεi

∗ g)) dx−
∞Ø
i=1

Ú
Ω
(fgrad(ϕi)) ∗ ηεi

· g dx.

To deal with the first integral we notice that |ϕi(ηεi
∗ g)| ≤ 1, thereforeÚ

Ω
fdiv(ϕ1(ηε1 ∗ g)) dx ≤ V (f,Ω),

while for i > 1, since the sum locally involves at most 3 addends, |q∞
i=2 ϕi(ηεi

∗ g)| ≤
3. Furthermore it is supported just in Ω − Ω0, then we have:

∞Ø
i=2

Ú
Ω
fdiv(ϕi(ηεi

∗ g)) dx ≤ 3V (f,Ω − Ω0) < 3ε.

For the second integral we can notice that q∞
i=1 grad(ϕi) = 0, then we can rewrite

it as: ∞Ø
i=1

⟨g, (fgrad(ϕi)) ∗ ηεi
− fgrad(ϕi)⟩ <

∞Ø
i=1

ε2−i = ε.

8



1.1 – Functions of Bounded Variations and Caccioppoli sets

=⇒
Ú

Ω
fεdiv(g) dx < V (f,Ω) + 4ε

=⇒ lim sup
ε→0

V (fε,Ω) ≤ V (f,Ω).

This result result allow us to prove also that the embedding of BV in L1 is
compact, under some constraints on the domain Ω.

Theorem 1.1.14 (Compactness). If Ω is an open set in RN , bounded and with
Lipschitz boundary, then BV (Ω) is compactly embedded in L1(Ω).

Proof. Let {fj} a bounded sequence in BV (Ω), then, by 1.1.13, for each j I can
find a smooth function f̃j s.t.:

...fj − f̃j
...
L1(Ω)

<
1
j

;...f̃j...
BV

< ∥fj∥BV + ϵ.

This means that {f̃j} is a bounded sequence in the BV norm, but for smooth
functions this coincide with the one in W 1,1. On this domain, W 1,1 is compactly
embedded in L1(Ω), therefore there exists a subsequence {f̃jk} converging in L1 at
a function f . But {fjk} has the same L1-limit as {f̃jk} and from 1.1.10 f ∈ BV (Ω).
That is, there exists a subsequence converging in L1 to a function in BV .

Leibniz rule and relevant inequalities
Concerning the differentiation, we have a sort of Leibniz rule.

Proposition 1.1.15. Let f ∈ BV (Ω) and ψ a locally Lipschitz function, then
ψf ∈ BV (Ω) and

D(ψf) = ψDf + ∇ψfLn.

Proof. If ψ ∈ C∞, D(ψf) = ψDf + ∇ψf as distribution. Furthermore, since
f ∈ L1(Ω), f as a distribution is fLn as a Radon measure. Hence, in this particular
case the differentiation rule is true. Now, for ψ ∈ LipLOC , take a test function ϕ with
support on a compact K. Then, there is a sequence {ψKj } equi-Lipschitz converging
to ψ uniformly on K. As {ψKj } are equi-Lipschitz, {∇ψKj } are equibounded (almost
everywhere). Furthermore, this sequence is given by the convolution of ψ with
mollifiers, then ∇ψKj = ∇ψ ∗ ρj → ∇ψ in L1. Thus, we can chose a subswquence
for which we have ∇ψKj → ∇ψ almost everywhere. We want to prove

⟨D(ψf), ϕ⟩ = −⟨ψf,∇ϕ⟩ = − lim
j→∞

⟨ψKj f,∇ϕ⟩ =

9



Preliminaries

= lim
j→∞

è
⟨∇ψKj f, ϕ⟩ + ⟨ψKj Df, ϕ⟩

é
= ⟨∇ψf, ϕ⟩ + ⟨ψDf, ϕ⟩,

that is, we just need to prove the limits. As {ψKj } is uniformly bounded, for
dominated convergence we have the limits:

lim
j→∞

⟨ψKj f,∇ϕ⟩ = ⟨ψf,∇ϕ⟩,

lim
j→∞

⟨ψKj Df, ϕ⟩ = lim
j→∞

Ú
K
ψKj ϕ dDf =

Ú
K
ψϕ dDf = ⟨ψDf, ϕ⟩.

Now, as {∇ψKj } are equibounded and converge almost everywhere to ∇ψ, we can
apply again the dominated convergence:

lim
j→∞

⟨∇ψKj f, ϕ⟩ = ⟨∇ψf, ϕ⟩.

In this way we showed that

D(ψf) = ψDf + ∇ψf

as distributions, but since ∇ψf behaves as ∇ψfLn, we can say that D(ψf) is a
Radon measure and the derivation rule holds

Corollary 1.1.16. Let u ∈ BV (Ω) with Ω open, ∀x ∈ Ω and ∀ρ ∈ (0, ρ0), with
ρ0 = dist(x, ∂Ω):

V (uχBρ ,Rn) ≤ V (u,Bρ) + d

dρ+

AÚ
Bρ

|u(x)| dx
B
,

where Bρ = B(x, ρ) and

d

dρ+
ϕ(ρ) = lim inf

σ→0+

ϕ(ρ+ σ) − ϕ(ρ)
σ

.

Proof. Consider a Lipschitz-regularized version of χBρ :

γσ(x) =


1 |x| ∈ [0, ρ)

1 − |x| − ρ

σ
|x| ∈ [ρ, ρ+ σ)

0 |x| ∈ [ρ+ σ,+∞).

Then by the Leibniz rule:

D(uγσ)(A) =
Ú
A
γσ(x) dDu+

Ú
A∩Bρ+σ\Bρ

− 1
σ

x

|x|
u(x) dx,

10



1.1 – Functions of Bounded Variations and Caccioppoli sets

for a given set A. Then by definition B.0.1 of total variation of a measure and
B.0.3 we have

|D(uγσ)|(Rn) ≤ |γσ||Du|(RN) + 1
σ

Ú
Bρ+σ\Bρ

|u(x)| dx ≤

≤ |Du|(Bρ+σ) + 1
σ

Ú
Bρ+σ\Bρ

|u(x)| dx.

uγσ converge Ln-a.e. to uχBρ , then, by dominated convergence, also in L1. Hence,
for semicontinuity and |Du| continuity from above, we get
---D(uχBρ)

---(Rn) ≤ lim inf
σ→0+

|D(uγσ)|(Rn) ≤ |Du|(Bρ) + lim inf
σ→0+

1
σ

Ú
Bρ+σ\Bρ

|u(x)| dx.

Observation 1.1.17. If we take u = χE, this inequality become

P (E ∩Bρ) ≤ P (E,Bρ) + d

dρ+
|E ∩Bρ|.

In BV we can find a generalization of some Sobolev inequalities, here we present
the Poincaré and Poincaré-Wirtinger inequalities.

Theorem 1.1.18. • (Poincaré) Let f ∈ BV (Rn), with support bounded in at
least one direction, then there exists cn > 0 such that

∥f∥L1(Rn) ≤ cnV (f,Rn).

• (Poincaré-Wirtinger) Let Ω bounded and f ∈ BV (Ω). Call f the integral mean
of f over Ω. Then there exists cn > 0 such that...f − f

...
L1(Ω)

≤ cnV (f,Ω).

Proof. These inequalities for sure are true in W 1,1(Ω) (in the first point Ω = Rn).
But by 1.1.13 there exists a sequence {fj} of smooth functions converging in L1

to f and V (fj,Ω) is converging to V (f,Ω). Therefore the first inequality comes
immediately:

∥f∥L1(Rn) ≤ lim inf
j→∞

∥fj∥L1(Rn) ≤ lim inf
j→∞

cnV (fj,Rn) = cnV (f,Rn).

For the second inequality we can argue at the same way, just notice that f j → f .

11
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Observation 1.1.19. We have to notice that as L
n

n−1 is embedded in W 1,1, also BV
is and the generalized Poincaré inequalities can be similarly proven with the norm
in L

n
n−1 in place of the L1. Indeed, {fj} is bounded in W 1,1 and consequently also

L
n

n−1 , then there is a subsequence converging weakly to f in L
n

n−1 . As the norms
are lower semicontinous with respect to the weak topology, the inequalities in the
proof works as well. Then we also have:

• ∥f∥
L

n
n−1 (Ω) ≤ cn∥f∥BV (Ω).

• ∥f∥
L

n
n−1 (Rn) ≤ cnV (f,Rn), for f compactly supported.

•
...f − f

...
L

n
n−1 (Ω)

≤ cnV (f,Ω), with Ω bounded.

Corollary 1.1.20 (Isoperimetric inequalities). Let E be a Caccioppoli set. Then:

1. E bounded =⇒ |E|
n−1

n ≤ cnP (E).

2. B bounded =⇒ min{|E ∩ A|, |(Rn \ E) ∩B|}n−1
n ≤ cnP (E,A).

Proof. Both this results comes plugging f = χE in the inequalities from the
observation above. The former is straightforward. For the latter,

χE = 1
|A|

Ú
A
χE dx = |A ∩ E|

|A|

Ú
A

|χE − χE|
n

n−1 dx =
A

1 − |A ∩ E|
|A|

B n
n−1

|A ∩ E| +
A

|A ∩ E|
|A|

B n
n−1

|A ∩ (Rn \ E)|,

but, since |A ∩ (Rn \ E)| = |A| − |A ∩ E|, we have:
Ú
A

|χE − χE|
n

n−1 dx ≥ min{|E ∩ A|, |(Rn \ E) ∩B|}|E ∩ A|
n

n−1 + |(Rn \ E)|
n

n−1

|A|
n

n−1

We recall that ∀a, b > 0 ∧ p ≥ 1, ap + bb ≥ 21−p(a+ b)p, which implies

|E ∩ A|
n

n−1 + |(Rn \ E)|
n

n−1

|A|
n

n−1
≥ 2− 1

n−1 .

Now extracting the n−1
n

-th root and applying the Poincaré-Wirtinger inequality we
conclude.

This last result is very important as provide a way to bound the area of a figure
with its perimeter. We also point out that the inequalities are true also without
the n−1

n
exponent, however in the applications the exponent is often necessary.

12
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Coarea formula and some consequences
Another relevant result in BV is the so called coarea formula, which relates the
total variation with the perimeter of sublevel sets.

Theorem 1.1.21 (Coarea formula). Let f ∈ BV (Ω), with Ω open, and define

Ft = {x ∈ Ω : f(x) < t}.

Then, for each E ⊂⊂ Ω

V (f, E) =
Ú +∞

−∞
P (Ft, E) dt.

Proof. Consider as domain the whole Ω. Let’s first split f in positive and negative
part f+ and f−. We notice that:

f+(x) =
Ú f+(x)

0
dt =

Ú +∞

0
χ{t≤f(x)}(t) dt =

Ú +∞

0
1 − χFt(x) dt;

=⇒
Ú

Ω
f+ div(g) dx =

Ú +∞

0

Ú
Ω
(1 − χFt(x)) div(g) dxdt ≤

Ú +∞

0
P (Ft,Ω) dt.

And similarly for f−: Ú
Ω

−(f−) div(g) dx ≤
Ú 0

−∞
P (Ft,Ω) dt.

Then adding these inequalities we conclude:Ú
Ω
f div(g) dx ≤

Ú +∞

−∞
P (Ft,Ω) dt; =⇒ V (f,Ω) ≤

Ú +∞

−∞
P (Ft,Ω) dt.

Let’s at first show that the equality is true for f ∈ BV (Ω) continuous and piecewise
linear. This means that there exist a finite partition {Ωi} of Ω s.t.

f(x) = ci · x+ bi, forx ∈ Ωi.

therefore, f is in W 1,1, which implies:

V (f,Ω) =
Ú

Ω
|grad(f)| dx =

Ø
i

|ci||Ωi|.

On the other hand, P (Ft,Ωi) = Hn−1({x ∈ Ωi : ci · x+ bi = t}),

=⇒
Ú +∞

−∞
P (Ft,Ωi) dt =

Ú +∞

−∞
Hn−1({x ∈ Ωi : ci · x = t}) dt,

13
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where we applied the shift t − bi in the integral. We now do a change of basis
(ξ1, . . . , ξN ) = R(e1, . . . , eN ), where (ej) is the standard base, so that ξ1 = ci

|ci| while
ci · ξj = 0 for j > 1. We call y = Rx, then ci · x = |ci|y1. Hence, changing variable
|ci|s = t, we finally get:Ú +∞

−∞
Hn−1({x ∈ Ωi : ci · x = t}) dt = |ci|

Ú +∞

−∞
Hn−1({y ∈ RΩi : y1 = s}) ds =

= |ci|
Ú
RN
χΩi

dy = |ci||Ω|.

=⇒ V (f ; Ω) =
Ø
i

Ú +∞

−∞
P (Ft,Ωi) dt =

Ú +∞

−∞
P (Ft,Ω) dt.

Now we would like to extend this result at first to C∞ functions then to the whole
BV . We will show that if we have a sequence {fj} ⊂ BV (Ω) for which the coarea
formula is true and this is sequence satisfy:fj −→ f inL1(Ω),

lim
j→+∞

V (fj,Ω) = V (f,Ω), (1.3)

then the coarea formula is true also for f . Indeed, let’s call Ftj := {x ∈ Ω : fj(x) <
t}, then we have:

|fj − f | =
Ú |fj−f |

0
dt =

=


Ú fj−f

0
dt forx : fj(x) > f(x)Ú f−fj

0
dt forx : f(x) > fj(x)

=


Ú fj

f
dt forx : fj(x) > f(x)Ú f

fj

dt forx : f(x) > fj(x)
=

=
Ú +∞

−∞
χFt\Ftj

+ χFtj\Ft dt =
Ú +∞

−∞

---χFt − χFtj

--- dt.
=⇒ ∥fj − f∥L1 =

Ú +∞

−∞

...χFt − χFtj

...
L1

dt.

Thus, we can extract a subsequence χFtj
converging in L1(Ω) to χFt for almost

every t. Now using the coarea formula for fj, the Fatou’s lemma and the theorem
1.1.10, we have:

V (f,Ω) = lim
j→+∞

V (fj,Ω) = lim
j→+∞

Ú +∞

−∞
P (Ftj,Ω) dt ≥

≥
Ú +∞

−∞
lim inf
j→+∞

P (Ftj,Ω) dt ≥
Ú +∞

−∞
P (Ft,Ω) dt

14



1.1 – Functions of Bounded Variations and Caccioppoli sets

=⇒ V (f,Ω) =
Ú +∞

−∞
P (Ft,Ω) dt.

Now we can approximate in W 1,1(Ω) compactly supported smooth functions with
piecewise continuous linear functions (with linear interpolation on progressively
finer simplex meshes), therefore 1.3 are satisfied, and so is the coarea formula. But
then we can generalize by density to every function in W 1,1(Ω̄). Hence, the coarea
formula is true for smooth functions in BV (Ω). At the same way, from 1.1.13, we
can conclude that the coarea formula is true on the whole BV (Ω).

All this just to show the formula for E = Ω, but then we can quickly see that it
holds for every open E ⊂ Ω. Consider now a closed E, then

V (f, E) = inf
A⊃E open

V (f, A) = lim
j
V (f, Aj),

for a given sequence of open sets Aj, such that E ⊂ Aj ⊆ Ω. We can take this
sequence to be such that Aj+1 ⊆ Aj and E = u

j Aj . Indeed, if the first property is
not true, we can just take the sequence defined as A′

1 = A1 and A′
j+1 = Aj+1 ∩ A′

j.
Instead, if the second property does not holds, then we must have A := u

j Aj ⊃ E.
We can take a sequence of points {xj} that is filling densely A \ E and we can
define a new sequence of open sets A′

j such that E ⊂ A′
j ⊂ A and xj /∈ Aj, in this

way uj A′
j = E. Now, let’s apply the coarea formula for the open Aj

V (f, E) = lim
j

Ú +∞

−∞
P (Ft, Aj) dt.

Because P (Ft, Aj) ≤ P (Ft,Ω) for almost every t, we can take the limit inside for
dominated convergence. Then, using the measures’ continuity from above we have:

V (f, E) =
Ú +∞

−∞
lim
j
P (Ft, Aj) dt =

Ú +∞

−∞
P (Ft, E) dt.

The coarea formula can be used to relate volumes with perimeters. An example
of this follows.

Example 1.1.22. Take the function f(x) = |x− x0|, for some fixed x0, and an
open bounded domain Ω. Therefore, Ft = {f < t} = B(x0, t) and f ∈ W 1,1(Ω) with
∇f(x) = x

|x| : Ú +∞

0
P (B(x0, t),Ω) dt = V (f,Ω) =

Ú
Ω
|∇f | dx = |Ω|.

Using the results in 1.1.6 and that Ω is bounded, we further get:

|Ω| =
Ú R

0
Hn−1(∂B(x0, t) ∩ Ω) dt.

15
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Observation 1.1.23. From the previous example we notice that if we take a set
E ⊂⊂ Ω, we have: Ú

R
P (B(x0, t), ∂E) dt = |∂E| = 0

=⇒ P (B(x0, t), ∂E) = 0 a.e. t.

From the Radon measure point of view, the coarea formula is written as:

|Df |(Ω) =
Ú +∞

−∞
|DχFt |(Ω) dt.

This suggest that there may be a way to move an integral from d|Df | to d|DχFt |dt.

Proposition 1.1.24. Let f be a measurable function and u ∈ BV (Ω), then for
every borel set A ⊆ Ω

f |Du|(A) =
Ú +∞

−∞
f
---Dχ{u<t}

---(A) dt,

where {u < t} = {x ∈ Ω : u(x) < t}.

Proof. Let’s prove it for simple function, then positive functions, and finally gener-
alize. Take f = qm

i=1 ciχAi
, for some real coefficients ci and borel sets Ai.

f |Du|(A) =
Ø
i

ci|Du|(Ai) =
Ø
i

ci

Ú +∞

−∞

---Dχ{u<t}

---(Ai) dt =

=
Ú +∞

−∞

Ø
i

ci
---Dχ{u<t}

---(Ai) dt =
Ú +∞

−∞
f
---Dχ{u<t}

---(A) dt.

For f ≥ 0, we can take a sequence of simple functions {ϕk} monotonically converging
to f , therefore by monotone convergence we have:

f |Du|(A) = lim
k

Ú
A
ϕkd|Du| = lim

k

Ú +∞

−∞

Ú
A
ϕkd

---Dχ{u<t}

--- dt =

=
Ú +∞

−∞
f
---Dχ{u<t}

---(A) dt.

From this the last generalization is straightforward.

With the coarea formula we can show that the inequality of 1.1.8(1) can be
extended to the total variation on open sets.

Proposition 1.1.25. Let Ω be an open set , then for any u, v ∈ BV (Ω)

V (max{u, v},Ω) + V (min{u, v},Ω) ≤ V (u,Ω) + V (v,Ω).
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Proof. Let’s call Et = {u < t} and Ft = {v < t}. Then we notice that

Et ∩ Ft = {u < t ∧ v < t} = {max{u, v} < t},

Et ∪ Ft = {u < t ∨ v < t} = {min{u, v} < t}.

Then from the coarea formula and 1.1.8(1) we conclude:

V (max{u, v},Ω) + V (min{u, v},Ω) =

=
Ú
R
P ({max{u, v} < t},Ω) + P ({min{u, v} < t},Ω) dt =

=
Ú
R
P (Et ∩ Ft,Ω) + P (Et ∪ Ft,Ω) dt ≤

≤
Ú
R
P (Et,Ω) + P (Ft,Ω) dt = V (u,Ω) + V (v,Ω).

This inequality allows a relevant property of the total variation, that it decrease
by truncation.

Corollary 1.1.26. Let m and M real numbers and u ∈ BV (Ω). We define
u ∧M := min{u,M} and u ∨m := max{u,m}, then

V (m ∨ (u ∧M),Ω) ≤ V (u,Ω).

Proof. Given the inequality (1.1.25) and that V is 0 on constants, then:

V (m ∨ (u ∧M),Ω) ≤ V (m,Ω) + V (u ∧M,Ω) ≤ V (u,Ω) + V (M,Ω) = V (u,Ω).

Another consequence of the coarea formula is the approximation of Caccioppoli
sets with smooth sets. At first we need the following lemma.

Lemma 1.1.27. Let E be a Caccioppoli set and fϵ a mollification of χE. For
0 < t < 1 we define:

Eϵ :=
î
x ∈ RN : fϵ(x) > t

ï
.

Then
∥χEϵ − χE∥L1 ≤ 1

min(1 − t, t)∥fϵ − χE∥L1 .

17
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Proof. Ú
|fϵ − χE| dx ≥

Ú
E\Eϵ

|fϵ − χE| dx+
Ú
Eϵ\E

|fϵ − χE| dx ≥

≥ t|Eϵ \ E| + (1 − t)|E \ Eϵ| ≥ min(t,1 − t)(|Eϵ \ E| + |E \ Eϵ|) =

= min(t,1 − t)
Ú

|χEϵ − χE| dx.

Theorem 1.1.28. A bounded Caccioppoli set E can be aproximated by a sequence
of sets {Ej} with C∞ boundary as follows:χEj

−→ χE inL1(Ω);
lim

j→+∞
P (Ej,Ω) = P (E,Ω).

Proof. From 1.1.13 χE can be approximated by the mollification of χE, we call
them fϵ, s.t. 0 ≤ fϵ ≤ 1 and

P (E) = lim
ϵ→0

V (fϵ). (1.4)

If we define Eϵ,t :=
î
x ∈ RN : fϵ(x) > t

ï
, then by lemma 1.1.27

∀t ∈ (0,1), lim
ϵ→0

χEϵ,t = χE inL1,

as fϵ goes to χE in L1. Thus, by 1.1.10:

lim inf
ϵ→0

P (Eϵ,t) ≥ P (E), ∀t ∈ (0,1). (1.5)

Now applying the coarea formula to 1.4 and the Fatou’s lemma we have:

P (E) = lim
ϵ→0

Ú 1

0
P (RN \ Eϵ,t) dt = lim

ϵ→0

Ú 1

0
P (Eϵ,t) dt ≥

Ú 1

0
lim inf
ϵ→0

P (Eϵ,t) dt ≥ P (E)

=⇒
Ú 1

0
lim inf
ϵ→0

P (Eϵ,t) dt = P (E).

But for 1.5 we must have:

lim inf
ϵ→0

P (Eϵ,t) = P (E),

for almost every t ∈ (0,1). Finally, for Sard’s lemma ∂Eϵ,t is smooth for almost
every T . This means we can find a t for which we can extract a sequence Ej with
smooth boundary s.t.: 

lim
j→+∞

χEj
= χE inL1;

lim
j→+∞

P (Ej) = P (E).

18



1.1 – Functions of Bounded Variations and Caccioppoli sets

Combining this result and the coarea formula we can prove a lemma that will
be useful later on.

Lemma 1.1.29. Let E be a bounded Caccioppoli set. For almost every ρ > 0 we
have

P (E, ∂Bρ) = 0.

Proof. From 1.1.28 we can find a sequence of regular sets {Eh} converging in measure
to E and such that limh P (Eh, ∂Bρ) = P (E, ∂Bρ). We notice that P (E,Bρ) is a
measurable function in ρ as it is monotone, then also P (E,Bρ) = inft>ρ P (E,Bt).
this means that also P (E, ∂Bρ) is measurable and then it can be integrated, then
by Fatou’s lemma:Ú +∞

−∞
P (E, ∂Bt) dt =

Ú +∞

−∞
lim
h
P (Eh, ∂Bt) dt ≤ lim inf

h

Ú +∞

−∞
P (Eh, ∂Bt) dt.

But as both Bt and Eh have smooth boundary, from 1.1.6 and 1.1.23,

P (Eh, ∂Bt) = Hn−1(∂Eh ∩ ∂Bt) = P (Bt, ∂E) = 0, a.e.

Finally, Ú +∞

−∞
P (E, ∂Bt) dt = 0 =⇒ P (E, ∂Bρ) = 0 a.e.

Then we present a standard result of existence of minimal perimeter.

Theorem 1.1.30. Let Ω be a bounded open set in RN and L be a Caccioppoli set.
We define:

C := {F Caccioppoli set s.t F \ Ω = L \ Ω} .

Then the problem
min
F∈C

P (F )

has a solution.

Observation 1.1.31. We notice that the role of L is to capture the constrained
boundary. Indeed, we can read the problem as: "find the subset of Ω with minimal
perimeter, given that ∂Ω ∩ L has to be part of its boundary".

Proof. From 1.1.5 we can write

P (F ) = P (F, Ω̄) + P (F,RN \ Ω̄).

But P (F,RN \ Ω̄) is fixed by constraint, therefore we want to minimize just
P (F, Ω̄) = V (χF , Ω̄). The perimeter is always positive, this means that the
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problem is bounded from below and so any minimizing sequence Ej has uniformly
bounded perimeters. Furthermore,

...χEj

...
L1(Ω)

= |Ej ∩ Ω| ≤ |Ω|. Therefore, {χEj
}

is bounded in BV . By the compact embedding, there exists f ∈ L1(Ω) to which a
subsequence of χEj

is converging in L1. We can choose this subsequence to converge
also a.e. to f , this implies that f(x) ∈ {0,1} a.e. If we call E := {x ∈ Ω : f(x) = 1},
we can say:

f = χE a.e.

But by 1.1.10, we have:

P (E,Ω) = V (χE,Ω) ≤ lim inf
j

V (χEj
,Ω) = inf

F∈C
P (F,Ω).

This means that E is the minimum.

We can point out that similar proofs can be used for optimization problem with
functionals of the kind:

G(F ) = P (F,Ω) +
Ú
F
H(x) dx.

1.2 Reduced boundary

Definition
In this section the idea of reduced boundary will be present with some relevant
properties. In particular, on the reduced boundary is possible to define in some
sense the the normal vector and s tangent space. Furthermore, we can write the
perimeter of a Caccioppoli set as the Hausdorff measure on the reduced boundary.

We will develop further theory on the Caccioppoli sets considering them as a
class of equivalence, this comes naturally as we identify the set with χE ∈ L1

LOC .

Definition 1.2.1. We say that two sets E and F are equivalent if

|(E \ F ) ∪ (F \ E)| = 0.

This equivalence relation is consistent with the perimeter from 1.1.8 (3). From
now on we will always take for any Caccioppoli set E its representative satisfying
the following property:

0 < |E ∩B(x, ρ)| < ωnρ
n ∀x ∈ ∂E, ∀ρ > 0; (1.6)

where B(x, ρ) is the ball centered in x of radius ρ, while ωn = |B(0,1)|. We can
now prove that always exists an equivalent set with such a property.

Proposition 1.2.2. For any Borel set E exists an equivalent set Ẽ satisfying (1.6).
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Proof. We define two sets:

E0 = {x ∈ Rn : ∃ρ > 0, |B(x, ρ) ∩ E| = 0},

E1 = {x ∈ Rn : ∃ρ > 0, |B(x, ρ) ∩ E| = ωnρ
n}.

We first notice that E0 ∩ E1 = ∅. Indeed, if we suppose x ∈ E0 ∩ E1, then there
must exist ρ1 > ρ0 > 0 s.t.

|B(x, ρ0) ∩ E| = 0
Þ

|B(x, ρ1) ∩ E| = ωnρ
n
1

=⇒ |(B(x, ρ1) \B(x, ρ0)) ∩ E| = |B(x, ρ1) ∩ E| − |B(x, ρ0) ∩ E| = ωnρ
n
1 .

But at the same time |(B(x, ρ1) \B(x, ρ0)) ∩ E| ≤ |B(x, ρ1) \B(x, ρ0)| < ωnρ
n
1 ,

contradiction.
Then we can show that those sets are open. Take x ∈ E0, then there exist

ρ > 0 s.t. |B(x, ρ) ∩ E| = 0. Let y ∈ B(x, ρ), then we can find ρy > 0 s.t
B(y, ρy) ⊂ B(x, ρ) and consequently |B(y, ρy) ∩ E| = 0. This show that B(x, ρ) ⊆
E0. Similarly, for x ∈ E1 we can find ρ > 0 s.t. |B(x, ρ) ∩ E| = ωnρ

n and for every
y ∈ B(x, ρ) there is a ball B(y, ρy) ⊂ B(x, ρ).

ωnρ
n = |(B(x, ρ) \B(t, ρy)) ∩ E| + |B(y, ρy) ∩ E| ≤ ωnρ

n − ωnρ
n
y + |B(y, ρy) ∩ E|

=⇒ |B(y, ρy) ∩ E| ≥ ωnρ
n
y .

Then, B(x, ρ) ⊆ E1.
Now we define Ẽ = (E ∪ E1) \ E0 = (E \ E0) ∪ E1. W now show that Ẽ is

equivalent to E.

E \ Ẽ = E ∩ ((E ∪ E1) ∩ Ec
0)c = E ∩ ((E ∪ E1)c ∪ E0) =

= (E ∩ E0) ∪ (E ∩ (E ∪ E1)c) = E ∩ E0.

Ẽ \ E = (E ∪ E1) ∩ Ec
0 ∩ Ec = (E1 ∩ Ec) ∩ Ec

0 = E1 \ E

=⇒
---(E \ Ẽ) ∪ (Ẽ \ E)

--- ≤ |E1 \ E| + |E ∩ E0|.

Now, since Rn is separable, we can find a sequence {xi} ⊂ E0 dense in E0 and
consequently such that E0 ⊆ t

i∈NB(xi, ρi) and |E ∩B(xi, ρi)| = 0.

=⇒ |E ∩ E0| ≤
Ø
i∈N

|E ∩B(xi, ρi)| = 0.

At the same way we can find a numerable ball covering for E1 s.t. |E ∩B(xi, ρi)| =
ωnρ

n
i , then

|E1 \ E| ≤
Ø
i∈N

|B(xi, ρi) \ E| =
Ø
i∈N

|B(xi, ρi)| − |B(xi, ρi) ∩ E| = 0.
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=⇒
---(E \ Ẽ) ∪ (Ẽ \ E)

--- = 0.

Now, to conclude, we have to prove that ∂Ẽ∩(E1∪E0) = ∅. Suppose x ∈ E1∪E0,
since those sets are open we can find a ball B(x, ρ) totally contained either in E0
or E1.

• B(x, ρ) ⊂ E0: this implies B(x, ρ) ∩ Ẽ ⊂ E0 ∩ Ec
0 = ∅, and so x /∈ ∂Ẽ.

• B(x, ρ) ⊂ E1: that is B(x, ρ) ∩ Ẽc = B(x, ρ) ∩ ((Ec ∪ E0) ∩ Ec
1) = ∅, which

again implies x /∈ ∂Ẽ.

From now on we will always refer to the representative set satisfying (1.6).
Observation 1.2.3. A first relevant consequence of this property is that the support
of |DχE| is exactly ∂E. Indeed, supp|DχE| ⊆ ∂E, while given an A open such that

|DχE|(A) = 0,

then for each x ∈ ∂E we can find a ball B = B(x, ρ) that is |DχE|-negligible. But
from isoperimetric inequality 1.1.20 this implies:

min {|B ∩ E|, |B ∩ (Rn \ E)|} = 0.

Although, this contradicts the property (1.6).
We go on defining the reduced boundary.

Definition 1.2.4 (Reduced Boundary). Given a Caccioppoli set E, we define the
reduced boundary ∂∗E as the set of x s.t.

• |DχE|(B(x, ρ)) > 0, ∀ρ > 0;

• the limit ν(x) = limρ→0
DχE(B(x,ρ))

|DχE |(B(x,ρ)) exists;

• |ν(x)| = 1.

Observation 1.2.5. Since |DχE| is supported on ∂E and the property 1.6 is assumed,
then the first requirement cannot be satisfied for x /∈ ∂E. Therefore, ∂∗E ⊆ ∂E.
ν actually is the integrable function of the polar decomposition of DχE (see

(B.0.4)), that is |ν(x)| = 1, |DχE|-a.e., and ν is the Radon-Nikodym derivative (see
appendix A) between DχE and |DχE|:

DχE = ν|DχE|.
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1.2 – Reduced boundary

Observation 1.2.6. This means that ν is defined as above for |DχE|-almost every
point on ∂E. This combined with the fact that |DχE| is supported in ∂E, let us
conclude:

P (E,Ω) = |DχE|(Ω) = |DχE|(Ω ∩ ∂E) = |DχE|(Ω ∩ ∂∗E). (1.7)

We can look at this ν as a generalization of the inward unitary normal vector
and the reduced boundary as the portion of ∂E where this normal is well defined.
The following example will show it.

Example 1.2.7. Take E set with C2 boundary. From example 1.1.6 we have

|DχE|(A) = P (E,A) = Hn−1(A ∩ ∂E)

for any measurable set A. But we also know that in this case the distributional
derivative of χE is given by:

DχE = νHn−1, on ∂E,

where ν is the normal vector on ∂E pointing inside E.

=⇒ DχE(B(x, ρ))
|DχE|(B(x, ρ)) = 1

Hn−1(∂E ∩B(x, ρ))

Ú
∂E∩B(x,ρ)

ν(x)dHn−1.

This is the integral average of ν on a ball, thus by continuity it converges to ν(x)
itself. Then

∂∗E = ∂E.

If we take E to be instead a polygon, then the corners are not in the reduced
boundary. Indeed, there the integral average will be the average between the normal
vectors of two sides ν1+ν2

2 , which is not a unitary vector.

Approximation by tangent spaces
We can see that with this definition of normal vector we can define a tangent space,
which locally approximate the reduced boundary. In particular for any z ∈ ∂∗E we
can define the tangent space and the approximating half-space:

T (z) = {x ∈ Rn : ⟨ν(z), x− z⟩ = 0}, (1.8)

T+(z) = {x ∈ Rn : ⟨ν(z), x− z⟩ > 0}, (1.9)

where in T+ we take ">0" because ν is the inner normal vector. In order to prove
this approximation we need the some inequalities.
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Proposition 1.2.8. Let E be a Caccioppoli set and take x ∈ ∂∗E, then ∀ε > 0
exists ρ0 > 0 and a constant c = c(n, ε) > 0 such that ∀ρ < ρ0:

P (E,B(x, ρ)) ≤ cρn−1.

Proof. Without loss of generality consider x = 0 and E bounded (as we want
to verify a local property) and denote Bρ = B(0, ρ). From 1.1.9, if we take any
constant g ∈ Rn, then

g ·DχE∩Bρ(Rn) = 0 =⇒ DχE∩Bρ = 0.

But as well
DχE∩Bρ(Rn) = DχE∩Bρ(Bρ) +DχE∩Bρ(Rn \Bρ)

=⇒
---DχE∩Bρ(Bρ)

--- =
---DχE∩Bρ(Rn \Bρ)

--- ≤ P (E ∩Bρ,Rn \Bρ).
Then, from 1.1.17 and the fact that for any A open P (E,A) = P (E ∩ A,A):

P (E∩Bρ,Rn \Bρ) = P (E∩Bρ,Rn)−P (E∩Bρ, Bρ) ≤ P (E, ∂Bρ)+ d

dρ+
|E ∩Bρ|.

However, from 1.1.29 P (E, ∂Bρ) = 0 for almost every ρ, and in addiction from
1.1.22 we have

|E ∩Bρ| =
Ú ρ

0
Hn−1(∂Bt ∩ (E ∩Bρ)) dt =

Ú ρ

0
Hn−1(∂Bt ∩ E) dt.

Thus |E ∩Bρ| is actually almost everywhere differentiable and consequently
d

dρ+
|E ∩Bρ| = d

dρ
|E ∩Bρ| = Hn−1(∂Bρ ∩ E) ≤ nωnρ

n−1.

On the other hand, DχE∩Bρ(Bρ) = DχE(Bρ), since for any ϕ ∈ D(Bρ)

⟨DjχE∩Bρ(Bρ), ϕ⟩ = −⟨χE∩Bρ , Djϕ⟩ = −⟨χE, Djϕ⟩.

To summarize we have
|DχE(Bρ)| ≤ nωnρ

n−1.

Now we assume 0 ∈ ∂∗E, therefore
|DχE(Bρ)|
|DχE|(Bρ)

−→ |ν(0)| = 1,

then for every ε there are ρ small enough such that: |DχE(Bρ)| ≥ (1−ε)|DχE|(Bρ),

=⇒ |DχE|(Bρ) ≤ nωn
1 − ε

ρn−1, a.e.ρ < ρ0.

However, using the continuity from below of |DχE| we can extend this inequality
to every ρ.
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1.2 – Reduced boundary

Proposition 1.2.9. Let E be a Caccioppoli set and take x ∈ ∂∗E, then ∀ε > 0
exists ρ0 > 0 and a constant c = c(n, ε) > 0 such that ∀ρ < ρ0:

min{ |E ∩B(x, ρ)|, |(Rn \ E) ∩B(x, ρ)| } ≥ cρn.

Proof. Let’s call Bρ the ball B(x, ρ). In seek of simplicity during the proof I will
always use the notation c for a generic constant in the inequality, even though its
actual value is changing. Recalling some steps of the proof in 1.2.8, we can say that

P (E ∩Bρ, Bρ) = P (E,Bρ) ≤ 1
1 − ε

|DχE(Bρ)| ≤ 1
1 − ε

P (E ∩Bρ,Rn \Bρ),

=⇒ P (E ∩Bρ) ≤ c P (E ∩Bρ,Rn \Bρ).

But we also have

P (E ∩Bρ,Rn \Bρ) ≤ d

dρ+
|E ∩Bρ| = d

dρ
|E ∩Bρ|

while with the isoperimetric inequality 1.1.20 we have

|E ∩Bρ|
n−1

n ≤ c P (E ∩Bρ)

=⇒ |E ∩Bρ|
n−1

n ≤ c
d

dρ
|E ∩Bρ|.

Pairing this differential inequality with the initial condition |E ∩B0| = 0, we can
solve:

|E ∩Bρ| ≥ cρn.

We can just put Rn \ E in place of E to get the other inequality.

Theorem 1.2.10. Take z ∈ ∂∗E and t > 0, define the set:

Et = {x ∈ Rn : t(x− z) + z ∈ E}.

Then, Et converges locally in measure to T+(z) for t going to 0 and in particular
for every bounded set A s.t. Hn−1(∂A ∩ T (z)) = 0 we have:

lim
t→0

P (Et, A) = P (T+(z), A) = Hn−1 (A ∩ T (z)) .

Proof. Without loss of generality we assume z = 0 and ν(0) = −e1, so that

• Et = 1
t
E,

• T+ = T+(0) = {x : xi < 0}.
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Moreover, from 1.2.8 and 1.1.8 (5) we have:

P (Et, Bρ) = 1
tn−1P (E,Btρ) ≤ cρn−1,

that is, P (Et, Bρ) is bounded as a function of t. In order to prove that Et converges
to T+(z), we show that for every sequence Etj , such that tj → 0+, there is
a subsequence, we call it Ej, that converges to T+(z). Beacause P (Et, Bρ) is
bounded, from the compactness theorem 1.1.14, we can extract a subsequence
Ej such that χEj

converges in L1
LOC , but we can chose it to converge also almost

everywhere, therefore the limit function must be a characteristic of a set:

χEj

L1
LOC−−−→
j→∞

χF .

But the L1
LOC convergence implies the convergence in distribution and therefore

also DχEj
converge in distribution to DχF . Finally, by density of C∞

c in C0, we
have

DχEj

⋆
⇀ DχF ,

for the meaning of this convergence see B.0.7. The scaling property 1.1.8 (5) is
true also for the DχE measure for the same argument as in (1.1), using it again we
have:

DχE,tj
tn−1
j

⋆
⇀ DχF ,

where DχE,tj (A) = DχE(tjA). Now we, taking into account 1.2.8 and B.0.12, we
can apply B.0.14 to conclude:

---DχEj

--- =

---DχE,tj ---
tn−1
j

⋆
⇀ |DχF |,

Þ
DχF = ν(0)|DχF | = −e1|DχF |.

But this means that χF depends actually only on x1. Indeed, take the mollified
version χF ∗ ρε, where ε is a standard mollifier. Then for i ≥ 2

∂

∂xi
(χF ∗ ρε) = DiχF ∗ ρε = (|DχF | ∗ ρε)νi(0) = 0,

that is χF ∗ ρε depends only on x1 for all ε. Thus, the same is true moving to the
limit ε → 0+. This means that there exists a set J ⊂ R such that:

χF (x) = χJ(x1),

and consequently F = J × Rn−1. Since, for any a ∈ R

DχJ((a, x)) = D1χF ((a, x) × (0,1)n−1) = −|DχF |((a, x) × (0,1)n−1) ≤ 0,
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1.2 – Reduced boundary

we must have that χJ is a decreasing function, although this is possible only if
J = (−∞, α) for some α ∈ R, that is F is a halfspace. Now suppose α < 0, then

lim
j→∞

---E ∩Bαtj

---
tnj

= lim
j→∞

|Ej ∩Bα| = |F ∩Bα| = 0.

However this contradicts 1.2.9, for which |E∩Bαtj |
tnj

≥ c > 0 for every j. Similarly, if
α > 0, we can use the same argument (adding that Rn \ Ej converges in measure
to Rn \ F ) and we find a contradiction with |(Rn\E)∩Bαtj |

tnj
≥ c > 0. In conclusion

F = T+.
The second statement comes from the more general fact that if a sequence of

positive Radon measures µh ∗
⇀ µ locally and µ(∂A) = 0, where A is a relatively

compact set, then limh µh(A) = µ(A). Indeed, we can take an approximation with
Lipschitz functions of χA from above (aε) and from below (bε), that is:

aε = sup{χA(y) − ε|x− y|, y ∈ Rn}, bε = inf{χA(y) + ε|x− y|, y ∈ Rn}.

For ε → 0+, aε converge pointwise to χĀ, while bε to χÅ. Nevertheless, aε and
bε are bounded functions on a compact domain, that is they can be dominated,
therefore those convergences are also in L1(K,µ) and L1(K,µh), where K is a wide
enough compact. Therefore we have

lim
ε→0+

Ú
K
bε dµ =

Ú
K
χÅ dµ = µ(Å)

lim
ε→0+

Ú
K
aε dµ =

Ú
K
χĀ dµ = µ(Ā).

Taking into account that µ(∂A) = 0, we conclude

lim
ε→0+

Ú
K
bε dµ = lim

ε→0+

Ú
K
aε dµ = µ(A).

However for each ε we have:Ú
K
bε dµ = lim

h

Ú
K
bε dµh ≤ lim inf

h

Ú
K
χA dµh ≤

≤ lim sup
h

Ú
K
χA dµh ≤ lim

h

Ú
K
aε dµh =

Ú
K
aε dµ.

Then moving to the limit for ε → 0+ we have the thesis.

Corollary 1.2.11. For each x ∈ ∂∗E

lim
ρ→0

P (E,B(x, ρ))
ωn−1ρn−1 = 1.
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Proof. Because the perimeter is invariant on translations, we can take x = 0. From
1.1.8 property (5), P

1
1
ρ
E,B(0,1)

2
= 1

ρn−1P (E,B(0, ρ)). But from the previous
theorem we have:

lim
ρ→0

P

A
1
ρ
E,B(0,1)

B
= Hn−1(B(0,1) ∩ T (0)) = ωn−1.

Then we can easily conclude.

This corollary is a generalization of a known result for Hausdorff measures on
regular surfaces. Indeed, let V be a set with regular boundary, then ∂V = ∂∗V and
|DχV | = Hn−1⌊∂V (the Hausdorff measure restricted on ∂V ). Thus, we can verify

lim
ρ→0

Hn−1(B(x, ρ) ∩ ∂V )
ωn−1ρn−1 = 1, ∀x ∈ ∂V.

Perimeter and Hausdorff measures
The most relevant result, for which we need to introduce the reduced boundary, is
that:

P (E,Ω) = Hn−1(∂∗E ∩ Ω).

In order to show it we need an useful decomposition of the reduced boundary, that
we are not going to prove, for more insight see [1] chapter 4.

Theorem 1.2.12. If E is a Caccippoli set, then

∂∗E =
∞Û
i=1

Ci ∪N ;

where N is |DχE|-negligible, while for all i Ci is such that there exist a set Ai ⊃ Ci
and a C1 function fi : Ai −→ R satisfying for all x ∈ C̄i:

fi(x) = 0,
Þ

Dfi(x) /= 0.

Furthermore, Ci can be chosen so that |DχE|(∂∗E \ Ci) < 1
i
.

We also need the following inequality.

Lemma 1.2.13. Let E a Caccioppoli set and C ⊆ ∂∗E, then ∃ bn such that

Hn−1(C) ≤ 2bn|DχE|(C).

Observation 1.2.14. On ∂∗E we have Hn−1 << |DχE|.
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1.2 – Reduced boundary

Proof. For outer regularity of Radon measures (see A.0.3), for any η > 0 we can
find an open set A ⊃ C such that:

|DχE|(A) ≤ |DχE|(C) + η.

Take an arbitrary ε > 0, then for each x ∈ C we can find (from 1.2.11) a ε > ρ̄ > 0
such that for each ρ ≤ ρ̄ B(x, ρ) ⊂ A and

|DχE|(B(x, ρ)) ≥ 1
2ωn−1ρ

n−1.

This is fine ball covering so by Besicovitch covering theorem (A.0.8) we can find a
countable family of such balls Bi = B(xi, ρi) which still cover C and each point is
in at most bn balls. Therefore,Ø

i

ωn−1ρ
n−1
i ≤ 2

Ø
i

|DχE|(Bi) ≤ 2bn|DχE|(A) ≤ 2bn (|DχE|(C) + η) .

Recalling that

Hn−1(C) = lim
ε→0

inf
Ø

i

ωn−1

A
diam(Ui)

2

Bn−1
------ C ⊂

Û
i

Ui, diam(Ui) < ε

 ,
then for arbitrariness of ε and η we conclude that

Hn−1(C) ≤ 2bn|DχE|(C).

Theorem 1.2.15. Let E be a Caccioppoli set, then for every B ⊆ ∂∗E

|DχE|(B) = Hn−1(B),

and in particular, for any open Ω:

P (E,Ω) = Hn−1(Ω ∩ ∂∗E).

Proof. Take the decomposition given in 1.2.12, then by the previous lemma:

|DχE|(B \ Ci) <
1
i
; =⇒ Hn−1(B \ Ci) <

2bn
i
.

For now suppose the statement is true for B ∩ Ci, for any i, then

|DχE|(B) = |DχE|(B \Ci) + |DχE|(B ∩Ci) <
1
i

+ Hn−1(B ∩Ci) ≤ 1
i

+ Hn−1(B),
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=⇒ |DχE|(B) ≤ Hn−1(B).
But, similarly using Hn−1(B \ Ci) < 2bn

i
, we can get also Hn−1(B) ≤ |DχE|(B).

Therefore, we just need to show that the statement is true for B ∩Ci, which means
we have to verify the equality for a generic set C for which there exist a set A ⊃ C
and a C1 function f : A → R such that for all x ∈ C̄:

f(x) = 0,
Þ

∇f(x) /= 0.

As f ∈ C1, we can take A so that ∇f(x) /= 0 on A. Therefore, Γ = {x ∈ A :
f(x) = 0} defines a regular hypersurface. Then, on each x ∈ Γ we have

lim
ρ→0

Hn−1(B(x, ρ ∩ Γ))
ωn−1ρn−1 = 1.

However, we also know from 1.2.11 that

lim
ρ→0

|DχE|(B(x, ρ))
ωn−1ρn−1 = 1,

=⇒ lim
ρ→0

Hn−1(B(x, ρ ∩ V ))
|DχE|(B(x, ρ)) = 1.

Then from the measure differentiation theorem A.0.11 we can conclude that Hn−1 =
|DχE| on Γ, and in particular

Hn−1(C) = |DχE|(C).

Finally from (1.7), we can conclude:

Hn−1(Ω ∩ ∂∗E) = |DχE|(Ω ∩ ∂∗E) = P (E,Ω).

Corollary 1.2.16. ∂∗E is dense in ∂E

Proof. From observation 1.2.5 and the fact that ∂E is a close set, we already have
that ∂∗E ⊆ ∂E. For the reverse inclusion we can notice that if we take an open
set A outside of ∂∗E, that is A ∩ ∂∗E = ∅, then

|DχE|(A) = P (E,A) = Hn−1(A ∩ ∂∗E) = 0.

But this implies that A ∩ supp|DχE| = A ∩ ∂E = ∅. This means that the interior
of Rn \ ∂∗E is contained in the interior of Rn \ ∂E, therefore

∂E ⊆ ∂∗E.
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1.2 – Reduced boundary

We can conclude observing that from the generalize Gauss-Green formula in
observation 1.1.9 we can generalize the equation (1.2):Ú

E
div(g) dx = −

Ú
E
g dDχE = −

Ú
E
g · ν d|DχE| = −

Ú
∂E
g · ν dHn−1,

which is consistent with the Gauss-Green formula as ν here is the inward normal.
We can extend the idea of reduced boundary to a general function in BV via

the so called jump set.

Definition 1.2.17. Given u ∈ BV (Ω), we say that x ∈ Ju, the jump set of u, if
there exist u+(x), u−(x) ∈ R and νu(x) ∈ Rn such that u+(x) /= u−(x) and

lim
ε→0

u(x+ εy) =
I
u+(x), if y · νu ≥ 0
u−(x), if y · νu < 0

,

in L1
y(B(0,1)).

The quantities u+, u− and νu are not uniquely defined, because the same limit
function can be described switching u+ and u− while changing the sign to νu.
Conventionally, we take u+ > u− and therefore νu is directed toward the increasing
direction of the jump.
Observation 1.2.18. From theorem 1.2.10 we notice that the jump set of u = χE
is the reduced boundary ∂∗E. Furthermore, from theorem 1.2.15 and the polar
decomposition we can write

Du = νuHn−1 ↾Ju

For a general function in BV we have the Federer - Volpert decomposition

Du = ∇uLn + (u+ − u−)νuHn−1 ↾Ju +Cu, (1.10)

where ∇u is the weak gradient, while Cu is the so called Cantor part, which is
a residual measure in between the Lebesgue and the Hausdorff measure. More
precisely Cu is supported on a Ln-negligible set, but Hn−1(supp{Cu}) = ∞.

The classical example to observe the Cantor part is the Cantor-Vitali function,
a.k.a. the devil’s staircase (figure 1.1). This is a monotonically increasing function
on [0,1], this means it belongs to BV ([0,1]), and it is defined as the uniform limit of
continuous functions, therefore it is continuous itself ( =⇒ Ju = ∅). Furthermore,
its most interesting feature is that it is constant almost everywhere, even though it
is continuous and increasing, in particular it is not constant only on the Cantor set.
This implies that ∇u = 0 Ln-a.e. and consequently

Du = Cu.
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Figure 1.1: The "devil’s staircase" or Cantor-Vitali function.

For more insights see [2]. The Cantor part is usually very hard to deal with
and refers to some pathological cases, hence sometimes we rather simplify the
computations taking into account only the BV functions with no Cantor part, that
is the set:

SBV (Ω) := {u ∈ BV (Ω) : Cu = 0}.

1.3 Gamma convergence
In this section we will present a convergence criteria for functionals with a nice
behaviour with respect to the minima (the minima converge to minima). To deepen
the subject you can refer to [3]. This notion is useful in image analysis to jump
between the discrete formulation through pixels and a continuous formulation,
reached when the density of pixels tends toward infinity.

Definition 1.3.1 (Γ-convergence). Let (X, d) be a complete metric space, {Fj} a
sequence of functionals X −→ R. We say that Fj converge to a functional F , and
denote it

Fj
Γ−−→ F,

if for each x ∈ X we have:

1. for any sequence xj −→ x, F (x) ≤ lim infj Fj(xj);

2. there exists a sequence xj −→ x, F (x) ≥ lim supj Fj(xj);

The sequence in (2) is called recovery sequence.
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1.3 – Gamma convergence

Observation 1.3.2. We can notice that the condition (2), given (1), is equivalent to:

F (x) = lim
j
Fj(xj);

This definition of limit is well posed, that is if the Γ-limit exists, it is unique.
Indeed, let F ′ and F ′′ two limit of the sequence Fn, for every x ∈ X take the
recovery sequence x′

n for F ′, then

F ′(x) ≥ lim sup
n

Fn(x′
n) ≥ lim inf

n
Fn(x′

n) ≥ F ′′(x).

Similarly, we also have the reverse inequality.
Observation 1.3.3. In general it is not true that if Fj = F constant sequence, then
Fj

Γ−−→ F . Indeed, condition (1) implies:

∀x ∈ X, xj −→ x =⇒ F (x) ≤ lim inf
j

F (xj),

that is possible only if F is lower semicontionuous.
Indeed, it actually turns out that the Γ-limit is the lower semicontinuous envelope

of F .
We will present some relevant results about Gamma convergence.

Proposition 1.3.4. Let U ⊂ X open and Fj −→ F uniformly on U ,

F lower semicontinuous =⇒ Fj
Γ−−→ F onU.

Proof. 1.) Let uj −→ u ∈ U , then for j big enough also uj ∈ U .

=⇒ |Fj(uj) − F (uj)| ≤ sup
v∈U

|Fj(v) − F (v)| −→ 0.

This and the semicontinuity of F let us conclude:

lim inf
j

Fj(uj) ≤ lim inf
j

Fj(uj) − F (uj) + lim inf
j

F (uj) ≤ F (u).

2.) We can take the constant sequence uj = u, then:

lim
j
Fj(uj) = F (u).

The most important property is the relation between the minima of a the
sequence of functionals and the ones of their Γ limit, expressed in the following
theorem.
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Theorem 1.3.5 (Fundamental theorem of Γ convergence). Let X be a complete
metric space and Fj, F : X −→ R ∪ {+∞} such that Fj Γ−−→ F and Fj equi mildly
coercive, that is:

∃K ⊂ X compact : inf
u∈X

Fj(u) = inf
u∈K

Fj(u) ∀j ∈ N.

Then the following statements are true:

1. ∃ minX F

2. limj→+∞(infX FJ) = infX F

3. ∃{uj} relatively compact sequence s.t. limj→+∞ Fj(uj) = infX F .

Proof. Because the infima of all Fj are located in the same compact K, then they
admit a minimizer in K, that is

∃{ũj} ⊂ K s.t. inf
X
Fj = Fj(ũj).

But since K is compact, I can extract a subsequence (I still call it ũj) converging
to a point ū ∈ K. Let’s call instead {ūj} the recovery sequence for ū, then:

F (ū) ≤ lim inf
j

Fj(ũj) = lim inf
j

inf
X
Fj ≤ lim sup

j
inf
X
Fj ≤ lim sup

j
Fj(ūj) ≤ F (ū)

=⇒ F (ū) = lim
j

(inf
X
Fj).

Consider now u ∈ X with {uj} its recovery sequence, then

F (u) ≥ lim sup
j

Fj(uj) ≥ lim sup
j

inf
X
Fj = F (ū)

=⇒ F (ū) = min
X

F.

Observation 1.3.6. We can notice that in this proof we also showed that a sequence
ũj of minimizers for Fj is converging, up to a subsequence, to a minimizer of F ū.

With this kind of convergence the propertyFj
Γ−−→ F

Gj
Γ−−→ G

=⇒ Fj +Gj
Γ−−→ F +G

is not true in general. This is understandable as the minima displacement
changes with the sum, therefore the property that minima converge to minima can
be lost.
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Example 1.3.7. Take fj(x) = sin2(jx) and gj(x) = cos2(jx). We can rapidly
verify that:

fj, gj
Γ−−→ 0.

1. lim infj fj(xj) ≥ 0 independently on {xj}.

2. Take as recovery sequence xj = π
j
⌊ j
π
x⌋ −−−→

j→∞
x, but fj(xj) = 0 for each j.

and similarly for gj. However, fj + gj = 1 Γ−−→ 1.

But the convergence is preserved by adding continuous functionals.

Theorem 1.3.8 (Stability under continuous perturbations). Let G : X −→ R be
a continuous functional,

Fj
Γ−−→ F =⇒ Fj +G

Γ−−→ F +G.

Proof. 1. Take uj −→ u, then

lim inf
j

(Fj(uj) +G(uj)) ≥ lim inf
j

Fj(uj) + lim inf
j

G(uj) ≥ F (u) +G(u)

2. Take {uj} the recovery sequence for u over Fj, then

Fj(uj) +G(uj) −→ F (u) +G(u).

Often to show a Γ-limit it is convenient to show that the Γ − lim sup and the
Γ − lim inf are equal.

Definition 1.3.9. Given a sequence of functionals Fj on a metric space X we
define

1. (Γ − lim infj Fj) (u) = inf {lim infj F (uj) : uj → u},

2.
1
Γ − lim supj Fj

2
(u) = inf

î
lim supj F (uj) : uj → u

ï
.

Usually we call F ′ := Γ − lim infj Fj and F ′′ := Γ − lim supj Fj.

It turned out that these quantities exist and are never −∞, furthermore those
inf are actually min. Let’s verify that

Γ − lim inf
j

Fj = Γ − lim sup
j

Fj = F ⇐⇒ ∃Γ − lim
j
Fj = F. (1.11)
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Indeed, from (1)
∀u, ∀uj → u, F (u) ≤ lim inf

j
Fj(uj),

while, since those are minimum, from (2), there exists a sequence such that
F (u) = lim supj Fj(uj). Conversely, if F = Γ − limj Fj, then for the liminf
property, F ≤ Γ − lim infj Fj, while the limsup property lead us to conclude that
F ≥ Γ−lim supj Fj . But, since clearly Γ−lim infj Fj ≤ Γ−lim supj Fj , we conclude
that those are both equal to F .

With these definition we can finally show the relation between Γ-convergence
and lower semicontinuity.

Proposition 1.3.10. Given a sequence Fj, then the Γ − lim infj Fj and Γ −
lim supj Fj are lower semicontinuous.

Proof. Take a sequence {uk} converging to u. From the definition 1.3.9 (1)

∀k, ∃{ujk} s.t. u
j
k −→

j
uk, F ′(uk) = lim inf

j
Fj(ujk).

Therefore, for all k we can find a jk such that jk ≥ jk−1, d(ujkk , uk) < 1
k

and
Fjk(ujkk ) < F ′(uk) + 1

k
. Then we define

vj :=
I
ujkk , if for some k j = jk

u, otherwise.

We can see that vj −→
j
u, because ujkk −→

k
u. Then by the definition of Γ − lim inf:

F ′(u) ≤ lim inf
j

Fj(vj) ≤ lim inf
k

Fjk(ujkk ) ≤ lim inf
k

F ′(uk) + 1
k

= lim inf
k

F ′(uk).

This shows that the Γ − lim inf is lower semicontinuous. The same can be proven
for the Γ − lim sup with a similar argument.

Corollary 1.3.11. If the Γ-limit exists then it is lower semicontinuous.

Furthermore, we can use this semicontinuity for this extension result for the
limsup inequality.

Proposition 1.3.12. Let {Fn} and F functionals over a metric space X and let
Y ⊂ X such that for any x ∈ X exists {yn} ⊂ Y satisfying:

yn → x
Þ

F (yn) → F (x).

Then, calling F ′′ = Γ − lim supn Fn,

F ′′(y) ≤ F (y), ∀y ∈ Y =⇒ F ′′(x) ≤ F (x), ∀x ∈ X.
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Proof. From the convergence of the restrictions we have:

F ′′(u) ≤ F (u), ∀u ∈ Y.

For every x ∈ X we take the sequence {yn} as in the hypothesis. Then, using the
semicontinuity of F ′′ we conclude

F ′′(x) ≤ lim inf
n

F ′′(yn) ≤ lim inf
n

F (yn) = F (x).
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Chapter 2

The Rudin-Osher-Fatemi
problem

In this chapter will be presented the problem core of this thesis, the Rudin-Osher-
Fatemi model, that is an application of calculus of variation in image analysis. The
setting is denoising, even though the approach we will develop has applications
also in other image analysis problems.

This model consists in the minimization of a functional involving the total
variation, with the desired effect of reducing the oscillations given by the noise
without introducing a blurring effect.

The study of this problem will proceed through the proof of existence and
uniqueness of the solution, finding the associated Euler-Lagrange equation and
in conclusion an example of analytic solution, which will be achieved finding the
optimal level sets.

2.1 Variational continuous models
We model a image as a function g : Ω −→ R so that at each point x ∈ Ω associate
the intensity of grey g(x) (you can simply consider a triplet of functions for the
RGB representation). For analytic purpose, we set the model on a continuous
domain Ω, but since the aim is working with digital pictures we take Ω ⊂ R2,
bounded and with at least Lipschitz boundaries, we will often consider Ω = [0,1]2.
For the same reason we assume g ∈ L∞(Ω) and non negative, therefore it is not
restrictive to take Im(g) ⊆ [0,1].

Getting into the problem, given a noisy image g = ḡ + σ · ε, where ḡ is the
original image and σ · ε is a white noise of scale σ, we want to reconstruct as
accurately as possible the original ḡ. This can be translated in a variational setting

39



The Rudin-Osher-Fatemi problem

with an optimization problem of this kind:

min
u∈X∩L2(Ω)

λF (u) + 1
2∥u− g∥2

L2(Ω), (2.1)

whose minimizer is the reconstructed image. The objective function consists
of two terms, the second 1

2∥u− g∥2
L2(Ω) pushes the minimizer to be close to the

reference image, indeed we expect the noise to change the original image not
drastically. The first term, represented by the functional F : X −→ R, has to
behave, instead, in a “regularizing" way, such as to mitigate the vibrating effect of
the noise. λ > 0 is a tunable parameter representing the ratio of relevance between
the two terms.

With this idea of regularization, we can take F as the Dirichlet functional, that
is:

F (u) =
Ú

Ω
|∇u|2 dx,

with the domain X = H1(Ω). This choice leads to the Euler-Lagrange equation:

−∆u+ u− g = 0, (2.2)

which is known to have an extremely regularizing effect. This is actually not
ideal for images, because on the depicted objects’ contours the gray intensity
will present a discontinuity. Therefore we would like to preserve this kind of
irregularities, whereas the previous proposal will produce a blur effect, making the
edges unrecognizable (see figure 2.1).

Figure 2.1: In order: original image, noisy reference, reconstruction with the
Dirichlet term.

In order to preserve the contours, D. Mumford and J. Shah [4] thought of
introducing a 1-dimensional curve Γ ⊂ Ω, representing the edges, so that an
equation like (2.2) would be valid only on Ω \ Γ. Then, we minimize on all the
possible edges, punishing its length, so as to avoid confusing the noise for a contour.
In formulas the problem become:

min
Γ

min
u∈H1(Ω\Γ)

1
2∥u− g∥2

L2(Ω) + λ
Ú

Ω\Γ
|∇u|2 dx+ µH1(Γ). (MS)
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2.2 – The ROF model

This problem can be very challenging to approach not only computationally, but
also analytically for the lack of convexity in general. Therefore, usually is better
to find a sequence of convex functionals Γ - converging to the Mumford - Shah
functional. Some approximations are presented in [5], as well as a deeper analysis
on this problem. A noteworthy approximation is the one given by L. Ambrosio and
V. M. Tortorelli:

ATε(z, u) = 1
2∥z(u− g)∥2

L2(Ω) + λ
Ú

Ω
z|∇u|2 dx+ β

2

Ú
Ω

î
ε|∇z|2 + ε−1(1 − z)2

ï
dx,

where z is a function such that 0 ≤ z(x) ≤ 1, with the purpose of relaxing the
contour positioning: z is close to 0 in proximity of an edge. For ε −→ 0+, ATε
does not Γ-converge exactly to Mumford - Shah functional in (MS), but to a slight
variation where the double minimization is changed considering u ∈ SBV (Ω) and
Γ = Ju (the jump set of u). In other word we have:

ATε(z, u) Γ−−→ F (z, u),

with F (z, u) = 1
2∥u− g∥2

L2(Ω) + λ
s

Ω\Γ|∇u|2 dx + µH1(Ju), for u ∈ SBV (Ω) and
z ≡ 1, F (z, u) = ∞ otherwise. See [6] for the proof. This approach has produced
remarkable results, also in edge detection, but at the price of theoretical and
implementation difficulties.

2.2 The ROF model
Another choice of F for (2.1) can be the total variation. Indeed, it will tend to
dampen the oscillations, without introducing a diffusive effect. This leads to the
Rudin-Osher-Fatemi problem:

min
u∈BV (Ω)∩L2(Ω)

λV (u,Ω) + 1
2∥u− g∥2

L2(Ω). (ROF)

This problem is defined for Ω ∈ RN , even though in the application on image
analysis N = 2, for which BV (Ω) is continuously embedded in L2(Ω) (see the
observation 1.1.19). However, for the rest of this section we will present the result
in the more general setting of free N .

We can immediately see that this problem is convex and, furthermore, the objec-
tive function is strictly convex, thanks to the fidelity term 1

2∥u− g∥2
L2(Ω). Therefore,

this minimization problem has at most one solution. To further investigate the
existence of a minimizer it is useful to restrict the domain, showing that the solution
is bounded.
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Proposition 2.2.1. Let g ∈ L∞(Ω) with m ≤ g ≤ M almost everywhere and
define B := {u ∈ L∞(Ω) : m ≤ u ≤ M a.e.} , then

inf
u∈BV (Ω)∩L2(Ω)

λV (u,Ω) + 1
2∥u− g∥2

L2(Ω) = inf
u∈BV (Ω)∩B

λV (u,Ω) + 1
2∥u− g∥2

L2(Ω).

Proof. At first we notice that B ⊂ L2(Ω), since the domain Ω is bounded, therefore
we only have to show that the infimum on BV (Ω) ∩ B is lower than the one on
BV (Ω) ∩ L2(Ω). Take u ∈ BV (Ω) ∩ L2(Ω) and define ū = m ∨ (u ∧ M), then
clearly |u− g| ≥ |ū− g| and consequently the fidelity term decreases. Instead, for
the total variation part we recall the inequality 1.1.26, then:

V (ū,Ω) ≤ V (u,Ω),

showing in conclusion that for every u ∈ BV (Ω)∩L2(Ω) there exists a ū ∈ BV (Ω)∩B
such that:

λV (ū,Ω) + 1
2∥ū− g∥2

L2(Ω) ≤ λV (u,Ω) + 1
2∥u− g∥2

L2(Ω).

This property is relevant because the images are encoded in computers with
a bounded range of intensity, [0, 255], and we would like to find a solution that
still satisfies this intrinsic boundaries. Therefore, from now on we will consider the
minimization of (ROF) to happen on

U = {u ∈ BV (Ω) ∩ L∞(Ω)| u ≥ 0, ∥u∥∞ ≤ ∥g∥∞}, (2.3)

which still is a convex set.
Observation 2.2.2. The set U is also compact in L1(Ω). Indeed, BV (Ω) is compact,
while the condition 0 ≤ u ≤ ∥g∥∞ is preserved almost everywhere through the L1

convergence. Hence, U is the intersection between a compact and a closed set.
Observation 2.2.3. The advantage of working with essentially bounded functions
on a bounded domain is that the L1 and L2 convergence are equivalent since:

• ∥u∥L1(Ω) ≤
ñ

|Ω|∥u∥L2(Ω),

• ∥u∥2
L2(Ω) ≤ ∥u∥L∞(Ω)∥u∥L1(Ω).

This allows us to deal simultaneously with the total variation, which works well
with the L1 convergence, and with the L2 norm of the fidelity term.

Proposition 2.2.4. The ROF problem admits a unique solution.
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Proof. For the direct method we need to prove that the objective function is
bounded from below (but clearly it is positive) and lower semicontinuous on a
compact in the L1 norm. The total variation is lower semicontinuous while for
the previous observation the fidelity term is continuous on U with respect to the
L1 convergence, then the objective function is l.s.c. Then for compactness of U
we can conclude the existence of a minimum, which has to be unique for strict
convexity.

2.2.1 Euler-Lagrange equation
Going on with the standard variational analysis, we will now find the Euler-Lagrange
equation associated with this problem. We could compute the Gâteaux derivative
(which is not straightforward for the total variation) and pose it to 0 to get:

−λdiv
A

dDu
d|Du|

B
+ u− g = 0, (2.4)

where dDu
d|Du| is the Radon derivative. However, it is more meaningful to use a different

approach, which will lead to a formally different equation. For this purpose we need
to recall some convex analysis definitions and results, that will be fundamental
through out the rest of the thesis. For more insights on convex analysis see [7].

Definition 2.2.5. Given an Hilbert space X and a convex function F : X −→
R ∪ {+∞}, we define the subgradient of F in the point x ∈ X as the set

∂F (x) = {v ∈ X | F (y) ≥ F (x) + ⟨v, y − x⟩, ∀y ∈ X}.

Clearly, if X = RN and F is convex and differentiable in x, then

∂F (x) = {∇F (x)},

in these cases we may use the simplified notation ∂F (x) = ∇F (x). This result
can be generalized when F is Gâteaux - differentiable, indeed let’s call F ′(x) such
derivative and take p ∈ ∂F (x), then

F (x+ hv) ≥ F (x) + ⟨p, hv⟩,

F (x+ hv) − F (x)
h

≥ ⟨p, v⟩.

Then moving to the limit h −→ 0+, we have ⟨F ′(x), v⟩ ≥ ⟨p, v⟩. But for arbitrariness
of v ∈ X we must have F ′(x) = p.

As in the previous definition, we will refer to functions on an Hilbert space X
and codomain in (−∞,+∞], then we recall that the domain is the set

domF = {x ∈ X |F (x) < +∞}.
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Definition 2.2.6. A function F is called proper if domF /= ∅.

We will call Γ0(X) the set of proper, convex and lower semicontinuous functions
on X.

Definition 2.2.7. We define the Legendre conjugate function F ∗ of F as

F ∗(p) = sup
x∈X

⟨p, x⟩ − F (x),

for every p ∈ X ′ ≃ X.

If F is proper and convex, then ⟨p, x⟩−F (x) admits a maximum for some p, that
is F ∗ is proper. Furthermore, F ∗ is also convex (is a supremum of affine functions),
and more in general the conjugation maps Γ0 in itself. It follows a fundamental
theorem in convex analysis.

Theorem 2.2.8. F ∗∗ = sup {f | f ∈ Γ0, f ≤ F}.

From this we can immediately observe that F ∈ Γ0 =⇒ F ∗∗ = F .
We conclude this summary with three relevant propositions.

Proposition 2.2.9. For F convex

p ∈ ∂F (x) ⇐⇒ ⟨p, x⟩ − F (x) = F ∗(p).

In particular, if F ∈ Γ0,

p ∈ ∂F (x) ⇐⇒ x ∈ ∂F ∗(p).

Proof. The fact p ∈ ∂F (x) means F (y) ≥ F (x) + ⟨p, y − x⟩, ∀y ∈ X, that is
equivalent to

⟨p, y⟩ − F (y) ≤ ⟨p, x⟩ − F (x), ∀y ∈ X.

But then we can extract the supremum over y to get F ∗(p) ≤ ⟨p, x⟩−F (x) ≤ F ∗(p),
proving the first equality. If further F ∗∗ = F , then we also have ⟨p, x⟩ − F ∗∗(x) =
F ∗(p), that is x ∈ ∂F ∗(p).

Proposition 2.2.10. For F convex, x is a minimizer of F if and only if 0 ∈ ∂F (x).

Proof. It is a direct consequence of

F (y) ≥ F (x) ⇐⇒ F (y) ≥ F (x) + ⟨0, y − x⟩.
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Proposition 2.2.11. Let F and G be convex functions such that

domG ∩ int(domF ) /= ∅,

then
∂(F +G) = ∂F ⊕ ∂G.

Proof. Actually if p ∈ ∂F (x) and q ∈ ∂G(x), then clearly p + q ∈ ∂(F + G)(x).
Hence,

∂(F +G) ⊂ ∂F ⊕ ∂G

is always verified.
For the reverse inclusion we have to show that ∀p ∈ ∂(F +G)(x) there exist a

qF ∈ ∂F (x) and a qG ∈ ∂G(x) such that p = qF + qG. Take p ∈ ∂(F +G)(x), then
for every y ∈ X we have:

F (y) +G(y) ≥ F (x) +G(x) + ⟨p, y − x⟩,

G(x) −G(y) ≤ F (y) − F (x) − ⟨p, y − x⟩.
⌢

H(y) ≤
⌣

H(y),

where
⌢

H(y) = G(x) − G(y) is concave while
⌣

H(y) = F (y) − F (x) − ⟨p, y − x⟩ is
convex, such that

⌢

H(x) =
⌣

H(x) = 0. Let’s call C1, C2 ⊂ X × R respectively the
epigraph of

⌣

H and the hypograph of
⌢

H. Those are convex sets intersecting only
on the boundary, therefore they can be separated by an hyperplane Π. By the
hypothesis domG ∩ int(domF ) /= ∅, Π cannot be orthogonal to X, that is it can
be represented as the graph of an affine function α+ ⟨q, y⟩. This means that we
must have:

⌢

H(y) ≤ α + ⟨q, y⟩ ≤
⌣

H(y),

and choosing y = x we also have α = −⟨q, x⟩. Then

G(x) −G(y) ≤ ⟨q, y − x⟩ ≤ F (y) − F (x) − ⟨p, y − x⟩

=⇒
I
F (y) ≥ F (x) + ⟨p+ q, y − x⟩
G(y) ≥ G(x) + ⟨−q, y − x⟩.

In conclusion, we found the desired decomposition with qF = p+ q ∈ ∂F (x) and
qG = −q ∈ ∂G(x).

Coming back to the Euler - Lagrange equation of the (ROF) problem, from
2.2.10 we can state

∂(λV (u) + 1
2∥u− g∥2

L2).
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Note that we are not going to write anymore the dependence from Ω explicitly, if not
necessary. For the theory here presented we need to set the problem in an Hilbert
space, therefore we consider V as a functional on L2 but with domV = BV (Ω).
Since the domain of the fidelity term is the whole L2, we can apply 2.2.11:

0 ∈ λ∂V (u) + u− g. (2.5)

This can be already consider the Euler - Lagrange equation, but let’s go on
characterizing the subgradient. From 2.2.9 we have

∂V (u) = {p | V (u) = ⟨p, u⟩ − V ∗(p)} .

Then we need to compute the conjugate, but this can be simply done noticing that
V is itself a conjugate of another functional:

V (u) = sup
ϕ∈K

Ú
Ω

−u div ϕ dx = sup
ϕ

⟨u,−div ϕ⟩ − IK(ϕ),

where K := {ϕ ∈ C1
c (Ω;R2) | |ϕ| ≤ 1}, while IK is called indicator function and it

is defined as
IK(ϕ) =

I
0 if ϕ ∈ K
+ ∞ otherwise.

We can now see that V is the conjugate of the indicator function on the set

Kdiv :=
;

−div ϕ | ϕ ∈
è
C1
c (Ω)

éN
, |ϕ| ≤ 1

<
,

that is V (u) = I∗
Kdiv

(u). Consequently, from theorem 2.2.8, V ∗ is the convex lower
semicontinuous envelope of IKdiv , that is the indicator function on the closure of
Kdiv (because this set is already convex). Such a closure turns out to be

K =
î
−div z ∈ L2(Ω) | |z| ≤ 1 a.e., z · ν = 0 in ∂Ω

ï
, (2.6)

where the divergence is meant in distributional sense and z · ν is the orthogonal
component to the boundary, defined in a weak sense like a trace operator.

Proposition 2.2.12. Take {pn} ⊂ Kdiv s.t. pn L2
−−→ ξ, then ξ ∈ K.

Proof. The fact that pn ∈ Kdiv implies that there is a ϕn ∈ [C1
c (Ω)]N such that

∥ϕ∥L∞ ≤ 1 and pn = −div pn. Therefore, for all n, ∥ϕn∥L2(Ω) ≤
ñ

|Ω|, that is the
sequence is bounded in L2. Then, there exists a sub sequence of ϕn and a z ∈ L2(Ω)
such that

ϕn
L2

−−⇀ z =⇒ ϕn −→ z in D′,
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but then pn −→ −divz, hence ξ = −divz.
Let’s now take ψ ∈ [C1(Ω)]N not necessarily with compact support, for the L2

convergences we still have:

⟨−div(ϕn), ψ⟩ = ⟨ϕn,∇ψ⟩ −→ ⟨−div(z), ψ⟩ = ⟨z,∇ψ⟩,

even though in general ⟨div(z), ψ⟩ + ⟨z,∇ψ⟩ =
s
∂Ω ψz · ν dx. This implies that

z · ν = 0 weakly on ∂Ω.
Define Tk := {|z| ≥ 1 + 1

k
} and suppose |Tk| > 0. Since we haveÚ

Tk

|z| dx = sup
;Ú

Tk

z · ψ dx | ψ ∈
è
C1
c (Ω)

éN
, |ψ| ≤ 1

<
,

then for every ε we can find a ψε ∈ [C1
c (Ω)]N such that |ψε| ≤ 1 and----Ú

Tk

z · ψε dx
---- > Ú

Tk

|z| dx− ε ≥
3

1 + 1
k

4
|Tk| − ε.

However,
---sTk

ϕn · ψε dx
--- ≤ |Tk|, then, moving to the limit on n → +∞, we have

|Tn| ≥
----Ú
Tk

z · ψε dx
---- > 3

1 + 1
k

4
|Tk| − ε,

which is impossible for ε small enough. Hence, by contradiction, |Tk| = 0 for every
k, that is |z| ≤ 1 a.e.

Summing up, we have that V ∗(p) = IK(p) and consequently we have:

∂V (u) = {p ∈ K | V (u) = ⟨p, u⟩} . (2.7)

Proposition 2.2.13. Consider u ∈ BV (Ω) ∩ L2(Ω) and p = −div z ∈ K, then we
have

⟨p, u⟩ = z ·Du(Ω).

Proof. Notice that ⟨p, u⟩ =
s

Ω −div(z)u dx and
s

Ω z · dDu = z ·Du(Ω), so basically
we have to show the derivative switch property

s
Ω −div(z)u dx =

s
Ω z · dDu. This

is true for every z ∈ [C1
c (Ω)]n, then we want to prove it by a density argument. We

can see that as long as div ϕn −→ div z in L2, then

lim
n−→∞

Ú
Ω

−div(ϕn)u dx =
Ú

Ω
−div(z)u dx,

because u ∈ L2(Ω). As for the other integral, let’s at first notice that
s

Ω z · dDu
makes sense since z is bounded and u ∈ BV (Ω). For now let’s take z = cχA, for c a
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constant vector and A a Du−measurable set. Then, by construction with mollifiers,
each component of ϕn satisfies

ciχA−
n

≤ (ϕn)i ≤ ciχA+
n
,

with tnA−
n = A = u

nA
+
n . Therefore, we have:

ci∂xi
u(A−

n ) ≤
Ú

Ω
ϕn d∂xi

u ≤ ci∂xi
u(A+

n ).

Moving to the limit, and exploiting the inner and outer regularity of radon measure,
we get the desired result limn

s
Ω ϕn · dDu =

s
Ω z · dDu. As a generalization, we

know ϕε = z ⋆ ρε is converging in L2 to z and also its divergence to div z. Call
z̃n the sequence of simple functions for which we can approximate

s
Ω z · dDu and

ϕ̃n = z̃n ⋆ ρεn such that
---ϕ̃n ·Du(Ω) − z̃n ·Du(Ω)

--- < 1
n
. Then, calling ϕn = ϕεn , we

have

|ϕn ·Du(Ω) − z ·Du(Ω)| ≤
---ϕ̃n ·Du(Ω) − ϕn ·Du(Ω)

---+
+
---ϕ̃n ·Du(Ω) − z̃n ·Du(Ω)

---+ |z ·Du(Ω) − z̃n ·Du(Ω)|,

which is converging to 0.

Summing up (2.5), (2.6), (2.7) and the previous preposition, we can finally write
a more explicit form for the Euler - Lagrange equation:

− λdiv z + u = g a.e. x ∈ Ω,
|z| ≤ 1 a.e. x ∈ Ω,
z · ν = 0 on ∂Ω,
z ·Du = |Du|.

(2.8)

This is consistent with (2.4) with Neumann boundary conditions, since z = dDu
d|Du|

satisfy the constraints on z.
Before going on with some solution technique we will present a regularity result

on the ROF minimizer. A complete proof of this can be found in [8].

Theorem 2.2.14 (Caselles-Chambolle-Novaga). Assume the domain Ω ∈ RN

convex with N ≤ 7. Call u the minimizer of ROF, then if g is uniformly continuous,
also u is. In particular, given a function ω(t) continuous, nondecreasing and with
ω(0) = 0, then

|g(x) − g(y)| ≤ ω(|x− y|) ∀x, y ∈ Ω =⇒ |u(x) − u(y)| ≤ ω(|x− y|) ∀x, y ∈ Ω.

48



2.2 – The ROF model

2.2.2 Solution by level sets
In the following section we will present the relation between the (ROF) minimizer
and the solution of the following problem:

min
E
λP (E,Ω) +

Ú
E
s− g(x) dx, (ROFs)

where E is a Caccioppoli set and s ∈ R a parameter. Similarly to 1.1.30 this
problem admits a solution, which we will refer to as Es. We stress that this Es
is not uniquely defined, but we can achieve a unicity result through the following
lemma.

Lemma 2.2.15. Take s, s′ ∈ R and Es, Es′ any pair of solution of ROF and ROFs,
then

s < s′ =⇒ Es′ ⊆ Es (up to a negligible set of points).

Proof. Let’s call Js(E) := λP (E,Ω) +
s
E s− g(x) dx. By minimality of Es and Es′

we have the inequality

Js(Es) ≤ Js(Es ∪ Es′),
Þ

Js′(Es′) ≤ Js′(Es ∩ Es′),

=⇒ Js(Es) + Js′(Es′) ≤ Js′(Es ∩ Es′) + Js(Es ∪ Es′).
However, from 1.1.8 (1) we have P (Es ∩ Es′ ,Ω) + P (Es ∪ Es′ ,Ω) ≤ P (Es,Ω) +
P (Es′ ,Ω), therefore the previous inequality reduces to:Ú

Es

s− g(x) +
Ú
Es′

s′ − g(x) ≤
Ú
Es∪Es′

s− g(x) +
Ú
Es∩Es′

s′ − g(x),

Ú
Es′ \Es

s′ − g(s) dx ≤
Ú
Es′ \Es

s− g(s) dx =⇒ s′|Es′ \ Es| ≤ s|Es′ \ Es|.

But, since s < s′, this is possible only if |Es′ \ Es| = 0, which proves the lemma.

Because from this monotonicity result we have that any solution Es is contained
in all the Es′ with s′ < s and contains all those solutions for s′ > s, then there
must exist E+

s and E−
s such that:Û
s′>s

E+
s′ = E−

s ⊆ Es ⊆ E+
s =

Ü
s′<s

E−
s′ .

We recall that the Caccioppoli sets are classes of equivalence, but we are considering
the representative satisfying the (1.6) property, this makes those intersection and
union of uncountable elements well defined.

Proposition 2.2.16. The ROFs problem admits a unique solution for almost every
s.
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Proof. The uniqueness comes when E+
s and E−

s are equivalent, that is |E+
s \ E−

s | = 0.
To show this, consider the intersection of two of those set differences (for t > s):

(E+
s \ E−

s ) ∩ (E+
t \ E−

t ) = (E+
t ∩ E+

s ) ∩ (E−
t ∩ E−

s ).

But E+
t ⊆ E−

s ⊆ E+
s , while E−

t ⊆ E−
s , consequently:

(E+
s \ E−

s ) ∩ (E+
t \ E−

t ) = E+
t ∩ E−

s ⊆ E−
s ∩ E−

s = ∅.

In this way we found an uncountable amount of disjoint sets, which implies that at
most countably many of them have measure bigger than zero.

Finally, the relation between ROF and ROFs is expressed as follows.

Theorem 2.2.17. Let Es the solution of ROFs for each s (for which we have
unicity), then

u(x) = sup {s ∈ R : x ∈ Es}

solves ROF. Conversely, if u is a minimizer of ROF, then E−
s = {u > s} and

E+
s = {u ≥ s}.

Observation 2.2.18. Notice that indeed with the sup definition of u we have:

{u > s} =
Û
s′>s

Es′ = E−,

and conversely

{u < s} = {x : ∃ s′ < s s.t.x /∈ Es′} =
Û
s′<s

Es′ = E+
s .

Observation 2.2.19. It is useful to notice that if Es minimizes ROFs, then Ω \ Es
minimizes the following problem:

min
E
λP (E,Ω) +

Ú
E
g(x) − s dx. (ROFs conj)

Indeed, take Ω \ E, then

λP (Ω \ E,Ω) +
Ú

Ω\E
g(x) − s dx = P (E,Ω) +

Ú
E
s− g(x) dx+

Ú
Ω
g(x) − s dx,

which is minimized by Es. This relation of minimizers is reflected in the ROF
problem by the fact that if we change g with −g, then the solution move from u to
−u. Furthermore, Ω \ E+

s = {u < s} = {−u > −s}.
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Proof. At first we have to show that u ∈ L2. From minimality we have:

λP (Es,Ω) +
Ú
Es

s− g(x), dx ≤ λP (∅,Ω) +
Ú

∅
s− g(x), dx = 0,

=⇒ s|Es| ≤
Ú
Es

g(x) dx.

We need to integrate this inequality between t and M , where t is such that Et /= ∅
and u(x) /≡ t on Et. Notice that.

λP (E,Ω) +
Ú
E
s− g(x) dx ≤ λP (E,Ω) + (s+ ∥g∥∞)|E|,

hence for s negative enough ∅ is not optimal. On the other hand, as soon as exists
an s for which Es /= ∅, then for any t < s we have u(x) /≡ t on Et, otherwise Es
would be empty. For simplicity we will assume t = 0 and s > 0, that is Es ⊆ E0 /= ∅,
then we can integrate Ú M

0
s|Es| ds ≤

Ú M

0

Ú
Es

g(x) dx ds.

Furthermore, applying Fubini’s or Tonelli’s theorem where needed, we have:
Ú M

0
s|Es| ds =

Ú M

0

Ú
E0
sχEs dx ds =

Ú
E0

Ú M∧u(x)

0
s ds dx = 1

2

Ú
E0

(M ∧ u(x))2 dx,

Ú M

0

Ú
Es

g(x) dx ds =
Ú
E0

(M∧u(x)) g(x) dx ≤
3Ú

E0
(M ∧ u(x))2, dx

Ú
E0
g(x)2 dx

4 1
2
,

=⇒ 1
2

Ú
E0

(M ∧ u(x))2 dx ≤
3Ú

E0
(M ∧ u(x))2, dx

Ú
E0
g(x)2 dx

4 1
2
.

In conclusion, taking M −→ +∞, we have shown thatÚ
{u>0}

u(x)2 dx ≤ 4
Ú

{u>0}
g(x)2 dx.

For the other half of the integral, we can apply a similar argument to the problem
presented in the observation 2.2.19, coming to the result:Ú

{u<0}
u(x)2 dx ≤ 4

Ú
{u<0}

g(x)2 dx,

proving that u is in L2(Ω) ⊆ L1(Ω). We can then prove that U ∈ BV (Ω) and u is
minimal for ROF jointly. Let v be any function in BV (Ω) ∩ L2(Ω). Because Es
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is minimal for ROFs, it has less energy than the level set {v > s}, then we can
integrate on s ∈ [−M,M ], resulting in the following inequality:Ú M

−M
λP (Es,Ω) +

Ú
Es

s− g(x) dx ds ≤
Ú M

−M
λP ({v > s},Ω) +

Ú
{v>s}

s− g(x) dx ds.

However, proceeding similarly as before, we have:Ú M

−M

Ú
{v>s}

s− g(x) dx ds =
Ú

Ω

Ú M

−M
χ{v>s}(x)(s− g(x)) ds dx =

= 1
2

Ú
Ω

(u(x) ∧M − g(x))2 − (u(x) ∧ (−M) − g(x))2 dx.

Now moving to the limit M −→ +∞, we have that u∧M −→ u and u∧−M −→ 0
in L2, therefore, using the coarea formula:Ú M

−M
λP ({v > s},Ω) +

Ú
{v>s}

s− g(x) dx ds −−−−−→
M→+∞

λV (v,Ω) + 1
2

Ú
Ω
(v − g)2 dx.

Proceeding in the same way for E−
s = {u > s}, we get

λV (u,Ω) + 1
2∥u− g∥2

L2 ≤ λV (v,Ω) + 1
2∥v − g∥2

L2 ,

showing that u ∈ BV (Ω) and minimal for ROF.

Before applying this formulation by level sets to some particular cases, we present
a regularity result of the minimizer’s boundary, derived from a more general result
in [1].

Theorem 2.2.20. Let g ∈ L∞(Ω) and Es the minimizer of (ROFs), then ∂Es\∂∗Es
is a closed set of Hausdorff dimension 0. Furthermore, ∂∗Es is locally the graph of
C1,1 functions.

2.2.3 An analytical solution
In order to test the implementations of ROF solvers, it is useful to find some
analytical solutions. We will take as a reference the simple case of g = χQ, where
Q ⊂ Ω = R2 is a square. Setting Ω to be an unbounded set is actually relevant,
because, as we will see, it forces the solution to be 0 outside of Q. The case of
the reference as the characteristic of a convex set has been solved in general, for
instance the [9] and [10] by Alter, Caselles and Chambolle provide a very detailed
explanation. They solved it through the Euler-Lagrange equations, however their
results are complex to prove and technical, for this reason we will prefer the level
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sets approach (with proposition 2.2.17), since we are only interested in the particular
simple case of a square. For a general convex set C the solution of level sets appears
in the form

Es =


∅ if Rs > R∗ ∨ s > 1
CRs if Rs ≤ R∗ ∧ s ≥ 0
R2 if s < 0

, (2.9)

where Rs = λ
1−s represent the minimal radius of curvature of ∂E, R∗ is a threshold

depending on the geometry, instead CR is defined as the union of all the balls
B(x,R) of radius R included in C, that is CR = t

B(x,R)⊂C B(x,R).
Even if we are only interested in the square, we will make use of some results

taken for a general convex set, to begin with the simplified formulation. At first
we have to notice that we only need to study what happens for s ∈ (0,1), because
from 2.2.1 we know that the image of the minimizer must be in [0,1], hence
E+
s = {u ≥ s} = ∅ for s > 1, while E−

s = {u > s} = Ω for s < 0. Otherwise we
have the following result.

Lemma 2.2.21. Let g = χC for C ⊂ R2 a convex set, then ROFs, for s ∈ (0,1], is
equivalent to

min
E⊆C

λP (E) − (1 − s)|E|. (2.10)

Proof. The objective function in ROFs is λP (E) +
s
E s− χC dx, for which we can

compute the integral:

λP (E) + s|E \ C| − (1 − s)|E ∩ C|.

For s > 0 we can suppose E bounded, otherwise the term s|E \ C| would be +∞.
Now let H be an half plane containing C, we can immediately understand that
P (E ∩H) ≤ P (E) for each E. For instance, in dimension 2, the reduced boundary
of E ∩ H is like the one of E where a portion has been replaced by a straight
line, which minimizes the perimeter. We notice that this step would not work for
Ω /= R2, because P (∂E ∩ ∂Ω,Ω) = 0, so that the perimeter does mot necessarily
reduce on E ∩H.

Instead, (E ∩H) ∩ C = E ∩ C and (E ∩H) \ C ⊂ E \ C. Summing up E ∩H
has a lower energy then E, for each E, that is Es ⊂ H. But this happens for each
halfspace H ⊃ C, therefore Es ⊆ C. This allows us to consider only the subsets
of C for the minimum problem, that with the right simplifications leads to the
thesis.

For s = 0, instead, E = R2 has finite energy equal to −|C|, however we notice
that the objective function is λP (E) − |E ∩ C| > −|E ∩ C| ≤ |C|, for E /= R2.
Therefore, we must have E0 = R2 too.
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Before solving the square case, it is useful to make few observations. We can
see and keep in mind that in (2.10) we are trying to reduce the perimeter while
increasing the area.

Figure 2.2: Example on how we can
improve the energy convexifying the
sets.

A first consequence of this is that the
minimizer has to be convex. Indeed con-
sider a set E for which there is a segment
external to E connecting two points on the
boundary ∂E. Then calling D the portion
included by this segment and ∂E, we have
Ẽ = E ∪D has a lower energy than E: we
are adding more area while the length of the
segment is for sure shorter than the arc on
the boundary of E, reducing the perimeter.
For a better understanding take as reference
figure 2.2.

Secondly, suppose the minimizer Es /= ∅,
then whatever shape it has, Es must be the
biggest version that fits in C. Indeed, take
tEs for t a scaling parameter greater than
1. Its energy is the parabola in t

p(t) = λP (Es)t− (1 − s)|Es|t2,

with maximum for tM = λP (Es)
2(1−s)|Es| . However,

because the empty set is not optimal, we must have λP (Es) − (1 − s)|Es| ≤ 0, that
is tM ≤ 1. Consequently, for t > 1 we should have

p(t) < p(1) = λP (Es) − (1 − s)|Es|.

Hence, if tEs ⊆ C, then Es would not be optimal, which is a contradiction. Then,
combining this argument with proper shifts and rotation, we conclude.

Summing up we got:

Proposition 2.2.22. The minimizer Es of (2.10) satisfies the following properties:

• Es is convex,

• Es is either empty or the greatest scale of its shape that fits in C.

Lastly, it is relevant to point out the connection between (2.10) and the Dido’s
or isoperimetric problem. The latter can be stated as: “find the figure of maximal
area, given the perimeter length B”. This is a classical problem, which induced
the mathematicians to formulate some beginning ideas that have developed into
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calculus of variation. Its solution is notoriously the circle and in particular if we
constrain a portion of the boundary to be a straight segment, the maximal area is
achieved by the circular segment with perimeter B. The problem can be stated
with a more mathematical notation as follows:

max
P (E)≤B

|E|.

But changing the max for a min and introducing a Lagrange multiplier for the
constraint, we have the equivalent saddle-point formulation:

max
µ≥0

min
E
µP (E) − µB − |E|.

The minimization part is responsible for the choice of E’s shape depending on
µ, while the maximization selects the particular one that matches the perimeter
length constraint. For example, in the case of the side fixed to be a straight
line, the minimization find the general shape of the solution, that is the circular
segment, while the maximization finds the optimal one among all circular segments.
Therefore, the relevant problem is given by:

min
E
µP (E) − |E|, (2.11)

which is visibly closed related to (2.10). Some more theoretical background on the
isoperimetric problem can be found in [11] at Chapter 14.

Moving to the square example, we take Q =
è
−L

2 ,
L
2

é2
and set Rs = λ

1−s ∈
[λ,+∞). This value is shown from the Euler-Lagrange equations to represent the
maximum radius of curvature of ∂∗Es, we will not prove this assertion, however
the meaning of Rs will be clear at the end of the computations. Our purpose is to
solve

min
E⊆Q

RsP (E) − |E|. (2.12)

Let’s suppose for now that the minimizer is not empty, if the energy of the
resulting minimal set is less than 0, then our guess was correct, otherwise we have
Es = ∅. The first consideration we can make is that the minimizer must have the
same symmetries as the square whenever the solution is unique, otherwise at least
E+
s and E−

s have them, as they are respectively the union and the intersection of
all possible solutions.

Taking into account the properties in 2.2.22, we must have that the optimum
touches symmetrically each of the square sides (for scale maximality). Furthermore,
the intersection between ∂Es and one of the sides must be either a point or a
continuous line (for convexity) and symmetrical with respect to the side central point.
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Figure 2.3: The non empty solutions
of (2.12) must include a symmetrical
octagon like the orange one in figure

Hence, we can deduce that (again by convex-
ity) Es must contain an octagon (or square
when the contact consist only in the side
central point) like the one showed in figure
2.3, even though the length of the overlap-
ping edge has still to be determined. Be-
fore discussing the optimal length, which
depends on Rs, let’s figure out the optimal
shape to fill the leftovers corners between
the square and the octagon. That is, if we
call the octagon G, we want to find the
∆E ⊆

1
0, L2

22
\ G with lowest energy and

constrained to share the side S =
1
0, L2

22
∩G

with the octagon. Notice that in this case
we assume that ∆E does not share part of
the boundary with Q, except for the vertices
of S, because we stated that ∂E∩∂Q is fully
captured by the octagon. In formulas, we
can write the problem as:

min
I
RsP (∆E) − |∆E| : ∆E ⊆

5
0, L2

62
\G, ∂∆E ⊃ S

J
.

For the relation with the Dido’s problem, this is solved by circular segments.

Figure 2.4

In this way we can describe the class of optimal
shapes by only two parameters, one related to the
length of the octagon side, while the other to the
circular segments in the corners.

In particular we call x ∈
è
0, L2

é
the cathetus

length of the corner triangle, while θ ∈
è
0, π2

é
and

r the angle and the radius representing the circu-
lar arc (see figure 2.4). the relation between these
three variables is given by the length of the octagon
skewed side, that is:

2r sin θ2 =
√

2x. (2.13)

Let’s call E(x, θ) the shape given with these param-
eters, then we can compute its perimeter and area:

P (E(x, θ)) = 4(L− 2x+ θr) = 4L− 4
A

2 −
√

2 θ/2
sin(θ/2)

B
x;
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|E(x, θ)| = L2 − 2x2 + 2θr2 − 4r2 sin
A
θ

2

B
cos

A
θ

2

B
=

= L2 − 2
A

1 − θ/2
sin2(θ/2) + cos(θ/2)

sin(θ/2)

B
x2.

Consequently, Es will be E(xmin, θmin) for the value xmin and θmin minimizing, for
(x, θ) ∈

è
0, L2

é
×
è
0, π2

é
, the following function:

f(x, θ) := 4RsL− L2 − 2b
A
θ

2

B
Rsx+ a

A
θ

2

B
x2,

with a(γ) := 2
1
1 − γ

sin2(γ) + cos(γ)
sin(γ)

2
and b(γ) := 2

1
2 −

√
2 γ

sin(γ)

2
. Minimizing f on

x is straightforward, therefore we have:

xmin = b(θmin/2)
a(θmin/2)Rs; θmin = 2 argmin

γ∈[0,π
4 ]

I
4RsL− L2 − b2(γ)

a(γ) R
2
s

J
.

However, with standard techniques, but with long and obnoxious computations,
it is possible to show that b2(γ)

a(γ) is always increasing in
è
0, π4

é
, which means that

θmin = π
2 . Furthermore, because b

1
π
4

2
= a

1
π
4

2
= 4 − π, we can see that

xmin = Rs.

It is noteworthy the fact that, from (2.13), r = x for θ = π
2 , this means that Rs

represent the radius of curvature for the rounded corners of the solution.

Figure 2.5: Example of a
solution from (2.12)

We can see the representation of the solution set
in figure 2.5. We can notice that this minimizing set
can be expressed as the union of the balls of radius
Rs included in the square, that is:

Es = CRs =
Û

B(x,Rs)⊂Q
B(x,Rs).

xmin = Rs, though, deny the solution validity for
Rs >

L
2 . In this case xmin = L

2 , for which the energy
is:

f
3
L

2 , θ
4

= 4RsL−L2 −2b
A
θ

2

B
Rs
L

2 +a

A
θ

2

B
L2

4 =

= LRs(4 − b) + L2
3
a

4 − 1
4

= L

A
Rs

2
√

2γ
sin γ − L

2

A
1 + γ

sin2(γ) − cos(γ)
sin(γ)

BB
,

57



The Rudin-Osher-Fatemi problem

but forRs >
L
2 and γ ≤ π

4 this is for sure positive, making the empty set energetically
convenient. However, we still have to determine thoroughly when this solution is
actually better than the empty set for Rs ≤ L

2 . This happens if the associated
energy is less than zero, that is:

f
3
Rs,

π

2

4
= 4RsL− L2 − (4 − π)R2

s < 0, (2.14)

=⇒ Rs <
L

2 +
√
π

=: R∗,

because the other possibility Rs >
L

2−
√
π
> L

2 is excluded.
In conclusion, consistently to what stated at the beginning of this section in

(2.9), we have the solution for the level sets:

Es =



∅ if λ

1 − s
>

L

2 +
√
π

∧ s ≥ 0,

C
λ

1−s if λ

1 − s
≤ L

2 +
√
π

∧ s ≥ 0,

R2 if s < 0.

(2.15)

Operationally, for dealing with more complicated convex sets, it is relevant to
notice that f

1
R, π2

2
= 0 ⇐⇒ P (CR)

|CR| = 1
R

. Indeed, in general, the threshold R∗ is
the smallest R for which P (CR)

|CR| = 1
R

.
From the level sets we can reconstruct the ROF solution as

u(x) = max
I

0, 1 − λ

r(x)

J
χQ(x), (2.16)

where r(x) = R∗ for x ∈ CR∗ and r(x) = R (if R ∈ [0, R∗]) for x ∈ ∂CR. We can
notice that in Q \ Cλ we have u(x) = 0 and its maximum u = 1 − λ

R∗ is reached
in CR∗ . On Cλ \ CR∗ , instead, u is decreasing smoothly to 0. On the other hand,
when λ > R∗ = L

2+
√
π
, u ≡ 0, showing the harmful effect of a too high λ.

Let’s now compute the energy of the solution, let’s call it F (u). If λ ≥ R∗, the
minimal energy is F (u) = 1

2∥χQ∥2
2 = L2

2 . Otherwise, if λ > R∗, we can exploit our
knowledge on the level sets. At first, let’s call s∗ the highest s for which Es /= ∅,
that is

λ

1 − s∗ = R∗ =⇒ s∗ = 1 − λ

R∗ .

Then, from the coarea formula we have

V (u) =
Ú s∗

0
P (Es) ds =

Ú s∗

0
2πRs + 4(L− 2Rs) ds.
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2.3 – Related models

We can now do a change of variables r = Rs = λ
1−s , so that

V (U) = 4Ls∗ +
Ú R∗

λ
(2πr − 8r) λ

r2 dr = 4Ls∗ − 2λ(4 − π) log
3
R∗

λ

4
. (2.17)

For the fidelity term 1
2∥u− g∥2

2, we notice that outside of Q u and g are both
zero, while in Q \ Cλ u = 0 and g = 1. Then, we have

1
2∥u− g∥2

2 = 1
2

Ú
Q

(1 − u)2 dx = 1
2(L2 −

---Cλ
---) + 1

2

Ú
Cλ

(1 − u)2 dx.

The remaining integral can be solved integrating by layers, that isÚ
Cλ

(1 − u)2 dx =
Ú 1

(1−s∗)2

---Cλ
---− ---CR1−

√
t

--- dt =
Ú 1

(1−s∗)2

---Cλ
---− ---Cλ/

√
t
--- dt =

---Cλ
---− (1 − s∗)2

---Cλ
---− Ú 1

(1−s∗)2
L2 − (4 − π)λ

2

t
dt =

=
---Cλ

---− L2 + (1 − s∗)2(L2 −
---Cλ

---) + 2(4 − π)λ2 log
3 1

1 − s∗

4
.

Putting everything together we have

F (u) = λV (u) + 1
2∥u− g∥2

2 =

= 4λLs∗ − 2λ2(4 − π) log
3
R∗

λ

4
+ (1 − s∗)2

2 (L2 −
---Cλ

---) + (4 − π)λ2 log
3 1

1 − s∗

4
.

Recalling that λ
1−s∗ = R∗ = L

2+
√
π

and L2 −
---Cλ

--- = (4 − π)λ2, we can simplify the
energy as a function of R∗

λ
, that is:

F (u) = λ2 e
3
R∗

λ

4
,

e(r) = 4(2 +
√
π)(r − 1) − (4 − π)log(r) + 4 − π

2r2 .

(2.18)

2.3 Related models
Before concluding this chapter, we present some models derived from the ROF. A
first instance consist in introducing a filter in the fidelity term, that is:

min
u∈U

λV (u,Ω) + 1
2∥Au− g∥2

L2(Ω),
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where A is a linear continuous operator. This generalization can be applied in
image deblurring or zooming. Indeed, if we took A as the convolution for a blurring
kernel, the solver would look for an image whose blurred version is similar to the
reference, but with sharper edges to minimize the total variation. Instead, if A is
a blurring followed by a downsampling, this can be used to zoom in or simply to
increment the image quality.

Many of the results previously mentioned can be easily generalized, for instance
we can see that still the problem is convex and admits a unique solution (as in
2.2.4), and its Euler - Lagrange equation can be expressed as:

0 ∈ λ∂V + Au− g.

Figure 2.6: A comparison between the classical Wiener filter for deblurring and
the total variation method presented above. The edge sharpening effect of total
variation is noticeable, providing better results then the the Wiener filter.

A second model related to ROF is the so called TV − L1 in which the fidelity
term is replaced with the L1 norm.

min
u∈U

λV (u,Ω) + ∥u− g∥L1(Ω).

This choice seems particularly natural since BV ⊂ L1, but it is also relevant for
another reason. Consider a change in the contrast of g, that is using αg as reference
for α a positive scaling factor. In ROF , this change will produce a completely
different solution, because the total variation is 1−homogeneous while the fidelity
term is 2−homogeneous, therefore the relation between these two changes with the
scaling. On the other hand, the TV − L1 model will produce the same solution,
just scaled of α. This consideration is relevant not only when changing contrast,
but more in general for capturing details in lower scales. Indeed, in ROF the total
variation term become much more relevant when there are small oscillation, so
that the areas with close shades of colors are flattened in a monochromatic chunk.
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Figure 2.7: A comparison of the restoration with ROF and with TV − L1 in a
highly damaged image. Notice the level of details recovered in the latter.

Conversely, TV − L1 is able to restore low scale details much better. In figure 2.7
we can see a comparison in a case of quite high noise (25% corrupted).

The main problem with this method is the lack of strict convexity and con-
sequently the uniqueness is not guaranteed. The minimization has been faced
in many ways (see for instance [12]), but we can use the primal-dual modified
extragradient method, that will be presented in the next chapter. For this purpose,
we need to rewrite the problem as a saddle-point. Fortunately this is an easy task
since by definition the total variation and the absolute value can be written as a
constrained maximization problem, then we get

min
u

max
ϕ,ψ

λ
Ú

Ω
ϕ dDu− I{∥ϕ∥∞≤1} +

Ú
Ω
ψu dx− I{∥ψ∥∞≤1},

where IA is the indicator function (IA = 0 in A and ∞ otherwise) and ϕ is vector
valued.
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Chapter 3

ROF solver implementation

The purpose of this chapter is to discuss the implementation of a solver for the ROF
problem. At first a discrete adaptation of the problem is needed, so that it works
in the setting of pixelated digital images. Then we will introduce an algorithm
able to approximate the minimizer. Despite in [13], chapter 3, several methods
are actually presented and compared, we will use only the one it is reported as
the best performing one in terms of execution time, that is a modified primal-dual
approach. A part from its performance, this algorithm is interesting to acknowledge
also because it allow to find approximately a saddle point. Finally, the solver will
be validated through the analytical solution of the square found in (2.16) and some
experimental results will be shown.

3.1 Discrete problem
Let’s take for instance a squared image, and as domain take Ω = (0,1)2. Then
we have to divide the picture in pixels, that we take again as squared. Those
correspond to the tiles Qh

i,j ⊂ Ω, with i, j = 1, . . . , N , of side h = 1
N

and covering
(almost everywhere) disjointly Ω. Then we call xi,j the center of those squares, so
that:

Qh
i,j = xi,j +

A
−h

2 ,
h

2

B2

; xi,j =
A
ih− h

2 , jh− h

2

B
.

In thus discrete setting an image u is constant on each pixel, this means that
we have a double representation: on one hand u can be seen as a function in a
subspace of L∞(Ω)

Qh := {u ∈ L∞(Ω) | ∀ i, j = 1, . . . , N u constant on Qh
i,j},

on the other hand u can be seen as a matrix in RN×N defined as:

ui,j := u(xi,j) = u(Qh
i,j).
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ROF solver implementation

Then we can write u(x) = qN
i,j=1 ui,jχQh

i,j
(x).

Now we have to discretize the objective function. For the total variation it is
natural to define its discrete version as

Vh(u) :=
NØ

i,j=1
|∇hu(xi,j)|2h

2, (3.1)

where ∇h : Qh −→
è
Qh
é2

is a linear operator that in some sense approximate the
gradient. Since Qh is a finite dimensional space, we can immediately appreciate
that the operator ∇h is continuous, and consequently also Vh. This is an operator
that acts locally, consequently we can define it more precisely through a core linear
operator Ah acting on a set of neighbour indices N , which can be defined as a finite
subset of Z2 containing (0,0). Then the core operator is defined as Ah : RN −→ R2

and is meant to compute the discrete gradient in the center (0,0) using the value
of the function on the neighbourhood N , that is

∇hu(xi,j) = Ahu(i,j)+N ,

where u(i,j)+N is a function on N such that p ∈ N → u(i,j)+p = (Spu)i,j, with Sp
the shift operator. On this point of view, we can call SN the collection of shift
operators, that is SN : Qh →

è
Qh
éN

so that (SNu)p = Spu, for p ∈ N . In this
way we have

∇h = Ah ◦ SN .

Dealing with shifts, it may happen that the indices (i + p1, j + p2) exceed the
boundaries 1 and N , in these cases we pose:I

if i < 1, ui,j = u1,j

if i > N, ui,j = uN,j

Þ I
if j < 1, ui,j = ui,1

if j > N, ui,j = ui,N .
(3.2)

These definitions come from the fact that we would like to recover the Neumann
boundary conditions of the Euler-Lagrange equation (2.8), achieved by prolonging
the functions on each side of the square Ω by constants. In relation to this
consideration, a property that Ah must satisfy is that for constant inputs the
output must be 0, that is

Ah1N =
A

0
0

B
,

where (1N )p = 1 ∀p ∈ N . This means that (seeing A as a matrix) the column
corresponding to (0,0) is nothing less than minus the sum of all the other columns
of A. In other words, denoting ap the column of Ah corresponding to p ∈ N we
have

a(0,0) = −
Ø

p∈N \(0,0)
ap.
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3.1 – Discrete problem

This implies that Au is actually a function of the differences u− p− u0,0, indeed

Ahu =
Ø

p∈N \(0,0)
apup + a0,0u0,0 =

Ø
p∈N \(0,0)

ap(up − u0,0).

Therefore, the discrete gradient can also be written in the form:

∇h = Ã ◦
A
SN \(0,0) − Id

h

B
.

For the future developments it is also relevant to understand how the adjoint
operator, on the L2 scalar product, of ∇h behaves. For reference, the L2 scalar
product on functions in

è
Qh
ép

reduces to a sum like the following

⟨u, v⟩ = h2
NØ

i,j=1
ui,j · vi,j.

Let’s call such adjoint operator −divh :
è
Qh
é2

−→ Qh, then it is defined such that
⟨∇hu, ξ⟩ = ⟨u,−divhξ⟩ for every u ∈ Qh and ξ ∈

è
Qh
é2

. Therefore, we have

divh =
A
Id− S∗

N \(0,0)

h

B
◦ ÃT ,

where ÃT is simply the transposed matrix, while S∗
N \(0,0) can be seen as the vector

of the adjoint operators S∗
p with p ∈ N \ (0,0). Hence, we only really need

to understand the adjoint to the shift. For simplicity, let’s take p = (c,0) for
0 < c < N − 1, then, given u, v ∈ Qh, from the notation (3.2) we have

NØ
i,j=1

ui,j
1
S∗
pv
2
i,j

=
NØ
j=1

N+cØ
i=c+1

ui,jvi−c,j =
NØ
j=1

 N−1Ø
i=c+1

ui,jvi−c,j +
NØ

k=N−c
uN,jvk,j

 ,

=⇒
1
S∗
pv
2
i,j

=



0 if i ≤ c

vi−c,j if c < i ≤ N − 1
NØ

k=N−c
vk,j if i = N.

A common choice for ∇h is given as follows:

(∇hu)i,j =
3
ui+1,j − ui,j

h
,
ui,j+1 − ui,j

h

4
, (3.3)
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which in the previous notation correspond to N = {(0,0), (1,0), (0,1)} and Ã the 2
dimensional identity matrix. Conversely, the discrete divergence is expressed by

(divhξ)i,j =
ξ1
i,j − ξ1

i−1,j

h
+
ξ2
i,j − ξ2

i,j−1

h
, (3.4)

for 1 < i, j < N . On the boundary layer instead we have that, if i = 1, then ξ1
i−1,j

is replaced by 0 and, if i = N , it is replaced by ξ1
i−1,j + ξ1

i,j, which is equivalent of
saying that ξ1

i,j is replaced by 0. Analogously if j = 1 or N .
This discretization leads to the discrete total variation

Vh(u) = h
NØ

i,j=1

ñ
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2. (3.5)

This formulation has some interesting properties, the first is that Vh decrease by
truncation similarly to the actual total variation (see 1.1.26). Indeed, given m and
M real numbers and calling ū = m ∨ (u ∧M), then for any pair of indices

|ūl,m − ūi,j| ≤ |ul,m − ui,j|,

because max{ūl,m, ūi,j} ≤ max{ul,m, ui,j} and min{ūl,m, ūi,j} ≥ min{ul,m, ui,j}.
Consequently,

Vh(m ∨ (u ∧M)) ≤ Vh(u). (3.6)
This is a relevant property because, as in the continuous ROF problem, it guarantee
that the solution of the discrete ROF problem has the same bounds as the reference
image, that is the solution will assume in each pixel values of intensity between 0
and 255 as required for digital images.

Secondly, we can notice that the actual total variation of a function in Qh is
made just by the jumps in values between adjacent pixels, multiplied by the length
of the interface. This can be written as:

V (u,Ω) = h
NØ

i,j=1
|ui+1,j − ui,j| + |ui,j+1 − ui,j|.

Therefore, from the equivalence of the 1 and 2 norm, we can bound the total
variation with (3.5) and vice verse:

Vh(u) ≤ V (u,Ω) ≤
√

2Vh(u), ∀u ∈ Qh. (3.7)

We have to point out that the total variation on Q⟨ is not an accurate choice for
the discretization of the total variation, because, as explained in [14], it does not
Γ-converges to the total variation in L1, but to a functional which behaves ass

Ω|∇u|1 dx on W 1,1 (there is a different king of modulus for the gradient).
We will now show that instead Vh as formulated in (3.5) Γ-converges to the

total variation.
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Proposition 3.1.1. Let’s define Vh as in (3.5) in Qh and +∞ in L1(Ω) \ Qh.
Then

Vh
Γ−−−→

h−→0
V, in L1(Ω).

Proof. lim inf : Take ϕ ∈ [C1
c (Ω)]2 such that |ϕ(x)| ≤ 1 for all x ∈ Ω. For

continuity we can relate to ϕ a function ϕh ∈ Qh defined so that ϕhi,j = ϕ(xi,j).
Then, given any u ∈ Qh, for the Cauchy-Schwartz inequality we have

Vh(u) ≥
NØ

i,j=1
h2(∇hu)i,j · ϕhi,j =

NØ
i,j=1

h2ui,j(−divhϕh)i,j = −
Ú

Ω
u divhϕh dx.

Now, given a sequence uh −→ u in L1, with uh ∈ Qh for each h > 0, we want to
show

lim inf
h

Vh(uh) ≥ V (u,Ω) = sup
ϕ

Ú
Ω
u divϕ dx.

Therefore, we only need to show that, for each ϕ with the properties above,
lim infh

s
Ω u

h divhϕh dx ≥
s

Ω u divϕ dx, but in particular we can show that

lim
h

Ú
Ω
uh divhϕh dx =

Ú
Ω
u divϕ dx.

Because uh converges to u in L1, this limit is verified if divhϕh −→ divϕ in L∞.
Similarly as before, because divϕ is continuous, we can define f ∈ Qh such that
fi,j = divϕ(xi,j), then we have...divϕ− divhϕh

...
∞

≤ ∥divϕ− f∥∞ +
...f − divhϕh

...
∞
.

1. ∥divϕ− f∥∞ = supi,j=1,...,N supx∈Qh(xi,j) |divϕ(x) − divϕ(xi,j)|. However,
divϕ is a continuous function on a compact domain, which means it is uniformly
continuous, in other words independently from i, j

∀ε > 0, ∃δ > 0 : |x− xi,j| < δ =⇒ |divϕ(x) − divϕ(xi,j)| < ε.

But, because if x ∈ Qh
i,j, then |x− xi,j| ≤

√
2

2 h, then for each ε > 0 we can
find h small enough so that ∥divϕ− f∥∞ < ε, proving ∥divϕ− f∥∞ −→ 0.

2. Let’s call Ω̃h the set generated by subtracting from Ω the layer of pixels of side
h on the boundary. Then, because ϕ is compactly supported in Ω, for h̄ small
enough we have

...f − divhϕh
...
L∞(Ω)

=
...f − divhϕh

...
L∞(Ω̃h̄)

. But for h < h̄ we

can generalize divh as a functional [C0(Ω)]2 −→ C0(Ω̃h̄) using the expression
in (3.4):

divhϕ(x1, x2) = ϕ1(x1, x2) − ϕ1(x1 − h, x2)
h

+ ϕ2(x1, x2) − ϕ2(x1, x2 − h)
h

.
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In this case (divhϕh)i,j = divhϕ(xi,j). Hence, we have...f − divhϕh
...
L∞(Ω̃h̄)

= sup
xi,j∈Ω̃h̄

{divϕ(xi,j) − divhϕ(xi,j)}

≤ sup
x∈Ω̃h̄

{divϕ(x) − divhϕ(x)}.

But for C1 functions the incremental ratio converges uniformly on compacts
to the derivative, therefore we must also have that

...f − divhϕh
...

∞
−→ 0.

lim sup : At first consider u ∈ C1(Ω) and the linear operator

◦̄h : L1(Ω) −→ Qh

u → (ūh)i,j = 1
h2

Ú
Qh

i,j

u dx

that corresponds to taking the integral mean on each pixel. For h going to 0, ūh
is known to converge to u in L1, so we will prove that such ūh is the recovery
sequence, in other words that Vh(ūh) −−−→

h−→0
V (u,Ω). Similarly to divh, we can

define ∇h for continuous functions as in (3.3), substituting xi,j for a general x ∈ Ω.
Then, using the linearity of ◦̄h and ∇h, we have

Vh(ūh) =
NØ

i,j=1
h2|(∇hūh)i,j| =

NØ
i,j=1

-----
Ú
Qh

i.j

(∇hu)h dx
----- ≤

Ú
Ω
|∇hu| dx.

=⇒ Vh(ūh) − V (u,Ω) ≤
Ú

Ω
|∇hu| − |∇u| dx ≤

Ú
Ω
|∇hu− ∇u| dx.

But it is well known that ∇hu −→ ∇u in L1, consequently

lim sup
h

Vh(ūh) ≤ V (u,Ω).

Now we can generalize this result from u ∈ C1(Ω) to BV (Ω) by density. Indeed,
from 1.1.13, for each u ∈ BV (Ω) we can find {uk} ⊂ C1(Ω) such thatu

k −→ u inL1(Ω),
lim

k→+∞
V (uk,Ω) = V (u,Ω).

But for each k limh−→0 Vh(ukh) = V (uk,Ω). Therefore, for any sequence of indices
hn we can find a subsequence (that I call hk) for which

---Vhk
(ukhk

) − V (uk,Ω)
--- ≤ 1

k
,

consequently---Vhk
(ukhk

) − V (u,Ω)
--- ≤

---Vhk
(ukhk

) − V (uk,Ω)
---+ ---V (uk,Ω) − V (u,Ω)

--- −−−−→
k−→∞

0.
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After this discussion on the discretization of the total variation, we need to
deal with the reference term. The L2 distance can be kept, however we have to
approximate the reference image g ∈ L∞(Ω) in the ROF problem with a gh ∈ Qh.
As for the recovery sequence in the previous Γ-limit, a good choice of gh is give by
averaging on the pixels:

ghi,j := 1
h2

Ú
Qh

i,j

g dx. (3.8)

This definition of gh satisfies the following two properties:

• gh −→ g in L2 for h −→ 0,

•
...gh...

∞
≤ ∥g∥∞.

Those are actually the only required properties, therefore different choices of gh
can be made, but we will prove that as long as they satisfies those properties we
have a correct approximation of the ROF problem.

We have now all the instruments to define the discrete ROF problem:

min
u∈Qh

Vh(u) + 1
2λ
...u− gh

...2

L2
. (ROFh)

For the next results we will refer to the objective functional of (ROF) as F and
the one of (ROFh) as Fh.

As told previously, the maximum and minimum of the (ROFh) are controlled
by those of gh, this is expressed by the following proposition.

Proposition 3.1.2. Take g ∈ L∞(Ω), gh as (3.8), Vh decreasing by truncation and
U as in (2.3), then

inf
u∈Qh

Fh(u) = inf
u∈Qh∩U

Fh(u).

Proof. The proof follows as in preposition 2.2.1. I just want to stress that here the
property of Vh to decrease by truncation is needed. More precisely we obtain that
if uh is the minimizer, then min gh ≤ uh ≤ max gh. But because

...gh...
∞

≤ ∥g∥∞
we must have ∥uh∥∞ ≤ ∥g∥∞. To completely gain that the minimizers belong to
U ⊂ BV (Ω), we further need V (uh) to be bounded for each h. But we can even
show that they are equibounded, indeed

Fh(uh) ≤ Fh(0) = 1
2λ
...gh...2

2
≤ 1

2λ∥g∥2
2,

where ∥gh∥2 ≤ ∥g∥2 comes from the Jensen inequality. This implies:
1

2λ∥g∥2
2 ≥ Vh(uh) ≥ V (uh).

69



ROF solver implementation

This preposition further shows that the sequence of functionals {Fh} is equi-
mildly coercive, which is needed to apply the fundamental theorem of Γ-convergence.
We also have the existence and uniqueness of the (ROFh) minimizer.

Proposition 3.1.3. The ROFh problem admits a unique solution.

Proof. Proceed exactly like in the proof of Prop. 2.2.4.

Now we can finally show that (ROFh) is a good approximation of the ROF
problem.

Proposition 3.1.4. Fh Γ-converges to F and in particular, calling u∗
h the mini-

mizers of Fh and u∗ the one of F , then

u∗
h −→ u∗ in L1 and L2.

Proof. Because we can restrict the minimization on the compact U , if we have the
Γ-convergence, we also have the convergence of the minimizers. Thus, we only need
to prove this Γ-convergence. For the liminf, take any uh ∈ Qh converging in L1

to u ∈ BV (Ω). By the observation 2.2.3 we must also have the L2 convergence,
therefore uh − g2 −→ u − g in L2 for h going to 0. Then, exploiting that Vh
Γ-converges to V , we conclude

lim inf
h

Fh(uh) ≥ lim inf
h

Vh(uh) + lim inf
h

1
2λ
...uh − gh

...2

2
≥ F (u).

For the limsup inequality, we take as recovery sequence the one of Vh, then we
proceed like in the liminf part.

There are also some results on the convergence rate of the minimizers and
bounds on the error of the discrete solution. For example in [15] is shown that if
g ∈ W 1,2, then ∥u∗

h − u∗∥2
2 ∼ O(h1/2); while [16] proves that if g ∈ Lip(α), then

∥u∗
h − u∗∥2

2 ∼ O
1
h

α
1+α

2
.

3.2 Solver algorithm
In this section it will be presented an iterative algorithm to solve (ROFh). In [13]
some possible algorithms are presented and compared, but in terms of run-time the
best one seems to be an Arrow-Hurwicz type method, or also called primal-dual
approach.

At first, let’s discuss in general the method, but for more insights we invite the
reader to consult [17]. This method has been developed for dealing with saddle
point problems and basically consists in performing jointly a gradient ascent on the
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variable to maximize and a gradient descent for the other one. For our purposes
we are interested in problem of the form:

min
x∈X

F (Dx) +G(x), (3.9)

where X is an Hilber space, F and G belong to Γ0 on their respective domains (see
the the definition above 2.2.7) and D is a linear continuous operator from X to the
domain of F , which we call Y . We can move to a saddle point problem using the
definition 2.2.7 of Legendre conjugate and recalling that F = F ∗∗, because F ∈ Γ0.
Hence, the problem (3.9) is equivalent to

min
x∈X

max
y∈Y

⟨y,Dx⟩ − F ∗(y) +G(x). (3.10)

By swapping the minimization and maximization, we can get the dual problem

max
y∈Y

min
x∈X

⟨y,Dx⟩ − F ∗(y) +G(x) = max
y∈Y

−
3

max
x∈X

⟨−DTy, x⟩ −G(x)
4

− F ∗(y) =

= max
y∈Y

−G∗(−DTy) − F ∗(y).

In general a min max problem has a greater or equal value than the corresponding
max min, however under very weak assumption, that for an unconstrained problem
as (ROFh) are satisfied, we actually have the equality, then

min
x∈X

F (Dx) +G(x) = max
y∈Y

−G∗(−DTy) − F ∗(y).

This suggest us to introduce the always positive quantity, called dual gap

G(x, y) = F (Dx) +G(x) −G∗(−DTy) + F ∗(y),

and it satisfies that G(x̂, ŷ) = 0 if and only if (x̂, ŷ) is a solution for (3.10).
Furthermore, if the min and the max are exchangeable, we can have the equivalent
definition of a saddle point (x̂, ŷ): a point such that for every (x, y) ∈ X × Y the
following inequality is satisfied:

⟨y,Dx̂⟩−F ∗(y)+G(x̂) ≤ ⟨ŷ, Dx̂⟩−F ∗(ŷ)+G(x̂) ≤ ⟨ŷ, Dx⟩−F ∗(ŷ)+G(x). (3.11)

The Arrow-Hurwicz methods on (3.10) develops as follows: we define the starting
point (x0, y0) and fix two step parameters (small) τ, σ > 0, then for each iteration
we upgrade our guess applying firstly an implicit gradient ascent step on the dual
variable y, secondly a descent step on x. We can write the iteration explicitly as:I

yn+1 = yn + σ(Dxn − ∂F ∗(yn+1)),
xn+1 = xn − τ(DTyn+1 + ∂G(xn+1)).
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The first idea to improve this algorithm is to introduce an acceleration, that is
an adaptative way of selecting the step sizes σ and τ for each iteration, see [18].
This idea has been applied, however we are not going to implement it because in
may knowledge there is not yet a proof of its convergence. Here, instead are going
to apply another variation proposed in [19] for the Mumford-Shah problem. We
basically introduce on the primal variable a mid-step x̃n between xn and xn+1 such
that x̃0 = x0 and the iterative step assume the form

yn+1 = (Id+ σ∂F ∗)−1(yn + σDx̃n),
xn+1 = (Id+ τ∂G)−1(xn − τDTyn+1),
x̃n+1 = 2xn+1 − xn.

(3.12)

For this algorithm we have a convergence result, that we are going to show soon,
but first we need to introduce some notation. Let’s define the partial primal dual
gap in B1 ⊆ X and B2 ⊆ Y as

GB1×B2(x, y) = max
y′∈B2

{⟨y′, Dx⟩ − F ∗(y′) +G(x)} +

− min
x′∈B1

{⟨y,Dx′⟩ − F ∗(y) +G(x′)} .

We notice that GX×Y = G and that, similarly to G, GB1×B2 ≥ 0 and it vanishes only
in the saddle points (if there are any in B1 ×B2).

Theorem 3.2.1. Let L = ∥D∥ and assume (3.10) has a saddle point (x̂, ŷ).
Consider the iterative algorithm defined in (3.12), with x̃0 = x0. If τσL2 < 1, then:

1. for any N ,...yN − ŷ
...2

2σ +

...xN − x̂
...2

2τ ≤ 1
1 − τσL2

A
∥y0 − ŷ∥2

2σ + ∥x0 − x̂∥2

2τ

B
;

2. Let x̄N =
1qN

n=1 x
n
2
/N and ȳN =

1qN
n=1 y

n
2
/N , then for each B1, B2 bounded

there exists a constant C(B1, B2), depending on B1 and B2, such that

GB1×B2(x̄N , ȳN) ≤ C(B1, B2)
N

.

This means that any accumulation point of (x̄N , ȳN) is a saddle point, and in
particular also the accumulation point under weak convergence.

3. If X and Y are finite dimensional, then there exists a saddle point (x∗, y∗)
which (xn, yn) converges to.
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Proof. The first two equations in (3.12) can be rewritten as

yn − yn+1

σ
+Dx̃n ∈ ∂F ∗(yn+1),

xn − xn+1

τ
−DTyn+1 ∈ ∂G(xn+1).

This means that for any (x, y) ∈ X × Y we have

F ∗(y) ≥ F ∗(yn+1) +
K
yn − yn+1

σ
+Dx̃n, y − yn+1

L
,

G(x) ≥ G(xn+1) +
K
xn − xn+1

τ
−DTyn+1, x− xn+1

L
.

From the properties of scalar product we have

⟨yn − yn+1, y − yn+1⟩ = 1
2
...yn − yn+1

...2
+ 1

2
...y − yn+1

...2
− 1

2∥y − yn∥2,

⟨xn − xn+1, x− xn+1⟩ = 1
2
...xn − xn+1

...2
+ 1

2
...x− xn+1

...2
− 1

2∥x− xn∥2.

We are interested in summing the two inequalities above, then we need to deal the
sum of the components with the D operator.

⟨Dx̃n, y − yn+1⟩ − ⟨x− xn+1, DTyn+1⟩ = ⟨Dx̃n, y − yn+1⟩ + ⟨D(xn+1 − x), yn+1⟩ =

= ⟨D(xn+1 − x− x̃n), yn+1 − y⟩ + ⟨D(xn+1 − x), y⟩ =

= ⟨D(xn+1 − x̃n), yn+1 − y⟩ + ⟨Dxn+1, y⟩ − ⟨Dx, yn+1⟩.

Replacing x̃n = 2xn − xn−1 and adding and subtracting yn we have

⟨D(xn+1 − x̃n), yn+1 − y⟩ = ⟨D(xn+1 − xn), yn+1 − y⟩ − ⟨D(xn − xn−1), yn+1 − y⟩ =

= ⟨D(xn+1 − xn), yn+1 − y⟩ − ⟨D(xn − xn−1), yn+1 − yn⟩ − ⟨D(xn − xn−1), yn − y⟩,

But we also have the following inequalities:

⟨D(xn − xn−1), yn+1 − yn⟩ ≤ L
...xn − xn−1

......yn+1 − yn
...

≤ L

2

ò
σ

τ

...xn − xn−1
...2

+ L

2

ò
τ

σ

...yn+1 − yn
...2

=

= L
√
στ

A
∥xn − xn−1∥2

2τ + ∥yn+1 − yn∥2

2σ

B
;
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Then putting all togather we have

F ∗(y) +G(x) ≥F ∗(yn+1) +G(xn+1)+

+ ∥yn − yn+1∥2

2σ + ∥y − yn+1∥2

2σ − ∥y − yn∥2

2σ +

+ ∥xn − xn+1∥2

2τ + ∥x− xn+1∥2

2τ − ∥x− xn∥2

2τ +

+ ⟨D(xn+1 − xn), yn+1 − y⟩ − ⟨D(xn − xn−1), yn − y⟩

− L
√
στ

A
∥xn − xn−1∥2

2τ + ∥yn+1 − yn∥2

2σ

B
+

+ ⟨Dxn+1, y⟩ − ⟨Dx, yn+1⟩,

that can be rearranged as

∥y − yn∥2

2σ + ∥x− xn∥2

2τ ≥ ∥y − yn+1∥2

2σ + ∥x− xn+1∥2

2τ +

+ (1 −
√
στL)∥yn − yn+1∥2

2σ +

+ ∥xn − xn+1∥2

2τ −
√
στL

∥xn − xn−1∥2

2τ +

+ ⟨D(xn+1 − xn), yn+1 − y⟩ − ⟨D(xn − xn−1), yn − y⟩+
+ [G(xn+1) − F ∗(y) + ⟨Dxn+1, y⟩]+
− [G(x) + ⟨Dx, yn+1⟩ − F ∗(yn+1)].

(3.13)
We can now sum from n = 0 up to n = N − 1, with x−1 = 2x0 − x̃0 = x0. The first
row of the equation above can be simplified

N−1Ø
n=0

∥y − yn∥2

2σ + ∥x− xn∥2

2τ ≥
N−1Ø
n=0

∥y − yn+1∥2

2σ + ∥x− xn+1∥2

2τ + . . .

=⇒ ∥y − y0∥2

2σ + ∥x− x0∥2

2τ ≥

...y − yN
...2

2σ +

...x− xN
...2

2τ + . . .

The third row 1
2τ
qN−1
n=0 ∥xn − xn+1∥2 −

√
στL∥xn − xn−1∥2 can also be rewritten as

L

...xN − xN−1
...2

2τ + (1 −
√
στL)

N−1Ø
n=1

∥xn − xn−1∥2

2τ .

The fourth row is a telescopic sum, therfore it reduces to

⟨D(xN − xN−1), yN − y⟩ − ⟨D(x0 − x−1), y0 − y⟩ = ⟨D(xN − xN−1), yN − y⟩,
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but similarly as before we further have

⟨D(xN − xN−1), yN − y⟩ ≥ −L
...xN − xN−1

......yN − y
... ≥

≥ −L

2
1
Lτ

...xN − xN−1
...2

− L

2Lτ
...yN − y

...2
= −L

...xN − xN−1
...2

2τ − L2στ

...yN − y
...2

2σ .

Hence, after the sum the inequality become

∥y − y0∥2

2σ + ∥x− x0∥2

2τ ≥ (1 − L2στ)

...y − yN
...2

2σ +

...x− xN
...2

2τ +

+(1 −
√
στL)

N−1Ø
n=1

∥xn − xn−1∥2

2τ + ∥yn − yn−1∥2

2σ +

+
NØ
n=1

[G(xn) + ⟨Dxn, y⟩ − F ∗(y) −G(x) − ⟨Dx, yn⟩ + F ∗(yn)].

(3.14)
Notice that G(xn, yn) = G(xn)+⟨Dxn, ŷ⟩−F ∗(ŷ)−G(x̂)−⟨Dx̂, yn⟩+F ∗(yn) ≥ 0,

then, taking (x, y) = (x̂, ŷ), we have

∥y − y0∥2

2σ + ∥x− x0∥2

2τ ≥ (1 − L2στ)

...y − yN
...2

2σ +

...x− xN
...2

2τ ,

which proves the first statement of the theorem.
The second statement follows as well from (3.14), indeed for convexity of F ∗

and G we have

1
N

NØ
n=1

F ∗(yn) ≥ F ∗(ȳN); 1
N

NØ
n=1

G(xn) ≥ G(x̄N).

Therefore, we must have that for every (x, y) ∈ X × Y

G(x̄N) + ⟨Dx̄N , y⟩ − F ∗(y) −G(x) − ⟨Dx, ȳN⟩ + F ∗(ȳN)

≤ 1
N

A
∥y − y0∥2

2σ + ∥x− x0∥2

2τ

B
,

but then maximizing for y ∈ B2 and minimizing for x ∈ B1 we conclude that there
exists a C such that

GB1×B2(x̄N , ȳN) ≤ C

N
. (3.15)

Notice that the boundedness of B1 and B2 is needed to preserve the meaning of the
inequality through the maximization and minimization. Take now (x∗, y∗) a weak
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accumulation point for (x̄N , ȳN), notice that such a point always exists because
from the first statement we deduce that (x̄N , ȳN ) is bounded, hence weakly compact.
Then, because G and F ∗ are lower semicontinuous and convex, they are also weakly
lower semicontinuous, which means that also GB1×B2 is weakly lower semicontinuous.
Thus, moving (3.15) to the limit, we conclude that GB1×B2(x∗, y∗) = 0, proving
that (x∗, y∗) is a saddle point.

Finally, we need to prove the convergence of the algorithm for finite dimensional
spaces. From the first statement we have that the sequence (xN , yN) is bounded,
therefore it admits a subsequence (xnk , ynk) strongly (we are in finite dimension)
converging to a point (x∗, y∗). But plugging (x, y) = (x̂, ŷ) in (3.14) we can deduce
that qN−1

n=1
∥xn−xn−1∥2

2τ + ∥yn−yn−1∥2

2σ has to remain bounded for each N , consequently
we must have

lim
N
xn − xn−1 = lim

n
yn − yn−1 = 0.

This means that (xnk−1, ynk−1) converges too to (x∗, y∗), in other words (x∗, y∗) is
a fixed point of (3.12), that is a saddle point. To prove the actual convergence of
(xN , yN), take nk < N and sum (3.13) from n = nk up to N for (x, y) = (x∗, y∗).
In this way we get an inequality similar to (3.14), but the last row is the sum of
duality gaps, which are positive, thus they can be omitted, as well for the second
row. The lower term in the telescopic sum from the fourth row of (3.13), instead,
can not be erased, this leaves the inequality

⟨D(xnk − xnk−1), ynk − y∗⟩ + ∥y∗ − ynk∥2

2σ + ∥x∗ − xnk∥2

2τ ≥

≥ (1 − L2στ)

...y∗ − yN
...2

2σ +

...x∗ − xN
...2

2τ .

But the left hand side is going to 0, then also (xN , yN) −→ (x∗, y∗).

This result shows also that the order of convergence is O
1

1
N

2
, which is quite

slow. However, [13] shows how the introduction of the acceleration can impressively
boost the algorithm speed in the case of (ROFh), even though there are not clear
theoretical explanations, it could even be happening only for the specific problem
we are facing, and not in general for all those in the (3.10) form.

We can now see how to apply this algorithm specifically for (ROFh). The space
X is represented by Qh, while Y = [Q2]2. The role of F (Dx) is taken by the
discrete total variation Vh, which indeed can be written as Vh(u) = ∥∇hu∥L1 , that
is F = ∥·∥L1 and D = ∇h. Instead the operator G is represented by the similarity
term 1

2λ∥u− g∥2
L2 , where to lighten the notation we assumed g = gh. In order to
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apply (3.12) we need ∇T
h = −divh, F ∗ and the inverse of Id+ σ∂F ∗ and Id+ τ∂G.

Let’s begin dealing with the latter.

∂G(u) = 1
2λ∂

1
∥u− g∥2

L2

2
= 1
λ

(u− g).

Therefore, to invert Id+ τ∂G we have to sole for u in the following equation

u+ τ

λ
(u− g) = v; =⇒ u = λ

λ+ τ

3
v + τ

λ
g
4
. (3.16)

Instead, we can compute F ∗ noticing how it can be expressed as supremum

F (ξ) = h2
NØ

i,j=1
|ξi,j|2 = h2

NØ
i,j=1

sup{pi,j · ξi,j | |pi,j| ≤ 1} = sup
p∈K

⟨p, ξ⟩L2 ,

where K = {p ∈
è
Qh
é2

: ∀i, j = 1, . . . , N |pi,j|2 = 1}. This means that F = I∗
K ,

where H(p) = 0 if p ∈ K and IK(p) = +∞ otherwise. We can notice that K is a
non empty, closed and convex set, because it can be seen as the cartesian product of
the closed balls {|pi,j| ≤ 1}. As a consequence, H is proper, lower semicontinuous
and convex, then IK = I∗∗

K = F ∗. Therefore, we have to compute ∂IK . On int(K)
IK is constant, which means ∂IK = 0. For p ∈ ∂K, instead, from the definition
2.2.5 we have

∂IK(p) = {v | ⟨v, q − p⟩ ≤ 0 ∀q ∈ K}.

But the v satisfying this condition are the outward normal vectors to K in p, that
is

∂IK(p) = {αn(p) | α ≥ 0, n(p) outward normal vector in p}.

While for p ∈ Qh \K, ∂IK(p) = ∅. We need now to invert Id+ σ∂IK , that is we
have to solve for ξ the equation

p ∈ ξ + σ∂IK(ξ) =⇒ 1
σ

(p− ξ) ∈ ∂IK(ξ).

Let’s divide the analysis in two cases: p ∈ int(K) and p /∈ int(K).

• p ∈ int(K): for any ξ ∈ int(K), ∂IK = {0}, therefore in this case we have
only one possible solution, p = ξ. If ξ ∈ ∂K we have no possible solutions,
because p− ξ would always be an inward vector.

• p /∈ int(K): clearly ξ can not be in the interior of K, but now p − ξ is an
outward vector, which is also normal if ξ is an orthogonal projection of p on
∂K. Though, Such projection is unique on convex sets.
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In conclusion we found that (Id + σ∂F ∗)−1 is the orthogonal projection on K:
ΠK . This is easy to compute explicitly, because the set K is built as a cartesian
product, therefore (ΠK(p))i,j will be the projection of pi,j on the (i, j)-th constraint
{|pi,j| ≤ 1}, that is

(ΠK(p))i,j =


pi,j if |pi,j| ≤ 1
pi,j
|pi,j|

otherwise.

Summing everything up we have to use the following iterative step:
ξn+1 = ΠK(ξn + σ∇hũ

n)

un+1 = λ

λ+ τ

3
un + τdivhξn+1 + τ

λ
g
4

ũn+1 = 2un+1 − un,

where, as before, we called u the primal variable and ξ the dual. The condition of
convergence is στ∥∇h∥2 < 1, and we can have a rough estimation of ∥∇h∥

NØ
i,j=1

---(∇hu)i,j
---2h2 = 1

h2

NØ
i,j=1

h2[(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2] ≤ 8
h2

NØ
i,j=1

h2u2
i,j,

=⇒ ∥∇h∥ ≤ 2
√

2
h

.

In order to avoid the inconvenience of scaling σ and τ with h, it could be useful to
use as linear operator D = h∇h. This is like substituting λ with λ

h
, a part from

the change of operator D, but practically (doing few simplifications) it turns to be
analogous of taking hτ and hσ in place of τ and σ. Then we have the routine

ξn+1 = ΠK(ξn + σh∇hũ
n)

un+1 = λ

λ+ hτ

A
un + τhdivhξn+1 + hτ

λ
g

B
ũn+1 = 2un+1 − un.

(3.17)

3.3 Experimental results
In this last section we are going to show the effect of the ROF minimization on an
image, furthermore the algorithm and its convergence will be validated using the
analytical solution found in (2.16). The routine (3.17) has been implemented in
Matlab to deal with gray scale images, which are square of side length of 1 covered
with N ×N pixels, so that we define h = N−1. For the algorithm parameters, we
generally set τ = σ = 0.1, while as starting configuration we took the dual variable
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ξ0 to be (0,0) everywhere and the primal variable u0 = g, because we expect the
solution to be close to the reference image, at least for a rather accurate choice of
λ. We usually run 1500 iterations, which are often more than enough for reaching
a satisfying state of convergence. We also set a break if the relative difference in
energy between two consecutive steps was below a given tolerance. However we
used very fine values of it like 10−10 or even 10−12, the reason why is that, because
this is not properly a gradient descent method, the energy oscillate through the
first iterations, and in proximity of an apex un may face very little changes for few
iterations, that may trigger a break if the tolerance is too low, preventing to reach
the convergence.

To get used to the behaviour of ROF, let’s right away see it in action. We are
going to apply the method on the Matlab repertoire image cameraman.tif, of size
256 × 256, on which we applied a white noise with standard deviation 25 (as a
reference we remind that the gray gradient goes from 0, black, to 255, white). Four
different value of λ: 0.4 · 255, 0.2 · 255, 0.1 · 255, 0.05 · 255. We have to point out
that we are representing λ as the standardized value, that would be used if Im(g)
was in [0,1], multiplied by the scaling factor. Indeed, as pointed out in the section
2.3, the fidelity term scale quadratically, while the total variation linearly, this
means that in order to recover the same results we need to rescale λ the same as
for g. In figure 3.1 you can see the original image and the noisy version, while in
figure 3.2 we have the results of ROF-denoising.

Figure 3.1: original cameraman image (left), noisy version (right).

Reasonably the effect of the total variation is much more visible in the solution
for the highest λ = 0.4 ∗ 255. Visibly this term is trying to flatten the image as
much as possible, creating huge spots of uniform colors, while still preserving the
contours of the objects in high contrast with the background. Indeed, we can
clearly distinguish the camera and the man profile, even though a lot of facial
details are lost and the man’s gloves completely blends with its jackets. The
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Figure 3.2: Resulting images after applying the ROF minimization with different
λ/255: 0.4 (up left), 0.2 (up right), 0.1 (down left), 0.05 (down right).

distinction between the sky and the ground is marked, despite the latter became
almost monochromatic, with no signs of grass left. The buildings in the background
are not really recognizable and the two skyscrapers completely disappear.

As expected, reducing λ, the level of details grows, although we keep this
impressionistic kind of look, typical of the ROF model. For λ = 0.1 ∗ 255 all the
objects are fully recognizable, with the exception of the shorter skyscraper. The
grass is finally visible, however not with a comparable level of detail as the original
image. Recovering it is a hard task, because, as we can see from the noisy image,
the grass pattern is not very discernible from the noise. We can finally notice that
for λ too low, in the example 0.05 ∗ 255, the effect of the total variation is so weak
that the noise is not completely erased.

We will now have a look to the example of the square, explored analytically
at the end of section 2.2. However, the solution shown is not totally repeatable,
because it assumed an infinite domain. This actually change the solution, even if
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the square is totally included in the bounded domain Ω. Indeed, let’s take λ > R∗,
case for which the analytical solution (2.16) results identically zero, and consider
as a competitor a constant function c, then its energy is:

1
2

Ú
Ω
(c− χQ)2 dx = c2|Ω \Q| + (1 − c)2|Q|

2 ,

which is a quadratic function in c with minimum for c = |Q|
|Ω| . If Ω = (0,1)2 and Q is

of side L, then the constant c = L2 is better than the 0 function. Interestingly, this
is also close to the solution found by the solver. We put L = 0.5, this means that
R∗ = 1

2(2+
√
π) ∈ (0.1, 0.2), so we can chose λ = 0.2 to gain the desired effect. The

solution found was slightly increasing (not enough to be visible) in both coordinate
at a comparable rate, this may be due to numerical reasons of for discretization
factors as the anisotropy introduced by the discrete derivative, which links the
increment in the cell in position (i, j) only with those in (i + 1, j) and (i, j + 1).
However its average was L2 = 0.25. Even more interesting is the fact that this kind
of solution remains if we choose λ = 0.1. My guess is that the solution in this case
is

u(x) = max
I
smin, 1 − λ

r(x)

J
, (3.18)

where r(x) is defined as in (2.16), while smin is the lowest s for which CRs (as
defined in (2.9)) is convenient with respect to Ω in the problem (ROFs). From all
the observation on the numerical solver, such a solution seems plausible, although
I was not able to prove or disprove its correctness formally. In order to compute
smin or Rmin = Rsmin

= λ
1−smin

, we need to find the smallest s or Rs for which

s|Ω| − L2 ≥ (1 − s)(RsP (CRs) −
---CRs

---) = (1 − s)(4RsL− L2 − (4 − π)R2
s),

where the last equality comes from (2.14), while on the left hand side there is the
energy of Ω for (ROFs). But, because s|Ω| − L2 = |Ω| − L2 − (1 − s)|Ω|, we can
multiply the equation by Rs to get

(|Ω| − L2)Rs − λ|Ω| ≥ 4LλRs − λL2 − (4 − π)λR2
s,

=⇒ Rmin =

ñ
(|Ω| − L2 − 4Lλ)2 + 4λ2(4 − π)(|Ω| − L2) − (|Ω| − L2 − 4Lλ)

2λ(4 − π) =

= 2λ(|Ω| − L2)ñ
(|Ω| − L2 − 4Lλ)2 + 4λ2(4 − π)(|Ω| − L2) + (|Ω| − L2 − 4Lλ)

=

= 2λñ
(1 − ζ)2 + (4 − π)λζ/L+ 1 − ζ

,
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where ζ = 4Lλ
|Ω|−L2 . Then, smin = 1 − λ

Rmin
can be computed as follows:

smin = 1
2

1 + ζ −
ó

(1 − ζ)2 + (4 − π)λζ
L

 .
In the case of λ = 0.1 and L = 0.5 we can indeed compute that smin ≈ 0.2514,
while 1 − λ

R∗ ≈ 0.2455, making the constant solution (u ≡ L2) better. The actual
bound for λ can be found imposing smin < 1 − λ

R∗ which implies

ζ − 1 + 2 λ

R∗ <

ó
(1 − ζ)2 + (4 − π)λζ

L
,

=⇒ (4 − π)λζ
L
> 4 λ

R∗ (ζ − 1) + 4 λ
2

R∗2 .

We notice that in taking the second power of the inequality we assumed ζ−1+2 λ
R∗ ≥

0 for the validity of the following steps. If ζ−1+2 λ
R∗ < 0, then for sure smin < 1− λ

R∗ ,
but can be verified afterward the the upper bound we are going to find is more
strict than this one anyway. We can now multiply the inequality above by R∗2

4λ > 0
and substitute ζ to get

λ

A
1 − R∗2

|Ω| − L2 (4 − π − 4(2 +
√
π))

B
< R∗,

λ

A
1 + L2

|Ω| − L2

B
< R∗, =⇒ λ < R∗

A
1 − L2

|Ω|

B
.

For L = 0.5 and |Ω| = 1, this condition become, approximately, λ < 0.0994, and
indeed using λ = 0.099 we can start, even so barely, seeing a non constant solution,
as in figure 3.3. Furthermore, with the choice of λ precisely λ = R∗

1
1 − L2

|Ω|

2
, we

have smin = 1 − λ
R∗ = L2

|Ω| , coming back to the optimal constant.
Even though we do not know the for sure if it is the solution, from an experimental

point of view it seems quite close to the actual one, this justifies that we are going
to assume that function to choose λ. Because we want to see if it behaves as
expected from the continuous solution, we have to reduce smin under a threshold α
for which the difference in brightness is barely visible. We choose α = 5%. Now,
we develop the computations:

smin ≤ α =⇒ (1 + ζ − 2α)2 ≤ (1 − ζ)2 + (4 − π)λζ
L
,

2ζ − 4α− 4αζ + 4α2 ≤ −2ζ + (4 − π)λζ
L
,
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Figure 3.3

(1 −α)ζ− 4 − π

4L λζ ≤ α(1 −α), =⇒ 4L(1 −α)λ− (4 −π)λ2 ≤ α(1 −α)(|Ω| −L2);

λ ≤ b−
√
b2 − c, (3.19)

with b = 2L(1−α)
4−π and c = α(1 − α) |Ω|−L2

4−π . When L = 0.5 and α = 0.05, we find
λ ≤ 0.018912, this upper bound is what we are going to use for λ is the experiments.

We are going to compare the results using 5 resolutions, identified by the
number N of pixels per dimension, N = 32, 64, 128, 256, 384. Take as refer-
ence the image 3.4. At first we notice that the background is not totally white,
as in the reference square, even if it assume values in average below 0.05 (I
am considering 0 white and 1 black). This is due to value of the threshold
α which is not too low, however reducing it would have brought to a λ too
little, making the decay on the square corners too slow and not very visible.

Figure 3.5

Discussing further the behaviour of the
background, we observed higher values
near the corners of the frame, especially
the upper left one as a consequence of the
anisotropy from the derivative discretiza-
tion. On the other hand there were a
bit of wavering near the inner square cor-
ners probably due to some numerical error.
This phenomenon is mildly visible in im-
age 3.5, taken from the case of N = 384.
Talking about the square corners, we ob-
serve the expected rounding, progressively
more evident increasing N . We can also
appreciate, especially for smaller N , the
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Figure 3.4: Example of the square: reference square (notice the axes’ different
scaling) image compared with the computational solution with different resolution.

asymmetry of the solution, which results in lower values for higher indices of row
and column. We can in conclusion compare the maximum values, in table 3.1.
These promisingly seem to approach the analytical maximum 1 − λ/R∗ ≈ 0.8573.
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N=32 N=64 N=128 N=256 N=384 analyt.
max val 0.8612 0.8593 0.8582 0.8577 0.8576 0.8573

Table 3.1
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Appendix A

Radon-Nikodym derivatives
on Radon measures

In this appendix some basic results on Radon measures and their Radon-Nikodym
derivatives. We begin defining a Radon measure.

Definition A.0.1. Let X be a locally compact and separable metric space, we
define:

• B(X), the Borel σ-algebra as the σ-algebra generated by the open sets (or
equivalently the balls).

• We call a measure defined on the measurable space (X,B(X)) as a Borel
measure.

• A Borel finite on the compacts is called Radon measure.

The Radon measures on Rn, paired with the euclidean distance, are of particular
interest because satisfy the following properties.

Proposition A.0.2 (inner regularity). Let µ be a σ-finite Borel measure on X,
then for E measurable:

µ(E) = sup{µ(K) : K ⊂ E, K compact}.

Proposition A.0.3 (outer regularity). Let µ a Borel measure on X s.t. we can
partitionate X = t

hXh, where for all h µ(Xh) < ∞, then for E measurable:

µ(E) = inf{µ(A) : E ⊂ A, A open}.

We call C0(Ω) the closure under infinity norm of the space Cc(Ω).
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Proposition A.0.4 (Riesz representation). Let Ω open in Rn and L be a linear
and continuous functional on [C0(Ω)]m with respect to the infinity norm. Then
there exists a unique Rm-valued Radon measure such that:

L(u) =
nØ
h=1

Ú
Ω
uh dµh.

The aim of this appendix is showing that Radon measures on Rn have a char-
acterization of a derivative as a limit of a difference quotient. We begin defining
absolute continuity and the Radon-Nikodym derivative.

Definition A.0.5. We say that a measure ν is absolutely continuous with respect
to a positive measure µ if, given a measurable set B:

µ(B) = 0 =⇒ ν(B) = 0.

We denote this relation as: ν ≪ µ.

Note that ν can also be RN -valued.

Definition A.0.6. Given a scalar measure µ on (X, E) and a measurable function
f : X → Rm, we denote the measure fµ such that for every B ∈ E :

fµ(B) =
Ú
B
f dµ =

3Ú
B
f1 dµ, . . . ,

Ú
B
fm dµ

4
.

We observe that always fµ << µ, as the integral of µ-negligible sets is 0. But
actually every absolutely continuous measure can be written uniquely as one of the
kind fµ.

Proposition A.0.7 (Radon-Nikodym derivative). Let ν a RN -valued measure on
a measurable space (X, E) and µ a positive σ-finite measure on (X, E). If ν ≪ µ,
then there is a unique f measurable such that ν = fµ.

We call such f the Radon-Nikodym derivative, sometimes it is also denoted as
dν
dµ or Dµν. Before dealing with the case of Radon measures, we need to recall some
results. From now on we will take the space X to be metric.

Theorem A.0.8 (Besicovitch covering). Let A be a bounded set in Rn and F a
fine cover of A, that is ∀x ∈ A, ∃ρ̄ > 0 s.t. ∀ρ ≤ ρ̄, B̄(x, ρ) ∈ F . Then we can
find an at most countable subcover F ′, for which every x ∈ A belongs to at most bn
balls.

Now for ν vector valued Radon measure and µ positive Radon measure, we call:

D+
µ ν(x) = lim sup

ρ→0+

ν(B(x, ρ))
µ(B(x, ρ)) ; D−

µ ν(x) = lim inf
ρ→0+

ν(B(x, ρ))
µ(B(x, ρ)) ;
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where B(x, ρ) is the ball centered in x of radius ρ. We notice that for a Radon
measure λ, the function λ(B(x, ρ)) is continuous in x, indeed

|λ(B(x+ h, ρ)) − λ(B(x, ρ))| =
----Ú
X
χB(x+h,ρ) − χB(x,ρ) dλ

----.
χB(x+h,ρ) is converging pointwise, for h → 0, to χB(x,ρ), while

---χB(x+h,ρ) − χB(x,ρ)

--- ≤
2χB(x,ρ+1) ∈ L1(X,λ) as for radon measures λ(B(x, ρ+1)) is always finite. Therefore,
for dominated convergence we have the continuity. Then, ν(B(x, ρ)) and µ(B(x, ρ))
are continuous and consequently measurable, this implies that also D+

µ ν and D−
µ ν

are measurable. We want to show that D+
µ ν = D−

µ ν = Dµν µ-a.e. and ν = Dµνµ.
In order to do it we need the next proposition.

Proposition A.0.9. Let µ and ν positive Radon measures on Rn and E ⊂ suppµ
Borel set, then

D−
µ ν(x) ≤ t, ∀x ∈ E =⇒ ν(E) ≤ tµ(E),

D+
µ ν(x) ≥ t, ∀x ∈ E =⇒ ν(E) ≥ tµ(E).

Observation A.0.10. ν(E) finite =⇒ µ
1î
x ∈ E : D+

µ ν(x) = +∞
ï2

= 0.

Proof. Since we are working with Radon measures, we can take E bounded, then
we can generalize using the inner regularity. Take A ⊃ E open and bounded, then
consider ε > 0. We define:

F =
î
B̄(x, ρ) : x ∈ E, B̄(x, ρ) ⊂ A, ν(B̄(x, ρ)) < (t+ ε)µ(B̄(x, ρ))

ï
.

Since D+
µ ν ≤ t, then ∀x ∈ E ∃ρ̄ s.t. ∀ρ ≤ ρ̄, B̄(x, ρ) ∈ F . This means F is a fine

cover of E, then by Besicovitch theorem we can find a countable subcovering F ′

such that each point is in at most bn balls. Then we have:

ν(E) ≤
Ø
B∈F ′

ν(B) ≤
Ø
B∈F ′

(t+ ε)µ(B) ≤ (t+ ε)µ(A),

but from the arbitrariness of ε and the outer regularity of µ we can conclude
ν(E) ≤ tµ(E).

Similarly, if D+
µ ν ≥ t, for any A ⊂ E compact we can take:

F =
î
B̄(x, ρ) : x ∈ A, B̄(x, ρ) ⊂ E, ν(B̄(x, ρ)) > (t− ε)µ(B̄(x, ρ))

ï
.

Again, this is a fine covering and consequently we can extract a F ′ as above and
conclude:

ν(E) ≥
Ø
B∈F ′

ν(B) ≥
Ø
B∈F ′

(t− ε)µ(B) ≥ (t− ε)µ(A).

Then, using the inner regularity, we can conclude.
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Theorem A.0.11. Let ν be an Rn-valued Radon measure absolutely continuous
with respect to µ a positive Radon measure, then the limit

Dµν(x) = lim
ρ→0+

ν(B(x, ρ))
µ(B(x, ρ))

exists finite for µ-almost every x ∈supp µ. Furthermore, Dµν is the Radon-Nikodym
derivative of ν with respect to µ, in other words ν = Dµν µ.

Proof. We can assume ν to be a one dimensional positive measure. Indeed we can
immediately generalize to non positive measures with the decomposition in positive
and negative part ν = ν+ − ν−, while with multidimensional measures we can deal
componentwise.
ν, as a Radon measure, is finite on the compacts, then from the observation

A.0.10 the set {D+
µ ν = +∞} is locally µ-negligible, that is:

∀K compact, µ
1
{D+

µ ν = +∞} ∩K
2

= 0.

Then from inner regularity, {D+
µ ν = +∞} is µ-negligible. We now define, for B

measurable set:

λ+(B) =
Ú
B
D+
µ ν dµ; λ−(B) =

Ú
B
D−
µ ν dµ;

In order to show that Dµν exists and it is the Radon-Nikodym derivative, We want
to show that λ+ ≤ ν ≤ λ−. For the first inequality, given a measurable set B in
suppµ and an arbitrary t > 1, we define the disjoint sets:

N+
B =

î
x ∈ B : D+

µ ν(x) = 0
ï

; B+
n =

î
x ∈ B : D+

µ ν(x) ∈ (tn, tn+1]
ï
, n ∈ Z.

Since on B+
n D+

µ ν ≥ tn, from the previous proposition we can conclude:

λ+(B+
n ) =

Ú
B+

n

D+
µ ν dµ ≤ tn+1µ(B+

n ) ≤ tν(B+
n ),

while λ+(N+
B ) = 0 ≤ tν(B+

n ). Hence, as N+
B and B+

n are a disjoint cover of B, we
get:

λ+(B) = λ+(N+
B ) +

Ø
n∈Z

λ+(B+
n ) ≤ tν(N+

B ) +
Ø
n∈Z

tν(B+
n ) = tν(B).

But for arbitrariness of t > 1 we have the first inequality λ+ ≤ ν.
Similarly, we can define:

N−
B =

î
x ∈ B : D−

µ ν(x) = 0
ï

; B−
n =

î
x ∈ B : D−

µ ν(x) ∈ (tn, tn+1]
ï
, n ∈ Z.
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Thus, λ−(N−
B ) = 0 and

λ−(B−
n ) =

Ú
B−

n

D−
µ ν dµ ≥ tnµ(B−

n ) ≥ 1
t
ν(B−

n ),

=⇒ λ−(B) ≥ 1
t
ν(B).

Finally for arbitrariness of t > 1 we can conclude.
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Appendix B

Equivalence of BV
definitions

In this section we will prove that this two definitions 1.1.3 and 1.1.4 are equivalent
and provide some more insight on the total variation of measure. For more details
see [5] the first two chapters. Before the proof, we need to introduce some measure
tools.

Definition B.0.1. Let µ a vector valued measure on the measurable space (X, E),
we define its total variation as:

|µ|(E) := sup
Ø
h∈H

|µ(Eh)| : H ⊆ N , {Eh}h∈H ⊂ E , E =
h
h∈H

Eh


where ⊔ denotes a disjoint union, therefore the supremum is made over the

disjoint numerable partitions of E. We now show that this total variation is still a
measure.

Proposition B.0.2. |µ| is a positive measure and µ is finite if and only if |µ| is
finite.

Proof. |µ| clearly is positive, we have Let {Eh}h∈N, {Fj}j∈N ⊂ E two disjoint
coverings of E. Therefore, F ′

hj = Eh ∩ Fj is a countable disjoint covering of Eh, Fj
and E. So by σ-additivity we have:

Ø
j

|µ(Fj)| =
Ø
j

-----Ø
h

µ(F ′
hj)
----- ≤

Ø
h,j

---µ(F ′
hj)
--- ≤

Ø
h

|µ|(Eh),

Thus, if we take the supremum over the partitions {Fj} we have |µ|(E) ≤
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q
h|µ|(Eh). On the other hand, since F ′

hj is a countable partition of E, we have:

|µ|(E) ≥
Ø
h,j

---µ(F ′
hj)
--- ≥

Ø
h

------
Ø
j

µ(F ′
hj)
------.

Then, considering {F ′
hj} as a covering of Eh, we can extract the supremum to get

|µ|(E) ≥ q
h|µ|(Eh). Therefore, we have the σ-additivity:

|µ|(E) =
Ø
h

|µ|(Eh).

Instead, for the second statement, we see immediately that |µ|(X) ≥ |µ(X)|, so
|µ| finite implies µ finite.

We will prove the reverse implication at first for N = 1 Now suppose |µ|(X) =
+∞ but |µ(X)| < +∞, then there must exist a partition {Xh} s.t.

∞Ø
h=0

|µ(Xh)| > 2(|µ(X)| + 1).

Let’s call I+ the set of h such that µ(Xh) > 0 and I− the set of those for which
µ(Xh) < 0. Then for at least one of these sets, lets say I+ it must be verified:Ø

h∈I+

|µ(Xh)| > |µ(X)| + 1 > 1.

If we call E = t
h∈I+ Xh, then:

|µ(E)| =
------
Ø
h∈I+

µ(Xh)
------ =

Ø
h∈I+

|µ(Xh)| > |µ(X)| + 1,

because all the µ(Xh) share the same sign.

|µ(X \ E)| = |µ(X) − µ(E)| ≥ |µ(E)| − |µ(X)| > 1.

However, since |µ|(X) = +∞, either |µ|(E) = +∞ or |µ|(X \E) = +∞. We call F1
a set between E and X \E has infinity total variation and E1 the other one. Then
we apply iteratively the same argument, but with Fi instead of X. In this way we
find a succession of disjointed sets Ei such that |µ(Ei)| > 1 for all i. If I had at this
succession E0 = u+∞

i=1 Fi, we have a partition of X, therefore µ(X) = q+∞
i=0 µ(Ei).

However, since |µ(Ei)| > 1, this sum cannot converge, that is a contradiction.
If N ≥ 2, then there is a constant C such that |µ(X)| ≤ C

qN
j=1|µj(X)|. Then:

|µ|(X) = sup
IØ

h

|µ(Eh)|
J

≤ sup
CØ

h

NØ
j=1

|µj(Eh)|
 ≤
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≤ C
NØ
j=1

sup
IØ

h

|µj(Eh)|
J

= C
NØ
j=1

|µj|(X),

where all the sup have to be intended as over the partitions of X. Thus, µ finite
implies that each component is finite, then also all the |µj| are finite. This concludes
that |µ| is finite.

We will use this definition to show that for f ∈ BV (Ω), V (f,Ω) = |Df |(Ω).
Let’s now focus on the relation between µ and |µ|. We have a helpful expression
for |fµ|.

Proposition B.0.3. If µ is positive and f ∈ [L1(X;µ)]m, then

|fµ|(B) = |f |µ(B); ∀B ∈ E .

Proof. • |fµ|(B) ≤ |f |µ(B): given a partition of B in disjoint measurable sets
{Bh}, from the Jensen inequality we have:

Ø
h

|fµ(Bh)| =
Ø
h

----Ú
Bh

f dµ
---- ≤

Ø
h

Ú
Bh

|f | dµ =
Ú
B

|f | dµ.

• |fµ|(B) ≥ |f |µ(B): consider a succession {zh}h∈N ⊂ Rm dense in Sm−1 (the
spherical surface embedded in Rm). For ϵ > 0 we define:

σϵ(x) := min {h ∈ N | ⟨f(x), zh⟩ ≥ (1 − ϵ)|f(x)|} .

We can notice that the functions ψh(x) = ⟨f(x), zh⟩ − (1 − ϵ)|f(x)| are
measurable and

σ−1
ϵ (h) = ψ−1

h ([0,+∞)) \

h−1Û
j=1

ψ−1
j ([0,+∞))

 .
Therefore, Bh = σ−1

ϵ (h) ∩B are measurable and form a disjoint partition of
B.

(1 − ϵ)|f |µ(B) =
Ø
h

Ú
Bh

(1 − ϵ)|f | dµ ≤
Ø
h

Ú
Bh

⟨f(x), zh⟩ dµ =

=
Ø
h

⟨
Ú
Bh

f(x) dµ, zh⟩ =
Ø
h

⟨fµ(Bh), zh⟩ ≤
Ø
h

|fµ(B − h)| ≤ |fµ|(B);

=⇒ (1 − ϵ)|f |µ(B) ≤ |fµ|(B),

but for the arbitrariness of ϵ we get the result.
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Now we can finally get the polar decomposition for measures.

Proposition B.0.4 (Polar decomposition). let µ a RN -valued measure on (X, E).

∃!f : X → SN−1, integrable, s.t. µ = f |µ|.

Proof. Clearly µ is absolutely continuous with respect to |µ|. Therefore, ∃!f ∈
[L1(X,µ)]N s.t. µ = f |µ|, and from B.0.3 we have:

|µ| = |f |µ|| = |f ||µ|,

=⇒ |f | = 1 |µ| − a.e.

Observation B.0.5. If we look at radon measures as dual of [C0(X)]m, then we can
notice that its dual norm is bounded by the total variation:----Ú

X
g dµ

---- =
----Ú
X
gf d|µ|

---- ≤
Ú
X

|g| d|µ| ≤ |µ|(X)∥g∥∞.

However, it can be proven that actually ∥µ∥ = |µ|(X).
Finally, we are ready to prove the equivalence between the two definitions of

BV .

Proposition B.0.6. The definitions 1.1.3 and 1.1.4 are equivalent and ∀u ∈
BV (Ω) V (u,Ω) = |Du|(Ω).

Proof. (⇐=): Take u as in 1.1.4 and let g ∈ C1
c (Ω) with ∥g∥∞ ≤ 1, then:

Ú
Ω
u · div(g) dx =

NØ
j=1

−
Ú

Ω
gj dDju.

Call f the function like in B.0.4 such that Du = f |Du|.

=⇒
Ú

Ω
u · div(g) dx =

Ú
Ω

−
Ø
j

gjfj d|Du| ≤
Ú

Ω
|g| · |f | d|Du|

≤
Ú

Ω
d|Du| = |Du|(Ω).

Extracting the supremum on g we get: V (u,Ω) ≤ |Du|(Ω) < +∞.
( =⇒ ): Take u as in 1.1.3, then for every ϕ ∈ [C∞

c (Ω)]N :----Ú
Ω
u divϕ dx

---- ≤ ∥ϕ∥∞V (u,Ω).
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Therefore, we can define on [C∞
c (Ω)]N a linear and continuous functional as:

L(ϕ) =
Ú

Ω
u divϕ dx.

As C∞
c is dense in C0, we can uniquely extend L to [C0(Ω)]N , preserving ∥L∥ ≤

V (u,Ω). Hence, by Riesz representation theorem (see [5]), exists a unique radon
measure µ s.t.:

L(ϕ) =
NØ
j=1

Ú
Ω
ϕj dµj, ∀ϕ ∈ [C0(Ω)]N ,

with |µ|(Ω) = ∥L∥ ≤ V (u,Ω) < +∞. But, since for every ϕ ∈ [C∞
c (Ω)]N this

measure must verify:

NØ
j=1

Ú
Ω
ϕj dµj =

Ú
Ω
u divϕ dx = −

NØ
j=1

⟨Dju, ϕj⟩,

we have Du = −µ, which implies |Du|(Ω) = |µ|(Ω) ≤ V (u,Ω).
Therefore, the two definitions imply each other and |Du|(Ω) = V (u,Ω).

Now we will present some further insight on the relation between a measure µ
and its total variation |µ|, in particular in relation with the weak ⋆ convergence.

Definition B.0.7. We say that a sequence of Radon measures {µh} on X converge
weakly ⋆ to a Radon measure µ, denoted µh

∗
⇀ µ, if ∀g ∈ C0(X):

lim
h→∞

Ú
X
g dµh =

Ú
X
g dµ.

The following is an important results of the total variation compactness with
respect to the weak ⋆ convergence.

Theorem B.0.8 (De La Valée Poussin). Take {µh} a sequence of finite Radon
measure on a metric space X, then if suph|µh|(X) < +∞ there exists a subsequence
µhk

converging weakly ⋆.

Proof. [C0(Rn)]m is separable, that is there exists a countable set B which is dense
(in uniform norm) in [C0(X)]m. Then, given any g1 ∈ B, we have, from B.0.5 that
the sequence {⟨µh, g1⟩} is bounded in h and consequently it admits a subsequence
{⟨µ1

h, g1⟩} converging to some value a1 so that
---⟨µ1

h, g1⟩ − a1

--- < 1
h
.
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Now given another element g2 ∈ B \ {g1}, since µ1
h(g2) is bounded, we can extract

a subsequence {⟨µ2
h, g2⟩} converging to a2 and---⟨µ2

h, g2⟩ − a2

--- < 1
h
.

Iterating we find nested sequences {µkh} and values ak such that---⟨µkh, gk⟩ − ak
--- < 1

h
,

and {gk}k∈N = B. Proceeding with a diagonal argument, we take µhh, which satisfy:---⟨µhh, gk⟩ − ak
--- < 1

h
, ∀h > k.

=⇒ lim
h→0

⟨µhh, gk⟩ = ak.

For Banach-Steinhaus, we can define on B a measure µ such that ⟨µ, gk⟩ = ak for
all k, then we can extend it by density. Now, for every g ∈ [C0(X)]m consider
gε ∈ B such that ∥g − gε∥∞ < ε, then, from the boundedness of |µh|(X) there
exists a C independent from h such that---⟨µ− µhh, g⟩

--- ≤ |⟨µ, g − gε⟩| +
---⟨µ− µhh, g

ε⟩
---+ ---⟨µhh, g − gε⟩

--- ≤

≤
---⟨µ− µhh, g

ε⟩
---+ C∥g − gε∥∞ −→ C∥g − gε∥∞ < Cε.

Thus, by arbitrariness of ε > 0 we conclude.

We can generalize to non finite measures

Corollary B.0.9. Take {µh} a sequence Radon measure on a metric space X,
then if suph|µh|(K) < +∞ for every compact K, there exists a subsequence µhk

locally converging weakly ⋆.

We can also say that the total variation is lower semicontinuous with respect to
weak ⋆ convergence.

Proposition B.0.10 (Semicontinuity). Let {µh} be a sequence converging locally
weakly ⋆ to µ, then

|µh| ∗
⇀ λ =⇒ λ ≥ |µ|,

Proof. Because |µ| is the norm of µ as functional on [C0]m, the semicontinuity
property is given.

In conclusion we present a theorem, useful to prove some results on the reduced
boundary. At first we need the definition of a Lebesgue point.
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Equivalence of BV definitions

Definition B.0.11. We say that x is a Lebesgue point of a function f integrable
on a positive measure µ if

lim
ρ→0

1
µ(B(x, ρ))

Ú
B(x,ρ)

|f(x) − f(y)| dµ = 0.

Observation B.0.12. We notice that if µ is a vector valued Radon measure with
polar decomposition µ = f |µ|, then every x on which f is defined is a Lebesgue
point. Indeed, from the Jensen inequalityA

1
|µ|(B(x, ρ))

Ú
B(x,ρ)

|f(x) − f(y)| d|µ|(y)
B2

≤

≤ 1
|µ|(B(x, ρ))

Ú
B(x,ρ)

|f(x) − f(y)|2 d|µ|(y) =

= 2
A

1 −
K
f(x), µ(B(x, ρ))

|µ|(B(x, ρ))

LB
.

However, from A.0.11 and the fact that |f(x)| = 1, this must converge to 0.

Theorem B.0.13. Take µ a Radon measure with polar decomposition µ = f |µ|
and let x be a Lebesgue point. We define the measure µx,ρ as

µx,ρ(A) = µ(x+ ρA).

Then, given a sequence {ρi} converging to 0,

∃ ν = lim
i

µx,ρi

|µ|(B(x, ρi))
⇐⇒ ∃σ = lim

i

|µ|x,ρi

|µ|(B(x, ρi))

where the limits are intended as weakly ⋆. Furthermore, we have σ = |ν| and the
polar decomposition ν = f |ν|.

Proof. Let B = B(0,1) and take ϕ ∈ C0(B).Ú
B
ϕ(z) d|µ|x,ρ −

=
f(x),

Ú
B
ϕ(z) dµx,ρ

>
=
Ú
B
ϕ(z)(1 − ⟨f(x), f(x+ ρz)⟩) d|µ|x,ρ =

=
Ú
B
ϕ

A
y − x

ρ

B
(1 − ⟨f(x), f(y)⟩) d|µ| = o(|µ|(B(x, ρ))),

where the last step depends on the fact that ϕ is bounded and |1 − ⟨f(x), f(y)⟩| ≤
|f(x) − f(y)|, then as x is a Lebesgue point we have the convergence behaviour as
above. To summarize we concluded:

|µ|x,ρi

|µ|(B(x, ρi))
⋆
⇀ ⟨f, ν⟩ = σ.
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Equivalence of BV definitions

Then, if we define g the function for the polar decomposition of ν, we have

σ = ⟨f, g⟩|ν|

and then |σ| ≤ |ν|. But from B.0.10 we must also have |ν| ≤ |σ|. This means
|ν| = |σ| = |⟨f, g⟩||ν|, that is ⟨f, g⟩ = ±1 almost everywhere. But since σ is a
positive measure, we have:

⟨f, g⟩ = 1 =⇒ f = g,

and therefore also σ = |ν|.
The reverse implication instead is a direct consequence of the De La Vallée

Poussin Theorem:

|µ|x,ρi

|µ|(B(x, ρi))
⋆
⇀ σ =⇒ µx,ρi

|µ|(B(x, ρi))
⋆
⇀ ν.

Then the relation between ν and σ is satisfied as before.

Observation B.0.14. We conclude observing that in the proof the denominator
|µ|(B(x, ρ)) is used only on to balance the limit behaviour o(|µ|(B(x, ρ)). Therefore,
if we know that there is a function g(ρ) with the same limit behaviour as |µ|(B(x, ρ)),
we can substitute it in the denominator. For example we can state:

Take µ a Radon measure with polar decomposition µ = f |µ| and let x be a
Lebesgue point. Suppose we know |µ|(B(x, ρ)) ≤ αρn−1, for some real positive α.
Then, given a sequence {ρi} converging to 0,

∃ ν = lim
i

µx,ρi

αρn−1
i

⇐⇒ ∃σ = lim
i

|µ|x,ρi

αρn−1
i

;

where the limits are intended as weakly ⋆. Furthermore, we have the polar
decomposition ν = fσ.
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Acronyms

ROF
Rudin-Osher-Fatemi problem

ROFs
Rudin-Osher-Fatemi problem by level sets

ROFh
discretized Rudin-Osher-Fatemi problem
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